Nothing Special   »   [go: up one dir, main page]

WO2014183324A1 - Colour filter structure and liquid crystal display panel using same - Google Patents

Colour filter structure and liquid crystal display panel using same Download PDF

Info

Publication number
WO2014183324A1
WO2014183324A1 PCT/CN2013/078241 CN2013078241W WO2014183324A1 WO 2014183324 A1 WO2014183324 A1 WO 2014183324A1 CN 2013078241 W CN2013078241 W CN 2013078241W WO 2014183324 A1 WO2014183324 A1 WO 2014183324A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
liquid crystal
transparent substrate
filter unit
substrate
Prior art date
Application number
PCT/CN2013/078241
Other languages
French (fr)
Chinese (zh)
Inventor
伍浚铭
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2014183324A1 publication Critical patent/WO2014183324A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • the present invention relates to the field of flat display, and more particularly to a color filter structure and a liquid crystal display panel using the color filter structure.
  • Liquid crystal display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal display devices, which include a casing, a liquid crystal display panel disposed in the casing, and a backlight module disposed in the casing.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates, and control the liquid crystal molecules to change direction by energizing or not, and refract the light of the backlight module to produce a picture. Since the liquid crystal display panel itself does not emit light, the light source provided by the backlight module is required to display the image normally. Therefore, the backlight module becomes one of the key components of the liquid crystal display device.
  • the backlight module is divided into an edge-lit backlight module and a direct-lit backlight module according to different incident positions of the light source.
  • the direct-lit backlight module is configured such that a light source such as a CCFL (Cole Cathode Fluorescent Lamp) or an LED (Light Emitting Diode) is placed behind the liquid crystal display panel to directly form a surface light source for the liquid crystal. Display panel.
  • the side-lit backlight module has a backlight LED strip (Light bar) disposed on the edge of the back panel behind the liquid crystal display panel, and the light emitted by the LED strip is from the side of the light guide plate (LGP, Light Guide Plate).
  • the smooth surface enters the light guide plate, is reflected and diffused, and is emitted from the light exit surface of the light guide plate, and then passes through the optical film group to form a surface light source to be supplied to the liquid crystal display panel.
  • the liquid crystal display device generally includes: a backlight module 100 , a plastic frame 300 disposed on the backlight module 100 , a liquid crystal display panel 500 disposed on the plastic frame 300 , and a front frame disposed on the liquid crystal display panel 500 .
  • the backlight module 00 includes: a backplane 1 0, a backlight 130 disposed in the backplane 110, a reflective sheet 150 disposed in the backplane 110, and a light guide plate disposed on the reflective sheet 150 And the optical film set i90 disposed on the light guide plate 170, the plastic frame 300 is used to carry the liquid crystal display panel 500, and the front frame 700 is locked with the back plate 110 of the backlight module 100, and then assembled into a liquid crystal display. Device.
  • FIG. 2 The structure of a conventional liquid crystal display panel is as shown in FIG. 2, which mainly includes a thin film transistor (TFT) substrate 502, a color filter (CF) substrate 504, and a TFT substrate 502 and a CF substrate 504. Between the liquid crystal layer 506, the A plurality of thin film transistors 522 are disposed on a side of the TFT substrate 502 adjacent to the liquid crystal layer 506. Each of the thin film transistors 522 has a pixel electrode 524. The thin film transistor 522 and the pixel electrode 524 have a transparent insulating protective layer 526. A transparent passivation layer (not shown) is also disposed on the pixel electrode 524.
  • TFT thin film transistor
  • CF color filter
  • a plurality of color filter units 542 are disposed on a side of the CF substrate 504 adjacent to the liquid crystal layer 506, and each of the color filter units 542 corresponds to one of red (R), green (G), and blue (B).
  • Each of the color filter units 542 is separated by a black matrix (BM) 544, and the black matrix 544 serves as a light shielding layer to prevent light leakage.
  • the color filter unit 542 and the black matrix 544 are close to the liquid crystal layer 506.
  • a transparent common electrode 546 is provided on one side.
  • the TFT base 502 and the CF substrate 504 are bonded, it is difficult to strictly align the position of each of the color filter units 542 and each of the pixel electrodes 524, resulting in partial light.
  • the color filter unit 542 cannot pass through, which in turn causes the brightness of the liquid crystal display panel to decrease, which makes the overall brightness of the liquid crystal display device not high.
  • Another object of the present invention is to provide a liquid crystal display panel having a high transmittance, brightness, and viewing angle by using a color filter structure having a lens module.
  • the present invention provides a color filter structure, comprising: a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the transparent substrate corresponds to The color filter unit is provided with a lens module.
  • the lens module is arranged with a plurality of micro-transparent files.
  • the lens module is arranged with a plurality of microlenses in the array.
  • the microlens has a circular honeycomb shape, and the microlens is disposed between the color filter unit and the transparent substrate.
  • the microlens has a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
  • the microlens has a cylindrical shape, and the microlens extends through the color filter unit outside the color filter unit.
  • the present invention also provides a liquid crystal display panel, comprising: a thin film transistor substrate; a color filter substrate disposed opposite to the thin film transistor substrate; and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate,
  • the color filter substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the corresponding color filter unit on the transparent substrate is provided with a lens module,
  • the transparent substrate is a glass plate breadcrumbs
  • the lens module is arranged with a plurality of microlenses in the array.
  • the microlens has a circular honeycomb shape or a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
  • the microlens has a cylindrical shape, and the microlens extends through the color filter unit outside the color filter unit.
  • the present invention also provides a liquid crystal display panel, comprising: a thin film transistor substrate; a color filter substrate disposed opposite to the thin film transistor substrate; and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate,
  • the color filter substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the corresponding color filter unit on the transparent substrate is provided with a lens module,
  • the transparent substrate is a glass plate;
  • the lens module is arranged on the array with a plurality of microlenses
  • the microlens has a circular honeycomb shape or a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
  • the lens module is disposed on the transparent substrate corresponding to the color filter unit, so that the color filter unit is emitted from the color filter unit The light is refracted through the lens module and then emitted through the transparent substrate, thereby effectively improving the transmittance, brightness and viewing angle of the liquid crystal display panel.
  • the figure is a schematic exploded perspective view of a conventional liquid crystal display device
  • FIG. 2 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 8 is a schematic structural view of a third embodiment of a liquid crystal display panel of the present invention. Specific. The way of travel.
  • the present invention provides a color filter structure, including: a transparent substrate 40, a color filter unit 44 formed on the transparent substrate 40, and a black matrix 46 formed around the color filter unit 44.
  • the corresponding color filter unit 44 of the transparent substrate 40 is provided with a lens module 48.
  • the lens module 48 is arranged with a plurality of microlenses 482.
  • the microlenses 482 are arranged in an array. When the light (shown by the arrow in FIG. 3) enters the lens module 48 by the color filter unit 44, the microlens 482 refracts the light, thereby changing the propagation path of the light, so that more light can be transmitted from the transparent substrate. 40 shot in all directions, improving the transmittance, brightness and viewing angle of the color filter
  • the lens module 48 is formed on the transparent substrate 40 by thermocompression bonding, and a color filter unit 44 and a black matrix 46 are formed on the transparent substrate 40 to obtain the color filter.
  • the microlens 482 has a circular honeycomb shape, and the microlens 482 is disposed in the color filter unit 44. Between the transparent substrates 40. Specifically, the opening direction of the microlens 482 is toward the transparent substrate 40.
  • the microlens 482 refracts the light, thereby changing the propagation path of the light, so that The multi-light can be emitted from all directions of the transparent substrate 40, which improves the transmittance, brightness and viewing angle of the color filter.
  • the circular honeycomb-shaped microlens 482 can also be colored toward the color in the opening direction: Please refer to FIG. 4, a schematic structural diagram of the second embodiment of the color filter structure, in this embodiment.
  • the microlens 482 ′ has a triangular pyramid shape, and the microlens 482 is disposed between the color filter unit 44 ′ and the transparent substrate 40 .
  • the microlens 482 refracts the light to change the propagation path of the light, so that more light can be
  • the transparent substrate 40 is emitted in all directions, which enhances the color Color filter transmittance, brightness and viewing angle
  • the microlens 482" has a cylindrical shape, and the microlens 482" penetrates the color filter unit 44" Extending outside the color filter unit 44".
  • the microlens 482" refracts the light, thereby changing the propagation path of the light, so that more light can be
  • the transparent substrate 40 is emitted in all directions, which improves the transmittance, brightness and viewing angle of the color filter.
  • the lens module 48" having the cylindrical microlens 482" may be first formed on the transparent substrate 40 by thermocompression bonding, and then the color filter unit 44" is formed on the lens module 48".
  • the color filter unit 44 is distributed inside and outside the cylindrical microlens 482" to effectively enhance the display effect of the liquid crystal display panel.
  • the present invention provides a liquid crystal display panel, including: a thin film transistor substrate 2 , a color filter substrate 4 disposed opposite to the thin film transistor substrate 2 , and a thin film transistor substrate 2 and The liquid crystal layer 6 between the color filter substrates 4.
  • the thin film transistor substrate 2 drives the liquid crystal molecules in the liquid crystal layer 6 to rotate, thereby selecting the incoming light, and the light passing through the liquid crystal layer 6 enters the color filter substrate 4, thereby displaying a color picture.
  • the corresponding color filter unit 44 of the transparent substrate 40 is provided with a lens module 48, and the lens module 48 is arranged with a plurality of microlenses 482.
  • the microlenses 482 are arranged in an array.
  • the transparent substrate 40 is a glass plate, and the microlens 482 has a circular honeycomb shape, and the microlens 482 is disposed between the color filter unit 44 and the transparent substrate 40.
  • the light (shown by the arrow in FIG. 3 ) enters the lens module 48 via the color filter unit 44 , is refracted by the micro lens 482 on the lens module 48 , and is emitted by the transparent substrate 40 , thereby effectively improving the penetration of the liquid crystal display panel.
  • the lens module 48 is formed on the transparent substrate 40 by thermocompression bonding, and a color filter unit 44 and a black matrix 46 are formed on the transparent substrate 40 to obtain the color filter.
  • the color filter substrate 4 further includes a transparent electrode layer 45 formed on the color filter unit 44 and the black matrix 46, a guiding layer 47 formed on the transparent electrode layer 45, and a transparent layer.
  • the substrate 40 is away from the first polarizer 49 on the side of the liquid crystal layer 6.
  • Transparent electrode The layer 45 and the thin film transistor substrate 2 form an electric field to drive the liquid crystal molecules in the liquid crystal layer 6 to rotate.
  • the guiding layer 47 is used to guide the liquid crystal molecules, and the first polarizing film 49 further selects the light to display the image in JL.
  • the thin film transistor substrate 2 includes a transparent substrate 22, a plurality of thin film transistors 24 formed on the side of the transparent substrate 22 facing the liquid crystal layer 6, and a second polarizer 26 attached to the side of the transparent substrate 22 away from the liquid crystal layer 6.
  • the transparent substrate 22 is also a glass plate.
  • the thin film transistor 24 includes a gate electrode 242 formed on the transparent substrate 22, a *pole insulating layer 244 formed on the gate electrode 242, and an active layer 246 formed on the gate insulating layer 244 formed on the active layer 246.
  • the pixel electrode 249 forms an electric field with the transparent electrode layer 45 on the color filter substrate 4 for driving the liquid crystal molecules in the liquid crystal layer 6 to rotate, and then selects the light passing through the liquid crystal layer 6 to display a corresponding picture.
  • FIG. 7 is a schematic structural view of a liquid crystal display panel according to a second embodiment of the present invention.
  • the microlens 482 ′ on the lens module 48 ′ has a triangular pyramid shape, and the microlens 482 is provided. Between the color filter unit 44 and the transparent substrate 40, the technical effect of improving the transmittance, brightness and viewing angle of the liquid crystal display panel can be achieved.
  • FIG 8 is a schematic structural view of a liquid crystal display panel according to a third embodiment of the present invention.
  • the microlens 482" on the lens module 48" has a cylindrical shape, and the microlens 482" penetrates.
  • the color filter unit 44" extends outside the color filter unit 44", which can also achieve the technical effect of improving the transmittance, brightness and viewing angle of the liquid crystal display panel.
  • the lens module is disposed on the transparent substrate corresponding to the color filter unit, so that the light emitted from the color filter unit is emitted. After being refracted through the lens module and then being emitted through the transparent substrate, the transmittance, brightness and viewing angle of the liquid crystal display panel are effectively improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A colour filter structure and a liquid crystal display panel using same. The colour filter structure comprises: a transparent substrate (40), colour filter units (44, 44', 44'') formed on the transparent substrate (40), and black matrixes (46) formed around the colour filter units (44, 44', 44''). Lens modules (48, 48', 48'') are arranged corresponding to the colour filter units (44, 44', 44'') on the transparent substrate (40). This colour filter structure and the liquid crystal display panel using same enable light rays emitted from the colour filter units (44, 44', 44'') to be emitted out via the transparent substrate (40) after being refracted by the lens modules (48, 48', 48''), thereby effectively improving the penetration rate, brightness, and visible angle of the liquid crystal display panel.

Description

本发明涉及平面显示领域, 尤其涉及- -种彩色滤光片结构及用该彩色 滤光片结构的液晶显示面板。  The present invention relates to the field of flat display, and more particularly to a color filter structure and a liquid crystal display panel using the color filter structure.
液晶显示装置 (LCD, Liquid Crystal Display )具有机身薄、 省电、 无 辐射等众多优点, 得到了广泛的应用。 现有市场上的液晶显示装置大部分 为背光型液晶显示装置, 其包括壳体、 设于壳体内的液晶显示面板及设于 壳体内的背光模组 (backlight module ) 。 液晶显示面板的工作原理是在两 片平行的玻璃基板当中放置液晶分子, 通过通电与否来控制液晶分子改变 方向, 将背光模组的光线折射出来产生画面。 由于液晶显示面板本身不发 光, 需要借由背光模组提供的光源来正常显示影像, 因此, 背光模组成为 液晶显示装置的关键组件之一。 背光模组依照光源入射位置的不同分成側 入式背光模组与直下式背光模组两种。 直下式背光模组是将发光光源例如 CCFL(Coid Cathode Fluorescent Lamp, 阴极.萤光灯管)或 LED(Light Emitting Diode, 发光二极管)设.置在液晶显示面板后方, 直接形成面光源 提供给液晶显示面板。 而侧入式背光模组是将背光源 LED 灯条 (Light bar )设于液晶显示面板侧后方的背板边缘, LED 灯条发出的光线从导光 板(LGP, Light Guide Plate ) 一側的入光面进入导光板, 经反射和扩散后 从导光板出光面射出, 再经由光学膜片组, 以形成面光源提供给液晶显示 面板。 Liquid crystal display (LCD) has many advantages such as thin body, power saving, and no radiation, and has been widely used. Most of the liquid crystal display devices on the market are backlight type liquid crystal display devices, which include a casing, a liquid crystal display panel disposed in the casing, and a backlight module disposed in the casing. The working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates, and control the liquid crystal molecules to change direction by energizing or not, and refract the light of the backlight module to produce a picture. Since the liquid crystal display panel itself does not emit light, the light source provided by the backlight module is required to display the image normally. Therefore, the backlight module becomes one of the key components of the liquid crystal display device. The backlight module is divided into an edge-lit backlight module and a direct-lit backlight module according to different incident positions of the light source. The direct-lit backlight module is configured such that a light source such as a CCFL (Cole Cathode Fluorescent Lamp) or an LED (Light Emitting Diode) is placed behind the liquid crystal display panel to directly form a surface light source for the liquid crystal. Display panel. The side-lit backlight module has a backlight LED strip (Light bar) disposed on the edge of the back panel behind the liquid crystal display panel, and the light emitted by the LED strip is from the side of the light guide plate (LGP, Light Guide Plate). The smooth surface enters the light guide plate, is reflected and diffused, and is emitted from the light exit surface of the light guide plate, and then passes through the optical film group to form a surface light source to be supplied to the liquid crystal display panel.
请参阅图 1 , 液晶显示装置一般包括: 背光模组 100、 设于背光模组 100上的胶框 300. 设于胶框 300上的液晶显示面板 500及设于液晶显示 面板 500上的前框(Bezel ) 700, 所述背光模组 〗00 包括: 背板 1】0、 设 于背板 110 内的背光源 130、 设于背板 110 内的反射片 150设于反射片 150上的导光板 170及设于导光板 170上的光学膜片组 i90, 所述胶框 300 用于承载液晶显示面板 500, 所述前框 700与背光模组 100的背板 110锁 合, 进而组装成一液晶显示装置。  Referring to FIG. 1 , the liquid crystal display device generally includes: a backlight module 100 , a plastic frame 300 disposed on the backlight module 100 , a liquid crystal display panel 500 disposed on the plastic frame 300 , and a front frame disposed on the liquid crystal display panel 500 . (Bezel) 700, the backlight module 00 includes: a backplane 1 0, a backlight 130 disposed in the backplane 110, a reflective sheet 150 disposed in the backplane 110, and a light guide plate disposed on the reflective sheet 150 And the optical film set i90 disposed on the light guide plate 170, the plastic frame 300 is used to carry the liquid crystal display panel 500, and the front frame 700 is locked with the back plate 110 of the backlight module 100, and then assembled into a liquid crystal display. Device.
传统的液晶显示面板的结构如图 2 所示, 其主要包括薄膜晶体管 ( Thin Film Transistor, TFT )基板 502、 彩色滤光片 (Color Filter, CF ) 基板 504及设于 TFT基板 502与 CF基板 504之间的液晶层 506, 所述 TFT基板 502靠近液晶层 506的一側设有多个薄膜晶体管 522 , 每一薄膜 晶体管 522上均对应一个像素电极 524, 薄膜晶体管 522与像素电极 524 之间具有一透明绝缘的保护层 526, 通常像素电极 524上还设有一透明的 钝化层(未图示) 。 在 CF基板 504靠近液晶层 506的一侧设有多个彩色 滤光单元 542, 每一彩色滤光单元 542 分别对应红 ( R ) 、 绿(G ) 、 蓝 ( B ) 中的一种颜色, 并且每一彩色滤光单元 542 之间均以黑色矩阵 ( Black Matrix, BM ) 544隔开, 黑色矩阵 544作为遮光层, 防止光线泄 漏, 在彩色滤光单元 542与黑色矩阵 544靠近液晶层 506的一侧设有一透 明的共同电极 546。 在液晶显示面板的制作过.程中, 在贴合 TFT基极 502 与 CF基板 504时, 很难做到每个彩色滤光单元 542与每个像素电极 524 的位置严格对准, 导致部分光线不能透过彩色滤光单元 542, 进而导致液 晶显示面板的亮度降低 , 这就使得液晶显示装置的整体亮度不高。 The structure of a conventional liquid crystal display panel is as shown in FIG. 2, which mainly includes a thin film transistor (TFT) substrate 502, a color filter (CF) substrate 504, and a TFT substrate 502 and a CF substrate 504. Between the liquid crystal layer 506, the A plurality of thin film transistors 522 are disposed on a side of the TFT substrate 502 adjacent to the liquid crystal layer 506. Each of the thin film transistors 522 has a pixel electrode 524. The thin film transistor 522 and the pixel electrode 524 have a transparent insulating protective layer 526. A transparent passivation layer (not shown) is also disposed on the pixel electrode 524. A plurality of color filter units 542 are disposed on a side of the CF substrate 504 adjacent to the liquid crystal layer 506, and each of the color filter units 542 corresponds to one of red (R), green (G), and blue (B). Each of the color filter units 542 is separated by a black matrix (BM) 544, and the black matrix 544 serves as a light shielding layer to prevent light leakage. The color filter unit 542 and the black matrix 544 are close to the liquid crystal layer 506. A transparent common electrode 546 is provided on one side. During the fabrication of the liquid crystal display panel, when the TFT base 502 and the CF substrate 504 are bonded, it is difficult to strictly align the position of each of the color filter units 542 and each of the pixel electrodes 524, resulting in partial light. The color filter unit 542 cannot pass through, which in turn causes the brightness of the liquid crystal display panel to decrease, which makes the overall brightness of the liquid crystal display device not high.
目前主要釆用两种方法增大液晶显示装置的亮度, 一种方法为增加背 光模组中背光源本身的发光量, 这可以通过增大 LED功率或增加 LED的 数量来实现, 但 LED 功率的增大或数量的增加会导致液晶显示装置功耗 增加、 发热量增加, 不利于液晶显示装置品质的提升; 另一种方法为在背 光模组中增加光学膜片, 这虽然可以提高液晶显示装置的亮度, 但会使液 晶显示装置的厚度变大, 不利于薄型化, 且成本相对较高, 不利于成本控 制。 发明内容  At present, two methods are mainly used to increase the brightness of the liquid crystal display device. One method is to increase the amount of illumination of the backlight itself in the backlight module, which can be achieved by increasing the LED power or increasing the number of LEDs, but the power of the LED The increase or increase in the number of liquid crystal display devices increases the power consumption and heat generation, which is not conducive to the improvement of the quality of the liquid crystal display device. Another method is to add an optical film to the backlight module, which can improve the liquid crystal display device. The brightness of the liquid crystal display device is increased, which is disadvantageous for thinning, and the cost is relatively high, which is disadvantageous for cost control. Summary of the invention
本发明的目的在于提供一种彩色滤光片结构, 其通过采用透镜模组改 变光线传播路径, 能有效提高彩色滤光片的穿透率、 亮度及可视角度。  It is an object of the present invention to provide a color filter structure which can effectively improve the transmittance, brightness and viewing angle of a color filter by changing a light propagation path by using a lens module.
本发明的另一目的在于提供一种液晶显示面板, 其通过采用具有透镜 模组的彩色滤光片结构, 具有较高的穿透率、 亮度及可视角度。  Another object of the present invention is to provide a liquid crystal display panel having a high transmittance, brightness, and viewing angle by using a color filter structure having a lens module.
为实现上述目的, 本发明提供一种彩色滤光片结构, 包括: 透明基 片、 形成于透明基片上的彩色滤光单元及形成于彩色滤光单元周围的黑色 矩阵, 所述透明基片上对应彩色滤光单元设有透镜模组。  In order to achieve the above object, the present invention provides a color filter structure, comprising: a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the transparent substrate corresponds to The color filter unit is provided with a lens module.
该透镜模组上排布有数个微透獍。  The lens module is arranged with a plurality of micro-transparent files.
该透镜模组上阵列排布有数个微透镜。  The lens module is arranged with a plurality of microlenses in the array.
所述微透镜呈圆形蜂巢状, 所述微透镜设于彩色滤光单元与透明基片 之间。  The microlens has a circular honeycomb shape, and the microlens is disposed between the color filter unit and the transparent substrate.
所述微透镜呈三角锥形, 所述微透镜设于彩色滤光单元与透明基片之 间。 所述微透镜呈圆筒状, 所述微透镜贯穿彩色滤光单元延伸于该彩色滤 光单元外。 The microlens has a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate. The microlens has a cylindrical shape, and the microlens extends through the color filter unit outside the color filter unit.
本发明还提供一种液晶显示面板, 包括: 薄膜晶体管基板、 与薄膜晶 体管基板相对贴合设置的彩色滤光片基板及设于薄膜晶体管基板与彩色滤 光片基板之间的液晶层, 所述彩色滤光片基板包括透明基片、 形成于透明 基片上的彩色滤光单元及形成于彩色滤光单元周围的黑色矩阵, 所述透明 基片上对应彩色滤光单元设有透镜模组, 所述透明基片为玻璃板„  The present invention also provides a liquid crystal display panel, comprising: a thin film transistor substrate; a color filter substrate disposed opposite to the thin film transistor substrate; and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate, The color filter substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the corresponding color filter unit on the transparent substrate is provided with a lens module, The transparent substrate is a glass plate „
该透镜模组上阵列排布有数个微透镜。  The lens module is arranged with a plurality of microlenses in the array.
所述微透镜呈圆形蜂巢状或三角锥形, 该微透镜设于彩色滤光单元与 透明基片.之间。  The microlens has a circular honeycomb shape or a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
所述微透镜呈圆筒状, 该微透镜贯穿彩色滤光单元延伸于该彩色滤光 单元外。  The microlens has a cylindrical shape, and the microlens extends through the color filter unit outside the color filter unit.
本发明还提供一种液晶显示面板, 包括: 薄膜晶体管基板、 与薄膜晶 体管基板相对贴合设置的彩色滤光片基板及设于薄膜晶体管基板与彩色滤 光片基板之间的液晶层, 所述彩色滤光片基板包括透明基片、 形成于透明 基片上的彩色滤光单元及形成于彩色滤光单元周围的黑色矩阵, 所述透明 基片上对应彩色滤光单元设有透镜模组, 所述透明基片为玻璃板;  The present invention also provides a liquid crystal display panel, comprising: a thin film transistor substrate; a color filter substrate disposed opposite to the thin film transistor substrate; and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate, The color filter substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, wherein the corresponding color filter unit on the transparent substrate is provided with a lens module, The transparent substrate is a glass plate;
其中, 该透镜模组上阵列排布有数个微透镜;  Wherein, the lens module is arranged on the array with a plurality of microlenses;
其中, 所述微透镜呈圓形蜂巢状或三角锥形, 该微透镜设于彩色滤光 单元与透明基片之间。  Wherein, the microlens has a circular honeycomb shape or a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
本发明的有益效杲: 本发明的彩色滤光片结构及用该彩色滤光片结构 的液晶显示面板, 通过在透明基片上对应彩色滤光单元设置透镜模组, 使 得从彩色滤光单元射出的光线经由透镜模组折射后再经由透明基片射出, 有效提升液晶显示面板的穿透率, 亮度及可视角度。  Advantageous Effects of the Invention: The color filter structure of the present invention and the liquid crystal display panel using the color filter structure, the lens module is disposed on the transparent substrate corresponding to the color filter unit, so that the color filter unit is emitted from the color filter unit The light is refracted through the lens module and then emitted through the transparent substrate, thereby effectively improving the transmittance, brightness and viewing angle of the liquid crystal display panel.
为了能更进一步了解本发明的特征以及技术内容, 请参阔以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明  The detailed description of the present invention and the appended claims are intended to provide a DRAWINGS
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。  The technical solutions and other advantageous effects of the present invention will be apparent from the following detailed description of embodiments of the invention.
附图中,  In the drawings,
图 为现有的液晶显示装置的立体分解结构示意图;  The figure is a schematic exploded perspective view of a conventional liquid crystal display device;
图 2为现有的液晶显示面板的结构示意图; 图 8为本发明液晶显示面板第三实施例的结构示意图。 具体.实旅方式. 2 is a schematic structural view of a conventional liquid crystal display panel; FIG. 8 is a schematic structural view of a third embodiment of a liquid crystal display panel of the present invention. Specific. The way of travel.
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。  In order to further clarify the technical means and effects of the present invention, the following detailed description will be made in conjunction with the preferred embodiments of the invention and the accompanying drawings.
请参阅图 3, 本发明提供一种彩色滤光片结构, 包括: 透明基片 40、 形成于透明基片 40上的彩色滤光单元 44及形成于彩色滤光单元 44周围 的黑色矩阵 46, 所述透明基片 40 上对应彩色滤光单元 44设有透镜模组 48 , 该透镜模组 48上排布有数个微透镜 482, 优选的, 该些微透镜 482阵 列式排布。 当光线(图 3 中箭头所示) 由彩色滤光单元 44进入透镜模组 48后, 所述微透镜 482对该光线进行折射, 从而改变光线的传播路径, 使 得更多光线能由透明基片 40 各方向射出, 提升了该彩色滤光片的穿透 率、 亮度及可视角度  Referring to FIG. 3, the present invention provides a color filter structure, including: a transparent substrate 40, a color filter unit 44 formed on the transparent substrate 40, and a black matrix 46 formed around the color filter unit 44. The corresponding color filter unit 44 of the transparent substrate 40 is provided with a lens module 48. The lens module 48 is arranged with a plurality of microlenses 482. Preferably, the microlenses 482 are arranged in an array. When the light (shown by the arrow in FIG. 3) enters the lens module 48 by the color filter unit 44, the microlens 482 refracts the light, thereby changing the propagation path of the light, so that more light can be transmitted from the transparent substrate. 40 shot in all directions, improving the transmittance, brightness and viewing angle of the color filter
具体地, 所述透镜模组 48通过热压合方式制作于透明基片 40上, 再 在该透明基片 40上形成彩色滤光单元 44及黑色矩阵 46, 进而制得该彩色 滤光片。  Specifically, the lens module 48 is formed on the transparent substrate 40 by thermocompression bonding, and a color filter unit 44 and a black matrix 46 are formed on the transparent substrate 40 to obtain the color filter.
请参阅图 3, 为本发明彩色滤光片结构第一实施例的结构示意图, 在 本实施例中, 所述微透镜 482呈圓形蜂巢状, 该微透镜 482设于彩色滤光 单元 44与透明基片 40之间。 具体地, 微透镜 482的开口方向朝向透明基 片 40, 当光线由彩色滤光单元 44进入透镜模组 48后, 所述微透镜 482对 该光线进行折射, 从而改变光线的传播路径, 使得更多光线能由透明基片 40各方向射出, 提升了该彩色滤光片的穿透率、 亮度及可视角度。  3 is a schematic structural view of a first embodiment of a color filter structure according to the present invention. In the embodiment, the microlens 482 has a circular honeycomb shape, and the microlens 482 is disposed in the color filter unit 44. Between the transparent substrates 40. Specifically, the opening direction of the microlens 482 is toward the transparent substrate 40. When the light enters the lens module 48 by the color filter unit 44, the microlens 482 refracts the light, thereby changing the propagation path of the light, so that The multi-light can be emitted from all directions of the transparent substrate 40, which improves the transmittance, brightness and viewing angle of the color filter.
另, 所述呈圓形蜂巢状的微透镜 482其开口方向还可以朝向彩色滤光 : 请参阅图 4 ,、、 本 明^色滤光片 构第二实施例的结构示意图, 在 本实施例中, 所述微透镜 482'呈三角锥形, 该微透镜 482,设于彩色滤光单 元 44'与透明基片 40之间。 当光线 (图 4 中箭头所示) 由彩色滤光单元 44'进入透镜模组 48,后, 所述微透镜 482,对该光线进行折射, 从而改变光 线的传播路径, 使得更多光线能由透明基片 40 各方向射出, 提升了该彩 色滤光片的穿透率、 亮度及可视角度 In addition, the circular honeycomb-shaped microlens 482 can also be colored toward the color in the opening direction: Please refer to FIG. 4, a schematic structural diagram of the second embodiment of the color filter structure, in this embodiment. The microlens 482 ′ has a triangular pyramid shape, and the microlens 482 is disposed between the color filter unit 44 ′ and the transparent substrate 40 . When the light (shown by the arrow in FIG. 4) enters the lens module 48 by the color filter unit 44', the microlens 482 refracts the light to change the propagation path of the light, so that more light can be The transparent substrate 40 is emitted in all directions, which enhances the color Color filter transmittance, brightness and viewing angle
请参阅图 5 , 为本发明彩色滤光片结构第三实施例的结构示意图, 在 本实施例中, 所述微透镜 482"呈圓筒状, 该微透镜 482"贯穿彩色滤光单 元 44"延伸于该彩色滤光单元 44"外。 当光线(图 5 中箭头所示) 由彩色 滤光单元 44"进入透镜模组 48"后, 所述微透镜 482"对该光线进行折射, 从而改变光线的传播路径, 使得更多光线能由透明基片 40 各方向射出, 提升了该彩色滤光片的穿透率、 亮度及可视角度  5 is a schematic structural view of a third embodiment of a color filter structure according to the present invention. In the embodiment, the microlens 482" has a cylindrical shape, and the microlens 482" penetrates the color filter unit 44" Extending outside the color filter unit 44". When the light (shown by the arrow in FIG. 5) enters the lens module 48" by the color filter unit 44", the microlens 482" refracts the light, thereby changing the propagation path of the light, so that more light can be The transparent substrate 40 is emitted in all directions, which improves the transmittance, brightness and viewing angle of the color filter.
具体地, 可先将具有圓筒状微透镜 482"的透镜模组 48"通过热压合方 式制作于透明基片 40上, 再在该透镜模组 48"上形成彩色滤光单元 44", 使得该彩色滤光单元 44"分布于圓筒状微透镜 482"的内部与外部, 有效提 升液晶显示面板的显示效果。  Specifically, the lens module 48" having the cylindrical microlens 482" may be first formed on the transparent substrate 40 by thermocompression bonding, and then the color filter unit 44" is formed on the lens module 48". The color filter unit 44 is distributed inside and outside the cylindrical microlens 482" to effectively enhance the display effect of the liquid crystal display panel.
值得一提的是, 所述每一彩色滤光单元 44与透明基片 40之间是否设 有透镜模组 48 , 可根据实际需求进行调整, 并不影响本发明的技术效果。  It is to be noted that whether or not the lens module 48 is disposed between each of the color filter units 44 and the transparent substrate 40 can be adjusted according to actual needs without affecting the technical effects of the present invention.
请参阅图 6 , 同时参考图 3, 本发明提供一种液晶显示面板, 包括: 薄膜晶体管基板 2、 与薄膜晶体管基板 2相对贴合设置的彩色滤光片基板 4及设于薄膜晶体管基板 2与彩色滤光片基板 4之间的液晶层 6。 所述薄 膜晶体管基板 2驱动液晶层 6内的液晶分子转动, 进而对进入的光线进行 选择, 通过液晶层 6 的光线进入彩色滤光片基板 4, 进而显示出彩色画 面。 液晶
Figure imgf000007_0001
Referring to FIG. 6 , and referring to FIG. 3 , the present invention provides a liquid crystal display panel, including: a thin film transistor substrate 2 , a color filter substrate 4 disposed opposite to the thin film transistor substrate 2 , and a thin film transistor substrate 2 and The liquid crystal layer 6 between the color filter substrates 4. The thin film transistor substrate 2 drives the liquid crystal molecules in the liquid crystal layer 6 to rotate, thereby selecting the incoming light, and the light passing through the liquid crystal layer 6 enters the color filter substrate 4, thereby displaying a color picture. liquid crystal
Figure imgf000007_0001
阵 46, 所述透明基片 40上对应彩色滤光单元 44设有透镜模组 48, 该透 镜模组 48上排布有数个微透镜 482, 优选的, 该些微透镜 482阵列排布, 在本实施例中, 所述透明基片 40 为玻璃板, 所述.微透镜 482 呈圓形蜂巢 状, 该微透镜 482设于彩色滤光单元 44与透明基片 40之间。 光线 (图 3 中箭头所示)经由彩色滤光单元 44进入透镜模组 48 , 经由透镜模组 48上 的微透镜 482折射后由透明基片 40射出, 有效提升液晶显示面板的穿透 具体地, 所述透镜模组 48通过热压合方式制作于透明基片 40上, 再 在该透明基片 40上形成彩色滤光单元 44及黑色矩阵 46, 进而制得该彩色 滤光片。 Array 46, the corresponding color filter unit 44 of the transparent substrate 40 is provided with a lens module 48, and the lens module 48 is arranged with a plurality of microlenses 482. Preferably, the microlenses 482 are arranged in an array. In the embodiment, the transparent substrate 40 is a glass plate, and the microlens 482 has a circular honeycomb shape, and the microlens 482 is disposed between the color filter unit 44 and the transparent substrate 40. The light (shown by the arrow in FIG. 3 ) enters the lens module 48 via the color filter unit 44 , is refracted by the micro lens 482 on the lens module 48 , and is emitted by the transparent substrate 40 , thereby effectively improving the penetration of the liquid crystal display panel. The lens module 48 is formed on the transparent substrate 40 by thermocompression bonding, and a color filter unit 44 and a black matrix 46 are formed on the transparent substrate 40 to obtain the color filter.
值得一提的是, 所述彩色滤光片基板 4还包括形成于彩色滤光单元 44 与黑色矩阵 46上的透明电极层 45、 形成于透明电极层 45上的导向层 47 及贴 †于透明基片 40远离液晶层 6—侧的第一偏光片 49。 所述透明电极 层 45与薄膜晶体管基板 2形成电场驱动液晶层 6 内的液晶分子转动, 所 述导向层 47用于导向液晶分子, 所述第一偏光片 49对光线进一步选择, 以 JL示 ϋ,ίϊ画面。 It is to be noted that the color filter substrate 4 further includes a transparent electrode layer 45 formed on the color filter unit 44 and the black matrix 46, a guiding layer 47 formed on the transparent electrode layer 45, and a transparent layer. The substrate 40 is away from the first polarizer 49 on the side of the liquid crystal layer 6. Transparent electrode The layer 45 and the thin film transistor substrate 2 form an electric field to drive the liquid crystal molecules in the liquid crystal layer 6 to rotate. The guiding layer 47 is used to guide the liquid crystal molecules, and the first polarizing film 49 further selects the light to display the image in JL.
所述薄膜晶体管基板 2 包括透明基板 22、 形成于透明基板 22朝向液 晶层 6—侧的数个薄膜晶体管 24及贴附于透明基板 22远离液晶层 6—侧 的第二偏光片 26。 在本实施例中, 所述透明基板 22也为玻璃板。  The thin film transistor substrate 2 includes a transparent substrate 22, a plurality of thin film transistors 24 formed on the side of the transparent substrate 22 facing the liquid crystal layer 6, and a second polarizer 26 attached to the side of the transparent substrate 22 away from the liquid crystal layer 6. In this embodiment, the transparent substrate 22 is also a glass plate.
所述薄膜晶体管 24包括形成于透明基板 22上的栅极. 242、 形成于柵 极 242上的 *极绝缘层 244、 形成于栅极绝缘层 244上的激活层 246 , 形 成于激活层 246上的源 /漏极 248、 形成于源 /漏极 248上的保护层 247及形 成于保护层 247上的像素电极 249。 所述像素电极 249与彩色滤光片基板 4上的透明电极层 45形成电场用于驱动液晶层 6内的液晶分子转动, 进而 对经过液晶层 6的光线进行选择, 以显示相应的图画面。  The thin film transistor 24 includes a gate electrode 242 formed on the transparent substrate 22, a *pole insulating layer 244 formed on the gate electrode 242, and an active layer 246 formed on the gate insulating layer 244 formed on the active layer 246. The source/drain 248, the protective layer 247 formed on the source/drain 248, and the pixel electrode 249 formed on the protective layer 247. The pixel electrode 249 forms an electric field with the transparent electrode layer 45 on the color filter substrate 4 for driving the liquid crystal molecules in the liquid crystal layer 6 to rotate, and then selects the light passing through the liquid crystal layer 6 to display a corresponding picture.
请参阅图 7 , 为本发明液晶显示面板的第二实施例的结构示意图, 在 本实施例中, 所述透镜模组 48'上的微透镜 482'呈三角锥形, 该微透镜 482,设于彩色滤光单元 44,与透明基片 40之间, 其同样可以实现提升液晶 显示面板的穿透率、 亮度及可视角度的技术效果。  7 is a schematic structural view of a liquid crystal display panel according to a second embodiment of the present invention. In this embodiment, the microlens 482 ′ on the lens module 48 ′ has a triangular pyramid shape, and the microlens 482 is provided. Between the color filter unit 44 and the transparent substrate 40, the technical effect of improving the transmittance, brightness and viewing angle of the liquid crystal display panel can be achieved.
请参阅图 8, 为本发明液晶显示面板的第三实施例的结构示意图, 在 本实施例中, 所述透镜模组 48"上的微透镜 482"呈圓筒状, 该微透镜 482"贯穿彩色滤光单元 44"延伸于该彩色滤光单元 44"外, 其同样可以实 现提升液晶显示面板的穿透率、 亮度及可视角度的技术效果。  8 is a schematic structural view of a liquid crystal display panel according to a third embodiment of the present invention. In the embodiment, the microlens 482" on the lens module 48" has a cylindrical shape, and the microlens 482" penetrates. The color filter unit 44" extends outside the color filter unit 44", which can also achieve the technical effect of improving the transmittance, brightness and viewing angle of the liquid crystal display panel.
具体地, 可先将具有圓筒状微透镜 482"的透镜模组 48"通过热压合方 式制作于透明基片 40上, 再在该透镜模组 48"上形成彩色滤光单元 44" , 使得该彩色滤光单元 44"分布于圓筒状微透镜 482"的内部与外部, 有效提. 升液晶显示面板的显示效果。  Specifically, the lens module 48" having the cylindrical microlens 482" can be first formed on the transparent substrate 40 by thermocompression bonding, and then the color filter unit 44" is formed on the lens module 48". The color filter unit 44 is distributed in the inside and outside of the cylindrical microlens 482" to effectively enhance the display effect of the liquid crystal display panel.
值得一提的是, 所述每一彩色滤光单元 44与透明基片 40之间是否设 有透镜模组 48, 可根据实际需求进行调整, 并不影响本发明的技术效杲。  It is to be noted that whether or not the lens module 48 is disposed between each of the color filter units 44 and the transparent substrate 40 can be adjusted according to actual needs without affecting the technical effects of the present invention.
综上所述, 本发明的彩色滤光片结构及用该彩色滤光片结构的液晶显 示面板, 通过在透明基片上对应彩色滤光单元设置透镜模组, 使得从彩色 滤光单元射出的光线经由透镜模组折射后再经由透明基片射出, 有效提升 液晶显示面板的穿透率、 亮度及可视角度。  In summary, the color filter structure of the present invention and the liquid crystal display panel using the color filter structure, the lens module is disposed on the transparent substrate corresponding to the color filter unit, so that the light emitted from the color filter unit is emitted. After being refracted through the lens module and then being emitted through the transparent substrate, the transmittance, brightness and viewing angle of the liquid crystal display panel are effectively improved.
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。  In the above, various other changes and modifications can be made in accordance with the technical solutions and technical concept of the present invention, and all such changes and modifications are within the scope of the claims of the present invention. .

Claims

权 利 要 求 一种彩色滤光片结构, 包括: 透明基片、 形成于透明基片上的彩 色滤光单元及形成于彩色滤光单元周围的黑色矩阵, 所述透明基片上对应 彩色滤光单元设有透镜模组。 Claims a color filter structure, including: a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit, and the transparent substrate is provided with a corresponding color filter unit Lens module.
2、 如权利要求 1 所述的彩色滤光片结构, 其中, 该透镜模组上排布 有数个微透镜。 2. The color filter structure as claimed in claim 1, wherein a plurality of microlenses are arranged on the lens module.
3、 如权利要求 2 所述的彩色滤光片结构, 其中, 该透镜模组上阵列 排布有数个微透镜。 3. The color filter structure as claimed in claim 2, wherein a plurality of microlenses are arranged in an array on the lens module.
4、 如权利要求 2 所述的彩色滤光片结构, 其中, 所述微透镜呈圓形 蜂巢状, 所述 透镜设于彩色滤光单元与透明基片之间。 4. The color filter structure as claimed in claim 2, wherein the microlenses are in a circular honeycomb shape, and the lenses are arranged between the color filter unit and the transparent substrate.
5、 如权利要求 2 所述的彩色滤光片结构, 其中, 所述微透镜呈三角 锥形, 所述微透镜设于彩色滤光单元与透明基片之间。 5. The color filter structure of claim 2, wherein the microlens is in a triangular pyramid shape, and the microlens is disposed between the color filter unit and the transparent substrate.
6、 如权利要求 2 所述的彩色滤光片结构, 其中, 所述微透镜呈圆筒 状, 所述微透镜贯穿彩色滤光单元延伸于该彩色滤光单元外。 6. The color filter structure of claim 2, wherein the microlens is cylindrical, and the microlens penetrates the color filter unit and extends outside the color filter unit.
7、 一种液晶显示面板, 包括: 薄膜晶体管基板、 与薄膜晶体管基板 相对贴合设置的彩色滤光片基板及设于薄膜晶体管基板与彩色滤光片基板 之间的液晶层, 所述彩色滤光片基板包括透明基片、 形成于透明基片上的 彩色滤光单元及形成于彩色滤光单元周围的黑色矩阵, 所述透明基片上对 应彩色滤光单元设有透镜模组, 所述透明基片为玻璃板。 7. A liquid crystal display panel, including: a thin film transistor substrate, a color filter substrate disposed relative to the thin film transistor substrate, and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate, the color filter The light sheet substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit. The transparent substrate is provided with a lens module corresponding to the color filter unit. The transparent substrate The piece is a glass plate.
8、 如权利要求 7 所述的液晶显示面板, 其中, 该透镜模组上阵列排 布有数个微透镜。 8. The liquid crystal display panel of claim 7, wherein a plurality of microlenses are arranged in an array on the lens module.
9、 如权利要求 8 所述的液晶显示面板, 其中, 所述微透镜呈圆形蜂 巢状或三角锥形, 该微透镜设.于彩色滤光单元与透明基片之闾。 9. The liquid crystal display panel of claim 8, wherein the microlens is in a circular honeycomb shape or a triangular pyramid shape, and the microlens is located between the color filter unit and the transparent substrate.
10、 如权利要求 7 所述的液晶显示面板, 其中, 所述微透镜呈圓筒 状, 该微透镜贯穿彩色滤光单元延伸于该彩色滤光单元外。 10. The liquid crystal display panel of claim 7, wherein the microlens is cylindrical, and the microlens penetrates the color filter unit and extends outside the color filter unit.
I I、 一种液晶显示面板, 包括: 薄膜晶体管基板、 与薄膜晶体管基板 相对贴合设置的彩色滤光片基板及设于薄膜晶体管基板与彩色滤光片基板 之间的液晶层, 所述彩色滤光片基板包括透明基片、 形成于透明基片上的 彩色滤光单元及形成于彩色滤光单元周围的黑色矩阵, 所述透明基片上对 应彩色滤光单元设有透镜模组, 所述透明基片为玻璃板; II. A liquid crystal display panel, including: a thin film transistor substrate, a color filter substrate disposed opposite to the thin film transistor substrate, and a liquid crystal layer disposed between the thin film transistor substrate and the color filter substrate, the color filter The light sheet substrate includes a transparent substrate, a color filter unit formed on the transparent substrate, and a black matrix formed around the color filter unit. The transparent substrate is provided with a lens module corresponding to the color filter unit. The transparent substrate The piece is a glass plate;
其中, 该透镜模组上阵列排布有数个微透镜; Among them, the lens module has several microlenses arranged in an array;
其中, 所述微透镜呈圓形蜂巢状或三角锥形, 该微透镜设于彩色滤光 单元与透明基片之间 Wherein, the microlens is in the shape of a circular honeycomb or a triangular pyramid, and the microlens is arranged on the color filter between unit and transparent substrate
PCT/CN2013/078241 2013-05-16 2013-06-28 Colour filter structure and liquid crystal display panel using same WO2014183324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310182068.1A CN103278873B (en) 2013-05-16 2013-05-16 Colorful filter structure and with the display panels of this colorful filter structure
CN201310182068.1 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014183324A1 true WO2014183324A1 (en) 2014-11-20

Family

ID=49061442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078241 WO2014183324A1 (en) 2013-05-16 2013-06-28 Colour filter structure and liquid crystal display panel using same

Country Status (2)

Country Link
CN (1) CN103278873B (en)
WO (1) WO2014183324A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592710B (en) * 2013-11-11 2016-08-17 京东方科技集团股份有限公司 Color membrane substrates and preparation method thereof, display floater and display device
CN105158829B (en) 2015-07-30 2019-06-04 京东方科技集团股份有限公司 Substrate, colored filter mould group, the method and display device for forming substrate mould group
CN106707610A (en) * 2017-03-28 2017-05-24 青岛海信电器股份有限公司 Quantum dot color filter and preparation method, liquid crystal panel, and liquid crystal display device
CN108628034B (en) * 2018-05-25 2021-07-02 武汉华星光电技术有限公司 Color film substrate, liquid crystal display panel and preparation method of color film substrate
CN108845448B (en) * 2018-06-25 2020-11-24 福州大学 Substrate structure for improving light-emitting purity of quantum dot color film
CN211014929U (en) * 2019-12-27 2020-07-14 惠州视维新技术有限公司 Liquid crystal panel and display device
CN111427188B (en) * 2020-04-23 2022-09-23 昆山龙腾光电股份有限公司 Color filter substrate and manufacturing method thereof
CN113835261A (en) * 2021-09-26 2021-12-24 Tcl华星光电技术有限公司 Display panel and display device
CN117055259A (en) * 2023-07-28 2023-11-14 惠科股份有限公司 Optical film group, display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232388A (en) * 1997-02-20 1998-09-02 Ricoh Opt Ind Co Ltd Liquid crystal device for liquid crystal projector and opposing substrate for liquid crystal device
JP2006138987A (en) * 2004-11-11 2006-06-01 Ricoh Opt Ind Co Ltd Microlens array, microlens array element, and liquid crystal panel unit
US20070153160A1 (en) * 2005-12-29 2007-07-05 Hye-Sun Lee Liquid crystal display device and method of fabricating the same
CN101566751A (en) * 2009-05-21 2009-10-28 昆山龙腾光电有限公司 Liquid crystal panel, manufacturing method thereof and liquid crystal display
CN102289016A (en) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 Display device, liquid crystal panel, color filter and manufacturing method of color filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201205B2 (en) * 1995-01-17 2001-08-20 凸版印刷株式会社 Method for manufacturing color solid-state imaging device
KR100229618B1 (en) * 1996-10-09 1999-11-15 구자홍 Lcd with microlens
KR100947680B1 (en) * 2005-01-12 2010-03-16 샤프 가부시키가이샤 Liquid crystal display unit
KR100766179B1 (en) * 2005-12-28 2007-10-10 삼성정밀화학 주식회사 A diffuser-patterned broadband reflection typed brightness enhancement polarizer, the manufacturing method thereof and a liquid crystal display having the same
US8248554B2 (en) * 2009-06-19 2012-08-21 Apple Inc. Edge-lit backlight unit with thin profile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232388A (en) * 1997-02-20 1998-09-02 Ricoh Opt Ind Co Ltd Liquid crystal device for liquid crystal projector and opposing substrate for liquid crystal device
JP2006138987A (en) * 2004-11-11 2006-06-01 Ricoh Opt Ind Co Ltd Microlens array, microlens array element, and liquid crystal panel unit
US20070153160A1 (en) * 2005-12-29 2007-07-05 Hye-Sun Lee Liquid crystal display device and method of fabricating the same
CN101566751A (en) * 2009-05-21 2009-10-28 昆山龙腾光电有限公司 Liquid crystal panel, manufacturing method thereof and liquid crystal display
CN102289016A (en) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 Display device, liquid crystal panel, color filter and manufacturing method of color filter

Also Published As

Publication number Publication date
CN103278873A (en) 2013-09-04
CN103278873B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2014183324A1 (en) Colour filter structure and liquid crystal display panel using same
KR101833969B1 (en) Two-way liquid crystal display device
KR101807442B1 (en) Backlight module and liquid crystal display device using backlight module
KR101005466B1 (en) Transparent see-through display device
JP4900363B2 (en) Liquid crystal display
JP2012018855A (en) Lighting system and display device equipped with this
WO2016057588A2 (en) Direct view display device and light unit for direct view display device
WO2017164117A1 (en) Display device and head mounted display
JP2014085666A (en) Liquid crystal display device having backlight unit capable of performing viewing angle control
US11163187B2 (en) Backlight unit and display apparatus using the same
JPWO2008155878A1 (en) Liquid crystal display
KR20090128252A (en) Liquid crystal display device
WO2013149412A1 (en) Narrow edge frame backlight module
JP2012529670A (en) Flat panel optical display system with high control output
US9207507B2 (en) Pixel structure having common electrode and pixel electrode partly overlapping each other to form storage capacitor
KR20140072635A (en) Liquid crystal display device
WO2015070530A1 (en) Backlight module and liquid crystal display device using same
KR101415683B1 (en) Liquid crystal display device
KR20120026691A (en) Liquid crystal display device
WO2013149410A1 (en) Liquid crystal display device
KR20120118565A (en) Light emitting diode package and liquid crystal display device having the same
WO2015192398A1 (en) Backlight module
KR20120050171A (en) Dual panel type liquid crystal display device
KR102210604B1 (en) Backlight unit and liquid crystal display device having the same
KR20170117695A (en) Liquid Crystal Display device having two prism sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884852

Country of ref document: EP

Kind code of ref document: A1