WO2014181400A1 - 熱交換器及び冷凍サイクル装置 - Google Patents
熱交換器及び冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2014181400A1 WO2014181400A1 PCT/JP2013/062934 JP2013062934W WO2014181400A1 WO 2014181400 A1 WO2014181400 A1 WO 2014181400A1 JP 2013062934 W JP2013062934 W JP 2013062934W WO 2014181400 A1 WO2014181400 A1 WO 2014181400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat exchanger
- flow path
- flat tubes
- evaporator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0475—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
- F28D1/0476—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/007—Condensers
Definitions
- the present invention relates to a heat exchanger and a refrigeration cycle apparatus.
- the first header collecting pipe and the second header collecting pipe standing upright are arranged vertically so that the side faces, and one end of each is connected to the first header collecting pipe
- a plurality of flat tubes each having the other end connected to the second header collecting pipe and having a refrigerant passage formed therein, and a plurality of ventilation paths through which air flows between the adjacent flat tubes.
- the heat exchanger provided with the fin of this is proposed (for example, refer to patent documents 1).
- Heat exchangers that use flat tubes for heat transfer tubes have lower airflow resistance than when circular tubes are used, so heat transfer tubes are arranged at high density by reducing the arrangement pitch of the heat transfer tubes. It is possible.
- the heat transfer performance of the heat exchanger can be improved by improving the fin efficiency and expanding the heat transfer area in the heat transfer tube by high-density mounting of the heat transfer tubes.
- a flat tube is used as the heat transfer tube, the cross-sectional area of the flow path is reduced, and the total number of the flat tubes is increased by increasing the number of flat tubes arranged, resulting in an increase in refrigerant pressure loss in the pipe. Therefore, it is necessary to increase the number of refrigerant branches and the number of refrigerant flow paths (number of passes). For this reason, in the technique of Patent Document 1, a header-type distributor is used for distributing the refrigerant to the flow path.
- the refrigerant state at the inlet of the heat exchanger is a gas-liquid two-phase flow, so that there is a problem that even distribution becomes difficult when the number of branches increases.
- the heat exchanger is constituted by a plurality of rows of heat transfer tubes, there is a problem that the number of branches is further increased and it is difficult to perform uniform distribution.
- the present invention has been made to solve the above-described problems, and provides a heat exchanger and a refrigeration cycle apparatus that can easily distribute the refrigerant evenly in the refrigerant flow path. Moreover, the heat exchanger and refrigeration cycle apparatus which can suppress the fall of the heat transfer performance of a heat exchanger are obtained.
- a heat exchanger includes a plurality of fins that are arranged at intervals and through which a gas flows, and a plurality of flat tubes that are inserted into the plurality of fins and through which a refrigerant that exchanges heat with the gas flows.
- the plurality of flat tubes are arranged in a plurality of stages in a step direction intersecting with the gas flow direction, and are arranged in a plurality of rows in a column direction along the gas flow direction.
- the flat tube is bent on the end side in the axial direction, or connected to the flat tube in another stage, and at least two or more rows of the flat tubes are connected to the flat tube in other rows,
- the flow in the column direction of the refrigerant flow path and the flow direction of the gas are configured to face each other. It is characterized by being.
- the present invention can easily distribute the refrigerant evenly in the refrigerant flow path. Moreover, this invention can suppress the fall of the heat transfer performance of a heat exchanger.
- FIG. (Air conditioner) 1 is a diagram showing a configuration of an air conditioner according to Embodiment 1 of the present invention.
- the air conditioner includes a compressor 600, a four-way valve 601, an outdoor heat exchanger 602, an expansion valve 604, and an indoor heat exchanger 605, which are sequentially connected by refrigerant piping to circulate the refrigerant.
- a refrigerant circuit is provided.
- the air conditioner also includes an outdoor fan 603 that blows air (outdoor air) to the outdoor heat exchanger 602 and an indoor fan 606 that blows air (indoor air) to the indoor heat exchanger 605.
- the expansion valve 604 corresponds to “expansion means” in the present invention.
- the four-way valve 601 switches between the heating operation and the cooling operation by switching the flow direction of the refrigerant in the refrigerant circuit. In addition, when it is set as the air conditioner only for cooling or heating, the four-way valve 601 may be omitted.
- the indoor side heat exchanger 605 is mounted on the indoor unit.
- the indoor heat exchanger 605 functions as a refrigerant evaporator during the cooling operation.
- the indoor heat exchanger 605 functions as a refrigerant condenser during heating operation.
- the outdoor heat exchanger 602 is mounted on the outdoor unit.
- the outdoor heat exchanger 602 functions as a condenser that heats air or the like with the heat of the refrigerant during the cooling operation.
- the outdoor heat exchanger 602 functions as an evaporator that evaporates the refrigerant and cools air or the like with the heat of vaporization at the time of heating operation.
- the compressor 600 compresses the refrigerant discharged from the evaporator, supplies the refrigerant to a high temperature.
- the expansion valve 604 expands the refrigerant discharged from the condenser and supplies it to the evaporator at a low temperature.
- the four-way valve 601 is switched to the state shown by the solid line in FIG.
- the high-temperature and high-pressure refrigerant discharged from the compressor 600 passes through the four-way valve 601 and flows into the indoor heat exchanger 605.
- the indoor side heat exchanger 605 functions as a condenser during heating operation, the refrigerant flowing into the indoor side heat exchanger 605 exchanges heat with indoor air from the indoor fan 606 to dissipate heat, and the temperature decreases. It becomes a supercooled liquid refrigerant and flows out of the indoor heat exchanger 605.
- the refrigerant that has flowed out of the indoor heat exchanger 605 is decompressed by the expansion valve 604, becomes a gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 602. Since the outdoor heat exchanger 602 functions as an evaporator during heating operation, the refrigerant flowing into the outdoor heat exchanger 602 exchanges heat with outdoor air from the outdoor fan 603, absorbs heat, evaporates, and is in a gaseous state. And flows out of the outdoor heat exchanger 602. The refrigerant that flows out of the outdoor heat exchanger 602 passes through the four-way valve 601 and is sucked into the compressor 600.
- the refrigerant that has flowed out of the outdoor heat exchanger 602 is decompressed by the expansion valve 604, becomes a gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 605. Since the indoor side heat exchanger 605 functions as an evaporator during the cooling operation, the refrigerant flowing into the indoor side heat exchanger 605 exchanges heat with indoor air from the indoor fan 606, absorbs heat, evaporates, and is in a gas state. It becomes a refrigerant and flows out from the indoor heat exchanger 605. The refrigerant that has flowed out of the indoor heat exchanger 605 passes through the four-way valve 601 and is sucked into the compressor 600.
- Heat exchanger Next, the structure of the heat exchanger used for at least one of the outdoor side heat exchanger 602 and the indoor side heat exchanger 605 will be described.
- FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 of the present invention.
- the heat exchanger includes a plurality of fins 100 and a plurality of flat tubes 101. This heat exchanger performs heat exchange between a gas such as air passing between the plurality of fins 100 and a refrigerant flowing in the plurality of flat tubes 101.
- the fin 100 is made of, for example, aluminum and has a plate shape. A plurality of fins 100 are stacked at a predetermined interval, and a gas such as air flows between them. In addition, openings for inserting a plurality of flat tubes 101 are formed in the fin 100, and the flat tubes 101 are inserted into the openings and joined to the plurality of flat tubes 101.
- the plurality of flat tubes 101 are made of aluminum, for example, and are heat transfer tubes having a flat cross-sectional outer shape.
- the plurality of flat tubes 101 are arranged in a plurality of stages in a step direction intersecting the air circulation direction, and are arranged in a plurality of rows in the column direction along the air circulation direction.
- the flat tubes 101 are arranged in a plurality with a flat major axis direction in the direction of air flow (column direction) and at intervals in a flat minor axis direction (step direction). Note that the flat tubes 101 are alternately arranged with the flat tubes 101 in the adjacent rows in the step direction (staggered arrangement), for example. In the example illustrated in FIG. 2, the plurality of flat tubes 101 are arranged in two rows. The number of stages of the plurality of flat tubes 101 will be described later.
- FIG. 3 is a cross-sectional view of the flat tube according to Embodiment 1 of the present invention.
- a plurality of flow paths 201 divided by partition walls are formed in the flat tube 101.
- the flow path 201 in the flat tube 101 is formed in a substantially rectangular cross-section, and the flat tube 101 has a width in the short axis direction and b in the long axis direction.
- the flat tube 101 is connected to the header 102 at one end side of the heat exchanger.
- the other end side of the heat exchanger has a shape in which the flat tube 101 is bent, for example, in a U shape on the end side in the axial direction. That is, the two-stage flat tubes 101 arranged adjacent to each other in the same row are constituted by one flat tube 101 bent in a U shape.
- the present invention is not limited to this.
- an end portion in the axial direction of the flat tube 101 may be connected to the flat tube 101 of another stage using a U-bend tube or the like.
- a refrigerant pipe 103 and a refrigerant pipe 104 are connected to the header 102.
- the header 102 branches the refrigerant that has flowed from the refrigerant pipe 103 into a plurality of refrigerant channels and flows into the flat tube 101. Then, the refrigerant that has passed through the plurality of flat tubes 101 is merged and flows out from the refrigerant pipe 104.
- coolant becomes reverse direction.
- FIG. 4 is a diagram illustrating the refrigerant flow path of the heat exchanger according to Embodiment 1 of the present invention.
- FIG. 4 shows a cross-sectional view of the heat exchanger as seen from the header 102 side.
- the header 102 is provided with an inflow port 302, a row-crossing channel 303, and an outflow port 304.
- One end of the flat tube 101 bent in a U shape is connected to the inflow port 302.
- the other end of the flat tube 101 bent in a U shape is connected to the cross-strand channel 303.
- the row-crossing flow path 303 connects the flat tubes 101 of adjacent rows to each other.
- the other end of the flat tube 101 bent in a U shape is connected to the flow path 303.
- At least two or more flat tubes 101 and at least two or more rows of flat tubes 101 constitute one refrigerant flow path (path) through which refrigerant flows.
- path through which refrigerant flows
- the ends of a plurality of flat tubes 101 arranged in the same row may be connected to each other, and one refrigerant channel may be constituted by two or more flat tubes 101. That is, the number of stages (stage number / pass number) of the flat tubes 101 per refrigerant flow path is two or more.
- the crossing flow path 303 is provided in the header 102 has been described, but the present invention is not limited to this.
- the end of the flat tube 101 on the header 102 side may be connected to the flat tube 101 in another row using a U-bend tube or the like.
- FIG. 5 is a diagram schematically illustrating the refrigerant flow direction and the air flow direction when the heat exchanger according to Embodiment 1 of the present invention is used as a condenser.
- the refrigerant flowing into the header 102 from the refrigerant pipe 103 is branched into a plurality of flow paths by the branch flow paths in the header 102, respectively. Then, it flows into the flat tube 101 from the inlet 302.
- the refrigerant that has flowed into the flat tube 101 flows into the cross-line flow channel 303 of the header 102 through the folded flow channel 301 of the flat tube 101 bent into a U shape.
- the refrigerant that has flowed into the row crossing channel 303 flows into the flat tube 101 in the adjacent row, and flows into the header 102 from the outlet 304 through the folded channel 301 in the row.
- the refrigerant that has flowed into the header 102 from the outlet 304 is merged into one flow path by the merge flow path in the header 102 and flows out from the refrigerant pipe 104.
- coolant becomes reverse direction.
- the heat exchanger when used as a condenser, it flows through the flat tubes 101 in the downstream row with respect to the air flow direction, and then flows through the flat tubes 101 in the upstream row. That is, the flow in the row direction of the refrigerant flow path and the air flow direction are counterflows.
- At least two or more flat tubes 101 are bent at the end in the axial direction, or connected to other flat tubes 101, and at least two or more flat tubes 101 are connected to other tubes.
- a refrigerant flow path through which the refrigerant flows is configured by being connected to the row of flat tubes 101. For this reason, compared with the case where a refrigerant flow path (pass) is constituted for every flat tube 101, the number of passes can be reduced, and the refrigerant can be easily distributed evenly to each refrigerant flow path. Further, since the number of passes is reduced, the number of refrigerant branches in the header 102 can also be reduced, and the refrigerant can be easily evenly distributed using the header-type distributor.
- the effective heat transfer area of the heat exchanger can be increased correspondingly, and the heat transfer performance can be improved.
- FIG. 6 is a diagram showing temperature changes of air and refrigerant when the heat exchanger according to Embodiment 1 of the present invention is used as a condenser.
- the air passing between the plurality of fins 100 is heated by the refrigerant passing through the plurality of flat tubes 101, and the temperature rises.
- the refrigerant passing through the plurality of flat tubes 101 is reduced in pressure by pressure loss (friction loss) in the pipe, and the temperature is lowered accordingly.
- the flow in the column direction of the refrigerant is from the downstream side (air side heat exchanger outlet) with respect to the air flow direction, and upstream (air) with respect to the air flow direction. It circulates toward the side heat exchanger inlet).
- the temperature of the refrigerant is high at the air-side heat exchanger outlet where the temperature of the air is increased, and the temperature of the refrigerant is low at the inlet of the air-side heat exchanger before the temperature of the air is increased. That is, when the heat exchanger is used as a condenser, the temperature difference between the refrigerant and the air can always be ensured by making the air flow and the refrigerant flow in the column direction counter flow. Therefore, the heat transfer performance of the heat exchanger when used as a condenser can be improved.
- FIG. 7 is a diagram showing temperature changes of air and refrigerant when the heat exchanger according to Embodiment 1 of the present invention is used as an evaporator.
- the air passing between the plurality of fins 100 is cooled by the refrigerant passing through the plurality of flat tubes 101, and the temperature decreases.
- the refrigerant passing through the plurality of flat tubes 101 is reduced in pressure by pressure loss (friction loss) in the pipe, and the temperature is lowered accordingly.
- the flow in the column direction of the refrigerant is from the upstream side (air side heat exchanger inlet) with respect to the air flow direction and downstream (air) with respect to the air flow direction. It circulates toward the side heat exchanger outlet). That is, the flow in the row direction of the refrigerant flow path and the flow direction of the air are parallel flow.
- the temperature of the refrigerant is high at the air-side heat exchanger inlet before the temperature of the air is lowered, and the temperature of the refrigerant is low at the air-side heat exchanger outlet where the temperature of the air is lowered. That is, when the heat exchanger is used as an evaporator, the temperature difference between the refrigerant and the air can always be ensured by making the air flow and the refrigerant flow in the column direction parallel. Therefore, the heat transfer performance of the heat exchanger when used as an evaporator can be improved.
- a refrigerant flow path through which a refrigerant flows is configured by at least two or more flat tubes 101. For this reason, if the number of stages of the flat tubes 101 constituting one refrigerant flow path becomes too large, the flow path length of one refrigerant flow becomes long, and the pressure loss increases accordingly.
- the number of stages (number of stages / number of passes) of the flat tubes 101 per one refrigerant flow path is set so that the evaporation temperature lowered by the pressure loss of the refrigerant in one refrigerant flow path exceeds 0 ° C.
- the number of flat tubes 101 per refrigerant flow path (the number of stages / the number of passes) is such that when the heat exchanger is used as an evaporator, the pressure loss of the refrigerant in one refrigerant flow path is equal to or less than a predetermined value. Is the number of stages. This will be specifically described below.
- the coefficient of friction loss f of the tube is generally about 0.01.
- the flow velocity u in the tube can be calculated by the following equation (2).
- the circulation amount G the circulation amount (maximum value) of the refrigerant flowing into the heat exchanger during rated operation of the air conditioner is used. That is, the calculation is performed under the condition that the pressure loss is the largest.
- G 60 ⁇ hp. hp: Air conditioner horsepower [kg / h]
- the hydraulic diameter De is set so that the ratio of the pressure acting on the cross section of the flow path and the fluid friction of the wet edge is equal to that of the circular pipe in order to replace the phenomenon in the complicated flow path with the flow in the circular pipe that is mechanically similar. It is defined and is represented by the following formula (3).
- the hydraulic diameter De is determined using the long axis a and the short axis b of one flow path 201. It can be calculated by the following formula (4).
- the length l of the flow path per refrigerant flow path (per pass) of the heat exchanger can be calculated by the following equation (5).
- the stacking width L is the distance from the end on the header 102 side of the flat tube 101 to the end on the side bent in a U shape.
- the friction loss increase coefficient ⁇ v in the gas-liquid two-phase flow is calculated by the following equations (7) and (8).
- the dryness x of the refrigerant for example, an average value of the dryness of the refrigerant flowing into the evaporator and the dryness of the refrigerant flowing out is used.
- the dryness x of the refrigerant is about 0.6.
- the density ⁇ v of the gas is determined on the condition that the temperature of the refrigerant flowing into the heat exchanger becomes a minimum value based on the physical property value of the refrigerant. That is, the calculation is performed under the condition of the minimum temperature assumed as the temperature of the refrigerant flowing into the heat exchanger according to the specifications of the air conditioner.
- the density ⁇ L of the liquid, the viscosity ⁇ v of the gas, and the viscosity ⁇ L of the liquid are approximated to be constant regardless of the operation state of the air conditioner, and are determined based on the physical property value of the refrigerant.
- the pressure drop due to the friction loss (pressure loss) ⁇ P f of the refrigerant flow path needs to be equal to or less than the difference value between the pressure under the condition that the temperature of the refrigerant flowing into the heat exchanger becomes the minimum value and the saturation pressure. There is.
- this difference value is a predetermined upper limit value P max [Pa]
- the friction loss (pressure loss) ⁇ P f needs to satisfy the following expression (9).
- the pressure at the time of flowing into the heat exchanger and the saturation pressure is about 100 [kPa].
- the first term on the right side of the above formula (10) can be regarded as a constant K determined by the specifications of the air conditioner and the physical properties of the refrigerant.
- the number of flat tubes 101 per one refrigerant flow path (the number of stages / the number of passes) is two or more. .
- the right side (upper limit) of the formula (11) includes the fifth power of the hydraulic diameter De, and the upper limit of the number of stages (stage number / pass number) of the flat pipe 101 per refrigerant flow path is the flat pipe 101. Will be most affected by the hydraulic diameter De. That is, the number of stages (number of stages / number of passes) of the flat tubes 101 per refrigerant flow path is a value based on at least the hydraulic diameter De of the flat tubes 101, and the heat exchanger is used as an evaporator. It is the number of stages at which the pressure loss of the refrigerant in one refrigerant flow path is a predetermined value or less.
- the number of flat tubes 101 per refrigerant flow path is such that the circulation amount G of the refrigerant flowing into the heat exchanger used as the evaporator is the maximum value, and the temperature of the refrigerant flowing into the heat exchanger is The evaporating temperature reduced by the pressure loss of the refrigerant in one refrigerant flow path is set to exceed 0 ° C. under the minimum value condition. For this reason, when a heat exchanger is used as an evaporator, adhesion of frost due to a decrease in evaporation temperature can be prevented, and a decrease in heat transfer performance of the heat exchanger can be prevented.
- FIG. 8 is a top view showing a state in which the heat exchanger according to Embodiment 1 of the present invention is bent into an L shape in the column direction.
- the plurality of fins 100 are provided for each stage of the plurality of flat tubes 101. Then, at least one place in the axial direction of the plurality of flat tubes 101 may be bent.
- FIG. 8 shows the case where it is bent into an L shape in the column direction, the present invention is not limited to this. For example, it may be bent into a U-shape or a rectangle.
- one end of the plurality of flat tubes 101 is bent into a U shape, and the other end is collectively connected by a header 102. For this reason, for example, as shown in FIG. 8, it is possible to perform bending with different curvatures in each row.
- FIG. 9 is a diagram showing another configuration of the heat exchanger according to Embodiment 1 of the present invention.
- a distributor 701 that branches the refrigerant, a plurality of two-branch pipes 703 provided at the end of the flat tube 101, and a distributor 701 and a plurality of two-branch pipes 703. It is good also as a structure provided with the capillary tube 702 which connects these.
- one end side (right side in the drawing) of the heat exchanger has a shape in which the flat tube 101 is bent, for example, in a U shape on the end side in the axial direction. Further, the other end side (left side in the drawing) of the heat exchanger is connected to each other between the adjacent flat tubes 101 by the bifurcated tube 703. Even with such a configuration, the same effect as the above-described configuration can be obtained.
- the air conditioner has been described as an example of the refrigeration cycle apparatus of the present invention, but the present invention is not limited to this.
- the present invention can also be applied to other refrigeration cycle apparatuses having a refrigerant circuit such as a refrigeration apparatus and a heat pump apparatus and having a heat exchanger that serves as an evaporator and a condenser.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
しかし、伝熱管に扁平管を用いると、流路断面積が小さくなり、扁平管の配列本数が増えることにより、扁平管の総流路長さが長くなるので、管内の冷媒圧損が大きくなる。したがって、冷媒の分岐数を多くし、冷媒流路数(パス数)を多くする必要がある。
このため、上記特許文献1の技術では、流路への冷媒の分配にはヘッダー型の分配器が用いられている。
(空気調和機)
図1は、本発明の実施の形態1に係る空気調和機の構成を示す図である。
本実施の形態1では、本発明の冷凍サイクル装置の一例として空気調和機を説明する。
図1に示すように、空気調和機は、圧縮機600、四方弁601、室外側熱交換器602、膨張弁604、及び室内側熱交換器605が、順次冷媒配管で接続され、冷媒を循環させる冷媒回路を備えている。
また、空気調和機は、室外側熱交換器602に空気(室外空気)を送風する室外ファン603と、室内側熱交換器605に空気(室内空気)を送風する室内ファン606とを備えている。
なお、膨張弁604は、本発明における「膨張手段」に相当する。
室外側熱交換器602は、室外機に搭載される。室外側熱交換器602は、冷房運転時には、冷媒の熱により空気等を加熱する凝縮器として機能する。室外側熱交換器602は、暖房運転時には、冷媒を蒸発させその際の気化熱により空気等を冷却する蒸発器として機能する。
膨張弁604は、凝縮器から排出された冷媒を膨張させ、低温にして蒸発器に供給する。
暖房運転時は、四方弁601が図1の実線で示される状態に切り替えられる。そして、圧縮機600から吐出した高温高圧の冷媒は、四方弁601を通過して室内側熱交換器605へ流入する。室内側熱交換器605は、暖房運転時は凝縮器として働くことから、室内側熱交換器605に流入した冷媒は室内ファン606からの室内空気と熱交換して放熱し、温度が低下して過冷却状態の液冷媒となって、室内側熱交換器605から流出する。
冷房運転時は、四方弁601が図1の点線で示される状態に切り替えられる。圧縮機600から吐出した高温高圧の冷媒は、四方弁601を通過して室外側熱交換器602へ流入する。室外側熱交換器602は、冷房運転時は凝縮器として働くことから、室外側熱交換器602に流入した冷媒は、室外ファン603からの室外空気と熱交換して放熱し、温度が低下して過冷却状態の液冷媒となって、室外側熱交換器602から流出する。
次に、室外側熱交換器602及び室内側熱交換器605の少なくとも一方に用いられる熱交換器の構成を説明する。
図2に示すように、熱交換器は、複数のフィン100と、複数の扁平管101とを備えている。この熱交換器は、複数のフィン100の間を通過する空気等の気体と、複数の扁平管101内を流通する冷媒との熱交換を行うものである。
図2に示す例では、複数の扁平管101は、2列配置されている。なお、複数の扁平管101の段数については後述する。
図3に示すように、扁平管101内には隔壁によって区分された複数の流路201が形成されている。例えば、扁平管101内の流路201は、断面形状が略矩形に形成されており、扁平管101の短軸方向の幅がa、長軸方向の幅がbである。
なお、ここでは扁平管101をU字状に曲げた場合を説明するが本発明はこれに限るものではない。例えばUベンド管等を用いて、扁平管101の軸方向の端部を他の段の扁平管101と接続するようにしても良い。
なお、熱交換器が蒸発器として使用される場合には、冷媒の流れ方向は逆向きとなる。
図4に示すように、ヘッダー102には、流入口302、列跨ぎ流路303、流出口304が設けられている。
流入口302には、U字状に曲げられた扁平管101の一方の端部が接続される。列跨ぎ流路303には、U字状に曲げられた扁平管101の他方の端部が接続される。また、列跨ぎ流路303は、隣接する列の扁平管101を相互に接続する。流路303には、U字状に曲げられた扁平管101の他方の端部が接続される。
なお、上記の説明では、2段の扁平管101と2列の扁平管101とによって、冷媒が流れる1つの冷媒流路(パス)を構成する場合を説明したが、本発明はこれに限定されない。例えば、同じ列に配置された複数の扁平管101の端部を相互に接続し、2段以上の扁平管101によって1つの冷媒流路を構成しても良い。
即ち、1つの冷媒流路あたりの扁平管101の段数(段数/パス数)は、2段以上となる。
図5に示すように、熱交換器が凝縮器として使用される場合において、冷媒配管103からヘッダー102へ流入された冷媒は、ヘッダー102内の分岐流路によって複数の流路に分岐され、それぞれ、流入口302から扁平管101へ流入させる。
扁平管101に流入した冷媒は、U字状に曲げられた扁平管101の折り返し流路301を経て、ヘッダー102の列跨ぎ流路303へ流入される。
列跨ぎ流路303へ流入された冷媒は、隣接する列の扁平管101へ流入し、当該列の折り返し流路301を経て、流出口304からヘッダー102へ流入される。
流出口304からヘッダー102へ流入された冷媒は、ヘッダー102内の合流流路によって1つの流路に合流され、冷媒配管104から流出する。
なお、熱交換器が蒸発器として使用される場合には、冷媒の流れ方向は逆向きとなる。
このため、扁平管101ごとに冷媒流路(パス)が構成された場合と比較して、パス数を低減でき、各冷媒流路に冷媒を均等分配し易くすることができる。また、パス数が低減されることで、ヘッダー102における冷媒の分岐数も低減することができ、ヘッダー型の分配器用いて冷媒を均等分配し易くすることができる。
また、扁平管101の軸方向の両側にヘッダー102等を設ける必要が無くなるため、熱交換器の設置スペースを小さくすることができる。
また、扁平管101を軸方向の端部側で曲げて、折り返し流路301を形成することにより、折り返し流路301に配管の接合部がなくなるため、冷媒漏れのリスクが少なくなる。
図6に示すように、熱交換器が凝縮器として使用される場合、複数のフィン100の間を通過する空気は、複数の扁平管101を通過する冷媒によって加熱され、温度が上昇していく。
一方、複数の扁平管101を通過する冷媒は、配管内の圧力損失(摩擦損失)によって圧力が低下し、それに伴い温度が低下していく。熱交換器が凝縮器として使用される場合、冷媒の列方向の流れは、空気の流れ方向に対して下流側(空気側熱交換器出口)から、空気の流れ方向に対して上流側(空気側熱交換器入口)に向かって流通する。
したがって、凝縮器として使用された場合における熱交換器の伝熱性能を向上させることができる。
図7に示すように、熱交換器が蒸発器として使用される場合、複数のフィン100の間を通過する空気は、複数の扁平管101を通過する冷媒によって冷却され、温度が低下していく。
一方、複数の扁平管101を通過する冷媒は、配管内の圧力損失(摩擦損失)によって圧力が低下し、それに伴い温度が低下していく。熱交換器が蒸発器として使用される場合、冷媒の列方向の流れは、空気の流れ方向に対して上流側(空気側熱交換器入口)から、空気の流れ方向に対して下流側(空気側熱交換器出口)に向かって流通する。即ち、冷媒流路の列方向の流れと、空気の流通方向とが並行流となる。
したがって、蒸発器として使用された場合における熱交換器の伝熱性能を向上させることができる。
本実施の形態1における熱交換器は、少なくとも2段以上の扁平管101によって、冷媒が流れる冷媒流路が構成されている。このため、1つの冷媒流路を構成する扁平管101の段数が多くなりすぎると、1つの冷媒流の流路長が長くなり、それに伴い圧力損失が大きくなる。
換言すると、1つの冷媒流路あたりの扁平管101の段数(段数/パス数)は、熱交換器が蒸発器として使用される場合に、1つの冷媒流路における冷媒の圧力損失が所定値以下となる段数である。以下、具体的に説明する。
l:流路の長さ[m」
De:管の水力直径[m」
ρv:ガス単相の冷媒の密度[kg/m3]
u:管内を流れる流体の流速[m/s」
管内の流速uは、以下の式(2)で算出できる。
ここでは、例えば、G=60×hpとする。
hp:空気調和機の馬力[kg/h]
C:濡れ縁長さ[m]
Dn:扁平管101の段数
Nr:扁平管101の列数
Np:冷媒流路数(パス数)
ρv:気体の密度[kg/m3]
ρL:液体の密度[kg/m3]
ηv:気体の粘度[Pa・s]
ηL:液体の粘度[Pa・s]
気体の密度ρvは、冷媒の物性値に基づき、熱交換器に流入する冷媒の温度が最小値となる条件で定める。即ち、空気調和機の仕様等により、熱交換器に流入する冷媒の温度として想定される最小の温度となる条件で計算する。
液体の密度ρL、気体の粘度ηv、液体の粘度ηLは、空気調和機の運転状態にかかわらず一定であると近似し、冷媒の物性値に基づき定める。
このため、冷媒流路の摩擦損失(圧力損失)ΔPfによる圧力低下は、熱交換器へ流入する冷媒の温度が最小値となる条件での圧力と、飽和圧力との差分値以下にする必要がある。
この差分値を、所定の上限値Pmax[Pa」とすると、摩擦損失(圧力損失)ΔPfは、以下の式(9)を満たす必要がある。
Np:冷媒流路数(パス数)
De:扁平管の水力直径[m]
n:扁平管101内の流路201の数
L:積み幅[m」
Nr:扁平管101の列数
Pmax:所定の上限値[Pa」
ρv:冷媒の蒸発温度における飽和ガス密度[kg/m3]
G:熱交換器に流入する冷媒の循環量[kg/h]
x:冷媒の乾き度[-]
φv:二相流における摩擦損失増加係数[-]
f:管の摩擦損失係数[-]
このため、熱交換器を蒸発器として用いた場合、蒸発温度の低下による霜の付着を防ぐことができ、熱交換器の伝熱性能の低下を防ぐことができる。
次に、熱交換器の形状について説明する。
図8に示すように、複数のフィン100は、複数の扁平管101の段ごとに設けられている。そして、複数の扁平管101の軸方向の少なくとも1箇所が曲げ加工されても良い。なお、図8の例では、列方向にL字形に曲げ加工された場合を示すが、本発明はこれに限定されない。例えば、U字型、四角形に曲げ加工されても良い。
このため、例えば図8に示すように、各列で曲率が異なる曲げ加工を行うことが可能となる。
図9は、本発明の実施の形態1に係る熱交換器の他の構成を示す図である。
図9に示すように、上述したヘッダー102に代えて、冷媒を分岐するディストリビュータ701、扁平管101の端部に設けられた複数の二分岐管703、及び、ディストリビュータ701と複数の二分岐管703とを接続するキャピラリーチューブ702を備える構成としても良い。
この構成においても、熱交換器の一方の端部側(紙面右側)は、扁平管101が軸方向の端部側で例えばU字状に曲げられた形状を有している。また、熱交換器の他方の端部側(紙面左側)は、二分岐管703によって、隣接する段の扁平管101の間相互に接続される。
このような構成によっても、上述した構成と同様の効果を奏することができる。
Claims (6)
- 間隔を空けて配置され、その間を気体が流れる複数のフィンと、
前記複数のフィンに挿入され、前記気体と熱交換する冷媒が流れる複数の扁平管と、
を備え、
前記複数の扁平管は、
前記気体の流通方向に対して交差する段方向に複数段配置されるとともに、前記気体の流通方向に沿う列方向に複数列配置され、
少なくとも2段以上の前記扁平管が、軸方向の端部側で曲げられ、または、他の段の前記扁平管と接続され、少なくとも2列以上の前記扁平管が、他の列の前記扁平管と接続されて、前記冷媒が流れる冷媒流路が構成され、
当該熱交換器が凝縮器として使用される場合には、前記冷媒流路の列方向の流れと、前記気体の流通方向とが対向流となるように構成されている
ことを特徴とする熱交換器。 - 1つの前記冷媒流路あたりの前記扁平管の段数は、
少なくとも前記扁平管の水力直径に基づく値であって、当該熱交換器が蒸発器として使用される場合に、1つの前記冷媒流路における前記冷媒の圧力損失が所定値以下となる段数である
ことを特徴とする請求項1に記載の熱交換器。 - 前記複数のフィンは、前記複数の扁平管の段ごとに設けられ、
前記複数の扁平管の軸方向の少なくとも1箇所が曲げ加工された
ことを特徴とする請求項1~3の何れか一項に記載の熱交換器。 - 圧縮機、凝縮器、膨張手段、及び蒸発器を順次配管で接続し冷媒を循環させる冷媒回路を備え、
前記凝縮器及び前記蒸発器の少なくとも一方に、請求項1~4の何れか一項に記載の熱交換器を用いた
ことを特徴とする冷凍サイクル装置。 - 圧縮機、凝縮器、膨張手段、及び蒸発器を順次配管で接続し冷媒を循環させる冷媒回路を備え、
前記凝縮器及び前記蒸発器のうち少なくとも前記蒸発器に、請求項1~4の何れか一項に記載の熱交換器を用い、
前記蒸発器の、1つの前記冷媒流路あたりの前記扁平管の段数は、
前記蒸発器に流入する前記冷媒の循環量が最大値、前記蒸発器に流入する前記冷媒の温度が最小値となる条件で、1つの前記冷媒流路における前記冷媒の圧力損失によって低下した蒸発温度が、0℃を超えるように設定された
ことを特徴とする冷凍サイクル装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/062934 WO2014181400A1 (ja) | 2013-05-08 | 2013-05-08 | 熱交換器及び冷凍サイクル装置 |
CN201380076370.7A CN105190202B (zh) | 2013-05-08 | 2013-05-08 | 热交换器和制冷循环装置 |
JP2015515670A JP6109303B2 (ja) | 2013-05-08 | 2013-05-08 | 熱交換器及び冷凍サイクル装置 |
EP13884240.6A EP2995886A4 (en) | 2013-05-08 | 2013-05-08 | Heat exchanger and refrigeration cycle device |
US14/783,250 US9791189B2 (en) | 2013-05-08 | 2013-05-08 | Heat exchanger and refrigeration cycle apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/062934 WO2014181400A1 (ja) | 2013-05-08 | 2013-05-08 | 熱交換器及び冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014181400A1 true WO2014181400A1 (ja) | 2014-11-13 |
Family
ID=51866904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062934 WO2014181400A1 (ja) | 2013-05-08 | 2013-05-08 | 熱交換器及び冷凍サイクル装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9791189B2 (ja) |
EP (1) | EP2995886A4 (ja) |
JP (1) | JP6109303B2 (ja) |
CN (1) | CN105190202B (ja) |
WO (1) | WO2014181400A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092655A1 (ja) * | 2014-12-10 | 2016-06-16 | 三菱電機株式会社 | 冷凍サイクル装置 |
EP3330637A4 (en) * | 2015-07-29 | 2019-04-03 | Mitsubishi Electric Corporation | HEAT EXCHANGERS AND COLD CIRCULAR DEVICE |
WO2023032155A1 (ja) * | 2021-09-03 | 2023-03-09 | 三菱電機株式会社 | 熱交換器、冷凍サイクル装置及び熱交換器の製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10101091B2 (en) * | 2013-10-25 | 2018-10-16 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus using the same heat exchanger |
CN107202504B (zh) * | 2016-03-17 | 2021-03-30 | 浙江盾安热工科技有限公司 | 一种交叉换流装置及微通道换热器 |
US10578377B2 (en) * | 2016-03-31 | 2020-03-03 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus |
JP6380449B2 (ja) * | 2016-04-07 | 2018-08-29 | ダイキン工業株式会社 | 室内熱交換器 |
WO2018047330A1 (ja) * | 2016-09-12 | 2018-03-15 | 三菱電機株式会社 | 空気調和装置 |
CN110168294A (zh) * | 2017-07-05 | 2019-08-23 | 日立江森自控空调有限公司 | 空调机的室外换热器以及具备该室外换热器的空调机 |
KR20190032106A (ko) | 2017-09-19 | 2019-03-27 | 엘지전자 주식회사 | 냉장고용 응축기 |
CN110762902A (zh) * | 2018-07-26 | 2020-02-07 | 维谛技术有限公司 | 一种微通道蒸发器及一种空调系统 |
CN109520355A (zh) * | 2018-12-21 | 2019-03-26 | 广东美的白色家电技术创新中心有限公司 | 换热装置及制冷设备 |
CN113566311A (zh) * | 2021-07-27 | 2021-10-29 | 珠海格力电器股份有限公司 | 换热器及空调器 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571597B2 (ja) | 1986-10-09 | 1993-10-07 | Asahi Denka Kogyo Kk | |
JPH09145076A (ja) * | 1995-11-28 | 1997-06-06 | Matsushita Electric Ind Co Ltd | 熱交換器 |
JP2004037010A (ja) * | 2002-07-04 | 2004-02-05 | Mitsubishi Heavy Ind Ltd | 熱交換器 |
JP2005351600A (ja) * | 2004-06-14 | 2005-12-22 | Nikkei Nekko Kk | アルミ製熱交換器及びそのスケール付着防止方法 |
JP2006125652A (ja) * | 2004-10-26 | 2006-05-18 | Mitsubishi Electric Corp | 熱交換器 |
JP2008261517A (ja) * | 2007-04-10 | 2008-10-30 | Mitsubishi Electric Corp | フィンチューブ型熱交換器及びそれを用いた空気調和機 |
JP2011127831A (ja) * | 2009-12-17 | 2011-06-30 | Mitsubishi Electric Corp | 熱交換器及びこれを備えた冷凍サイクル装置 |
JP2011153789A (ja) * | 2010-01-28 | 2011-08-11 | Denso Corp | 冷凍サイクル装置 |
JP2012032089A (ja) * | 2010-07-30 | 2012-02-16 | Mitsubishi Electric Corp | フィンチューブ型熱交換器及びそれを用いた空気調和機 |
JP2012218463A (ja) * | 2011-04-04 | 2012-11-12 | Denso Corp | 車両用空調装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5956054A (ja) * | 1982-09-20 | 1984-03-31 | 松下電器産業株式会社 | 空気調和機の除霜制御装置 |
JP3390456B2 (ja) * | 1997-11-12 | 2003-03-24 | 株式会社日立製作所 | 吸収冷温水機及びその高温再生器 |
JP2000241045A (ja) | 1999-02-18 | 2000-09-08 | Yanmar Diesel Engine Co Ltd | 空調用熱交換器 |
US6536517B2 (en) * | 2000-06-26 | 2003-03-25 | Showa Denko K.K. | Evaporator |
JP3774634B2 (ja) | 2001-03-07 | 2006-05-17 | 株式会社日立製作所 | 室内機 |
JP4109444B2 (ja) * | 2001-11-09 | 2008-07-02 | Gac株式会社 | 熱交換器およびその製造方法 |
CN2539107Y (zh) * | 2002-04-12 | 2003-03-05 | 陈基镛 | 一种过冷型平行流冷凝器 |
DE10328746A1 (de) * | 2003-06-25 | 2005-01-13 | Behr Gmbh & Co. Kg | Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung |
DE10342241A1 (de) * | 2003-09-11 | 2005-04-07 | Behr Gmbh & Co. Kg | Wärmetauscher |
US7281387B2 (en) * | 2004-04-29 | 2007-10-16 | Carrier Commercial Refrigeration Inc. | Foul-resistant condenser using microchannel tubing |
JP2007192441A (ja) | 2006-01-18 | 2007-08-02 | Matsushita Electric Ind Co Ltd | 放熱器、放熱器の製造方法及びそれを備えた冷却装置 |
JP5409544B2 (ja) * | 2010-08-04 | 2014-02-05 | 三菱電機株式会社 | 空気調和機の室内機、及び空気調和機 |
JP5071597B2 (ja) | 2011-01-21 | 2012-11-14 | ダイキン工業株式会社 | 熱交換器および空気調和機 |
-
2013
- 2013-05-08 CN CN201380076370.7A patent/CN105190202B/zh active Active
- 2013-05-08 US US14/783,250 patent/US9791189B2/en active Active
- 2013-05-08 WO PCT/JP2013/062934 patent/WO2014181400A1/ja active Application Filing
- 2013-05-08 JP JP2015515670A patent/JP6109303B2/ja active Active
- 2013-05-08 EP EP13884240.6A patent/EP2995886A4/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571597B2 (ja) | 1986-10-09 | 1993-10-07 | Asahi Denka Kogyo Kk | |
JPH09145076A (ja) * | 1995-11-28 | 1997-06-06 | Matsushita Electric Ind Co Ltd | 熱交換器 |
JP2004037010A (ja) * | 2002-07-04 | 2004-02-05 | Mitsubishi Heavy Ind Ltd | 熱交換器 |
JP2005351600A (ja) * | 2004-06-14 | 2005-12-22 | Nikkei Nekko Kk | アルミ製熱交換器及びそのスケール付着防止方法 |
JP2006125652A (ja) * | 2004-10-26 | 2006-05-18 | Mitsubishi Electric Corp | 熱交換器 |
JP2008261517A (ja) * | 2007-04-10 | 2008-10-30 | Mitsubishi Electric Corp | フィンチューブ型熱交換器及びそれを用いた空気調和機 |
JP2011127831A (ja) * | 2009-12-17 | 2011-06-30 | Mitsubishi Electric Corp | 熱交換器及びこれを備えた冷凍サイクル装置 |
JP2011153789A (ja) * | 2010-01-28 | 2011-08-11 | Denso Corp | 冷凍サイクル装置 |
JP2012032089A (ja) * | 2010-07-30 | 2012-02-16 | Mitsubishi Electric Corp | フィンチューブ型熱交換器及びそれを用いた空気調和機 |
JP2012218463A (ja) * | 2011-04-04 | 2012-11-12 | Denso Corp | 車両用空調装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2995886A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092655A1 (ja) * | 2014-12-10 | 2016-06-16 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2016092655A1 (ja) * | 2014-12-10 | 2017-04-27 | 三菱電機株式会社 | 冷凍サイクル装置 |
EP3330637A4 (en) * | 2015-07-29 | 2019-04-03 | Mitsubishi Electric Corporation | HEAT EXCHANGERS AND COLD CIRCULAR DEVICE |
US10801791B2 (en) | 2015-07-29 | 2020-10-13 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus |
WO2023032155A1 (ja) * | 2021-09-03 | 2023-03-09 | 三菱電機株式会社 | 熱交換器、冷凍サイクル装置及び熱交換器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014181400A1 (ja) | 2017-02-23 |
US20160054038A1 (en) | 2016-02-25 |
JP6109303B2 (ja) | 2017-04-05 |
CN105190202B (zh) | 2017-11-17 |
CN105190202A (zh) | 2015-12-23 |
US9791189B2 (en) | 2017-10-17 |
EP2995886A4 (en) | 2017-02-01 |
EP2995886A1 (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6109303B2 (ja) | 熱交換器及び冷凍サイクル装置 | |
US9651317B2 (en) | Heat exchanger and air conditioner | |
US9494368B2 (en) | Heat exchanger and air conditioner | |
JP6333401B2 (ja) | 熱交換器、及び、空気調和装置 | |
US10309701B2 (en) | Heat exchanger and air conditioner | |
WO2016135935A1 (ja) | 熱交換装置およびこれを用いた空気調和機 | |
US10041710B2 (en) | Heat exchanger and air conditioner | |
WO2015004720A1 (ja) | 熱交換器、及び空気調和機 | |
EP3156752B1 (en) | Heat exchanger | |
RU2693946C2 (ru) | Стойкий к образованию инея микроканальный теплообменник | |
WO2015059832A1 (ja) | 熱交換器及びその熱交換器を用いた冷凍サイクル装置 | |
JP2023503423A (ja) | 空冷式冷凍サイクルの構成 | |
WO2015045105A1 (ja) | 熱交換器及びそれを用いた空気調和機 | |
JP5608478B2 (ja) | 熱交換器及びそれを用いた空気調和機 | |
JP2016148480A (ja) | 熱交換器 | |
JP5591285B2 (ja) | 熱交換器および空気調和機 | |
WO2016092655A1 (ja) | 冷凍サイクル装置 | |
WO2019130394A1 (ja) | 熱交換器および冷凍サイクル装置 | |
US12152841B2 (en) | Refrigeration cycle apparatus | |
JP6537868B2 (ja) | 熱交換器 | |
JP7281059B2 (ja) | 熱交換器及びヒートポンプ装置 | |
WO2021234955A1 (ja) | 熱交換器及び空気調和機 | |
WO2019207806A1 (ja) | 冷媒分配器、熱交換器および空気調和機 | |
CN115298486A (zh) | 空调装置的室外机 | |
CN117355721A (zh) | 热交换器、具备热交换器的空调装置的室外机、以及具备空调装置的室外机的空调装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380076370.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13884240 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015515670 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14783250 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013884240 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |