WO2014176188A1 - Procédé servant au traitement et au recyclage de fluide de fracturation hydraulique - Google Patents
Procédé servant au traitement et au recyclage de fluide de fracturation hydraulique Download PDFInfo
- Publication number
- WO2014176188A1 WO2014176188A1 PCT/US2014/034865 US2014034865W WO2014176188A1 WO 2014176188 A1 WO2014176188 A1 WO 2014176188A1 US 2014034865 W US2014034865 W US 2014034865W WO 2014176188 A1 WO2014176188 A1 WO 2014176188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal ion
- hydraulic fracturing
- salts
- source fluid
- aqueous
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004064 recycling Methods 0.000 title description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 40
- 125000000129 anionic group Chemical group 0.000 claims abstract description 25
- 239000000084 colloidal system Substances 0.000 claims abstract description 17
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 claims description 60
- 229910021645 metal ion Inorganic materials 0.000 claims description 41
- 150000003839 salts Chemical class 0.000 claims description 41
- 125000002091 cationic group Chemical group 0.000 claims description 34
- 239000004155 Chlorine dioxide Substances 0.000 claims description 30
- 235000019398 chlorine dioxide Nutrition 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 26
- 230000001590 oxidative effect Effects 0.000 claims description 24
- 239000003139 biocide Substances 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 21
- 229920000620 organic polymer Polymers 0.000 claims description 20
- 230000003115 biocidal effect Effects 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 11
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 10
- -1 alkali metal salts Chemical class 0.000 claims description 9
- 229920002401 polyacrylamide Polymers 0.000 claims description 8
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 6
- 229910001448 ferrous ion Inorganic materials 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000002455 scale inhibitor Substances 0.000 claims description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 239000007844 bleaching agent Substances 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000002978 peroxides Chemical class 0.000 claims description 3
- 150000004965 peroxy acids Chemical class 0.000 claims description 3
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 3
- 239000000356 contaminant Substances 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 229910001868 water Inorganic materials 0.000 description 26
- 239000000523 sample Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 229910052742 iron Inorganic materials 0.000 description 20
- 239000006228 supernatant Substances 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 229910052681 coesite Inorganic materials 0.000 description 16
- 229910052906 cristobalite Inorganic materials 0.000 description 16
- 235000012239 silicon dioxide Nutrition 0.000 description 16
- 229910052682 stishovite Inorganic materials 0.000 description 16
- 229910052905 tridymite Inorganic materials 0.000 description 16
- 238000003756 stirring Methods 0.000 description 15
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 239000012267 brine Substances 0.000 description 7
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- FLTRNWIFKITPIO-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe] FLTRNWIFKITPIO-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000020477 pH reduction Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 229920006317 cationic polymer Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 2
- 229960002218 sodium chlorite Drugs 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 101150025733 pub2 gene Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012776 robust process Methods 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/203—Iron or iron compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/206—Manganese or manganese compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/36—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
- C02F2103/365—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2607—Surface equipment specially adapted for fracturing operations
Definitions
- the present invention relates to an improved process for removing certain contaminants from hydraulic fracturing fluids.
- the treated fracturing fluids can be recycled and used in subsequent hydraulic fracturing processes.
- the production of oil and natural gas from an underground well can be stimulated by a technique called hydraulic fracturing in which a fracturing fluid is introduced into an oil or gas well via a conduit, such as tubing or casing, at a flow rate and a pressure to create, reopen and/or extend a fracture into the well, allowing access to the oil or gas within the formation.
- hydraulic fracturing in which a fracturing fluid is introduced into an oil or gas well via a conduit, such as tubing or casing, at a flow rate and a pressure to create, reopen and/or extend a fracture into the well, allowing access to the oil or gas within the formation.
- the fracturing fluid is typically a water based solution and may comprise components such as suspended proppants (e.g., sand, bauxite); biocides to inhibit growth of bacteria and other microorganisms; corrosion inhibitors and scale inhibitors which reduce rust formation and other deposits on the conduit; and friction reducers to promote laminar flow of the hydraulic fracturing fluid into the formation and reduce the pumping pressure necessary to achieve the desired fracturing fluid flow rate.
- suspended proppants e.g., sand, bauxite
- biocides to inhibit growth of bacteria and other microorganisms
- corrosion inhibitors and scale inhibitors which reduce rust formation and other deposits on the conduit
- friction reducers to promote laminar flow of the hydraulic fracturing fluid into the formation and reduce the pumping pressure necessary to achieve the desired fracturing fluid flow rate.
- flow back water contains contaminants such as hydrocarbons, minerals, and salts that are extracted from the formation during the fracturing process in addition to components of the fracturing fluid, including biocides, friction reducers, etc. that were introduced as part of the fracturing fluid.
- the water becomes "produced water", which is the naturally occurring water in the formation. Flow back and produced water cannot simply be disposed of in a local stream, river, or shallow aquifer, but must be treated to remove contaminants.
- Aerial oxidation is a relatively slow process, but oxidizing biocides rapidly and quantitatively oxidize Fe 2+ to Fe 3+ and Mn 2+ to Mn 4+ with the concomitant precipitation of colloidal Fe(OH) 3 and MnO 2 , respectively, at or near neutral pH.
- Fe 2+ is generally more abundant than Mn 2+ , therefore precipitation of Fe(OH) 3 is potentially more of a problem than MnO2.
- colloidal Fe(OH) 3 in high-enough concentration, can interfere with hydraulic fracturing operations (e.g., due to complexing and
- the present invention provides a method for reducing the concentration of soluble and suspended oxidizable metal ion salts in an aqueous, hydraulic fracturing source fluid comprising the steps of:
- an aqueous, hydraulic fracturing source fluid containing oxidizable metal ion salts oxidizing at least some of the oxidizable metal ion salts; contacting the aqueous, hydraulic fracturing source fluid with an anionic silica-based colloid for a time sufficient to coagulate at least a portion of the suspended oxidized metal ion salts; and separating the oxidized metal ion salts from the hydraulic fracturing source fluid.
- the step of oxidizing at least some of the oxidizable metal ion salts is achieved by aerial oxidation.
- the step of oxidizing at least some of the oxidizable metal ion salts is achieved by treating the aqueous, hydraulic fracturing source fluid with an oxidizing biocide.
- the pH of the source fluid it may be desirable to adjust the pH of the source fluid.
- the pH can be adjusted either before or after contacting the source fluid with the anionic silica-based colloid. It may be desirable to control the pH in the range of about 5.0 to about 8.0. It may be even more desirable to control the pH in the range of about 6.0 to about 7.0.
- the pH can be achieved by any suitable means as one skilled in the art will understand.
- a suitable base such as sodium hydroxide or ammonium hydroxide can be used to control the pH in the above ranges.
- the present invention provides a method for reducing the concentration of soluble and suspended oxidizable metal ion salts in an aqueous, hydraulic fracturing source fluid consisting essentially of the following steps: providing an aqueous, hydraulic fracturing source fluid containing oxidizable metal ion salts; treating the aqueous, hydraulic fracturing source fluid with an oxidizing biocide to oxidize at least some of the oxidizable metal ion salts;
- the oxidizing biocide can comprise a material selected from the group consisting of chlorine bleach, peroxides, peracids, persulfates, ozone, chlorine dioxide, and combinations thereof.
- the oxidizing biocide can comprise chlorine dioxide.
- the anionic silica-based colloid can comprise a material selected from the group consisting of polysilicic acid, polysilicic acid microgels, polysilicate microgels, polyaluminosilicate microgels, colloidal silicas and combinations thereof.
- the oxidizable metal ion can comprise a material selected from the group consisting of ferrous ion and manganous ion. In one aspect the oxidizable metal ion comprises ferrous ion.
- the aqueous, hydraulic fracturing source fluid can further comprise at least one material selected from the group consisting of alkali metal salts, alkaline-earth metal salts, friction reducing polymer, scale inhibitor, corrosion inhibitor, hydrocarbon and proppant.
- the method may further include the step of adding a cationic organic polymer to the hydraulic fracturing source fluid.
- the present invention provides a method for reducing the concentration of soluble and suspended oxidizable metal ion salts in an aqueous, hydraulic fracturing source fluid comprising the steps of:
- an aqueous, hydraulic fracturing source fluid containing oxidizable metal ion salts oxidizing at least some of the oxidizable metal ion salts; contacting the aqueous, hydraulic fracturing source fluid with an anionic silica-based colloid for a time sufficient to coagulate at least a portion of the suspended oxidized metal ion salts; and separating the oxidized metal ion salts from the hydraulic fracturing source fluid.
- the step of oxidizing at least some of the oxidizable metal ion salts is achieved by aerial oxidation.
- the step of oxidizing at least some of the oxidizable metal ion salts is achieved by treating the aqueous, hydraulic fracturing source fluid with an oxidizing biocide.
- the pH of the source fluid it may be desirable to adjust the pH of the source fluid.
- the pH can be adjusted either before or after contacting the source fluid with the anionic silica-based colloid. It may be desirable to control the pH in the range of about 5.0 to about 8.0. It may be even more desirable to control the pH in the range of about 6.0 to about 7.0.
- the pH can be achieved by any suitable means as one skilled in the art will understand.
- a suitable base such as sodium hydroxide or ammonium hydroxide can be used to control the pH in the above ranges.
- the present invention provides a method for reducing the concentration of soluble and suspended oxidizable metal ion salts in an aqueous, hydraulic fracturing source fluid consisting essentially of the following steps: providing an aqueous, hydraulic fracturing source fluid containing oxidizable metal ion salts;
- At least a portion of the suspended metal ion salts are allowed to settle before the salts are separated from the hydraulic fluid.
- oxidizing biocide is meant herein a compound that has biocidal activity, meaning reduces the amount of bacteria and other
- oxidizing biocides include chlorine bleach (sodium hypochlorite,
- peroxides such as hydrogen peroxide
- peracids such as peracetic acid, persulfates, ozone, chlorine dioxide, and combinations thereof.
- Preferred biocides include chlorine bleach, peracetic acid and chlorine dioxide.
- the oxidizing biocide is generally added in an amount to provide a free residual in the fracturing fluid.
- the residual may be about 1 -5 ppm of the oxidizing biocide.
- the biocide is chlorine dioxide, for example, a dose of as great as 150 ppm CIO2 may be required to provide a target of 1 -5 ppm residual to achieve an appropriate level of disinfection.
- Chlorine dioxide is a preferred oxidizing biocide. Chlorine dioxide is a gas and can be generated onsite at the oil or gas well location. Various methods are known for generating chlorine dioxide, including chemical and electrochemical processes as disclosed for example in Ulllmann's Encyclopedia of Industrial Chemistry, Wiley Online Library,
- One particular method of generating chlorine dioxide involves reaction in aqueous solution of an alkali metal chlorite salt, such as sodium chlorite, with sodium hypochlorite and a source of strong acid as illustrated below.
- an alkali metal chlorite salt such as sodium chlorite
- the anionic silica-based colloids may have an S value of less than about 50%, as defined in Her and Dalton in J. Phys. Chem., 1956, vol. 60, pp. 955-957.
- the S value is a measure of the degree of aggregate or microgel formation and a lower S value indicates a higher microgel content and is determined by the measure of the amount of silica, in weight percent, in the disperse phase.
- the disperse phase consists of particles of anhydrous silica together with any water that is immobilized at the surface or in the interior of the particles.
- anionic silica-based colloids which can be used in the process of this invention include colloidal silica, polysilicic acid, polysilicic acid microgels, polysilicate microgels, polyaluminosilicate microgels, colloidal silicas with a high microgel content, and mixtures thereof.
- the anionic silica-based colloids have an S value of less than about 50% and preferably less than 40%.
- Polysilicate microgels also known as active silicas, have
- Polysilicic acid generally refers to those silicic acids that have been formed and partially polymerized in the pH range 1 -4 and comprise silica particles generally smaller than 4 nm diameter, which thereafter polymerize into chains and three-dimensional networks.
- Polysilicic acid can be prepared, for example, in accordance with the methods disclosed in U. S. Patent 5,127,994, incorporated herein by reference.
- Polyaluminosilicates are polysilicate or polysilicic acid microgels in which aluminum has been incorporated within the particles, on the surface of the particles, or both.
- polysilicate microgels and polyaluminosilicate microgels useful in this invention are commonly formed by the activation of an alkali metal silicate under conditions described in U. S. Patents 4,954,220 and
- polyaluminosilicates can be formed by the acidification of silicate with mineral acids containing dissolved aluminum salts as described in U. S. Patent 5,482,693, incorporated herein by reference.
- Alumina/silica microgels can be formed by the acidification of silicate with an excess of alum, as described in U. S. Patent 2,234,285, incorporated herein by reference.
- the anionic silica-based colloid can be provided in any suitable amount.
- the anionic silica-based colloid can be provided in an amount from about 0.1 to about 1000 ppm, and more preferably in an amount from about 1 .0 to about 1000 ppm, based on the S1O2 content.
- the oxidizable metal ion can comprise a material selected from the group consisting of ferrous ion and manganous ion. In one aspect the oxidizable metal ion comprises ferrous ion.
- the method may further include the step of adding a cationic organic polymer to the hydraulic fracturing source fluid.
- the cationic organic polymer may be added after the anionic silica-based colloid. High molecular weight and low molecular weight polymers may be used.
- the cationic organic polymer can be provided in any suitable amount. In an aspect of the invention the cationic organic polymer can be provided in an amount from about 0.5 to about 1000 mg of polymer per liter of aqueous fluid, and preferably in an amount from about 1 to about 100 mg per liter of aqueous fluid.
- High molecular weight cationic organic polymers include natural and synthetic cationic polymers. Natural cationic polymers include cationic starch, cationic guar gum, and chitosan. High molecular weight synthetic cationic polymers typically have number average molecular weights greater than 1 ,000,000, such as cationic polyacrylannide.
- Cationic starches include those formed by reacting starch with a tertiary or quaternary amine to provide cationic products with a degree of substitution of from 0.01 to 1 .0, containing from about 0.01 to 1 .0 wt. % nitrogen. Suitable starches include potato, corn, waxy maize, wheat, rice and oat.
- the high molecular weight cationic organic polymer is polyacrylannide.
- Low molecular weight cationic organic polymers have a number average molecular weight in the range between about 2,000 to about 1 ,000,000, preferably between 10,000 and 500,000.
- the low molecular weight polymer can be polyethylene imine, polyamines, polycyandiamide formaldehyde polymers, amphoteric polymers, diallyl dimethyl ammonium chloride polymers, diallylaminoalkyl (meth)acrylate polymers and dialkylaminoalkyl (meth)acrylamide polymers, a copolymer of acrylamide and diallyl dimethyl ammonium chloride, a copolymer of acrylamide and diallylaminoalkyl (meth)acrylates, a copolymer of acrylamide and dialkyldiaminoalkyl (meth)acrylamides, and a polymer of dimethylamine and epichlorohydrin.
- the aqueous, hydraulic fracturing source fluid can further comprise at least one material selected from the group consisting of alkali metal salts, alkaline-earth metal salts, friction reducing polymer, scale inhibitor, corrosion inhibitor, hydrocarbon, and proppant.
- a friction reducer can be added to the fracturing fluid to promote laminar flow of the fracturing fluid, which is important to achieve desired fracturing at lower pressures while maintaining high flow rates into the formation. Performance of the friction reducer is critical to achieve desired flow rates at desired pump pressure. Poor performance of a friction reducer causes increased pressure or reduced flow rate, either of which will negatively impact the fracturing process by increasing energy costs for higher pressure or increasing time and/or efficiency to achieve the desired fracturing at a lower pressure.
- Suitable friction reducers can include organic polymers such as acrylic acid and acrylamide polymers and copolymers. Friction reducers may be anionic, cationic, and nonionic. Anionic friction reducers are lower cost and are the most widely used.
- Friction reducers are typically dosed in an amount of 50 - 1000 ppm (parts per million by volume of polymer dispersion) based on the volume of the fracturing fluid.
- Proppant which keeps an induced hydraulic fracture open during or following a fracturing treatment, is most commonly sand but can also be any other such particulate material with adequate mechanical properties to withstand closure stresses including, for example, ceramic, glass, and bauxite.
- the fracturing fluid may comprise other components, including, for example, polymers, breaking agents, scale inhibitors, corrosion inhibitors, etc. These other components may be added to the biocide or to the water, or still other options for adding are available.
- Turbidity At each indicated time point, a 25 mL sample of the supernatant was withdrawn from the reaction vessel by pipette and reserved for analysis. At the conclusion of each experiment, each sample was well-mixed, transferred to a sample cell, and the turbidity was measured using a Hach Model 2100N turbidimeter (Hach Company, Loveland, CO). Results are reported in Nephelometric turbidity units (NTU). Total iron analysis was carried out on the same sample used for turbidity measurements by one of two methods as indicated in the examples:
- ICP- OES Inductively coupled plasma optical emission spectroscopy
- Redox/ORP electrode (#9678BNWP).
- Example 2 Another 100-mL sample of produced water was treated with chlorine dioxide as described in Example 1 .
- a dose of 100 mg/L (SiO2 basis) of a 1 .0 wt.% (SiO2 basis) solution of polysilicic acid microgel was used.
- the pH was adjusted from 3.91 to 6.71 with aqueous ammonia.
- the stirrer was turned off, the rust-colored coagulum was found to settle in about 17 seconds, even more rapidly than in Example 1 .
- Example 2 Another 100-mL sample of produced water was treated with chlorine dioxide as described in Example 1 . In this case, no polysilicic acid microgel was added. The pH was adjusted from 4.17 to 6.88 with aqueous ammonia. When the stirrer was turned off, the rust-colored coagulum was found to settle in about 138 seconds, more slowly than in Examples 1 and 2.
- Example B and Examples 3-6 another produced water from the Marcellus region was obtained and characterized as follows: pH 4.5 Ba 183 mg/kg Ca 14,500 mg/kg Fe 201 mg/kg K 953 mg/kg Mg 1620 mg/kg Mn 14 mg/kg Na 40,300 mg/kg Sr 2930 mg/kg
- Example 3 As described in Example 3, another 200-mL sample of produced water was treated with chlorine dioxide and 5 mg/L (SiO2 basis) of polysilicic acid microgel. The stir rate was increased from 50 to 200 rpm and the pH was adjusted dropwise with aqueous ammonia from 3.18 to 6.47. At this point 50 mg/L Zetag ® 8818 cationic polyacrylamide polymer solution (BASF Corporation North America, Florham Park, NJ; 40% active) was added using a 1/400 aqueous dilution of the product. The sample was allowed to stir until a flocculated solid suspension was fully-formed (about 1 -2 minutes). At this point the stirrer was turned off and the solids were allowed to settle.
- Zetag ® 8818 cationic polyacrylamide polymer solution BASF Corporation North America, Florham Park, NJ; 40% active
- This example illustrates the use of a cationic polyacrylamide friction reduction polymer in combination with an anionic silica-based colloid to accelerate solids settling in a produced water sample.
- a cationic polyacrylamide friction reduction polymer in combination with an anionic silica-based colloid to accelerate solids settling in a produced water sample.
- another 200-mL sample of produced water was treated with chlorine dioxide and 5 mg/L (SiO2 basis) of polysilicic acid microgel.
- the stir rate was increased from 50 to 200 rpm and the pH was adjusted dropwise with aqueous ammonia from 3.17 to 6.38.
- 50 mg/L KemFlowTM C4107 cationic polyacrylannide polymer solution was added using a 1/1000 aqueous dilution of the product.
- This example illustrates the utility of a lower dose of cationic organic polymer in combination with an anionic silica-based colloidal microgel.
- another 200-mL sample of produced water was treated with chlorine dioxide and 5 mg/L (SiO2 basis) of polysilicic acid microgel.
- the stir rate was increased from 50 to 200 rpm and the pH was adjusted dropwise with aqueous ammonia from 3.17 to 6.41 .
- 12.5 mg/L Zetag ® 8818 cationic polyacrylannide polymer solution was added using a 1/400 aqueous dilution of the product.
- the sample was allowed to stir until a flocculated solid suspension was fully-formed (about 1 -2 minutes).
- a synthetic brine solution (used to closely replicate a produced water sample) with the following composition was prepared in deionized water for use in Examples 7 and 8, and Comparative Examples C - F.
- Example 8 Another 200 mL sample of synthetic brine solution was prepared as described in Example 7, treated with 35 mg/L chlorine dioxide and 10 mg/L (SiO2 basis) of polysilicic acid microgel. The stir rate was increased from 50 to 200 rpm and the pH was adjusted dropwise with aqueous ammonia from 2.91 to 6.65. At this point 50 mg/L Zetag 8818 cationic polyacrylamide polymer solution was added using a 1/400 aqueous dilution of the product. The sample was allowed to stir until a flocculated solid suspension was fully-formed (about 1 -2 minutes). At this point the stirrer was turned off and the solids were allowed to settle.
- Comparative Examples D and E show that without the addition of chlorine dioxide, reduction in the concentration of soluble and suspended oxidizable metal ion salts (e.g., iron salts) is not achieved.
- soluble and suspended oxidizable metal ion salts e.g., iron salts
- Comparative Example D Another 200 ml_ sample of synthetic brine solution was prepared as described in Example 7, but was not treated with chlorine dioxide.
- Comparative Example E Another 200 ml_ sample of synthetic brine solution was prepared as described in Comparative Example D without chlorine dioxide treatment. In this case it was treated with 10 mg/L (SiO2 basis) of polysilicic acid microgel solution and 50 mg/L Zetag ® 8818 cationic polyacrylamide polymer solution as described in Example 8. The resultant pH after polmer addition was 6.14, so no further pH adjustment was required.
- ICP-OES inductively coupled plasma optical emission spectroscopy
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
La présente invention concerne un nouveau procédé servant au traitement de fluide de fracturation hydraulique. Le fluide de fracturation hydraulique est traité avec un colloïde anionique à base de silice suivant une quantité et pendant une durée suffisantes pour coaguler certains contaminants contenus dans le fluide de fracturation hydraulique. Les contaminants peuvent par la suite être retirés du fluide de fracturation hydraulique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361814845P | 2013-04-23 | 2013-04-23 | |
US61/814,845 | 2013-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014176188A1 true WO2014176188A1 (fr) | 2014-10-30 |
Family
ID=50733448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/034865 WO2014176188A1 (fr) | 2013-04-23 | 2014-04-22 | Procédé servant au traitement et au recyclage de fluide de fracturation hydraulique |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014176188A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10377942B2 (en) | 2017-04-06 | 2019-08-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10563117B2 (en) | 2017-09-13 | 2020-02-18 | Nissan Chemical America Corporation | Crude oil recovery chemical fluids |
WO2020092920A1 (fr) | 2018-11-02 | 2020-05-07 | Nissan Chemical America Corporation | Récupération améliorée d'huile à l'aide de fluides de traitement comprenant de la silice colloïdale avec un agent de soutènement |
US10801310B2 (en) | 2017-09-26 | 2020-10-13 | Nissan Chemcial America Corporation | Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery |
US10870794B2 (en) | 2017-11-03 | 2020-12-22 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2234285A (en) | 1937-04-02 | 1941-03-11 | William B Schworm | Treatment of natural waters |
GB1597784A (en) * | 1977-05-09 | 1981-09-09 | Hollux Sa | Process of hydrometallurgical treatment for eliminating impurities from a solution containing dissolved metals |
US4795531A (en) | 1987-09-22 | 1989-01-03 | Nalco Chemical Company | Method for dewatering paper |
US4927498A (en) | 1988-01-13 | 1990-05-22 | E. I. Du Pont De Nemours And Company | Retention and drainage aid for papermaking |
US4954220A (en) | 1988-09-16 | 1990-09-04 | E. I. Du Pont De Nemours And Company | Polysilicate microgels as retention/drainage aids in papermaking |
US5068038A (en) * | 1989-09-27 | 1991-11-26 | Degussa Aktiengesellschaft | Method of lowering the AOX content in water |
US5126014A (en) | 1991-07-16 | 1992-06-30 | Nalco Chemical Company | Retention and drainage aid for alkaline fine papermaking process |
US5127994A (en) | 1988-05-25 | 1992-07-07 | Eka Nobel Ab | Process for the production of paper |
US5453203A (en) * | 1992-10-22 | 1995-09-26 | Toyo Dynam Co., Ltd. | Process and apparatus for purifying low polluted water |
US5482693A (en) | 1994-03-14 | 1996-01-09 | E. I. Du Pont De Nemours And Company | Process for preparing water soluble polyaluminosilicates |
US6203711B1 (en) | 1999-05-21 | 2001-03-20 | E. I. Du Pont De Nemours And Company | Method for treatment of substantially aqueous fluids derived from processing inorganic materials |
-
2014
- 2014-04-22 WO PCT/US2014/034865 patent/WO2014176188A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2234285A (en) | 1937-04-02 | 1941-03-11 | William B Schworm | Treatment of natural waters |
GB1597784A (en) * | 1977-05-09 | 1981-09-09 | Hollux Sa | Process of hydrometallurgical treatment for eliminating impurities from a solution containing dissolved metals |
US4795531A (en) | 1987-09-22 | 1989-01-03 | Nalco Chemical Company | Method for dewatering paper |
US4927498A (en) | 1988-01-13 | 1990-05-22 | E. I. Du Pont De Nemours And Company | Retention and drainage aid for papermaking |
US5127994A (en) | 1988-05-25 | 1992-07-07 | Eka Nobel Ab | Process for the production of paper |
US4954220A (en) | 1988-09-16 | 1990-09-04 | E. I. Du Pont De Nemours And Company | Polysilicate microgels as retention/drainage aids in papermaking |
US5068038A (en) * | 1989-09-27 | 1991-11-26 | Degussa Aktiengesellschaft | Method of lowering the AOX content in water |
US5126014A (en) | 1991-07-16 | 1992-06-30 | Nalco Chemical Company | Retention and drainage aid for alkaline fine papermaking process |
US5453203A (en) * | 1992-10-22 | 1995-09-26 | Toyo Dynam Co., Ltd. | Process and apparatus for purifying low polluted water |
US5482693A (en) | 1994-03-14 | 1996-01-09 | E. I. Du Pont De Nemours And Company | Process for preparing water soluble polyaluminosilicates |
US6203711B1 (en) | 1999-05-21 | 2001-03-20 | E. I. Du Pont De Nemours And Company | Method for treatment of substantially aqueous fluids derived from processing inorganic materials |
Non-Patent Citations (6)
Title |
---|
"Standard Methods for the Examination of Water and Wastewater", 1998 |
"Ulllmann's Encyclopedia of Industrial Chemistry", 14 February 2012, WILEY ONLINE LIBRARY |
BROWMAN M G ET AL: "SILICA POLYMERIZATION AND OTHER FACTORS IN IRON CONTROL BY SODIUM SILICATE AND SODIUM HYPOCHLORITE ADDITIONS", ENVIRONMENTAL SCIENCE & TECHNOLOGY, AMERICAN CHEMICAL SOCIETY, US, vol. 23, no. 5, 1 May 1989 (1989-05-01), pages 566 - 572, XP000074516, ISSN: 0013-936X, DOI: 10.1021/ES00063A009 * |
C MERRILL: "August 1948 I N D U", IND. ENG. CHEM., vol. 40, 31 August 1948 (1948-08-31), pages 1355 - 1359, XP055124473 * |
DALTON, J. PHYS. CHEM., vol. 60, 1956, pages 955 - 957 |
RALPH K. ILER: "The Chemistry of Silica", 1979, JOHN WILEY AND SONS |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10377942B2 (en) | 2017-04-06 | 2019-08-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10557078B2 (en) | 2017-04-06 | 2020-02-11 | Nissan Chemical America Corporation | Brine resistant silica sol |
US10975289B2 (en) | 2017-04-06 | 2021-04-13 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US11401454B2 (en) | 2017-04-06 | 2022-08-02 | Nissan Chemical America Corporation | Hydrocarbon formation treatment micellar solutions |
US10563117B2 (en) | 2017-09-13 | 2020-02-18 | Nissan Chemical America Corporation | Crude oil recovery chemical fluids |
US10570331B2 (en) | 2017-09-13 | 2020-02-25 | Nissan Chemical America Corporation | Crude oil recovery chemical fluid |
US10801310B2 (en) | 2017-09-26 | 2020-10-13 | Nissan Chemcial America Corporation | Using gases and hydrocarbon recovery fluids containing nanoparticles to enhance hydrocarbon recovery |
US10870794B2 (en) | 2017-11-03 | 2020-12-22 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US11180692B2 (en) | 2017-11-03 | 2021-11-23 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
US11274244B2 (en) | 2017-11-03 | 2022-03-15 | Nissan Chemical America Corporation | Using brine resistant silicon dioxide nanoparticle dispersions to improve oil recovery |
WO2020092920A1 (fr) | 2018-11-02 | 2020-05-07 | Nissan Chemical America Corporation | Récupération améliorée d'huile à l'aide de fluides de traitement comprenant de la silice colloïdale avec un agent de soutènement |
US10934478B2 (en) | 2018-11-02 | 2021-03-02 | Nissan Chemical America Corporation | Enhanced oil recovery using treatment fluids comprising colloidal silica with a proppant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kimura et al. | Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants | |
Wang et al. | The effect of total hardness on the coagulation performance of aluminum salts with different Al species | |
Yan et al. | Relative importance of hydrolyzed Al (III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: a case study with the typical micro-polluted source waters | |
WO2014176188A1 (fr) | Procédé servant au traitement et au recyclage de fluide de fracturation hydraulique | |
CA2370484C (fr) | Procede de traitement de fluides sensiblement aqueux provenant du traitement de matieres inorganiques | |
Cheng et al. | A study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants | |
Kang et al. | Comparing polyaluminum chloride and ferric chloride for antimony removal | |
Galloux et al. | Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment | |
AU2017210549A1 (en) | Thermally stable scale inhibitor compositions | |
Li et al. | Effect of aluminum on lead release to drinking water from scales of corrosion products | |
CA2868053A1 (fr) | Compositions de traitement des eaux et procedes d'utilisation | |
Tang et al. | An alternative method for preparation of polyaluminum chloride coagulant using fresh aluminum hydroxide gels: Characterization and coagulation performance | |
Li et al. | Compound bioflocculant and polyaluminum chloride in kaolin-humic acid coagulation: factors influencing coagulation performance and floc characteristics | |
MX2014009745A (es) | Proceso para fracturacion hidraulica con control de ph. | |
Yang et al. | Effect of Al species in polyaluminum silicate chloride (PASiC) on its coagulation performance in humic acid–kaolin synthetic water | |
Wang et al. | Effect of pH on humic acid removal performance in coagulation–ultrafiltration process and the subsequent effects on chlorine decay | |
Spinthaki et al. | A universal scale inhibitor: A dual inhibition/dispersion performance evaluation under difficult brine stresses | |
Zhou et al. | Preparation and Characteristics of Polyaluminium Chloride by Utilizing Fluorine‐Containing Waste Acidic Mother Liquid from Clay‐Brine Synthetic Cryolite Process | |
Xu et al. | Relative importance of hydrolyzed Al species (Ala, Alb, Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process | |
He et al. | A novel hydrophobic chitosan-polyaluminum chloride composite flocculant for effectively simultaneous removal of microplastic and antibiotics composite pollution | |
Li et al. | Mn (II) oxidation by free chlorine catalyzed by the hydrolytic products of ferric and aluminum species under drinking water conditions | |
CN109292936B (zh) | 聚合氯化铝钛无机复合混凝剂及其制备方法和应用 | |
CN105218758B (zh) | 含纳米Fe(OH)3接枝丙烯酰胺共聚物絮凝剂的制备方法 | |
Tanquero et al. | Inhibition of calcium sulphate hemihydrate crystallization under simulated conditions of phosphoric acid evaporation | |
US9758716B2 (en) | Process for treating a wastewater stream produced by hydrocarbon production operations for repurposing as a disinfectant for hydrocarbon production operations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14724980 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14724980 Country of ref document: EP Kind code of ref document: A1 |