WO2014175135A1 - 有機エレクトロルミネッセンス素子のパターン形成方法 - Google Patents
有機エレクトロルミネッセンス素子のパターン形成方法 Download PDFInfo
- Publication number
- WO2014175135A1 WO2014175135A1 PCT/JP2014/060805 JP2014060805W WO2014175135A1 WO 2014175135 A1 WO2014175135 A1 WO 2014175135A1 JP 2014060805 W JP2014060805 W JP 2014060805W WO 2014175135 A1 WO2014175135 A1 WO 2014175135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- pattern
- organic
- layer
- intensity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 239000002346 layers by function Substances 0.000 claims abstract description 49
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 238000005401 electroluminescence Methods 0.000 claims description 100
- 230000007261 regionalization Effects 0.000 claims description 31
- 230000008859 change Effects 0.000 claims description 23
- 239000010410 layer Substances 0.000 description 161
- 235000019557 luminance Nutrition 0.000 description 75
- 239000000463 material Substances 0.000 description 53
- 239000010408 film Substances 0.000 description 35
- -1 polyethylene terephthalate Polymers 0.000 description 27
- 239000000758 substrate Substances 0.000 description 26
- 238000002347 injection Methods 0.000 description 25
- 239000007924 injection Substances 0.000 description 25
- 230000000903 blocking effect Effects 0.000 description 23
- 230000005525 hole transport Effects 0.000 description 23
- 238000007789 sealing Methods 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000003566 sealing material Substances 0.000 description 14
- 230000001681 protective effect Effects 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 11
- 229910052749 magnesium Inorganic materials 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 229910010272 inorganic material Inorganic materials 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000001182 laser chemical vapour deposition Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 150000003112 potassium compounds Chemical class 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- 239000011698 potassium fluoride Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/70—Testing, e.g. accelerated lifetime tests
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/211—Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a method for forming a pattern of an organic electroluminescence element.
- the present invention relates to a method for forming a pattern of an organic electroluminescence element capable of accurately forming a light emission pattern having a desired gradation of light emission luminance.
- organic light-emitting elements are attracting attention as thin luminescent materials.
- Organic light-emitting elements (hereinafter also referred to as “organic EL elements”) using organic electroluminescence (EL) are thin-film complete light sources capable of emitting light at a low voltage of several volts to several tens of volts. It is a solid element and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has attracted attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
- Such an organic EL element has a configuration in which an organic functional layer including at least a light emitting layer is disposed between a pair of electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted to the outside. For this reason, at least one of the pair of electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
- the organic EL element can obtain high luminance with low power, and is excellent in terms of visibility, response speed, life, and power consumption.
- the function of the organic functional layer is changed for each predetermined region by irradiating light while adjusting the exposure amount for each predetermined region to the organic functional layer, and the amount of change
- a method of forming a light emission pattern having a gradation of light emission luminance according to the above for example, see Patent Document 1.
- irradiation with ultraviolet rays is performed on the assumption that the amount of change in the function of the organic functional layer increases uniformly as the integrated light quantity, which is the product of the intensity of ultraviolet rays and the irradiation time, increases.
- the amount of change in the function of the organic functional layer is the integrated light quantity [W ⁇ s / cm 2 of light irradiated to the organic EL element. ]
- the amount of change in the function of the organic functional layer is also different when the relationship between the light intensity [W / cm 2 ] and the irradiation time [s] is different.
- a light emission pattern having a desired gradation of light emission luminance cannot be formed depending on the relationship between the intensity of the light and the irradiation time. There is.
- the present invention has been made in view of the above problems and situations, and a solution to the problem is a method for forming a pattern of an organic electroluminescence element capable of accurately forming a light emission pattern having a desired light emission luminance gradation. Is to provide.
- a pattern forming method of an organic electroluminescent element wherein a light emitting pattern is formed by irradiating light to an organic electroluminescent element having an organic functional layer between a pair of electrodes, When irradiating light, the light emission pattern is formed by controlling at least one of light intensity and irradiation time as a variable factor based on a reciprocity failure characteristic regarding a change in function of the organic functional layer due to light irradiation.
- a method for forming a pattern of an organic electroluminescence element comprising:
- the pattern formation method of the organic electroluminescent element which can form the light emission pattern which has the gradation of desired light emission luminance correctly can be provided.
- the expression mechanism or action mechanism of the effect of the present invention is as follows.
- the pattern formation method of the organic electroluminescence element according to the present invention is based on a reciprocity failure characteristic regarding a change in the function of the organic functional layer due to light irradiation when irradiating light, and at least one of light intensity and irradiation time.
- the light intensity and the irradiation time according to the desired light emission luminance can be appropriately determined, so that the organic electroluminescence element can be irradiated with the minimum necessary integrated light amount. And pattern formation of an organic electroluminescent element can be performed efficiently.
- strength of different light with respect to an organic EL element, and the relative light-emitting luminance of an organic EL element The graph which shows the relationship between the integrated light quantity when the light of wavelength 365nm is irradiated with the intensity
- strength of different light with respect to an organic EL element, and the relative light emission luminance of an organic EL element The graph which shows the relationship between the intensity
- strength of light required in order to obtain the pattern of relative light-emitting luminance 0.1, and irradiation time Relationship diagram between light intensity and irradiation time required to obtain each relative light emission luminance pattern The figure which shows the light intensity D and irradiation time t
- the method for producing an organic electroluminescent element of the present invention when irradiating light, at least one of the intensity of light and the irradiation time is determined based on the reciprocity failure characteristic regarding the change in function of the organic functional layer due to light irradiation.
- the emission pattern is formed by controlling as a variation factor.
- This feature is a technical feature common to the inventions according to claims 1 to 7.
- the present invention is based on the reciprocity failure characteristics obtained by measuring in advance the relationship between the amount of change in function of the organic functional layer due to the light irradiation, the intensity of light, and the irradiation time. It is preferable to form the light emission pattern by controlling at least one of irradiation time and irradiation time.
- the light intensity and irradiation time according to the desired light emission luminance can be appropriately determined, and the light emission pattern having the gradation of the desired light emission luminance can be accurately formed.
- the light irradiation time is constant, and the light emission pattern is formed by changing the intensity of the light.
- the light emission pattern is formed by keeping the intensity of the light constant and changing the irradiation time of the light.
- the light emission pattern is formed by performing point drawing by the light irradiation. Thereby, a light emission pattern can be accurately formed with respect to an organic electroluminescent element.
- the light emission pattern is formed by adjusting the intensity of the light by the light irradiation through a pattern forming mask. Thereby, a light emission pattern can be easily formed with respect to an organic electroluminescent element.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- organic electroluminescence element (hereinafter also referred to as “organic EL element”) will be described below.
- the organic EL element is configured by laminating a first electrode, an organic functional layer, and a second electrode in this order on a substrate. Further, an extraction electrode may be provided at the end of the first electrode, and an external power supply (not shown) may be connected to the first electrode via the extraction electrode.
- the organic EL element is configured such that emitted light is extracted from the substrate side or the opposite side.
- the layer structure of the organic EL element is not particularly limited, and may be a conventionally known general layer structure.
- the first electrode functions as an anode (that is, an anode)
- the second electrode functions as a cathode (that is, a cathode).
- the organic functional layer can have a structure in which a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer are stacked in order from the first electrode side which is an anode. It is essential to have at least a light-emitting layer formed using an organic material.
- the hole injection layer and the hole transport layer may be provided as a hole transport injection layer, and the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
- the electron injection layer may be composed of an inorganic material.
- the organic functional layer may have a structure in which a hole blocking layer, an electron blocking layer, or the like is laminated at a necessary position as necessary.
- the light emitting layer may have a structure in which each color light emitting layer for generating light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer.
- the intermediate layer may function as a hole blocking layer and an electron blocking layer.
- the second electrode as the cathode may also have a laminated structure as necessary.
- an auxiliary electrode may be provided in contact with the first electrode.
- the organic EL only a portion where the organic functional layer is sandwiched between the first electrode and the second electrode (a region where the first electrode, the organic functional layer, and the second electrode overlap when viewed from the stacking direction) is the organic EL. It becomes the light emitting region of the element.
- the organic EL element having the above-described configuration is sealed on the substrate with a sealing material to be described later for the purpose of preventing deterioration of the organic functional layer formed using an organic material or the like.
- a sealing material to be described later for the purpose of preventing deterioration of the organic functional layer formed using an organic material or the like.
- the terminal portions of the first electrode, the second electrode, or the extraction electrode are exposed from the sealing material in a state where insulation is maintained on the substrate.
- a light emitting pattern having a desired light emission luminance gradation can be formed by the following pattern forming method.
- “reciprocity law failure” is a reciprocity law that indicates that the amount of change in the organic functional layer is constant if the integrated light quantity, which is the product of the intensity of the irradiated light and the irradiation time, is constant. It means that it does not hold.
- the “reciprocity failure characteristic” is the relationship between the light intensity and irradiation time and the amount of change in the organic functional layer, and the reciprocity when the light intensity and irradiation time take any value. It refers to what causes a law failure, and may include a region where a reciprocity law is partially established.
- FIG. 1 is a graph showing the result of measuring the relative light emission luminance of the organic EL element with respect to the integrated light amount for each light intensity of a predetermined value using a semiconductor laser having a wavelength of 404 nm as a light source.
- the relative light emission luminance of the organic EL element in the present invention is set to 1 when no light is irradiated and the organic functional layer is not changed at all (corresponding to white luminance), and each relative light emission luminance is set. . Further, the state in which the organic functional layer is changed by irradiation with light and the decrease in emission luminance reaches the limit corresponds to the luminance of black, and is about 0.1 in this measurement.
- the intensity of light applied to the organic EL element shows the measurement results of the relative light emission intensity of the organic EL element with respect to the integrated quantity of light.
- the relative light emission luminance of the organic EL element is different when the light intensity is different.
- the relative light emission luminance of the organic functional layer is also different. It has been shown that law failure occurs. Further, the measurement result shown in FIG. 1 indicates that a desired relative light emission luminance pattern can be obtained with a smaller integrated light amount as the light intensity increases. As shown in FIGS.
- FIG. 2 shows the relative light emission luminance of the organic EL element with respect to the integrated light quantity for each light intensity when an LED with a wavelength of 365 nm is used
- FIG. 3 shows an LED with a wavelength of 385 nm.
- Pattern formation method based on reciprocity failure characteristics Based on the above knowledge, in the pattern formation method of the organic EL element of the present invention, when light is irradiated, the function of the organic functional layer is changed by light irradiation.
- the light emission pattern is formed by controlling at least one of light intensity and irradiation time as a variation factor based on the reciprocity failure characteristic. An example of the specific method will be described below.
- the relationship between the light intensity and the irradiation time necessary to obtain the relative light emission luminance pattern is derived.
- the relationship between the light intensity and the irradiation time necessary to obtain a pattern with a relative light emission luminance of 0.1 is shown in a log-log graph.
- FIG. 4 shows the cases where light sources with wavelengths of 365 nm and 404 nm are used, respectively, and the organic EL element after sealing is irradiated with light from the transparent substrate side.
- the relative light emission luminances 1 to 0.1 are divided into 256 equal parts, and each of the divided relative light emission luminances is divided.
- the light intensity and the irradiation time necessary for obtaining the pattern are measured, and the relationship between the light intensity and the irradiation time is derived respectively.
- FIG. 5 is a graph showing the relationship between the light intensity and the irradiation time necessary to obtain each relative light emission luminance pattern.
- FIG. 6 is a diagram showing the light intensity D and the irradiation time t for each relative light emission luminance.
- the intensity D 000 and the irradiation time t 000 Figure 5 Any value can be taken on the curve of the relative light emission luminance 0.1 shown in FIG.
- light irradiation may be performed with the light intensity D and the irradiation time t shown in FIG.
- each relative light emission luminance pattern An arbitrary value on the curve of each relative light emission luminance shown in FIG. 5 can be taken.
- the values of the light intensity D and the irradiation time t may be set as appropriate depending on the configuration of the light irradiation device and the light irradiation method. For example, as will be described later, when light irradiation is performed by dot drawing by scanning the light irradiation position at a constant speed on the light emitting surface of the organic EL element, the light irradiation time for each relative light emission luminance is all the same.
- the light intensity corresponding to each relative light emission luminance is determined from the graph shown in FIG. Note that, in order to ensure the contrast between the pattern with the relative light emission luminance of 1 and the pattern with the relative light emission luminance of 0.1, the light intensity D 255 and the irradiation time t 255 are preferably set to 0, respectively.
- the light intensity is irradiated with respect to each relative light emission luminance and the irradiation time determined in this way, and the light emission surface of the organic EL element is irradiated for each region, and a desired light emission pattern is formed on the light emission surface of the organic EL element.
- a sealing material it may be after an organic EL element is sealed with a sealing material, and either layer is comprised among each layer which comprises an organic functional layer. It may be immediately after lamination.
- the direction of light irradiation with respect to the organic EL element may be irradiated from the substrate side as long as the function of the organic functional layer can be changed by allowing light to reach the organic functional layer, or on the opposite side. You may irradiate from the side.
- a substrate, an electrode, or the like provided on the light incident side in the organic EL element is made of a translucent material.
- FIG. 7 is a schematic configuration diagram of a pattern forming apparatus 1 that can implement the pattern forming method of the present invention.
- the pattern forming apparatus 1 is a point drawing apparatus that forms a light emission pattern by forming minute dot marks on the organic EL element 2.
- the pattern forming apparatus 1 includes a semiconductor laser (LD) light source 11 that emits laser light having a specific wavelength, a collimator lens 12 that collimates the light emitted from the LD light source 11, and collimated light by the collimator lens 12.
- Condensing lens 13 for narrowing the light to a predetermined spot diameter
- beam splitter 14 for reflecting a part of the light emitted from the collimator lens 12, and light detection for detecting the intensity of the light reflected by the beam splitter 14
- a reflection mirror 16 that reflects the light emitted from the condenser lens 13 toward the organic EL element 2, an adjustment unit 17 that adjusts the inclination of the reflection mirror 16, a control unit 18 that controls each member, and the like. I have.
- the control unit 18 emits luminance for each coordinate of the image from image data input from an external device (not shown) (for example, a PC, various servers, a printer, or the like). Is generated.
- an external device for example, a PC, various servers, a printer, or the like.
- the control unit 18 calculates light intensity and / or irradiation time necessary for forming a dot mark having a desired relative light emission luminance.
- the pattern forming apparatus 1 is configured to form a dot mark having a desired light emission luminance by changing the light intensity while keeping the light irradiation time constant for each dot mark.
- a conventionally known scanning technique can be used. For this reason, the light emission pattern formation using the pattern formation apparatus 1 can be performed easily, and the manufacturing cost of the pattern formation apparatus 1 can be reduced.
- the control unit 18 sets all the light irradiation times for each relative light emission luminance to, for example, 1 ms, and calculates the light intensity necessary for forming the dot mark for each relative light emission luminance.
- the control unit 18 determines the irradiation power P [mW] of the light emitted from the LD light source 11 and the current (LD) to be applied to emit the light of the irradiation power P based on the light intensity corresponding to each relative light emission luminance.
- Current) I [mA] is calculated (see FIG. 8).
- the LD current I necessary for forming a dot mark having a relative light emission luminance of 1 is 0. However, it may not be 0 as long as it is less than the threshold of the LD light source 11.
- the control unit 18 adjusts the tilt of the reflection mirror 16 by the adjustment unit 17 every 1 ms around two axes, and generates the above while scanning the light irradiation position in the X direction and the Y direction on the organic EL element.
- a pulse signal indicating the value of the LD current is output to the LD light source 11 for each coordinate.
- the LD light source 11 emits laser light based on the input pulse signal, thereby forming a plurality of dot marks on the organic EL element and forming a desired light emission pattern.
- the controller 18 detects the intensity of reflected light from the beam splitter 14 by the light detector 15 and monitors the detected data when performing light irradiation.
- the control unit 18 corrects the LD current I applied to the LD light source 11 to obtain a desired value.
- the light intensity is emitted accurately.
- the light irradiation time is 1 ms, but the value is not limited to this value.
- the light irradiation time is constant and the light intensity is changed to form a dot mark having a desired relative light emission luminance.
- the light intensity is constant and the irradiation time is set to be constant. It may be changed. In this case, it is not necessary to detect the intensity of light over a wide range, and components having a wide dynamic range and a good S / N ratio are added to the photodetector 15 and an amplifier (not shown) that performs IV conversion and amplification of the output. Since it is not necessary to use, the cost of the pattern formation apparatus 1 can be reduced.
- the light irradiation time is constant and the light intensity is changed to form a dot mark having a desired relative light emission luminance.
- both the light intensity and the irradiation time are changed. You may make it let it.
- the pattern formation method of the organic EL element of the present invention is not limited to the pattern formation by the point drawing, but pattern formation using a pattern formation mask. Also good.
- the intensity and irradiation time of light emitted from the light source are constant, and the light transmittance of each region is set in accordance with a desired light emission pattern formed on the organic EL element.
- Light irradiation is performed via That is, by using a mask having a different light transmittance for each region, the intensity of light applied to the organic EL element is controlled for each region, and a desired light emission pattern is formed.
- the light transmittance of each area of the mask is set as shown in FIG.
- the light transmittance of the mask shown in FIG. 9 is derived from the relationship diagram of light intensity and irradiation time at each relative light emission luminance shown in FIG. That is, in the method using a mask as described above, since the light irradiation time is set to a predetermined value, the light intensity necessary to obtain each relative light emission luminance pattern is determined from the graph shown in FIG.
- the intensity Dmsk of the light applied to the mask is at least a value greater than any of the light intensities D 000 to D 255 necessary for obtaining the relative light emission luminances, or the relative light emission luminances D It must be the same value as the largest value of 000 to D 255 .
- the light transmittance of the mask necessary for obtaining a pattern having a relative light emission luminance of 1 is preferably 0%.
- the mask configured as described above is disposed on the light emitting surface of the organic EL element, and light is irradiated on the organic EL element with a predetermined intensity and irradiation time through the mask, thereby allowing the organic EL element to be irradiated on the organic EL element.
- a desired light emission pattern can be formed.
- a pattern of a desired relative light emission luminance can be formed with a small integrated light amount as the intensity of light to be irradiated increases. Therefore, as the intensity of light increases, the irradiation time increases dramatically. It is possible to shorten it.
- the emission wavelength of the light source when the emission wavelength of the light source to 404 nm, from Fig. 4, if the intensity of light and 26kW / cm 2 or more, the irradiation of one dot marks relative emission luminance 0.1
- the time can be reduced to 1 ms or less, and a light emission pattern can be formed at a very high speed.
- the resolution is 200 dpi
- the pattern can be formed in a shorter time.
- FIG. 4 shows the result of light irradiation performed on an organic EL element in which the light transmittance of the laminate of the substrate and the first electrode is 70%.
- the intensity of the emitted light may be set to 385 ⁇ [nm] ⁇ 1.37 ⁇ 10 5 or more.
- the intensity of light of the apparatus is about several tens to several hundred mW / cm 2 , and irradiation for 10 hours or more is performed. Time is required and production efficiency is poor.
- the irradiation time can be drastically shortened as the intensity of the irradiated light is increased. Therefore, a plurality of light source lamps having a wavelength of 365 nm are mounted. If the light intensity is 0.43 W / cm 2 or more, the irradiation time can be 1 h or less, and the throughput can be greatly improved.
- the substrate that can be used in the organic EL device of the present invention is not particularly limited, such as glass and plastic, and may be transparent or opaque.
- the transparent substrate preferably used include glass, quartz, and a transparent resin film. Particularly preferred is a resin film capable of giving flexibility to the organic EL element.
- the thickness of the substrate is not particularly limited, and may be any thickness.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
- a gas barrier film made of an inorganic material, an organic material, or both may be formed on the surface of the resin film.
- a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g. / (M 2 ⁇ 24 h) or less is preferable, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h).
- the material for forming the gas barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
- the method for forming the gas barrier film is not particularly limited.
- the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
- the opaque support substrate examples include a metal plate such as aluminum and stainless steel, an opaque resin substrate, and a ceramic substrate.
- First electrode As the first electrode, it is possible to use all electrodes that can be normally used for organic EL elements. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
- the first electrode is preferably a transparent electrode, and more preferably a transparent metal electrode. Note that the transparency of the first electrode means that the light transmittance at a wavelength of 550 nm is 50% or more.
- the method for forming the first electrode for example, a known spin coating, vapor deposition method, sputtering method or the like can be used as appropriate.
- the patterning method for example, patterning by known photolithography, patterning by a pattern mask, or the like can be used. It can be used depending on the situation.
- the transmittance be greater than 10%, and the sheet resistance as the first electrode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness of the first electrode depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- the first electrode may have a two-layer structure including a base layer formed on the substrate and an electrode layer formed thereon.
- the electrode layer is, for example, a layer composed of silver or an alloy containing silver as a main component
- the underlayer is, for example, a layer composed of a compound containing nitrogen atoms. It is done.
- the main component means that the content in the electrode layer is 98% by mass or more.
- Organic functional layer (light emitting functional layer) >> (1) Light emitting layer
- the organic functional layer includes at least a light emitting layer.
- the light emitting layer used in the present invention contains a phosphorescent compound as a light emitting material. Note that the light emitting layer may contain a plurality of types of phosphorescent compounds.
- a fluorescent material may be used, or a phosphorescent compound and a fluorescent material may be used in combination.
- This light emitting layer is a layer that emits light by recombination of electrons injected from the second electrode or the electron transport layer and holes injected from the first electrode or the hole transport layer, and the light emitting portion emits light. Even within the layer, it may be the interface between the light emitting layer and the adjacent layer.
- Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. There may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers.
- the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the sum of the thicknesses of the light emitting layers is a layer thickness including the intermediate layers when a non-light emitting intermediate layer exists between the light emitting layers.
- each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably within the range of 1 to 20 nm.
- each of the stacked light emitting layers emits light in the respective emission colors of blue, green, and red, there is no particular limitation on the relationship of the layer thickness of each light emitting layer.
- the light emitting layer as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
- a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
- phosphorescent compound preferably used for the light emitting layer of the organic EL device include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194.
- the compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
- preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
- the phosphorescent compound also referred to as a phosphorescent metal complex
- examples of the phosphorescent compound include, for example, Organic Letter, vol. 16, pages 2579 to 2581 (2001), Inorg. Chem. 30, No. 8, pp. 1685-1687 (1991), J. MoI. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry Vol. 26, page 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and references disclosed in these documents. It can be synthesized by applying the method described
- specific examples of the host compound preferably used for the light emitting layer of the organic EL device include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002. No. -43056, No. 2002-105445, No. 2002-352957, No. 2002-231453, No. 2002-234888, No. 2002-260861, No. 2002-305083, US Patent Publication No. 2005/0112407, U.S. Patent Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754.
- Injection layer (hole injection layer, electron injection layer)
- An injection layer is a layer provided between an electrode and a light-emitting layer in order to lower drive voltage or improve light emission luminance.
- An organic EL element and its forefront of industrialization June 30, 1998, NTS
- the details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of the “Company Issue”, and there are a hole injection layer and an electron injection layer.
- the injection layer can be provided as necessary. If it is a hole injection layer, it may exist between the anode and the light emitting layer or the hole transport layer, and if it is an electron injection layer, it may exist between the cathode and the light emitting layer or the electron transport layer.
- JP-A Nos. 9-45479, 9-260062, and 8-288069 The details of the hole injection layer are described in JP-A Nos. 9-45479, 9-260062, and 8-288069. Specific examples thereof include a phthalocyanine layer represented by copper phthalocyanine. And an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
- the details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically, metals such as strontium and aluminum Examples thereof include an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
- the electron injection layer of the present invention is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
- the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
- Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
- the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
- the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- This hole transport layer may have a single layer structure composed of one or more of the above materials.
- the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer (not shown) are also included in the electron transport layer.
- the electron transport layer can be provided as a single-layer structure or a multi-layer structure.
- the electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer emits electrons injected from the cathode. What is necessary is just to have the function to transmit to a layer.
- any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
- Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer.
- distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer.
- These inorganic semiconductors can also be used as a material for the electron transport layer.
- the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
- the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the electron transport layer may have a single layer structure composed of one or more of the above materials.
- impurities can be doped in the electron transport layer to increase the n property.
- impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- potassium, a potassium compound, etc. are contained in an electron carrying layer.
- the potassium compound for example, potassium fluoride can be used.
- the same material as that for the above-described underlayer may be used.
- the electron transport layer that also serves as the electron injection layer and the same material as that for the above-described underlayer may be used.
- Blocking layer (hole blocking layer, electron blocking layer)
- the blocking layer may be further provided as an organic functional layer in addition to the above functional layers. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
- the hole blocking layer has a function of an electron transport layer in a broad sense.
- the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
- the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
- the hole blocking layer is preferably provided adjacent to the light emitting layer.
- the electron blocking layer has a function of a hole transport layer in a broad sense.
- the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
- the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
- the layer thickness of the hole blocking layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
- the second electrode is an electrode film that functions as a cathode for supplying electrons to the organic functional layer, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
- a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
- An oxide semiconductor such as SnO 2 can be given.
- the second electrode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the second electrode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 5 to 5000 nm, preferably within the range of 5 to 200 nm.
- this organic EL element is a thing which takes out emitted light also from the 2nd electrode side
- the electroconductive material with favorable light transmittance is selected from the electroconductive materials mentioned above, and the 2nd electrode is selected. What is necessary is just to comprise.
- the pattern forming method can be performed by irradiating light from the second electrode side.
- the extraction electrode is for electrically connecting the first electrode and an external power source, and the material thereof is not particularly limited, and a known material can be suitably used.
- the extraction electrode has a three-layer structure.
- a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) can be used.
- the auxiliary electrode is provided for the purpose of reducing the resistance of the first electrode, and is provided in contact with the electrode layer of the first electrode.
- the material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed within a range not affected by extraction of emitted light from the light extraction surface.
- auxiliary electrodes examples include vapor deposition, sputtering, printing, ink jet, and aerosol jet.
- the line width of the auxiliary electrode is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 ⁇ m or more from the viewpoint of conductivity.
- the sealing material covers the organic EL element body (organic functional layer and various electrodes and wiring) on the substrate, and a plate-like (film-like) sealing member is fixed on the substrate with an adhesive. It may be a sealing film or a sealing film. In any configuration, the sealing material seals the organic EL element with a part of the first electrode, the second electrode, the extraction electrode, and the like exposed.
- the sealing member is composed of a plate-like (film-like) sealing member
- a substantially plate-like base material in which a concave portion is formed on one surface that is, a concave plate-like sealing member is used. It may be used, or a plate-like substrate having a flat surface, that is, a flat sealing member may be used.
- the plate-like (concave plate or flat plate) sealing material is disposed at a position facing the substrate 1 with the organic EL element main body interposed therebetween.
- a transparent substrate such as a glass plate, a polymer plate, or a metal plate
- a transparent substrate such as a glass plate, a polymer plate, or a metal plate
- the glass plate for example, a substrate formed of a material such as alkali-free glass, soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz is used. be able to.
- the board substrate formed with materials, such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be used, for example.
- the metal plate is formed of, for example, one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. Substrates can be used.
- gap between a sealing material and an organic EL element main-body part an organic functional layer, various electrodes, and wiring
- an inert gas such as nitrogen or argon
- an inert liquid such as fluorinated hydrocarbon or silicon oil.
- gap between a sealing material and an organic EL element main-body part may be made into a vacuum state, and you may enclose a hygroscopic compound in a space
- thermosetting type or chemical hardening type (two-component mixing) adhesives such as an epoxy type, as an adhesive agent.
- a sealing film may be used as the sealing material.
- the sealing film can be composed of a film made of an inorganic material or an organic material.
- the sealing film is made of a material having a function of suppressing the intrusion of substances such as moisture and oxygen, which causes deterioration of the organic functional layer. Examples of the material having such properties include inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride.
- the structure of the sealing film may be a multilayer structure in which a film made of these inorganic materials and a film made of an organic material are laminated.
- any method can be used as the method for forming the sealing film described above.
- a vacuum deposition method a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, Techniques such as plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, and coating can be used.
- the organic EL element may further include a protective film or a protective plate on the sealing material.
- the protective film or the protective plate mechanically protects the organic EL element body by sandwiching an organic EL element body (organic functional layer, various electrodes and wiring) and a sealing material between the protective film or the protective plate.
- a sealing film it is preferable that a protective film or a protective plate is provided because mechanical protection of the organic EL element body is not sufficient.
- a glass plate As the protective film or protective plate, a glass plate, a polymer plate, a thin polymer film, a metal plate, a thin metal film, a polymer material film or a metal material film is used.
- a polymer film is preferably used from the viewpoint of light weight and thinning of the element.
- the present invention is suitable for providing a pattern forming method for an organic electroluminescence element capable of accurately forming a light emission pattern having a desired gradation of light emission luminance.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
有機材料のエレクトロルミネッセンス(Electro Luminescence:EL)を利用した有機発光素子(以下、「有機EL素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
このため、積算光量のみに着目して有機EL素子に光照射を行うと、当該光の強度と照射時間の関係によっては、所望の発光輝度の階調を有する発光パターンを形成することができない場合がある。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
光を照射する際に、光照射による前記有機機能層の機能の変化についての相反則不軌特性に基づき光の強度及び照射時間の少なくともいずれか一方を変動因子として制御して前記発光パターンを形成することを特徴とする有機エレクトロルミネッセンス素子のパターン形成方法。
本発明の効果の発現機構ないし作用機構については、以下のとおりである。
本発明に係る有機エレクトロルミネッセンス素子のパターン形成方法は、光を照射する際に、光照射による有機機能層の機能の変化についての相反則不軌特性に基づき光の強度及び照射時間の少なくともいずれか一方を変動因子として制御して発光パターンを形成するので、所望の発光輝度に応じた光の強度と照射時間を適切に決定することができ、所望の発光輝度の階調を有する発光パターンを正確に形成することができる。
また、本発明によれば、所望の発光輝度に応じた光の強度と照射時間を適切に決定することができるので、必要最小限の積算光量で有機エレクトロルミネッセンス素子の光照射を行うことができ、有機エレクトロルミネッセンス素子のパターン形成を効率的に行うことができる。
また、本発明は、前記光照射による前記有機機能層の機能の変化量と光の強度及び照射時間との相互間の関係についてあらかじめ測定して得た前記相反則不軌特性に基づき、光の強度及び照射時間の少なくともいずれか一方を制御して前記発光パターンを形成することが好ましい。これにより、所望の発光輝度に応じた光の強度と照射時間を適切に決定することができ、所望の発光輝度の階調を有する発光パターンを正確に形成することができる。
また、本発明は、前記光の照射時間を一定とし、当該光の強度を変化させて発光パターンを形成することが好ましい。これにより、例えばレーザー光照射により前記発光パターンを形成する場合等において、既存の照射位置走査技術を用いることができ、有機EL素子のパターン形成を容易に行えるとともに、パターン形成のコストを低減することができる。
また、本発明は、前記光の強度を一定とし、当該光の照射時間を変化させて前記発光パターンを形成することが好ましい。これにより、光の強度を変化させる必要がないため、光強度のモニターに広いダイナミックレンジや良好なS/N比を有する光検知器やアンプを用いる必要がない。したがって、有機EL素子のパターン形成を容易に行えるとともに、パターン形成のコストを低減させることができる。
また、本発明は、前記光照射により点描画して前記発光パターンを形成することが好ましい。これにより、有機エレクトロルミネッセンス素子に対して精度良く発光パターンを形成することができる。
また、本発明は、パターン形成用マスクを介した前記光照射により前記光の強度を調整して前記発光パターンを形成することが好ましい。これにより、有機エレクトロルミネッセンス素子に対して容易に発光パターンを形成することができる。
本発明において、有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう。)の構成について以下説明する。
有機EL素子は、基板上に、第1電極、有機機能層及び第2電極がこの順番に積層されて構成されている。また、第1電極の端部に取り出し電極が設けられて、当該取り出し電極を介して第1電極に外部電源(図示略)が接続されるように構成されていても良い。有機EL素子は、発光光が基板側又はその反対面側から取り出されるように構成されている。
また、カソードである第2電極も、必要に応じた積層構造であっても良い。また、第1電極の低抵抗化を図ることを目的とし、第1電極に接して補助電極が設けられていても良い。
このような構成において、第1電極と第2電極とで有機機能層が挟持された部分(積層方向から見て、第1電極、有機機能層及び第2電極が重なる領域)のみが、有機EL素子の発光領域となる。
まず、本発明者らは、有機EL素子に対して光照射によりパターン形成を行った場合に、図1に示すように、有機EL素子に照射される光の積算光量に対する有機機能層の機能の変化量について相反則不軌が起きることを見出した。なお、光照射によって有機機能層の機能が変化すると、その変化量に応じて有機EL素子の発光輝度も変化する。
ここで、本発明において「相反則」とは、照射される光の強度と照射時間との積である積算光量が一定であれば、有機機能層の変化量も一定であるとするブンゼン-ロスコーの法則に従うことをいう。また、本発明において「相反則不軌」とは、照射される光の強度と照射時間との積である積算光量が一定であれば、有機機能層の変化量も一定であるとする相反則が成立しないことをいう。また、本発明において「相反則不軌特性」とは、光の強度及び照射時間と有機機能層の変化量との関係であって、光の強度及び照射時間がいずれかの値を取るときに相反則不軌を生じるものをいい、部分的に相反則が成立する領域が含まれていても良い。
また、図1に示す測定結果から、光の強度が大きいほど、小さな積算光量で所望の相対発光輝度のパターンを得ることができることが示されている。
なお、図2及び図3に示すように、光源を波長365nmや波長385nmのLED(Light Emitting Diode)とした場合においても、同じ特性が見られることを確認している。図2は、波長365nmのLEDを用いた場合、図3は、波長385nmのLEDを用いた場合の、光の強度毎の積算光量に対する有機EL素子の相対発光輝度を示している。
上記のような知見に基づき、本発明の有機EL素子のパターン形成方法では、光を照射する際に、光照射による有機機能層の機能の変化についての相反則不軌特性に基づき光の強度及び照射時間の少なくともいずれか一方を変動因子として制御して発光パターンを形成することを特徴としている。その具体的な方法の一例について以下に説明する。
例えば、相対発光輝度0.1のパターンを得ようとする場合には、光の強度D000及び照射時間t000で光の照射を行えば良く、その強度D000及び照射時間t000は図5に示す相対発光輝度0.1の曲線(両対数グラフ上では略直線)上の任意の値を取ることができる。同様に、他の各相対発光輝度のパターンを得ようとする場合においても、図6に示される光の強度Dと照射時間tで光の照射を行えば良く、その強度D及び照射時間tは図5に示す各相対発光輝度の曲線上の任意の値を取ることができる。
各相対発光輝度のパターンを得ようとする場合において、光の強度D及び照射時間tをいずれの値に設定するかは、光照射装置の構成や光照射方法によって適宜設定すれば良い。例えば、後述するように、有機EL素子の発光面に対して光照射位置を一定速度で走査させることにより点描画で光照射を行う場合には、各相対発光輝度に対する光の照射時間を全て同一の値に設定し、図5に示すグラフから各相対発光輝度に対応する光の強度を決定する。
なお、相対発光輝度1のパターンと相対発光輝度0.1のパターンとのコントラストを確保するため、光の強度D255と照射時間t255は、それぞれ0とすることが好ましい。
なお、有機EL素子に対して光照射を行うタイミングについては、有機EL素子が封止材で封止された後であっても良いし、有機機能層を構成する各層のうちいずれかの層を積層した直後であっても良い。
また、有機EL素子に対して光照射を行う方向は、光を有機機能層に到達させて当該有機機能層の機能を変化させることができれば、基板側から照射しても良いし、その反対面側から照射しても良い。ただし、有機EL素子において光入射側に設けられる基板や電極等は透光性材料からなることが好ましい。
ここで、本発明の有機EL素子のパターン形成方法を行う上で好適に用いられるパターン形成装置1について図7を参照して以下説明する。
図7は、本発明のパターン形成方法を実施可能なパターン形成装置1の概略構成図である。パターン形成装置1は、有機EL素子2上に微小なドットマークを形成して発光パターンを形成する点描画装置である。
ここで、パターン形成装置1は、各ドットマークに対して光の照射時間を一定とし、光の強度を変化させることにより所望の発光輝度のドットマークを形成するように構成されている。このように構成されていることにより、従来公知の走査技術を用いることができる。このため、パターン形成装置1を用いた発光パターン形成を容易に行うことができるとともに、パターン形成装置1の製造コストを低減することができる。
したがって、制御部18は、各相対発光輝度に対する光の照射時間を全て、例えば1msに設定し、各相対発光輝度のドットマークを形成する上で必要な光の強度を算出する。制御部18は、各相対発光輝度に対応する光の強度から、LD光源11から出射される光の照射パワーP[mW]及び当該照射パワーPの光を出射させるために印加すべき電流(LD電流)I[mA]を算出する(図8参照)。なお、図8に示す例では、相対発光輝度1のドットマークを形成するために必要なLD電流Iが0であるものとしているが、LD光源11の閾値未満であれば0でなくとも良い。
また、上記したパターン形成装置1では、光の照射時間を一定とし、光の強度を変化させて所望の相対発光輝度のドットマークを形成するものとしたが、光の強度を一定として照射時間を変化させるものとしても良い。この場合には、光の強度を広範囲で検知する必要がなく、光検知器15やその出力をIV変換し増幅する不図示のアンプに、広いダイナミックレンジ及び良好なS/N比を有する部品を用いる必要がないためパターン形成装置1のコストを低減することができる。
更に、上記したパターン形成装置1では、光の照射時間を一定とし、光の強度を変化させて所望の相対発光輝度のドットマークを形成するものとしたが、光の強度と照射時間をともに変化させるようにしても良い。
また、本発明の有機EL素子のパターン形成方法としては、上記点描画によるパターン形成に限られるものではなく、パターン形成用マスクを用いたパターン形成であっても良い。
すなわち、上記したようにマスクを用いる方法では、光の照射時間が所定値に設定されるため、各相対発光輝度のパターンを得るために必要な光の強度は、図5に示すグラフから決定される。各相対発光輝度のパターンを得るために必要なマスクの光透過率Tは、当該相対発光輝度のパターンを得るために必要な有機EL素子に照射する光の強度をD、マスクに照射される光の強度をDmskとすると、T=D/Dmskで表される。したがって、マスクに照射される光の強度Dmskは、少なくとも、各相対発光輝度を得るために必要な光の強度D000~D255のいずれよりも大きい値であるか、又は、各相対発光輝度D000~D255の中で最も大きい値と同じ値である必要がある。
なお、マスクの作製を容易とする観点から、相対発光輝度1のパターンを得るために必要なマスクの光透過率は0%であることが好ましい。
次に、上記したパターン形成方法における光照射の強度と照射時間について、例を挙げて説明する。
例えば、波長365nmの光源を用いた場合、図4より、相対発光輝度0.1の1ドットマーク照射時間が1msとなる光の強度は4.8kW/cm2である。
よって、波長λに対して照射時間1msとなる光の強度Dの関係は、D[W/cm2]=550λ[nm]-1.96×105となる。したがって、点描画によるパターン形成の場合、光の強度を550λ[nm]-1.96×105以上に設定すれば、非常に高速でパターン形成が可能となる。なお、図4は、基板と第1電極との積層体の光の透過率が70%である有機EL素子に対して光照射を行った場合の結果を示すものであるから、発光層に照射される光の強度としては385λ[nm]-1.37×105以上に設定すれば良い。
上記した点描画のパターン形成の場合と同様に、波長λに対して照射時間1hとなる光の強度Dの関係を算出すると、D[W/cm2]=0.070λ[nm]-25となる。したがって、マスクを用いるパターン形成の場合、光の強度を0.070λ[nm]-25以上に設定すれば、紫外線領域以外の波長によるパターン形成においても、生産性を確保することが可能となる。なお、発光層に照射される光の強度としては0.049λ[nm]-17.5以上に設定すれば良い。
本発明の有機EL素子に用いることのできる基板としては、ガラス、プラスチック等、特に限定はなく、また透明であっても不透明であっても良い。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましくは、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
基板の厚さとしては、特に制限されるものではなく、いずれの厚さであっても良い。
第1電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。
本発明においては、第1電極が透明電極であることが好ましく、更には透明金属電極であることが好ましい。なお、第1電極の透明とは、波長550nmでの光透過率が50%以上であることをいう。
更に、第1電極の膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(1)発光層
有機機能層には少なくとも発光層が含まれる。
本発明に用いられる発光層には、発光材料としてリン光発光性化合物が含有されている。なお、発光層には、複数種類のリン光発光性化合物が含有されていても良い。また、発光材料としては、蛍光材料を用いても良いし、リン光発光性化合物と蛍光材料とを併用しても良い。
なお、発光層の層厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む層厚である。
Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。
リン光発光性化合物(リン光発光性金属錯体ともいう)としては、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorg.Chem.第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry 第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層と電子注入層とがある。
正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層(図示略)も電子輸送層に含まれる。電子輸送層は単層構造又は複数層の積層構造として設けることができる。
阻止層は、有機機能層として、上記各機能層の他に、更に設けられていても良い。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
第2電極は、有機機能層に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。
取り出し電極は、第1電極と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
補助電極は、第1電極の抵抗を下げる目的で設けるものであって、第1電極の電極層に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光の取り出しの影響のない範囲でパターン形成される。
封止材は、基板上において、有機EL素子本体部(有機機能層や各種電極及び配線)を覆うものであって、板状(フィルム状)の封止部材が接着剤によって基板上に固定されるものであっても良いし、封止膜であっても良い。いずれの構成においても封止材は、第1電極や第2電極、取り出し電極等の一部を露出させた状態で、有機EL素子を封止する。
封止膜としては、無機材料や有機材料からなる膜で構成することができる。ただし、封止膜は、有機機能層の劣化をもたらす、水分や酸素等の物質の浸入を抑制する機能を有する材料で構成する。このような性質を有する材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が挙げられる。更に、封止膜の脆弱性を改良するために、封止膜の構造を、これらの無機材料からなる膜と、有機材料からなる膜とを積層した多層構造としても良い。
有機EL素子は、封止材の上に保護膜又は保護板を更に備えていても良い。
保護膜又は保護板は、基板との間に有機EL素子本体部(有機機能層、各種電極及び配線)及び封止材を挟んで、有機EL素子本体部を機械的に保護するものである。特に、封止材として封止膜が用いられている場合には、有機EL素子本体部に対する機械的な保護が十分ではないため、保護膜又は保護板が設けられていることが好ましい。
2 有機EL素子
11 半導体レーザー光源(LD光源)
12 コリメーターレンズ
13 集光レンズ
14 ビームスプリッタ
15 光検知器
16 反射ミラー
17 調整部
18 制御部
Claims (7)
- 一対の電極間に有機機能層を備えた有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する有機エレクトロルミネッセンス素子のパターン形成方法であって、
光を照射する際に、光照射による前記有機機能層の機能の変化についての相反則不軌特性に基づき光の強度及び照射時間の少なくともいずれか一方を変動因子として制御して前記発光パターンを形成することを特徴とする有機エレクトロルミネッセンス素子のパターン形成方法。 - 前記光照射による前記有機機能層の機能の変化量と光の強度及び照射時間との相互間の関係についてあらかじめ測定して得た前記相反則不軌特性に基づき、光の強度及び照射時間の少なくともいずれか一方を制御して前記発光パターンを形成することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
- 前記光照射による前記有機機能層の機能の変化が、前記有機エレクトロルミネッセンス素子の発光輝度の変化に対応していることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
- 前記光の照射時間を一定とし、当該光の強度を変化させて前記発光パターンを形成することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
- 前記光の強度を一定とし、当該光の照射時間を変化させて前記発光パターンを形成することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
- 前記光照射により点描画して前記発光パターンを形成することを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
- パターン形成用マスクを介した前記光照射により前記光の強度を調整して前記発光パターンを形成することを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンス素子のパターン形成方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/786,995 US9570685B2 (en) | 2013-04-26 | 2014-04-16 | Method for forming pattern of organic electroluminescent element |
JP2015513704A JP6358250B2 (ja) | 2013-04-26 | 2014-04-16 | 有機エレクトロルミネッセンス素子のパターン形成方法 |
CN201480022806.9A CN105144845B (zh) | 2013-04-26 | 2014-04-16 | 有机电致发光元件的图案形成方法 |
KR1020157030340A KR20150133271A (ko) | 2013-04-26 | 2014-04-16 | 유기 일렉트로루미네센스 소자의 패턴 형성 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013093265 | 2013-04-26 | ||
JP2013-093265 | 2013-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175135A1 true WO2014175135A1 (ja) | 2014-10-30 |
Family
ID=51791714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060805 WO2014175135A1 (ja) | 2013-04-26 | 2014-04-16 | 有機エレクトロルミネッセンス素子のパターン形成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9570685B2 (ja) |
JP (1) | JP6358250B2 (ja) |
KR (1) | KR20150133271A (ja) |
CN (1) | CN105144845B (ja) |
WO (1) | WO2014175135A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014181770A1 (ja) * | 2013-05-08 | 2017-02-23 | コニカミノルタ株式会社 | 発光パターンを有する有機エレクトロルミネッセンス素子の製造方法 |
WO2017158943A1 (ja) * | 2016-03-18 | 2017-09-21 | コニカミノルタ株式会社 | パターニング装置及び有機エレクトロルミネッセンス素子の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242911B (zh) * | 2021-11-18 | 2023-11-03 | 昆山国显光电有限公司 | 一种显示面板及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306669A (ja) * | 1996-05-15 | 1997-11-28 | Kemipuro Kasei Kk | 有機エレクトロルミネッセンス素子とその製造方法 |
JP2007012581A (ja) * | 2005-05-31 | 2007-01-18 | Kyocera Corp | 有機発光装置の製造方法 |
JP2008135306A (ja) * | 2006-11-29 | 2008-06-12 | Yamagata Promotional Organization For Industrial Technology | 有機エレクトロルミネッセンス素子のパターン化方法 |
JP2009535779A (ja) * | 2006-05-04 | 2009-10-01 | エルジー・ケム・リミテッド | 発光パターンを有する有機発光素子、その製造方法および装置 |
WO2012086349A1 (ja) * | 2010-12-22 | 2012-06-28 | 富士フイルム株式会社 | 有機電界発光素子及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4403599B2 (ja) * | 1999-04-19 | 2010-01-27 | ソニー株式会社 | 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法 |
JP4337348B2 (ja) * | 2003-01-15 | 2009-09-30 | セイコーエプソン株式会社 | 液滴吐出装置の描画精度検査装置、液滴吐出装置およびワーク、並びに電気光学装置の製造方法 |
WO2011001599A1 (ja) * | 2009-07-02 | 2011-01-06 | シャープ株式会社 | 有機el素子、有機el素子の製造方法、および有機el照明装置 |
US9093648B2 (en) * | 2009-07-02 | 2015-07-28 | Sharp Kabushiki Kaisha | Organic EL element, method for manufacturing the same, and organic EL display device |
SG186893A1 (en) * | 2010-07-02 | 2013-02-28 | 3M Innovative Properties Co | Barrier assembly |
KR101872348B1 (ko) * | 2011-06-22 | 2018-06-29 | 삼성디스플레이 주식회사 | 백라이트용 도광판 및 그 제조 방법 |
-
2014
- 2014-04-16 CN CN201480022806.9A patent/CN105144845B/zh not_active Expired - Fee Related
- 2014-04-16 US US14/786,995 patent/US9570685B2/en active Active
- 2014-04-16 JP JP2015513704A patent/JP6358250B2/ja not_active Expired - Fee Related
- 2014-04-16 KR KR1020157030340A patent/KR20150133271A/ko not_active Application Discontinuation
- 2014-04-16 WO PCT/JP2014/060805 patent/WO2014175135A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306669A (ja) * | 1996-05-15 | 1997-11-28 | Kemipuro Kasei Kk | 有機エレクトロルミネッセンス素子とその製造方法 |
JP2007012581A (ja) * | 2005-05-31 | 2007-01-18 | Kyocera Corp | 有機発光装置の製造方法 |
JP2009535779A (ja) * | 2006-05-04 | 2009-10-01 | エルジー・ケム・リミテッド | 発光パターンを有する有機発光素子、その製造方法および装置 |
JP2008135306A (ja) * | 2006-11-29 | 2008-06-12 | Yamagata Promotional Organization For Industrial Technology | 有機エレクトロルミネッセンス素子のパターン化方法 |
WO2012086349A1 (ja) * | 2010-12-22 | 2012-06-28 | 富士フイルム株式会社 | 有機電界発光素子及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014181770A1 (ja) * | 2013-05-08 | 2017-02-23 | コニカミノルタ株式会社 | 発光パターンを有する有機エレクトロルミネッセンス素子の製造方法 |
WO2017158943A1 (ja) * | 2016-03-18 | 2017-09-21 | コニカミノルタ株式会社 | パターニング装置及び有機エレクトロルミネッセンス素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014175135A1 (ja) | 2017-02-23 |
CN105144845B (zh) | 2017-08-29 |
US20160087211A1 (en) | 2016-03-24 |
KR20150133271A (ko) | 2015-11-27 |
JP6358250B2 (ja) | 2018-07-18 |
US9570685B2 (en) | 2017-02-14 |
CN105144845A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11507649B2 (en) | Optical fingerprint authentication device | |
US9772095B2 (en) | Organic electroluminescence module, smart device, and lighting device | |
US9574757B2 (en) | Organic electroluminescence module, smart device, and illumination device | |
US20170123541A1 (en) | Organic electroluminescent module, smart device, and illumination apparatus | |
US20150236304A1 (en) | Method for manufacturing top emission organic electroluminescence element | |
JP6245102B2 (ja) | 有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法 | |
JP6358250B2 (ja) | 有機エレクトロルミネッセンス素子のパターン形成方法 | |
WO2017056682A1 (ja) | 有機エレクトロルミネッセンスパネル | |
WO2017056684A1 (ja) | 有機エレクトロルミネッセンスパネル及びその製造方法 | |
JP5791129B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置 | |
WO2014185228A1 (ja) | 有機エレクトロルミネッセンス素子のパターン形成装置 | |
US9431611B2 (en) | Production method for organic electroluminescent element | |
WO2015151855A1 (ja) | 有機エレクトロルミネッセンスモジュール及び情報機器 | |
JP2009289716A (ja) | 有機エレクトロルミネセンス素子及びその製造方法 | |
JP6665856B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
WO2018123887A1 (ja) | パッシブマトリックス型有機エレクトロルミネッセンスディスプレイ及びタッチ検出方法 | |
JPWO2018198529A1 (ja) | 有機エレクトロルミネッセンス素子、光センサおよび生体センサ | |
WO2016072246A1 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2016098397A1 (ja) | 電気接続部材、有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法 | |
JP2014224936A (ja) | 露光装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480022806.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14787499 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157030340 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015513704 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14786995 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14787499 Country of ref document: EP Kind code of ref document: A1 |