Nothing Special   »   [go: up one dir, main page]

WO2014171447A1 - ステント及びその製造方法 - Google Patents

ステント及びその製造方法 Download PDF

Info

Publication number
WO2014171447A1
WO2014171447A1 PCT/JP2014/060702 JP2014060702W WO2014171447A1 WO 2014171447 A1 WO2014171447 A1 WO 2014171447A1 JP 2014060702 W JP2014060702 W JP 2014060702W WO 2014171447 A1 WO2014171447 A1 WO 2014171447A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
base
heat treatment
diameter
substrate
Prior art date
Application number
PCT/JP2014/060702
Other languages
English (en)
French (fr)
Inventor
清 山内
行宏 植垣
秀英 豊川
Original Assignee
株式会社パイオラックスメディカルデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パイオラックスメディカルデバイス filed Critical 株式会社パイオラックスメディカルデバイス
Priority to JP2015512483A priority Critical patent/JP6023878B2/ja
Priority to US14/785,304 priority patent/US20160067069A1/en
Priority to EP14785097.8A priority patent/EP2987470A4/en
Publication of WO2014171447A1 publication Critical patent/WO2014171447A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof

Definitions

  • the present invention relates to a stent placed in a tubular organ such as a bile duct, ureter, trachea, blood vessel, or other body tissue, and a manufacturing method thereof.
  • stents have been placed in stenosis and occlusions of tubular organs such as the bile duct, ureter, trachea, and blood vessels to expand the part to facilitate the flow of bile and blood, or an aneurysm has occurred.
  • a treatment using a stent has been performed, such as placing a stent in a place where it has been prevented to prevent its rupture.
  • the stent When placing the stent, for example, the stent is reduced in diameter, accommodated in a tube such as a sheath or catheter, and transported to a target position of a body tissue such as a bile duct, and then released from the tube and self-expanded. Or the balloon arrange
  • positioned inside the stent is inflated and diameter-expanded, and is detained in a predetermined location.
  • a stent made of a Ni-Ti alloy is manufactured, for example, as follows. That is, a metal tube made of a Ni—Ti alloy is straightened by heat treatment at a predetermined temperature, and then processed with laser light to form a plurality of mesh openings. Thereafter, a stent having a predetermined diameter is manufactured by performing the stent expansion process a plurality of times until reaching a predetermined outer diameter in an atmosphere at a temperature higher than the heat treatment temperature in the straightening step, for example, 400 to 500 ° C.
  • an insertion step of inserting a cored bar into a tube-shaped stent basic body and, if necessary, the linearity of the stent substrate are maintained.
  • a cutting step of forming a stent by cutting the slot forming portion with laser light while suppressing the thermal influence of the laser light around the slot forming portion, and removing the metal core from the stent
  • a method for producing a highly elastic stent which includes a removing step for expanding the stent from which the core metal has been removed, and an expansion treatment step for expanding the stent to a predetermined diameter while performing a heat treatment at 350 ° C. or lower.
  • the stent manufactured by the above manufacturing method has the property that the load increases with displacement without showing a clear yield in the load-displacement curve by the compression test and the bending test, the Af point is below room temperature, and the stent is at room temperature. Since it is super elastic below, problems such as breakage are unlikely to occur.
  • an object of the present invention is to provide a stent and a method for manufacturing the same that have sufficient strength, can be easily reduced in diameter, can be easily accommodated in a tube, and can be smoothly expanded when released from the tube. Is to provide.
  • the stent of the present invention is a self-expanding stent formed of a Ni-Ti alloy or a Co-Cr alloy and having a mesh-like opening, and has an Af point of 22 to 26 ° C., having a yield point on the stress-displacement curve, and having an average cross-sectional area of 0.2 to 50 ⁇ m 2 by the area fraction method of crystal grains in the cross section of the stent .
  • a metal core is inserted into a cylindrical stent substrate made of a Ni—Ti alloy or a Co—Cr alloy, and a mesh opening is formed by laser light.
  • the core metal is removed from the stent substrate, the stent substrate is expanded to a predetermined diameter in an atmosphere of 350 ° C. or lower, and then subjected to a heat treatment at 400 to 600 ° C. for 5 to 60 minutes, so that the Af point is 22 to 26 ° C. It is characterized by becoming.
  • the opening formation step using the laser beam is performed by spraying water onto the stent substrate to form a water column, and while reflecting the laser beam in the water column, Irradiation is preferred to form a mesh-like opening in the stent substrate.
  • the heat treatment step after the expansion treatment of the stent substrate is preferably performed at 450 to 550 ° C. for 10 to 40 minutes.
  • the heat treatment step is preferably performed only once after the expansion treatment of the stent substrate.
  • the Af point since the Af point has a yield point on the stress-displacement curve at 22 to 26 ° C., it does not become superelastic at room temperature, and when the diameter of the stent is reduced, It becomes easy to maintain a reduced diameter state, and can be accommodated relatively easily in a tube such as a catheter or a sheath.
  • the average cross-sectional area of the crystal grain in the cross section of the stent is 0.2 to 50 ⁇ m 2 , the strength of the stent can be increased, and as a result, the stent is housed in the tube. However, it can be made difficult to sag, and when the stent is released from the tube, the diameter can be smoothly expanded.
  • the temperature when expanding the stent substrate is a relatively low temperature of 350 ° C. or less, and the subsequent heat treatment is 400 to 600 ° C. It can suppress coarsening, recrystallization, etc., has an Af point of 22-26 ° C., has a yield point on the stress-displacement curve, and has an average cross-sectional area of 0.
  • a high-strength stent having a fine crystal grain size of 2 to 50 ⁇ m 2 can be produced.
  • FIG. 1 It is a perspective view which shows one Embodiment of the stent of this invention.
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is a perspective view which shows one Embodiment of the stent of this invention.
  • FIG. 1 is the expanded view of the stent
  • FIG. 1 is the expanded view of the stent in another example.
  • the manufacturing method of the stent of this invention is shown,
  • (a) is explanatory drawing which shows the process of inserting a metal core to a stent base
  • (b) is explanatory drawing which shows a drawing process,
  • (c) is a straightening process.
  • FIG. 1A is an explanatory view showing an expansion process of a stent base
  • FIG. 4C is an explanatory view showing a process of pulling out the expander from the stent substrate after the heat treatment. It is a stress-displacement curve figure of an Example and a comparative example.
  • FIG. 1A is an explanatory view showing an expansion process of a stent base
  • FIG. 4C is an explanatory view showing a process of pulling out the expander from the stent substrate after the heat treatment. It is a stress-displacement curve figure of an Example and a comparative example.
  • FIG. 7A shows an orientation mapping (IPF) image by an electron backscatter diffraction method (Electron Backscatter Diffraction: EBSD method).
  • FIG. 7A shows an example
  • FIG. 7B shows a comparative example. It is explanatory drawing of the area fraction method (Area Fraction method) used for the measurement of the average cross-sectional area of a crystal grain.
  • the stent 10 of this embodiment has a cylindrical shape having a plurality of mesh-shaped openings 11, and is a self-expanding type that expands in the absence of external force.
  • the stent 10 is formed into a cylindrical shape having a mesh opening by processing a metal cylinder with a laser beam.
  • the pattern having the mesh-shaped opening of the stent 10 is as follows. That is, it extends in a zigzag shape along the circumferential direction, and both ends of the zigzag portion 13 are annularly connected to form a circumferential unit 15, and the bent portions of the zigzag portion 13 of each circumferential unit 15 are connected to each other.
  • the plurality of circumferential units 15 are connected in the axial direction via the connecting portion 17, thereby forming a cylindrical shape as a whole.
  • a plurality of frame-like bodies 14 having the openings 11 are connected in the circumferential direction to form a circumferential unit 15. May be configured in a cylindrical shape by connecting them in the axial direction via a plurality of connecting portions 17. Note that the shape and arrangement pattern of the openings 11 of the stent 10 are not limited to those described in FIGS. 2A and 2B, and are not particularly limited as long as the diameter can be reduced and expanded.
  • a cover member made of, for example, polyurethane, silicone, natural rubber, nylon elastomer, polyether block amide, polyethylene, polyvinyl chloride, vinyl acetate, fluorine resin, or the like is disposed on the inside and / or outside of the stent 10. May be.
  • the material of the stent 10 is Ni-Ti, Ni-Ti-Co, Ni-Ti-Cu, Ni-Ti-Fe, Ni-Ti-Nb, Ni-Ti-V, Ni-Ti-Cr, Ni-Ti.
  • Ni—Ti alloys such as —Mn, or Co—Cr alloys such as Co—Cr, Co—Cr—Mo, and Co—Cr—Ni are used.
  • the stent 10 has an Af point of 22 to 26 ° C.
  • the “Af point” means a temperature at which austenite transformation is completed in a shape memory alloy such as a Ni—Ti alloy or a C—Cr alloy, and when the temperature is higher than this temperature, the shape memorized by the shape memory process is obtained. It comes to return.
  • the stent 10 has a high elastic force at a temperature at which the stent 10 is generally used, for example, at a temperature in an operating room or the like, and it is difficult to reduce the diameter. It becomes difficult to accommodate the stent 10 in a tube such as the like.
  • the Af point exceeds 26 ° C., when the stent 10 is placed in a tubular organ or body tissue, it becomes difficult to return to the expanded shape stored in the stent 10 and the usability is lowered.
  • the stent 10 has a yield point on its stress-displacement curve. That is, using a stent expansion force measuring device (Radial Expansion Force Equipment “RX550”, manufactured by Machine Solutions, Inc.), the entire diameter of the stent is evenly 1 mm / min in the diameter reduction direction and the outer diameter of the stent is 2.5 mm. Stress (stent expansion force) -displacement (stent outer diameter displacement) when the diameter is expanded to 1 mm / min in the diameter expansion direction until the stent reaches the initial outer diameter. On the curve (see FIG. 6), the yield point (portion indicated by R in the figure) can be clearly grasped.
  • a stent expansion force measuring device Radial Expansion Force Equipment “RX550”, manufactured by Machine Solutions, Inc.
  • the stent 10 the crystal grains of the area fraction Method for stent section (Area Fraction Method) average cross-sectional area of 0.2 ⁇ 50 [mu] m 2 by, preferably there is a 0.5 ⁇ 30 ⁇ m 2.
  • the average cross-sectional area of the crystal grains is less than 0.2 ⁇ m 2 , the strength of the stent is increased, but the flexibility is insufficient. Therefore, when the stent 10 is reduced in diameter and accommodated in the tube, it is expanded when released from the tube. On the other hand, when the average cross-sectional area of the crystal grains exceeds 50 ⁇ m 2 , the strength of the stent cannot be sufficiently increased, and when the stent 10 is housed in the tube in a reduced diameter state, It becomes easy.
  • the average cross-sectional area of the crystal grains has a boundary with an azimuth angle difference of 5 ° or more in a known IPF map using a backscattered electron diffraction image method (EBSD method) using a scanning electron microscope (SEM).
  • EBSD method backscattered electron diffraction image method
  • SEM scanning electron microscope
  • the average cross-sectional area of the crystal grains is measured by an area fraction method (Area Fraction method). That is, when the area of the entire measurement structure in the IPF map is 100 and the area of the crystal grains in the map is S1, S2, S3, S4,.
  • Average cross-sectional area of crystal grains (S1 ⁇ S1 / 100) + (S2 ⁇ S2 / 100) + (S3 ⁇ S3 / 100) + (S4 ⁇ S4 / 100) +
  • the average cross-sectional area of the crystal grains Is 8 ⁇ 0.08 + 25 ⁇ 0.25 + 59 ⁇ 0.59 + 8 ⁇ 0.08, which is 42.34.
  • the IPF map by EBSD method and the average cross-sectional area of crystal grains are, for example, SEM (“JSM-7800F”, manufactured by JEOL Ltd.), EBSD device (electron diffraction crystal orientation analyzer “HIKARI”, TSL Solutions). It is possible to measure by using a dedicated software (OIM Analysis 6.2).
  • a metal core is inserted into a cylindrical stent base made of a Ni—Ti alloy or a Co—Cr alloy, a mesh opening is formed by laser light, and then the metal core is removed from the stent base.
  • heat treatment is performed at 400 to 600 ° C. for 5 to 60 minutes so that the Af point becomes 22 to 26 ° C. .
  • a cored bar 22 is inserted into a cylindrical stent base 20 made of the Ni—Ti alloy or Co—Cr alloy formed of the above-described material.
  • the stent base 20 with the cored bar 22 inserted is inserted into a hole having a smaller diameter than the stent base 20 of the die 24, and a drawing process or an extrusion process is performed at a predetermined speed.
  • the stent base 20 is reduced in diameter to a predetermined diameter.
  • the processing rate of the stent substrate 20 is preferably 10% or more, more preferably 35% or more, and further preferably 45% or more. If the processing rate of the stent substrate 20 is less than 10%, the work-hardened tissue is likely to disappear due to the shape memory treatment or heat treatment after the diameter reduction processing, so that the strength of the stent is lowered.
  • the stent base 20 is placed in the heat treatment furnace 26, held at a predetermined temperature for a predetermined time, and the stent base 20 having a reduced diameter is straightened.
  • the treatment temperature is preferably 400 to 600 ° C., more preferably 450 to 550 ° C.
  • the holding time is preferably 5 to 60 minutes, more preferably 20 to 40 minutes.
  • this straightening process is performed as needed, and is not an essential step of the stent manufacturing method according to the present invention.
  • a mesh-shaped opening 11 is formed in the stent base 20.
  • the opening 11 is formed by cutting a predetermined portion of the stent base 20 in a predetermined shape by a so-called water laser. Specifically, high-pressure pressurized water is jetted from the nozzle 31 of the laser cutting device 30 toward the stent substrate 20 to form the water column 32, and the laser beam 33 emitted from the nozzle 31 is generated in the water column 32. By irradiating the stent substrate 20 with reflection, an opening 11 having a predetermined shape is formed.
  • a water laser cutting device for example, “AQL1900”, manufactured by Kasuya Kogyo Co., Ltd. can be used.
  • the opening 11 can be formed with the laser beam 33 while cooling in the water column 32 at a predetermined location of the stent substrate 20, the thermal influence due to the reflection or scattering of the laser beam 33 with respect to the stent substrate 20 is affected. It is difficult to receive, and the strength of the stent substrate 20 can be maintained by suppressing the coarsening of crystal grains and recrystallization. In addition, the opening 11 can be reliably formed at a predetermined position of the stent base 20 even when the cored bar 22 is inserted.
  • the stent substrate 20 having the mesh-shaped opening 11 is cut into a predetermined length by the laser beam 33 or other cutting means.
  • the stent base body 20 with the cored bar 22 inserted therein is immersed in a treatment tank 35 in which a treatment liquid 36 such as nitric acid is stored.
  • a treatment liquid 36 such as nitric acid
  • the distal end portion of the expander 37 whose distal end portion has a reduced diameter and whose base portion has an enlarged diameter is inserted from one axial end of the stent substrate 20, thereby expanding the stent substrate 20. It is made to attach to the outer periphery of the expansion tool 37.
  • the stent substrate 20 is placed together with the expansion tool 37 in the heat treatment furnace 38, and held in an atmosphere of 350 ° C. or lower for 1 to 60 minutes. Is subjected to shape memory processing for storing the expanded diameter state.
  • the temperature at this time is more preferably 300 ° C. or lower. Further, the holding time during the shape memory process is more preferably 1 to 70 minutes. If the temperature is 350 ° C. or higher, the crystal grain coarsening or recrystallization proceeds in the stent structure, and the strength decreases.
  • the stent base 20 is placed together with the expansion tool 37 in the same heat treatment furnace 38 or another heat treatment furnace, and is held at 400 to 600 ° C. for 5 to 60 minutes, so that the Af point becomes 22 to 26 ° C.
  • a heat treatment is performed on the stent substrate 20 (see FIG. 5B).
  • the temperature during the above heat treatment is preferably 450 to 550 ° C., and the holding time is preferably 10 to 40 minutes.
  • the temperature during the heat treatment is less than 400 ° C., it becomes difficult to set the Af point of the stent to 22 to 26 ° C., and if the temperature exceeds 600 ° C., the stent tissue becomes coarse, recrystallized, etc. Progresses and the strength decreases.
  • the holding time at the time of heat treatment is less than 5 minutes, it becomes difficult to uniformly apply heat treatment to the entire stent, and if it exceeds 60 minutes, the crystal grain coarsening or recrystallization proceeds in the stent tissue and the strength decreases. .
  • the heat treatment step is performed only once after the stent base is expanded. According to this, since the thermal history of the stent substrate 20 is reduced, it is easy to leave the work-hardened tissue of the stent, and it is possible to effectively suppress the coarsening and recrystallization of the stent tissue, resulting in higher strength. Can be obtained.
  • the stent base body 20 is cooled in the heat treatment furnace 38, taken out of the heat treatment furnace and air-cooled or rapidly cooled, or immediately after the heat treatment, by pulling out the expander 37 (see FIG. 5 (c)), the stent 10 shown in FIG. 1 can be obtained.
  • the temperature at which the stent substrate is expanded is a relatively low temperature of 350 ° C. or lower and the subsequent heat treatment is 400 to 600 ° C. Crystals and the like can be suppressed, the Af point is 22 to 26 ° C., the yield point is on the stress-displacement curve, and the average cross-sectional area of the crystal grain in the cross section of the stent is 0.2 to 50 ⁇ m 2.
  • the crystal grains can be made finer, and the high-strength stent 10 can be manufactured.
  • the average cross-sectional area of the crystal grains in the cross section of the stent can be reduced by lowering the above heat treatment temperature, shortening the holding time, or reducing the number of heat treatments, while increasing the above heat treatment temperature. Or by increasing the holding time or increasing the number of heat treatments.
  • the stent 10 has an Af point of 22 to 26 ° C. and a yield point on the stress-displacement curve. Therefore, the stent 10 does not become superelastic at room temperature, and when the stent 10 is reduced in diameter, It becomes easy to maintain the reduced diameter state.
  • a tube such as a catheter or sheath in order to be placed in a tubular organ such as a bile duct, ureter, trachea, blood vessel, or other body tissue, Since it can be accommodated while maintaining its reduced diameter state, it can be accommodated easily, and the accommodation workability can be improved.
  • the average cross-sectional area of the crystal grains in the cross section of the stent 10 by the area fraction method is 0.2 to 50 ⁇ m 2 , the crystal grains are refined and the strength of the stent 10 is increased. It can be made difficult to sag even in a state of being accommodated in the tube, and when the stent 10 is released from the tube, the diameter can be smoothly expanded.
  • a Ni-Ti alloy ingot with 56% Ni, 43.8% Ti, and the remainder unavoidable impurities is processed into a columnar shape, and this is machined to form a cylindrical stent base with an outer diameter of 5 mm and a length of 1000 mm 20 (see FIG. 3 (a)), a core metal 22 is inserted into the stent base 20, and then a drawing process is performed to obtain a processing rate of 35% and an outer diameter of 3.23 mm.
  • a substrate 20 was formed (see FIG. 3B). Thereafter, a plurality of openings 11 were formed in the stent substrate 20 with the laser cutting device 30 (see FIG. 3D).
  • the stent base 20 is immersed in the treatment layer 35 to dissolve the cored bar 22 (see FIGS. 4A and 4B), and then an expansion tool 37 having an outer diameter of 10 mm is inserted into the stent base 20.
  • the stent base 20 is placed in the heat treatment furnace 38, and shape memory processing is performed at 300 ° C. for 5 minutes (see FIG. 5B).
  • the stent base 20 is heat-treated at 500 ° C. for 35 minutes (see FIG. 5B), and then the expander 37 is pulled out from the stent base 20 to obtain the stent 10 of the embodiment. It produced (refer FIG.5 (c)).
  • the stent of this example has an outer diameter of 10.5 mm, a length of 10 mm, and an Af point of 24 ° C.
  • a cylindrical stent base made of a Ni—Ti alloy ingot is straightened by heat correction at 400 ° C. for 60 minutes, and then a plurality of openings are formed with a YAG laser device.
  • Other conditions are the same as in the above embodiment.
  • the stent of this comparative example has an outer diameter of 10.1 mm, a length of 10 mm, and an Af point of 24 ° C.
  • IPF map creation by EBSD method and measurement of average cross-sectional area of crystal grains For each of the stents of the above Examples and Comparative Examples, dedicated software (OIM) is used with an EBSD device (electron diffraction crystal orientation analyzer “HIKARI”, manufactured by TSL Solutions) attached to an SEM (“JSM-7800F”, manufactured by JEOL Ltd.). An analysis 6.2) was used to create an IPF map by the EBSD method, and based on this IPF map, the average cross-sectional area of the crystal grains was measured by the area fraction method.
  • OIM dedicated software
  • EBSD device electron diffraction crystal orientation analyzer “HIKARI”, manufactured by TSL Solutions
  • SEM JSM-7800F
  • An analysis 6.2 was used to create an IPF map by the EBSD method, and based on this IPF map, the average cross-sectional area of the crystal grains was measured by the area fraction method.
  • FIG. 7A shows an IPF map of the stent of the example
  • FIG. 7B shows an IPF map of the stent of the comparative example.
  • the scale in the figure is 15 ⁇ m.
  • the comparative example stent has extremely large crystal grains, whereas the stent of the example shows that the crystal grains are made finer.
  • the average cross-sectional area of the crystal grains of the stent of the example is 2.64332 ⁇ m 2 (standard deviation 0.647377)
  • the average cross-sectional area of the crystal grains of the stent of the comparative example is 141.769 ⁇ m 2 (standard deviation). 54.4368).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Thermal Sciences (AREA)
  • Surgery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 十分な強度を有し、縮径しやすくチューブ内に容易に収容でき、チューブ内からスムーズに拡径できるステント及びその製造方法を提供する。このステント(10)は、Ni-Ti系合金又はCo-Cr系合金からなりメッシュ状の開口を有する筒状に形成された自己拡張型で、Af点が22~26℃とされ、応力-変位曲線上において降伏点を有していると共に、ステントの断面における結晶粒のエリアフラクション法(Area Fraction法)による平均断面積が0.2~50μm2とされている。このステントは、筒状のステント基体(20)内に芯金(22)を挿入し、レーザー光でメッシュ状の開口を形成した後、ステント基体から前記芯金を除去し、ステント基体を350℃以下の雰囲気下で所定径まで拡張した後、400~600℃で5~60分の熱処理を施すことで、Af点を22~26℃とすることにより製造できる。

Description

ステント及びその製造方法
 本発明は、例えば、胆管、尿管、気管、血管等の管状器官や、その他の体内組織に留置されるステント及びその製造方法に関する。
 以前から、胆管、尿管、気管、血管等の管状器官の狭窄部や閉塞部に、ステントを留置して当該部分を拡張して胆汁や血液等を流れやすくしたり、或いは、動脈瘤が生じた箇所にステントを留置して、その破裂を防止したりする等の、ステントを用いた治療が行われている。
 ステントの留置に際しては、例えば、ステントを縮径させて、シースやカテーテル等のチューブ内に収容し、胆管等の体内組織の目的位置まで搬送した後、前記チューブから開放して自己拡張させたり、或いは、ステントの内側に配置したバルーンを膨らませて拡径させたりすることで、所定箇所に留置されるようになっている。
 ところで、Ni-Ti系合金からなるステントは、例えば、次のようにして製造される。すなわち、Ni-Ti系合金からなる金属チューブを所定温度で熱処理して真直化した後、レーザー光で加工してメッシュ状の開口を複数形成する。その後、前記真直化工程の熱処理温度よりも高い、例えば、400~500℃の雰囲気下において、ステントの拡張処理を所定外径となるまで複数回行うことで、所定径のステントが製造される。
 しかし、上記製造方法では、チューブの真直化のための熱処理や、複数回の拡張処理等が、高温雰囲気下において比較的長時間に亘ってなされるので、結晶粒の粗大化や再結晶の進行等により、ステントの強度が低下して、破損等の問題が生じることがあった。
 上記のような破損等の問題を解消すべく、例えば、下記特許文献1には、チューブ形状のステント基本体に芯金を挿入する挿入工程と、必要に応じて該ステント基体の直線性を保持した後に、スロット形成部周囲へのレーザー光による熱影響を抑制しつつレーザー光によって該スロット形成部を切断することでスロットを形成してステントを作成する切断工程と、該ステントから芯金を除去する除去工程と、芯金を除去したステントを、350℃以下の熱処理を行いつつ所定の直径まで拡張する拡張処理工程を含む、高弾性ステントの製造方法が記載されている。
 上記製造方法により製造されたステントは、圧縮試験及び曲げ試験による荷重-変位曲線において明確な降伏を示さずに、変位と共に荷重が増加する性質を有し、Af点が常温以下となり、ステントが常温下において超弾性となるので、破損等の問題は生じにくい。
国際公開第2012/008579号パンフレット
 しかしながら、上記特許文献1記載の製造方法で製造されたステントは、常温下で超弾性となって塑性変形しないため、カテーテル等のチューブに収容すべく縮径させるときに、縮径させにくく収容しにくいという不都合があった。また、チューブ内に縮径状態で収容されたステントは、自己の超弾性力によって拡張しようとするが、チューブ内周からの反発力によって逆に潰されてへたりやすくなるので、チューブからステントを解放するときに、スムーズに拡径しない場合があった。
 したがって、本発明の目的は、十分な強度を有すると共に、縮径しやすくチューブ内に容易に収容でき、かつ、チューブ内から解放するときにスムーズに拡径することができる、ステント及びその製造方法を提供することにある。
 上記目的を達成するため、本発明のステントは、Ni-Ti系合金又はCo-Cr系合金からなりメッシュ状の開口を有する筒状に形成された自己拡張型のステントにおいて、Af点が22~26℃とされ、応力-変位曲線上において降伏点を有していると共に、ステントの断面における結晶粒のエリアフラクション法による平均断面積が0.2~50μmとされていることを特徴とする。
 一方、本発明のステントの製造方法は、Ni-Ti系合金又はCo-Cr系合金からなる筒状のステント基体内に芯金を挿入し、レーザー光でメッシュ状の開口を形成した後、該ステント基体から前記芯金を除去し、前記ステント基体を350℃以下の雰囲気下で所定径まで拡張した後、400~600℃で5~60分の熱処理を施して、Af点が22~26℃となるようにすることを特徴とする。
 本発明のステントの製造方法においては、前記レーザー光による開口形成工程は、前記ステント基体に水を噴射して、水柱を形成すると共に、この水柱内でレーザー光を反射させつつ、前記ステント基体に照射して、前記ステント基体にメッシュ状の開口を形成するものであることが好ましい。
 本発明のステントの製造方法においては、前記ステント基体の拡張処理後の熱処理工程は、450~550℃、10~40分でなされることが好ましい。
 本発明のステントの製造方法においては、前記熱処理工程は、前記ステント基体の拡張処理後、1回のみ行われることが好ましい。
 本発明のステントによれば、Af点が22~26℃で応力-変位曲線上で降伏点を有しているので、常温下で超弾性とならず、ステントを縮径させたときに、その縮径状態に維持しやすくなり、カテーテルやシース等のチューブ内に比較的容易に収容することができる。
 また、ステントの断面における結晶粒のエリアフラクション法による平均断面積が0.2~50μmとされているので、ステントの強度を高めることができ、その結果、チューブ内にステントが収容された状態でもへたりにくくすることができ、また、チューブからステントを解放するときに、スムーズに拡径させることができる。
 また、本発明のステントの製造方法によれば、ステント基体を拡張させるときの温度が350℃以下の比較的低温で、かつ、その後の熱処理が400~600℃であるので、組織の結晶粒の粗大化や再結晶等を抑制することができ、Af点が22~26℃で応力-変位曲線上で降伏点を有し、ステントの断面における結晶粒のエリアフラクション法による平均断面積が0.2~50μmである、結晶粒が微細で高強度のステントを製造することができる。
本発明のステントの一実施形態を示す斜視図である。 (a)は同ステントの展開図、(b)は他の例におけるステントの展開図である。 本発明のステントの製造方法を示しており、(a)はステント基体に芯金を挿入する工程を示す説明図、(b)は引き抜き加工工程を示す説明図、(c)は真直化工程を示す説明図、(d)はレーザー光による開口形成工程を示す説明図である。 本発明のステントの製造方法を示しており、(a)は芯金除去工程を示す説明図、(b)はステント基体から芯金を除去した状態の説明図である。 本発明のステントの製造方法を示しており、(a)はステント基体の拡張工程を示す説明図、(b)はステント基体の拡張処理後の形状記憶処理工程、及び、その後熱処理工程を示す説明図、(c)は熱処理後、ステント基体から拡張具を引き抜く工程を示す説明図である。 実施例及び比較例の、応力-変位曲線図である。 電子線後方散乱回折法(Electron Backscatter Diffraction:EBSD法)による方位マッピング(IPF)像を示しており、図7(a)は実施例のもの、図7(b)は比較例のものである。 結晶粒の平均断面積の測定に用いたエリアフラクション法(Area Fraction法)の説明図である。
 以下、図面を参照して、本発明のステントの一実施形態について説明する。
 図1に示すように、この実施形態のステント10は、複数のメッシュ状の開口11を有する円筒状をなしており、外力のない状態では、拡径した状態となる自己拡張型である。
 図2(a)の展開図を併せて説明すると、このステント10は、金属円筒がレーザー光で加工されてメッシュ状の開口を有する筒状に成形されている。この実施形態では、ステント10のメッシュ状の開口を有するパターンが次のようになっている。すなわち、周方向に沿ってジグザグ状に伸び、このジグザグ状部分13の両端が環状に連結されて周方向単位15が形成され、各周方向単位15のジグザグ状部分13の屈曲部どうしが連結部17を介して連結されることで、複数の周方向単位15が連結部17を介して軸方向に連結され、全体として円筒状をなしている。
 ステント10のメッシュ状の開口を有するパターンの他の例として、図2(b)に示すように、開口11を有する複数の枠状体14を周方向に連結して周方向単位15とし、これらを複数の連結部17を介して軸方向に連結して、円筒状に構成したものであってもよい。なお、ステント10の開口11の形状や配置パターンは、上記図2(a),(b)に記載されたものに限らず、縮径及び拡径が可能な形状であれば特に限定されない。
 更に、ステント10の内側及び/又は外側に、例えば、ポリウレタンや、シリコーン、天然ゴム、ナイロンエラストマー、ポリエーテルブロックアミド、ポリエチレン、ポリ塩化ビニル、酢酸ビニル、フッ素系樹脂などからなるカバー部材を配置してもよい。
 前記ステント10の材質は、Ni-Ti,Ni-Ti-Co,Ni-Ti-Cu,Ni-Ti-Fe,Ni-Ti-Nb,Ni-Ti-V,Ni-Ti-Cr,Ni-Ti-Mn等のNi-Ti系合金、又は、Co-Cr,Co-Cr-Mo,Co-Cr-Ni等のCo-Cr系合金が用いられる。
 そして、このステント10は、Af点が22~26℃とされている。この「Af点」とは、Ni-Ti系合金やC-Cr系合金等の形状記憶合金において、オーステナイト変態が終了する温度を意味し、この温度以上になると、形状記憶処理により記憶した形状に復帰するようになっている。なお、前記Af点が22℃未満だと、ステント10が一般的に使用される温度、例えば、手術室等の温度下において、ステント10の弾性力が高くて縮径させにくくなり、シースやカテーテル等のチューブ内にステント10を収容しにくくなる。一方、前記Af点が26℃を超えると、管状器官内や体内組織内にステント10を留置するときに、ステント10が記憶した拡径形状に復帰しにくくなり、使い勝手が低下する。
 また、このステント10は、その応力-変位曲線上において降伏点を有している。すなわち、ステント拡張力測定装置(Radial Expansion Force Equipment「RX550」、Machine Solutions社製)を用いて、ステント全面に亘って均等に、縮径方向に1mm/minで、ステントの外径が2.5mmとなるまで縮径させた後、拡径方向に1mm/minで、ステントが初期の外径となるまで拡径させたときの、応力(ステントの拡張力)-変位(ステントの外径変位)曲線上において(図6参照)、降伏点(図中Rで示す部分)が明確に把握できるようになっている。
 更に、このステント10は、ステントの断面における結晶粒のエリアフラクション法(Area Fraction法)による平均断面積が0.2~50μm、好ましくは0.5~30μmとされている。
 結晶粒の平均断面積が0.2μm未満だと、ステントの強度を高める一方、柔軟性に欠けるため、ステント10を縮径させてチューブ内に収容した後、チューブから開放するときに、拡径しにくくなり、一方、結晶粒の平均断面積が50μmを超えると、ステントの強度を十分に高めることができず、ステント10を縮径させた状態でチューブ内に収容したときに、へたりやすくなる。
 また、結晶粒の平均断面積は、公知の、走査型電子顕微鏡(SEM)を用いた後方散乱電子回折像法(EBSD法)を用いたIPFマップにおいて、方位角度差が5°以上の境界を結晶粒界としたときの、結晶粒の平均断面積をいう。
 この場合、結晶粒の平均断面積は、エリアフラクション法(Area Fraction法)により測定される。すなわち、IPFマップにおける測定組織全体の面積を100とし、同マップ内における結晶粒の面積をS1,S2,S3,S4,・・・としたとき、以下の式で示される。
 結晶粒の平均断面積=(S1×S1/100)+(S2×S2/100)+(S3×S3/100)+(S4×S4/100)+・・・
 例えば、図8に示すように、結晶粒aの面積を8、結晶粒bの面積を25、結晶粒cの面積を59、結晶粒dの面積を8としたとき、結晶粒の平均断面積は、8×0.08+25×0.25+59×0.59+8×0.08で、42.34となる。
 なお、上記のEBSD法によるIPFマップ及び結晶粒の平均断面積は、例えば、SEM(「JSM-7800F」、日本電子社製)に、EBSD装置(電子回折結晶方位解析装置「HIKARI」、TSLソリューションズ社製)を取付け、専用ソフト(OIM Analysis6.2)を用いることで測定することができる。
 次に、本発明に係るステントの製造方法の一実施形態について、図3~5を参照して説明する。
 この製造方法は、Ni-Ti系合金又はCo-Cr系合金からなる筒状のステント基体内に芯金を挿入し、レーザー光でメッシュ状の開口を形成した後、該ステント基体から芯金を除去し、ステント基体を350℃以下の雰囲気下で所定径まで拡張した後、400~600℃で5~60分の熱処理を施して、Af点が22~26℃になるようにするものである。
 まず、図3(a)に示すように、上述した材質により形成されたNi-Ti系合金又はCo-Cr系合金からなる筒状のステント基体20内に、芯金22を挿入する。
 その後、図3(b)に示すように、ダイス24のステント基体20よりも小径の穴に、芯金22が挿入されたステント基体20を挿入し、所定速度で引き抜き加工や押し出し加工を施すことにより、ステント基体20を所定径に縮径させる。
 このとき、ステント基体20の加工率は、10%以上であることが好ましく、35%以上であることがより好ましく、45%以上であることが更に好ましい。ステント基体20の加工率が10%未満だと、縮径加工後の形状記憶処理や熱処理によって、加工硬化した組織が消失しやすいので、ステントの強度が低くなる。
 次いで、図3(c)に示すように、熱処理炉26内にステント基体20を配置して、所定温度で所定時間保持して、縮径させたステント基体20の真直化を図る。前記処理温度は、400~600℃であることが好ましく、450~550℃であることがより好ましく、保持時間は5~60分であることが好ましく、20~40分であることがより好ましい。なお、この真直化処理は必要に応じて行われるものであり、本発明に係るステントの製造方法の必須工程ではない。
 その後、図3(d)に示すように、ステント基体20にメッシュ状の開口11を形成する。この実施形態では、いわゆる水レーザーによって、ステント基体20の所定箇所を所定形状で切除して開口11を形成する。具体的には、レーザー切断装置30のノズル31から、高圧の加圧水をステント基体20に向けて噴射し、水柱32を形成すると共に、同ノズル31から射出されたレーザー光33を前記水柱32内で反射させながらステント基体20に照射することにより、所定形状の開口11を形成する。
 このような水レーザー切断装置としては、例えば、「AQL1900」、澁谷工業社製などを使用することができる。
 上記のように、ステント基体20の所定箇所に、水柱32内で冷却しながらレーザー光33で開口11を形成することができるので、ステント基体20に対するレーザー光33の反射や散乱等による熱影響を受けにくく、組織の結晶粒粗大化や再結晶等を抑制して、ステント基体20の強度維持を図ることができる。また、芯金22が挿入された状態でも、ステント基体20の所定箇所に開口11を確実に形成することができる。
 その後、レーザー光33やその他の切断手段により、メッシュ状の開口11を有するステント基体20を所定長さにカットする。
 上記工程後、図4(a)に示すように、硝酸等の処理液36が貯留された処理槽35に、芯金22が挿入されたステント基体20を浸漬させることで、図4(b)に示すように、芯金22を溶解する。
 次いで、図5(a)に示すように、先端部が縮径し基部が拡径した拡張具37の先端部を、ステント基体20の軸方向一端から挿入することにより、ステント基体20を拡径させて拡張具37の外周に装着させる。
 この状態で、図5(b)に示すように、熱処理炉38内に、拡張具37ごとステント基体20を配置して、350℃以下の雰囲気下で1~60分保持して、ステント基体20に対して拡径状態を記憶するための形状記憶処理を施す。この際の温度は、300℃以下がより好ましい。また、形状記憶処理時の保持時間は1~70分であることがより好ましい。なお、上記温度が350℃以上だと、ステント組織の結晶粒粗大化や再結晶等が進み、強度が低下する。
 更に、同一の熱処理炉38又は別の熱処理炉に、拡張具37ごとステント基体20を配置して、400~600℃で5~60分保持し、Af点が22~26℃となるように、ステント基体20に熱処理を施す(図5(b)参照)。
 上記の熱処理時の温度は、450~550℃であることが好ましく、その保持時間は、10~40分であることが好ましい。この熱処理条件を選択することで、より高強度で品質のよいステントを製造することができる。
 なお、上記の熱処理時の温度が400℃未満だと、ステントのAf点を22~26℃に設定しにくくなり、同温度が600℃を超えると、ステント組織の結晶粒粗大化や再結晶等が進み、強度が低下する。一方、熱処理時の保持時間が5分未満だと、ステント全体に熱処理が均一に施されにくくなり、60分を超えると、ステント組織の結晶粒粗大化や再結晶等が進み、強度が低下する。
 また、前記熱処理工程は、前記ステント基体の拡張処理後、1回のみ行われることが好ましい。これによれば、ステント基体20の熱履歴が少なくなるので、ステントの加工硬化した組織を残存させやすく、また、ステント組織の結晶粒粗大化や再結晶等を効果的に抑制でき、より高い強度のステントを得ることができる。
 その後、ステント基体20を熱処理炉38内で炉冷したり、熱処理炉から取出して空冷や急冷したりした後、或いは、上記熱処理後すぐに、ステント基体20から拡張具37を引き抜くことにより(図5(c)参照)、図1に示すステント10を得ることができる。
 したがって、この製造方法によれば、ステント基体を拡張させるときの温度が350℃以下の比較的低温で、かつ、その後の熱処理が400~600℃であるので、組織の結晶粒の粗大化や再結晶等を抑制することができ、Af点が22~26℃で応力-変位曲線上で降伏点を有し、ステントの断面における結晶粒のArea Fraction法による平均断面積が0.2~50μmであって、結晶粒の微細化を図ることができ、高強度のステント10を製造することができる。
 なお、ステントの断面における結晶粒の平均断面積は、上記の熱処理温度を下げたり、その保持時間を短くしたり、熱処理回数を減らすことにより小さくすることができ、一方、上記の熱処理温度を上げたり、その保持時間を長くしたり、熱処理回数を増やすことにより大きくすることができる。
 次に、上記製造方法によって製造されたステント10の作用効果について説明する。
 すなわち、このステント10は、Af点が22~26℃で応力-変位曲線上で降伏点を有しているので、常温下で超弾性とならず、ステント10を縮径させたときに、その縮径状態を維持しやすくなる。その結果、ステント10を、胆管、尿管、気管、血管等の管状器官や、その他の体内組織に留置すべく、ステント10を縮径させてカテーテルやシース等のチューブ内に収容するときに、その縮径状態を維持しつつ収容できるので、容易に収容することができ、収容作業性を向上できる。また、ステント10の断面における結晶粒のエリアフラクション法(Area Fraction法)による平均断面積が0.2~50μmとされているので、結晶粒が微細化され、ステント10の強度を高めることができ、チューブ内に収容された状態でもへたりにくくすることができ、チューブからステント10を解放するときに、スムーズに拡径させることができる。
 (実施例の作製)
 Niを56%、Tiを43.8%、残りを不可避不純物としたNi-Ti合金鋳塊を柱状に加工し、これを機械加工で外径が5mm、長さが1000mmの筒状のステント基体20を成形し(図3(a)参照)、このステント基体20内に芯金22を挿入した後、引き抜き加工を施して、加工率が35%で、外径が3.23mmとされたステント基体20を形成した(図3(b)参照)。その後、レーザー切断装置30でステント基体20に複数の開口11を形成した(図3(d)参照)。次いで、ステント基体20を処理層35に浸漬して、芯金22を溶解した後(図4(a),(b)参照)、ステント基体20内に外径が10mmの拡張具37を挿入し(図5(a)参照)、熱処理炉38内にステント基体20を配置して、300℃、5分で形状記憶処理を施す(図5(b)参照)。更に熱処理炉38内で、ステント基体20を、500℃、35分で熱処理を施し(図5(b)参照)、その後、ステント基体20から拡張具37を引き抜くことで、実施例のステント10を作製した(図5(c)参照)。この実施例のステントは、外径が10.5mm、長さが10mm、Af点が24℃である。
 (比較例の作製)
 Ni-Ti合金鋳塊からなる筒状のステント基体を、400℃、60分で熱矯正して真直化した後、YAGレーザー装置で複数の開口を形成し、その後、サイズが異なる3つの金型を用いて、(1)420℃、30分で、4mmまで拡径、(2)450℃、30分で、7mmまで拡径、(3)500℃、30分で、10mmまで拡径させ、その後、550℃、60分で形状記憶処理を施して、比較例のステントを作製した。その他の条件は、上記実施例と同様である。この比較例のステントは、外径が10.1mm、長さが10mm、Af点が24℃である。
 (EBSD法によるIPFマップ作成、及び、結晶粒の平均断面積の測定)
 上記実施例及び比較例のステントそれぞれについて、SEM(「JSM-7800F」、日本電子社製)に取付けたEBSD装置(電子回折結晶方位解析装置「HIKARI」、TSLソリューションズ社製)で専用ソフト(OIM Analysis6.2)を用いて、EBSD法によるIPFマップを作成すると共に、このIPFマップに基いてエリアフラクション法によって結晶粒の平均断面積を測定した。
 図7(a)には、実施例のステントのIPFマップ、図7(b)には、比較例のステントのIPFマップが示されている。なお、図中のスケールは15μmである。これらの図7(a),(b)に示すように、比較例のステントでは、結晶粒が極めて大きいのに対し、実施例のステントでは、結晶粒の微細化が図られているのが分かる。また、実施例のステントの結晶粒の平均断面積は2.64332μm(標準偏差0.647377)であるのに対し、比較例のステントの結晶粒の平均断面積は141.769μm(標準偏差54.4368)であった。
 (強度の測定)
 上記実施例及び比較例のステントそれぞれについて、ステント拡張力測定装置(Radial Expansion Force Equipment「RX550」、Machine Solutions社製)を用いて、ステント全面に亘って均等に、縮径方向に1mm/minで、ステントの外径が2.5mmとなるまで縮径させた後、拡径方向に1mm/minの拡径速度で、ステントが初期の外径となるまで拡径させ、そのときの、ステントの拡張力とステントの外径変位との関係(応力-変位曲線)を測定した。その結果を図6に示す。同図に示すように、比較例のステントに対して、実施例のステントの方が拡張力が高く、高強度であることが分かる。
10 ステント
11 開口
20 ステント基体

Claims (5)

  1.  Ni-Ti系合金又はCo-Cr系合金からなりメッシュ状の開口を有する筒状に形成された自己拡張型のステントにおいて、
     Af点が22~26℃とされ、応力-変位曲線上において降伏点を有していると共に、ステントの断面における結晶粒のエリアフラクション法による平均断面積が0.2~50μmとされていることを特徴とするステント。
  2.  Ni-Ti系合金又はCo-Cr系合金からなる筒状のステント基体内に芯金を挿入し、レーザー光でメッシュ状の開口を形成した後、該ステント基体から前記芯金を除去し、
     前記ステント基体を350℃以下の雰囲気下で所定径まで拡張した後、400~600℃で5~60分の熱処理を施して、Af点が22~26℃となるようにすることを特徴とするステントの製造方法。
  3.  前記レーザー光による開口形成工程は、前記ステント基体に水を噴射して、水柱を形成すると共に、この水柱内でレーザー光を反射させつつ、前記ステント基体に照射して、前記ステント基体にメッシュ状の開口を形成する請求項2記載のステントの製造方法。
  4.  前記ステント基体の拡張処理後の熱処理工程は、450~550°C、10~40分でなされる請求項2又は3記載のステントの製造方法。
  5.  前記熱処理工程は、前記ステント基体の拡張処理後、1回のみ行われる請求項2~4のいずれか1つに記載のステントの製造方法。
PCT/JP2014/060702 2013-04-18 2014-04-15 ステント及びその製造方法 WO2014171447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015512483A JP6023878B2 (ja) 2013-04-18 2014-04-15 ステント及びその製造方法
US14/785,304 US20160067069A1 (en) 2013-04-18 2014-04-15 Stent and process for producing same
EP14785097.8A EP2987470A4 (en) 2013-04-18 2014-04-15 ENDOPROTHESIS AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-087781 2013-04-18
JP2013087781 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014171447A1 true WO2014171447A1 (ja) 2014-10-23

Family

ID=51731385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060702 WO2014171447A1 (ja) 2013-04-18 2014-04-15 ステント及びその製造方法

Country Status (4)

Country Link
US (1) US20160067069A1 (ja)
EP (1) EP2987470A4 (ja)
JP (1) JP6023878B2 (ja)
WO (1) WO2014171447A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011452A (ko) * 2017-07-25 2019-02-07 주식회사 엠아이텍 이탈 방지용 스텐트 및 그 제조방법
KR101955518B1 (ko) * 2019-01-21 2019-03-07 전해 귀금속 미세라인을 이용한 메쉬형 장신구 제조 방법 및 이에 의해 제조된 메쉬형 장신구

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12115288B2 (en) * 2018-07-12 2024-10-15 Cook Medical Technologies Llc Coated medical device and method of coating such a device
CN109259911A (zh) * 2018-10-10 2019-01-25 苏州脉悦医疗科技有限公司 一种高弹性支架的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534371A (ja) * 2002-07-31 2005-11-17 ユニゾン・セラピューティクス・インコーポレイテッド 可撓性があり形状順応性のあるステント及びその製造方法
JP2006141555A (ja) * 2004-11-17 2006-06-08 National Cardiovascular Center ステント及びその製造方法
JP2008184643A (ja) * 2007-01-29 2008-08-14 Nippon Seisen Co Ltd 高強度極細平線の製造方法と、その製造方法により得られた高強度金属極細平線
JP2010106361A (ja) * 2008-09-30 2010-05-13 Nippon Seisen Co Ltd 金属極細線、金属極細線の製造方法、及び金属極細線を用いたメッシュ金網
WO2012008579A1 (ja) 2010-07-15 2012-01-19 国立大学法人東北大学 高弾性ステント及び高弾性ステントの製造方法
JP2012502190A (ja) * 2008-09-19 2012-01-26 フォート ウェイン メタルス リサーチ プロダクツ コーポレーション 耐疲労損傷性ワイヤおよびその製造方法
US20130067907A1 (en) * 2011-09-16 2013-03-21 Joel M. Greene Single step shape memory alloy expansion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137346A (ja) * 1997-07-24 1999-02-12 Awaji Sangyo Kk パイプの高強度接続方法及び接続装置
JP4133207B2 (ja) * 2001-10-22 2008-08-13 テルモ株式会社 生体内留置用ステントの製造方法
JP2004290279A (ja) * 2003-03-25 2004-10-21 Terumo Corp 生体器官拡張用器具、自己拡張型ステントおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534371A (ja) * 2002-07-31 2005-11-17 ユニゾン・セラピューティクス・インコーポレイテッド 可撓性があり形状順応性のあるステント及びその製造方法
JP2006141555A (ja) * 2004-11-17 2006-06-08 National Cardiovascular Center ステント及びその製造方法
JP2008184643A (ja) * 2007-01-29 2008-08-14 Nippon Seisen Co Ltd 高強度極細平線の製造方法と、その製造方法により得られた高強度金属極細平線
JP2012502190A (ja) * 2008-09-19 2012-01-26 フォート ウェイン メタルス リサーチ プロダクツ コーポレーション 耐疲労損傷性ワイヤおよびその製造方法
JP2010106361A (ja) * 2008-09-30 2010-05-13 Nippon Seisen Co Ltd 金属極細線、金属極細線の製造方法、及び金属極細線を用いたメッシュ金網
WO2012008579A1 (ja) 2010-07-15 2012-01-19 国立大学法人東北大学 高弾性ステント及び高弾性ステントの製造方法
US20130067907A1 (en) * 2011-09-16 2013-03-21 Joel M. Greene Single step shape memory alloy expansion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2987470A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011452A (ko) * 2017-07-25 2019-02-07 주식회사 엠아이텍 이탈 방지용 스텐트 및 그 제조방법
KR101964635B1 (ko) 2017-07-25 2019-04-02 주식회사 엠아이텍 이탈 방지용 스텐트 및 그 제조방법
KR101955518B1 (ko) * 2019-01-21 2019-03-07 전해 귀금속 미세라인을 이용한 메쉬형 장신구 제조 방법 및 이에 의해 제조된 메쉬형 장신구

Also Published As

Publication number Publication date
EP2987470A4 (en) 2016-12-07
JPWO2014171447A1 (ja) 2017-02-23
JP6023878B2 (ja) 2016-11-09
EP2987470A1 (en) 2016-02-24
US20160067069A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
US8273117B2 (en) Low texture, quasi-isotropic metallic stent
US7250058B1 (en) Radiopaque intraluminal stent
JP6023878B2 (ja) ステント及びその製造方法
US20060248698A1 (en) Tubular stent and methods of making the same
US9861506B2 (en) Reduced wire profile stent
JP5972789B2 (ja) ステントの製造方法
JP6560193B2 (ja) マグネシウム合金管材とその製造方法、及びそれを用いてなるステントとその製造方法
WO2015147183A1 (ja) 亜鉛合金管材とその製造方法、及びそれを用いてなるステントとその製造方法
AU2017315410A1 (en) Neurovascular stent
US6568432B2 (en) Method for manufacturing a stent
US20160143755A1 (en) Self-expandable stent
US20130096669A1 (en) Partially annealed stent
JP2013183790A (ja) ステント拡張装置およびステント製造方法
US20230399725A1 (en) Processing of cobalt-tungsten alloys
WO2023239573A1 (en) Processing of cobalt-tungsten alloys
EP3369399B1 (en) Method of forming a bend of a predetermined bend angle in a shape memory alloy wire and method of making a self-expanding stent
JP2011160915A (ja) ステント及びその製造方法
DE102013208958B4 (de) Verfahren zur Herstellung eines Stents aus einer CoCr-Legierung
JP2014036817A (ja) 機能性金属チューブ部材およびその製造方法
JP2018027105A (ja) ステントの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785097

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015512483

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14785304

Country of ref document: US

Ref document number: 2014785097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE