Nothing Special   »   [go: up one dir, main page]

WO2014156638A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2014156638A1
WO2014156638A1 PCT/JP2014/056448 JP2014056448W WO2014156638A1 WO 2014156638 A1 WO2014156638 A1 WO 2014156638A1 JP 2014056448 W JP2014056448 W JP 2014056448W WO 2014156638 A1 WO2014156638 A1 WO 2014156638A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
negative electrode
active material
current collector
secondary battery
Prior art date
Application number
PCT/JP2014/056448
Other languages
English (en)
French (fr)
Inventor
俊夫 谷
新垣 雅進
勇 二葉
俊哉 樋上
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020157018972A priority Critical patent/KR101856302B1/ko
Priority to CN201480011629.4A priority patent/CN105027346B/zh
Priority to JP2015508265A priority patent/JP6155327B2/ja
Publication of WO2014156638A1 publication Critical patent/WO2014156638A1/ja
Priority to US14/865,619 priority patent/US11264617B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery mounted on an electronic device, a car, an airplane, a satellite, or the like.
  • the present invention relates to a bulk type all solid secondary battery having a solid electrolyte as a component.
  • a Li ion secondary battery in which Li ion is used as a rocking chair type positive / negative charge / discharge movable ion has been widely used.
  • the organic electrolytic solution in which the electrolyte is dissolved in the non-aqueous solvent and the Li light element are used, so that a high energy density can be obtained to some extent as compared with the conventional lead storage battery, NiCd battery or NiMH battery. by.
  • Patent Document 1 the solvent uses an organic electrolyte which is flammable, not only the leakage but also the problem of the ignition and combustion accident is always accompanied. For this reason, using a flame-retardant ionic liquid, a gel-like electrolyte, or a polymer-like electrolyte as the electrolytic solution has been studied (Patent Document 1).
  • the most ideal form is an all solid type that uses an inorganic solid as the electrolyte, and a secondary battery excellent in safety as well as stability and reliability can be obtained.
  • a large capacity (energy density) it is also possible to adopt a laminated structure form.
  • the process of desolvation of solvated Li is unnecessary, and only Li ions need to be moved in the ion conductor solid electrolyte, and unnecessary side reactions do not occur.
  • the cycle life can also be extended significantly.
  • Patent Document 2 The ion conductivity of the solid electrolyte, which holds the key to the realization of this all-solid secondary battery, was previously not significantly comparable to that of the organic electrolyte, but in recent years an ion conductor similar to or higher than the electrolyte has been found Studies for commercialization of a solid electrolyte secondary battery using the same have been started (Patent Document 2, Patent Document 3).
  • the solid electrolyte material excellent in ion conductivity is a sulfide system containing sulfur as a component, along with the necessity of the maintenance of its handling environment, concern about corrosion of other materials constituting the battery is also assumed.
  • the component of the all solid secondary battery using the sulfide solid electrolyte which is said to be able to realize a high degree of stability, reliability and safety, there was a concern of corrosion to other components by the sulfide solid electrolyte.
  • the negative electrode current collector copper foil for the organic electrolytic solution Li ion secondary battery which has been widely used in the past, can not be used, or is corroded when used. For this reason, there were problems such as a decrease in the battery specific capacity due to the limitation of the negative electrode active material and an increase in cost using the expensive current collection material.
  • the solid electrolyte material having excellent ion conductivity is powder, and it is necessary to press the material under pressure with a press to have conductivity as an ion conductor.
  • the sulfide solid electrolyte can be formed by press forming at normal temperature, but it is generally assumed that it is integrally formed with the current collector, and the conventional current collector copper foil has poor press resistance. It is expected that it is sufficient to break without breaking the deformation.
  • lithium cobaltate (LiCoO 2 , LCO) is often used as the positive electrode active material of all solid batteries, and carbon materials such as graphite are often used as the negative electrode active material.
  • LCO has a problem that the contact interface resistance barrier with the solid electrolyte is high, and the graphite negative electrode has a defect that the specific capacity is small.
  • an alloy negative electrode such as Si having a high capacity has a problem that it can not be adopted because the cycle characteristics significantly deteriorate due to a large volume change associated with charge and discharge.
  • the present invention was made to solve the above-mentioned conventional problems, solves the concern of corrosion of the negative electrode current collector, the concern of copper foil breakage at the time of press molding, etc., and is excellent in safety, stability and reliability. It is an object of the present invention to provide an all solid secondary battery.
  • the following invention is provided in order to achieve the objective mentioned above.
  • An all-solid secondary battery having a sulfur-resistant layer on the surface of the negative electrode current collector on which the negative electrode active material layer is formed;
  • the all-solid secondary battery according to (2) wherein the thickness of the copper sulfide layer is 0.01 to 1 ⁇ m.
  • the all-solid secondary battery according to (1) wherein the sulfurization resistant layer is a copper oxide layer containing copper oxide.
  • the copper oxide layer is characterized by having a first layer on the negative electrode current collector side mainly containing cuprous oxide and a second layer on the surface side mainly containing cupric oxide layer.
  • 3 (a) is a cross-sectional view of a negative electrode current collector having one layer of copper oxide layer according to the second embodiment
  • FIG. 3 (b) is a negative electrode collector having two layers of copper oxide layer according to the second embodiment.
  • FIG. 1 is a cross-sectional view of the all solid secondary battery according to the first embodiment.
  • the negative electrode active material layer 5 is provided between the negative electrode current collector 3 and the positive electrode current collector 17 provided opposite to each other from the negative electrode current collector 3 side.
  • a solid electrolyte layer 9 and a positive electrode active material layer 13 are stacked.
  • the negative electrode active material layer 5 includes a negative electrode active material 7 and a sulfide solid electrolyte 11.
  • the solid electrolyte layer 9 contains a sulfide solid electrolyte 11.
  • the positive electrode active material layer 13 includes a positive electrode active material 15, a sulfide solid electrolyte 11, and a conductive additive 8. The configuration of each layer will be described below.
  • the negative electrode current collector has a sulfuration resistant layer on the surface on which the negative electrode active material layer is formed on a base material containing copper or a copper alloy.
  • the copper sulfide layer 23 is used as the sulfuration resistant layer.
  • a copper sulfide layer 23 is laminated on the surface of the base 21 on which the negative electrode active material layer 5 is formed.
  • the thickness of the copper sulfide layer 23 to be formed is 0.01 to 1 ⁇ m, and the compound form is mainly formed of cuprous sulfide.
  • the substrate 21 in the case of pure copper, electrolytic copper foil or rolled tough pitch copper foil, and in the case of alloy, mainly rolled Cu—Sn, Cu—Fe, Cu—Zr, Cu—Cr, Corson, etc. Solid solution or precipitation strengthened dilute alloys can be used.
  • the copper-based substrate 21 is subjected to a immersing treatment in an aqueous solution of potassium sulfide or sodium sulfide. It is more preferable to contain chloride ion or ammonium ion.
  • the pH is preferably acidic or weakly alkaline. The temperature is good at room temperature.
  • the time depends on the thickness of the formed film, it takes about 10 seconds to several tens of seconds, and at most about 1 minute, which is sufficient for the use of the present invention. It is preferable to perform immersion degreasing or cathode degreasing and then pickling (neutralization) as pretreatment of the present sulfurization treatment. It is possible to improve the wettability of the base material during the sulfidation treatment together with the cleaning of the surface of the base material.
  • the copper sulfide layer 23 has resistance to sulfidation corrosion. Furthermore, both cuprous sulfide and cupric sulfide are highly conductive. In particular, when the copper sulfide layer 23 is cuprous sulfide, the adhesion between the copper sulfide layer and the base copper foil is good.
  • the sulfide solid electrolyte 11 is a solid electrolyte containing a monovalent or divalent metal and sulfur.
  • the metal contained in the sulfide solid electrolyte 11 is preferably Li, Na or Mg.
  • As practical solid electrolytes having ion conductivity Li + conductors, Na + conductors or Mg 2+ conductors are possible at present.
  • the sulfide solid electrolyte containing S includes Li 2 S—P 2 S 5 system, Li 2 S—P 2 S 5 —SiS 2 system, Li 2 S—P 2 S 5 — P 2 O 5 system, Li 2 S-SiS 2 -Li 3 PO 4 system, Li 2 S-SiS 2 -Li 4 SiO 4 system, Li 2 S-B 2 S 3 -LiI system, Li 3 + 5x P 1-x S 4 system (0.06 ⁇ x 3 ⁇ 0.08), Li 3 + 5x P 1 ⁇ x S 4 ⁇ z O z system (0.02 ⁇ x ⁇ 0.11, 0.20 ⁇ z ⁇ 1.55), Li 2 S-GeS 2 -Li 3 PO 4 system, Li 2 S-GeS 2 -P 2 S 5 system, Li 2 S-GeS 2 -P 2 O 5 system, etc.
  • the positive electrode current collector 17 is made of aluminum, an aluminum alloy or stainless steel.
  • stainless steel can be used regardless of the alloy composition and the gauge, it is necessary to be careful because the corrosion resistance and the cost greatly differ depending on the components and the composition.
  • a positive electrode active material generally used for a lithium ion secondary battery can be used.
  • it is lithium cobaltate, and an LCO surface is coated with an oxide such as lithium niobate (LiNbO 3 ).
  • a ternary positive electrode in which Co of LCO is partially substituted by Ni, Mn, or Al can be used similarly.
  • the Shubrel compound of Mo 6 S 8-x (0 ⁇ x ⁇ 0.2)
  • the particle size of the positive electrode active material 15 is in the order of submicron to micron.
  • a conductive aid 8 such as acetylene black is mixed to facilitate formation of a conductive path.
  • a negative electrode active material generally used for a lithium ion secondary battery can be used.
  • it is a carbon-based active material such as graphite (artificial graphite or natural graphite), and is an alloy-based negative electrode material such as silicon, SiO-based (Si + SiO 2 , SiO x ) silicon oxide, or tin.
  • a mixture of a carbon-based material and an alloy-based material can also be used.
  • M Si, Sn, In, Al , Zn
  • Sn 4 P 3 , Sn 3 P 4 , SnP 3 , InP and the like can be mentioned.
  • the negative electrode active material layer 5 is formed by applying a slurry obtained by mixing at least the negative electrode active material 7 on the negative electrode current collector 3, and realizing high capacity and reliability as a component of the all-solid secondary battery 1. Do.
  • the slurry often contains a conductive auxiliary 8 such as acetylene black, and a water-based binder, a thickener, or an organic solvent-based binder.
  • a conductive aid 8 such as acetylene black
  • a water-based binder such as acetylene black
  • a thickener such as acetylene black
  • organic solvent-based binder such as acetylene black
  • the conductive aid 8 By adding the conductive aid 8 to the slurry, it is possible to obtain the negative electrode active material layer 83 including the negative electrode active material 7, the sulfide solid electrolyte 11, and the conductive aid 8 as shown in FIG. 6. By this, the conductivity of the negative electrode active material layer 83 is improved.
  • the negative electrode active material layer 5 including both the negative electrode active material 7 and the sulfide solid electrolyte 11 as shown in FIG. 1 can be obtained.
  • the sulfide solid electrolyte 11 is also included in the negative electrode active material layer 5 and the positive electrode active material layer 13 of the all-solid secondary battery 1. As a result, lithium ions can easily penetrate to the negative electrode active material 7 and the positive electrode active material 15, and charge and discharge can be performed at high speed.
  • the negative electrode current collector 3 according to the first embodiment Since the negative electrode current collector 3 according to the first embodiment has the sulfide resistant corrosion resistant copper sulfide layer 23 on the surface, there is no concern of corrosion even if the sulfide solid electrolyte 11 is used. Furthermore, since the copper-based substrate 21 has high conductivity, and both the cuprous sulfide and cupric sulfide have good conductivity, the negative electrode current collector 3 is excellent in the electrical conductivity. Moreover, the adhesiveness of the copper sulfide layer 23 and the base material 21 is favorable.
  • the second embodiment is different from the first embodiment in the sulfur resistant layer formed on the negative electrode current collector, and the sulfur resistant layer is a copper oxide layer.
  • the sulfide solid electrolyte, the positive electrode active material, and the negative electrode active material are the same as in the first embodiment.
  • the negative electrode current collector 3a has a copper oxide layer 33 on the surface of the base 31 on which the negative electrode active material layer 5 is formed.
  • a copper oxide layer 45 is stacked on the surface of the base 31 on which the negative electrode active material layer 5 is formed.
  • the copper oxide layer 45 has a first layer 41 on the negative electrode current collector side mainly containing cuprous oxide and a second layer 43 on the surface side mainly containing a second copper oxide layer.
  • the thickness of the copper oxide layer 33 and the copper oxide layer 45 to be formed is 0.01 to 1 ⁇ m, and the form of the compound may be only the copper oxide layer 33 mainly made of cuprous oxide, or Next, the copper-based first layer 41 may be formed, and then the cupric oxide-based second layer 43 may be formed on the surface side.
  • an electrolytic copper foil or a tough pitch copper foil of rolling can be used in the case of pure copper, and in the case of an alloy, mainly rolling Cu—Sn, Cu—Fe, Cu—Zr, Cu—Cr It is possible to use a dilute alloy in which the second component or less is about 0.01% by mass to 5% by mass or so, such as a corson alloy system, or the like, which is strengthened by solid solution or precipitation.
  • the additive component other than Ag is high, there is a concern that the conductivity is lowered and the current collection performance is lowered.
  • the oxidation treatment or copper oxide layer formation is performed by anodizing treatment while the substrate surface is in contact with a weakly alkaline to alkaline aqueous solution.
  • Aqueous solutions of potassium hydrogen carbonate, sodium hydrogen carbonate, ammonium carbonate, potassium carbonate, sodium carbonate, potassium hydroxide and sodium hydroxide can be used.
  • a highly alkaline aqueous solution such as carbonate or hydroxide.
  • the aqueous solution is brought into contact with the surface, and in order to form on both sides, immersion treatment may be carried out.
  • It may be an aqueous solution containing ammonium ions in other neutral salts. Addition of chloride ion tends to form cuprous oxide with better adhesion on the substrate.
  • the liquid temperature is good at room temperature, and if the temperature is raised too much mist is generated from the liquid and the environment is not good.
  • the time may be about 10 seconds to several minutes depending on the thickness of the formed film and the current density.
  • a current density of 0.1 to 20 A / dm 2 is selected for economy, but it is also possible to form a copper oxide which is small and has a good adhesion slowly. Higher current densities may be used for short time formation.
  • It can also be formed by potential control using a reference electrode, for example, 0.6 to 0.8 V (copper oxide) or 0.8 to 1.0 V (second oxide) based on an Ag / AgCl electrode.
  • a reference electrode for example, 0.6 to 0.8 V (copper oxide) or 0.8 to 1.0 V (second oxide) based on an Ag / AgCl electrode.
  • the potential setting and control can be performed according to the respective aqueous solutions and the form of the formed copper oxide layer, with the goal of the range of copper).
  • a method for forming a copper oxide layer it is also possible to form by heat treatment in a heating furnace in which oxygen is supplied at a desired concentration in an inert gas atmosphere such as N 2 .
  • the temperature is preferably about 80 to 200.degree.
  • high temperature exceeding 1000 ° C. is also possible, and a dense cuprous oxide layer can be formed.
  • the heat oxidation treatment at too high temperature is likely to cause defects such as changes in the properties of the substrate and wrinkles due to intensification of distortion in the sheet passing process.
  • the oxygen concentration depends on the heating furnace, the batch, and the continuous processing, so it needs to be determined by experiment, but it is about 30 to 30000 ppm in general.
  • the time is also similar and is determined along with the heating temperature depending on the desired formation thickness and compound form. It is preferable to perform immersion degreasing or cathode degreasing and then pickling (neutralization) as pretreatment of the main oxidation treatment. It is possible to improve the wettability of the base material during the sulfidation treatment together with the cleaning of the surface of the base material. It also has a degreasing effect of the treatment solution itself by the alkaline aqueous solution.
  • Copper oxide has high resistance to corrosion, which is an oxidation reaction, and there is no concern of corrosion even in contact with a sulfide solid electrolyte. Therefore, since the negative electrode current collectors 3a and 3b according to the second embodiment have the sulfide-corrosive-resistant copper oxide layer 33 or 45 on the surface, even if the sulfide solid electrolyte 11 is used, corrosion is caused. I have no worries. In the negative electrode current collectors 3a and 3b, copper oxide is in contact with the copper oxide layer 33 and the base material 31 or between the first layer 41 and the base material 31, so that the base material 31 and copper oxide Adhesion with the layer 33 or the copper oxide layer 45 is good. Further, since copper oxide is semiconductive, current collection of the negative electrode current collectors 3a and 3b is not hindered.
  • the third embodiment is different from the first and second embodiments in the sulfur resistant layer formed on the negative electrode current collector, and the sulfur resistant layer is a sulfur resistant metal layer.
  • the sulfide solid electrolyte, the positive electrode active material, and the negative electrode active material are the same as in the first embodiment and the second embodiment.
  • the negative electrode current collector 3 c has a sulfurization resistant metal layer 53 laminated on the surface of the base material 51 on which the negative electrode active material layer 5 is formed.
  • the thickness of the sulfide resistant metal layer 53 to be formed is 0.01 to 5 ⁇ m. It is not desirable from the viewpoint of economy and manufacturability to form the sulfurization resistant metal layer 53 of 5 ⁇ m or more.
  • the sulfide resistant metal layer 53 contains Ni, Zn, Sn or the like, and the sulfide resistant metal layer 53 may be a single substance of these metals or may be an alloy with other components. Furthermore, the metal layer can be multilayered to enhance the resistance to sulfurization of the current collector substrate.
  • a Ni-based metal layer is formed as a second layer on the first metal layer.
  • the sulfurization resistance can be further improved.
  • an electrolytic copper foil or a tough pitch copper foil of rolling can be used in the case of pure copper, and in the case of an alloy, mainly rolling Cu—Sn, Cu—Zn, Cu—Fe, Cu—Zr Solid solution or precipitation strengthened dilute alloys such as Cu-Cr and Corson (Cu-Ni-Si) can be used.
  • the sulfide resistant layer formed on the surface layer of the substrate may be alloyed with the substrate by diffusion treatment other than heating.
  • the Cu base is immersed in an electrolyte of Ni or Ni alloy bath, Zn or Zn alloy bath, Sn or Sn alloy bath, and cathodic electrolytic treatment.
  • a Ni sulfate or Ni carbonate bath can be used for the Ni-based electrodeposition layer, and a Zn sulfate Zn bath can be used in the Zn system, and a Sn sulfate or organic acid bath can be used in the Sn system.
  • the pH of the organic acid bath is neutral to weakly alkaline.
  • the temperature may be from room temperature to about 40 ° C.
  • the time depends on the thickness of the formed film and the current density, but the time is about several seconds to about 30 seconds, and at most about 1 minute, which is sufficient for the use of the present invention.
  • the current density is about 0.01 to 5 A / dm 3 depending on the electrodeposition species and the formed thickness.
  • the substrate wettability can be improved at the time of electrodeposition treatment together with the cleaning of the substrate surface.
  • the sulfide resistant metal layer 53 contains Ni, Zn, Sn or the like that resists corrosion by sulfides. Therefore, the negative electrode current collector 3c according to the third embodiment has the anti-sulfidation corrosion resistant metal layer 53 on the surface, so that there is no concern about corrosion even if the sulfide solid electrolyte 11 is used. There is not.
  • Zn and Sn of the first layer metal layer immediately diffuse with the base Cu to form a diffusion alloyed layer. The diffusion alloyed layer improves the corrosion resistance and heat resistance of the substrate Cu.
  • Sn forms a compound of Cu 3 Sn ( ⁇ phase) and Cu 6 Sn 5 ( ⁇ ′ phase) to improve the protection of the substrate.
  • the operating environment of the secondary battery may reach 80 ° C., and in this case, the base material component may diffuse and move to the surface layer, which reduces the above-mentioned sulfurization resistance, resulting in high surface resistance sulfurization in the surface layer. Lead to deterioration of battery performance.
  • the Ni-based metal layer can also be formed on the diffusion alloyed layer. The sulfur-resistant metal layer or the multi-layer metal layer described above can prevent or suppress the deterioration of the battery cell due to such a high temperature operating environment.
  • the copper-based substrate 51 has high conductivity and the sulfur-resistant metal layer 53 also contains a metal of good conductivity, the negative electrode current collector 3c has good current collection.
  • the sulfur-resistant metal layer 53 formed into a film by electrodeposition has favorable adhesiveness with the base material 51, and can reduce the interfacial contact resistance between these.
  • the fourth embodiment is characterized in that the compressive strength of the surface on which the negative electrode active material layer of the negative electrode current collector is formed is 1250 to 3000 MPa.
  • the compression elastic modulus of the surface of the negative electrode current collector on which the negative electrode active material layer is formed is preferably 60 to 125 GPa.
  • the sulfide solid electrolyte, the positive electrode active material, and the negative electrode active material are the same as in the first to third embodiments.
  • the indenter measured compressive strength of a layer having a depth of 2 ⁇ m at least from the surface in contact with the negative electrode active material or the solid electrolyte is 1250 to 3000 MPa.
  • the indenter measurement compressive elastic modulus be 60 to 125 GPa as well.
  • the compressive strength and compressive modulus of the surface can be measured by an indenter. Although it depends on the load to be applied, it is a device that generally measures the intermediate region of (micro) Vickers and nano indenter, and in the case of a standard load, the penetration depth is 2 ⁇ m or less with a general copper foil, It is also suitable for copper foil with a thickness of around 10 ⁇ m.
  • a thin foil In the case of a thin foil, it can be measured with an ultralight load type nanoindenter.
  • an ultralight load type nanoindenter For example, as a nano indentation tester, it is possible to use an ultra-fine indentation hardness tester ENT-1100a manufactured by Elionix Co., Ltd. or an ultra-light load type ultra-micro indentation hardness tester ENT-2100. .
  • the negative electrode current collector 3 d has a copper electrodeposition layer 63 on the surface of the base 61 on which the negative electrode active material layer 5 is formed.
  • the copper electrodeposition layer 63 contains Mo or W in the surface layer.
  • the thickness of the copper electrodeposition layer 63 to be formed is 0.1 to 2.5 ⁇ m, and the copper electrodeposition layer 63 corresponds to an electrodeposition layer of a copper alloy containing Mo or W.
  • Based on general copper ions and sulfate ions, tungstate and molybdate (both potassium and sodium salts etc.) are added to the base copper electrodeposition solution, and the solution temperature is approximately 0. Electrodeposition may be performed at a current density of about 5 to 10 A / dm 2 .
  • Both the copper concentration and the sulfuric acid concentration can be selected from the range of about 20 to 100 g / dm 3 .
  • An electrolyte prepared by adding at least a tungsten compound or a molybdenum compound to the copper sulfate aqueous solution is used.
  • the addition concentration may be about 0.05 to 5 g / dm 3 depending on the compound form and the amount of Mo or W to be contained.
  • the concentration of each metal ion is about 5 to 3000 ppm, but higher concentrations may be used, but the economic efficiency decreases, so it depends on the content concentration in the electrodeposition layer and the surface hardness (strength / elastic modulus).
  • potassium tungstate or sodium tungstate at about 0.5 to 10 g / dm 3 , the necessary surface compressive strength and compressive elastic modulus can be obtained. Higher concentrations may be used without any problem, but the economy is reduced.
  • An Ag electrodeposited layer is also a candidate from the point of current collecting property and conductivity, but there is a problem that the economic efficiency is low.
  • the Sn electrodeposition layer is preferably used because there is an increase in hardness due to diffusion alloying with its own copper base. Also in the case of the Sn electrodeposition layer, a sulfuric acid bath or an organic acid bath having a sulfate ion and a divalent tin ion is used. Although divalent tin ions are easily oxidized to tetravalent tin ions, they themselves do not directly adversely affect the electrodeposition layer.
  • an electrolytic copper foil or a tough pitch copper foil of rolling can be used in the case of pure copper, and in the case of an alloy, mainly rolling Cu-Sn, Cu-Fe, Cu-Zr, Cu-Cr It is possible to use a dilute alloy in which the second component or less is about 0.01% by mass to 5% by mass or so, such as a corson alloy system, or the like, which is strengthened by solid solution or precipitation. When the additive component other than Ag is high, there is a concern that the conductivity is lowered and the current collection performance is lowered. As a pretreatment of the formation of the electrodeposition layer, immersion degreasing or cathodic electrolytic degreasing and then pickling (neutralization) may be applied. It is possible to improve the wettability of the base material during the sulfidation treatment together with the cleaning of the surface of the base material. It also has a degreasing effect of the treatment solution itself by the alkaline aqueous solution.
  • the negative electrode current collector according to the fourth embodiment has high press resistance because the mechanical strength of the surface on which the negative electrode active material layer is formed is high. Therefore, even if an all-solid secondary battery is manufactured by integral press molding using a sulfide solid electrolyte, defects such as breakage of the negative electrode current collector and current collection deterioration do not occur. Further, the productivity is improved in that the press molding can be performed even to the cell which can not be conventionally press molded. In particular, the copper electrodeposition layer 63 deposited by electrodeposition has good adhesion to the substrate 61.
  • the copper-based substrate 61 has high conductivity
  • the copper electrodeposition layer 63 containing Mo and W has high conductivity
  • both of the current collecting property and the adhesion are good, and it is suitable for integrally formed cell configuration It is.
  • the current collector itself as a high-strength or high-elastic material
  • the strength or elastic modulus requiring press resistance may be attached to the surface layer of the current collector, so, for example, in the surface treatment step for forming the above-mentioned sulfur-resistant metal layer, the high strength or high elastic modulus concerned continuously. If the copper electrodeposition layer is formed, the cost can be kept low, and the present characteristics can be attached economically.
  • the manufacturing method of the all-solid-state secondary battery 1 is not specifically limited, It can manufacture by the following method. First, the positive electrode active material 15 and the sulfide solid electrolyte 11 are pelletized by pressing. Thereafter, the positive electrode current collector 17, the pellet of the positive electrode active material 15, the pellet of the sulfide solid electrolyte 11, the negative electrode active material 7, and the negative electrode current collector 3 are stacked to form a positive electrode current collector / positive electrode active material layer / solid electrolyte layer / With the configuration of the negative electrode active material layer / the negative electrode current collector, it is possible to produce an all solid secondary battery by press-pressing and integrally molding.
  • Example 1-1 (How to make solid electrolyte) Li 2 S and P 2 S 5 are mixed in a mortar in an Ar atmosphere glove box as raw materials for solid electrolyte, and then enclosed together with Zr balls in a Zr pot and kept at 500 rpm with a planetary type ball mill at room temperature Mechanical milling (hereinafter MM) was performed for 15 hours to obtain amorphous fine particles of 70Li 2 S-30P 2 S 5 . Differential thermal analysis showed that it had an exothermic peak at 200 ° C. and was crystallized. The sample crystallized by heat treatment for 2 hours was pelletized to form a carbon (paste) electrode, and then the conductivity was measured by an alternating current impedance method.
  • MM planetary type ball mill at room temperature Mechanical milling
  • An ethyl alcohol solution in which lithium alkoxide and niobium alkoxide were dissolved was sprayed and coated on the surface using a tumbling fluidized bed coating apparatus, and then the alcohol was decomposed by heating in an oxygen atmosphere.
  • Anode active material layer A composite layer in which artificial graphite and the present solid electrolyte were mixed at a ratio of 60: 40 was used.
  • the positive electrode active material layer and the solid electrolyte layer are formed into pellets by a press, respectively, and then the positive electrode current collector, the positive electrode active material layer pellet, the solid electrolyte layer pellet, the negative electrode active material and the negative electrode current collector are stacked. In the configuration of positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / negative electrode current collector, press-pressing and integral molding were performed to prepare an all solid secondary battery. In addition, 1000 series Al foil was used for the positive electrode collector.
  • Example 1-2 (How to make solid electrolyte) With Li 2 S and P 2 S 5 and P 2 O 5 as a raw material of the solid electrolyte, except that a charge ratio to obtain a 70Li 2 S-20P 2 S 5 -10P 2 O 5 composition of Example 1 Amorphous fine particles were obtained under the same conditions as 1. According to the results of differential thermal analysis, the crystallized sample heat-treated at 300 ° C. for 2 hours was pelletized and the ion conductivity was measured to be about 10 ⁇ 3 S / cm. (Anode current collector: Copper sulfide layer formation) It was formed in the same manner as in Example 1-1.
  • the positive electrode active material layer is a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically with Mo 6 S 8, and acetylene black are mixed in a ratio of 40: 55: 5. And As Mo 6 S 8 , one obtained by reducing Cu 2 Mo 6 S 8 with an acidic aqueous solution was used. (Anode active material layer) It was the same as Example 1-1. (All solid secondary battery making method) It carried out similarly to Example 1-1.
  • Example 1-3 (How to make solid electrolyte) It was prepared in the same manner as in Example 1-2. (Anode current collector: Copper sulfide layer formation) It was formed in the same manner as in Example 1-2. (Positive electrode active material layer) The same as in Example 1-2. (Anode active material layer) Sn 4 P 3 and a 70Li 2 S-20P 2 S 5 -10P 2 O 5 is a solid electrolyte was synthesized crystallized 1: using a composite layer in a mixing ratio of 1. The Sn 4 P 3 used was synthesized by MM treatment with a ball mill at 300 rpm for 3 hours so as to have a composition ratio of Sn and phosphorus. (All solid secondary battery making method) It carried out similarly to Example 1-2.
  • Example 1-4 (How to make solid electrolyte) It produced similarly to Example 1-3.
  • Patent electrode active material layer For the positive electrode active material layer, use is made of a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically and sulfur powder and acetylene black are mixed in a ratio of 30:60:10. It was.
  • (Anode active material layer) The same as in Example 1-3. (All solid secondary battery making method) It carried out similarly to Example 1-3.
  • Example 1-5 (How to make solid electrolyte) It was prepared in the same manner as Example 1-1. (Anode current collector: Copper sulfide layer formation) A 20 ⁇ m thick electrolytic copper foil (pure copper type) was dipped in a 5 g / dm 3 K 2 S aqueous solution, pH 1.5, at room temperature for 6 seconds, and then washed with water and dried.
  • Example 1-6 (How to make solid electrolyte) It was prepared in the same manner as Example 1-1.
  • Anode current collector: Copper sulfide layer formation A 20 ⁇ m thick electrolytic copper foil (pure copper type) was dipped in a 5 g / dm 3 K 2 S aqueous solution, pH 1.5, room temperature for 200 seconds, and then washed with water and dried.
  • this sulfided copper foil was subjected to cathode reduction treatment in a sufficiently N 2 deaerated 0.5 N KCl aqueous solution, most had a plateau region at the Cu 2 S redox potential, and from the amount of reduced electricity, about 1 ⁇ m It was found that a thick Cu 2 S layer was formed on the surface.
  • Example 1-1 (Positive electrode active material layer) It was formed in the same manner as in Example 1-1. (Anode active material layer) It was formed in the same manner as in Example 1-1. (All solid secondary battery making method) It was formed in the same manner as in Example 1-1.
  • Example 2-1 (How to make solid electrolyte) It carried out similarly to Example 1-1.
  • a 20 ⁇ m thick electrolytic copper foil (pure copper-based) was subjected to anodic electrolytic treatment at a current density of 1 A / dm 2 during immersion for 30 seconds in a 1 g / dm 3 NaOH aqueous solution, pH 10 for 30 seconds, and then washed with water and dried.
  • Example 2-2 (How to make solid electrolyte) With Li 2 S and P 2 S 5 and P 2 O 5 as a raw material of the solid electrolyte, except that a charge ratio to obtain a 70Li 2 S-20P 2 S 5 -10P 2 O 5 composition of Example 2 Amorphous fine particles were obtained under the same conditions as 1. According to the results of differential thermal analysis, the crystallized sample heat-treated at 300 ° C. for 2 hours was pelletized and the ion conductivity was measured to be about 10 ⁇ 3 S / cm. (Anode current collector: Copper oxide layer formation) It carried out similarly to Example 2-1.
  • the positive electrode active material layer was a composite layer in which Mo 6 S 8 and a solid electrolyte, and acetylene black were mixed in a ratio of 40: 55: 5.
  • Mo 6 S 8 one obtained by reducing Cu 2 Mo 6 S 8 with an acidic aqueous solution was used.
  • Anode active material layer The same as in Example 2-1. (All solid secondary battery making method) It carried out similarly to Example 2-1.
  • Example 2-3 (How to make solid electrolyte) It produced similarly to Example 2-2. (Anode current collector: Copper oxide layer formation) It carried out similarly to Example 2-2. (Positive electrode active material layer) The same as in Example 2-2. (Anode active material layer) Sn 4 P 3 and a 70Li 2 S-20P 2 S 5 -10P 2 O 5 is a solid electrolyte was synthesized crystallized 1: using a composite layer in a mixing ratio of 1. The Sn 4 P 3 used was synthesized by MM treatment with a ball mill at 300 rpm for 3 hours so as to have a composition ratio of Sn and phosphorus. (All solid secondary battery making method) It carried out similarly to Example 2-2.
  • Example 2-4 (How to make solid electrolyte) It produced similarly to Example 2-3. (Anode current collector: Copper oxide layer formation) It carried out similarly to Example 2-3. (Positive electrode active material layer) For the positive electrode active material layer, use is made of a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically and sulfur powder and acetylene black are mixed in a ratio of 30:60:10. It was. (Anode active material layer) The same as in Example 2-3. (All solid secondary battery making method) It carried out similarly to Example 2-3.
  • Example 2-5 (How to make solid electrolyte) It carried out similarly to Example 2-1.
  • Anode current collector: Copper oxide layer formation A 20 ⁇ m thick electrolytic copper foil (pure copper type) was subjected to anodic electrolytic treatment at a current density of 0.2 A / dm 2 while immersed in a 1 g / dm 3 aqueous NaOH solution, pH 10, room temperature for 5 seconds, and then washed with water and dried .
  • Example 2-6 (How to make solid electrolyte) It carried out similarly to Example 2-1.
  • Anode current collector: Copper oxide layer formation A 20 ⁇ m thick electrolytic copper foil (pure copper type) was subjected to anodic electrolytic treatment at a current density of 3 A / dm 2 during immersion for 30 seconds in a 1 g / dm 3 aqueous solution of NaOH, pH 10 at room temperature, and then washed with water and dried.
  • Example 3-1 (How to make solid electrolyte) Li 2 S and P 2 S 5 are mixed in a mortar in an Ar atmosphere glove box as raw materials for solid electrolyte, and then enclosed together with Zr balls in a Zr pot and kept at 500 rpm with a planetary type ball mill at room temperature After 20 hours of MM treatment, 70Li 2 S-30P 2 S 5 amorphous fine particles were obtained. Differential thermal analysis showed that it had an exothermic peak at 200 ° C. and was crystallized. The sample crystallized by heat treatment for 2 hours was pelletized to form a carbon (paste) electrode, and then the conductivity was measured by an alternating current impedance method.
  • Example 3-2 (How to make solid electrolyte) Example 3-C except using Li 2 S, P 2 S 5 and P 2 O 5 as raw materials for solid electrolyte, at an input ratio to obtain 70Li 2 S-20P 2 S 5 -10P 2 O 5 composition, Amorphous fine particles were obtained under the same conditions as 1. According to the results of differential thermal analysis, the crystallized sample heat-treated at 300 ° C. for 2 hours was pelletized and the ion conductivity was measured to be about 10 ⁇ 3 S / cm.
  • a 20 ⁇ m thick electrolytic copper foil (pure copper-based) was immersed in a 5 g / dm 3 aqueous tin sulfate solution, pH 1.5, room temperature for 15 seconds, subjected to electrodeposition treatment, washed with water, and then dried by heating at 125 ° C. From the co-cool dissolution test on the surface of the electrodeposited copper foil, it was found that a Sn layer of about 0.2 ⁇ m thickness was formed. Furthermore, it was found by SEM observation of the cross section and EPMA analysis that Sn was diffused and alloyed to the base copper.
  • the positive electrode active material layer is a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically with Mo 6 S 8, and acetylene black are mixed in a ratio of 40: 55: 5. And As Mo 6 S 8 , one obtained by reducing Cu 2 Mo 6 S 8 with an acidic aqueous solution was used. (Anode active material layer) It was the same as Example 3-1. (All solid secondary battery making method) It carried out similarly to Example 3-1.
  • Example 3-3 (How to make solid electrolyte) It produced similarly to Example 3-2.
  • the Sn 4 P 3 used was synthesized by MM treatment with a ball mill at 300 rpm for 3 hours so as to have a composition ratio of Sn and phosphorus. (All solid secondary battery making method) It carried out similarly to Example 3-2.
  • Example 3-4 (How to make solid electrolyte) It produced similarly to Example 3-3. (Anode current collector: Sulfur-resistant metal layer formation) It was formed in the same manner as in Example 3-3. (All solid secondary battery making method) (Positive electrode active material layer) For the positive electrode active material layer, use is made of a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically and sulfur powder and acetylene black are mixed in a ratio of 30:60:10. It was. (Anode active material layer) It was the same as Example 3-3. (All solid secondary battery making method) It carried out similarly to Example 3-3.
  • Example 3-5 (How to make solid electrolyte) It was the same as in Example 3-2.
  • Anode current collector Sulfur-resistant metal layer formation
  • a 20 ⁇ m thick electrolytic copper foil pure copper-based
  • Positive electrode active material layer It was the same as in Example 3-2.
  • Anode active material layer It was the same as in Example 3-2.
  • Example 3-6 (How to make solid electrolyte) It was the same as Example 3-1.
  • (Positive electrode active material layer) It was the same as Example 3-1.
  • (Anode active material layer) It was the same as Example 3-1. (All solid secondary battery making method) It carried out similarly to Example 3-1.
  • Example 3-7 (How to make solid electrolyte) It was the same as Example 3-1.
  • (Positive electrode active material layer) It was the same as Example 3-1.
  • (Anode active material layer) It was the same as Example 3-1. (All solid secondary battery making method) It carried out similarly to Example 3-1.
  • Example 3-8 (How to make solid electrolyte) It was the same as Example 3-1. (Anode current collector: Sulfur-resistant metal layer formation) A 20 ⁇ m thick electrolytic copper foil (pure copper base) was immersed in a 250 g / dm 3 aqueous tin sulfate solution for 15 seconds at room temperature, subjected to electrodeposition treatment at 3 A / dm 2 , washed with water, and then heated and dried at 100 ° C. From the co-cool dissolution test on the surface of the electrodeposited copper foil, it was found that a Sn layer of about 0.2 ⁇ m thickness was formed.
  • Example 3-9 (How to make solid electrolyte) Li 2 S and P 2 S 5 are mixed in a mortar in an Ar atmosphere glove box as raw materials for solid electrolyte, and then enclosed together with Zr balls in a Zr pot and kept at 500 rpm with a planetary type ball mill at room temperature After 20 hours of MM treatment, 70Li 2 S-30P 2 S 5 amorphous fine particles were obtained. Differential thermal analysis showed that it had an exothermic peak at 200 ° C. and was crystallized. The sample crystallized by heat treatment for 2 hours was pelletized to form a carbon (paste) electrode, and then the conductivity was measured by an alternating current impedance method.
  • Example 4-1 (How to make solid electrolyte) It carried out similarly to Example 3-1.
  • a 20 ⁇ m thick electrolytic copper foil (pure copper base) is immersed in an aqueous solution of 50 g / dm 3 of copper and sulfuric acid at 1 g / dm 3 of sodium molybdate at 40 ° C. for 15 seconds at a current density of 2 A / dm 2 After electrodeposition, it was washed with water and dried. When depth profile analysis was performed on the Mo-containing copper electrodeposition layer-forming copper foil by AES, it was found that Mo was indeed detected along with the Cu of the matrix over the surface layer of 0.5 ⁇ m.
  • Example 1-1 (Positive electrode active material layer) It was the same as Example 1-1. (Anode active material layer) It was the same as Example 1-1. (All solid secondary battery making method) Positive composite layer, respectively the solid electrolyte layer and pressed at a load of 2t / cm 3, 1t / cm 3 and pelleting.
  • a negative electrode active material a negative electrode active material layer containing artificial graphite and a binder was separately coated on the above-described electrodeposition layer-forming copper foil by a conventional method. Thereafter, in the configuration of positive electrode current collector / positive electrode active material layer / solid electrolyte layer / negative electrode active material layer / negative electrode current collector, press-press integration was performed again at 1 t / cm 3 .
  • Example 4-2 (How to make solid electrolyte) With Li 2 S and P 2 S 5 and P 2 O 5 as a raw material of the solid electrolyte, except that a charge ratio to obtain a 70Li 2 S-20P 2 S 5 -10P 2 O 5 composition, Example 4 Amorphous fine particles were obtained under the same conditions as 1. According to the results of differential thermal analysis, the crystallized sample heat-treated at 300 ° C. for 2 hours was pelletized and the ion conductivity was measured to be about 10 ⁇ 3 S / cm.
  • a 20 ⁇ m thick electrolytic copper foil (pure copper type) is immersed in an aqueous solution of 50 g / dm 3 of copper and 75 g / dm 3 of sulfuric acid at 1 g / dm 3 of sodium tungstate at 40 ° C. for 30 seconds, current density 5 A / It was electrodeposited at dm 2 and washed with water and dried.
  • this W-containing copper electrodeposition layer-forming copper foil was subjected to depth profile analysis by AES, it was found that W was indeed detected along with the Cu of the matrix over the surface layer of 0.5 ⁇ m.
  • the positive electrode active material layer is a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically with Mo 6 S 8, and acetylene black are mixed in a ratio of 40: 55: 5. And As Mo 6 S 8 , one obtained by reducing Cu 2 Mo 6 S 8 with an acidic aqueous solution was used. (Anode active material layer) It was the same as Example 4-1. (All solid secondary battery making method) It carried out similarly to Example 4-1.
  • Example 4-3 (How to make solid electrolyte) It produced similarly to Example 4-2. (Anode current collector: Copper electrodeposition layer formation) It carried out similarly to Example 4-2. (Positive electrode active material layer) It was the same as Example 4-2. (Anode active material layer) Sn 4 P 3 as the solid electrolyte was synthesized crystallized 70Li 2 S-20P 2 S 5 -10P 2 O 5, and acetylene black 50: 45: using a composite layer in a mixing ratio of 5. The Sn 4 P 3 used was synthesized by MM treatment with a ball mill at 300 rpm for 3 hours so as to have a composition ratio of Sn and phosphorus. (All solid secondary battery making method) It carried out similarly to Example 4-2.
  • Example 4-4 (How to make solid electrolyte) It was prepared in the same manner as Example 4-3. (Anode current collector: Copper electrodeposition layer formation) It carried out similarly to Example 4-3. (Positive electrode active material layer) For the positive electrode active material layer, use is made of a composite layer in which 70Li 2 S-20P 2 S 5 -10P 2 O 5 which is a solid electrolyte synthesized synthetically and sulfur powder and acetylene black are mixed in a ratio of 30:60:10. It was. (Anode active material layer) The same as in Example 4-3. (All solid secondary battery making method) It carried out similarly to Example 4-3.
  • Example 4-5 (How to make solid electrolyte) It carried out similarly to Example 4-1.
  • (Anode current collector: Copper electrodeposition layer formation) Immersion of 20 ⁇ m thick electrolytic copper foil (pure copper base) in an aqueous solution of 50 g / dm 3 of copper and sulfuric acid at 1 g / dm 3 of sodium molybdate at 40 ° C. for 5 seconds at a current density of 2 A / dm 2 After electrodeposition, it was washed with water and dried. When depth profile analysis was performed on the Mo-containing copper electrodeposition layer-forming copper foil by AES, it was found that Mo was indeed detected along with the Cu of the matrix over the surface layer of 0.1 ⁇ m.
  • (Positive electrode active material layer) It was the same as Example 4-1.
  • (Anode active material layer) It was the same as Example 4-1. (All solid secondary battery making method) It was the same as Example 4-1.
  • Example 4-6 (How to make solid electrolyte) It carried out similarly to Example 4-1.
  • Anode current collector Copper electrodeposition layer formation
  • a 20 ⁇ m thick electrolytic copper foil (pure copper base) is immersed in an aqueous solution of 50 g / dm 3 of copper and sulfuric acid at 1 g / dm 3 of sodium molybdate at 40 ° C. for 70 seconds at a current density of 2 A / dm 2 After electrodeposition, it was washed with water and dried.
  • the depth profile analysis was carried out by AES on this Mo-containing copper electrodeposition layer-forming copper foil, it was found that Mo was indeed detected along with the Cu of the matrix over the surface layer of 2.5 ⁇ m.
  • Anode active material layer It was the same as Example 4-1.
  • Anode active material layer It was the same as Example 4-1. (All solid secondary battery making method) It was the same as Example 4-1.
  • Example 1-1 was carried out in the same manner as Example 1-1 except that a standard electrolytic copper foil which had not been subjected to any of sulfurization treatment, oxidation treatment or electrodeposition treatment was used for the negative electrode current collector.
  • Example 4-1 was carried out in the same manner as Example 4-1 except that a standard electrolytic copper foil for a battery which was not subjected to the electrodeposition forming process was used as the negative electrode current collector.
  • Example 4-1 was carried out in the same manner as Example 4-1 except that a standard electrolytic copper foil for a printed circuit which was not subjected to the electrodeposition forming process was used for the negative electrode current collector.
  • Examples 1-1 to 1-6 the positive electrode active material and the negative electrode are provided.
  • the discharge capacity of the all-solid-state battery is also increased according to the specific capacity of the active material of the positive and negative electrodes, and compared to the Li-ion battery using the conventional organic electrolyte It was also found that high energy density and good cycle characteristics can be obtained.
  • Negative electrode current collector 5 Negative electrode active material layer 7
  • Negative electrode active material 8 Conductive auxiliary agent 9
  • Solid electrolyte layer 11 Sulfide solid electrolyte 13 ......... positive electrode active material layer 15 ... ... positive electrode active material 17 ... ... positive electrode current collector 21 ... ... substrate 23 ... ... copper sulfide layer 31 ... ... substrate 33 ... ... Copper oxide layer 41: First layer 43: Second layer 45: Copper oxide layer 51: Base material 53: Sulfur-resistant metal layer 61: Base material 63: Copper Electrodeposited layer 81: All solid secondary battery 83: Negative electrode active material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 銅または銅合金を含む負極集電体3と、負極集電体3と対向して設けられたアルミニウム、アルミニウム合金またはステンレスからなる正極集電体17との間に、負極集電体3側から、負極集電体3の表面に形成された負極活物質層5と、1価または2価の金属と硫黄を含む硫化物固体電解質11を含む固体電解質層9と、正極集電体17の表面に形成された正極活物質層13と、が順に積層された全固体二次電池1を用いる。負極集電体3の負極活物質層5が形成される面に、耐硫化性層を有する。または、負極集電体3の負極活物質層5が形成される表面の圧縮強度が1250~3000MPaである。

Description

全固体二次電池
 本発明は、電子機器や自動車、または飛行機や人工衛星などに搭載される二次電池に関する。特には固体電解質を構成要素とするバルク型全固体二次電池に関する。
 従来、二次電池としてはLiイオンをロッキングチェア型の正負極間充放電可動イオンとするLiイオン二次電池が広く用いられてきた。これは、非水溶媒に電解質を溶解させた有機電解液とLi軽元素を用いていることから、従来の鉛蓄電池やニッカド電池、或いはニッケル水素電池に比べて、ある程度高エネルギー密度が得られることによる。
 しかしながら、溶媒が可燃性である有機電解液を用いていることから、漏液のみならず発火燃焼事故の問題も常に付随している。このため、電解液に難燃性のイオン液体やゲル状電解質、または高分子状の電解質を用いることが検討されている(特許文献1)。最も理想的な形態は、電解質にも無機固体を用いる全固体型であり、安全性のみならず安定性や信頼性の優れた二次電池が得られる。大きな容量(エネルギー密度)を得るために、積層構造形態を採ることも可能である。また、従来の電解液の様に、溶媒和Liが脱溶媒和する過程も不要であり、イオン伝導体固体電解質の中をLiイオンのみが移動すれば良く、不要な副反応を生じないことからサイクル寿命も大幅に伸長させることができる。
 この全固体二次電池実現の鍵を握る固体電解質のイオン伝導度は、以前には有機電解液に大きく及ばないものであったが、近年電解液に近いか同等以上のイオン伝導体が見出され、これを用いた固体電解質二次電池の実用化検討が始まっている(特許文献2、特許文献3)。
 ところが、イオン伝導性に優れる固体電解質材料は硫黄を成分に含む硫化物系であるために、その取り扱い環境の整備の必要性と共に、電池を構成する他の材料への腐食懸念も想定されている。高度な安定性と信頼性、安全性を実現できるとされる硫化物固体電解質を用いる全固体二次電池の構成要素において、硫化物固体電解質による他の構成要素への腐食懸念があった。特には、従来広く用いられてきた有機電解液Liイオン二次電池用の負極集電体銅箔が使用できない懸念、或いは使用した場合の腐食懸念があった。このため、負極活物質の制限による電池比容量の低下や、高価な集電材料を用いるコスト上昇などの問題があった。
 また、イオン伝導性に優れる固体電解質材料は粉体であり、プレスにより押圧下してイオン伝導体として伝導性を有する形態にする必要がある。硫化物固体電解質は、常温でのプレス成形によりそれが可能であるが、集電体と共に一体成形される場合が一般的に想定されており、従来の集電体銅箔では耐プレス性が不充分であり、変形に止まらず、破断することが予想される。
 他方、全固体電池の正極活物質にはコバルト酸リチウム(LiCoO、LCO)が、負極活物質には黒鉛などカーボン材料が用いられることが多いのが現状一般である。しかし、LCOは固体電解質との接触界面抵抗障壁が高い問題があり、黒鉛負極は比容量が小さい欠点があった。また、高い容量を持つSiなどの合金負極は、充放電に伴う大きな体積変化に起因するサイクル特性劣化が著しいことから、採用することができない問題があった。
国際公開第2006/132339号 特許第3433173号公報 特開2013-30440号公報
 本発明は上記従来の課題を解決するためになされたものであり、負極集電体の腐食の懸念や、プレス成形時の銅箔破断の懸念等を解決し、安全・安定・信頼性に優れた全固体二次電池を提供することを目的とする。
 前述した目的を達成するために、以下の発明を提供する。
(1)銅または銅合金を含む負極集電体と、前記負極集電体と対向して設けられたアルミニウム、アルミニウム合金またはステンレスからなる正極集電体との間に、前記負極集電体側から、前記負極集電体の表面に形成された負極活物質層と、1価または2価の金属と硫黄を含む硫化物固体電解質を含む固体電解質層と、前記正極集電体の表面に形成された正極活物質層と、が順に積層され、前記負極集電体の前記負極活物質層が形成される面に、耐硫化性層を有することを特徴とする全固体二次電池。
(2)前記耐硫化性層が、硫化銅を含む硫化銅層であることを特徴とする(1)に記載の全固体二次電池。
(3)前記硫化銅層の厚さが0.01~1μmであることを特徴とする(2)に記載の全固体二次電池。
(4)前記耐硫化性層が、酸化銅を含む酸化銅層であることを特徴とする(1)に記載の全固体二次電池。
(5)前記酸化銅層の厚さが0.01~1μmであることを特徴とする(4)に記載の全固体二次電池。
(6)前記酸化銅層は、酸化第一銅を主に含む負極集電体側の第1層と、酸化第二銅層を主に含む表層側の第2層とを有することを特徴とする(4)に記載の全固体二次電池。
(7)前記耐硫化性層が、ニッケル、亜鉛、スズから選ばれる少なくとも1種を含む耐硫化性金属層であることを特徴とする(1)に記載の全固体二次電池。
(8)前記耐硫化性金属層の厚さが0.01~5μmであることを特徴とする(7)に記載の全固体二次電池。
(9)前記耐硫化性金属層の亜鉛またはスズが、前記負極集電体に含まれる銅と拡散合金化していることを特徴とする(7)に記載の全固体二次電池。
(10)前記拡散合金化層の上層に、さらにニッケル層が形成されていることを特徴とする(9)記載の全固体二次電池。
(11)銅または銅合金を含む負極集電体と、前記負極集電体と対向して設けられたアルミニウム、アルミニウム合金またはステンレスからなる正極集電体との間に、前記負極集電体側から、前記負極集電体の表面に形成された負極活物質層と、1価または2価の金属と硫黄を含む硫化物固体電解質を含む固体電解質層と、前記正極集電体の表面に形成された正極活物質層と、が順に積層され、前記負極集電体の前記負極活物質層が形成される表面の圧縮強度が1250~3000MPaであることを特徴とする全固体二次電池。
(12)前記負極集電体の前記負極活物質層が形成される表面の圧縮弾性率が60~125GPaであることを特徴とする(11)に記載の全固体二次電池。
(13)前記負極集電体の表面に、モリブデンまたはタングステンを含有する銅電析層を有し、前記銅電析層の厚さが0.1~2.5μmであることを特徴とする(11)記載の全固体二次電池。
(14)前記正極活物質層に含まれる正極活物質として、硫黄、MMo8-y(M=金属、X=S、Se、Te、0≦x≦4.0、0≦y≦0.2)、Mo8-x(0≦x≦0.2)のいずれかを用いることを特徴とする(1)または(11)記載の全固体二次電池。
(15)前記負極活物質層に含まれる負極活物質が、My(0.9≦x,y≦10、M=Si,Sn,In,Al,Zn)であることを特徴とする(1)または(11)記載の全固体二次電池。
(16)前記負極活物質層中に、前記硫化物固体電解質が含まれていることを特徴とする(1)または(11)記載の全固体二次電池。
 負極集電体の腐食の懸念や、プレス成形時の銅箔破断の懸念等を解決し、安全・安定・信頼性に優れた全固体二次電池を提供することができる。
第1の実施形態に係る全固体二次電池の断面図。 第1の実施形態に係る硫化銅層を形成した負極集電体の断面図。 図3(a)第2の実施形態に係る酸化銅層を1層形成した負極集電体の断面図、図3(b)第2の実施形態に係る酸化銅層を2層形成した負極集電体の断面図。 第3の実施形態に係る耐硫化性金属層を形成した負極集電体の断面図。 第4の実施形態に係る銅電析層を形成した負極集電体の断面図。 第1の実施形態に係る、負極活物質層中に導電助剤が含まれている全固体二次電池の断面図。
<第1の実施形態:硫化銅層>
 本発明の第1の実施形態について図面に基づいて詳細に説明する。図1は、第1の実施形態に係る全固体二次電池の断面図である。第1の実施形態に係る全固体二次電池1は、対向して設けられた負極集電体3と正極集電体17の間に、負極集電体3側から、負極活物質層5、固体電解質層9、正極活物質層13が積層されている。負極活物質層5は、負極活物質7、硫化物固体電解質11を含む。固体電解質層9は硫化物固体電解質11を含む。正極活物質層13は、正極活物質15、硫化物固体電解質11、導電助剤8を含む。 以下に、各層の構成について説明する。
(負極集電体)
 負極集電体は、銅または銅合金を含む基材上に、負極活物質層が形成される面に、耐硫化性層を有する。第1の実施形態では、耐硫化性層として硫化銅層23を用いる。図2において、負極集電体3は、基材21の負極活物質層5が形成される面に、硫化銅層23が積層されている。形成する硫化銅層23の厚さは0.01~1μmであり、化合物形態は硫化第一銅が主に形成されている。
 基材21としては、純銅系では電解銅箔や圧延のタフピッチ銅箔を、合金系では主に圧延のCu-Sn系やCu-Fe系、Cu-Zr系、Cu-Cr系、コルソン系などの、固溶または析出強化された希薄合金を用いることができる。
 硫化処理または硫化銅層形成には、銅系の基材21を硫化カリウムや硫化ナトリウムの水溶液へ浸漬処理する。塩素イオンやアンモニウムイオンを含有させるとさらに良い。pHは酸性または弱アルカリ性が良い。温度は室温で良い。時間は形成厚さによるが、10秒程度から数10秒程度、長くとも1分程度で、本発明の用途には足りる。本硫化処理の前処理として、浸漬脱脂またはカソード脱脂、次いで酸洗(中和)処理を施すことが好ましい。基材表面の洗浄と共に硫化処理時の基材濡れ性を向上させることができる。
(硫化銅層の効果)
 硫化銅層23は耐硫化腐食性を有している。さらに、硫化第一銅や硫化第二銅はともに良導性である。特に、硫化銅層23が硫化第一銅である場合、硫化銅層と基材銅箔との密着性が良好である。
(硫化物固体電解質)
 硫化物固体電解質11は、1価または2価の金属と硫黄を含む固体電解質である。硫化物固体電解質11に含まれる金属はLi、NaまたはMgが望ましい。イオン伝導性を有する、実用的な固体電解質として、Li伝導体か、Na伝導体、或いはMg2+伝導体が当面可能である。
 Sを含む硫化物固体電解質には、LiS-P系、LiS-P-SiS系、LiS-P-P系、LiS-SiS-LiPO系、LiS-SiS-LiSiO系、LiS-B-LiI系、Li3+5x1-x系(0.06≦x≦0.08)、Li3+5x1-x4-z系(0.02≦x≦0.11、0.20≦z≦1.55)、LiS-GeS-LiPO系、またはLiS-GeS-P系、LiS-GeS-P系等々を用いることができる。具体例として、70LiS-30P、75LiS-15P-10P、63LiS-36SiS-1LiPO、57LiS-38SiS-5LiSiO、30LiS-26B-44LiI、Li11、Li-25PO-95S、Li-35PO-93S、Li-35PO-93S-5O0.5、Li10-GeP-S12、Li-25GeO-25PO-25S、などを挙げることができる。
(正極集電体)
 正極集電体17は、アルミニウム、アルミニウム合金またはステンレスからなる。正極集電体17として、純Al系の1000系や、Al-Mn系の3000系とAl-Fe系の8000系などが主に用いられる。さらに具体的には、1085や1N30、および1100の純Al系、並びに3003や8021の合金系である。ステンレスは合金組成や番手にかかわらず用いることができるが、含有成分と組成により耐食性とコストが大きく相違するので、注意が必要である。
(正極活物質)
 正極活物質15には、リチウムイオン二次電池に一般的に用いられる正極活物質を使用できる。例えば、コバルト酸リチウムであり、LCO表面にニオブ酸リチウム(LiNbO)などの酸化物をコーティングしたものである。また、LCOのCoをNiやMn、またはAlで一部を置換した三元系正極なども同様に用いることができる。さらには、正極活物質15として、硫黄、MMo8-y(M=Cuなどの金属、X=S、Se、Te、0≦x≦4.0、0≦y≦0.2)の銅シュブレル化合物やMo8-x(0≦x≦0.2)のシュブレル化合物を用いることができる。これらのシュブレル化合物は固体電解質との混合体として使用することで、正極活物質15と正極集電体17との界面抵抗が大きくならない複合体とすることができる。具体的には、CuMoやMoを挙げることができる。正極活物質15の粒径はサブミクロンからミクロンオーダーである。さらに、正極活物質層13には、アセチレンブラックなどの導電助剤8を混合して導電パスを形成し易くする。
(負極活物質)
 負極活物質7には、リチウムイオン二次電池に一般的に用いられる負極活物質を使用できる。例えば、黒鉛(人造黒鉛または天然黒鉛)などのカーボン系活物質であり、シリコンやSiO系(Si+SiO、SiO)のシリコン酸化物、スズなどの合金系負極材料である。或いは、カーボン系材料と合金系材料の混成も用いることができる。特に本発明においては、銅箔に腐食に強い耐硫化性層を有するため、負極活物質には、M(0.9≦x、y≦10、M=Si,Sn,In,Al,Zn)を用いることができ、これらは充放電に伴う体積変化が小さいという特長があるので、高い容量を実現させることができる。具体的には、Sn,Sn,SnP,InPなどを挙げることができる。
 また、負極活物質層5は、負極活物質7を少なくとも混合したスラリーを負極集電体3に塗布して形成されており、全固体二次電池1の構成要素として高い容量と信頼性を実現する。スラリーには、アセチレンブラックなどの導電助剤8と、水系バインダや増粘剤、或いは有機溶剤系のバインダを含む場合が多い。導電助剤8をスラリーに添加することで、図6に示すような負極活物質7と硫化物固体電解質11と導電助剤8を含む負極活物質層83を得ることができる。このことにより、負極活物質層83の導電性が向上する。
 硫化物固体電解質11をスラリーに添加することで、図1に示すような負極活物質7と硫化物固体電解質11の両方を含む負極活物質層5を得ることができる。図1において、全固体二次電池1の負極活物質層5と正極活物質層13にも、硫化物固体電解質11が含まれている。このことにより、負極活物質7や正極活物質15までリチウムイオンが浸透しやすく、高速で充放電が可能となる。
(第1の実施形態の効果)
 第1の実施形態に係る負極集電体3は、表面に耐硫化腐食性の硫化銅層23を有しているため、硫化物固体電解質11を使用しても腐食の心配が無い。さらに、銅系の基材21は高い導電性を有し、硫化第一銅や硫化第二銅はともに良導性であるため、負極集電体3は電気伝導性に優れる。また、硫化銅層23と基材21の密着性が良好である。
<第2の実施形態:酸化銅層>
 次に本発明の第2の実施形態について説明する。第2の実施形態は、第1の実施形態とは、負極集電体に形成された耐硫化性層が異なり、耐硫化性層が酸化銅層である。硫化物固体電解質、正極活物質、負極活物質は、第1の実施形態と同じである。
(負極集電体)
 図3(a)において、第2の実施形態に係る負極集電体3aは、基材31の前記負極活物質層5が形成される面に、酸化銅層33を有する。図3(b)において、第2の実施形態に係る負極集電体3bは、基材31の負極活物質層5が形成される面に、酸化銅層45が積層されている。酸化銅層45は、酸化第一銅を主に含む負極集電体側の第1層41と、酸化第二銅層を主に含む表層側の第2層43とを有する。
 形成する酸化銅層33および酸化銅層45の厚さは0.01~1μmであり、化合物形態は、酸化第一銅主体の酸化銅層33のみでもよいし、基材31側に酸化第一銅主体の第1層41が、次いで表層側に酸化第二銅主体の第2層43が形成されていてもよい。
 基材31としては、純銅系では電解銅箔や圧延のタフピッチ銅箔を用いることができ、合金系では主に圧延のCu-Sn系やCu-Fe系、Cu-Zr系、Cu-Cr系、コルソン合金系などの、第二成分以下が0.01質量%~5質量%程度の固溶または析出強化された希薄合金を用いることができる。Ag以外の添加成分が高いと、導電率が低くなり集電性を低下させる懸念がある。
 酸化処理または酸化銅層形成は、基材表面を弱アルカリ性からアルカリ性の水溶液と接触させながら、アノード酸化処理をすることによる。炭酸水素カリウムや炭酸水素ナトリウム、炭酸アンモニウム、炭酸カリウム、炭酸ナトリウム、水酸化カリウムや水酸化ナトリウムの各水溶液を用いることができる。高酸化層である酸化第二銅層を主体に形成したい場合には、炭酸塩や水酸化塩のような高アルカリ水溶液を選択する方が好適である。片面形成の場合には表面へ水溶液を供給接触させ、両面へ形成するには浸漬処理すればよい。他の中性塩へアンモニウムイオンを含有させた水溶液でも良い。塩素イオンを添加すると、基材上に密着性のさらに良い酸化第一銅が形成され易い。液温は室温で良く、温度を上げ過ぎると液からミストが多く発生して環境が良くない。時間は形成厚さと電流密度によるが、10秒程度から数分程度で良い。電流密度は0.1~20A/dmが経済性から選択されるが、さらに小さくゆっくりと密着性の良い酸化銅を形成させることもできる。短時間形成のためにさらに高電流密度でも構わない。また、参照電極を用いた電位制御によっても形成可能であり、例えば、Ag/AgCl電極基準の0.6~0.8V(酸化第一銅)、または0.8~1.0V(酸化第二銅)の範囲を目標に、それぞれの水溶液と形成酸化銅層形態に応じて、電位設定と制御をすることができる。
 さらに、酸化銅層形成の方法として、Nなどの不活性ガス雰囲気に酸素を所望濃度供給した加熱炉にて熱処理をして形成することも可能である。温度は80~200℃程度が望ましい。板厚の厚い場合には1000℃を超える高温でも可能で、緻密な酸化第一銅層を形成させることができる。箔など薄い条や板の場合には高すぎる温度での加熱酸化処理は、基材の特性の変化や、通板プロセスでの歪みが強くなることによるしわなどの不良を起こしやすい。酸素濃度はその加熱炉やバッチ、連続処理にもよるので、実験によって決める必要があるが、概ね30~30000ppm程度である。時間も同様であり、所望の形成厚さと化合形態により、加熱温度と共に決定する。
 本酸化処理の前処理として、浸漬脱脂またはカソード脱脂、次いで酸洗(中和)処理を施す事が好ましい。基材表面の洗浄と共に硫化処理時の基材濡れ性を向上させることができる。アルカリ水溶液による処理液自体の脱脂効力も有する。
(第2の実施形態の効果)
 酸化銅は、酸化反応である腐食に対して高い耐性を有しており、硫化物固体電解質と接触しても腐食の懸念はない。そのため、第2の実施形態に係る負極集電体3aと3bは、表面に耐硫化腐食性の酸化銅層33または45を有しているため、硫化物固体電解質11を使用しても腐食の心配が無い。負極集電体3aと3bでは、酸化銅層33と基材31または、第1層41と基材31の間は、酸化第一銅と銅が接触しているため、基材31と酸化銅層33または酸化銅層45との密着性が良好である。また、酸化銅が半導電性であるため、負極集電体3aと3bの集電を妨げることはない。
<第3の実施形態:耐硫化性金属層>
 次に本発明の第3の実施形態について説明する。第3の実施形態は、第1、第2の実施形態と負極集電体に形成された耐硫化性層が異なり、耐硫化性層が耐硫化性金属層である。硫化物固体電解質、正極活物質、負極活物質は第1の実施形態、第2の実施形態と同じである。
 図4において、負極集電体3cは、基材51の負極活物質層5が形成される面に、耐硫化性金属層53が積層されている。形成する耐硫化性金属層53の厚さは0.01~5μmである。5μm以上の耐硫化性金属層53を形成することは経済性や製造性の観点から望ましくない。耐硫化性金属層53はNiやZn、Snなどを含み、耐硫化性金属層53はこれらの金属の単体でも良く、他の成分との合金でも良い。さらに、当該金属層は多層にして集電体基材の耐硫化性を高めることができる。例えば、集電体表面にZn系やSn系の第一金属層を形成した後に、第一金属層上にNi系金属層を第二層として形成する。これにより、耐硫化性をさらに向上させることができる。
 基材51としては、純銅系では電解銅箔や圧延のタフピッチ銅箔を用いることができ、合金系では主に圧延のCu-Sn系やCu-Zn系、Cu-Fe系、Cu-Zr系、Cu-Cr系、コルソン(Cu-Ni-Si)系などの、固溶または析出強化された希薄合金を用いることができる。これら基材表層に形成した耐硫化性層を、加熱ほかの拡散処理により基材合金化させても良い。
 耐硫化性金属層53の形成には、Cu基材をNiまたはNi合金浴、ZnまたはZn合金浴、SnまたはSn合金浴の電解液へ浸漬、カソード電解処理する。Ni系電析層には、硫酸Niや炭酸Ni浴を用いることができ、Zn系では硫酸Zn浴を、Sn系では硫酸Snや有機酸浴を用いることができる。有機酸浴のpHは中性から弱アルカリ性である。温度は室温から40℃程度で良い。時間は形成厚さと電流密度によるが、数秒から30秒程度、長くとも1分程度で、本発明用途には足りる。電流密度は電析種と形成厚さによるが、0.01~5A/dm程度である。圧延材の場合には、本電析処理の前処理として、浸漬脱脂またはカソード脱脂、次いで酸洗(中和)処理を施すことが好ましい。基材表面の洗浄と共に電析処理時の基材濡れ性を向上させることができる。
(第3の実施形態の効果)
 耐硫化性金属層53は、硫化物による腐食に耐えるNiやZn、Snなどを含む。そのため、第3の実施形態に係る負極集電体3cは、表面に耐硫化腐食性の耐硫化性金属層53を有しているため、硫化物固体電解質11を使用しても腐食の心配が無い。多層とした耐硫化性金属層形態では、第一層金属層のZnやSnは、基材Cuと直ぐに相互拡散して拡散合金化層を形成する。拡散合金化層によって基材Cuの耐腐食性と耐熱性を向上させる。特にSnは、Cu3Sn(ε相)とCu6Sn5(η’相)の化合物を形成して基材の保護性が向上する。二次電池の作動環境は80℃に及ぶこともあり、この場合には基材成分が表層に拡散移動することがあり、これにより前記の耐硫化性が低下して、表層で高抵抗の硫化物を生じて電池性能の劣化に繋がる。なお、前述した様に、拡散合金化層上にNi系金属層を形成することもできる。耐硫化金属層、またはさらに前記の多層金属層形態とすることで、このような高温作動環境による電池セルの劣化を防止または抑止することができる。また、銅系の基材51は導電性が高く、耐硫化性金属層53も良導性の金属を主体としているため、負極集電体3cは良好な集電性を有する。また、電析で成膜された耐硫化性金属層53は、基材51との密着性が良好であり、これらの間の界面接触抵抗を低下させることができる。
<第4の実施形態>
 次に本発明の第4の実施形態について説明する。第4の実施形態は、負極集電体の負極活物質層が形成される表面の圧縮強度が1250~3000MPaであることを特徴とする。また、負極集電体の負極活物質層が形成される表面の圧縮弾性率が60~125GPaであることが好ましい。硫化物固体電解質、正極活物質、負極活物質は、第1~第3の実施形態と同じである。
 第4の実施形態に係る負極集電体は、少なくとも負極活物質または固体電解質と接する表面から深さ2μmの層のインデンター測定圧縮強度が1250~3000MPaである。また、同じくインデンター測定圧縮弾性率が60~125GPaであることが好ましい。表面の圧縮強度と圧縮弾性率は、インデンターで測定することができる。負荷させる荷重にもよるが、一般に(マイクロ)ビッカースとナノインデンターの中間域対象を測定する装置であり、標準的な荷重負荷の場合、一般的な銅箔で侵入深さが2μm以下なので、厚さ10μm前後の銅箔にも適する。さらに薄い箔の場合には超軽荷重型のナノインデンターで測定することができる。例えば、ナノ・インデンテーション・テスターとして、(株)エリオニクス製の超微小押し込み硬さ試験機ENT-1100aや、超軽荷重型超微小押し込み硬さ試験機ENT-2100を使用することができる。
 図5において、第4の実施形態に係る負極集電体3dは、基材61の負極活物質層5が形成される面に、銅電析層63を有する。銅電析層63には、表層にMoまたはWを含有する。形成する銅電析層63の厚さは0.1~2.5μmであり、銅電析層63はMoやWを含有する銅合金の電析層が該当する。ベースの銅電析液は一般的な銅イオンと硫酸イオンを基本に、タングステン酸塩やモリブデン酸塩(いずれもカリウムやナトリウム塩など)を添加して、室温近傍液温にて、概ね0.5~10A/dm程度の電流密度で電析すればよい。銅濃度、硫酸濃度共に20~100g/dm程度の範囲から選択できる。当該硫酸銅水溶液へ少なくともタングステン化合物またはモリブデン化合物を添加した電解液を用いる。添加濃度は化合物形態とMoまたはWを含有させたい量にもよるが、0.05~5g/dm程度で良い。各金属イオン濃度にして5~3000ppm程度で行われるが、さらに高濃度でも構わないが、経済性が低下するので、電析層への含有濃度と表層硬度(強度・弾性率)による。例えば、タングステン酸カリウムまたはタングステン酸ナトリウムを0.5~10g/dm程度の添加することで、必要な表面の圧縮強度や圧縮弾性率が得られる。それ以上の高い濃度を用いても何ら構わないが、経済性が低下する。
 集電性や導電性の点からはAg電析層も候補であるが、経済性が低いという問題がある。Sn電析層はそれ自体の銅基材との拡散合金化による硬度上昇もあり、好適に用いられる。Sn電析層の場合も、硫酸イオンと2価の錫イオンを有する硫酸浴や有機酸浴が用いられる。2価錫イオンは4価錫イオンに酸化されやすいが、それ自体が電析層へ直接悪影響を与えることない。
 基材61としては、純銅系では電解銅箔や圧延のタフピッチ銅箔を用いることができ、合金系では主に圧延のCu-Sn系やCu-Fe系、Cu-Zr系、Cu-Cr系、コルソン合金系などの、第二成分以下が0.01質量%~5質量%程度の固溶または析出強化された希薄合金を用いることができる。Ag以外の添加成分が高いと、導電率が低くなり集電性を低下させる懸念がある。
 本電析層形成の前処理として、浸漬脱脂またはカソード電解脱脂、次いで酸洗(中和)処理を施しても良い。基材表面の洗浄と共に硫化処理時の基材濡れ性を向上させることができる。アルカリ水溶液による処理液自体の脱脂効力も有する。
(第4の実施形態の効果)
 第4の実施形態に係る負極集電体は、負極活物質層が形成される表面の機械強度が高いため、高い耐プレス性を有している。そのため、硫化物固体電解質を用いて、一体プレス成型にて全固体二次電池を作製しても、負極集電体の破断などの不良や集電劣化を生じることがない。また、従来プレス成型ができなかったセルに対してもプレス成型が可能となるという点で生産性が向上する。特に、電析で成膜された銅電析層63は、基材61との密着性が良好である。また、銅系の基材61は導電性が高く、MoやWを含有する銅電析層63は高導電性を有するので、集電性、密着性共に良好であり、一体成型セル構成に好適である。集電体そのものを高強度または高弾性材料とすることも可能であるが、高コスト材料を用いることになり、実用は難しい。耐プレス性を要する強度または弾性率は、集電体表層に付帯していれば良いので、例えば前記の耐硫化性金属層を形成する表面処理工程において、連続して当該高強度または高弾性率を有する銅電析層を形成すれば、コストを低く抑えることができ経済的に、本特性を付帯させることが可能になる。
 <全固体二次電池の製造方法>
 全固体二次電池1の製造方法は特に限定されないが、以下の方法により製造することができる。まず、正極活物質15、硫化物固体電解質11をそれぞれプレスによりペレット成型する。その後、正極集電体17、正極活物質15のペレット、硫化物固体電解質11のペレット、負極活物質7、負極集電体3を重ねて、正極集電体/正極活物質層/固体電解質層/負極活物質層/負極集電体の構成にて、プレス押圧一体化成型し全固体二次電池を作製することができる。
 次に、本発明の効果をさらに明確にするために、実施例および比較例について詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<実施例1-1>
(固体電解質作成方法)
 固体電解質の原料として、LiSとPをAr雰囲気グローブボックス内にて乳鉢で混合した後、Zrポット内にZrボールと共に封入し、プラネタリタイプボールミルにて、室温のまま500rpmにて15時間メカニカルミリング(以下MM)処理を施し、70LiS-30Pのアモルファス微粒子を得た。示差熱分析により200℃に発熱ピークを有し、結晶化することが判った。2時間加熱処理により結晶化させた試料をペレット化させて、カーボン(ペースト)電極を形成した後、交流インピーダンス法により伝導度を測定した。その結果、10-3S/cmと高い値を示し、本材料が高いLiイオン伝導性を有することが判った。
(負極集電体:硫化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、5g/dmS水溶液、pH1.5、室温に30秒間浸漬処理した後に、水洗乾燥した。本硫化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、多くはCuS酸化還元電位にプラトー領域を有し、その還元電気量から約0.1μm厚さのCuS層が表面に形成されていることが判った。
(正極活物質層)
 正極活物質層として、ニオブ酸リチウム(LiNbO)を最表層に被覆したコバルト酸リチウム(LiCoO)と本固体電解質、およびアセチレンブラックを45:50:5の割合で混合した複合層を用いた。表面被覆には転動流動層コーティング装置を用いて、リチウムのアルコキシドとニオブのアルコキシドを溶解したエチルアルコール溶液を噴霧して被覆した後、酸素雰囲気中にて加熱してアルコールを分解させた。
(負極活物質層)
 人造黒鉛と本固体電解質を60:40の割合で混合した複合層を用いた。
(全固体二次電池作製方法)
 正極活物質層、固体電解質層はそれぞれプレスによりペレット成型した後に、正極集電体、正極活物質層ペレット、固体電解質層ペレット、負極活物質、負極集電体を重ねて、正極集電体/正極活物質層/固体電解質層/負極活物質層/負極集電体の構成にて、プレス押圧一体化成型し全固体二次電池を作製した。なお、正極集電体には1000系Al箔を用いた。
<実施例1-2>
(固体電解質作成方法)
 固体電解質の原料としてLiSとPとPを用いて、70LiS-20P-10P組成を得る投入割合であること以外は、実施例1-1と同じ条件でアモルファス微粒子を得た。示差熱分析結果から300℃×2時間熱処理した結晶化試料をペレット化させてイオン伝導度を測定したところ、約10-3S/cmであった。
(負極集電体:硫化銅層形成)

 実施例1-1と同様に形成した。
(正極活物質層)
 正極活物質層は、Moと合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを40:55:5の割合で混合した複合層とした。Moは、CuMoを酸性水溶液による還元処理を行って得たものを用いた。
(負極活物質層)
 実施例1-1と同様とした。
(全固体二次電池作成方法)
 実施例1-1と同様に行った。
<実施例1-3>
(固体電解質作成方法)
 実施例1-2と同様に作成した。
(負極集電体:硫化銅層形成)
 実施例1-2と同様に形成した。
(正極活物質層)
 実施例1-2と同様とした。
(負極活物質層)
 Snと合成結晶化させた固体電解質である70LiS-20P-10Pを1:1の割合で混合した複合層を用いた。SnはSnとリンを組成比になる様にボールミルで300rpm3時間MM処理して合成したものを用いた。
(全固体二次電池作成方法)
 実施例1-2と同様に行った。
<実施例1-4>
(固体電解質作成方法)
 実施例1-3と同様に作成した。
(負極集電体:硫化銅層形成)
 実施例1-3と同様に形成した。
(正極活物質層)
 正極活物質層に、硫黄粉末と合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを30:60:10の割合で混合した複合層を用いた。
(負極活物質層)
 実施例1-3と同様とした。
(全固体二次電池作成方法)
 実施例1-3と同様に行った。
<実施例1-5>
(固体電解質作成方法)
 実施例1-1と同様に作成した。
(負極集電体:硫化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、5g/dmS水溶液、pH1.5、室温に6秒間浸漬処理した後に、水洗乾燥した。本硫化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、多くはCuS酸化還元電位にプラトー領域を有し、その還元電気量から約0.01μm厚さのCuS層が表面に形成されていることが判った。
(正極活物質層)
 実施例1-1と同様に形成した。
(負極活物質層)
 実施例1-1と同様に形成した。
(全固体二次電池作成方法)
 実施例1-1と同様に形成した。
<実施例1-6>
(固体電解質作成方法)
 実施例1-1と同様に作成した。
(負極集電体:硫化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、5g/dmS水溶液、pH1.5、室温に200秒間浸漬処理した後に、水洗乾燥した。本硫化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、多くはCuS酸化還元電位にプラトー領域を有し、その還元電気量から約1μm厚さのCuS層が表面に形成されていることが判った。
(正極活物質層)
 実施例1-1と同様に形成した。
(負極活物質層)
 実施例1-1と同様に形成した。
(全固体二次電池作成方法)
 実施例1-1と同様に形成した。
<実施例2-1>
(固体電解質作成方法)
 実施例1-1と同様に行った。
(負極集電体:酸化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、1g/dmNaOH水溶液、pH10、室温にて30秒間浸漬中、電流密度1A/dmにてアノード電解処理をした後に、水洗乾燥した。本酸化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、CuOとCuOの還元電位と思われるプラトー領域が現れ、その還元電気量から銅箔上に順に0.1μm厚さのCuO層と0.2μm厚さのCuO層が表面に形成されていることが判った。
(正極活物質層)
 実施例1-1と同様とした。
(負極活物質層)
 実施例1-1と同様とした。
(全固体二次電池作成方法)
 実施例1-1と同様に行った。
<実施例2-2>
(固体電解質作成方法)
 固体電解質の原料としてLiSとPとPを用いて、70LiS-20P-10P組成を得る投入割合であること以外は、実施例2-1と同じ条件でアモルファス微粒子を得た。示差熱分析結果から300℃2時間熱処理した結晶化試料をペレット化させてイオン伝導度を測定したところ、約10-3S/cmであった。
(負極集電体:酸化銅層形成)
 実施例2-1と同様に行った。
(正極活物質層)
 正極活物質層は、Moと固体電解質、並びにアセチレンブラックを40:55:5の割合で混合した複合層とした。Moは、CuMoを酸性水溶液による還元処理を行って得たものを用いた。
(負極活物質層)
 実施例2-1と同様とした。
(全固体二次電池作成方法)
 実施例2-1と同様に行った。
<実施例2-3>
(固体電解質作成方法)
 実施例2-2と同様に作成した。
(負極集電体:酸化銅層形成)
 実施例2-2と同様に行った。
(正極活物質層)
 実施例2-2と同様とした。
(負極活物質層)
 Snと合成結晶化させた固体電解質である70LiS-20P-10Pを1:1の割合で混合した複合層を用いた。SnはSnとリンを組成比になる様にボールミルで300rpm3時間MM処理して合成したものを用いた。
(全固体二次電池作成方法)
 実施例2-2と同様に行った。
<実施例2-4>
(固体電解質作成方法)
 実施例2-3と同様に作成した。
(負極集電体:酸化銅層形成)
 実施例2-3と同様に行った。
(正極活物質層)
 正極活物質層に、硫黄粉末と合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを30:60:10の割合で混合した複合層を用いた。
(負極活物質層)
 実施例2-3と同様とした。
(全固体二次電池作成方法)
 実施例2-3と同様に行った。
<実施例2-5>
(固体電解質作成方法)
 実施例2-1と同様に行った。
(負極集電体:酸化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、1g/dmNaOH水溶液、pH10、室温にて5秒間浸漬中、電流密度0.2A/dmにてアノード電解処理をした後に、水洗乾燥した。本酸化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、CuOとCuOの還元電位と思われるプラトー領域が現れ、その還元電気量から銅箔上に順に0.001μm厚さのCuO層と0.01μm厚さのCuO層が表面に形成されていることが判った。
(正極活物質層)
 実施例2-1と同様とした。
(負極活物質層)
 実施例2-1と同様とした。
(全固体二次電池作成方法)
 実施例2-1と同様に行った。
<実施例2-6>
(固体電解質作成方法)
 実施例2-1と同様に行った。
(負極集電体:酸化銅層形成)
 20μm厚さの電解銅箔(純銅系)を、1g/dmNaOH水溶液、pH10、室温にて30秒間浸漬中、電流密度3A/dmにてアノード電解処理をした後に、水洗乾燥した。本酸化処理銅箔を、充分N脱気した0.5N-KCl水溶液中でカソード還元処理をしたところ、CuOとCuOの還元電位と思われるプラトー領域が現れ、その還元電気量から銅箔上に順に0.1μm厚さのCuO層と0.9μm厚さのCuO層が表面に形成されていることが判った。
(正極活物質層)
 実施例2-1と同様とした。
(負極活物質層)
 実施例2-1と同様とした。
(全固体二次電池作成方法)
 実施例2-1と同様に行った。
<実施例3-1>
(固体電解質作成方法)
 固体電解質の原料として、LiSとPをAr雰囲気グローブボックス内にて乳鉢で混合した後、Zrポット内にZrボールと共に封入し、プラネタリタイプボールミルにて、室温のまま500rpmにて20時間のMM処理を施し、70LiS-30Pのアモルファス微粒子を得た。示差熱分析により200℃に発熱ピークを有し、結晶化することが判った。2時間加熱処理により結晶化させた試料をペレット化させて、カーボン(ペースト)電極を形成した後、交流インピーダンス法により伝導度を測定した。その結果、10-3S/cmと高い値を示し、本材料が高いLiイオン伝導性を有することが判った。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、25g/dm硫酸ニッケル水溶液、pH1.5、室温に15秒間浸漬、電析処理した後に、水洗乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約0.2μm厚さのNi層が形成されていることが判った。
(正極活物質層)
 実施例1-1と同様とした。
(負極活物質層)
 実施例1-1と同様とした。
(全固体二次電池作成方法)
 実施例1-1と同様に行った。
<実施例3-2>
(固体電解質作成方法)
 固体電解質の原料としてLiSとPとPを用いて、70LiS-20P-10P組成を得る投入割合であること以外は、実施例3-1と同じ条件でアモルファス微粒子を得た。示差熱分析結果から300℃2時間熱処理した結晶化試料をペレット化させてイオン伝導度を測定したところ、約10-3S/cmであった。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、5g/dm硫酸スズ水溶液、pH1.5、室温に15秒間浸漬、電析処理した後に、水洗後、125℃加熱乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約0.2μm厚さのSn層が形成されていることが判った。さらに、断面のSEM観察とEPMA分析によりSnが基材銅へ拡散し合金化していることが判った。
(正極活物質層)
 正極活物質層は、Moと合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを40:55:5の割合で混合した複合層とした。Moは、CuMoを酸性水溶液による還元処理を行って得たものを用いた。
(負極活物質層)
 実施例3-1と同様とした。
(全固体二次電池作成方法)
 実施例3-1と同様に行った。
<実施例3-3>
(固体電解質作成方法)
 実施例3-2と同様に作成した。
(負極集電体:耐硫化性金属層形成)
 実施例3-2と同様に形成した。
(正極活物質層)
 実施例3-2と同様とした。
(負極活物質層)
 Snと合成結晶化させた固体電解質である70LiS-20P-10P、およびアセチレンブラックを50:45:5の割合で混合した複合層を用いた。SnはSnとリンを組成比になる様にボールミルで300rpm3時間MM処理して合成したものを用いた。
(全固体二次電池作成方法)
 実施例3-2と同様に行った。
<実施例3-4>
(固体電解質作成方法)
 実施例3-3と同様に作成した。
(負極集電体:耐硫化性金属層形成)
 実施例3-3と同様に形成した。
(全固体二次電池作成方法)
(正極活物質層)
 正極活物質層に、硫黄粉末と合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを30:60:10の割合で混合した複合層を用いた。
(負極活物質層)
 実施例3-3と同様とした。
(全固体二次電池作成方法)
 実施例3-3と同様に行った。
<実施例3-5>
(固体電解質作成方法)
 実施例3-2と同様とした。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、250g/dm硫酸亜鉛水溶液に、室温で120秒間浸漬、5A/dm電析処理した後に、水洗後乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約2μm厚さのZn層が形成されていることが判った。さらに、断面のSEM観察とEPMA分析によりZnが基材銅へ拡散し合金化していることが判った。
(正極活物質層)
 実施例3-2と同様とした。
(負極活物質層)
 実施例3-2と同様とした。
(全固体二次電池作成方法)
 実施例3-2と同様とした。
<実施例3-6>
(固体電解質作成方法)
 実施例3-1と同様とした。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、500g/dmスルファミン酸ニッケル水溶液(ホウ酸30g/dm、塩化ニッケル30g/dm含有)、40℃に10秒間浸漬、2A/dm電析処理した後に、水洗乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約0.01μm厚さのNi層が形成されていることが判った。
(正極活物質層)
 実施例3-1と同様とした。
(負極活物質層)
 実施例3-1と同様とした。
(全固体二次電池作成方法)
 実施例3-1と同様に行った。
<実施例3-7>
(固体電解質作成方法)
 実施例3-1と同様とした。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、500g/dmスルファミン酸ニッケル水溶液(ホウ酸30g/dm、塩化ニッケル30g/dm含有)、室温40℃に400秒間浸漬、10A/dm電析処理した後に、水洗乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約5μm厚さのNi層が形成されていることが判った。
(正極活物質層)
 実施例3-1と同様とした。
(負極活物質層)
 実施例3-1と同様とした。
(全固体二次電池作成方法)
 実施例3-1と同様に行った。
<実施例3-8>
(固体電解質作成方法)
 実施例3-1と同様とした。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、250g/dm硫酸スズ水溶液、室温に15秒間浸漬、3A/dm電析処理した後に、水洗後、100℃加熱乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約0.2μm厚さのSn層が形成されていることが判った。さらに、断面のSEM観察とEPMA分析によりSnが基材銅へ拡散し合金化していることが判った。さらに、本電析処理銅箔を500g/dmスルファミン酸ニッケル水溶液(ホウ酸30g/dm、塩化ニッケル30g/dm含有)、40℃に150秒間浸漬、10A/dm電析処理した後に、水洗乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約2μm厚さのNi層が形成されていることが判った。すなわち、第1層としてSn拡散合金化層が形成され、その上層に第2層としてNi層が形成された。
(正極活物質層)
 実施例3-1と同様とした。
(負極活物質層)
 実施例3-1と同様とした。
(全固体二次電池作成方法)
 実施例3-1と同様に行った。
<実施例3-9>
(固体電解質作成方法)
 固体電解質の原料として、LiSとPをAr雰囲気グローブボックス内にて乳鉢で混合した後、Zrポット内にZrボールと共に封入し、プラネタリタイプボールミルにて、室温のまま500rpmにて20時間のMM処理を施し、70LiS-30Pのアモルファス微粒子を得た。示差熱分析により200℃に発熱ピークを有し、結晶化することが判った。2時間加熱処理により結晶化させた試料をペレット化させて、カーボン(ペースト)電極を形成した後、交流インピーダンス法により伝導度を測定した。その結果、10-3S/cmと高い値を示し、本材料が高いLiイオン伝導性を有することが判った。
(負極集電体:耐硫化性金属層形成)
 20μm厚さの電解銅箔(純銅系)を、500g/dmスルファミン酸ニッケル水溶液(ホウ酸30g/dm、塩化ニッケル30g/dm含有)40℃に150秒間浸漬、10A/dm電析処理した後に、水洗乾燥した。本電析処理銅箔を表面のコクール溶解試験から、約2μm厚さのNi層が形成されていることが判った。
(正極活物質層)
 実施例1-1と同様とした。
(負極活物質層)
 実施例1-1と同様とした。
(全固体二次電池作成方法)
 実施例1-1と同様に行った。
<実施例4-1>
(固体電解質作成方法)
 実施例3-1と同様に行った。
(負極集電体:銅電析層形成)
 20μm厚さの電解銅箔(純銅系)を、銅と硫酸が50g/dmの水溶液にモリブデン酸ナトリウムを1g/dm、40℃にて15秒間浸漬中、電流密度2A/dmにて電析した後に、水洗乾燥した。このMo含有銅電析層形成銅箔を、AESによりデプスプロファイル分析を実施したところ、Moが確かに表層0.5μmに亘って、マトリクスのCuと共に検出されていることが判った。
(正極活物質層)
 実施例1-1と同様とした。
(負極活物質層)
 実施例1-1と同様とした。
(全固体二次電池作成方法)
 正極複合層、固体電解質層はそれぞれ2t/cm、1t/cmの荷重にてプレスしてペレット成形した。負極活物質として、別途、常法により人造黒鉛とバインダを含む負極活物質層を先の電析層形成銅箔に塗工形成した。その後正極集電体/正極活物質層/固体電解質層/負極活物質層/負極集電体の構成にて、再び1t/cmにてプレス押圧一体化成型した。
<実施例4-2>
(固体電解質作成方法)
 固体電解質の原料としてLiSとPとPを用いて、70LiS-20P-10P組成を得る投入割合であること以外は、実施例4-1と同じ条件でアモルファス微粒子を得た。示差熱分析結果から300℃2時間熱処理した結晶化試料をペレット化させてイオン伝導度を測定したところ、約10-3S/cmであった。
(負極集電体:銅電析層形成)
 20μm厚さの電解銅箔(純銅系)を、銅が50g/dm、硫酸75g/dmの水溶液にタングステン酸ナトリウムを1g/dm、40℃にて30秒間浸漬中、電流密度5A/dmにて電析して、水洗乾燥した。このW含有銅電析層形成銅箔を、AESによりデプスプロファイル分析を実施したところ、Wが確かに表層0.5μmに亘って、マトリクスのCuと共に検出されていることが判った。
(正極活物質層)
 正極活物質層は、Moと合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを40:55:5の割合で混合した複合層とした。Moは、CuMoを酸性水溶液による還元処理を行って得たものを用いた。
(負極活物質層)
 実施例4-1と同様とした。
(全固体二次電池作成方法)
 実施例4-1と同様に行った。
<実施例4-3>
(固体電解質作成方法)
 実施例4-2と同様に作成した。
(負極集電体:銅電析層形成)
 実施例4-2と同様に行った。
(正極活物質層)
 実施例4-2と同様とした。
(負極活物質層)
 Snと合成結晶化させた固体電解質である70LiS-20P-10P、およびアセチレンブラックを50:45:5の割合で混合した複合層を用いた。SnはSnとリンを組成比になる様にボールミルで300rpm3時間MM処理して合成したものを用いた。
(全固体二次電池作成方法)
 実施例4-2と同様に行った。
<実施例4-4>
(固体電解質作成方法)
 実施例4-3と同様に作成した。
(負極集電体:銅電析層形成)
 実施例4-3と同様に行った。
(正極活物質層)
 正極活物質層に、硫黄粉末と合成結晶化させた固体電解質である70LiS-20P-10P、並びにアセチレンブラックを30:60:10の割合で混合した複合層を用いた。
(負極活物質層)
 実施例4-3と同様とした。
(全固体二次電池作成方法)
 実施例4-3と同様に行った。
<実施例4-5>
(固体電解質作成方法)
 実施例4-1と同様に行った。
(負極集電体:銅電析層形成)
 20μm厚さの電解銅箔(純銅系)を、銅と硫酸が50g/dmの水溶液にモリブデン酸ナトリウムを1g/dm、40℃にて5秒間浸漬中、電流密度2A/dmにて電析した後に、水洗乾燥した。このMo含有銅電析層形成銅箔を、AESによりデプスプロファイル分析を実施したところ、Moが確かに表層0.1μmに亘って、マトリクスのCuと共に検出されていることが判った。
(正極活物質層)
 実施例4-1と同様とした。
(負極活物質層)
 実施例4-1と同様とした。
(全固体二次電池作成方法)
 実施例4-1と同様とした。
<実施例4-6>
(固体電解質作成方法)
 実施例4-1と同様に行った。
(負極集電体:銅電析層形成)
 20μm厚さの電解銅箔(純銅系)を、銅と硫酸が50g/dmの水溶液にモリブデン酸ナトリウムを1g/dm、40℃にて70秒間浸漬中、電流密度2A/dmにて電析した後に、水洗乾燥した。このMo含有銅電析層形成銅箔を、AESによりデプスプロファイル分析を実施したところ、Moが確かに表層2.5μmに亘って、マトリクスのCuと共に検出されていることが判った。
(正極活物質層)
 実施例4-1と同様とした。
(負極活物質層)
 実施例4-1と同様とした。
(全固体二次電池作成方法)
 実施例4-1と同様とした。
<比較例1>
 負極集電体に硫化処理や酸化処理、電析処理のいずれもしていない標準電解銅箔を用いた以外は実施例1-1と同様に行った。
<比較例2>
 負極集電体に電析層形成処理をしていない電池用標準電解銅箔を用いた以外は実施例4-1と同様に行った。
<比較例3>
 負極集電体に電析層形成処理をしていないプリント回路用標準電解銅箔を用いた以外は実施例4-1と同様に行った。
[評価] (外観の評価) 充放電試験終了後にグローブボックス内にて解体して、負極集電体の表面状態を観察した。また、実施例4-1~4-6、比較例2~3については、プレス押圧一体化成型の後に、負極集電体の様子を目視で観察した。
 (充放電試験)
 全固体二次電池より、充放電試験を0.5Cレートにて100サイクル実施した。
 (表面の圧縮強度と表面の圧縮弾性率の測定)
 実施例4-1~4-6、比較例2~3については、負極集電体用銅箔の表面の圧縮強度と圧縮弾性率として、電析層表面からナノ・インデンテーション・テスター((株)エリオニクス製 ENT-1100a)により、負荷条件50mNにより10点測定した平均値を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~表4より、本発明例の実施例1-1~4-6では集電体銅箔に大きな変化と問題点は認められず、このためいずれも正常に良好な充放電特性を示した。他方、比較例1では、集電体銅箔にピット状腐食が生じており、硫化物固体電解質との接触により腐食を生じたものとみられ、このため実施例1-1~4-6に比べて充放電特性が大きく劣化していた。なお、さらに、耐硫化性金属層の材料元素としてZn、Ni、Snを用いた実施例3-1~9において、各元素で同等の結果となった。実施例3-5、3-7より、層の厚みは2~5μmの場合、好ましい充放電特性が得られた。また、耐硫化性層としてMoやWを含有する銅電析層用いた実施例4―1~6においても、Mo、Wに関わらず同等の結果となった。また、比較例2と3では、プレス後に負極集電体が一部破断していたため、充放電試験を行なっても30サイクルや20サイクルで寿命を迎えてしまい、十分なサイクル特性を得ることができなかった。
 なお、実施例1-1~1-6、実施例2-1~2-6、実施例3-1~3-9、実施例4-1~4-6の各々において、正極活物質や負極活物質の種類を変更することで、正極と負極の活物質の比容量の大きさに応じて、全固体電池の放電容量も増加しており、従来の有機電解液を用いたLiイオン電池よりも大きなエネルギー密度と良好なサイクル特性を得ることができることが判った。
 以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1………全固体二次電池
3………負極集電体
5………負極活物質層
7………負極活物質
8………導電助剤
9………固体電解質層
11………硫化物固体電解質
13………正極活物質層
15………正極活物質
17………正極集電体
21………基材
23………硫化銅層
31………基材
33………酸化銅層
41………第1層
43………第2層
45………酸化銅層
51………基材
53………耐硫化性金属層
61………基材
63………銅電析層
81………全固体二次電池
83………負極活物質層

Claims (16)

  1.  銅または銅合金を含む負極集電体と、前記負極集電体と対向して設けられたアルミニウム、アルミニウム合金またはステンレスからなる正極集電体との間に、前記負極集電体側から、前記負極集電体の表面に形成された負極活物質層と、1価または2価の金属と硫黄を含む硫化物固体電解質を含む固体電解質層と、前記正極集電体の表面に形成された正極活物質層と、が順に積層され、前記負極集電体の前記負極活物質層が形成される面に、耐硫化性層を有することを特徴とする全固体二次電池。
  2.  前記耐硫化性層が、硫化銅を含む硫化銅層であることを特徴とする請求項1に記載の全固体二次電池。
  3.  前記硫化銅層の厚さが0.01~1μmであることを特徴とする請求項2に記載の全固体二次電池。
  4.  前記耐硫化性層が、酸化銅を含む酸化銅層であることを特徴とする請求項1に記載の全固体二次電池。
  5.  前記酸化銅層の厚さが0.01~1μmであることを特徴とする請求項4に記載の全固体二次電池。
  6.  前記酸化銅層は、酸化第一銅を主に含む負極集電体側の第1層と、酸化第二銅層を主に含む表層側の第2層とを有することを特徴とする請求項4記載の全固体二次電池。
  7.  前記耐硫化性層が、ニッケル、亜鉛、スズから選ばれる少なくとも1種を含む耐硫化性金属層であることを特徴とする請求項1に記載の全固体二次電池。
  8.  前記耐硫化性金属層の厚さが0.01~5μmであることを特徴とする請求項7に記載の全固体二次電池。
  9.  前記耐硫化性金属層の亜鉛またはスズが、前記負極集電体に含まれる銅と拡散合金化した、拡散合金化層を形成することを特徴とする請求項7記載の全固体二次電池。
  10.  前記拡散合金化層の上層に、さらにニッケル層が形成されていることを特徴とする請求項9記載の全固体二次電池。
  11.  銅または銅合金を含む負極集電体と、前記負極集電体と対向して設けられたアルミニウム、アルミニウム合金またはステンレスからなる正極集電体との間に、前記負極集電体側から、前記負極集電体の表面に形成された負極活物質層と、1価または2価の金属と硫黄を含む硫化物固体電解質を含む固体電解質層と、前記正極集電体の表面に形成された正極活物質層と、が順に積層され、前記負極集電体の前記負極活物質層が形成される表面の圧縮強度が1250~3000MPaであることを特徴とする全固体二次電池。
  12.   前記負極集電体の前記負極活物質層が形成される表面の圧縮弾性率が60~125GPaであることを特徴とする請求項11に記載の全固体二次電池。
  13.  前記負極集電体の表面に、モリブデンまたはタングステンを含有する銅電析層を有し、前記銅電析層の厚さが0.1~2.5μmであることを特徴とする請求項11に記載の全固体二次電池。
  14.  前記正極活物質層に含まれる正極活物質として、硫黄、MMo8-y(M=金属、X=S、Se、Te、0≦x≦4.0、0≦y≦0.2)、Mo8-x(0≦x≦0.2)のいずれかを用いることを特徴とする請求項1または請求項11に記載の全固体二次電池。
  15.  前記負極活物質層に含まれる負極活物質が、My(0.9≦x,y≦10、M=Si,Sn,In,Al,Zn)であることを特徴とする請求項1または請求項11に記載の全固体二次電池。
  16.  前記負極活物質層中に、前記硫化物固体電解質が含まれていることを特徴とする請求項1または請求項11に記載の全固体二次電池。
PCT/JP2014/056448 2013-03-26 2014-03-12 全固体二次電池 WO2014156638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157018972A KR101856302B1 (ko) 2013-03-26 2014-03-12 전고체 이차 전지
CN201480011629.4A CN105027346B (zh) 2013-03-26 2014-03-12 全固态二次电池
JP2015508265A JP6155327B2 (ja) 2013-03-26 2014-03-12 全固体二次電池
US14/865,619 US11264617B2 (en) 2013-03-26 2015-09-25 All-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063697 2013-03-26
JP2013063697 2013-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/865,619 Continuation US11264617B2 (en) 2013-03-26 2015-09-25 All-solid-state secondary battery

Publications (1)

Publication Number Publication Date
WO2014156638A1 true WO2014156638A1 (ja) 2014-10-02

Family

ID=51623621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056448 WO2014156638A1 (ja) 2013-03-26 2014-03-12 全固体二次電池

Country Status (6)

Country Link
US (1) US11264617B2 (ja)
JP (1) JP6155327B2 (ja)
KR (1) KR101856302B1 (ja)
CN (1) CN105027346B (ja)
TW (1) TWI556490B (ja)
WO (1) WO2014156638A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178035B1 (ja) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 銅張積層板の製造方法
WO2017150043A1 (ja) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 銅張積層板の製造方法
WO2018181662A1 (ja) * 2017-03-31 2018-10-04 Tdk株式会社 全固体リチウムイオン二次電池
JP2019032966A (ja) * 2017-08-07 2019-02-28 日立金属株式会社 二次電池負極集電体用材
EP3496188A1 (en) 2017-12-08 2019-06-12 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery
KR20190068435A (ko) 2017-12-08 2019-06-18 도요타 지도샤(주) 황화물 고체전지의 제조방법
JP2019175838A (ja) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 負極及び硫化物固体電池
JP2020087736A (ja) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 正極合材、全固体電池および正極合材の製造方法
WO2020175630A1 (ja) * 2019-02-27 2020-09-03 Tdk株式会社 全固体二次電池
JPWO2020261993A1 (ja) * 2019-06-27 2020-12-30
JP2021012835A (ja) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 全固体電池
JP2021011620A (ja) * 2019-07-09 2021-02-04 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板
US11005104B2 (en) 2018-05-28 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2021527927A (ja) * 2018-06-21 2021-10-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムの安定を可能にする拡散バリア膜
US11404685B2 (en) 2018-03-29 2022-08-02 Toyota Jidosha Kabushiki Kaisha Anode, and sulfide solid-state battery
WO2024018248A1 (ja) * 2022-07-22 2024-01-25 日産自動車株式会社 リチウム二次電池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6686860B2 (ja) * 2016-12-09 2020-04-22 トヨタ自動車株式会社 硫化物固体電解質の製造方法
KR102646185B1 (ko) 2017-02-27 2024-03-08 에스케이넥실리스 주식회사 우수한 접착력을 갖는 동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
DE112018000279B4 (de) * 2017-03-28 2023-02-02 Tdk Corporation Festkörper-Sekundärbatterie
JP6724861B2 (ja) * 2017-05-26 2020-07-15 トヨタ自動車株式会社 電極集電体および全固体電池
CN109244533B (zh) * 2017-12-13 2020-11-06 北京纳米能源与系统研究所 固态铝离子电池
WO2019133702A1 (en) 2017-12-29 2019-07-04 Staq Energy, Inc. Long life sealed alkaline secondary batteries
MA53343A (fr) 2018-07-27 2022-03-23 Form Energy Inc Électrodes négatives pour cellules électrochimiques
JP7117588B2 (ja) * 2018-12-27 2022-08-15 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
CN110112457A (zh) * 2019-05-23 2019-08-09 桑德新能源技术开发有限公司 一种全固态电池及其制备方法
CN112038590B (zh) * 2019-06-04 2023-05-02 中国科学院物理研究所 新型固态电池及其正极材料
US20210028457A1 (en) * 2019-07-26 2021-01-28 Form Energy Inc., Low cost metal electrodes
US11437624B2 (en) * 2019-08-13 2022-09-06 Graphenix Development, Inc. Anodes for lithium-based energy storage devices, and methods for making same
US20210057755A1 (en) * 2019-08-21 2021-02-25 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
US11495782B2 (en) * 2019-08-26 2022-11-08 Graphenix Development, Inc. Asymmetric anodes for lithium-based energy storage devices
JP7218751B2 (ja) * 2020-12-03 2023-02-07 トヨタ自動車株式会社 全固体電池
KR20220117055A (ko) * 2021-02-16 2022-08-23 삼성에스디아이 주식회사 전고체 이차전지 및 그 제조방법
KR20240061400A (ko) * 2022-10-31 2024-05-08 에스케이온 주식회사 리튬 이차 전지용 양극 집전체, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20240149707A (ko) * 2023-04-06 2024-10-15 삼성에스디아이 주식회사 전고체 전지용 음극 및 이를 포함하는 전고체 전지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (ja) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology リチウム電池素子
JP2006202636A (ja) * 2005-01-21 2006-08-03 Furukawa Circuit Foil Kk リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2007172963A (ja) * 2005-12-21 2007-07-05 Hitachi Cable Ltd リチウムイオン二次電池用負極及びその製造方法
JP2008117655A (ja) * 2006-11-06 2008-05-22 Sony Corp 非水電解質二次電池用負極集電体及び非水電解質二次電池
JP2009004363A (ja) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
JP2009181901A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2010250978A (ja) * 2009-04-10 2010-11-04 Nissan Motor Co Ltd 電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両
JP2012049023A (ja) * 2010-08-27 2012-03-08 Toyota Motor Corp 電池
JP2012199234A (ja) * 2011-03-10 2012-10-18 Osaka Prefecture Univ リチウムイオン電池及びその負極材料
JP2012532419A (ja) * 2009-06-29 2012-12-13 アプライド マテリアルズ インコーポレイテッド エネルギー貯蔵デバイスにおける3次元銅含有電極の固体電解質界面のためのパッシベーション膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339116A3 (en) * 1994-05-30 2005-03-23 Canon Kabushiki Kaisha Rechargeable lithium battery
JP2001068150A (ja) * 1999-08-30 2001-03-16 Kyocera Corp 全固体二次電池の製造方法
JP3433173B2 (ja) 2000-10-02 2003-08-04 大阪府 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
US20050118502A1 (en) * 2003-11-27 2005-06-02 Matsushita Electric Industrial Co., Ltd. Energy device and method for producing the same
US20060199078A1 (en) * 2005-03-02 2006-09-07 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous secondary battery
US7732100B2 (en) 2005-06-09 2010-06-08 Tokyo Institute Of Technology Solid polymer electrolyte for lithium ion battery and lithium ion battery
US20070054188A1 (en) * 2005-09-07 2007-03-08 Miller Melvin N High-temperature electrochemical cell and battery
JP4779988B2 (ja) 2007-02-13 2011-09-28 トヨタ自動車株式会社 全固体リチウム二次電池
JP5348878B2 (ja) 2007-02-21 2013-11-20 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
KR100985606B1 (ko) 2007-05-24 2010-10-05 닛산 지도우샤 가부시키가이샤 비수용매 2차 전지용 집전체 및 이것을 이용한 전극 및전지
JP5148726B2 (ja) * 2011-03-30 2013-02-20 Jx日鉱日石金属株式会社 電解銅箔及び電解銅箔の製造方法
JP5787291B2 (ja) 2011-07-29 2015-09-30 国立大学法人東京工業大学 固体電解質およびリチウム電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (ja) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology リチウム電池素子
JP2006202636A (ja) * 2005-01-21 2006-08-03 Furukawa Circuit Foil Kk リチウム2次電池電極用銅箔およびその製造方法、該銅箔を用いたリチウム2次電池用電極およびリチウム2次電池
JP2007172963A (ja) * 2005-12-21 2007-07-05 Hitachi Cable Ltd リチウムイオン二次電池用負極及びその製造方法
JP2008117655A (ja) * 2006-11-06 2008-05-22 Sony Corp 非水電解質二次電池用負極集電体及び非水電解質二次電池
JP2009004363A (ja) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
JP2009181901A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2010250978A (ja) * 2009-04-10 2010-11-04 Nissan Motor Co Ltd 電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両
JP2012532419A (ja) * 2009-06-29 2012-12-13 アプライド マテリアルズ インコーポレイテッド エネルギー貯蔵デバイスにおける3次元銅含有電極の固体電解質界面のためのパッシベーション膜
JP2012049023A (ja) * 2010-08-27 2012-03-08 Toyota Motor Corp 電池
JP2012199234A (ja) * 2011-03-10 2012-10-18 Osaka Prefecture Univ リチウムイオン電池及びその負極材料

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244635B2 (en) 2016-03-03 2019-03-26 Mitsui Mining & Smelting Co., Ltd. Production method for copper-clad laminate plate
WO2017150043A1 (ja) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 銅張積層板の製造方法
JP6178035B1 (ja) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 銅張積層板の製造方法
JPWO2018181662A1 (ja) * 2017-03-31 2020-02-13 Tdk株式会社 全固体リチウムイオン二次電池
JP6992802B2 (ja) 2017-03-31 2022-01-13 Tdk株式会社 全固体リチウムイオン二次電池
WO2018181662A1 (ja) * 2017-03-31 2018-10-04 Tdk株式会社 全固体リチウムイオン二次電池
JP7052246B2 (ja) 2017-08-07 2022-04-12 日立金属株式会社 二次電池負極集電体用材
JP2019032966A (ja) * 2017-08-07 2019-02-28 日立金属株式会社 二次電池負極集電体用材
EP3496188A1 (en) 2017-12-08 2019-06-12 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery
KR20190068435A (ko) 2017-12-08 2019-06-18 도요타 지도샤(주) 황화물 고체전지의 제조방법
US11075366B2 (en) 2017-12-08 2021-07-27 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery
JP2019175838A (ja) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 負極及び硫化物固体電池
US11404685B2 (en) 2018-03-29 2022-08-02 Toyota Jidosha Kabushiki Kaisha Anode, and sulfide solid-state battery
US11005104B2 (en) 2018-05-28 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Battery
US11876231B2 (en) 2018-06-21 2024-01-16 Applied Materials, Inc. Diffusion barrier films enabling the stability of lithium
JP7465219B2 (ja) 2018-06-21 2024-04-10 アプライド マテリアルズ インコーポレイテッド リチウムの安定を可能にする拡散バリア膜
JP2021527927A (ja) * 2018-06-21 2021-10-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムの安定を可能にする拡散バリア膜
JP7035984B2 (ja) 2018-11-27 2022-03-15 トヨタ自動車株式会社 正極合材、全固体電池および正極合材の製造方法
JP2020087736A (ja) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 正極合材、全固体電池および正極合材の製造方法
WO2020175630A1 (ja) * 2019-02-27 2020-09-03 Tdk株式会社 全固体二次電池
KR20220013397A (ko) * 2019-06-27 2022-02-04 교세라 가부시키가이샤 전자 장치 및 전자 장치의 제조 방법
WO2020261993A1 (ja) * 2019-06-27 2020-12-30 京セラ株式会社 電子装置及び電子装置の製造方法
JPWO2020261993A1 (ja) * 2019-06-27 2020-12-30
JP7231734B2 (ja) 2019-06-27 2023-03-01 京セラ株式会社 電子装置及び電子装置の製造方法
KR102610553B1 (ko) 2019-06-27 2023-12-08 교세라 가부시키가이샤 전자 장치 및 전자 장치의 제조 방법
JP2021011620A (ja) * 2019-07-09 2021-02-04 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板
JP7014754B2 (ja) 2019-07-09 2022-02-01 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板
JP2021012835A (ja) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 全固体電池
WO2024018248A1 (ja) * 2022-07-22 2024-01-25 日産自動車株式会社 リチウム二次電池

Also Published As

Publication number Publication date
US11264617B2 (en) 2022-03-01
KR101856302B1 (ko) 2018-05-09
US20160197351A1 (en) 2016-07-07
TWI556490B (zh) 2016-11-01
TW201503455A (zh) 2015-01-16
JPWO2014156638A1 (ja) 2017-02-16
CN105027346B (zh) 2017-11-21
KR20150095875A (ko) 2015-08-21
CN105027346A (zh) 2015-11-04
JP6155327B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2014156638A1 (ja) 全固体二次電池
EP2477269A1 (en) Negative electrode material for battery, negative electrode precursor material for battery, and battery
WO2001084654A1 (en) Lithium secondary battery-use electrode and lithium secondary battery
TW201518518A (zh) 銅合金箔
KR20130012008A (ko) 전지용 음극 전구체 재료의 제조 방법, 전지용 음극 전구체 재료 및 전지
CN110662608A (zh) 以多相金属箔作为集成金属阳极用于非水性电池
Yamamoto et al. Electrochemical behavior of Sn–Fe alloy film negative electrodes for a sodium secondary battery using inorganic ionic liquid Na [FSA]–K [FSA]
KR20190069485A (ko) 전지용 집전체 및 전지
TWI468284B (zh) Surface treatment copper foil, surface treatment copper foil manufacturing method, cathode current collector and non-aqueous secondary battery cathode material
CN110323412B (zh) 负极和硫化物固体电池
Deng et al. aqueous Mg batteries
KR102216073B1 (ko) 부극 및 황화물 고체 전지
JP2013222696A (ja) 二次電池負極集電体用鋼箔
Kure-Chu et al. Nanoporous Sn-SnO2-TiO2 composite films electrodeposited on Cu sheets as anode materials for lithium-ion batteries
JP2007087789A (ja) リチウムイオン二次電池用負極及びその製造方法
JP2013077462A (ja) Li電池集電体用銅箔、該銅箔を用いたLi電池用電極およびLi電池
JP7358412B2 (ja) リチウムイオン二次電池用表面処理銅箔
JP2013008540A (ja) 非水電解質二次電池用集電体及びそれを用いた電極
JP2011003383A (ja) リチウム二次電池用負極の製造法及びリチウム二次電池
JP2009205961A (ja) リチウム二次電池用負極の製造方法
Yu et al. Effect of Different Surface States of Electrolytic Copper Foils on the Performance of Lithium-Ion Batteries
JP2013187114A (ja) リチウム二次電池集電体用銅箔、及びその表示方法、該銅箔を用いたリチウム二次電池用負極電極およびリチウム二次電池
Guo et al. Surface amorphous coating for an economical and high-stability current collector for rechargeable aluminum-ion batteries
Wang et al. Electrochemical behavior of Pb-Co anodes in sulfuric acid electrolyte containing Cl-ions
Sarma et al. Enhancing Electrochemical Performance of Lead-Acid Batteries Using Surface Modified Novel Al Grid as Electrode Substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011629.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508265

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018972

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774915

Country of ref document: EP

Kind code of ref document: A1