Nothing Special   »   [go: up one dir, main page]

WO2014156644A1 - 多孔質膜および浄水器 - Google Patents

多孔質膜および浄水器 Download PDF

Info

Publication number
WO2014156644A1
WO2014156644A1 PCT/JP2014/056475 JP2014056475W WO2014156644A1 WO 2014156644 A1 WO2014156644 A1 WO 2014156644A1 JP 2014056475 W JP2014056475 W JP 2014056475W WO 2014156644 A1 WO2014156644 A1 WO 2014156644A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
average value
less
pores
diameter
Prior art date
Application number
PCT/JP2014/056475
Other languages
English (en)
French (fr)
Inventor
野坂史朗
上野良之
長部真博
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014519732A priority Critical patent/JPWO2014156644A1/ja
Priority to US14/780,275 priority patent/US20160052804A1/en
Publication of WO2014156644A1 publication Critical patent/WO2014156644A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a porous membrane and a water purifier incorporating the porous membrane.
  • the present invention relates to a porous membrane suitable for use in removing viruses.
  • Porous membranes are suitable for membrane separation that eliminates the size of substances in liquids depending on the size of the pores, medical applications such as hemodialysis and blood filtration, water treatment applications such as household water purifiers and water purification treatments, and beverages It is used in a wide range of applications such as food production processes such as sterilization and fruit juice concentration.
  • Norovirus causes food poisoning due to oral infection, among viruses that are at risk of mixing in water for beverage use. In food poisoning caused by norovirus, it is often difficult to identify the source of infection, but in many cases it is suspected to be caused by water used for beverages. Norovirus is as small as 38 nm in size. Since the porous membrane removes the substance by its size, the smaller the substance, the lower the removal performance. In addition, norovirus is highly infectious and can infect humans even in small quantities of 10-100. Therefore, high removal performance is required to prevent food poisoning.
  • Household water purifiers that remove impurities using porous membranes have been widely used, but the purpose of removal is malodorous substances and bacteria contained in tap water, and activated carbon and microfiltration membranes were used as filter media. Things have become mainstream. However, activated carbon has low virus adsorption performance, and the microfiltration membrane is targeted for removing bacteria and iron rust with a diameter of 100 nm or more, and cannot remove viruses with a diameter of 38 nm.
  • the porous membrane has a uniform structure in which the pore diameter does not change substantially in the film thickness direction, and a nonuniformity in which the pore diameter changes continuously or discontinuously, and the pore diameter is different on one surface, inside, or the other surface.
  • the heterogeneous structure has a small layer having a small pore size that contributes to size exclusion, and therefore has a low water permeation resistance and a high water permeation performance.
  • Patent Document 1 a porous membrane having a dense structure on both sides is disclosed in Patent Document 1 in which the pore diameter increases from one surface toward the other surface, takes at least one maximum value, and then the pore diameter decreases again. It is disclosed in Patent Document 4.
  • Patent Document 1 discloses a porous film having a dense structure on both sides in which the pore diameter of one surface vicinity layer is 500 nm or less and the pore diameter of the other surface proximity layer is 0.6 times or more and less than 1.2 times. Yes.
  • the structure of the porous membrane attention is paid to the pore diameters having maximum values on the inner wall side and the outer wall side of the layer obtained by dividing the cross section in the film thickness direction into 10, but no consideration is given to the thickness of each layer.
  • the evaluation is made at a low water pressure of 6.7 kPa, and there is no description about the removal performance when filtering at a high water pressure.
  • Patent Document 2 discloses a porous film having a dense structure on both sides in which the pore diameters of both surfaces cannot be observed at a magnification of 10,000 times.
  • the structure of the porous membrane only the pore diameter on the surface is described, and there is no description on the thickness of the layer having a small pore diameter.
  • evaluation is made at a low water pressure of 27 kPa, and there is no description about the removal performance when filtering at a high water pressure.
  • Patent Document 3 discloses a porous film having a dense structure on both sides, in which the number of pores larger than the exclusion limit particle size of the fine particles is small on the inner surface and the maximum value of the pore size is on the inner surface side of the center in the cross section in the film thickness direction. ing.
  • the structure of the porous film attention is paid to the porosity of the layer divided into eight equal sections in the film thickness direction, but no consideration is given to the pore diameter and thickness of each layer.
  • the removal performance is evaluated at a high water pressure of 150 kPa, but it can be estimated that the removal performance of 50 nm particles is as low as about 75%, and the removal rate of viruses with a diameter of 38 nm is lower.
  • Patent Document 4 discloses a porous membrane having a dense structure on both sides having a layer having a separation limit of 500 to 5 million daltons and a layer having a larger pore size and not affecting the separation limit.
  • the structure of the porous film attention is paid to the pore diameter and thickness in the cross section in the film thickness direction.
  • the layer having the larger pore size has a pore size that does not affect the separation limit and does not contribute to the improvement of the removal performance.
  • evaluation is made at a low water pressure of 20 kPa, and there is no description regarding the removal performance when filtering at a high water pressure.
  • the thickness of the layer having a pore diameter that contributes to virus removal is important with respect to the porous membrane structure.
  • all are limited to the description about the pore diameter, and attention has been paid to both the pore diameter and the thickness, and there has been no porous membrane that has both virus removal performance and water permeability performance at the time of use at high water pressure.
  • An object of the present invention is to provide a porous membrane having both virus removal performance and water permeation performance when used at a high water pressure.
  • a porous membrane having the following characteristics.
  • A-1 The average value of the short diameters of the holes on one surface is smaller than the average value of the short diameters of the holes on the other surface.
  • A-2) In the cross section in the film thickness direction, the hole diameter increases from one surface to the other surface, and after taking at least one maximum value, the hole diameter further decreases.
  • A-3) On the side where the average value of the minor diameters of the pores on the surface is large, a layer having a pore diameter of 130 nm or less is provided in the film thickness direction from the surface, and the thickness of the layer is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • A-4) The layer has pores having a pore size of 130 nm or less and 100 nm or more.
  • the present invention provides the following porous membranes and methods of use as preferred embodiments and methods of use of the porous membranes.
  • A-6) The average value of the major axis of the surface hole on the side having the smaller average minor axis of the surface hole is 2.5 times or more the average value of the minor axis of the surface hole on the side.
  • A-7) It has a layer having pores with a pore diameter of 130 nm or less from the surface on the side where the average minor diameter of the surface pores is small, and the thickness of the layer is 0.3 ⁇ m or more and 20 ⁇ m or less.
  • the layer has pores having a pore size of 130 nm or less and 100 nm or more.
  • Any of the porous membranes having the following characteristics. In the cross section in the film thickness direction, the porosity of the portion from the surface on the side where the average value of the minor axis of the surface holes is small to the thickness of 3 ⁇ m is 5% or more and 35% or less. (6) Any one of the porous membranes having the following characteristics.
  • the hole area ratio of the surface on the side where the average value of the minor diameters of the surface holes is small is 0.7% or more and 12% or less.
  • Any one of the porous membranes having the following characteristics. (A-11) The porosity of the entire porous membrane is 60% or more and 90% or less. (8) Any one of the porous membranes having the following characteristics. (A-12) The maximum hole diameter in the cross section in the film thickness direction is 10 ⁇ m or less.
  • the present invention also provides the following porous membrane.
  • a porous membrane having the following characteristics.
  • (B-1) The average value of the short diameters of the holes on one surface is smaller than the average value of the short diameters of the holes on the other surface.
  • (B-2) The average value of the long diameters of the surface holes on the side where the average value of the short diameters of the surface holes is small is 2.5 times or more the average value of the short diameters of the holes on the surface side.
  • B-3) In the cross section in the film thickness direction, the porosity of the portion from the surface on the side where the average minor axis of the surface holes is small to the thickness of 3 ⁇ m is 5% or more and 35% or less.
  • (B-4) The porosity of the surface on the side where the average value of the minor diameters of the surface holes is small is 0.7% or more and 12% or less.
  • this invention provides the following porous membrane and its usage as a preferable aspect of the said porous membrane and its usage.
  • the porous membrane having the following characteristics.
  • B-5 In the cross section in the film thickness direction, the hole diameter increases from one surface to the other surface, and after taking at least one maximum value, the hole diameter decreases.
  • B-6 It has a layer having pores with a pore diameter of 130 nm or less in the film thickness direction from the surface on the side where the average value of the minor diameter of the surface pores is large, and the thickness of the layer is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • B-7 The layer has pores having a pore size of 130 nm or less and 100 nm or more.
  • B-8 The average value of the short diameters of the holes on the surface on the side where the short diameter is small is 10 nm or more and 50 nm or less.
  • B-10 The layer has pores having a pore size of 130 nm or less and 100 nm or more.
  • the porosity of the entire porous membrane is 60% or more and 90% or less.
  • the maximum hole diameter in the cross section in the film thickness direction is 10 ⁇ m or less.
  • porous membrane of this invention is used for the following uses. (25) The porous membrane according to any one of the above, which is used for removing viruses.
  • this invention provides the following water purifiers.
  • a water purifier comprising any one of the porous membranes.
  • the said water purifier which has a raw
  • the scanning electron microscope is referred to as “SEM”.
  • a porous membrane having both virus removal performance and water permeation performance when used at a high water pressure.
  • a domestic water purifier it is possible to obtain a large amount of safe water that is excellent in compactness and removes pathogenic viruses in water in a short time.
  • FIG. 2 is an SEM image of the entire cross section in the film thickness direction of the porous membrane produced by the method of Example 1.
  • FIG. 2 is an SEM image of the outer surface side of the cross section in the film thickness direction of the porous membrane produced by the method of Example 1.
  • FIG. 3 is a diagram obtained by binarizing the SEM image on the outer surface side of the cross section in the film thickness direction of the porous film manufactured by the method of Example 1.
  • FIG. It is the figure which specified the 130 nm or more hole by binarizing the SEM image of the outer surface side of the film thickness direction cross section of the porous film manufactured by the method of Example 1.
  • FIG. 2 is an SEM image of the inner surface of a porous membrane produced by the method of Example 1.
  • FIG. 3 is a diagram obtained by binarizing an SEM image of an inner surface of a porous film manufactured by the method of Example 1.
  • FIG. 2 is an SEM image of the outer surface of a porous membrane produced by the method of Example 1.
  • FIG. 2 is an SEM image of the inner surface side of the cross section in the film thickness direction of the porous membrane produced by the method of Example 1.
  • FIG. 3 is a diagram obtained by binarizing the SEM image on the inner surface side of the cross section in the film thickness direction of the porous film manufactured by the method of Example 1.
  • the average value of the short diameter of the holes on one surface is smaller than the average value of the short diameter of the holes on the other surface, and the hole diameter of the cross section in the film thickness direction increases from one surface to the other surface.
  • the pore size has decreased, On the side where the average value of the minor diameters of the pores on the surface is large, it has a layer having a pore diameter of 130 nm or less in the cross section in the film thickness direction, and the thickness is 0.5 ⁇ m or more and 20 ⁇ m or less
  • the layer has pores having a pore diameter of 130 nm or less and 100 nm or more, It has been found that the porous membrane has high virus removal performance and water permeability when used at high water pressure.
  • the inventors also The average value of the short diameter of the holes on one surface is smaller than the average value of the short diameter of the holes on the other surface,
  • the average value of the long diameters of the surface holes on the side where the average value of the short diameters of the surface holes is small is at least 2.5 times the average value of the short diameters of the holes on the surface of the side,
  • the porosity of the portion from the surface on the side where the average minor axis of the surface holes is small to the thickness of 3 ⁇ m is 5% or more and 35% or less
  • the surface area porosity is 0.7% or more and 12% or less, where the average value of the minor axis of the surface holes is small. It has been found that the porous membrane has high virus removal performance and water permeability when used at high water pressure.
  • the deep layer filtration in which the dense layer is removed stepwise also in the thickness direction occurs.
  • virus removal performance of 99.99% with only one surface
  • Norovirus which is mixed in drinking water and causes gastroenteritis, has a diameter of 38 nm.
  • the maximum pore size that can contribute to the removal of norovirus with a diameter of 38 nm is about 130 nm. Therefore, in the present invention, the layer having a pore diameter of 130 nm or less on the side where the average value of the minor diameters of the pores on the surface is large is defined as the dense layer (I).
  • the dense layer (I) needs to be present at least on the side of the hole having a large hole diameter.
  • the thickness of the layer having a pore diameter of 130 nm or less should be 0.5 ⁇ m or more on the side where the average value of the minor diameter of the surface pores is large. Further, it is preferably 3 ⁇ m or more.
  • the thickness needs to be 20 ⁇ m or less, and preferably 15 ⁇ m or less.
  • the layer having a pore size of 130 nm or less needs to have pores having a pore size of 130 nm or less and 100 nm or more.
  • the dense layer (I) may be in contact with the surface, and there may be a region having a larger pore diameter than the dense layer (I) between the dense layer (I) and the surface.
  • the surface pore diameter increases, so the frictional force on the surface decreases, Insertability into the case and handling of the porous membrane can be improved.
  • the water pressure is reduced on the side with the larger minor axis of the surface pore and the surface on the side with the minor axis of the surface pore is applied. It is effective to reduce the water pressure. For this reason, it is preferable to allow water to permeate from the side with the larger average value of the minor diameters of the surface pores toward the side with the smaller average value of the minor diameters of the surface pores.
  • the water has a raw water flow path on the side where the average value of the short diameter of the surface pore is large, and the side where the average value of the short diameter of the surface hole is small. It is preferable to have a permeate channel.
  • the presence of a dense layer (hereinafter referred to as “dense layer (II)”) that can contribute to virus removal is effective for improving virus removal performance even on the side where the average minor diameter of the surface pores is small.
  • the thickness of the layer having a pore diameter of 130 nm or less is preferably 0.3 ⁇ m or more on the side where the average value of the minor diameters of the surface pores is small.
  • the thickness of the dense layer (II) is large, the water permeation performance is lowered, so that it is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the layer having a pore size of 130 nm or less preferably has pores having a pore size of 130 nm or less and 100 nm or more.
  • the thickness of the dense layer can be measured from an image obtained by observing a cross section of the porous film with an SEM. Since the hole in the cross section is indefinite, the area of the hole observed by image processing is obtained, and the diameter of the circle corresponding to the area is taken as the hole diameter. A hole having a hole diameter of 130 nm or more is specified, and the thickness of the layer having no hole of that size in the thickness direction from the surface is measured.
  • the virus removal performance depends on the short diameter of the pores. Size sieving with pores is effective up to a size larger than the actual pore size. Therefore, in order to sufficiently remove norovirus with a diameter of 38 nm, pores on the surface on the side where the average minor axis of the surface pores is small are removed.
  • the average minor axis is preferably 50 nm or less, and more preferably 38 nm or less. Furthermore, 30 nm or less is more preferable in consideration of variations in minor diameter.
  • the average value of the minor diameters of the pores on the surface is small, the water permeation performance is remarkably deteriorated, so that 10 nm or more is preferable, and 15 nm or more is more preferable.
  • the virus removal performance can be improved by considering not only the average value of the minor diameter of the pores on the surface but also the variation. By reducing the variation in the minor diameter of the holes, large holes through which the virus permeates are reduced, and the virus removal performance is improved.
  • the standard deviation of the minor diameters of the surface pores on the side where the average value of the minor diameters of the surface pores is small is preferably 30 nm or less, and more preferably 15 nm or less.
  • a method of reducing the weight average molecular weight distribution of the hydrophilic polymer added as a pore-forming agent and making the size of the layers generated by phase separation as uniform as possible Can be given.
  • a porous membrane having a high virus removal performance and a high water permeability can be obtained when used at a high water pressure. Furthermore, a porous membrane with higher water permeability can be obtained by increasing the major axis of the pores on the surface having the smaller average minor axis of the pores. Since viruses are removed by the minor diameter of the pores, increasing the major diameter of the pores can reduce water permeation resistance and improve water permeability without changing the virus removal rate. The greater the average value of the major axis relative to the average value of the minor axis, the greater the water permeability while maintaining the virus removal performance.
  • the average value of the major axis of the surface pores is 2.5 times or more of the average value of the minor axis, and more preferably 3.0 times or more. Further, from the viewpoint of the strength of the membrane structure, the average value of the major axis of the surface pores is preferably 10 times or less, more preferably 8 times or less, and particularly preferably 5 times or less.
  • a method of stretching the pores is effective, and a stretching method that stretches the pores after the porous membrane is solidified or a draft ratio is increased.
  • a method of stretching the pores before the porous film is solidified is preferable because it can be widely applied without being limited by the method of forming the porous membrane and the material. Since the stretching method cannot be applied unless the strength of the porous membrane is strong, a crystalline polymer is preferably used as the membrane material.
  • the draft ratio is a value obtained by dividing the take-up speed of the porous film by the discharge linear speed from the slit.
  • the discharge linear velocity is a value obtained by dividing the discharge flow rate by the sectional area of the slit.
  • a method of increasing the cross-sectional area of the slit which can increase the draw ratio without changing the shape of the porous membrane, is preferable.
  • the cross-sectional area of the porous film decreases, so there is a concern that the physical strength of the porous film will decrease.
  • the short diameter and long diameter of the surface holes can be measured from an image obtained by observing the surface with an SEM.
  • the minor axis is the longest diameter in the minor axis direction
  • the major axis is the longest diameter in the major axis direction.
  • all holes in the range of 1 ⁇ m ⁇ 1 ⁇ m are measured.
  • data in the range of 1 ⁇ m ⁇ 1 ⁇ m is repeated until the total number of measured holes reaches 50 or more, and data is added. The average value and standard deviation are calculated from the measurement results.
  • the hole area ratio on the surface on the side where the minor axis of the surface holes is small is preferably 0.7% or more.
  • the porosity is preferably 12% or less, more preferably 6% or less.
  • the surface porosity can be measured from an image obtained by observing the surface of the porous membrane with an SEM.
  • the image observed at a magnification of 10,000 is subjected to image processing to binarize the structure portion as bright luminance and the hole portion as dark luminance, and calculate the percentage of the dark luminance area with respect to the measurement area to obtain the aperture ratio. .
  • the porosity of the portion from the surface to the thickness of 3 ⁇ m is preferably 5% or more, more preferably 10% or more, on the side where the average value of the minor axis of the surface holes is small. On the other hand, it is preferably 35% or less, and more preferably 30% or less.
  • the porosity of the entire porous membrane is high, the water permeation resistance decreases and the water permeation performance increases.
  • the porosity of the entire porous membrane is low, the strength of the porous membrane is increased and the structure is not easily destroyed even at high water pressure. Therefore, the porosity of the entire porous membrane is preferably 60% or more, more preferably 70% or more, and on the other hand, 90% or less is preferable.
  • the porosity of the entire porous membrane is a percentage value of the volume of the pores with respect to the apparent volume of the porous membrane expressed by dimensions. It can be calculated from the apparent volume calculated from the dimensions of the porous membrane and the true volume of the porous membrane calculated from the weight and specific gravity of the porous membrane.
  • the maximum pore diameter in the cross section in the film thickness direction is preferably 10 ⁇ m or less, more preferably 3 ⁇ m or less, from the viewpoint of the strength of the porous film.
  • the polymer that forms the porous membrane structure is not particularly limited, but a polysulfone-based polymer is preferably used because of its high mechanical strength and high selective permeability.
  • the polysulfone polymer referred to in the present invention has an aromatic ring, a sulfonyl group and an ether group in the main chain.
  • polysulfone represented by the chemical formulas of the following formulas (1) and (2) is preferably used.
  • the present invention is not limited to these.
  • N in the formula is an integer such as 50 to 80, for example.
  • polysulfones examples include “Udel” (registered trademark) polysulfone P-1700, P-3500 (manufactured by Solvay), “Ultrazone” (registered trademark) S3010, S6010 (manufactured by BASF), “Victrex” ( Examples thereof include polysulfones such as (registered trademark) (Sumitomo Chemical), “Radel” (registered trademark) A (manufactured by Solvay), and “Ultrazone” (registered trademark) E (manufactured by BASF).
  • the polysulfone used in the present invention is preferably a polymer composed only of the repeating units represented by the above formulas (1) and / or (2), but other monomers may be used as long as the effects of the present invention are not hindered. It may be copolymerized. Although it does not specifically limit, it is preferable that another copolymerization monomer is 10 mass% or less.
  • the porous membrane can be obtained by inducing phase separation with heat or a poor solvent and removing the solvent component from a stock solution prepared by dissolving a polymer as a structure in a solvent.
  • the polymer dissolved in the solvent has high mobility, and agglomerates during phase separation to increase the concentration, resulting in a dense structure.
  • By changing the phase separation speed in the film thickness direction it is possible to obtain a film having a structure with different pore diameters in the film thickness direction.
  • a hydrophilic polymer By adding a hydrophilic polymer to the membrane forming stock solution, a hydrophilic polymer is contained in the porous membrane, water wettability is increased, and water permeability is increased. Therefore, it is preferable that 1.5% by mass or more of the hydrophilic polymer is contained in the porous film. On the other hand, if the content of the hydrophilic polymer in the porous membrane is too high, it leads to an increase in the eluate, and the content is preferably 8% by mass or less.
  • the content of the hydrophilic polymer needs to be measured by a method such as elemental analysis although it is necessary to select a measurement method depending on the type of polymer.
  • hydrophilic polymer examples include polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl alcohol, and derivatives thereof. Moreover, you may copolymerize with another monomer.
  • porous membrane structure is a polysulfone-based polymer
  • polyvinyl pyrrolidone is preferably used because of its high compatibility.
  • the form of the porous membrane is preferably a hollow fiber membrane that can increase the membrane area per volume and can accommodate a large-area membrane in a compact manner.
  • the hollow fiber membrane is made by flowing an injection solution or injection gas from a circular tube inside the double tube cap and discharging a membrane forming raw solution from an outer slit.
  • the structure of the inner surface of the hollow fiber membrane can be controlled by changing the poor solvent concentration or temperature of the injection solution or the temperature of the injection gas.
  • the average value of the minor axis of the pore on the inner surface of the hollow fiber membrane is It is preferably smaller than the average value of the minor axis.
  • the film thickness of the porous film may be appropriately determined depending on the pressure of the intended use, but in the use of the water purifier, the film thickness is preferably 60 ⁇ m or more and more preferably 80 ⁇ m or more so as to withstand water pressure. On the other hand, the smaller the film thickness, the lower the water permeation resistance and the higher the water permeability, so the film thickness is preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the pressure resistance correlates with the ratio between the film thickness and the inner diameter, and the pressure resistance becomes higher when the ratio between the film thickness and the inner diameter (film thickness / inner diameter) is large. If the inner diameter is reduced, the water purifier incorporating the porous membrane can be made smaller, and the pressure resistance is improved.
  • the inner diameter it is necessary to narrow the film at the time of film formation, and a star-shaped yarn having a wrinkled inner diameter tends to occur. In star-shaped yarns, the phase separation is non-uniform, resulting in large variations in pore size and reduced virus removal performance.
  • the thickness of the hollow fiber membrane is preferably 60 ⁇ m or more, more preferably 80 ⁇ m or more. On the other hand, 200 micrometers or less are preferable and 150 micrometers or less are more preferable.
  • the film thickness / inner diameter of the hollow fiber membrane is preferably 0.35 or more. On the other hand, the film thickness / inner diameter of the hollow fiber membrane is preferably 1.0 or less, and more preferably 0.7 or less.
  • the present invention is a porous membrane having high virus removal performance and water permeability, it can be suitably used for the purpose of removing viruses. Moreover, it is used suitably for the use which processes a lot of water in a short time like the porous membrane incorporated in a water purifier.
  • the method of controlling these thicknesses is to control the formation of pores by phase separation that occurs from both sides, resulting in a membrane structure in which the pore diameter changes continuously in an integrated structure
  • a porous membrane having an integral membrane structure does not have a weak portion such as a layer interface as compared with a composite membrane, and the structure is not easily broken even at high water pressure. Therefore, the membrane structure is preferably an integral structure.
  • the porous membrane of the present invention is not particularly limited, it can be obtained by discharging a stock solution from a slit and solidifying it in a coagulation bath after passing through a dry part.
  • the film-forming stock solution When inducing phase separation with heat, cool in the dry section and then rapidly cool in the coagulation bath to solidify.
  • the film-forming stock solution When inducing phase separation with a poor solvent, the film-forming stock solution is discharged in contact with a coagulation liquid containing the poor solvent, and solidified in a coagulation bath made of the poor solvent.
  • the poor solvent since the poor solvent is supplied by diffusion, the supply amount of the poor solvent changes in the film thickness direction, so the pore diameter of the film thickness direction cross section is directed from the surface toward the other surface. Increased structure. Therefore, it is preferable to contact the coagulating liquid containing the poor solvent and the film-forming stock solution immediately after discharge.
  • the concentration is adjusted by using the coagulation liquid as a mixture of a poor solvent and a good solvent, the coagulation property is changed, and the short diameter of the pores on the surface in contact with the coagulation liquid and the thickness of the dense layer can be controlled.
  • phase separation is induced so that the solidification progresses rapidly and a dense structure with a small pore diameter is obtained.
  • the hole diameter increases continuously in the opposite direction.
  • the passage time of the dry part is sufficiently long, the hole diameter on the side that does not come into contact with the coagulation liquid grows large. Therefore, by shortening the passage time of the dry part and quickly immersing it in the coagulation bath, solidification on the side not in contact with the coagulation liquid proceeds due to contact with the poor solvent of the coagulation bath, and a dense structure with a small pore diameter is formed. Can be formed.
  • the passage time of the dry part is preferably 0.02 seconds or more, more preferably 0.14 seconds or more.
  • 0.40 second or less is preferable, and 0.35 second or less is more preferable.
  • the discharge temperature of the raw film forming solution is preferably 470 ° C. or lower, and more preferably 50 ° C. or lower.
  • the discharge temperature of the film forming stock solution is preferably 20 ° C. or higher.
  • the poor solvent concentration in the coagulation bath is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass or more.
  • the temperature of the coagulation bath is preferably 70 ° C. or less, and more preferably 50 ° C. or less.
  • the temperature of the coagulation bath is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.
  • the concentration of the coagulation bath changes over time depending on the supply of the solvent from the film-forming stock solution and the coagulation solution. Therefore, it is preferable to adjust the concentration as needed by increasing the liquid volume of the coagulation bath to suppress the change in concentration or monitoring the concentration.
  • the dew point of the dry part is preferably 10 ° C or higher, more preferably 20 ° C or higher.
  • the air volume in the dry part is preferably 0.1 m / s or more, and more preferably 0.5 m / s or more.
  • the air volume in the dry part is preferably 10 m / s or less, and preferably less than 5 m / s, because the air volume in the dry part can be reduced to suppress the disturbance of the surface of the film-forming stock solution under discharge and the shaking under the discharge. Is more preferable.
  • the poor solvent is a solvent that does not dissolve the polymer that mainly forms the structure of the porous film at the film forming temperature.
  • the poor solvent may be appropriately selected according to the type of polymer, but water is preferably used.
  • the good solvent may be appropriately selected depending on the type of polymer, but N, N-dimethylacetamide is preferably used when the polymer that forms the porous membrane structure is a polysulfone polymer.
  • the viscosity of the film-forming stock solution is preferably 0.5 Pa ⁇ s or more, more preferably 1.0 Pa ⁇ s or more, at the discharge temperature. Further, it is preferably 20 Pa ⁇ s or less, and more preferably 10 Pa ⁇ s or less.
  • a hollow fiber membrane was filled in a housing having a diameter of 5 mm and a length of 17 cm so that the membrane area of the outer surface was 0.004 m 2 .
  • the membrane area is calculated by the following formula.
  • Membrane area A (m 2 ) outer diameter ( ⁇ m) ⁇ ⁇ ⁇ 17 (cm) ⁇ number of yarns ⁇ 0.00000001
  • a hollow fiber membrane module is produced by potting both ends with an epoxy resin chemical reaction type adhesive “Quick Mender” manufactured by Konishi Co., Ltd., cutting and opening. Next, the inside and outside of the hollow fiber membrane of the module were washed with distilled water at 100 ml / min for 1 hour. A water pressure of 13 kPa was applied to the outside of the hollow fiber membrane, and the amount of filtration per unit time flowing out to the inside was measured. The water permeability (UFR) was calculated by the following formula.
  • UFR (ml / hr / Pa / m 2 ) Q w / (P ⁇ T ⁇ A)
  • Q w filtration amount (mL)
  • T outflow time (hr)
  • P pressure (Pa)
  • A membrane area of the hollow fiber membrane.
  • Evaluation was performed using the module that completed the evaluation in (1).
  • Virus stock was prepared in distilled water as the size contains a concentration of about 25nm bacteriophage MS-2 a (Bacteriophage MS-2 ATCC 15597- B1) about 1.0 ⁇ 10 7 PFU / ml. Distilled water used here was distilled water from a pure water production apparatus “Auto Still” (registered trademark) (manufactured by Yamato Kagaku) and subjected to high-pressure steam sterilization at 121 ° C. for 20 minutes. The virus stock solution was fed from the outer surface toward the hollow part under the conditions of a temperature of about 20 ° C. and a predetermined filtration differential pressure, and was completely filtered.
  • a concentration of about 25nm bacteriophage MS-2 a Bacteriophage MS-2 ATCC 15597- B1
  • Distilled water used here was distilled water from a pure water production apparatus “Auto Still” (registered trademark) (manufactured by Yamato Kagaku) and subjected to high-pressure steam sterilization
  • LRV virus log removal rate
  • the measurement was performed at a filtration differential pressure of 7 kPa and 50 kPa.
  • the short diameter of the hole was the longest diameter in the short axis direction, and the long diameter was the longest diameter in the long axis direction. Measurements were made for all holes in the range of 1 ⁇ m ⁇ 1 ⁇ m. The measurement was repeated in the range of 1 ⁇ m ⁇ 1 ⁇ m until the total number of measured holes reached 50 or more, and data was added. When the hole was observed twice in the depth direction, it was measured at the exposed part of the deeper hole. When a part of the hole was out of the measurement range, the hole was excluded. Average values and standard deviations were calculated.
  • the surface of the porous film was observed with a SEM (S-5500, manufactured by Hitachi High-Technologies Corporation) at a magnification of 50000, and the image was taken into a computer. The size of the captured image was 640 pixels ⁇ 480 pixels. The sample used in the measurement of (3) was observed. The SEM image was cut out in a range of 6 ⁇ m ⁇ 6 ⁇ m, and image analysis was performed with image processing software. The threshold value was determined so that the structure portion became bright luminance and the other portions had dark luminance by binarization processing, and an image was obtained in which the bright luminance portion was white and the dark luminance portion was black.
  • the image analysis may be performed by painting other than the structure portion in black. Since the image contains noise and the dark luminance portion where the number of consecutive pixels is 5 or less, noise and a hole cannot be distinguished from each other, so that it is treated as a bright luminance portion as a structure. As a method for eliminating noise, a dark luminance portion having 5 or less consecutive pixels was excluded when measuring the number of pixels. Alternatively, the noise portion may be painted white. The number of pixels in the dark luminance portion was measured, and the percentage with respect to the total number of pixels in the analysis image was calculated as the hole area ratio. The same measurement was performed on 10 images, and the average value was calculated.
  • the porous membrane was wetted with water for 5 minutes, then frozen with liquid nitrogen and quickly folded to obtain a cross-sectional observation sample.
  • the cross section of the porous film was observed with a SEM (S-5500, manufactured by Hitachi High-Technologies Corporation) at a magnification of 10,000, and the image was taken into a computer.
  • the size of the captured image was 640 pixels ⁇ 480 pixels.
  • the SEM image was cut out to be 6 ⁇ m parallel to the surface of the porous film and an arbitrary length in the film thickness direction, and image analysis was performed with image processing software.
  • the length of the analysis range in the film direction may be a length that allows the dense layer to be accommodated.
  • two or more SEM images were synthesized so that the dense layer could fit.
  • the threshold value was determined so that the structure portion became bright luminance and the other portions had dark luminance by binarization processing, and an image was obtained in which the bright luminance portion was white and the dark luminance portion was black.
  • the image is cut out at the same contrast part and binarized, and then connected together as before. Returned to the image.
  • the image analysis may be performed by painting other than the structure portion in black. When a hole was observed twice in the depth direction, the measurement was made with the shallower hole. When a part of the hole was out of the measurement range, the hole was excluded. Since the image contains noise and the dark luminance portion where the number of consecutive pixels is 5 or less, noise and a hole cannot be distinguished from each other, so that it is treated as a bright luminance portion as a structure. As a method for eliminating noise, a dark luminance portion having 5 or less consecutive pixels was excluded when measuring the number of pixels.
  • the noise portion may be painted white.
  • the number of pixels of the scale bar indicating a known length in the image was measured, and the length per pixel number was calculated.
  • the number of pixels in the hole was measured, and the hole area was determined by multiplying the number of pixels in the hole by the square of the length per number of pixels.
  • the diameter of a circle corresponding to the hole area was calculated by the following formula and used as the hole diameter.
  • the hole area for a hole diameter of 130 nm is 1.3 ⁇ 10 4 (nm 2 ).
  • Pore size (pore area ⁇ pi) 0.5 ⁇ 2
  • a hole having a hole diameter of 130 nm or more was specified, and the layer without the hole was regarded as a dense layer, and the thickness of the dense layer was measured in the direction perpendicular to the surface.
  • a perpendicular line is drawn with respect to the surface, and the longest distance is the thickness of the dense layer among the distances between the surface on the perpendicular line and the holes having a hole diameter of 130 nm or more.
  • the dense layer is in contact with the surface, the distance between the surface closest to the surface with a pore diameter of 130 nm or more and the surface is obtained. Five locations were measured in the same image. The same measurement was performed on 10 images, and an average value of a total of 50 measurement data was calculated. The presence or absence of pores having a pore diameter of 130 nm or less and 100 nm or less in the dense layer was determined.
  • the sample prepared in (5) was used as an observation sample.
  • the cross section of the porous film was observed with a SEM (S-5500, manufactured by Hitachi High-Technologies Corporation) at a magnification of 10,000, and the image was taken into a computer.
  • the size of the captured image was 640 pixels ⁇ 480 pixels.
  • the SEM image was cut into a range of 5 ⁇ m in the film thickness direction and 5 ⁇ m in parallel with the surface of the porous film, and image analysis was performed with image processing software.
  • the threshold value was determined so that the structure portion became bright luminance and the other portions had dark luminance by binarization processing, and an image was obtained in which the bright luminance portion was white and the dark luminance portion was black.
  • the part other than the structure part was painted in black and image analysis was performed.
  • image analysis was performed.
  • the measurement was made with the shallower hole.
  • the hole was excluded. Since the image contains noise and the dark luminance portion where the number of consecutive pixels is 5 or less, noise and a hole cannot be distinguished from each other, so that it is treated as a bright luminance portion as a structure.
  • a dark luminance portion having 5 or less consecutive pixels may be painted white, or may be excluded when measuring the number of pixels.
  • the number of pixels of the scale bar indicating a known length in the image was measured, and the length per pixel number was calculated.
  • the number of pixels in the hole was measured, and the hole area was determined by multiplying the number of pixels in the hole by the square of the length per pixel.
  • the diameter of a circle corresponding to the hole area was calculated by the following formula and used as the hole diameter.
  • Hole diameter (hole area ⁇ circumference) 0.5 ⁇ 2
  • the same measurement was performed so that the entire cross section in the film thickness direction could be observed, and the average pore diameter at each part of the cross section and the diameter of the largest hole were measured. The same measurement was performed at five locations to calculate an average value.
  • ⁇ Judgment was made on whether or not the hole diameter has an integral structure that continuously changes. After the pore diameter increased from one surface to the other surface and took at least one local maximum value, it was determined whether a double-sided dense structure in which the pore diameter decreased was obtained.
  • the threshold value was determined so that the structure portion became bright luminance and the other portions had dark luminance by binarization processing, and an image was obtained in which the bright luminance portion was white and the dark luminance portion was black.
  • the part other than the structure part was painted in black and image analysis was performed.
  • the measurement was made with the shallower hole. Since the image contains noise and the dark luminance portion where the number of consecutive pixels is 5 or less, noise and a hole cannot be distinguished from each other, so that it is treated as a bright luminance portion as a structure.
  • a dark luminance portion having 5 or less consecutive pixels may be painted white, or may be excluded when measuring the number of pixels.
  • the number of pixels in the dark luminance part was measured, and the percentage with respect to the total number of pixels in the analysis image was calculated as the porosity. The same measurement was performed on 10 images, and the average value was calculated.
  • the porous membrane was cut into 10 cm in the longitudinal direction, and the weight m (g) was measured. From the specific gravity a (g / ml), the inner peripheral radius r i (cm), and the outer peripheral radius r o (cm) of the porous membrane material, the porosity P (%) was calculated by the following equation. Measurement was performed on 10 samples, and an average value was obtained.
  • Ten hollow fiber membranes were filled in a housing having a diameter of 5 mm and a length of 17 cm.
  • a hollow fiber membrane module is produced by potting both ends with a potting material made of polyurethane resin, cutting and opening. Next, the hollow fiber membrane of the module and the inside of the module were washed with distilled water at 100 ml / min for 1 hour. A water pressure of 400 kPa was applied to the outside of the hollow fiber membrane for 1 minute. The module was disassembled, and it was visually confirmed that the hollow fiber membrane was not crushed.
  • Example 1 Polysulfone (Udelpolysulfone (registered trademark) P-3500 manufactured by Solvay) 20 parts by weight and polyvinylpyrrolidone (BASF K30 weight average molecular weight 40,000) 11 parts by weight N, N'-dimethylacetamide 68 parts by weight and water 1 In addition to parts by weight of the mixed solvent, it was dissolved by heating at 90 ° C. for 6 hours to obtain a stock solution. This film-forming stock solution was discharged from an annular slit of a double-tube cylindrical die. The outer diameter of the annular slit was 0.59 mm, and the inner diameter was 0.23 mm.
  • the base was kept at 40 ° C.
  • the discharged film forming stock solution passed through a dry part 70 mm in which a gas having a dew point of 26 ° C. (temperature 30 ° C., humidity 80%) was passed at an air volume of 2.1 m / s in 0.11 second, and then N, After being led to a coagulation bath of 95 parts by weight of N′-dimethylacetamide and 5 parts by weight of water and solidified, it was washed with water at 50 ° C. and wound around a cassette at 40 m / min. The draft ratio was 2.6.
  • the structure of the cross section in the film thickness direction is an integrated structure in which the hole diameter changes continuously, the hole diameter increases from the inner surface to the outer surface, and after the maximum value is reached, the hole diameter decreases. It was.
  • the average value of the minor diameter of the holes on the inner surface was smaller than that on the outer surface.
  • the ratio of the major axis to the minor axis on the inner surface was large, and the hole area ratio was low.
  • the dense layer (I) on the outer surface side was thick, and pores of 130 nm or less and 100 nm or more existed.
  • the porosity in the vicinity of the inner surface was low.
  • the porosity of the whole porous membrane was low, the dense layer (II) on the inner surface was thick, pores of 130 nm or less and 100 nm or more existed, and the maximum pore size in the cross section in the film thickness direction was small.
  • filtration was performed from the outer surface side having a larger average value of the minor diameter of the surface pores to the inner surface side having a smaller average value of the minor diameter of the surface pores. The virus removal performance was high even at a high water pressure of 50 kPa, and the water permeability and pressure resistance were high.
  • Example 2 The same experiment as in Example 1 was performed except that the length of the dry part was 150 mm and the dry part was passed in 0.23 seconds.
  • virus removal performance was high even at a high water pressure of 50 kPa, and water permeability and pressure resistance were high.
  • Example 3 The same experiment as in Example 1 was performed except that the length of the dry part was 210 mm and the dry part was passed in 0.23 seconds.
  • virus removal performance was high even at a high water pressure of 50 kPa, and water permeability and pressure resistance were high.
  • Example 4 The composition of the stock solution was 22 parts by weight of polysulfone (Udelpolysulfone (registered trademark) P-3500 manufactured by Solvay) and 11 parts by weight of polyvinylpyrrolidone (K30 weight average molecular weight 40,000 manufactured by BASF). N, N′-dimethylacetamide
  • polysulfone Udelpolysulfone (registered trademark) P-3500 manufactured by Solvay
  • K30 weight average molecular weight 40,000 manufactured by BASF.
  • N, N′-dimethylacetamide The same experiment as in Example 1 was performed except that 66 parts by weight and 1 part by weight of water were used, and that the composition of the injection solution was 68 parts by weight of N, N'-dimethylacetamide and 32 parts by weight of water.
  • virus removal performance was high even at a high water pressure of 50 kPa, and water permeability and pressure resistance were high.
  • Example 5 The same experiment as in Example 1 was performed except that the outer diameter of the annular slit of the double-tube cylindrical die was 0.48 mm and the inner diameter was 0.23 mm. The draft ratio was 1.8. Water permeability measurement, virus removal performance measurement, surface pore short diameter measurement, surface open area measurement, dense layer thickness measurement, elemental analysis, cross-sectional pore diameter measurement, cross-sectional direction at a depth of 3 ⁇ m from the surface The porosity was measured, the porosity of the entire porous membrane was measured, and a pressure resistance test was performed. The results are shown in Table 1.
  • virus removal performance was high even at a high water pressure of 50 kPa, and water permeability and pressure resistance were high.
  • Example 1 The same experiment as in Example 1 was performed, except that the length of the dry part was 400 mm and the dry part was passed in 0.60 seconds.
  • the thickness of the dense layer on the outer surface side is thin, and the surface area on the side with the smaller average minor diameter of the surface pores has a high hole area ratio, so the virus removal performance at a high water pressure of 50 kPa It was a low porous membrane.
  • Comparative Example 2 16 parts by weight of polysulfone (Solvay Udel Polysulfone (registered trademark) P-3500), 3.5 parts by weight of polyvinylpyrrolidone (BASF K30 weight average molecular weight 40,000), polyvinylpyrrolidone (BASF K90 weight average molecular weight 120)
  • polysulfone Solvay Udel Polysulfone (registered trademark) P-3500
  • polyvinylpyrrolidone BASF K30 weight average molecular weight 40,000
  • polyvinylpyrrolidone BASF K90 weight average molecular weight 120
  • a mixed solvent 2.5 parts by weight, 77 parts by weight of N, N′-dimethylacetamide and 1 part by weight of water, the mixture was dissolved by heating at 90 ° C. for 6 hours to obtain a film forming stock solution.
  • This film-forming stock solution was discharged from an annular slit of a double-tube cylindrical die.
  • the outer diameter of the annular slit was 0.35 mm, and the inner diameter was 0.25 mm.
  • the base was kept at 50 ° C.
  • the discharged film forming stock solution passed through a dry part 400 mm in which a gas having a dew point of 26 ° C.
  • Comparative Example 3 The same experiment as Comparative Example 2 was performed except that the film thickness was 70 ⁇ m and the inner diameter was 200 ⁇ m. The draft ratio was 0.7.
  • the pressure resistance increased by increasing the film thickness and film thickness / inner diameter.
  • By increasing the film thickness it became a dense structure on both sides, but the dense layer was thin due to the long passage time of the dry part, and it was a porous film with low virus removal performance at high water pressure. Since the draft ratio is small, the ratio of the major axis to the minor axis is small, and the low-pressure virus removal performance is low, but the water permeability is not improved, and the water permeability is low relative to the virus removal performance. It was a porous membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

 本発明は、高い水圧でも使用でき、ウイルス除去性能および透水性能を両立した浄水用の多孔質膜を提供することを課題とする。一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さく、膜厚方向断面の孔径が一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、孔径が減少する多孔質膜において、表面の孔の短径の平均値が大きい側で、膜厚方向断面に孔径130nm以下の層の厚みが0.5μm以上20μm以下であり、前記層が孔径130nm以下、100nm以上の孔を有している多孔質膜とすることで、上記課題を解決できる。

Description

多孔質膜および浄水器
 本発明は、多孔質膜、多孔質膜を内蔵する浄水器に関する。特に、ウイルスを除去する用途に好適な多孔質膜に関する。
 多孔質膜は、孔の大きさによって液体中の物質をサイズ排除する膜分離に適しており、血液透析や血液ろ過などの医療用途、家庭用浄水器や浄水処理などの水処理用途、飲料品の除菌や果汁濃縮などの食品製造プロセスなど広い用途で用いられている。
 なかでも、家庭用浄水器の分野においては、上下水道が完備されていない地域や発展途上国で、飲料用途とする水の中にウイルスや細菌が混入するリスクを回避するためにウイルス除去性能を有する家庭用浄水器が求められている。飲料用途とする水に混入リスクのあるウイルスのなかでも、ノロウイルスは経口感染によって食中毒をひきおこす。ノロウイルスが原因となる食中毒は、感染源の特定が困難な場合が多いが、飲料用途とする水が原因と疑われているケースが多くある。ノロウイルスはサイズが38nmと小さい。多孔質膜は大きさで物質を除去するため、物質が小さい程除去性能が低下してしまう。また、ノロウイルスは感染力が強く、10~100個のわずかな量でも人に感染する。そのため、食中毒を防ぐには高い除去性能が要求される。
 すなわち、家庭用浄水器用途において、38nm以上の物質を、99.99%以上除去できる多孔質膜が求められている。
 多孔質膜を用いて不純物の除去を行う家庭用浄水器は従来から広く用いられているが、除去目的が水道水中に含まれる悪臭物質や細菌であり、濾材として活性炭および精密濾過膜を用いたものが主流となっている。しかしながら、活性炭はウイルス吸着性能が低く、精密濾過膜は直径100nm以上の細菌や鉄錆びを除去ターゲットとしており、直径が38nmのウイルスを除去できない。
 ウイルスを除去するために多孔質膜の孔を小さくすると透水性能が低下し、大量の水を短時間で得る必要のある家庭用浄水器用途では大きな問題となっていた。多孔質膜に求められるウイルス除去性能と透水性能は、多孔質膜の表面の孔径の影響を大きく受け、孔径が小さいとウイルス除去性能が上がるが透水性能が下がるという相反する関係にある。
 また、家庭用浄水器用途においては、水道圧で使用されるため、高い水圧に耐える膜構造が必要となる。
 多孔質膜の構造は、膜厚方向で孔径が実質的に変化しない均一構造と、孔径が連続的あるいは不連続に変化し、一方の表面、内部、他方の表面で孔径が異なっている不均一構造に大別される。このうち不均一構造は、サイズ排除に寄与する小さい孔径の層が薄いため、水の透過抵抗が小さく透水性能が高くなる。不均一構造のなかでも、一方の表面から他方の表面に向かって孔径が拡大し、少なくともひとつの極大値をとった後、再び孔径が小さくなる両側緻密構造の多孔質膜が、特許文献1から特許文献4に開示されている。
特開平9-47645号公報 特表平7-506496号公報 特開2007-289886号公報 特表平11-506387号公報
 特許文献1では、一方の表面近傍層の孔径が500nm以下で、他方の表面近傍層の孔径の0.6倍以上1.2倍未満の大きさの両側緻密構造の多孔質膜が開示されている。多孔質膜の構造に関しては、膜厚方向断面を10分割した層の内壁側と外壁側と極大値をとる孔径に着目しているが、各層の厚みに関する考慮がされていない。除去性能の測定に関しては、6.7kPaといった低い水圧で評価しており、高い水圧で濾過した際の除去性能に関する記載がない。
 特許文献2では、両方の表面の孔径が10000倍の拡大で観察できない大きさである両側緻密構造の多孔質膜が開示されている。多孔質膜の構造に関しては、表面の孔径のみの記載であり、孔径が小さい層の厚みに関する記載がない。除去性能の測定に関しては、27kPaといった低い水圧で評価しており、高い水圧で濾過した際の除去性能に関する記載がない。
 特許文献3では、膜内表面に微粒子の排除限界粒子径よりも大きな孔が少なく、膜厚方向断面において孔径の極大値が中央よりも内表面側に有する両側緻密構造の多孔質膜が開示されている。多孔質膜の構造に関しては、膜厚方向断面に8等分した層の空孔率の大小に着目しているが、各層の孔径と厚みに関する考慮がされていない。除去性能の測定に関しては、150kPaといった高い水圧で評価しているが、50nmの粒子の除去性能が75%程度と低く、直径38nmのウイルスの除去率はより低くなると推定できる。
 特許文献4では、500から5000000ドルトンの分離限界を有する層と、より大きい孔径で分離限界に影響しない層を有する両側緻密構造の多孔質膜が開示されている。多孔質膜の構造として、膜厚方向断面における孔径と厚みに着目している。しかしながら、孔径の大きい側の層は、分離限界に影響しない大きさの孔径であり、除去性能向上に寄与しないと推察される。除去性能の測定に関しては、20kPaといった低い水圧で評価しており、高い水圧で濾過した際の除去性能に関する記載がない。
 本発明者らの知見によれば、高い水圧で濾過した際のウイルス除去性能が高い多孔質膜を得るには、多孔質膜構造に関してウイルス除去に寄与する孔径を有する層の厚みが重要である。先行技術においては、いずれも孔径に関する記載にとどまっており、孔径と厚みの両方に着目し、高い水圧での使用においてウイルス除去性能と透水性能を両立した孔質膜はこれまで存在しなかった。
 本発明の目的は、高い水圧での使用においてウイルス除去性能と透水性能を両立した多孔質膜を提供することにある。
 本発明は上記課題を解決するために、本発明は以下の多孔質膜を提供する。
(1)以下の特性を有する多孔質膜。
(A-1)一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さい。
(A-2)膜厚方向断面で、孔径が、一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、さらに孔径が減少している。
(A-3)表面の孔の短径の平均値が大きい側で、表面から膜厚方向に孔径130nm以下の層の層を有し、その層の厚みが0.5μm以上20μm以下である。
(A-4)前記層が孔径130nm以下、100nm以上の孔を有する。
 本発明は上記多孔質膜の好ましい態様およびその使用方法として以下の多孔質膜および使用方法を提供する。
(2)以下の特性を有する前記多孔質膜。
(A-5)孔の短径の平均値が小さい側の表面において、孔の短径の平均値が10nm以上50nm以下である。
(3)以下の特性を有する前記いずれかの多孔質膜。
(A-6) 前記表面の孔の短径の平均値が小さい側の表面の孔の長径の平均値が、その側の表面の孔の短径の平均値の2.5倍以上である。
(4)以下の特性を有する前記いずれかの多孔質膜。
(A-7)表面の孔の短径の平均値が小さい側で,表面から孔径130nm以下の孔を有する層を有し、その層の厚みが0.3μm以上20μm以下である。
(A-8)前記層が孔径130nm以下、100nm以上の孔を有する。
(5)以下の特性を有する前記いずれかの多孔質膜。
(A-9)膜厚方向断面において、表面の孔の短径の平均値が小さい側の表面から厚さ3μmまでの部分の空孔率が5%以上、35%以下である。
(6)以下の特性を有する前記いずれかの多孔質膜。
(A-10)表面の孔の短径の平均値が小さい側の表面の開孔率が0.7%以上、12%以下である。
(7)以下の特性を有する前記いずれかの多孔質膜。
(A-11)多孔質膜全体の空孔率が60%以上、90%以下である。
(8)以下の特性を有する前記いずれかの多孔質膜。
(A-12)膜厚方向断面の最大孔径が10μm以下である。
(9)膜構造が一体構造である前記いずれかの多孔質膜。
(10)中空糸膜である前記いずれかの多孔質膜。
(11)中空糸膜の内表面の孔の短径の平均値が外表面の孔の短径の平均値よりも小さいことを特徴とする前記の多孔質膜。
(12)膜厚が60μm以上、200μm以下であり、膜厚/内径が0.35以上、1.00以下である中空糸膜である前記いずれかの多孔質膜。
(13)前記いずれかの多孔質膜に対して、水を表面の孔の短径の平均値が大きい側から、表面の孔の短径の平均値が小さい側に向けて、透過させる工程を有する浄水方法。
 また、本発明は以下の多孔質膜を提供する。
(14)以下の特性を有する多孔質膜。
(B-1)一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さい。
(B-2)前記表面の孔の短径の平均値が小さい側の表面の孔の長径の平均値が、その側の表面の孔の短径の平均値の2.5倍以上である。
(B-3)膜厚方向断面において、表面の孔の短径の平均値が小さい側の表面から厚さ3μmまでの部分の空孔率が5%以上、35%以下である。
(B-4)表面の孔の短径の平均値が小さい側の表面の開孔率が0.7%以上、12%以下である。
 また、本発明は上記多孔質膜の好ましい態様およびその使用方法として以下の多孔質膜および使用方法を提供する。
(15)以下の特性を有する前記の多孔質膜。
(B-5)膜厚方向断面で、孔径が一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、孔径が減少している。
(B-6)表面の孔の短径の平均値が大きい側で、表面から膜厚方向に孔径130nm以下の孔を有する層を有し、その層の厚みが0.5μm以上20μm以下である。
(B-7)前記層が孔径130nm以下、100nm以上の孔を有する。
(16)以下の特性を有する請求項14または15に記載の多孔質膜。
(B-8)孔の短径が小さい側の表面における孔の短径の平均値が10nm以上50nm以下である。
(17)以下の特性を有する前記いずれかの多孔質膜。
(B-9)で、表面の孔の短径の平均値が小さい側で、表面から孔径130nm以下の孔を有する層を有し、その層の厚みが0.3μm以上20μm以下である。
(B-10)前記層が孔径130nm以下、100nm以上の孔を有する。
(18)以下の特性を有する前記いずれかの多孔質膜。
(B-11)多孔質膜全体の空孔率が60%以上、90%以下である。
(19)以下の特性を有する前記いずれかの多孔質膜。
(B-12)膜厚方向断面の最大孔径が10μm以下である。
(20)膜構造が一体構造である前記いずれかの多孔質膜。
(21)中空糸膜である前記いずれかの多孔質膜。
(22)中空糸膜の内側の表面の孔の短径の平均値が外側の表面の孔の短径の平均値よりも小さい前記多孔質膜。
(23)膜厚が60μm以上、200μm以下であり、膜厚/内径が0.35以上、1.0以下であることを前記いずれかの多孔質膜。
(24)前記いずれかの多孔質膜に対して、水を表面の孔の短径の平均値が大きい側から、表面の孔の短径の平均値が小さい側に向けて、透過させる工程を有する浄水方法。
 そして本発明の多孔質膜は以下の用途に用いられる。
(25)ウイルスを除去する用途に用いられることを特徴とする、前記いずれかの多孔質膜。
 そして本発明は以下の浄水器を提供する。
(26)前記いずれかの多孔質膜を内蔵することを特徴とする浄水器。
(27)水を表面の孔の短径の平均値が大きい側に原水流路を有し、表面の孔の短径の平均値が小さい側に透過水流路を有する、前記浄水器。
 なお、本発明では走査型電子顕微鏡のことを「SEM」と言うことにする。
 本発明によれば、以下に説明するとおり、高い水圧での使用においてウイルス除去性能と透水性能を両立した多孔質膜を提供することができる。例えば、家庭用浄水器に内蔵することで、コンパクト性に優れ、水中の病原ウイルスを除去した安全な水を短時間で大量に得ることができる。
実施例1の方法により製造した多孔質膜の膜厚方向断面全体のSEM像である。 実施例1の方法により製造した多孔質膜の膜厚方向断面の外表面側のSEM像ある。 実施例1の方法により製造した多孔質膜の膜厚方向断面の外表面側のSEM像を二値化した図である。 実施例1の方法により製造した多孔質膜の膜厚方向断面の外表面側のSEM像を二値化して130nm以上の孔を特定した図である。 実施例1の方法により製造した多孔質膜の内表面のSEM像である。 実施例1の方法により製造した多孔質膜の内表面のSEM像を二値化した図である。 実施例1の方法により製造した多孔質膜の外表面のSEM像である。 実施例1の方法により製造した多孔質膜の膜厚方向断面の内表面側のSEM像である。 実施例1の方法により製造した多孔質膜の膜厚方向断面の内表面側のSEM像を二値化した図である。
 発明者らは、鋭意検討の結果、
一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さく、膜厚方向断面の孔径が一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、孔径が減少しており、
表面の孔の短径の平均値が大きい側で、膜厚方向断面に孔径130nm以下の層を有し、その厚みが0.5μm以上、20μm以下であり、
前記層が孔径130nm以下、100nm以上の孔を有している、
多孔質膜が、高い水圧での使用においてウイルス除去性能と透水性能が高いことを見出した。
 また発明者らは、
一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さく、
前記表面の孔の短径の平均値が小さい側の表面の孔の長径の平均値が、その側の表面の孔の短径の平均値の2.5倍以上であり、
膜厚方向断面において、表面の孔の短径の平均値が小さい側の表面から厚さ3μmまでの部分の空孔率が5%以上、35%以下であり、
表面の孔の短径の平均値が小さい側の表面の開孔率が0.7%以上、12%以下である、
多孔質膜が、高い水圧での使用においてウイルス除去性能と透水性能が高いことを見出した。
 多孔質膜でウイルスを含む水を濾過する際に、水圧が高いとウイルス除去性能が低下する傾向がある。これは多孔質膜の表面の孔にかかる圧力が上がって、孔が押し広げられて孔の短径が拡大するためと考えられる。水を表面の孔の短径の平均値の大きい側から流す場合には、表面の孔の短径の平均値が大きい側の緻密層を厚くすることで、水が緻密層を透過する際の圧損が上がり、ウイルスの除去に大きく寄与する表面の孔の短径の平均値が小さい側の表面にかかる圧力が低減され、表面の孔の短径の拡大が抑制される。
 また、表面の孔の短径の平均値が大きい側の緻密層においてもウイルスが除去されるため、緻密層の中で厚み方向においても段階的に除去される深層濾過がおこる。1つの表面のみで99.99%の高いウイルス除去性能を達成するには、孔径のバラツキを抑えた小さい孔が必要であり、制御が難しく透水性能が著しく小さくなる。そこで、表面の孔の短径の平均値が大きい側に、ウイルス除去に寄与できる孔径の緻密層を設けることで、緻密層の中でおこる深層濾過により、ウイルスを数十%程度除去できる。その結果、表面の孔の短径の平均値が小さい側の表面ではウイルス除去性能は強くは要求されず、孔径のバラツキを許容でき、また孔径も大きくできるため、透水性能を高くすることができる。飲料水に混入して胃腸炎の原因となるノロウイルスは直径が38nmである。直径38nmのノロウイルスの除去に寄与できる最大の孔径は130nm程度である。よって、本発明においては、表面の孔の短径の平均値が大きい側で孔径130nm以下の層を緻密層(I)とした。また、緻密層が孔径の小さい孔のみで形成されると、透水性が著しく低い膜となってしまう。そのため、緻密層(I)は少なくとも孔径の大きい孔の側に存在することが必要である。高い水圧での使用においてウイルス除去性能と透水性能を高くするには、表面の孔の短径の平均値が大きい側で、孔径130nm以下の層の厚みが0.5μm以上あることが必要であり、さらに3μm以上あることが好ましい。一方で、緻密層(I)が厚いと透水性能が低下するため、厚みは20μm以下であることが必要であり、15μm以下が好ましい。また、前記孔径130nm以下の層は孔径130nm以下、100nm以上の孔を有していることが必要である。
 緻密層(I)は表面と接していてもよく、緻密層(I)と表面の間に緻密層(I)よりも孔径の大きい領域があってもよい。特に、多孔質膜同士やケース部材と接触する側においては、緻密層と表面の間に緻密層よりも孔径の大きい領域があると、表面の孔径が大きくなるため、表面の摩擦力が下がり、ケースへの挿入性や多孔質膜の取り扱い性を向上することができる。
 高い水圧での使用において、ウイルス除去性能を高くする効果を充分に発揮するには、表面の孔の短径の大きい側において水圧を低減し、表面の孔の短径の小さい側の表面にかかる水圧を小さくすることが有効である。その理由から、水を表面の孔の短径の平均値が大きい側から表面の孔の短径の平均値が小さい側に向けて透過させることが好ましい。
 すなわち、本発明の多孔質膜用いた浄水方法としては、水を表面の孔の短径の平均値が大きい側に原水流路を有し、表面の孔の短径の平均値が小さい側に透過水流路を有することが好ましい。
 表面の孔の短径の平均値が小さい側においても、ウイルスの除去に寄与できる緻密層(以下「緻密層(II)」という。)が存在することが、ウイルス除去性能を上げるのに有効である。表面の孔の短径の平均値が小さい側で、孔径130nm以下の層の厚みは0.3μm以上が好ましい。一方で緻密層(II)の厚みが大きいと透水性能が低下するため、20μm以下が好ましく、10μm以下がより好ましい。また、緻密層(II)が孔径の小さい孔のみで形成されると、透水性が著しく低い膜となってしまう。そのため、前記孔径130nm以下の層は孔径130nm以下、100nm以上の孔を有していることが好ましい。
 緻密層の厚みは、多孔質膜の断面をSEMで観察した像から測定することができる。断面の孔は不定形なので、画像処理によって観察した孔の面積を求め、その面積に相当する円の直径を孔径とする。孔径が130nm以上の孔を特定し、表面から厚み方向にその大きさの孔が存在しない層の厚みを測定する。
 緻密層を厚くするには、主として膜を構成する高分子の製膜原液中の濃度を上げて多孔質膜全体の孔径を小さくすることや、製膜原液の粘度を上げて相分離による孔の成長を抑制することや、製膜原液の固化を促進して孔径を小さくすることが有効である。
 多孔質膜は、孔の大きさによって除去対象物質を篩い分けするため、ウイルス除去性能は孔の短径に依存する。孔によるサイズ篩いは、実際の孔径よりも大きなサイズまで効果を発揮するため、直径38nmのノロウイルスを充分に除去するには、表面の孔の短径の平均値が小さい側の表面での孔の短径の平均値は50nm以下であること好ましく、38nm以下がより好ましい。さらには短径のバラツキを考慮して30nm以下がより好ましい。一方で、表面の孔の短径の平均値が小さいと透水性能が著しく低下するため、10nm以上が好ましく、15nm以上がより好ましい。
 表面の孔の短径は平均値だけでなく、バラツキも考慮することで、ウイルス除去性能を向上させることができる。孔の短径のバラツキを小さくすることで、ウイルスが透過する大きな孔が減り、ウイルス除去性能が向上する。表面の孔の短径の平均値が小さい側の表面の孔の短径の標準偏差は30nm以下が好ましく、15nm以下がより好ましい。表面の孔の短径の標準偏差を小さくするには、造孔剤として添加する親水性高分子の重量平均分子量分布を小さくして相分離して生じた層の大きさをなるべく均一にする方法があげられる。また膜の製造のとき、またはその後に、膜を引き伸ばし、表面の孔を引き伸ばすことも有効である。表面の孔を引き伸ばすと、孔の大きいものほど変形しやすいため、変形量を大きくすると大きい孔の短径はより小さくなり、小さい孔の短径はあまり変わらず、短径のバラツキが低減する。
 表面の孔の短径の平均値が大きい側の緻密層(I)を上述したとおりの構成にすることで、高い水圧での使用においてウイルス除去性能と透水性能の高い多孔質膜が得られる。更に、孔の短径の平均値が小さい側の表面の孔の長径を大きくすることで、より透水性能の高い多孔質膜を得ることができる。ウイルスは孔の短径によって除去されるため、孔の長径を大きくすることでウイルスの除去率を変えずに、水の透過抵抗を減らして透水性能を向上できる。長径の平均値が短径の平均値に対して大きい程、ウイルス除去性能が高いまま透水性能が大きくなる。一方で、長径の平均値が短径の平均値が小さい形状、すなわち孔が円形に近づくことで、孔の構造強度が上がり、高い水圧による表面の孔の短径の拡大を抑制できる。
 そのため、表面の孔の長径の平均値が短径の平均値の2.5倍以上であることが好ましく、3.0倍以上がより好ましい。また、膜構造の強度の観点から、表面の孔の長径の平均値が短径の平均値の10倍以下が好ましく、8倍以下がより好ましく、5倍以下が特に好ましい。
 表面の孔の長径の平均値を短径の平均値に対して大きくする方法としては、孔を引き伸ばす方法が有効であり、多孔質膜が固化した後に孔を引き伸ばす延伸法や、ドラフト比を大きくして多孔質膜が固化する前に孔を引き伸ばす方法がある。ドラフト比を大きくする方法が、多孔質膜の製膜方法や素材の限定を受けることなく、広範に適用可能なため好ましい。延伸法は、多孔質膜の強度が強くないと適用できないため、膜素材として結晶性高分子が好ましく用いられる。
 ドラフト比とは、多孔質膜の引き取り速度をスリットからの吐出線速度で除した値である。吐出線速度は、吐出流量をスリットの断面積で除した値である。ドラフト比を上げるには、引き取り速度を上げる、スリットの断面積を増やす、吐出流量を減らすといった方法がある。多孔質膜の形を変えずに延伸倍率を上げることが可能な、スリットの断面積を増やす方法が好ましい。引き取り速度を上げる方法と、吐出流量を減らす方法では、多孔質膜の断面積が減少するため、多孔質膜の物理的強度の低下が懸念される。
 表面の孔の短径および長径は、表面をSEMで観察した像から測定することができる。短径は短軸方向に最も長い直径であり、長径は長軸方向に最も長い直径である。SEMの観察において倍率50000倍で確認できる孔について、1μm×1μmの範囲の全ての孔について計測する。計測した孔の総数が50個未満の場合は、計測した孔の総数が50個以上になるまで、1μm×1μmの範囲の計測を繰り返して、データを追加する。計測結果から平均値および標準偏差を算出する。
 表面の孔の短径が小さい側の表面の開孔率が高い程、水の流路が増えるので透水性能が高くなる。一方で、開孔率を低くすると、表面の構造強度が上がり高い水圧による表面の孔の短径の拡大を抑制できる。そのため、表面の孔の短径が小さい側の表面の開孔率は0.7%以上が好ましい。一方で、開孔率は12%以下が好ましく、6%以下がより好ましい。
 開孔率を高くするには、製膜原液に添加する親水性高分子の量を増やすことが有効である。
 表面の開孔率は多孔質膜表面をSEMで観察した像から測定できる。10000倍で観察した像を画像処理して構造体部分を明輝度、孔の部分を暗輝度として二値化処理し、その測定面積に対する暗輝度の面積の百分率を算出して開孔率とする。
 表面の孔の短径が小さい側の表面およびその近傍の空孔率が低いほど、表面の孔の周辺の強度が上がり、高い水圧による表面の孔の短径の拡大を抑制できる。一方で、表面およびその近傍の空孔率が高いほど水の流路が増えるので透水性能が高くなる。そのため、膜厚方向断面において、表面の孔の短径の平均値が小さい側で、表面から厚さ3μmまでの部分の空孔率は5%以上が好ましく、10%以上がより好ましい。一方で、35%以下であることが好ましく、30%以下がより好ましい。
 表面の孔の短径が小さい側の表面から厚さ3μmの部分の空孔率を低くする方法としては、製膜原液中の多孔質膜の構造体となるポリマーの濃度を上げること、製膜原液の粘度を上げること、製膜時の凝固速度を速くすることが有効である。
 多孔質膜全体の空孔率が高いと水の透過抵抗が減り透水性能が上がる。一方で、多孔質膜全体の空孔率が低いと、多孔質膜の強度が上がり、高い水圧でも構造が破壊されにくくなる。そのため、多孔質膜全体の空孔率は60%以上、さらに70%以上が好ましく、一方で90%以下が好ましい。
 多孔質膜全体の空孔率は、寸法で表される多孔質膜の見かけの体積に対する、空孔部の体積の百分率の値である。多孔質膜の寸法から計算されるみかけの体積と、多孔質膜の重量と比重から計算される多孔質膜の真の体積から計算できる。
 膜厚方向断面の最大孔径は、多孔質膜の強度の観点から、10μm以下であることが好ましく、3μm以下がより好ましい。
 多孔質膜の構造体となるポリマーは特に限定しないが、機械強度が強く選択透過性が高いことから、ポリスルホン系高分子が好ましく用いられる。本発明でいうポリスルホン系ポリマーは、主鎖に芳香環、スルフォニル基およびエーテル基をもつもので、例えば、次式(1)、(2)の化学式で示されるポリスルホンが好適に使用されるが、本発明ではこれらに限定されない。式中のnは、例えば50~80の如き整数である。
Figure JPOXMLDOC01-appb-C000001
 ポリスルホンの具体例としては、“ユーデル”(登録商標)ポリスルホンP-1700、P-3500(ソルベイ社製)、“ウルトラゾーン”(登録商標)S3010、S6010(BASF社製)、“ビクトレックス”(登録商標)(住友化学)、“レーデル”(登録商標)A(ソルベイ社製)、“ウルトラゾーン”(登録商標)E(BASF社製)等のポリスルホンが挙げられる。又、本発明で用いられるポリスルホンとしては上記式(1)及び/又は(2)で表される繰り返し単位のみからなるポリマーが好適ではあるが、本発明の効果を妨げない範囲で他のモノマーと共重合していても良い。特に限定するものではないが、他の共重合モノマーは10質量%以下であることが好ましい。
 多孔質膜は、その構造体となるポリマーを溶媒に溶解して調整した製膜原液を、熱や貧溶媒によって相分離を誘起し、溶媒成分を除去することで得られる。溶媒に溶解しているポリマーは運動性が高く、相分離時に凝集して濃度が高まり緻密な構造となる。膜厚方向で相分離の速度を変更することで、膜厚方向に孔径が異なる構造の膜を得ることができる。
 製膜原液に親水性ポリマーを添加することで、多孔質膜に親水性ポリマーが含有され、水濡れ性が上がり透水性能が高くなる。そのため、多孔質膜中に親水性ポリマーが1.5質量%以上含まれていることが好ましい。一方で、多孔質膜中の親水性ポリマーの含有量が高すぎると、溶出物の増加につながるため8質量%以下が好ましい。
 親水性ポリマーの含有量は、ポリマーの種類によって測定方法を選定する必要があるが、元素分析などの方法で測定することができる。
 特に限定しないが、親水性ポリマーの具体例としては、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルアルコール、およびそれらの誘導体などがあげられる。また、他のモノマーと共重合していても良い。
 多孔質膜の構造体となるポリマーや溶媒との親和性によって適宜選択すればよいが、多孔質膜の構造体がポリスルホン系ポリマーの場合、相溶性が高いことからポリビニルピロリドンが好適に用いられる。
 多孔質膜の形態としては、体積あたりの膜面積が大きくなり大面積の膜をコンパクトに収納できることが可能な中空糸膜が好ましい。中空糸膜は、二重管口金の内側の円管から注入液または注入気体を流し、外側のスリットから製膜原液を吐出することで作られる。この際に、注入液の貧溶媒濃度や温度または注入気体の温度を変更することで、中空糸膜の内表面の構造を制御することができる。ウイルス除去性能への影響が大きい、孔の短径の平均値の小さい側の表面の構造を制御しやすくするため、中空糸膜の内表面の孔の短径の平均値が外表面の孔の短径の平均値よりも小さいことが好ましい。
 多孔質膜の膜厚は使用用途の圧力によって適宜決めればよいが、浄水器の用途では、水道圧に耐えるよう、膜厚は60μm以上が好ましく、80μm以上がより好ましい。一方で、膜厚が小さいほど水の透過抵抗が下がり透水性能が上がるため、膜厚は200μm以下が好ましく、150μm以下がより好ましい。
 多孔質膜が中空糸膜の場合は、耐圧性は膜厚と内径の比に相関を示し、膜厚と内径の比(膜厚/内径)が大きいと、耐圧性が高くなる。内径を小さくすると、多孔質膜を内蔵する浄水器を小型にすることができ、耐圧性も向上する。しかしながら、内径を小さくするには製膜時に膜を絞り込む必要があり、内径にしわがよった星型糸が発生しやすくなる。星型糸では相分離が不均一になるため、孔径のバラツキが大きくなり、ウイルス除去性能が低下する。浄水器を小型にし、かつウイルス除去性能、透水性、耐圧性を上げるには、中空糸膜の膜厚は60μm以上が好ましく、80μm以上がより好ましい。一方で、200μm以下が好ましく、150μm以下がより好ましい。また、中空糸膜の膜厚/内径は0.35以上が好ましい。一方で、中空糸膜の膜厚/内径は1.0以下が好ましく、0.7以下がより好ましい。
 本発明は、ウイルス除去性能と透水性能が高い多孔質膜なので、ウイルスを除去する用途に好適に用いられる。また、浄水器に内蔵する多孔質膜のように短時間で大量の水を処理する用途に好適に用いられる。
 多孔質膜の両面に緻密層を有する場合、これらの厚みをそれぞれ制御する方法としては、両面からおこる相分離による孔形成を制御して、一体構造で孔径が連続的に変化した膜構造とする方法があげられる。また、その他の方法としては、異なる材料または異なる組成の層を2層以上形成して複合膜とする方法がある。膜構造が一体構造の多孔質膜は、複合膜に比べて層の界面といった構造が弱い部分がなく、高い水圧でも構造が破壊されにくい。そのため、膜構造は一体構造であることが好ましい。
 本発明の多孔質膜は、特に限定しないが、スリットから製膜原液を吐出し、乾式部を通過後に凝固浴で固化させることで得られる。
 熱で相分離を誘起する場合は、乾式部で冷却した後に凝固浴で急冷して固化させる。貧溶媒で相分離を誘起する場合は、製膜原液に貧溶媒を含有する凝固液と接触させて吐出し、貧溶媒からなる凝固浴で固化させる。貧溶媒で相分離を誘起する方法では、貧溶媒は拡散によって供給されるため、膜厚方向で貧溶媒の供給量が変化するため、膜厚方向断面の孔径が表面から他方の表面に向けて増加する構造となる。そのため、貧溶媒を含有する凝固液と製膜原液を吐出直後に接触させることが好ましい。凝固液を貧溶媒と良溶媒の混合液として濃度を調製すれば、凝固性が変わり、凝固液と接触する側の表面の孔の短径と緻密層の厚みを制御できる。
 凝固液と製膜原液が接触した側は相分離が誘起されて固化の進行が速く、孔径の小さい緻密な構造となる。反対方向に向けて孔径は連続的に大きくなる。ここで、乾式部の通過時間が充分に長いと、凝固液と接触しない側の孔径が大きく成長してしまう。そこで、乾式部の通過時間を短くして凝固浴に速やかに浸漬することで、凝固浴の貧溶媒との接触によって、凝固液と接触しない側の固化が進行して孔径の小さい緻密な構造を形成できる。
製膜原液の組成や温度などの相分離の進行に影響する条件にもよるが、乾式部の通過時間は0.02秒以上が好ましく、0.14秒以上がより好ましい。一方で、0.40秒以下が好ましく、0.35秒以下がより好ましい。
 孔の成長は凝固液と接触する側から膜厚方向に順次進行するため、膜厚を大きくすることにも、凝固液と接触しない側に緻密な構造を形成するのにも有効である。
 製膜原液の吐出温度を低くすることでも、凝固液である貧溶媒の拡散速度が低下するため、凝固液と接触しない側の孔径の成長を抑制できる。そのため、製膜原液の吐出温度は、470℃以下が好ましく、50℃以下がより好ましい。一方で、吐出温度を高くすることで、口金面の結露が防止できるため、製膜原液の吐出温度は20℃以上が好ましい。
 凝固浴の貧溶媒濃度を高くすることや、凝固浴の温度を低くすることで、製膜原液の固化速度が早くなるため、凝固液と接触しない側に緻密な構造を形成するのに有効である。   
 凝固浴での貧溶媒濃度は30質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましい。凝固浴の温度は、70℃以下が好ましく、50℃以下がより好ましい。一方で、凝固浴の温度が高いことで凝固浴中での溶媒交換がおこりやすく、多孔質膜の残存溶媒量が減るため、凝固浴温度は10℃以上が好ましく、20℃以上がより好ましい。
 凝固浴濃度は、製膜原液や凝固液からの溶媒の供給によって経時的に変化する。そのため、凝固浴の液量を増やして濃度変化を抑制したり、濃度をモニタリングして随時、濃度調整を行うことが好ましい。
 また、乾式部では、凝固液と接触しない側は空気中の水分が作用して相分離を誘起する。乾式部の露点および風量が大きいほど、貧溶媒である水分の供給量が増えるため、凝固浴と接触しない側に緻密な構造を形成するのに有効である。乾式部の露点は、10℃以上が好ましく、20℃以上がより好ましい。乾式部の風量は、0.1m/s以上が好ましく、0.5m/s以上がより好ましい。一方で、乾式部の風量を低くすることで吐出下での製膜原液の表面の乱れや吐出下での揺れを抑制できるため、乾式部の風量は10m/s以下が好ましく、5m/s以下がより好ましい。
 貧溶媒とは、製膜温度において、主として多孔質膜の構造体となるポリマーを溶解しない溶媒である。貧溶媒は、ポリマーの種類に応じて適宜選択すればよいが、水が好適に用いられる。良溶媒は、ポリマーの種類に応じて適宜選択すればよいが、多孔質膜の構造体となるポリマーがポリスルホン系ポリマーの場合、N,N-ジメチルアセトアミドが好適に用いられる。
 製膜原液の粘度を上げると、相分離による孔の成長が抑制されて緻密層が厚くなる。製膜原液の粘度を上げるためには、主として多孔質膜の構造体となるポリマーおよび/または親水性ポリマーの増量することや、増粘剤の添加することや、吐出温度を下げることがあげられる。製膜原液の粘度は、吐出温度で0.5Pa・s以上が好ましく、1.0Pa・s以上がより好ましい。また、20Pa・s以下が好ましく、10Pa・s以下がより好ましい。
 以下実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)透水性能の測定
 多孔質膜が中空糸膜の場合の測定例を示す。
 直径5mm、長さ17cmのハウジングに中空糸膜を外表面の膜面積が0.004mとなるように充填した。膜面積は下記の式で算出される。
 膜面積A(m)=外径(μm)×π×17(cm)×糸本数×0.00000001
 両端をコニシ(株)製エポキシ樹脂系化学反応形接着剤“クイックメンダー”でポッティングし、カットして開口することによって、中空糸膜モジュールを作製する。次いで、該モジュールの中空糸膜の内側および外側を蒸留水にて、100ml/minで1時間洗浄した。中空糸膜外側に水圧13kPaをかけ、内側へ流出してくる単位時間当たりの濾過量を測定した。透水性能(UFR)は下記の式で算出した。
 UFR(ml/hr/Pa/m)=Q/(P×T×A)
ここで、Q:濾過量(mL)、T:流出時間(hr)、 P:圧力(Pa)、A:中空糸膜の膜面積である。
 (2)ウイルス除去性能の測定
 多孔質膜が中空糸膜である場合の測定例を示す。
 (1)の評価を終えたモジュールを使用して評価した。
 ウイルス原液は、大きさが約25nmのバクテリオファージMS-2(Bacteriophage MS-2 ATCC 15597-B1)を約1.0×10PFU/mlの濃度を含有する様に蒸留水中で調製した。ここで蒸留水は純水製造装置“オートスチル”(登録商標)(ヤマト科学製)の蒸留水を121℃で20分間高圧蒸気滅菌したものを用いた。温度約20℃、所定の濾過差圧の条件でウイルス原液を外表面から中空部に向けて送液し、全ろ過した。濾過液の採取は、透過液の150mlを破棄した後、測定用の透過液を5ml採取し、0、100、10000、100000倍に蒸留水で希釈した。Overlay agar assay、Standard Method 9211-D(APHA、1998、Standard methods for the examination of water and wastewater, 18th ed.)の方法に基づいて、希釈した透過液1mlを検定用シャーレに接種し、プラークを計数することによってバクテリオファージMS-2の濃度を求めた。プラークとは、ウイルスが感染して死滅した細菌の集団で、点状の溶菌斑として計数することができる。ウイルス除去性能をウイルス対数除去率(LRV)で表した。例えばLRV2とは-log10x=2すなわち0.01のことであり、残存濃度が100分の1(除去率99%)であることを意味する。また透過液中にプラックがまったく計測されない場合、LRV7.0とした。
 濾過差圧7kPaおよび50kPaで測定を行った。
 バクテリオファージMS-2でウイルス対数除去率を測定すれば、飲料水に混入する、より直径の大きいウイルスの除去性能を担保することになる。
 (3)表面の孔径の測定
 多孔質膜の両側の表面をそれぞれSEM(S-5500、株式会社日立ハイテクノロジーズ社製)にて50000倍で観察し、像をコンピュータに取り込んだ。取り込んだ画像のサイズは640ピクセル×480ピクセルだった。多孔質膜が中空糸膜で、その内表面を観察する際には、中空糸膜を半円状に切断して観察を行った。
 孔の短径は短軸方向に最も長い直径、長径は長軸方向に最も長い直径とした。1μm×1μmの範囲の全ての孔について計測した。計測した孔の総数が50個以上になるまで、1μm×1μmの範囲の計測を繰り返して、データを追加した。孔が深さ方向に二重に観察された場合は、深い方の孔の露出部で測定した。孔の一部が計測範囲から外れる場合は、その孔を除外した。平均値と標準偏差を算出した。
 (4)表面の開孔率の測定
 多孔質膜の表面をSEM(S-5500、株式会社日立ハイテクノロジーズ社製)にて50000倍で観察し、像をコンピュータに取り込んだ。取り込んだ画像のサイズは640ピクセル×480ピクセルだった。(3)の測定で用いた試料で観察を行った。SEM像を6μm×6μmの範囲に切り取り、画像処理ソフトにて画像解析を行った。二値化処理によって構造体部分を明輝度に、それ以外の部分が暗輝度となるように閾値を決め、明輝度部分を白、暗輝度部分を黒とした画像を得た。画像内のコントラストの差によって、構造体部分とそれ以外の部分を分けられない場合、コントラストが同じ部分で画像を切り分けてそれぞれ二値化処理をした後に、元のとおりに繋ぎ合わせて一枚の画像に戻した。または、構造体部分以外を黒で塗りつぶして画像解析をしてもよい。画像にはノイズが含まれ、連続したピクセル数が5個以下の暗輝度部分については、ノイズと孔の区別がつかないため、構造体として明輝度部分として扱った。ノイズを消す方法としては、連続したピクセル数が5以下の暗輝度部分をピクセル数の計測時に除外した。または、ノイズ部分を白く塗りつぶしてもよい。暗輝度部分のピクセル数を計測し、解析画像の総ピクセル数に対する百分率を算出して開孔率とした。10枚の画像で同じ測定を行い、平均値を算出した。
 (5)緻密層の厚みの測定
 多孔質膜を水に5分間つけて濡らした後に液体窒素で凍結して速やかに折り、断面の観察試料とした。多孔質膜の断面をSEM(S-5500、株式会社日立ハイテクノロジーズ社製)にて10000倍で観察し、像をコンピュータに取り込んだ。取り込んだ画像のサイズは640ピクセル×480ピクセルだった。SEMで観察して断面の孔が閉塞している場合は試料作成をやりなおした。孔の閉塞は、切断処理時に応力方向に多孔質膜が変形しておこる場合がある。SEM像を多孔質膜の表面と平行に6μm、膜厚方向に任意の長さとなるように切り取り、画像処理ソフトにて画像解析を行った。解析範囲の膜方向の長さは、緻密層がおさまる長さであればよい。測定倍率の観察視野で緻密層がおさまらない場合は、緻密層がおさまるように2枚以上のSEM像を合成した。二値化処理によって構造体部分を明輝度に、それ以外の部分が暗輝度となるように閾値を決め、明輝度部分を白、暗輝度部分を黒とした画像を得た。画像内のコントラストの差によって、構造体部分とそれ以外の部分を分けられない場合、コントラストが同じ部分で画像を切り分けてそれぞれ二値化処理をした後に、元のとおりに繋ぎ合わせて一枚の画像に戻した。または、構造体部分以外を黒で塗りつぶして画像解析をしてもよい。孔が深さ方向に二重に観察された場合は、浅い方の孔で測定した。孔の一部が計測範囲から外れる場合は、その孔を除外した。画像にはノイズが含まれ、連続したピクセル数が5個以下の暗輝度部分については、ノイズと孔の区別がつかないため、構造体として明輝度部分として扱った。ノイズを消す方法としては、連続したピクセル数が5以下の暗輝度部分をピクセル数の計測時に除外した。または、ノイズ部分を白く塗りつぶしてもよい。画像内で既知の長さを示しているスケールバーのピクセル数を計測し、1ピクセル数あたりの長さを算出した。孔のピクセル数を計測し、孔のピクセル数に1ピクセル数あたりの長さの2乗を乗ずることで、孔面積を求めた。下記式で、孔面積に相当する円の直径を算出し、孔径とした。孔径130nmとなる孔面積は1.3×10(nm)である。
孔径=(孔面積÷円周率)0.5×2
孔径が130nm以上の孔を特定し、その孔がない層を緻密層として、表面から垂直方向に緻密層の厚みを測定した。表面に対して垂線を引き、その垂線上の表面および孔径130nm以上の孔の互いの距離のうち、最も長い距離が緻密層の厚みである。緻密層が表面に接している場合は、表面から最も近い孔径130nm以上の孔と表面の距離となる。同じ画像の中で5箇所測定を行った。10枚の画像で同じ測定を行い、計50の測定データの平均値を算出した。緻密層における孔径130nm以下、100nm以下の孔の有無を判定した。
 (6)断面の孔径の測定
 (5)で作成した試料を観察試料とした。多孔質膜の断面をSEM(S-5500、株式会社日立ハイテクノロジーズ社製)にて10000倍で観察し、像をコンピュータに取り込んだ。取り込んだ画像のサイズは640ピクセル×480ピクセルだった。SEM像を膜厚方向に5μm、多孔質膜の表面と平行に5μmの範囲に切り取り、画像処理ソフトにて画像解析を行った。二値化処理によって構造体部分を明輝度に、それ以外の部分が暗輝度となるように閾値を決め、明輝度部分を白、暗輝度部分を黒とした画像を得た。画像内のコントラストの差によって、構造体部分とそれ以外の部分を分けられない場合、構造体部分以外を黒で塗りつぶして画像解析をした。孔が深さ方向に二重に観察された場合は、浅い方の孔で測定した。孔の一部が計測範囲から外れる場合は、その孔を除外した。画像にはノイズが含まれ、連続したピクセル数が5個以下の暗輝度部分については、ノイズと孔の区別がつかないため、構造体として明輝度部分として扱った。ノイズを消す方法としては、連続したピクセル数が5以下の暗輝度部分を白く塗りつぶしてもよく、ピクセル数の計測時に除外してもよい。画像内で既知の長さを示しているスケールバーのピクセル数を計測し、1ピクセル数あたりの長さを算出した。孔のピクセル数を計測し、孔のピクセル数に1ピクセル当たりの長さの2乗を乗ずることで、孔面積を求めた。下記式で、孔面積に相当する円の直径を算出し、孔径とした。 
孔径=(孔面積÷円周率)0.5×2
 膜厚方向断面が全て観察できるように同様の測定を行い、断面の各部位での平均孔径の測定と、最も大きい孔の径を計測した。5箇所で同じ測定を行って平均値を算出した。
 孔径が連続的に変化する一体構造となっているかを判定した。孔径が一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、孔径が減少する両側緻密構造になっているかを判定した。
 (7)表面から断面方向深さ3μmでの空孔率の測定
 (5)で作成した試料を観察試料とした。多孔質膜の断面をSEM(S-5500、株式会社日立ハイテクノロジーズ社製)にて10000倍で観察し、像をコンピュータに取り込んだ。取り込んだ画像のサイズは640ピクセル×480ピクセルだった。SEM像を膜厚方向に3μm、多孔質膜の表面と平行に5μmの範囲に切り取り、画像処理ソフトにて画像解析を行った。二値化処理によって構造体部分を明輝度に、それ以外の部分が暗輝度となるように閾値を決め、明輝度部分を白、暗輝度部分を黒とした画像を得た。画像内のコントラストの差によって、構造体部分とそれ以外の部分を分けられない場合、構造体部分以外を黒で塗りつぶして画像解析をした。孔が深さ方向に二重に観察された場合は、浅い方の孔で測定した。画像にはノイズが含まれ、連続したピクセル数が5個以下の暗輝度部分については、ノイズと孔の区別がつかないため、構造体として明輝度部分として扱った。ノイズを消す方法としては、連続したピクセル数が5以下の暗輝度部分を白く塗りつぶしてもよく、ピクセル数の計測時に除外してもよい。暗輝度部分のピクセル数を計測し、解析画像の総ピクセル数に対する百分率を算出して空孔率とした。10枚の画像で同じ測定を行い、平均値を算出した。
 (8)元素分析
 多孔質膜3gを凍結乾燥させ、全自動元素分析装置varioEL(エレメンタール社)にて、試料分解路950℃、還元炉500℃、ヘリウム流量200ml/min、酸素流量20~25ml/minで測定を行った。構造ポリマーとしてポリスルホン、親水性高分子としてポリビニルピロリドンを用いた場合、測定された窒素含有量(w(質量%))から、親水性高分子の含有量(w(質量%))は、下記式で計算して求めた。
  w=w×111/14 。
 (9)多孔質膜全体の空孔率の測定
 多孔質膜が中空糸膜である場合の測定例を示す。
 多孔質膜を長手方向10cmに切断し、重量m(g)を測定した。多孔質膜の素材の比重a(g/ml)、内周半径r(cm)、外周半径r(cm)から、次式によって空孔率P(%)を算出した。試料10個について測定を行い、平均値を求めた。
  P=(1-((m÷a)÷((r ×π-r ×π)×10)))×100   。
 (10)耐圧試験
 多孔質膜が中空糸膜である場合の測定例を示す。
 直径5mm、長さ17cmのハウジングに中空糸膜を10本充填した。
 両端をポリウレタン樹脂からなるポッティング材でポッティングし、カットして開口することによって、中空糸膜モジュールを作製する。次いで、該モジュールの中空糸膜およびモジュール内部を蒸留水にて、100ml/minで1 時間洗浄した。中空糸膜外側に水圧400kPaを1分間かけた。モジュールを解体し、中空糸膜がつぶれていないかを目視で確認した。
 (実施例1)
 ポリスルホン(ソルベイ社製ユーデルポリスルホン(登録商標)P-3500)20重量部およびポリビニルピロリドン(BASF社製K30重量平均分子量4万)11重量部をN,N’-ジメチルアセトアミド68重量部と水1重量部の混合溶媒に加え、90℃で6時間加熱して溶解し、製膜原液を得た。この製膜原液を二重管円筒型口金の環状スリットから吐出した。環状スリットの外径は0.59mm、内径は0.23mmとした。注入液としてN,N’-ジメチルアセトアミド70重量部および水30重量部からなる溶液を内側の管より吐出した。口金は40℃に保温した。吐出された製膜原液は、露点26℃(温度30℃、湿度80%)の気体を風量2.1m/sで流した乾式部70mmを0.11秒で通過した後、40℃のN,N’-ジメチルアセトアミド95重量部と水5重量部の凝固浴に導き固化させた後に、50℃で水洗し、40m/minでカセに巻き取った。ドラフト比は2.6だった。長手方向に20cmに切断し、80℃で5時間熱水洗浄を行った後に100℃で2時間熱処理した。原液の吐出量と注入液の吐出量を調整することで、熱処理後の糸径が内径180μm、膜厚90μmの中空糸膜状の多孔質膜が得られた。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、空孔率の測定、耐圧試験を行い、結果を表1に示した。
 図1に示すとおり、膜厚方向断面の構造は、孔径が連続的に変化する一体構造で、内表面から外表面にむけて孔径が拡大し、極大値をとった後、孔径が減少する構造となっていた。図5および図7に示すとおり、外表面よりも内表面の孔の短径の平均値が小さかった。図5に示すとおり、内表面の長径と短径の比が大きく、開孔率が低かった。図2から図4に示すとおり、外表面側の緻密層(I)は厚く、130nm以下100nm以上の孔が存在した。図8から9に示すとおり、内表面近傍の空孔率が低かった。また、多孔質膜全体の空孔率は低く、内表面の緻密層(II)は厚く、130nm以下100nm以上の孔が存在し、膜厚方向断面の最大孔径は小さかった。ウイルス除去性能の試験では、表面の孔の短径の平均値が大きい外表面側から、表面の孔の短径の平均値の小さい内表面側にむけて濾過を行っていた。高い水圧の50kPaでもウイルス除去性能が高く、透水性能および耐圧性が高かった。
 (実施例2)
 乾式部の長さを150mmにして0.23秒で通過させた以外は、実施例1と同様の実験を行った。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 実施例1と同様に、高い水圧の50kPaでもウイルス除去性能が高く、透水性能および耐圧性が高かった。
 (実施例3)
 乾式部の長さを210mmにして0.23秒で通過させた以外は、実施例1と同様の実験を行った。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 実施例1と同様に、高い水圧の50kPaでもウイルス除去性能が高く、透水性能および耐圧性が高かった。
 (実施例4)
 製膜原液の組成をポリスルホン(ソルベイ社製ユーデルポリスルホン(登録商標)P-3500)22重量部およびポリビニルピロリドン(BASF社製K30重量平均分子量4万)11重量部をN,N’-ジメチルアセトアミド66重量部と水1重量部としたことと、注入液の組成をN,N’-ジメチルアセトアミド68重量部および水32重量部としたこと以外は、実施例1と同様の実験を行った。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 実施例1と同様に、高い水圧の50kPaでもウイルス除去性能が高く、透水性能および耐圧性が高かった。
 (実施例5)
 二重管円筒型口金の環状スリットの外径を0.48mm、内径を0.23mmとした以外は、実施例1と同様の実験を行った。ドラフト比は1.8だった。 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 実施例1と同様に、高い水圧の50kPaでもウイルス除去性能が高く、透水性能および耐圧性が高かった。
 (比較例1)
 乾式部の長さを400mmにして0.60秒で通過させた以外は、実施例1と同様の実験を行った。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 両側緻密構造となっているが、外表面側の緻密層厚みが薄く、表面の孔の短径の平均値が小さい側の表面の開孔率が高いため、高い水圧の50kPaでのウイルス除去性能が低い多孔質膜だった。
 (比較例2)
 ポリスルホン(ソルベイ社製ユーデルポリスルホン(登録商標)P-3500)16重量部、ポリビニルピロリドン(BASF社製K30重量平均分子量4万)3.5重量部、ポリビニルピロリドン(BASF社製K90重量平均分子量120万)2.5重量部、N,N’-ジメチルアセトアミド77重量部と水1重量部の混合溶媒に加え、90℃で6時間加熱して溶解し、製膜原液を得た。この製膜原液を二重管円筒型口金の環状スリットから吐出した。環状スリットの外径は0.35mm、内径は0.25mmとした。注入液としてN,N’-ジメチルアセトアミド64重量部および水36重量部からなる溶液を内側の管より吐出した。口金は50℃に保温した。吐出された製膜原液は、露点26℃(温度30℃、湿度80%)の気体を風量2.1m/sで流した乾式部400mmを0.8秒で通過した後、40℃のN,N’-ジメチルアセトアミド95重量部と水5重量部の凝固浴に導き固化させた後に、50℃で水洗し、40m/minでカセに巻き取った。ドラフト比は1.6だった。長手方向に20cmに切断し、80℃で5時間熱水洗浄を行った後に100℃で2時間熱処理した。原液の吐出量と注入液の吐出量を調整することで、熱処理後の糸径が内径200μm、膜厚40μmの中空糸膜状の多孔質膜が得られた。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 膜厚と膜厚/内径が小さいため、耐圧性が低く400kPaでつぶれがおこっていた。   
 乾式部の通過時間が長く、膜厚も薄いため、両側緻密構造とならず高い水圧の50kPaでのウイルス除去性能が低い多孔質膜だった。
 (比較例3)
 膜厚を70μm、内径を200μmとする以外は、比較例2と同様の実験を行った。ドラフト比は0.7だった。
 透水性能測定、ウイルス除去性能測定、表面の孔の短径測定、表面の開孔率測定、緻密層厚みの測定、元素分析、断面の孔径の測定、断面方向に表面から3μmの深さでの空孔率の測定、多孔質膜全体の空孔率の測定、耐圧試験を行い、結果を表1に示した。
 膜厚と膜厚/内径を大きくすることで、耐圧性が上がった。膜厚を上げることで両側緻密構造となったが、乾式部の通過時間が長いために緻密層は薄く、高い水圧でのウイルス除去性能が低い多孔質膜だった。ドラフト比が小さいために長径と短径の比が小さい膜構造となっており、低圧のウイルス除去性能が低くなっているが透水性能が上がっておらず、ウイルス除去性能に対して透水性能が低い多孔質膜だった。
Figure JPOXMLDOC01-appb-T000002
 1  中空糸膜
 2  中空糸膜断面の孔
 3  中空糸膜断面の孔径130nm以上の孔
 4  緻密層
 5  中空糸膜表面の孔

Claims (27)

  1. 以下の特性を有する多孔質膜。
    (A-1)一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さい。
    (A-2)膜厚方向断面で、孔径が、一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、さらに孔径が減少している。
    (A-3)表面の孔の短径の平均値が大きい側で、表面から膜厚方向に孔径130nm以下の層の層を有し、その層の厚みが0.5μm以上20μm以下である。
    (A-4)前記層が孔径130nm以下、100nm以上の孔を有する。
  2. 以下の特性を有する請求項1記載の多孔質膜。
    (A-5)孔の短径の平均値が小さい側の表面において、孔の短径の平均値が10nm以上50nm以下である。
  3. 以下の特性を有する請求項1または2記載の多孔質膜。
    (A-6) 前記表面の孔の短径の平均値が小さい側の表面の孔の長径の平均値が、その側の表面の孔の短径の平均値の2.5倍以上である。
  4. 以下の特性を有する請求項1~3いずれかに記載の多孔質膜。
    (A-7)表面の孔の短径の平均値が小さい側で,表面から孔径130nm以下の孔を有する層を有し、その層の厚みが0.3μm以上20μm以下である。
    (A-8)前記層が孔径130nm以下、100nm以上の孔を有する。
  5. 以下の特性を有する請求項1~4いずれかに記載の多孔質膜。
    (A-9)膜厚方向断面において、表面の孔の短径の平均値が小さい側の表面から厚さ3μmまでの部分の空孔率が5%以上、35%以下である。
  6. 以下の特性を有する請求項1~5いずれかに記載の多孔質膜。
    (A-10)表面の孔の短径の平均値が小さい側の表面の開孔率が0.7%以上、12%以下である。
  7. 以下の特性を有する請求項1~6いずれかに記載の多孔質膜。
    (A-11)多孔質膜全体の空孔率が60%以上、90%以下である。
  8. 以下の特性を有する請求項1~7いずれかに記載の多孔質膜。
    (A-12)膜厚方向断面の最大孔径が10μm以下である。
  9. 膜構造が一体構造である請求項1から8のいずれかに記載の多孔質膜。
  10. 中空糸膜である請求項1から8のいずれかに記載の多孔質膜。
  11. 中空糸膜の内表面の孔の短径の平均値が外表面の孔の短径の平均値よりも小さいことを特徴とする請求項10に記載の多孔質膜。
  12. 膜厚が60μm以上、200μm以下であり、膜厚/内径が0.35以上、1.0以下であることを特徴とする請求項10または11に記載の多孔質膜。
  13. 請求項1~12いずれかの多孔質膜に対して、水を表面の孔の短径の平均値が大きい側から、表面の孔の短径の平均値が小さい側に向けて、透過させる工程を有する浄水方法。
  14. 以下の特性を有する多孔質膜。
    (B-1)一方の表面の孔の短径の平均値が、他方の表面の孔の短径の平均値よりも小さい。
    (B-2)前記表面の孔の短径の平均値が小さい側の表面の孔の長径の平均値が、その側の表面の孔の短径の平均値の2.5倍以上である。
    (B-3)膜厚方向断面において、表面の孔の短径の平均値が小さい側の表面から厚さ3μmまでの部分の空孔率が5%以上、35%以下である。
    (B-4)表面の孔の短径の平均値が小さい側の表面の開孔率が0.7%以上、12%以下である。
  15. 以下の特性を有する請求項14記載の多孔質膜。
    (B-5)膜厚方向断面で、孔径が一方の表面から他方の表面にむかって増加し、少なくとも1つの極大値をとった後、孔径が減少している。
    (B-6)表面の孔の短径の平均値が大きい側で、表面から膜厚方向に孔径130nm以下の孔を有する層を有し、その層の厚みが0.5μm以上20μm以下である。
    (B-7)前記層が孔径130nm以下、100nm以上の孔を有する。
  16. 以下の特性を有する請求項14または15に記載の多孔質膜。
    (B-8)孔の短径が小さい側の表面における孔の短径の平均値が10nm以上50nm以下である。
  17. 以下の特性を有する請求項14~16いずれかに記載の多孔質膜。
    (B-9)で、表面の孔の短径の平均値が小さい側で、表面から孔径130nm以下の孔を有する層を有し、その層の厚みが0.3μm以上20μm以下である。
    (B-10)前記層が孔径130nm以下、100nm以上の孔を有する。
  18. 以下の特性を有する請求項14~17いずれかに記載の多孔質膜。
    (B-11)多孔質膜全体の空孔率が60%以上、90%以下である。
  19. 以下の特性を有する請求項14~18いずれかに記載の多孔質膜。
    (B-12)膜厚方向断面の最大孔径が10μm以下である。
  20. 膜構造が一体構造である請求項14から19のいずれかに記載の多孔質膜。
  21. 中空糸膜である請求項14から20のいずれかに記載の多孔質膜。
  22. 中空糸膜の内側の表面の孔の短径の平均値が外側の表面の孔の短径の平均値よりも小さい請求項21に記載の多孔質膜。
  23. 膜厚が60μm以上、200μm以下であり、膜厚/内径が0.35以上、1.00以下であることを請求項21または22に記載の多孔質膜。
  24. 請求項15~23いずれかの多孔質膜に対して、水を表面の孔の短径の平均値が大きい側から、表面の孔の短径の平均値が小さい側に向けて、透過させる工程を有する浄水方法。
  25. ウイルスを除去する用途に用いられることを特徴とする、請求項1から24のいずれかに記載の多孔質膜。
  26. 請求項1から25のいずれかに記載の多孔質膜を内蔵することを特徴とする浄水器。
  27. 水を表面の孔の短径の平均値が大きい側に原水流路を有し、表面の孔の短径の平均値が小さい側に透過水流路を有する、請求項26記載の浄水器。
PCT/JP2014/056475 2013-03-28 2014-03-12 多孔質膜および浄水器 WO2014156644A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014519732A JPWO2014156644A1 (ja) 2013-03-28 2014-03-12 多孔質膜および浄水器
US14/780,275 US20160052804A1 (en) 2013-03-28 2014-03-12 Porous membrane and water purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-068389 2013-03-28
JP2013068389 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156644A1 true WO2014156644A1 (ja) 2014-10-02

Family

ID=51623627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056475 WO2014156644A1 (ja) 2013-03-28 2014-03-12 多孔質膜および浄水器

Country Status (3)

Country Link
US (1) US20160052804A1 (ja)
JP (2) JPWO2014156644A1 (ja)
WO (1) WO2014156644A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131209A1 (ja) * 2016-01-29 2017-08-03 東レ株式会社 分離膜
CN110026090A (zh) * 2017-12-05 2019-07-19 旭化成株式会社 多孔膜
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675929B2 (en) 2014-11-17 2017-06-13 Hamilton Sundstrand Corporation Air separation module with increased permeate area
EP4041441A4 (en) 2019-10-10 2023-11-01 Entegris, Inc. POROUS POLYMER MEMBRANE AND ASSOCIATED FILTERS AND METHODS
CN115090134B (zh) * 2022-06-29 2023-11-03 天津鼎芯膜科技有限公司 一种具有梯度孔结构的膜材料及其制备方法和应用
CN114887500A (zh) * 2022-07-08 2022-08-12 杭州科百特过滤器材有限公司 一种除病毒用不对称的纤维素类滤膜及其制备方法
JP2024030266A (ja) 2022-08-24 2024-03-07 東京応化工業株式会社 多孔質膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228016A (ja) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd 芳香族ポリスルホン中空糸状膜及びその製造方法
JPH02174921A (ja) * 1988-09-09 1990-07-06 Terumo Corp 多孔質膜及びその製造方法
JPH02251233A (ja) * 1989-03-22 1990-10-09 Asahi Chem Ind Co Ltd ポリスルホン系中空糸膜及びその製造方法
JPH03258330A (ja) * 1990-03-09 1991-11-18 Kuraray Co Ltd 多孔性中空糸膜
JP2007289886A (ja) * 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788602B2 (ja) * 1987-01-08 1995-09-27 三菱化学株式会社 コポリアミドイミド中空糸
US4770777A (en) * 1987-01-29 1988-09-13 Parker Hannifin Corporation Microporous asymmetric polyamide membranes
TW311947B (ja) * 1995-06-05 1997-08-01 Kuraray Co
EP1535636A4 (en) * 2002-07-12 2011-02-16 Kuraray Co POROUS MEMBRANE
WO2007125943A1 (ja) * 2006-04-26 2007-11-08 Toyo Boseki Kabushiki Kaisha 高分子多孔質中空糸膜
JP2008221050A (ja) * 2007-03-08 2008-09-25 Nikkiso Co Ltd 半透膜
US8557112B2 (en) * 2007-10-10 2013-10-15 Toray Industries, Inc. Fine bubble diffusing pipe, fine bubble diffusing apparatus, and submerged membrane separation apparatus
BRPI0918144A2 (pt) * 2008-09-10 2015-12-01 Toray Industries membrana de fibra oca e processo para a produção de membrana de fibra oca
JP5716283B2 (ja) * 2010-03-15 2015-05-13 東レ株式会社 多孔質分離平膜およびその製造方法
JP6201553B2 (ja) * 2012-09-11 2017-09-27 東レ株式会社 多孔質膜、多孔質膜を内蔵する浄水器および多孔質膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228016A (ja) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd 芳香族ポリスルホン中空糸状膜及びその製造方法
JPH02174921A (ja) * 1988-09-09 1990-07-06 Terumo Corp 多孔質膜及びその製造方法
JPH02251233A (ja) * 1989-03-22 1990-10-09 Asahi Chem Ind Co Ltd ポリスルホン系中空糸膜及びその製造方法
JPH03258330A (ja) * 1990-03-09 1991-11-18 Kuraray Co Ltd 多孔性中空糸膜
JP2007289886A (ja) * 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131209A1 (ja) * 2016-01-29 2017-08-03 東レ株式会社 分離膜
JPWO2017131209A1 (ja) * 2016-01-29 2018-11-29 東レ株式会社 分離膜
US10799837B2 (en) 2016-01-29 2020-10-13 Toray Industries, Inc. Separation membrane
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane
CN110026090A (zh) * 2017-12-05 2019-07-19 旭化成株式会社 多孔膜
US11033861B2 (en) 2017-12-05 2021-06-15 Asahi Kasei Kabushiki Kaisha Porous membrane

Also Published As

Publication number Publication date
JPWO2014156644A1 (ja) 2017-02-16
JP6690688B2 (ja) 2020-04-28
JP2019048297A (ja) 2019-03-28
US20160052804A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP6690688B2 (ja) 多孔質膜
AU2009297565B2 (en) Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
US8708161B2 (en) Polyvinylidene fluoride hollow fiber microporous membrane and process for production of the same
JP6201553B2 (ja) 多孔質膜、多孔質膜を内蔵する浄水器および多孔質膜の製造方法
JP5754654B2 (ja) タンパク質含有液処理用多孔質中空糸膜
JP5433921B2 (ja) 高分子多孔質中空糸膜
JP6024660B2 (ja) 多孔質中空糸膜
WO2015041286A1 (ja) 多孔質中空糸膜及びその製造方法
WO2007125943A1 (ja) 高分子多孔質中空糸膜
JP5835659B2 (ja) タンパク質含有液処理用多孔質中空糸膜
JP2008284471A (ja) 高分子多孔質中空糸膜
JP2024515027A (ja) 中空糸膜及びその作製方法
CN109070011B (zh) 中空丝膜
WO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
Arahman et al. Effect of hypochlorite treatment on performance of hollow fiber membrane prepared from polyethersulfone/N‐methyl‐2‐pyrrolidone/tetronic 1307 solution
JP2688564B2 (ja) 酢酸セルロース中空糸分離膜
WO2015137330A1 (ja) 多孔質膜および浄水器
WO2024128243A1 (ja) 多孔質膜および精製方法
JP2005058906A (ja) 高分子多孔質膜、血液浄化器および高分子多孔質膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014519732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780275

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14772956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE