Nothing Special   »   [go: up one dir, main page]

WO2014149930A1 - Improved method and system for tank refilling - Google Patents

Improved method and system for tank refilling Download PDF

Info

Publication number
WO2014149930A1
WO2014149930A1 PCT/US2014/021562 US2014021562W WO2014149930A1 WO 2014149930 A1 WO2014149930 A1 WO 2014149930A1 US 2014021562 W US2014021562 W US 2014021562W WO 2014149930 A1 WO2014149930 A1 WO 2014149930A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
fill
temperature
hydrogen
initial
Prior art date
Application number
PCT/US2014/021562
Other languages
French (fr)
Inventor
Steven Mathison
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/843,537 external-priority patent/US9212783B2/en
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Publication of WO2014149930A1 publication Critical patent/WO2014149930A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/022Avoiding overfilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/023Avoiding overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/026Improving properties related to fluid or fluid transfer by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refuelling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • compressed hydrogen tanks are to be conducted in a manner that prevents the tank from overheating (temperatures exceeding 85°C) during refueling and/or from overfilling the tank to a point at which the pressure could exceed 125% of normal working pressure (NWP) at any time. Because of the number of unknown parameters
  • SOC end of fill density
  • An additional limitation of the refilling procedures defined by SAE TIR J2601 is the lack of any method or procedure for a hydrogen tank filling station to compensate or adjust for situations in which its actual operating conditions fall outside of the allowed tolerances. For example, if the pre-cooling temperature is above the design set point as the result of multiple consecutive refills, the lookup tables defined in SAE TIR J2601 cannot be used. Efforts to avoid this out of specification condition can lead to an overdesigned hydrogen tank filling station (excessive cooling for ensuring that the pre-cooling target temperature is maintained), thereby driving up station cost.
  • the improved MC Method as detailed infra provides a new tank filling model based on the total heat capacity of the hydrogen fueling system and an advanced algorithm based on that model for improving the performance of hydrogen filling stations under a broad range of operating conditions and, in particular, includes additional consideration of heat transfer to the hydrogen from downstream components.
  • This modified algorithm as applied stepwise in the MC Method, can be used to enhance fueling performance relative to that available under SAE TIR J2601 by utilizing additional thermodynamic information about the tank and filling systems.
  • the MC Method may be applied to virtually any combination of tank system Normal Working Pressure (NWP) and any compressed hydrogen tank system.
  • NWP Normal Working Pressure
  • the additional consideration of heat transfer to the hydrogen can permit fueling operations under conditions outside of current SAE TIR J2601 tables, thereby tending to improve both fill speed and fill quality (SOC%), while reducing the costs incurred by the hydrogen stations in effecting such operations.
  • FIG. 1 illustrates the modeling of a hydrogen storage tank during refueling as an open system with an unsteady flow control volume model.
  • the control volume is defined as the boundary between the gas and the liner with heat being transferred through the boundary of the control volume and into the liner of the tank.
  • FIG. 2 illustrates a temperature v. time curve for a hydrogen tank refueling procedure, reflecting use of the adiabatic temperature in calculating the heat transfer with the heat transferred from the hydrogen being described by Equation [5] infra.
  • FIG. 3 illustrates a constant heat flux model showing temperature distribution dependent on time with adiabatic boundary condition with a conservative assumption of no heat transfer from the outside of the tank so that the actual final temperature in the tank is expected to be slightly lower than the value calculated in light of this assumption.
  • FIG. 4 illustrates a temperature distribution of a section of a composite tank immediately after a vehicle refueling.
  • FIG. 5 illustrates a simplified representation of a hydrogen tank having an imaginary characteristic volume of combined mass and specific heat capacity MC, with adiabatic external boundary.
  • FIG. 6 illustrates a typical vehicle fill in 3 minutes with a Type 3 tank that produces an end-of-fill MC value of 62 that then tends to increase as the tank cools.
  • This trend of MC v. time is characteristic for a given tank system, and can be used in predicting the temperature result of longer vehicle fueling times.
  • FIG. 7 illustrates MC v. fill time for a "default" SAE TIR J2601 - 70MPa Type 4 tank. This graph is derived from the Type B (7-10kg) 70MPa station tables of SAE TIR J2601 .
  • FIG. 8 illustrates a potential Test Matrix for tank characterization
  • FIGS. 9A and 9B illustrate MC v. UadiabatiJUjnit for 3 minute fills and 30 second approximations of a Type 3 tank from which the coefficients A and C can be determined.
  • FIG. 10 illustrates AMC v. time for fill times having a duration of more than 3 minutes from which the coefficients g, k, and j can be determined for describing the behavior of MC for fill times in excess of 3 minutes.
  • FIG. 1 1 illustrates a comparison of the hydrogen station operating envelopes to the existing refueling standards, showing several gaps in the coverage of existing or anticipated operating regimes.
  • FIG. 12 illustrates information required for fully utilizing the MC Method for determining a fueling protocol under a given set of conditions.
  • FIG. 13 illustrates the MC Method first step - determining the fueling time based on a higher than ambient temperature, i.e., hot soak (HS), condition in which ⁇ ⁇ can be represented by T H sinit for convenience.
  • HS hot soak
  • FIG. 14 illustrates the MC Method second step - determining the pressure target based on using a colder than ambient, i.e., cold soak (CS), condition in which 7 curb /f can be represented by T C sinit for convenience.
  • CS cold soak
  • FIG. 15 illustrates the MC Method third step, using the pressure target from the second step in determining the expected result and, if in excess of the target pressure, reducing the target density and recalculating in an iterative manner to match the pressure target at the final temperature.
  • FIG. 16 illustrates the results obtained from a 35MPa Type 3 Tank Fill under a 35°C ambient with 5°C Pre-cooled Hydrogen and 5MPa Start Pressure.
  • r ffna/ target is 69.2°C, bounded by Hot Soak at 74.3°C and Cold Soak at 62.3°C.
  • FIG. 17 illustrates Result of 50MPa Type 4 Tank Fill from 30°C Ambient with -15°C Pre-cooled Hydrogen and 2MPa Start Pressure.
  • Tf ina i target is 86.7°C, bounded by Hot Soak at 89.0°C and Cold Soak at 83.0°C. Note that the target pre- cooling temperature was -20°C, which verified the difficulty in practice of keeping a specified pre-cooling temperature.
  • FIG. 18 illustrates 70MPa Type 4 Tank Test from 25°C Ambient at 17MPa Start Pressure with -7.5°C Pre-cooling.
  • T fma ⁇ target is 76.6°C, bounded by Hot Soak at 81 .0°C and Cold Soak at 70.0°C.
  • FIGS. 19A and 19B illustrate Calculation of the Constants of the MC Equation (Equation [13]) for the Type 3 Tank and show that the data generated during verification filling under different conditions compliments the data that was used to generate the constants originally.
  • the model is robust to different conditions.
  • FIG. 20 illustrates Error between Tf ina i as calculated by the MC Method and the actual measured final temperature at the end of the fill.
  • FIGS. 21 A and 21 B illustrate Sensitivity Analysis of Type 3 and Type 4 Tanks, respectively, to Input Errors Using the MC Method.
  • FIG. 22 illustrates a comparison of fueling methods showing the impact of adding the MC Method to existing fueling protocols.
  • FIG. 23 illustrates a relationship between nozzle temperature deviation from pre-cooling temperature, flow rate, pre-cooling temperature, and ambient temperature measured during fill testing. This relationship is, of course, dependent on the specific implementation of components for a given fueling station or test stand.
  • FIG. 24 illustrates equations of a curve fit to the NIST Hydrogen Property Database for hydrogen gas utilized for determining internal energy (given temperature and pressure), enthalpy (given temperature and pressure), temperature (given internal energy and pressure), and density (given temperature and pressure) of hydrogen gas.
  • FIG. 25 illustrates a fueling system 2500 in which additional components are arranged between the point 2508 at which the temperature and pressure of the hydrogen leaving the dispenser body is measured and the point at which the hydrogen enters the tank 2512.
  • the goal of the methods and systems detailed in this disclosure is to provide an improved hydrogen filling model and system utilizing an appropriate algorithm that can be utilized in any gas tank filling operation for improving the accuracy in predicting the end-of-fill temperature and pressure conditions for a range of hydrogen tanks across a wide range of operating conditions.
  • Implementation of the methods and systems detailed below during hydrogen tank refueling events can improve the efficiency, accuracy and/or safety of the refueling operation by reducing the chance of overfilling and/or overheating a hydrogen tank.
  • full-communication fueling can be used to provide the tank parametric data to the hydrogen tank filling station
  • full-communications fueling adds more cost and complexity to both the station and the vehicle and tends to raise additional concerns, particularly with regard to the use of in-tank sensors. Accordingly, there remains a need for a method for providing sufficiently accurate predictions regarding the temperature and/or pressure of the hydrogen in the tank over the course of a refueling operation without requiring full-communication protocols and hardware.
  • control volume is defined as the boundary between the gas and the tank liner with heat being transferred through the boundary of the control volume and into the liner of the tank.
  • the total heat transfer in and out of the system, Q is reflected in Equations [1 ] and [2].
  • m 2 mass of the fluid in the control volume at thefinal state(kg)
  • the enthalpy can be determined by measuring the temperature and pressure of the hydrogen in the flow stream, preferably at a point close to or at the tank inlet, with the mass flow into the tank being measured or calculated from initial and final conditions. In some instances, however, the temperature and pressure of the hydrogen in the flow stream can be measured well upstream of the tank inlet as illustrated in FIG. 25. To estimate the final temperature of the gas during or after a refueling procedure, the actual heat transfer, Q, from the gas into the tank wall needs to be estimated.
  • Equation [2] only gives information for the internal energy state of the tank
  • a tool such as the National Institute of Standards and Technology (NIST) Thermophysical Property Database, is used to look up the temperature from the internal energy properties of the target gas, e.g., hydrogen.
  • NIST National Institute of Standards and Technology
  • Thermophysical Property Database is used to look up the temperature from the internal energy properties of the target gas, e.g., hydrogen.
  • a curve fit to the NIST data used here for internal energy is illustrated in FIG. 2.
  • the difference between the adiabatic internal energy and the measured internal energy is the quantity of heat that is transferred from the control volume, and can be determined from test data.
  • u adiabatic adiabatic internal energy - if there was no heat transferred from the sy stem(kJ kg)
  • FIG. 2 illustrates a Temperature v. Time curve for a hydrogen tank refueling procedure in which the adiabatic temperature, T adiaba ti C , is used in calculating the heat transfer.
  • the heat transferred from the hydrogen can be described by
  • Equation [5] provides a tool for analyzing actual test data to determine the amount of heat that has been transferred from the hydrogen gas out of the control volume, or into the structure of the tank.
  • the adiabatic internal energy is based only on initial conditions of the tank (initial mass of hydrogen and initial temperature) and the conditions of the hydrogen delivered from the station (enthalpy and fill mass). There is no dimension of time in the adiabatic condition, and so it is an appropriate reference for results for all time periods. If a reliable method to predict the heat transfer can be found, then it should be possible to directly calculate the final state of the hydrogen in the tank.
  • thermocouple Relative to the bulk temperature, if the thermocouple is measuring a temperature that is warmer or cooler than the average bulk temperature, the calculated values can obviously be less accurate. Although it is customary to assume that temperature measurements taken at or near the centerline of the tank can represent the average (bulk) gas temperature, the magnitude of the error(s) associated with this assumption are unknown in practice. Data taken during the development of the MC formula fueling control method and system disclosed in U.S. Patent Application
  • C d i SP enser is the heat capacity (Joules/K) of the component(s) associated with the dispenser
  • T ga s(initiai) is the initial gas temperature (before any H 2 flow has occurred) measured at point 2508
  • C ve h>cie is the heat capacity of the component(s) associated with the vehicle
  • T gas is the gas temperature measured at the same point during the filling operation.
  • Q CO nnnector represents the heat added to the gas during fueling by the components that comprise the fluidic connection between the dispenser 2506 and the tank 2512. This adjustment alters the Uadiabatic equation accordingly:
  • Qconnector can be calculated continuously or periodically during the fill operation based on measured gas temperature T gas as the gas leaves the dispenser body. It is anticipated that T gas can vary during the fill operation and that the heat adjustment Qconnector can vary accordingly over the course of the fill operation.
  • the use of the Qconnector adjustment represents a conservative approach in that it assumes that all of the components arranged between the dispenser body and the tank can achieve Tg as during the course of the fill operation when, in fact, they can tend to be warmer than the gas throughout the relatively brief duration of the fill operation that can be achieved with the improved MC Method.
  • the construction and configuration of the relevant components is such that heat transfer from the ambient to the H 2 through the components can be minimal and, consequently, can be ignored for the purposes of these calculations.
  • This modified MC Method does, however, automatically adjust for the current condition of the fueling station. For example, if the fueling station had recently completed another fill operation, then T gaS (initiai) may be significantly colder than T amb i ent . This condition tends to result in a substantially linear response between a station with a hot condition and a station cold condition.
  • the lookup tables provided in J2601 are not, however, constructed in such a way as to adjust for such a situation as they are drawn only to hot or cold conditions and do not provide sufficient guidance for intervening, and possibly more common, conditions.
  • the method utilizes a combined mass and specific heat capacitance model, as shown in FIG. 5, which illustrates a simplified section of a tank wall having an imaginary
  • characteristic volume defined by its mass (M) and specific heat capacity (C) and an adiabatic external boundary.
  • the temperature of the characteristic volume can be the same as the temperature of the gas, for example, hydrogen.
  • This section of the tank wall, the characteristic volume, can have a combined mass and specific heat capacity, MC (kJ/K). Note that the characteristic volume and the associated MC are mathematical constructions only. Given knowledge of a tank design and the materials used in the tank construction, it is possible to provide a reasonable estimation of the MC value. In the method disclosed herein, however, there is no need to calculate the exact mass and specific heat capacity of the tank because the characteristic volume simply acts as a heat sink, allowing its characteristics to be used in predicting the thermal behavior of the tank system.
  • the temperature of the characteristic volume is set to be equal to the temperature of the hydrogen in the tank at the end of the vehicle fill.
  • the characteristic volume has both high thermal conductivity and high convective heat transfer coefficient.
  • QEnvimnment 0, meaning that no heat is transferred out of the characteristic volume during the fueling (adiabatic boundary).
  • the heat transfer equation is solved for the target or preferred end-of-fill condition of, for example, a fill time of 2 or 3 minutes, plus some adjustment for longer fill times as deemed necessary.
  • a target fill time of 3 minutes has been used, but the method can be easily utilized for longer or shorter fill times.
  • MC can then be determined directly from test data for a particular refueling procedure by using Equation [10], which is the ratio of the heat transferred from the hydrogen to the temperature change of the characteristic volume.
  • an MC Once an MC is known for a given set of initial conditions, it can be used for directly calculating the final temperature of refueling event.
  • Equation [12] can then be used to calculate the expected final temperature of a hydrogen tank refueling just as a fill has started.
  • the MC parameter and m cv (the end-of-fill mass in the control volume) are transmitted to the station.
  • the MC parameter and m cv are transmitted by RFID, through the SAE TIR J2799 IRDA interface, or via an identification number that corresponds to entries in a database that is readily accessible to the hydrogen tank filling station.
  • the hydrogen tank filling station can calculate T ad iabatic from m cv and parameters including 1 ) the initial pressure of the tank receiving the hydrogen ⁇ e.g.
  • the vehicle's tank 1) the initial temperature of the tank receiving the hydrogen (assuming ambient conditions plus some differences due to the possibility of a hot or cold tank as discussed in SAE TIR J2601 ) and 3) the enthalpy of the delivered hydrogen, which is a function of the expected average temperature and pressure of the delivered hydrogen (further description is given in the Appendix provided in FIG. 24).
  • MC Method make it particularly useful for gas delivery systems.
  • a particular dispenser, connector(s) and tank configuration can have a characteristic curve of MC v. fill time from which adjustments can be made to compensate for a range of initial conditions.
  • Utilizing the MC model avoids the need to address all of the intricacies of the temperature distribution within the connecting components and the wall of the tank, especially over a time scale associated with typical hydrogen tank refueling procedures, e.g., two to three minutes or more.
  • MC is not a direct physical constant such as the mass and the specific heat capacity of the connector component(s), tank and liner material but is, instead, a composite value, similar to an overall heat transfer coefficient, that encompasses heat transferred to or from tank valve assemblies and piping as well as heat transferred to the hydrogen comprising the initial gas volume inside the tank being filled.
  • Systems with slower heat transfer characteristics (convection or conduction) tend to result in lower values of MC (such as Type 4 tanks) while systems with faster heat transfer characteristics (convection or conduction) tend to result in higher values of MC (such as Type 3 tanks).
  • MC is a function of a number of different parameters including, for example, time, fill conditions, tank materials, tank configuration, etc., for a given tank, fill time and set of fill conditions, MC can be constant. The trend in the MC value over both time and under different fill conditions can be predicted and, in turn, utilized for adjusting the hydrogen tank filling procedures to improve efficiency while maintaining desired safety margins.
  • Equation [13] As shown below: or, in an alternative non-limiting example, Equation [13]', as shown below: where C, A, g, k and j are constants derived from characterization testing
  • At is the difference in time between the normally defined end-of-fill time ⁇ e.g., 3 minutes) and the end-of-fill time that achieves the desired final temperature.
  • C is a constant that represents a minimum heat capacity of, for example, a 2- or 3-minute fill
  • A is a constant representing an adjustment to the MC corresponding to the initial fill conditions and pre-cooling amount and constants g, k, and j are, if necessary, utilized within the MC Method to allow for adjustments to the resulting MC by extending the fill time beyond 2 or 3 minutes, so that finai can be optimized around a desired temperature.
  • the improved MC Method is not intended to, and does not attempt to, perfectly describe the corresponding physics but is intended as an analytical engineering tool for predicting, with sufficient accuracy, the temperature outcome of a particular filling procedure by approximating the equivalent heat mass of the system.
  • a hydrogen tank filling station can directly calculate the expected end-of-fill temperature ⁇ T fina i) using Equation [12].
  • Equation [10] Using Equation [10], a series of fill tests were conducted with the MC v. time curve being plotted for each fill, as shown in FIG. 6. All of the tank fills follow a similar pattern of MC v. Fill Time as shown in FIG. 7. The resulting curve corresponds to the tank characteristic(s) for a given tank under a given set of conditions.
  • the MC for each end-of-fill at 3 minutes was plotted against the adiabatic internal energy divided by the initial internal energy, as shown in FIG. 9A. The slope and intercept of the linear best fit line give the coefficient A and the constant C respectively.
  • Atime that is (MC (t- i80s) - MC ( i 8 os) ) v. (t-180s) is then plotted as shown in FIG. 10, and a best fit model used to determine the coefficients g, k and j. These coefficients can then be used to describe how much heat is absorbed by the tank in the time beyond the typical fill time and are particularly useful under conditions in which the ambient temperature is too warm and/or the pre-cooling temperature is too warm to achieve an end-of-fill temperature of less than 85°C with a refueling time of 3 minutes or less.
  • a fueling protocol should provide safe, high state of charge (SOC) fills, for a broad range of ambient conditions and initial fill conditions. Comparing the current fueling standards with the actual operating ranges of existing hydrogen stations, as illustrated in FIG. 1 1 , it is clear that the current refueling standards do not satisfy a broad range of station fuel delivery operating conditions. Further, should a vehicle manufacturer or modifier introduce a tank designed to operate at another pressure of, for example, 50MPa, the fueling standard(s) would have to be rewritten to accommodate this modification.
  • SOC state of charge
  • the relevant MC parameters must be communicated to or determined by the station in some manner.
  • This data collection could be achieved in a number of ways.
  • one or more of RFID, an IRDA interface as defined in SAE J2799 or other protocol such as the proposed Hydrogen Vehicle Authorization System (HVAS) can be used for confirming that a vehicle is authorized to fuel (OEM vehicle or a conversion that meets safety requirements).
  • HVAS Hydrogen Vehicle Authorization System
  • FIG. 12 shows both the vehicle side and station side information that may be used to fuel a vehicle based on the improved MC Method.
  • the station can have access to both the vehicle side information through vehicle communication and station side information through direct measurement.
  • the station uses this parametric data in conjunction with the improved MC Method, for calculating an appropriate solution for filling the particular vehicle.
  • the fueling process can include two discrete steps. In the first step, parametric data is used to determine an appropriate fueling fill rate, i.e., one that does not overheat the gas in the tank. During the second step, the fueling fill rate is used to determine a target end-of-fill pressure that can keep the system pressure within the target pressure ranges. In order to determine the appropriate fueling rate, the filling station takes into consideration both the capabilities of the vehicle's tank system and the station's capabilities for delivering fuel under the current conditions.
  • Typical limits currently utilized in refueling operations are 85°C and 125% of the NWP for average gas temperature and pressure, respectively.
  • the station makes an assumption about the average gas temperature inside the tank, based on measuring the ambient air temperature and optionally adding a margin for a hot soak condition ⁇ e.g., the vehicle has been parked in an environment that is hotter than ambient, such as a hot garage or parking lot).
  • the station also determines the approximate initial SOC of the vehicle, using the temperature assumption and by dispensing a small amount of fuel to the tank to equilibrate the hose pressure to the tank pressure.
  • the station can estimate how much hydrogen (mass) must be delivered to the vehicle to achieve the desired SOC and, utilizing an estimate of its pre- cooling capability, the station can calculate the average enthalpy that can be delivered to the vehicle's tank system during the fill operation. Working from this information, the station can then determine how quickly to fill the vehicle while maintaining the requisite safety margin.
  • the primary MC parameter is based on a target fueling time with additional parameters being used to account for the initial SOC and/or fueling times that exceed the target fueling time.
  • the station analyses an initial fill protocol to determine if the fill can be successfully completed, i.e., end-of-fill temperature within specification. If it is determined that the initial fill protocol cannot be successfully completed, an iterative process is initiated to determine an appropriate fueling time. For example, if the fueling operation can be conducted in the target time without exceeding any temperature limits, the station can initiate fueling.
  • the projected fueling time can be increased by some increment ⁇ e.g., 0.1 , 1 , 5, 10 seconds, etc.) and the new MC value can be calculated. This iterative process can continue until an acceptable fueling time solution is identified. This process is shown in FIG. 13 using a 10-second increment as an example.
  • the output of this Step 1 is the TfinaifHot soak Bound) and the fueling or fill time.
  • the appropriate fueling time can be continuously or repeatedly calculated throughout the fill procedure based on the actual enthalpy delivered to the vehicle. Accordingly, even though the fueling time calculated at the beginning of the fill should be a good approximation, the fueling time (or rate of pressure rise during the fill) can be adjusted as necessary to take into account the actual fill conditions if they vary across the fill cycle.
  • the dispenser For the dispenser to make the assumption that the upper bound of gas temperature inside the tank is ambient T plus a AT hot soak, it must know that the vehicle has not been recently refueled. If this information is unknown, then a more conservative assumption should be utilized, e.g., determining the fueling speed based on an empty or nearly empty tank. By using this more conservative assumption, even if the vehicle had been recently refueled, the calculated fueling speed does not overheat the tank.
  • the recent fueling history of the vehicle can be determined, a less conservative fueling speed can be utilized, potentially shortening the fueling time considerably.
  • a less conservative fueling speed can be utilized, potentially shortening the fueling time considerably.
  • approaches that can be utilized for determining the recent fueling history of the vehicle.
  • a non-limiting example is for the HVAS RFID tag to be time stamped each time the vehicle is fueled. The dispenser can then read this time stamp each time the vehicle is fueled and determine whether to use a conservative fueling speed if the time stamp indicates a recent refueling, or a less conservative fueling speed based on the actual starting pressure in the tank if the time stamp indicates refueling has not occurred recently.
  • the next step of the improved MC Method is to determine when, or at what pressure, to stop the fill operation.
  • the process used by the station in this second step is similar to that used in the first step except that the station assumes the gas temperature inside the tank at the beginning of the fill is below the ambient temperature, i.e., a cold soak condition, which includes the possibility that the tank has been soaked in an air conditioned garage, or that the ambient temperature is rising and the internal gas temperature lags the ambient There is also the factor of driving that may be considered in which the gas temperature inside the tank has been reduced as a result of the decrease in pressure as the hydrogen was consumed.
  • the improved MC Method can be used to estimate the average temperature of the MC and hydrogen gas during defueling using Equation [16]
  • madd ma ss exiting the hydrogen tank in time t
  • h exit average enthalpyof the hydrogen exiting the tank
  • minitcoid mass i n tne tan k J ust before refueling
  • T ColdSoak assumed temperature of the vehicle tank before defueling
  • the appropriate AT Co id parameter, and the defueling mass flow rate m can typically be determined by the OEM and can be provided as part of the vehicle side information transferred through HVAS or otherwise made available to the filling station.
  • the station can calculate how much mass must be added to the tank to reach the target density of 100% SOC. If the station has an accurate flow meter, it can simply integrate the mass flow during the fill and stop when the target mass has been achieved, however, the application of a flowmeter in this capacity might have its own challenges.
  • a second option is to calculate a pressure target utilizing the same set of equations as in Step 1 . Tfinai can be calculated based on the fueling time of Step 1 , and then the Ptarget value can be calculated based on the pressure that, in conjunction with T finai , provides a 100% SOC target density.
  • the initial temperature can be measured directly by the station. Because this initial temperature is a settled
  • Tm is simply the measured initial temperature and the hot soak and cold soak assumptions detailed above need not be considered.
  • Step 1 and Step 2 unnecessary - the station does not need to calculate an expected result as the fill protocol is fully defined by Step 1 and Step 2.
  • the expected T rtnai can be calculated. Because the Pressure Target calculated in Step 2 is usually lower than the Pressure Target that was assumed in Step 1 , the resulting fill can tend to exhibit a slightly lower SOC% which, in turn, indicates that the gas density target needs to be reduced to match the Pressure Target at a higher T fina/ than was calculated in Step 2. Because a change in additional mass of hydrogen added affects the T ad i abat ic, for greater precision it is necessary to complete the outlined calculations in order to determine the expected 7&, a / and SOC% target.
  • the utility and flexibility of the MC Method provides many opportunities for customization and refinement to encompass, for example, fueling times of less than 3 minutes for tanks that start filling at high SOC.
  • the expected final temperature T fina i was calculated for fills conducted at 35MPa, 50MPa and 70MPa.
  • HS Hot Soak
  • CS Cold Soak
  • 7 ffna/ , 7 /n i Annbient Temp was used in the algorithm illustrated in FIG. 15.
  • the Hot Soak Bound should be set at 85°C, however, because the test was predicated on a 3-minute fill target, the Hot Soak Bound is less than 85°C.
  • the MC Method algorithm can be further refined to improve performance for fill times of less than 3 minutes.
  • the MC Method yields very accurate results for Type 3 and Type 4 tanks, typically falling within a range consistent with that expected from variations in thermocouple placement and/or time lag errors.
  • the MC Method Model error is the difference between T ffna / as calculated by the MC Method, and the actual final temperature result measured at the end of the fill procedure.
  • the actual pre- cooling temperature of the station was used as the input to the enthalpy calculation rather than the pre-cooler set point, for the reasons described supra.
  • Known or suspected sources of error include, for example: • errors of the calculation in average enthalpy used,
  • the "Definition Error" as shown in FIG. 20 removes the error in calculating enthalpy, calculating mass, and calculating MC coefficients by using the test data to determine the actual heat transfer, the actual average enthalpy of the fill, and the actual MC value, and using those to calculate Tf in ai- This removes substantially all of the errors and approximations attributable to the calculations of the MC Method itself, leaving only the measurement errors as the source of error.
  • the MC Method was relatively resistant to input errors with Type 3 tanks being more sensitive to variations in the initial temperature measurements while Type 4 tanks are more sensitive to variations in the temperature measurement of the flow stream at the station.
  • 10K errors in the initial temperature measurement leads to 6K errors in T ffna / for both Type 3 and Type 4 tanks.
  • 10K errors in the hydrogen temperature measurement at the station (used for the average enthalpy approximation) lead to T fma ⁇ error of 6K for Type 3 tanks and 8K for Type 4 tanks.
  • 10% errors in the calculated MC coefficients lead to errors of around 3K (and 3K represents approximately a 1 % error in the density of hydrogen).
  • the fueling process is better adapted to the tank that is being fueled, thus tending to provide reduced fueling time and increased SOC within the bounds of the uncertainties of the initial conditions of the tank and the measurements at the station.
  • the fueling process is also better adapted to the station's real time capabilities, thereby increasing operational flexibility and avoiding the rigid, preset, tightly bounded temperature requirements corresponding to the various station types as defined in SAE TIR J2601 .
  • the improved MC Method allows the filling process to self-adjust to the current fueling capabilities of the station, thereby providing the potential for simpler, more flexible and less costly hydrogen filling stations.
  • the flexibility of the improved MC Method allows a hydrogen filling station to be "tuned" to the current operating environment which, in turn, may allow for increased pre-cooling temperatures while still maintaining generally acceptable fueling times under most conditions.
  • the ability to run at higher pre-cooling temperatures can improve station efficiency, lower costs and maintain customer satisfaction.
  • Fueling processes incorporating the improved MC Method as detailed supra could eliminate the need for the look-up tables currently utilized for noncommunication fueling in accord with SAE TIR J2601 , resulting in the same benefits as outlined above.
  • the non-communication fueling operations could include calculations of the MC Parameters of the boundary condition tanks utilized in building the noncommunication look-up tables.
  • the resulting range of fueling rates and pressure targets would be expected to be substantially the same, if not identical, to those defined in the look-up tables.
  • the improved MC Method fueling process can also be utilized with full communication fueling, resulting in a number of benefits.
  • SAE TIR J2601 currently defines two types of communication fueling including 1 ) a Default method in which fueling rates are the same as the non-communication fueling rates defined in the lookup tables and 2) an Alt Method in which a more aggressive fueling rate can be utilized in those instances in which a vehicle Temperature Signal can be utilized in a feedback loop to regulate the fueling rate in order to suppress or avoid an overheat condition.
  • the fueling rate is determined at the beginning of the fill, just as described above, and is also checked during the fill based on the actual enthalpy of hydrogen delivered during the fill. With communications fueling, the initial and transient conditions can be more tightly defined, giving even better results.
  • the improved MC Method allows an additional cross check on the Temperature Signal received from the vehicle. Because the station can calculate the expected temperature from the MC parameters and delivered enthalpy, it can cross reference this with the temperature signal from the vehicle. The
  • temperature signal at the beginning of the fill procedure is generally constant so by using the actual measured initial temperature and the characteristic MC parameters, the vehicle fueling protocol can be fully defined, and higher quality fill results can be achieved (as reflected in both SOC and fill time).
  • An aspect of using the improved MC Method is the accurate prediction of the mass average enthalpy that can be delivered to the tank during a refueling
  • AP S tationinit 5 MPa if the initial tank pressure was 2MPa, 2MPa if the initial tank pressure was 17 MPa, and 1 MPa at higher initial pressures.
  • APstationFinai was assumed to be 1 MPa in all cases. Therefore, the algorithm may be modified to reflect, more accurately, the conditions and performance of a particular station. In an illustrative example, the station builder or operator may modify the algorithm to more accurately reflect the conditions and performance of the station.
  • each station builder or operator may determine this relationship(s) for the range of expected operating conditions and parameters in order to select an appropriate pre-cooling level that can typically provide customer friendly refueling times.
  • This flexibility is one of the benefits of the improved MC Method - it allows the station to calculate the appropriate fill time for a particular pre-cooling temperature based on the conditions of that fill and the capabilities of the tank itself.
  • This parametric data can include, for example:
  • Tank Volume (or the station can calculate it with a pressure pulse)
  • the station can use the improved MC Method to conduct the fill by utilizing default Constants of the MC
  • Padiabatic can be assumed to be the MAWP with only a very small error, since internal energy has a very weak relationship with pressure.
  • Step 3 (if necessary)- Calculate the Expected Result
  • a hydrogen station can maintain a database of MC parameters that have been communicated to the station, and use the lowest performing MC parameter, tank volume, and lowest initial SOC% historically observed, to set the pre-cooling
  • the improved MC Method was developed and has been described with an emphasis on filling vehicle hydrogen tanks at hydrogen filling stations, modification of the MC Method to improve its performance in connection with fueling hydrogen busses or fueling systems with cryogenic gasses or liquids is certainly contemplated.
  • the basic MC Method could readily be adapted for use in conjunction with compressed natural gas vehicle fueling, or fast filling of vessels involving any industrial gas and/or for calculating the resulting temperature of any process in which a pressurized gas is injected into a pressure vessel.
  • the applicability of the improved MC Method and the associated constants reflecting the thermodynamic properties and behavior for other processes can be determined by applying a similar test matrix as set out above in connection with compressed hydrogen tank refueling for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Disclosed is an improved analytical method for hydrogen filling stations for directly and accurately calculating the end-of-fill temperature in a hydrogen tank that, in turn, allows for improvements in the fill quantity while tending to reduce refueling time. The calculations involve calculation of a composite heat capacity value, MC, from a set of thermodynamic parameters drawn from both the tank system receiving the gas and the station supplying the gas. These thermodynamic parameters are utilized in a series of analytical equations to define a multi-step process by which target fill times, final temperatures and final pressures can be determined. The parameters can be communicated to the station directly from the vehicle or retrieved from a database accessible by the station. Because the method is based on direct measurements of actual thermodynamic conditions and quantified thermodynamic behavior, significantly improved tank filling results can be achieved.

Description

Improved Method and System for Tank Refilling
Priority Statement
[0001] This application is a continuation-in-part of U.S. Patent Application
No. 12/982,966, filed December 31 , 2010, the contents of which are incorporated by reference, in their entirety, which claims priority pursuant to 35 U.S.C. § 1 19(e) from U.S. Provisional Patent Application Nos. 61/326,375 and 61/332,919, the contents of which are also incorporated by reference, in their entirety.
Background of the Invention
[0002] The safety and convenience of hydrogen tank refueling are recognized as important considerations in determining the ultimate success of hydrogen fueled vehicles in the marketplace. Under current safety guidelines, the refueling of
compressed hydrogen tanks are to be conducted in a manner that prevents the tank from overheating (temperatures exceeding 85°C) during refueling and/or from overfilling the tank to a point at which the pressure could exceed 125% of normal working pressure (NWP) at any time. Because of the number of unknown parameters
associated with conventional hydrogen tank refueling procedures, the refueling
operations tend to be somewhat conservative, thereby trading performance and efficiency, particularly with respect to end of fill density (SOC%) and/or unnecessary levels of pre-cooling, for an increased safety margin. A SOC of 100%, for example, corresponds to a tank at NWP and 15°C.
[0003] This tradeoff is especially significant in non-communication fueling operations in which the parametric assumptions are even more conservative. Because the hydrogen fueling station does not have information about the tank that it is filling, very conservative assumptions are used to encompass a wide range of possible tank configurations and initial tank conditions and provide filling solutions that will not exceed the system safety limits. In SAE TIR J2601 , the disclosure of which is incorporated herein by reference, in its entirety, these conservative assumptions are incorporated into a series of lookup tables for hydrogen tank filling. Working from parameters including the tank volume, starting pressure, ambient temperature and station pre- cooling set point, the lookup tables are then used for determining a pressure ramp rate and final target pressure. While application of these lookup tables tends to provide for safe refilling under virtually all conditions and for virtually all tank systems, given the conservative nature of the associated assumptions, the resulting hydrogen tank filling operation may take longer, achieve lower final fill pressures and/or require lower hydrogen station pre-cooling temperatures than necessary to fill a particular tank system.
[0004] An additional limitation of the refilling procedures defined by SAE TIR J2601 is the lack of any method or procedure for a hydrogen tank filling station to compensate or adjust for situations in which its actual operating conditions fall outside of the allowed tolerances. For example, if the pre-cooling temperature is above the design set point as the result of multiple consecutive refills, the lookup tables defined in SAE TIR J2601 cannot be used. Efforts to avoid this out of specification condition can lead to an overdesigned hydrogen tank filling station (excessive cooling for ensuring that the pre-cooling target temperature is maintained), thereby driving up station cost.
[0005] Conversely, failing to ensure that the pre-cooling target temperature is maintained can inconvenience customers by preventing them from refilling their tanks in a timely manner (as a result of the delay(s) incurred while waiting for the pre-cooling temperature to come into specification), thereby tending to reduce customer satisfaction, station revenue and/or repeat business. Further, operating a hydrogen fueling station with a constant pre-cooling temperature regardless of current ambient conditions increases the energy usage and reduces well-to-wheel energy efficiency. In order to reduce energy use, a hydrogen tank filling station should be operated at the highest possible pre-cooling temperature that strikes a balance between customer-acceptable refueling times and satisfactory safety margins for the refueling operation. Brief Summary
[0006] The improved MC Method as detailed infra provides a new tank filling model based on the total heat capacity of the hydrogen fueling system and an advanced algorithm based on that model for improving the performance of hydrogen filling stations under a broad range of operating conditions and, in particular, includes additional consideration of heat transfer to the hydrogen from downstream components. This modified algorithm, as applied stepwise in the MC Method, can be used to enhance fueling performance relative to that available under SAE TIR J2601 by utilizing additional thermodynamic information about the tank and filling systems. The MC Method may be applied to virtually any combination of tank system Normal Working Pressure (NWP) and any compressed hydrogen tank system. The additional consideration of heat transfer to the hydrogen can permit fueling operations under conditions outside of current SAE TIR J2601 tables, thereby tending to improve both fill speed and fill quality (SOC%), while reducing the costs incurred by the hydrogen stations in effecting such operations.
Brief Description of the Drawings
[0007] Example embodiments described below will be more clearly understood when the detailed description is considered in conjunction with the accompanying drawings, in which:
[0008] FIG. 1 illustrates the modeling of a hydrogen storage tank during refueling as an open system with an unsteady flow control volume model. For the purpose of this disclosure, the control volume is defined as the boundary between the gas and the liner with heat being transferred through the boundary of the control volume and into the liner of the tank. [0009] FIG. 2 illustrates a temperature v. time curve for a hydrogen tank refueling procedure, reflecting use of the adiabatic temperature in calculating the heat transfer with the heat transferred from the hydrogen being described by Equation [5] infra.
[0010] FIG. 3 illustrates a constant heat flux model showing temperature distribution dependent on time with adiabatic boundary condition with a conservative assumption of no heat transfer from the outside of the tank so that the actual final temperature in the tank is expected to be slightly lower than the value calculated in light of this assumption.
[001 1] FIG. 4 illustrates a temperature distribution of a section of a composite tank immediately after a vehicle refueling.
[0012] FIG. 5 illustrates a simplified representation of a hydrogen tank having an imaginary characteristic volume of combined mass and specific heat capacity MC, with adiabatic external boundary.
[0013] FIG. 6 illustrates a typical vehicle fill in 3 minutes with a Type 3 tank that produces an end-of-fill MC value of 62 that then tends to increase as the tank cools. This trend of MC v. time is characteristic for a given tank system, and can be used in predicting the temperature result of longer vehicle fueling times.
[0014] FIG. 7 illustrates MC v. fill time for a "default" SAE TIR J2601 - 70MPa Type 4 tank. This graph is derived from the Type B (7-10kg) 70MPa station tables of SAE TIR J2601 .
[0015] FIG. 8 illustrates a potential Test Matrix for tank characterization
[0016] FIGS. 9A and 9B illustrate MC v. UadiabatiJUjnit for 3 minute fills and 30 second approximations of a Type 3 tank from which the coefficients A and C can be determined. [0017] FIG. 10 illustrates AMC v. time for fill times having a duration of more than 3 minutes from which the coefficients g, k, and j can be determined for describing the behavior of MC for fill times in excess of 3 minutes.
[0018] FIG. 1 1 illustrates a comparison of the hydrogen station operating envelopes to the existing refueling standards, showing several gaps in the coverage of existing or anticipated operating regimes.
[0019] FIG. 12 illustrates information required for fully utilizing the MC Method for determining a fueling protocol under a given set of conditions.
[0020] FIG. 13 illustrates the MC Method first step - determining the fueling time based on a higher than ambient temperature, i.e., hot soak (HS), condition in which ΤίηΆ can be represented by THsinit for convenience.
[0021] FIG. 14 illustrates the MC Method second step - determining the pressure target based on using a colder than ambient, i.e., cold soak (CS), condition in which 7„/f can be represented by TCsinit for convenience.
[0022] FIG. 15 illustrates the MC Method third step, using the pressure target from the second step in determining the expected result and, if in excess of the target pressure, reducing the target density and recalculating in an iterative manner to match the pressure target at the final temperature.
[0023] FIG. 16 illustrates the results obtained from a 35MPa Type 3 Tank Fill under a 35°C ambient with 5°C Pre-cooled Hydrogen and 5MPa Start Pressure. rffna/ target is 69.2°C, bounded by Hot Soak at 74.3°C and Cold Soak at 62.3°C.
[0024] FIG. 17 illustrates Result of 50MPa Type 4 Tank Fill from 30°C Ambient with -15°C Pre-cooled Hydrogen and 2MPa Start Pressure. Tfinai target is 86.7°C, bounded by Hot Soak at 89.0°C and Cold Soak at 83.0°C. Note that the target pre- cooling temperature was -20°C, which verified the difficulty in practice of keeping a specified pre-cooling temperature. [0025] FIG. 18 illustrates 70MPa Type 4 Tank Test from 25°C Ambient at 17MPa Start Pressure with -7.5°C Pre-cooling. Tfma\ target is 76.6°C, bounded by Hot Soak at 81 .0°C and Cold Soak at 70.0°C.
[0026] FIGS. 19A and 19B illustrate Calculation of the Constants of the MC Equation (Equation [13]) for the Type 3 Tank and show that the data generated during verification filling under different conditions compliments the data that was used to generate the constants originally. The model is robust to different conditions.
[0027] FIG. 20 illustrates Error between Tfinai as calculated by the MC Method and the actual measured final temperature at the end of the fill.
[0028] FIGS. 21 A and 21 B illustrate Sensitivity Analysis of Type 3 and Type 4 Tanks, respectively, to Input Errors Using the MC Method.
[0029] FIG. 22 illustrates a comparison of fueling methods showing the impact of adding the MC Method to existing fueling protocols.
[0030] FIG. 23 illustrates a relationship between nozzle temperature deviation from pre-cooling temperature, flow rate, pre-cooling temperature, and ambient temperature measured during fill testing. This relationship is, of course, dependent on the specific implementation of components for a given fueling station or test stand.
[0031 ] FIG. 24 illustrates equations of a curve fit to the NIST Hydrogen Property Database for hydrogen gas utilized for determining internal energy (given temperature and pressure), enthalpy (given temperature and pressure), temperature (given internal energy and pressure), and density (given temperature and pressure) of hydrogen gas.
[0032] FIG. 25 illustrates a fueling system 2500 in which additional components are arranged between the point 2508 at which the temperature and pressure of the hydrogen leaving the dispenser body is measured and the point at which the hydrogen enters the tank 2512. [0033] It should be noted that these Figures are intended to illustrate the general characteristics of methods, structure and/or materials utilized in the example
embodiments and to supplement the written description provided below. These drawings are not, however, to scale and may not precisely reflect the precise structural or performance characteristics of any given embodiment, and should not be interpreted as defining or limiting the range of values or properties encompassed by example embodiments.
Detailed Description
[0034] The goal of the methods and systems detailed in this disclosure is to provide an improved hydrogen filling model and system utilizing an appropriate algorithm that can be utilized in any gas tank filling operation for improving the accuracy in predicting the end-of-fill temperature and pressure conditions for a range of hydrogen tanks across a wide range of operating conditions. Implementation of the methods and systems detailed below during hydrogen tank refueling events can improve the efficiency, accuracy and/or safety of the refueling operation by reducing the chance of overfilling and/or overheating a hydrogen tank.
[0035] Accurately estimating the end-of-fill temperature achieved by a refueling operation can be difficult, which is why communication refueling has been developed. Such systems rely on temperature and pressure information that is transmitted directly to the hydrogen tank filling station through one or more communication device(s) including, for example, the Infrared Data Association (IRDA) interface detailed in SAE TIR J2799, the disclosure of which is incorporated herein by reference, in its entirety. It is the absence of this temperature and pressure data requires non-communication fueling protocols to incorporate a relatively large margin of safety, particularly in those instances involving other unknown parameters including, for example, the tank type, the tank size, the aspect ratio, the number of tanks and/or the hot or cold soak status. [0036] Although full-communication fueling can be used to provide the tank parametric data to the hydrogen tank filling station, full-communications fueling adds more cost and complexity to both the station and the vehicle and tends to raise additional concerns, particularly with regard to the use of in-tank sensors. Accordingly, there remains a need for a method for providing sufficiently accurate predictions regarding the temperature and/or pressure of the hydrogen in the tank over the course of a refueling operation without requiring full-communication protocols and hardware.
[0037] In order to provide an accurate prediction of the temperature of the gas, both the amount of energy that has been transferred to the tank and the quantity of heat that has been transferred from the gas to the wall of the tank are estimated. Many studies have been conducted in trying to understand and quantify the end-of-fill temperature.
[0038] By modeling a hydrogen tank as an open system in unsteady flow, as illustrated in FIG. 1 , it is possible to estimate the amount of energy that has been transferred to a tank by measuring the enthalpy of the incoming hydrogen stream and monitoring the temperature of the tank. For the purposes of this disclosure, the control volume is defined as the boundary between the gas and the tank liner with heat being transferred through the boundary of the control volume and into the liner of the tank. The total heat transfer in and out of the system, Q, is reflected in Equations [1 ] and [2].
[1] Q - W = j hedm - j h^m + Esystem , and setting me = 0 and W = 0 [2] Q = -\ h;dm + (m2u2 - mxux )cv where
Q = Totalheat transfer in and out of thesystem(kJ) (Heat transfer outof thesystemis negativeby convention
W = work done to the sy stem(kJ)
me = mass exiting thesystem(kg)
he = enthalpy of the fluid exiting thesystem(kJ/kg)
mi = mass entering thesystem(kg)
h; = enthalpy of the fluid entering thesystem(kJ/kg)
mx = mass of the fluid in the control volume at theinitial state(kg)
m2 = mass of the fluid in the control volume at thefinal state(kg)
= internal energy of the fluid in the control volume at the final state(kJZkg) u2 = internal energy of the fluid in the control volume at theinitial state(kJZkg) cv designates thestateof the control volume.
[0039] The enthalpy can be determined by measuring the temperature and pressure of the hydrogen in the flow stream, preferably at a point close to or at the tank inlet, with the mass flow into the tank being measured or calculated from initial and final conditions. In some instances, however, the temperature and pressure of the hydrogen in the flow stream can be measured well upstream of the tank inlet as illustrated in FIG. 25. To estimate the final temperature of the gas during or after a refueling procedure, the actual heat transfer, Q, from the gas into the tank wall needs to be estimated.
Because Equation [2] only gives information for the internal energy state of the tank, a tool, such as the National Institute of Standards and Technology (NIST) Thermophysical Property Database, is used to look up the temperature from the internal energy properties of the target gas, e.g., hydrogen. A curve fit to the NIST data used here for internal energy is illustrated in FIG. 2. The difference between the adiabatic internal energy and the measured internal energy (u2 at measured temp and pressure) is the quantity of heat that is transferred from the control volume, and can be determined from test data.
Figure imgf000011_0001
m;
L -I ^adiabatic
[4] m2 = m1 + j" dm = m1 + m;
[5] β = mi (U adiabatic ~ Ul ) = mcv (Uadiabatic ~ Ul )
Figure imgf000011_0002
al)
where
u adiabatic = adiabatic internal energy - if there was no heat transferred from the sy stem(kJ kg) m2 = mcv = end - of - fill mass of hydrogen in the control volume (kg)
^adiabatic = adiabatic temp erature - if there was no heat transfer from the sy stem(K)
T Anal = hy drogen temp erature at the end of the fill (K)
Cv = Specific heat capacity of hydrogen at constant volume (kJ kgK)
[0040] FIG. 2 illustrates a Temperature v. Time curve for a hydrogen tank refueling procedure in which the adiabatic temperature, TadiabatiC, is used in calculating the heat transfer. The heat transferred from the hydrogen can be described by
Equation [5] as detailed above. This provides a tool for analyzing actual test data to determine the amount of heat that has been transferred from the hydrogen gas out of the control volume, or into the structure of the tank. Note that the adiabatic internal energy is based only on initial conditions of the tank (initial mass of hydrogen and initial temperature) and the conditions of the hydrogen delivered from the station (enthalpy and fill mass). There is no dimension of time in the adiabatic condition, and so it is an appropriate reference for results for all time periods. If a reliable method to predict the heat transfer can be found, then it should be possible to directly calculate the final state of the hydrogen in the tank.
[0041 ] To calculate the end-of-fill gas temperature (Tfinai), it is necessary to estimate the amount of heat that is absorbed by the tank wall. One method of calculating the total heat transfer is to integrate the temperature distribution over the tank volume at the end of a vehicle refueling procedure. In 2003, General Dynamics conducted a series of tests aimed at understanding the relationship between final tank temperature and filling time with the results being reported in Eihusen, J.A., "Application of Plastic-Lined Connposite Pressure Vessels For Hydrogen Storage," World Hydrogen Energy Conference, 2004 (Eihusen), the disclosure of which is incorporated herein by reference, in its entirety. As detailed in Eihusen, a series of filling tests were conducted while measuring the temperature of the gas and of various locations in the hydrogen tank wall.
[0042] These results indicated that during a refueling operation, the heat transfer process was one in which the temperature of the outer surface of the tank did not rise, indicating that no appreciable quantity of heat was being transferred through the tank wall. Based on these results, General Dynamics proposed a heat transfer model for predicting the temperature distribution within the tank wall which was based on a Green's Function solution to the general heat equation with a constant heat flux on the inside surface and an adiabatic boundary on the outside surface. See Equation [6]. A constant heat flux model showing temperature distribution dependent on time with an adiabatic boundary condition is illustrated in FIG. 4. Note that the assumption of no heat transfer from the outside of the tank is conservative, meaning that the actual final temperature in the tank can tend to be somewhat lower than the final temperature calculated using this assumption.
)
Figure imgf000012_0001
where
T(x, t) = Tem erature at liner depth= x, time = t
q0 = Normalized heat flux of the liner (determined from testing)
L = Thickness of the liner
k = Thermal conductivity of the liner
a = Thermal diffusivity of the liner
T0 = Initial tem erature of the liner
[0043] Inherent in this approach is the assumption that given an initial set of conditions (hydrogen tank temperature, fuel gas temperature and pressure) the fueling temperature result and the temperature distribution result is purely dependent on time. The amount of heat transferred to the liner during a refueling procedure could be estimated by integrating the temperature distribution over the volume of the liner.
General Dynamics found that for the given set of tests, this model predicted the final tank temperature within 3K. The assumption of a constant heat flux (or of temperature dependence only on time) is, however, both interesting and problematic. Different initial conditions (temperature of the tank, initial fill mass of the tank, temperature and/or pressure of the incoming gas) can produce different temperature gradients, and hence a different average heat flux. Further, the heat flux would depend on the conditions of the boundary layer between the gas and the wall - a change in the velocity, density, or temperature of gas flow over the wall resulting from forced and/or free convection inside the tank would result in a corresponding change in the heat transfer. As these
conditions do tend to vary during the actual tank filling procedure, the heat flux can also tend to vary over the course of the filling procedure.
[0044] Furthermore, hydrogen refueling tests by the Japan Automobile Research Institute (JARI) as reported in Hirotani, R., et al., JARI, "Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling," World Hydrogen Energy Conference, 2006, the disclosure of which is incorporated herein by reference, in its entirety, revealed a significant temperature distribution within the gas itself, up to a 30K
difference throughout the tank, which would influence the heat flux. The presence of such temperature distributions further complicates the analysis of data as well because it renders it difficult, if not impossible, to know precisely how accurately a particular temperature measurement taken inside the tank represents the bulk properties of the tank.
[0045] Relative to the bulk temperature, if the thermocouple is measuring a temperature that is warmer or cooler than the average bulk temperature, the calculated values can obviously be less accurate. Although it is customary to assume that temperature measurements taken at or near the centerline of the tank can represent the average (bulk) gas temperature, the magnitude of the error(s) associated with this assumption are unknown in practice. Data taken during the development of the MC formula fueling control method and system disclosed in U.S. Patent Application
No. 12/982,966 showed unexplained errors of ± 5K between the thermocouple output and the expected bulk gas temperature. Modeling efforts by the SAE TIR J2601 committee similarly reflected errors of up to 9K between the modeled temperature and the measured data despite the use of thermocouples that have an accuracy of approximately ±1 K. These real world complications to the temperature gradient modeling make it difficult in practice to apply a heat transfer model for directly estimating the temperature distribution in order to calculate the end-of-fill temperature (with reliance on one or more temperature signal(s) during communication fueling operations introducing a degree of uncertainty).
[0046] Additional adjustments to the heat mass adjustments may be made to compensate for heat gained from or lost to the structures and components arranged between a dispenser and a tank as illustrated in FIG. 25. The heat transfer to the H2 may be represented with a modified equation for the value of Uadiabatic in such systems as illustrated by Equation [7] below:
[7] Q, connector
Figure imgf000014_0001
Wherein CdiSPenser is the heat capacity (Joules/K) of the component(s) associated with the dispenser, Tgas(initiai) is the initial gas temperature (before any H2 flow has occurred) measured at point 2508, Cveh>cie is the heat capacity of the component(s) associated with the vehicle and Tgas is the gas temperature measured at the same point during the filling operation. QCOnnnector represents the heat added to the gas during fueling by the components that comprise the fluidic connection between the dispenser 2506 and the tank 2512. This adjustment alters the Uadiabatic equation accordingly:
Figure imgf000014_0002
m ,cv for calculating the specific adiabatic internal energy.
[0047] Qconnector can be calculated continuously or periodically during the fill operation based on measured gas temperature Tgas as the gas leaves the dispenser body. It is anticipated that Tgas can vary during the fill operation and that the heat adjustment Qconnector can vary accordingly over the course of the fill operation. The use of the Qconnector adjustment represents a conservative approach in that it assumes that all of the components arranged between the dispenser body and the tank can achieve Tgas during the course of the fill operation when, in fact, they can tend to be warmer than the gas throughout the relatively brief duration of the fill operation that can be achieved with the improved MC Method. As with the tank calculations, it is assumed that the construction and configuration of the relevant components is such that heat transfer from the ambient to the H2 through the components can be minimal and, consequently, can be ignored for the purposes of these calculations.
[0048] This modified MC Method does, however, automatically adjust for the current condition of the fueling station. For example, if the fueling station had recently completed another fill operation, then TgaS(initiai) may be significantly colder than Tambient. This condition tends to result in a substantially linear response between a station with a hot condition and a station cold condition. The lookup tables provided in J2601 are not, however, constructed in such a way as to adjust for such a situation as they are drawn only to hot or cold conditions and do not provide sufficient guidance for intervening, and possibly more common, conditions.
[0049] While complex heat transfer models and analysis have been used in the past to explain the results of tank filling tests, the approach described herein utilizes a simplified heat capacity model, the development of which is described in more detail below and further illustrated in the associated figures. Application of other methods, results and testing has confirmed the utility and applicability of this solution for predicting the heat transfer characteristics of the system with sufficient accuracy. [0050] Consider a tank that has just completed a vehicle refueling in a short period of time. As illustrated in FIG. 5, the inside of the tank is much hotter than the outside of the tank, due to the conversion of pressure energy to sensible energy of the high pressure hydrogen that was just recently injected into the tank. Calculating the actual temperature distribution is difficult because 1 ) there is a temperature distribution between the hydrogen in the tank and the liner due to boundary conditions, 2) there is a temperature distribution through the liner, contact resistances between layers, 3) there is a temperature distribution through the various layers of the tank and 4) there is a temperature distribution between the outside of the tank and the environment due to the outer boundary conditions. And as discussed previously, there may also be a
temperature distribution within the hydrogen in the tank itself on the order of 30K. Each layer has a different specific heat capacity that might also be dependent on temperature, and each layer is composed of a different mass. Given all of these complexities, it is exceedingly difficult, if not impossible, to calculate the precise temperature distributions through the wall of the tank.
[0051] The biggest difficulty in considering a heat transfer model based on a precise calculation of the temperature distribution in the wall of a hydrogen tank is that it requires a solution to the temperature distribution for the entire time domain of a refueling event, a solution which is difficult to achieve in practice. Accordingly, the method utilizes a combined mass and specific heat capacitance model, as shown in FIG. 5, which illustrates a simplified section of a tank wall having an imaginary
characteristic volume defined by its mass (M) and specific heat capacity (C) and an adiabatic external boundary. The temperature of the characteristic volume can be the same as the temperature of the gas, for example, hydrogen.
[0052] This section of the tank wall, the characteristic volume, can have a combined mass and specific heat capacity, MC (kJ/K). Note that the characteristic volume and the associated MC are mathematical constructions only. Given knowledge of a tank design and the materials used in the tank construction, it is possible to provide a reasonable estimation of the MC value. In the method disclosed herein, however, there is no need to calculate the exact mass and specific heat capacity of the tank because the characteristic volume simply acts as a heat sink, allowing its characteristics to be used in predicting the thermal behavior of the tank system.
[0053] In applying the method the temperature of the characteristic volume is set to be equal to the temperature of the hydrogen in the tank at the end of the vehicle fill. This means that the characteristic volume has both high thermal conductivity and high convective heat transfer coefficient. In addition, QEnvimnment = 0, meaning that no heat is transferred out of the characteristic volume during the fueling (adiabatic boundary). As discussed supra, there is very little heat transfer to the environment during the refueling operation, allowing this component of the heat transfer to be ignored. In an illustrative example, the heat transfer equation is solved for the target or preferred end-of-fill condition of, for example, a fill time of 2 or 3 minutes, plus some adjustment for longer fill times as deemed necessary. For the purposes of this disclosure, a target fill time of 3 minutes has been used, but the method can be easily utilized for longer or shorter fill times.
[0054] When applying a characteristic volume in this manner, the heat that is transferred from the hydrogen mass, mcv into the characteristic volume can be described by the temperature rise during the fueling of the characteristic volume with a combined mass and specific heat capacity of MC.
[9] Q = MC(Tfmal - Tmiti
where
MC = Combined Massand Specific Heat Capacity of the Characteristic Volume (kJ/K)
T = Temperature at the finish of the refueling (K)
T = emperature at the beginning of the refueling (K)
[0055] By applying an energy balance across the boundary of the control volume, and combining equation [5] (energy transferred from the hydrogen) with equation [7] (energy transferred to the characteristic volume) results in: [5] Q = mcv ( ad!abat!c- uflnal) energy transferred from the hy drogen control volume
[9] Q = MC(Tfmal -Tini t) energy transferred to the characteristic volume
adiabatic ^ final)
[10] MC -
(T - T. )
final init/
[0056] MC can then be determined directly from test data for a particular refueling procedure by using Equation [10], which is the ratio of the heat transferred from the hydrogen to the temperature change of the characteristic volume. For Equations [9] and [10], Tina =
Figure imgf000018_0001
The temperature, pressure and MC behavior associated with a 3- minute fill of a Type 3 tank is illustrated in FIG. 6. As reflected in the graph, the MC is 62 at the end-of-fill point, but then increases over time as the tank cools. This trend of MC over time can, in turn, be used in predicting the result of longer filling procedures. Once an MC is known for a given set of initial conditions, it can be used for directly calculating the final temperature of refueling event.
[5] Q = mcv {uadiabatic-Uflnal)
[11] Q = mcvCv (Tadiabatic- Tfln , another identity of equation 5
[9] Q = MC{Tfmal - TMt)
Combining equations [9] and [7] we get :
[ 2] , , =™cv v adiabatic combining equations [7] and [9]
J flnal MC + mcvCv 5 4
where
Cv = specific heat capacity of hydrogen at constant volume, kJ/(kgK)
[0057] Equation [12] can then be used to calculate the expected final temperature of a hydrogen tank refueling just as a fill has started. The MC parameter and mcv (the end-of-fill mass in the control volume) are transmitted to the station. In a nonlimiting example, the MC parameter and mcv are transmitted by RFID, through the SAE TIR J2799 IRDA interface, or via an identification number that corresponds to entries in a database that is readily accessible to the hydrogen tank filling station. The hydrogen tank filling station can calculate Tadiabatic from mcv and parameters including 1 ) the initial pressure of the tank receiving the hydrogen {e.g. , the vehicle's tank), 2) the initial temperature of the tank receiving the hydrogen (assuming ambient conditions plus some differences due to the possibility of a hot or cold tank as discussed in SAE TIR J2601 ) and 3) the enthalpy of the delivered hydrogen, which is a function of the expected average temperature and pressure of the delivered hydrogen (further description is given in the Appendix provided in FIG. 24).
[0058] Certain characteristics of the MC Method make it particularly useful for gas delivery systems. For example, a particular dispenser, connector(s) and tank configuration can have a characteristic curve of MC v. fill time from which adjustments can be made to compensate for a range of initial conditions. Utilizing the MC model avoids the need to address all of the intricacies of the temperature distribution within the connecting components and the wall of the tank, especially over a time scale associated with typical hydrogen tank refueling procedures, e.g., two to three minutes or more.
[0059] MC is not a direct physical constant such as the mass and the specific heat capacity of the connector component(s), tank and liner material but is, instead, a composite value, similar to an overall heat transfer coefficient, that encompasses heat transferred to or from tank valve assemblies and piping as well as heat transferred to the hydrogen comprising the initial gas volume inside the tank being filled. Systems with slower heat transfer characteristics (convection or conduction) tend to result in lower values of MC (such as Type 4 tanks) while systems with faster heat transfer characteristics (convection or conduction) tend to result in higher values of MC (such as Type 3 tanks). Although MC is a function of a number of different parameters including, for example, time, fill conditions, tank materials, tank configuration, etc., for a given tank, fill time and set of fill conditions, MC can be constant. The trend in the MC value over both time and under different fill conditions can be predicted and, in turn, utilized for adjusting the hydrogen tank filling procedures to improve efficiency while maintaining desired safety margins.
[0060] Based on observations of several sets of test data coupled with the use of multiple linear regression for evaluating the significance of various parameters, many possible physical models were considered for describing the MC v. time curve and also describing the changes in initial conditions that were tested. In a non-limiting example, one model is represented by Equation [13], as shown below:
Figure imgf000020_0001
or, in an alternative non-limiting example, Equation [13]', as shown below:
Figure imgf000020_0002
where C, A, g, k and j are constants derived from characterization testing
U adiabatic is the adiabatic internal energy = mcvuadiabtic Uinitiai is the initial energy = minitiaiu initial
At is the difference in time between the normally defined end-of-fill time {e.g., 3 minutes) and the end-of-fill time that achieves the desired final temperature.
[0061] In the context of Equation [13], C is a constant that represents a minimum heat capacity of, for example, a 2- or 3-minute fill, A is a constant representing an adjustment to the MC corresponding to the initial fill conditions and pre-cooling amount and constants g, k, and j are, if necessary, utilized within the MC Method to allow for adjustments to the resulting MC by extending the fill time beyond 2 or 3 minutes, so that finai can be optimized around a desired temperature. However, there are many possible models that can be developed to predict the trend of MC with time, internal energy, pre-cooling temperature, etc. The improved MC Method is not intended to, and does not attempt to, perfectly describe the corresponding physics but is intended as an analytical engineering tool for predicting, with sufficient accuracy, the temperature outcome of a particular filling procedure by approximating the equivalent heat mass of the system.
[0062] One way to check a new model is to verify that the model is capable of describing or predicting phenomena documented in previous literature. The Society of Automotive Engineers (SAE) conducted several sets of hydrogen tank fill testing at Powertech during the development of SAE TIR J2601 , in support of, and to test the modeling efforts that were being conducted to build the refueling tables in SAE TIR J2601 . By using the tables provided in SAE TIR J2601 as a set of test fills and plotting the MC of each fill versus the fill time using Equation [10], the results fall in a distinct pattern as illustrated in FIG. 7.
[0063] This result indicates that the equation utilized in the MC Method can be used to describe the MC v. Time over a wide range of conditions, and can be used in place of the tables defined in SAE TIR J2601 , which require interpolation between the listed data to find the appropriate pressure ramp rate and end of fill pressure target. Because the MC Method can adjust the fill time to match a desired final tank
temperature, it can be used for any station configuration without relying on the rigid "Type A, B, C, D" station type designations of SAE TIR J2601 . Indeed, by using the coefficients of the MC v. time curve utilized in the improved MC Method, a hydrogen tank filling station can directly calculate the expected end-of-fill temperature {Tfinai) using Equation [12].
[0064] Using Equation [10], a series of fill tests were conducted with the MC v. time curve being plotted for each fill, as shown in FIG. 6. All of the tank fills follow a similar pattern of MC v. Fill Time as shown in FIG. 7. The resulting curve corresponds to the tank characteristic(s) for a given tank under a given set of conditions. To find the coefficients used in Equation [13], the MC for each end-of-fill at 3 minutes was plotted against the adiabatic internal energy divided by the initial internal energy, as shown in FIG. 9A. The slope and intercept of the linear best fit line give the coefficient A and the constant C respectively. The AMC v. Atime, that is (MC(t-i80s) - MC(i8os) ) v. (t-180s), is then plotted as shown in FIG. 10, and a best fit model used to determine the coefficients g, k and j. These coefficients can then be used to describe how much heat is absorbed by the tank in the time beyond the typical fill time and are particularly useful under conditions in which the ambient temperature is too warm and/or the pre-cooling temperature is too warm to achieve an end-of-fill temperature of less than 85°C with a refueling time of 3 minutes or less.
[0065] To use the MC parameters for improving the performance of a hydrogen tank filling station, a fueling protocol needed be developed. A fueling protocol should provide safe, high state of charge (SOC) fills, for a broad range of ambient conditions and initial fill conditions. Comparing the current fueling standards with the actual operating ranges of existing hydrogen stations, as illustrated in FIG. 1 1 , it is clear that the current refueling standards do not satisfy a broad range of station fuel delivery operating conditions. Further, should a vehicle manufacturer or modifier introduce a tank designed to operate at another pressure of, for example, 50MPa, the fueling standard(s) would have to be rewritten to accommodate this modification.
[0066] In order to fully utilize the improved MC Method at an actual fueling station, the relevant MC parameters must be communicated to or determined by the station in some manner. This data collection could be achieved in a number of ways. In a non-limiting example, one or more of RFID, an IRDA interface as defined in SAE J2799 or other protocol such as the proposed Hydrogen Vehicle Authorization System (HVAS) can be used for confirming that a vehicle is authorized to fuel (OEM vehicle or a conversion that meets safety requirements).
[0067] FIG. 12 shows both the vehicle side and station side information that may be used to fuel a vehicle based on the improved MC Method. The station can have access to both the vehicle side information through vehicle communication and station side information through direct measurement. The station then uses this parametric data in conjunction with the improved MC Method, for calculating an appropriate solution for filling the particular vehicle. [0068] In an embodiment, when applying the improved MC Method, the fueling process can include two discrete steps. In the first step, parametric data is used to determine an appropriate fueling fill rate, i.e., one that does not overheat the gas in the tank. During the second step, the fueling fill rate is used to determine a target end-of-fill pressure that can keep the system pressure within the target pressure ranges. In order to determine the appropriate fueling rate, the filling station takes into consideration both the capabilities of the vehicle's tank system and the station's capabilities for delivering fuel under the current conditions.
[0069] Typical limits currently utilized in refueling operations, as defined in SAE TIR J2601 and TIR J2579 are 85°C and 125% of the NWP for average gas temperature and pressure, respectively. In an illustrative example, the station makes an assumption about the average gas temperature inside the tank, based on measuring the ambient air temperature and optionally adding a margin for a hot soak condition {e.g., the vehicle has been parked in an environment that is hotter than ambient, such as a hot garage or parking lot). The station also determines the approximate initial SOC of the vehicle, using the temperature assumption and by dispensing a small amount of fuel to the tank to equilibrate the hose pressure to the tank pressure. Based on the tank pressure and vehicle side information, the station can estimate how much hydrogen (mass) must be delivered to the vehicle to achieve the desired SOC and, utilizing an estimate of its pre- cooling capability, the station can calculate the average enthalpy that can be delivered to the vehicle's tank system during the fill operation. Working from this information, the station can then determine how quickly to fill the vehicle while maintaining the requisite safety margin.
[0070] As explained supra, the primary MC parameter is based on a target fueling time with additional parameters being used to account for the initial SOC and/or fueling times that exceed the target fueling time. Starting with these targets, the station analyses an initial fill protocol to determine if the fill can be successfully completed, i.e., end-of-fill temperature within specification. If it is determined that the initial fill protocol cannot be successfully completed, an iterative process is initiated to determine an appropriate fueling time. For example, if the fueling operation can be conducted in the target time without exceeding any temperature limits, the station can initiate fueling.
[0071] If, however, the initial fill protocol would cause a temperature limit to be exceeded, the projected fueling time can be increased by some increment {e.g., 0.1 , 1 , 5, 10 seconds, etc.) and the new MC value can be calculated. This iterative process can continue until an acceptable fueling time solution is identified. This process is shown in FIG. 13 using a 10-second increment as an example. The output of this Step 1 is the TfinaifHot soak Bound) and the fueling or fill time. In an embodiment of the method, the appropriate fueling time can be continuously or repeatedly calculated throughout the fill procedure based on the actual enthalpy delivered to the vehicle. Accordingly, even though the fueling time calculated at the beginning of the fill should be a good approximation, the fueling time (or rate of pressure rise during the fill) can be adjusted as necessary to take into account the actual fill conditions if they vary across the fill cycle.
[0072] For the dispenser to make the assumption that the upper bound of gas temperature inside the tank is ambient T plus a AT hot soak, it must know that the vehicle has not been recently refueled. If this information is unknown, then a more conservative assumption should be utilized, e.g., determining the fueling speed based on an empty or nearly empty tank. By using this more conservative assumption, even if the vehicle had been recently refueled, the calculated fueling speed does not overheat the tank.
[0073] If the recent fueling history of the vehicle can be determined, a less conservative fueling speed can be utilized, potentially shortening the fueling time considerably. There are a number of approaches that can be utilized for determining the recent fueling history of the vehicle. A non-limiting example is for the HVAS RFID tag to be time stamped each time the vehicle is fueled. The dispenser can then read this time stamp each time the vehicle is fueled and determine whether to use a conservative fueling speed if the time stamp indicates a recent refueling, or a less conservative fueling speed based on the actual starting pressure in the tank if the time stamp indicates refueling has not occurred recently.
[0074] Once the appropriate fueling time has been determined, the next step of the improved MC Method is to determine when, or at what pressure, to stop the fill operation. The process used by the station in this second step is similar to that used in the first step except that the station assumes the gas temperature inside the tank at the beginning of the fill is below the ambient temperature, i.e., a cold soak condition, which includes the possibility that the tank has been soaked in an air conditioned garage, or that the ambient temperature is rising and the internal gas temperature lags the ambient There is also the factor of driving that may be considered in which the gas temperature inside the tank has been reduced as a result of the decrease in pressure as the hydrogen was consumed. The improved MC Method can be used to estimate the average temperature of the MC and hydrogen gas during defueling using Equation [16]
Π
L1 J U adiaba
Figure imgf000025_0001
where
madd = mass exiting the hydrogen tank in time t
madd = mcv'minucoid = mass tobe added during the vehicle refueling calculated in the
MCMethodto achieve 100% SOC
hexit = average enthalpyof the hydrogen exiting the tank
Qconnector= the heat added by theconnector com onent sin time t
minitcoid = mass in tne tank Just before refueling
t = time it would take to empty thetank from PNWP to the starting fill pressure Pinit
m
[15] ladd
m
where
m = flow rate of hydrogen during defueling (g/s)
TColdSoak= assumed temperature of the vehicle tank before defueling
[16] TColdSoak— Tambient— ATCold And combined with Equation [13] where the is determined by a curve fit to NIST data as before, then Tfinai is the average temperature of the MC and the gas in the tank.
[0075] The appropriate ATCoid parameter, and the defueling mass flow rate m , can typically be determined by the OEM and can be provided as part of the vehicle side information transferred through HVAS or otherwise made available to the filling station.
[0076] Once the initial conditions have been determined, the station can calculate how much mass must be added to the tank to reach the target density of 100% SOC. If the station has an accurate flow meter, it can simply integrate the mass flow during the fill and stop when the target mass has been achieved, however, the application of a flowmeter in this capacity might have its own challenges. A second option is to calculate a pressure target utilizing the same set of equations as in Step 1 . Tfinai can be calculated based on the fueling time of Step 1 , and then the Ptarget value can be calculated based on the pressure that, in conjunction with Tfinai, provides a 100% SOC target density.
[0077] This process can be more easily understood by utilizing the equations shown in FIG. 14. It is important to note that the pressure target can be continuously calculated throughout the fill procedure based on the actual enthalpy delivered to the vehicle. Accordingly, even though the pressure target calculated at the beginning of the fill should be a very good approximation, the pressure target utilized in stopping the fill can be adjusted as necessary based on the actual fill conditions as they occur. The
OUtput Of thlS Step 2 IS the Pjarget-
[0078] In the case of a fill with communications, the initial temperature can be measured directly by the station. Because this initial temperature is a settled
temperature, i.e., a temperature not subject to the dynamic changes associated with vehicle fueling, it is typically reliable. In such cases, the Tm is simply the measured initial temperature and the hot soak and cold soak assumptions detailed above need not be considered.
[0079] During the fill testing conducted during development of the MC Method, a "Target Tfina value was calculated in order to evaluate any errors between the expected result and the actual result. This "Target Tfina" is shown in FIGS. 16-18 and FIG. 20 to demonstrate the accuracy of the MC Method. In a normal "ID-Fill," Step 3 is
unnecessary - the station does not need to calculate an expected result as the fill protocol is fully defined by Step 1 and Step 2.
[0080] Using the fill rate from Step 1 , and the Pressure Target from Step 2, the expected Trtnai can be calculated. Because the Pressure Target calculated in Step 2 is usually lower than the Pressure Target that was assumed in Step 1 , the resulting fill can tend to exhibit a slightly lower SOC% which, in turn, indicates that the gas density target needs to be reduced to match the Pressure Target at a higher Tfina/ than was calculated in Step 2. Because a change in additional mass of hydrogen added affects the Tadiabatic, for greater precision it is necessary to complete the outlined calculations in order to determine the expected 7&,a/ and SOC% target.
[0081] The utility and flexibility of the MC Method provides many opportunities for customization and refinement to encompass, for example, fueling times of less than 3 minutes for tanks that start filling at high SOC.
[0082] To confirm the MC parameters calculated according to the procedures defined supra, and to confirm the accuracy of using these parameters in the filling algorithm detailed supra, a fifth fueling test was conducted for each of the previously tested tanks using conditions of ambient temperature, initial fill amount, and pre-cooling temperature that were different than the conditions used in characterizing the tank.
Using the algorithms discussed supra and illustrated in FIG. 13, the expected final temperature Tfinai was calculated for fills conducted at 35MPa, 50MPa and 70MPa. For the Hot Soak (HS) margin of safety to overheat, emp + 7.5°C was used, for the Cold Soak (CS) margin of safety to overfil
Figure imgf000027_0001
Temp -10°C was used. For the target 7ffna/, 7/n i=Annbient Temp was used in the algorithm illustrated in FIG. 15.
[0083] The results of a 35MPa Type 3 Tank Confirmation Test are illustrated in FIG. 16. Although the original targets were set for delivering 0°C gas, the hydrogen filling station being used for the evaluation was actually delivering nearly 5°C gas, which would be outside of the SAE TIR J2601 tolerance of 0°C ± 2.5°C for a Type C station. This demonstrates one of the practical challenges of defining a tight tolerance on the pre-cooling temperature - it is actually difficult to achieve and/or maintain, even in test conditions. In light of the noted capabilities of the hydrogen filling station, the targets were adjusted for using 4.8°C as the temperature of the delivered gas, the 35MPa tank fill actual temperature measurement was within 1 K of the calculated Trma\. Further, although fill completion was targeted for 180 seconds, the actual fill was finished in 196 seconds. As a practical measure, in order to achieve an optimum fill time the Hot Soak Bound should be set at 85°C, however, because the test was predicated on a 3-minute fill target, the Hot Soak Bound is less than 85°C. The MC Method algorithm can be further refined to improve performance for fill times of less than 3 minutes.
[0084] The results of a 70MPa Type 4 Tank Filled to 50MPa Confirmation Test are illustrated in FIG. 17. In this instance, although the pre-cooler was set for -20°C, it was determined that the pre-cooler was actually delivering -14.8°C gas on average. This result once again reflects the actual difficulty of meeting SAE TIR J2601 tolerances of -20°C +/-2.5°C for a Type B station. In light of the observed performance, the temperature targets were adjusted to reflect what -15°C pre-cooling targets would have been, given the same conditions otherwise. Although this rendered the Hot Soak bound high at 89°C, this deviation is a relic of the pre-cooling temperature being out of specification.
[0085] Also noted were changes in temperature in the tank measured after the end-of-fill. These post-fill deviations represent a practical source of error in temperature measurements in a hydrogen tank that may result from, for example, thermocouple placement, temperature gradients within the tank and/or time lag. Given these errors, however, the actual fill result was still remarkably close to the target, further validating the model. Additionally, 85°C was not utilized as a stop point in these fills, thereby allowing the tanks to reach temperatures slightly above 85°C. These minor temperature deviations were not considered problematic because transient temperatures above 85°C are generally known and allowed pursuant to SAE J2579, the disclosure of which is incorporated by reference, in its entirety.
[0086] The results of a 70MPa Type 4 Tank Confirmation Test are illustrated in FIG. 18. As reflected in the illustrated data, the 70MPa tank test temperature result was an essentially perfect match for the calculated Tfinai Target.
[0087] Comparing the data obtained from the 4 test fills used to generate the constants of Equation [1 1 ] to the data generated in the fifth verification fill and additional verification fills, the results reinforce the concept that the MC is characteristic for the tank and can be used to predict the fueling result. This is demonstrated in the graphs illustrated in FIGS. 19A and 19B in which the data generated during the Type 3 Tank confirmation tests detailed above is consistent with the data used in determining appropriate values for the various constants utilized in Equation [1 1]. These results demonstrate that the MC Method is sufficiently robust to be applied confidently across a range of tank configurations and operating conditions.
[0088] Looking at the error from all of the fills conducted, as illustrated in FIG. 20, it is apparent that the MC Method yields very accurate results for Type 3 and Type 4 tanks, typically falling within a range consistent with that expected from variations in thermocouple placement and/or time lag errors. As shown in FIG. 20, the MC Method Model error is the difference between Tffna/ as calculated by the MC Method, and the actual final temperature result measured at the end of the fill procedure. The actual pre- cooling temperature of the station was used as the input to the enthalpy calculation rather than the pre-cooler set point, for the reasons described supra. Known or suspected sources of error include, for example: • errors of the calculation in average enthalpy used,
• calculation in mass of hydrogen delivered,
• measurement of ambient temperature,
• measurement of initial tank pressure,
• measurement of final tank pressure,
• measurement of final tank temperature (thermocouple placement, lag, standard error)
• calculation of the MC from the best-fit coefficients, and
• difference between actual fill time and expected fill time (due to station bank switching, flow differences, etc.),
• heat transfer in or out of the hydrogen stream after the station enthalpy
measurement, and/or
• differences in the actual tank temperature from the assumed ambient
temperature (hot spots, cold spots, etc.)
[0089] Given all of these possible sources of error, it is remarkable that the data generated during testing suggests that a lumped heat capacity model can achieve a standard deviation of errors of 0.6K for Type 3 Tanks and 2.4K for Type 4 Tanks. The "Definition Error" as shown in FIG. 20 removes the error in calculating enthalpy, calculating mass, and calculating MC coefficients by using the test data to determine the actual heat transfer, the actual average enthalpy of the fill, and the actual MC value, and using those to calculate Tfinai- This removes substantially all of the errors and approximations attributable to the calculations of the MC Method itself, leaving only the measurement errors as the source of error. This has a standard deviation of 0.3K for the Type 3 tank and 1 .3K for the Type 4 tank. The remaining portion of the errors is likely a result of measurement errors, thermocouple lag and/or differences between the assumed and actual conditions (such as cold spots in the tank after defueling). It was noted that as the pace of the testing increased the magnitude of the errors also tended to increase, possibly as the result of differences between the assumed and actual conditions including, for example, residual cold spots remaining from the defueling operations conducted between filling tests. [0090] A sensitivity analysis of the MC Method to variations in input errors was conducted to examine the correspondence between known levels of input errors and the resulting output errors. As reflected in the data presented in FIGS. 21 A and 21 B, respectively, the MC Method was relatively resistant to input errors with Type 3 tanks being more sensitive to variations in the initial temperature measurements while Type 4 tanks are more sensitive to variations in the temperature measurement of the flow stream at the station. 10K errors in the initial temperature measurement leads to 6K errors in Tffna/ for both Type 3 and Type 4 tanks. 10K errors in the hydrogen temperature measurement at the station (used for the average enthalpy approximation) lead to Tfma\ error of 6K for Type 3 tanks and 8K for Type 4 tanks. 10% errors in the calculated MC coefficients lead to errors of around 3K (and 3K represents approximately a 1 % error in the density of hydrogen). These results demonstrate that the MC Method has significant robustness to accurately describe vehicle fueling over a range of conditions and suppress the effect of input errors.
[0091] As detailed above, utilizing the improved MC Method for refining Fueling Protocols can enhance a hydrogen station's fueling performance. Although an ID Fill fueling protocol was discussed supra, the improved MC Method may also be applied to conventional non-communication fueling operations, as well as full communication fueling operations, as currently defined in SAE TIR J2601 . A comparison of fueling methods is shown in FIG. 22, which highlights the benefits that could be expected to flow from incorporating the MC Method into all three types of fueling (i.e., ID Fill, Non- Communication and Full-Communication). These benefits are further elaborated upon in the discussion provided infra.
[0092] In an ID Fill configuration, the fueling process is better adapted to the tank that is being fueled, thus tending to provide reduced fueling time and increased SOC within the bounds of the uncertainties of the initial conditions of the tank and the measurements at the station. The fueling process is also better adapted to the station's real time capabilities, thereby increasing operational flexibility and avoiding the rigid, preset, tightly bounded temperature requirements corresponding to the various station types as defined in SAE TIR J2601 . The improved MC Method allows the filling process to self-adjust to the current fueling capabilities of the station, thereby providing the potential for simpler, more flexible and less costly hydrogen filling stations. The flexibility of the improved MC Method allows a hydrogen filling station to be "tuned" to the current operating environment which, in turn, may allow for increased pre-cooling temperatures while still maintaining generally acceptable fueling times under most conditions. The ability to run at higher pre-cooling temperatures can improve station efficiency, lower costs and maintain customer satisfaction.
[0093] Fueling processes incorporating the improved MC Method as detailed supra could eliminate the need for the look-up tables currently utilized for noncommunication fueling in accord with SAE TIR J2601 , resulting in the same benefits as outlined above. The non-communication fueling operations could include calculations of the MC Parameters of the boundary condition tanks utilized in building the noncommunication look-up tables. When operating at the Type A (-40°C) or Type B (-20°C) pre-cooling temperatures, the resulting range of fueling rates and pressure targets would be expected to be substantially the same, if not identical, to those defined in the look-up tables.
[0094] The flexibility of the improved MC Method in addressing variations in temperature and pressure would reduce or eliminate the need for rigid definitions of Station Types as currently applied and would allow each station to operate more efficiently for its current environment, and to dispense fuel at improved rates, regardless of its pre-cooling temperature. Conversely, non-communication processes as defined in SAE TIR J2601 must operate within very tight pre-cooling tolerances, and if it falls outside them, cannot dispense fuel (resulting in unhappy customers) until its margins are back within the specified range(s).
[0095] The improved MC Method fueling process can also be utilized with full communication fueling, resulting in a number of benefits. SAE TIR J2601 currently defines two types of communication fueling including 1 ) a Default method in which fueling rates are the same as the non-communication fueling rates defined in the lookup tables and 2) an Alt Method in which a more aggressive fueling rate can be utilized in those instances in which a vehicle Temperature Signal can be utilized in a feedback loop to regulate the fueling rate in order to suppress or avoid an overheat condition. With the improved MC Method, the fueling rate is determined at the beginning of the fill, just as described above, and is also checked during the fill based on the actual enthalpy of hydrogen delivered during the fill. With communications fueling, the initial and transient conditions can be more tightly defined, giving even better results.
Incorporation of the improved MC Method would mean that the Default and Alt Methods would no longer be needed - a single communications fueling protocol could be defined and it would be adapted for the vehicle being fueled and the fueling conditions.
[0096] From a safety standpoint, the improved MC Method allows an additional cross check on the Temperature Signal received from the vehicle. Because the station can calculate the expected temperature from the MC parameters and delivered enthalpy, it can cross reference this with the temperature signal from the vehicle. The
temperature signal at the beginning of the fill procedure is generally constant so by using the actual measured initial temperature and the characteristic MC parameters, the vehicle fueling protocol can be fully defined, and higher quality fill results can be achieved (as reflected in both SOC and fill time).
[0097] The improved MC Method Fueling Protocol can be utilized
comprehensively by the station, for Identification Fueling, Non-Communication Fueling and Full Communication Fueling, resulting in a fill protocol that is better adapted to the current capabilities of both the vehicle and the hydrogen filling station capabilities and takes into account the current operating environment to achieve higher quality fills.
[0098] An aspect of using the improved MC Method is the accurate prediction of the mass average enthalpy that can be delivered to the tank during a refueling
procedure or event. As shown in FIGS. 21 A and 21 B, a 10K error in the mass average temperature can result in a 6K to 8K error in Tfinai, so it is important to accurately predict the enthalpy of the upcoming fill. In connection with the MC Method testing, a Runge- Kutta approximation was developed for average hydrogen enthalpy at the nozzle from stations using pre-cooling as illustrated below in Equation [12].
Figure imgf000034_0001
Where
■ Ejected Precooling Temperature
Pstationint = Pinit + ώώ1 Hydi genTank Pressure+ Initial Staiton Pressure Drop
Ps.ationF i = p Finai
Figure imgf000034_0002
+ = Final Hydrogen Tank Pressure + Final Station Pressure Drop
[0099] During testing, it was found that APStationinit = 5 MPa if the initial tank pressure was 2MPa, 2MPa if the initial tank pressure was 17 MPa, and 1 MPa at higher initial pressures. APstationFinai was assumed to be 1 MPa in all cases. Therefore, the algorithm may be modified to reflect, more accurately, the conditions and performance of a particular station. In an illustrative example, the station builder or operator may modify the algorithm to more accurately reflect the conditions and performance of the station.
[0100] During several test fills, deviations were noted between the pre-cooler output temperature and the actual temperature delivered at the nozzle. These deviations tended to follow a relationship with mass flow rate and pre-cooling level as illustrated in FIG. 23. In general, the higher flow rates and/or larger differences between the pre-cooling and ambient temperatures can be reflected in greater temperature deviations between the nozzle temperature and the pre-cooler set temperature.
Therefore, such factors can be taken into account in the MC Method. In a non-limiting example, each station builder or operator may determine this relationship(s) for the range of expected operating conditions and parameters in order to select an appropriate pre-cooling level that can typically provide customer friendly refueling times. This flexibility is one of the benefits of the improved MC Method - it allows the station to calculate the appropriate fill time for a particular pre-cooling temperature based on the conditions of that fill and the capabilities of the tank itself.
[0101] The algorithms utilized in practicing the improved MC Method are provided below. As the vehicle approaches the hydrogen filling station, the vehicle provides the station, via RFID, IRDA or other communication method, parametric data for a further improved MC Method fill procedure. This parametric data can include, for example:
• NWP
• Tank Volume (or the station can calculate it with a pressure pulse)
• Hot Soak Assumption
• Cold Soak Assumption
• Constants of MC Equation
• Other parameters as desired (Max Temp Allowed, Fastest Fill Rate Allowed, Max pTarget Allowed, etc.)
[0102] Even if none of the parameters are communicated, the station can use the improved MC Method to conduct the fill by utilizing default Constants of the MC
Equation as derived from SAE TIR J2601 , and the default Hot Soak, Cold Soak assumptions of SAE TIR J2601 . Step 1 - Calculate the Fueling Time Using Hot Soak Assumption T HSinit = T ambient + AT hot
At = 0
m in it =
Figure imgf000036_0001
mcv = V x ptarget
madd ~ mcv ~ minitial
u initial =
Figure imgf000036_0002
_ ∑maddhi (T> P)
h average
" mladd
111 ini .t.i.o Γ U i-ni .t.i.al , + m ad ,d,k average + O ϋconnector
^adiabatic
^ ^ adiabatic ^ Ptargef ^adiabaticP ^adiabatic)
MC = C + A U adiabatic + g{\ - e V
U i.n it ;
Figure imgf000036_0003
If Tfinai > 85C (or other user specific limit), At = At + 10s.
Iterate from the top of Step 1.
[0103] As a practical measure, Padiabatic can be assumed to be the MAWP with only a very small error, since internal energy has a very weak relationship with pressure.
Step 2 - Calculate the Pressure Target Using Cold Soak Assumption T CSinit = T ambient -AT cold
m init =V x r o initial (sT initial^ P initial ^)
madd ~ mcv ~ m initial
u initial
Figure imgf000037_0001
maddhiV>P)
average
m add
HI ini -tiar U i-nitial , + m ad jd,h average + O ϋconnector
u adiabatic
P adiabatic
Figure imgf000037_0002
MC = C + A Uadiabatic + g (l - e ~ V
U i.ni Ίt ;
· _ mcyCvT Adiabatic + MC
(MC + mcvCv)
PTarget = P(Ptarget Fina & Ptarget = 100
CPRR P Taxget -P init
180^ + Δί
Step 3 (if necessary)- Calculate the Expected Result
T init = T ambient
m init = V x r o initial (sT initial P initial )'
mcV = V X Ptarget
madd ~ mcv ~ m initial
u = u (T P )
initial initial initial? initial '
h = ∑^Λ (^ )
average
madd
m ini ·t,i·ar M i-niti.al , + m ad ,d,k average + O ϋconnector
^ adiabatic
Figure imgf000038_0001
MC = C + A U°diabatic + g(l - e V
U i.ni Ίt ;
· _ mcyCvTMiabatic + MCTInitial
MC + mcvCv)
Figure imgf000038_0002
Iterate From the Top of Step 3.
[0104] A hydrogen station can maintain a database of MC parameters that have been communicated to the station, and use the lowest performing MC parameter, tank volume, and lowest initial SOC% historically observed, to set the pre-cooling
temperature for the system in order to achieve a fast fueling rate given ambient temperature. In this way a station can keep the pre-cooling temperature set at an economically optimal level.
[0105] Although the improved MC Method was developed and has been described with an emphasis on filling vehicle hydrogen tanks at hydrogen filling stations, modification of the MC Method to improve its performance in connection with fueling hydrogen busses or fueling systems with cryogenic gasses or liquids is certainly contemplated. Similarly, it is anticipated that the basic MC Method could readily be adapted for use in conjunction with compressed natural gas vehicle fueling, or fast filling of vessels involving any industrial gas and/or for calculating the resulting temperature of any process in which a pressurized gas is injected into a pressure vessel. The applicability of the improved MC Method and the associated constants reflecting the thermodynamic properties and behavior for other processes can be determined by applying a similar test matrix as set out above in connection with compressed hydrogen tank refueling for automobiles.
* * * * *

Claims

CLAIMS We claim:
1 . A method of filling a compressed gas tank comprising: calculating an initial hot soak temperature THsinit for an initial mass of gas within the tank; determining a projected fill time through THsinit that is predicted to produce a gas final temperature Trmai no greater than a target temperature 7"; calculating an initial cold soak temperature Tcsinit for an initial mass of gas within the tank; determining a target pressure Ptarget through Tcsinit that is predicted to produce a state of charge of 100% within the tank; and delivering gas to the tank at a pressure ramp rate that achieves Ptarget at the projected fill time.
2. The method of filling a compressed gas tank according to claim 1 , wherein determining the fill time comprises: calculating a composite heat capacity value MC according to at least one of the equations
" MC(" U, t) = C + A ':n /
Figure imgf000040_0001
Tj and wherein C, A, g, k and j are constants specific to the tank, U initial is the initial internal energy of the initial volume of gas and Uadjabatic is the adiabatic internal energy of a final mass of gas after filling the tank and wherein Uadiabatic incorporates an adjustment for heat added by connection components, QCOnnector-
3. The method of filling a compressed gas tank according to claim 1 , wherein determining the fill time comprises: calculating an initial mass m, ·„,·{, calculating an additional mass madd necessary to achieve the state of charge of 100% within the tank; calculating the initial internal energy u initial,' estimating the average enthalpy haverage to be delivered to the tank with the additional mass; calculating an adiabatic internal energy Uadiabatic and an adiabatic temperature 7 'adiabatic, calculating a composite heat capacity value MC according to the equation
MC = C + A Uadiabatic + \ - e-kAt V
wherein C, A, g, k and j are constants specific to the tank.
4. The method of filling a compressed gas tank according to claim 3, comprising: determining the values C, A, g, k and j for the tank.
5. The method of filling a compressed gas tank according to claim 1 , wherein determining the target pressure Ptarget comprises: calculating a composite heat capacity value MC according to the equation
MC = C + A Uadiabatic + g(l - e kAt Y
U. .t ' wherein C, A, g, k and j are constants specific to the tank, U;„ i is the initial internal energy of the initial volume of gas and Uadiabatic is the adiabatic internal energy of a final mass of gas after filling the tank to a state of charge of 100% and wherein Uadiabatic incorporates an adjustment for heat added by connection components,
Qconnector-
6. The method of filling a compressed gas tank according to claim 1 , wherein determining the target pressure Ptarget comprises: calculating a cold initial mass minitc,' calculating an additional mass madd necessary to achieve the state of charge of 100% within the tank; calculating the initial internal energy Uinmai, estimating the average enthalpy haverage to be delivered to the tank with the additional mass; calculating an adiabatic internal energy u adiabatic, wherein u adiabatic
incorporates an adjustment for heat added by connection components, Qconnector, calculating an adiabatic temperature Tadiabatic,' and calculating a composite heat capacity value MC according to the equation
MC = C + A UadMc + g(i - e-kA1
wherein C, A, g, k and j are constants specific to the tank.
7. The method of filling a compressed gas tank according to claim 4, wherein determining the values C, A, g, k and j for the tank comprises: performing a plurality of test fills of the tank to a state of charge of 100% at a target fill time, wherein the test fills encompass a plurality of initial fill pressures and a plurality of pre-cooling temperatures; calculating an end-of-fill MC for each test fill according to the equation m22(u adiabatic 1/1 final
MC
final - T i.nitial
plotting MC against UadiabatiJU Wa/ and performing a best fit to determine the constant, C, and coefficient, A of the resulting curve. plotting AMC against At (time - target fill time) and performing a best fit model to the resulting curve to determine the coefficients g, k and j for the equation:
AMC = g(1 - e ^ .
8. The method of filling a compressed gas tank according to claim 7, wherein: a first initial pressure is a state of charge of less than 10% within the tank; and a first pre-cooling temperature is an ambient temperature.
9. The method of filling a compressed gas tank according to claim 8, wherein: a second initial pressure is a state of charge of about 50% within the tank; and a second pre-cooling temperature is less than 0°C.
10. The method of filling a compressed gas tank according to claim 7, wherein: a first initial pressure is 2 MPa and a second initial pressure is a state of charge of at least about 50% within the tank; and a first pre-cooling temperature is an ambient temperature and a second pre-cooling temperature is -20°C.
1 1 . A method of refueling a hydrogen tank on a hydrogen powered vehicle
comprising: calculating a hot soak initial temperature THsmit for an initial mass of gas within the tank; determining a projected fill time through THsinit that is predicted to produce a final hydrogen temperature Tfinai no greater than a target temperature T, calculating a cold soak initial temperature Tcs/η/ί for an initial mass of gas within the tank; determining a target pressure Pfargef through Tcsinit that is predicted to produce a state of charge of 100%; and delivering gas to the tank at a pressure ramp rate that will achieve Ptarget at the projected fill time.
12. A method of operating a hydrogen gas filling station comprising: obtaining a first set of parametric data corresponding to a hydrogen powered vehicle; obtaining a second set of parametric data corresponding to station capabilities; obtaining a third set of parametric data corresponding to a refueling ambient; calculating a MC value based on the parametric data obtained, wherein the parametric data incorporates an adjustment for heat added by connection components,
Qconnector, and determining a projected fill time that is predicted to produce a gas final temperature Tfinai no greater than a target temperature T and achieve a state of charge of 100% within the tank according to Equation [B]
Figure imgf000045_0001
Final (MC + m^C determining a target pressure Ptarget that is predicted to produce a state of charge of 100% within the tank.
13. The method of operating a hydrogen gas filling station according to claim 12, wherein: the first set of parametric data is obtained directly from the hydrogen powered vehicle through a communication protocol selected from a group consisting of RFID, HVAS and IRDA.
14. The method of operating a hydrogen gas filling station according to claim 12, wherein: the first set of parametric data is obtained by identifying the hydrogen powered vehicle and accessing a parametric database maintained outside the vehicle.
15. The method of operating a hydrogen gas filling station according to claim 12, wherein: the first set of parametric data is assigned default values and determining an adjusted final target density sufficient to achieve the Ptarget at the
Tfinal-
16. The method of operating a hydrogen gas filling station according to claim 12, wherein: the first set of parametric data includes at least one parameter selected from a group consisting of nominal working pressure, tank volume, refueling history, time stamp of last refueling, trip odometer value, initial hydrogen mass, initial gas temperature, maximum hot soak temperature, maximum cold soak temperature, maximum defueling rate and maximum fueling rate.
17. The method of operating a hydrogen gas filling station according to claim 12, comprising: maintaining first and second hydrogen fill assemblies, the first hydrogen fill assembly operating at a first pre-cooling temperature and the second hydrogen assembly operating at a second pre-cooling temperature, wherein the first and second pre-cooling temperatures are different; analyzing the first set of parametric data; and directing the hydrogen powered vehicle to the hydrogen fill assembly that provides a state of charge of 100%.
18. The method of operating a hydrogen gas filling station according to claim 12, comprising: calculating a target pre-cooling temperature sufficient to achieve a 3-minute fueling time through parametric information selected from a data set consisting of vehicle fueling history, tank volume, lowest historical initial state-of-charge percent, lowest historical tank MC value, and ambient temperature; setting and maintaining a hydrogen fill assembly at the target pre-cooling temperature for the duration of a vehicle refueling operation.
19. The method of operating a hydrogen gas filling station according to claim 12, comprising: predicting a defueled system temperature for a combined system heat mass; setting TFinaiDefueicoid,' and initiating refueling through TFinaiDefueicoid.
20. The method of operating a hydrogen gas fill station according to claim 12, comprising: obtaining a first subset of the first set of parametric data, the first subset corresponding to parametric data associated with a first hydrogen tank onboard the hydrogen powered vehicle; obtaining a second subset of the first set of parametric data, the second subset corresponding to parametric data associated with a second hydrogen tank onboard the hydrogen powered vehicle; calculating Tfinan through the first subset of parametric data and Trinai2 through the second subset of parametric data; detecting the greater of Tfinan and Tfinai2 to determine a target fueling speed; and detecting the lesser of Trman and Tfinai2 to determine Ptarget-
21 . The method of operating a hydrogen gas fill station according to claim 12, comprising: initiating a hydrogen gas fill; adjusting the second set of parametric data during the hydrogen gas fill to reflect measured station performance; adjusting the MC value during the hydrogen gas fill to reflect variations in the first set of parametric data and measured fill performance data; calculating an adjusted fill time and Ptarget to reflect adjustments in the second set of parametric data and MC value; and determining the adjusted fill time to control the fill speed and end of fill conditions.
22. The method of operating a hydrogen gas fill station according to claim 17, wherein: the more efficient hydrogen fill assembly provides a benefit selected from a group consisting reduced fueling time, higher state-of-charge percent, increased pre-cooling temperature, reduced energy consumption and combinations thereof.
PCT/US2014/021562 2013-03-15 2014-03-07 Improved method and system for tank refilling WO2014149930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/843,537 US9212783B2 (en) 2010-04-21 2013-03-15 Method and system for tank refilling
US13/843,537 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014149930A1 true WO2014149930A1 (en) 2014-09-25

Family

ID=50349971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/021562 WO2014149930A1 (en) 2013-03-15 2014-03-07 Improved method and system for tank refilling

Country Status (1)

Country Link
WO (1) WO2014149930A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508690A (en) * 2021-12-24 2022-05-17 兰州空间技术物理研究所 Method for measuring heat leakage quantity of low-temperature heat-insulation gas cylinder at any liquid level
CN115059871A (en) * 2022-05-19 2022-09-16 北京大学 Method and device for measuring temperature in hydrogen storage tank
CN116293418A (en) * 2023-04-20 2023-06-23 西南交通大学 Energy consumption control-based pressure optimal configuration method for hydrogen adding station equipment
CN116522812A (en) * 2023-04-19 2023-08-01 上海勘测设计研究院有限公司 Temperature-pressure field coupling analysis method, system and terminal for compressed air energy storage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653585A1 (en) * 1993-11-08 1995-05-17 Maschinenfabrik Sulzer-Burckhardt AG Process and device for the quick filling of a pressure container with a gaseous fluid
DE19643801A1 (en) * 1996-10-30 1998-05-07 Sieghard Dr Gall Gas filling of containers from supply gas store
WO2007077376A2 (en) * 2006-01-06 2007-07-12 L'air Liquide Societe Anonyme Pour L'etude Et L'eyploitation Des Procedes Georges Claude Method and device for filling pressure gas containers
EP2093475A1 (en) * 2008-02-20 2009-08-26 Air Products and Chemicals, Inc. Compressor fill method and apparatus
US7647194B1 (en) * 2008-08-13 2010-01-12 Daniel Glenn Casey Method for calculating hydrogen temperature during vehicle fueling
US20110259469A1 (en) * 2010-04-21 2011-10-27 Harty Ryan Method and System for Tank Refilling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653585A1 (en) * 1993-11-08 1995-05-17 Maschinenfabrik Sulzer-Burckhardt AG Process and device for the quick filling of a pressure container with a gaseous fluid
DE19643801A1 (en) * 1996-10-30 1998-05-07 Sieghard Dr Gall Gas filling of containers from supply gas store
WO2007077376A2 (en) * 2006-01-06 2007-07-12 L'air Liquide Societe Anonyme Pour L'etude Et L'eyploitation Des Procedes Georges Claude Method and device for filling pressure gas containers
EP2093475A1 (en) * 2008-02-20 2009-08-26 Air Products and Chemicals, Inc. Compressor fill method and apparatus
US7647194B1 (en) * 2008-08-13 2010-01-12 Daniel Glenn Casey Method for calculating hydrogen temperature during vehicle fueling
US20110259469A1 (en) * 2010-04-21 2011-10-27 Harty Ryan Method and System for Tank Refilling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EIHUSEN, J.A.: "Application of Plastic-Lined Composite Pressure Vessels For Hydrogen Storage", WORLD HYDROGEN ENERGY CONFERENCE, 2004
HIROTANI, R. ET AL.: "JARI", 2006, WORLD HYDROGEN ENERGY CONFERENCE, article "Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling"

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508690A (en) * 2021-12-24 2022-05-17 兰州空间技术物理研究所 Method for measuring heat leakage quantity of low-temperature heat-insulation gas cylinder at any liquid level
CN114508690B (en) * 2021-12-24 2024-02-20 兰州空间技术物理研究所 Method for measuring heat leakage quantity of low-temperature heat-insulating gas cylinder under any liquid level
CN115059871A (en) * 2022-05-19 2022-09-16 北京大学 Method and device for measuring temperature in hydrogen storage tank
CN115059871B (en) * 2022-05-19 2023-09-01 北京大学 Method and device for measuring temperature in hydrogen storage tank
CN116522812A (en) * 2023-04-19 2023-08-01 上海勘测设计研究院有限公司 Temperature-pressure field coupling analysis method, system and terminal for compressed air energy storage
CN116293418A (en) * 2023-04-20 2023-06-23 西南交通大学 Energy consumption control-based pressure optimal configuration method for hydrogen adding station equipment
CN116293418B (en) * 2023-04-20 2024-10-11 西南交通大学 Energy consumption control-based pressure optimal configuration method for hydrogen adding station equipment

Similar Documents

Publication Publication Date Title
US8783303B2 (en) Method and system for tank refilling
US9347614B2 (en) Method and system for tank refilling using active fueling speed control
US9347612B2 (en) Method and system for tank refilling using active fueling speed control
US9605804B2 (en) Method and system for tank refilling using active fueling speed control
WO2014150320A1 (en) Improved method and system for tank refilling using active fueling speed control
Reddi et al. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles
US9212783B2 (en) Method and system for tank refilling
Schneider et al. Validation and sensitivity studies for SAE J2601, the light duty vehicle hydrogen fueling standard
Cebolla et al. Effect of precooled inlet gas temperature and mass flow rate on final state of charge during hydrogen vehicle refueling
US9032984B2 (en) Fuel distribution in multi-fuel tank compressed gas fuel systems
WO2014149930A1 (en) Improved method and system for tank refilling
US11339926B2 (en) Methods and systems for improving hydrogen refueling
US11313514B2 (en) Method and system for tank refueling using dispenser and nozzle readings
WO2014200959A2 (en) Improved method and system for tank refilling using active fueling speed control
JPH07186904A (en) Method and device for filling gas medium promptly to pressure vessel
US20160290561A1 (en) System and method for intelligent refuelling of a pressurised vessel
Chae et al. Development of a new real time responding hydrogen fueling protocol
US10794538B2 (en) Process for refilling a gas tank and gas supply system
Sapre et al. Investigation of compressed hydrogen refueling process of 60 L type IV tank used in fuel cell vehicles
US20240027028A1 (en) Method For Performing Real-Time Response Hydrogen-Charging Process, And Device Therefor
Mathison et al. Application of MC method-based H2 fueling
Deymi-Dashtebayaz et al. Thermodynamic analysis of single reservoir filling process of hydrogen vehicle
Xi et al. Research progress of fast filling of high pressure hydrogen for fuel cell vehicles
Veenstra et al. On-board physical based 70 MPa hydrogen storage systems
Choi et al. A development of a surface frost prediction model for hydrogen fueling nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14712526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14712526

Country of ref document: EP

Kind code of ref document: A1