Nothing Special   »   [go: up one dir, main page]

WO2014038461A1 - Radiographic imaging system, radiation generating apparatus and method for operating same - Google Patents

Radiographic imaging system, radiation generating apparatus and method for operating same Download PDF

Info

Publication number
WO2014038461A1
WO2014038461A1 PCT/JP2013/073113 JP2013073113W WO2014038461A1 WO 2014038461 A1 WO2014038461 A1 WO 2014038461A1 JP 2013073113 W JP2013073113 W JP 2013073113W WO 2014038461 A1 WO2014038461 A1 WO 2014038461A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
imaging
radiation
dose
pressing operation
Prior art date
Application number
PCT/JP2013/073113
Other languages
French (fr)
Japanese (ja)
Inventor
亮 今▲邨▼
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014038461A1 publication Critical patent/WO2014038461A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/488Diagnostic techniques involving pre-scan acquisition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette

Definitions

  • the present invention relates to a radiation imaging system for taking a radiation image, a radiation generation apparatus, and an operation method thereof.
  • the X-ray imaging system includes an X-ray generator that generates an X-ray, and an X-ray imaging apparatus that captures an X-ray image formed by X-rays transmitted through a subject (patient).
  • the X-ray generator inputs an X-ray source for irradiating X-rays toward a subject, a radiation source control device for controlling the drive of the X-ray source, and a drive instruction for operating the X-ray source to the radiation source control device Irradiation switch.
  • the X-ray imaging apparatus detects an X-ray image detection apparatus that detects an X-ray image by converting an X-ray transmitted through a subject into an electrical signal, and drive control of the X-ray image detection apparatus. Have a console to do.
  • the X-ray source has an X-ray tube which emits thermoelectrons from a filament (cathode) by applying a high voltage, and emits X-rays by colliding the emitted thermoelectrons with a target (anode). There is. Since the focal point of the target which the thermal electrons collide with is heated to a high temperature, a rotating anode type is generally used as an X-ray tube in which the target is rotated to dissipate heat. In the rotary anode type X-ray source, warm-up such as raising the rotational speed of the target to a prescribed rotational speed is performed before X-ray irradiation.
  • a two-step push switch capable of two-step press operation of half press and full press is generally used.
  • the source controller causes the X-ray source to start warm-up when receiving an input of a drive instruction by a half press from the irradiation switch, and receives an input of a drive instruction by a full press.
  • the source is started to emit X-rays.
  • an X-ray imaging apparatus instead of an X-ray image recording apparatus using an X-ray film or an IP (imaging plate) cassette, one using an X-ray image detection apparatus that electronically detects an X-ray image ing.
  • the X-ray image detection device has a sensor panel also referred to as a flat panel detector (FPD).
  • the sensor panel has an imaging area in which pixels for storing signal charges according to the amount of incident X-rays are arranged in a matrix.
  • the pixel includes a photoelectric conversion unit that generates charge and stores the generated charge, and a switching element such as a TFT.
  • the sensor panel stores signal charges for each pixel, reads out the stored signal charges to a signal processing circuit via a switching element such as a TFT, and converts the X-ray image into a voltage signal by the signal processing circuit. To detect.
  • the integrated value (accumulated dose) of X-ray dose is acquired during X-ray imaging (during irradiation) in order to obtain a radiation image of appropriate image quality while suppressing the exposure dose to the subject.
  • AEC Automatic Exposure Control
  • the dose irradiated by the X-ray source is the tube current time product which is the product of the X-ray irradiation time (unit; s) and the tube current (unit; mA) that defines the dose irradiated by the X-ray source per unit time Determined by (mAs value).
  • imaging conditions such as irradiation time and tube current have approximate recommended values depending on the imaging site (chest and head) of the subject, gender, age, etc.
  • X-ray transmittance changes due to individual differences such as the physical constitution of the subject AEC will be conducted to obtain more appropriate image quality.
  • one X-ray imaging is performed by a set of pre-imaging and main imaging, and based on the result of the pre-imaging, the main imaging
  • There is a method of determining imaging conditions such as X-ray irradiation time and tube current time product (mAs value).
  • the imaging conditions of the pre-imaging are determined based on, for example, the imaging region and patient information such as age and gender.
  • JP 2011-115368 A since warm-up of the X-ray source is performed twice before the pre-shooting and the main taking, the time taken for one X-ray taking a set of the pre-taking and the main taking is taken It will be so long.
  • the warm-up includes mechanical operation such as increasing the rotation of the rotary anode, and thus takes several seconds, and is longer than the irradiation time of X-rays of the order of several seconds to several seconds.
  • the time increased by warm-up in a single X-ray imaging is short, the time is accumulated when imaging a large number of patients such as mass screening, so the influence on the diagnostic efficiency Too big.
  • An object of the present invention is to provide a radiation imaging system, a radiation generation apparatus, and an operation method thereof that can shorten the time required for one radiation imaging that combines pre-imaging and main imaging and improve the diagnostic efficiency. I assume.
  • a radiation imaging system of the present invention comprises a radiation generating device and a radiation imaging device.
  • the radiation generator emits radiation toward the subject.
  • the radiation imaging apparatus receives radiation transmitted through a subject and takes a radiation image.
  • the radiation imaging system performs one imaging by a main imaging for capturing a radiation image and a pre-imaging for determining imaging conditions for the main imaging prior to the main imaging.
  • the radiation generator comprises a radiation source, an irradiation switch, and a source controller.
  • the radiation source performs a first irradiation for pre-imaging and a second irradiation for main imaging.
  • the irradiation switch can perform at least two steps of pressing operation, and inputs a drive instruction by the pressing operation.
  • the radiation source control device controls the drive of the radiation source based on the drive instruction. Furthermore, the radiation source control device receives an input of a drive instruction by the first pressing operation of the irradiation switch, and causes the radiation source to start warm-up before the first irradiation, and after the completion of the warm-up While the first-step pressing operation is not released, the warm-up is maintained, and the driving instruction by the pressing operation after the second step of the irradiation switch is input without releasing the first-step pressing operation. In the case, the second irradiation is started without warming up.
  • the first irradiation is performed after the warm-up is completed and until the second irradiation is started.
  • the irradiation switch is, for example, a two-step push switch capable of full-pressing, which is a first-step pressing operation, and a second-step pressing operation.
  • the radiation source control device starts the warm-up upon receiving the input of the drive instruction by the half press, and further starts the first irradiation following the warm-up, and receives the input of the drive instruction by the full press.
  • the radiation source control device starts the warm-up upon receiving the drive instruction input by the half press, and further receives the drive instruction input by the first full press to initiate the first irradiation, and then the half press
  • the second irradiation is started in response to the input of the drive instruction by the second full-press after returning to.
  • the irradiation switch may be a three-step push switch capable of full-pressing, which is a first-step pressing operation, a first-step pressing, a second-step pressing operation, and a third-step pressing operation.
  • the radiation source control device starts the warm-up upon receiving the drive instruction input by one-step push, receives the drive instruction input from the middle push, starts the first irradiation, and receives the drive instruction input by the full-press. Receive and start the second irradiation.
  • the radiation source control apparatus transmits, for example, an irradiation start request signal for requesting permission of irradiation start to the radiation imaging apparatus before performing each of the first irradiation and the second irradiation, and as a response to the irradiation start request signal, When the radiation permission signal is received from the radiation imaging apparatus, each of the first radiation and the second radiation is started.
  • the radiation source control apparatus receives an input of a drive instruction by the first-stage pressing operation by the irradiation switch, for example, and then releases the radiation source to the initial stage before the warm-up starts when the first-stage pressing operation is cancelled. Return to state.
  • the radiation source control device does not cancel the first-step pressing operation after receiving the input of the driving instruction by the first-step pressing operation by the irradiation switch, and the driving instruction by the second-step and subsequent pressing operations
  • the radiation source may be returned to the state before the start of the warm-up.
  • the radiation imaging apparatus includes, for example, a radiation image detection apparatus, a dose detection sensor, a timer, a main imaging condition determination unit, and a communication unit.
  • the radiation image detection apparatus has a sensor panel having an imaging area in which pixels storing charge corresponding to the dose of radiation transmitted through an object are arranged in a matrix, and detects a radiation image.
  • the dose detection sensor detects the dose of radiation due to the first irradiation in the pre-shooting.
  • the timer counts the irradiation time of the first irradiation until the integrated value of the dose detected by the dose detection sensor reaches the preset target dose in the preliminary imaging.
  • the main photographing condition determination unit determines the photographing conditions of the main photographing based on the irradiation time counted by the timer and the dose necessary for the second irradiation in the main photographing.
  • the communication unit transmits the determined imaging conditions for the main imaging to the radiation generating apparatus.
  • the main imaging condition determination unit determines, for example, the imaging condition of the main imaging based on a dose obtained by subtracting the dose of the first irradiation in the preliminary imaging from the dose necessary for the second irradiation in the main imaging.
  • the radiation image detection apparatus preferably includes an AEC unit that outputs an irradiation stop signal for stopping the first irradiation to the radiation generation apparatus when the integrated value reaches the target dose in the pre-imaging.
  • the radiation image detecting apparatus preferably executes an accumulation operation of accumulating charges corresponding to the dose of the first irradiation in the image during the pre-imaging, and shifts to the main imaging without sweeping out the accumulated charges.
  • the radiation image detection apparatus is an electronic cassette in which a sensor panel, a dose detection sensor, and a main imaging condition determination unit are housed in a portable case. Moreover, it is preferable that the dose detection sensor be disposed in the imaging region. In this case, the radiation image detection apparatus outputs, as a preview image, image information based on the integrated value of the dose detected by the dose detection sensor in the preliminary imaging.
  • the radiation generating apparatus is a single imaging operation for applying radiation to a subject and capturing a radiographic image of the subject, and a pre-shooting for determining imaging conditions for the main imaging prior to the main imaging. It is used in a radiation imaging system that performs imaging.
  • the radiation generator comprises a radiation source, an irradiation switch, and a source controller.
  • the radiation source performs a first irradiation for pre-imaging and a second irradiation for main imaging.
  • the irradiation switch can perform at least two steps of pressing operation, and inputs a drive instruction by the pressing operation.
  • the radiation source control device controls the drive of the radiation source based on the drive instruction.
  • the radiation source control device receives an input of a drive instruction by the first pressing operation of the irradiation switch, and causes the radiation source to start warm-up before the first irradiation, and after the completion of the warm-up While the first-step pressing operation is not released, the warm-up is maintained, and the driving instruction by the pressing operation after the second step of the irradiation switch is input without releasing the first-step pressing operation. In the case, the second irradiation is started without warming up.
  • the main imaging for capturing the radiation image of the subject by irradiating the radiation to the subject and the pre-imaging for determining the imaging condition of the main imaging prior to the main imaging
  • a method of operating a radiation generating apparatus used in a radiation imaging system that performs imaging once.
  • the method of operation of the radiation generator comprises: Having the radiation source execute a first irradiation for pre-imaging and a second irradiation for main imaging. At least two steps of pressing operation are possible, and from the irradiation switch for inputting the driving instruction by the pressing operation, the input of the driving instruction by the pressing operation of the first stage is received, and before the first irradiation to the radiation source.
  • the present invention in the case of performing one radiation imaging in a set of pre-imaging and main imaging, after the pre-imaging, since the main imaging is performed without performing the warm-up of the radiation source, it takes one radiation imaging
  • the time can be shortened and the diagnostic efficiency can be improved.
  • FIG. 1 is a schematic view of an X-ray imaging system. It is a graph showing the relation between the dose of X-rays and the time. It is a figure which shows the internal structure of a radiation source control apparatus. It is an appearance perspective view showing an electronic cassette. It is a block diagram which shows the internal structure of an electronic cassette. It is explanatory drawing of AEC and this imaging
  • the X-ray imaging system 2 instructs the X-ray source 10, the radiation source control device 11 for controlling the operation of the X-ray source 10, and the warm-up start and X-ray irradiation start to the X-ray source 10.
  • Switch 12 for controlling the electronic cassette 13, an electronic cassette 13 for detecting X-rays transmitted through the subject (patient) and outputting an X-ray image, and a console 14 for controlling the operation of the electronic cassette 13 and displaying the X-ray image.
  • the camera comprises a standing shooting stand 15 for shooting a subject in a standing posture, and a lying shooting stand 16 for shooting in a lying posture.
  • the X-ray source 10, the radiation source control device 11, and the irradiation switch 12 constitute an X-ray generator 2a, and the electronic cassette 13 and the console 14 constitute an X-ray imaging device 2b.
  • a source moving device (not shown) for setting the X-ray source 10 in a desired direction and position is provided. Shared by
  • the X-ray source 10 has an X-ray tube and a field limiter (collimator) that limits the X-ray radiation field emitted by the X-ray tube.
  • the X-ray tube has a cathode, which is a filament that emits thermal electrons, and an anode (target), which the thermal electrons emitted from the cathode collide to emit X-rays.
  • the anode starts to rotate when instructed to start the warm-up, and the warm-up is ended when the rotational speed reaches a specified value.
  • the irradiation field limiter has, for example, four lead plates for shielding X-rays arranged on each side of a square, and a rectangular irradiation opening for transmitting X-rays formed at the center, By moving the position, the size of the irradiation opening is changed to limit the irradiation field.
  • the console 14 is communicably connected to the electronic cassette 13 by a wired method or a wireless method, and controls the operation of the electronic cassette 13 in accordance with an input operation from an operator via the input device 14 a such as a keyboard.
  • the X-ray image from the electronic cassette 13 is displayed on the display 14 b of the console 14, and the data is stored in the storage device 14 c or memory (not shown) in the console 14 or an image storage server etc. Stored in the data storage of
  • the console 14 receives the input of the examination order including the information such as the sex, the age, the imaging region, and the imaging purpose of the subject, and displays the examination order on the display 14 b.
  • the examination order is input from an external system that manages patient information such as HIS (hospital information system) or RIS (radiation information system) or examination information related to a radiological examination, or is manually input by an operator such as a radiologist.
  • the examination order includes items of imaging sites such as the head, chest, abdomen, hands, and fingers.
  • the imaging site also includes imaging directions such as front, side, oblique position, PA (irradiating X-rays from the back of the subject), AP (irradiating X-rays from the front of the subject), and the like.
  • the operator confirms the contents of the inspection order on the display 14b, and inputs imaging conditions according to the contents on the input device 14a through the operation screen displayed on the display 14b.
  • the imaging conditions include the tube voltage (unit: kV) that determines the energy spectrum of the X-ray irradiated by the X-ray source 10, the tube current (unit; mA) that determines the irradiation amount per unit time, and the X-ray source 10 Line irradiation time (unit; s) etc. are included. Since the cumulative irradiation dose of X-rays is determined by the product of the tube current and the irradiation time, the tube current time product, which is the product of the two, instead of individually inputting the values of the tube current and the irradiation time as imaging conditions The value of (mAs value) may be input. However, as described later, in this example, AEC is performed to determine the irradiation time. Therefore, the irradiation time determined by the X-ray imaging system 2 is applied prior to the irradiation time input from the console 14.
  • one set of X-ray imaging for acquiring one X-ray image to be provided for diagnosis is performed as a set of pre-imaging and main imaging.
  • the pre-shooting is performed in order to determine the shooting conditions of the main shooting necessary for the subject in order to obtain an X-ray image of appropriate image quality in the main shooting.
  • the subject is irradiated with an X-ray having a dose smaller than that of the main imaging.
  • X-rays are irradiated under imaging conditions determined by the pre-imaging.
  • the irradiation time Ta for the purpose becomes longer, and conversely, when the subject thickness is thin, it becomes shorter as shown by the dotted line graph (irradiation time Tb).
  • the X-ray transmittance decreases, so the irradiation time becomes long, and when it is low, the irradiation time becomes short.
  • the X-ray imaging system 2 Since the necessary cumulative dose for obtaining a good quality X-ray image is fixed, the X-ray imaging system 2 performs AEC so that the necessary cumulative dose can be obtained even if the physical size of the subject is different. Specifically, the irradiation time is adjusted so that the cumulative dose of X-rays, which is the area of a trapezoid shown by the solid or dotted line graph, becomes the same as the required cumulative dose. The X-ray imaging system 2 measures the irradiation time until the accumulated dose reaches a predetermined threshold in the pre-imaging.
  • the measured irradiation time is a value reflecting the X-ray transmittance according to the physical size of the subject.
  • the X-ray imaging system 2 determines the irradiation time of the main imaging to obtain the accumulated dose necessary for the main imaging as the main imaging condition based on the irradiation time of the pre-imaging, and performs the main imaging under the condition.
  • the source controller 11 boosts the input voltage with a transformer to generate a high tube voltage, and supplies the high voltage generator 20 to the X-ray source 10 through a high voltage cable;
  • a memory 23, and a touch panel 24 a touch panel 24.
  • the irradiation switch 12, the memory 23, and the touch panel 24 are connected to the control unit 21.
  • the irradiation switch 12 is a switch for inputting a drive instruction to the control unit 21.
  • the irradiation switch 12 is a general two-step push switch capable of two-step pressing operation as an irradiation switch.
  • the operation buttons SW1 and SW2 have a nested structure, and can not turn on SW2 unless the user presses SW1. With such a structure, a two-step pressing operation of half-pressing (SW1 on) which is a first-step pressing operation and full-pressing (SW2 on) which is a second-step pressing operation is performed.
  • SW1 on When the irradiation switch 12 is half-pressed (SW1 on), a signal indicating that the SW1 is turned on is input to the control unit 21 as a drive instruction by the half-press. Similarly, when full-pressed (SW2), a signal indicating that SW2 is turned on is input as a drive instruction by full-press.
  • the control unit 21 generates a control signal for controlling the drive of the X-ray source 10 in response to the input of the drive instruction from the irradiation switch 12.
  • the control signals include a warm-up start signal for starting the warm-up of the X-ray source 10, a first irradiation start signal for starting the irradiation for pre-imaging, and the irradiation for the main imaging. There are a second irradiation start signal and an initialization signal for returning the X-ray source 10 to an initial state.
  • the control unit 21 When the irradiation switch 12 is half-depressed, the control unit 21 issues a warm-up start signal to the high voltage generator 20 to cause the X-ray source 10 to start warm-up. If the half depression of the irradiation switch 12 is not released after the warm-up is completed, the control unit 21 performs synchronization control by transmitting and receiving synchronization signals with the X-ray imaging apparatus 2b, and then performs pre-imaging A first irradiation start signal is issued to the high voltage generator 20 to cause the X-ray source 10 to start X-ray irradiation for pre-imaging.
  • the control unit 21 When the irradiation switch 12 is further pressed from the half-pressed state and fully pressed, the control unit 21 performs the synchronization control with the X-ray imaging apparatus 2b as in the pre-imaging, and then starts the second irradiation A signal is emitted to the high voltage generator 20 to cause the X-ray source 10 to start X-ray irradiation for main imaging.
  • the control unit 21 generates an initialization signal when the half-pressing is released after the irradiation switch 12 is once-half-pressed. After the irradiation switch 12 is half-pressed and warm-up of the X-ray source 10 is started, the control unit 21 half-pushes the irradiation switch 12 until the irradiation for pre-imaging and the irradiation for the main imaging are completed. Is released, an initialization signal is issued to the high voltage generator 20 to stop the rotation of the rotary anode of the X-ray source 10, and the X-ray source 10 is returned to the initial state before the start of the warm-up. These signals are input from the source controller 11 to the X-ray source 10 through the signal cable.
  • control unit 21 maintains the warm-up completed state without returning the X-ray source 10 to the initial state while the half depression of the irradiation switch 12 is not released even after the X-ray irradiation of the pre-imaging is stopped. Do. Therefore, when the irradiation switch 12 is fully pressed following the half-press, the X-ray source 10 can immediately start X-ray irradiation for main imaging without performing warm-up.
  • the memory 23 stores several types of imaging conditions such as tube voltage and tube current in advance.
  • the imaging conditions are manually set by the operator through the touch panel 24.
  • a plurality of types of imaging conditions read from the memory 23 are displayed on the touch panel 24.
  • the operator selects the same imaging conditions as the imaging conditions input to the console 14, whereby the imaging conditions are set for the radiation source control device 11.
  • the setting of the imaging conditions of the source control apparatus 11 may be automated by transmitting the imaging conditions input to the console 14 to the source control apparatus 11.
  • the same values are used for pre-imaging and main imaging.
  • the irradiation time in the pre-imaging, as described later, since the irradiation time until AEC is performed in the X-ray imaging apparatus 2b and the target dose is measured, a margin is provided so that the irradiation does not stop during measurement.
  • the value you set is set. In this value, the irradiation time in the pre-photographing is very short compared to the main photographing, and the irradiation time until the reaching dose to the electronic cassette 13 reaches the target dose changes according to the tube current and the photographing site It is set in consideration of things.
  • the maximum value of the irradiation time set in the safety regulation in the X-ray source 10 may be set.
  • the control unit 21 As the irradiation time of the main imaging, a value obtained by calculation in the X-ray imaging apparatus 2b is set based on the result of the pre-imaging.
  • the control unit 21 is provided with a timer 25.
  • the timer 25 measures the irradiation time of X-rays determined based on the result of the preliminary imaging in the main imaging.
  • the control unit 21 issues an irradiation stop signal to the high voltage generator 20 to stop the X-ray irradiation.
  • the irradiation signal I / F 26 mediates transmission and reception of synchronization signals in synchronization control performed by the radiation source control device 11 with the X-ray imaging device 2b.
  • the control unit 21 transmits an irradiation start request signal which is a synchronous signal inquiring whether the X-ray imaging apparatus 2b may start the X-ray irradiation before starting the X-ray irradiation in the pre-imaging and the main imaging. Do.
  • the X-ray imaging apparatus 2b receives an irradiation permission signal, which is a synchronous signal indicating that preparation for receiving irradiation has been completed.
  • the irradiation signal I / F 26 receives an irradiation stop signal emitted by the X-ray imaging apparatus 2 b when the X-ray imaging apparatus 2 b executes AEC in the pre-imaging.
  • the communication I / F 22 receives the imaging condition of the main imaging calculated in the X-ray imaging apparatus 2b based on the result of the preliminary imaging.
  • the irradiation signal I / F 26 and the communication I / F 22 may be wired or wireless.
  • the electronic cassette 13 is configured of a sensor panel 30 and a flat box-shaped portable case 31 for housing the sensor panel 30.
  • the housing 31 is formed of, for example, a conductive resin.
  • a rectangular opening is formed on the front surface 31a of the housing 31 on which the X-rays are incident, and the transmission plate 32 is attached to the opening as a top plate.
  • the transmission plate 32 is formed of a carbon material that is lightweight, has high rigidity, and has high X-ray transparency.
  • the housing 31 also functions as an electromagnetic shield that prevents the penetration of electromagnetic noise into the electronic cassette 13 and the emission of electromagnetic noise from the electronic cassette 13 to the outside.
  • a battery for supplying power of a predetermined voltage to each part of the electronic cassette 13, and an antenna for performing wireless communication of data such as an X-ray image with the console 14 are provided. It is built in other than sensor panel 30.
  • the housing 31 has a size in conformity with the international standard ISO 4090: 2001 substantially the same as a film cassette or an IP cassette.
  • the electronic cassette 13 is detachably set on the holders 15a and 16a (see FIG. 1) of the imaging bases 15 and 16 so that the front surface 31a of the housing 31 is held in a posture to face the X-ray source 10. Then, the X-ray source 10 is moved by the radiation source moving device according to the imaging table to be used. Further, the electronic cassette 13 may be placed on a bed on which the subject lies or held by the subject itself and used alone, in addition to being set on each of the imaging platforms 15 and 16.
  • the electronic cassette 13 has a size substantially the same as that of a film cassette and an IP cassette, and therefore can be attached to an existing photographing table for a film cassette and an IP cassette.
  • the sensor panel 30 has a TFT active matrix substrate, and an imaging region 40 is formed on this substrate.
  • an imaging region 40 a plurality of pixels 41 for accumulating charges according to the X-ray arrival dose are arranged in a matrix of n rows (x direction) x m columns (Y direction) at a predetermined pitch.
  • n and m are integers of 2 or more.
  • the sensor panel 30 has a scintillator (phosphor, not shown) that converts X-rays into visible light, and is an indirect conversion type in which visible light converted by the scintillator is photoelectrically converted by the pixels 41.
  • the scintillator is made of CsI: Tl (thallium activated cesium iodide), GOS (Gd 2 O 2 S: Tb, terbium activated gadolium oxysulfide) or the like, and faces the entire surface of the imaging region 40 in which the pixels 41 are arrayed.
  • the scintillator and the TFT active matrix substrate may be a PSS (Penetration Side Sampling) method in which the scintillator and the substrate are arranged in order of the X-ray incident side, or conversely, the ISS (irradiation) is arranged in the substrate and the scintillator in order. It may be a side sampling method. Alternatively, a direct conversion type sensor panel may be used which uses a conversion layer (amorphous selenium or the like) for converting X-rays directly into electric charge without using a scintillator.
  • the pixel 41 includes a photoelectric conversion unit 42 which generates a charge (electron-hole pair) upon incidence of visible light and stores the generated charge, and a first TFT 43 which is a switching element. Note that a capacitor for storing charge may be provided separately from the photoelectric conversion unit 42.
  • the photoelectric conversion unit 42 has a structure in which an upper electrode and a lower electrode are disposed above and below a semiconductor layer (for example, a PIN type) that generates an electric charge.
  • the first TFT 43 is connected to the lower electrode, and a bias line is connected to the upper electrode.
  • the bias lines are provided for the number of rows of the pixels 41 (n rows) and connected to one bus.
  • the bus bar is connected to a bias power supply. A bias voltage is applied from the bias power supply to the upper electrode of the photoelectric conversion unit 42 through the bias line of the bus bar and its daughter line.
  • An electric field is generated in the semiconductor layer by application of a bias voltage, and charges (electron-hole pairs) generated in the semiconductor layer by photoelectric conversion move to the upper electrode and the lower electrode having one plus polarity and the other minus polarity. Thus, charge is accumulated in the photoelectric conversion unit 42.
  • the gate electrode is connected to the first scanning line 44, the source electrode is connected to the signal line 45, and the drain electrode is connected to the photoelectric conversion unit 42.
  • the first scanning line 44 and the signal line 45 are wired in a grid, and the first scanning line 44 is common to one row of pixels 41, one for each row of pixels 41 (n rows) It is provided. Further, one signal line 45 is provided in common to the pixels 41 for one column, the number of which is equal to the number of columns of the pixels 41 (m columns).
  • the first scan line 44 is connected to the first gate driver 46, and the signal line 45 is connected to the signal processing circuit 47.
  • the first gate driver 46 drives the first TFT 43 under the control of the control unit 48 to accumulate signal charges corresponding to the X-ray arrival dose in the pixel 41, and the signal accumulated from the pixel 41.
  • the sensor panel 30 is caused to perform the read operation for reading out the charge and the reset operation.
  • the first TFT 43 is turned off, while the signal charge is accumulated in the pixel 41.
  • gate pulses G1 to Gn for driving the first TFTs 43 in the same row are sequentially generated at a predetermined interval from the first gate driver 46 to activate the first scanning lines 44 one row at a time,
  • the first TFTs 43 connected to the scanning line 44 are turned on one row at a time.
  • the charge accumulated in the photoelectric conversion unit 42 of the pixel 41 is read out to the signal line 45 when the first TFT 43 is turned on, and is input to the signal processing circuit 47.
  • the dark charges are generated in the semiconductor layer of the photoelectric conversion unit 42 regardless of the presence or absence of X-rays.
  • the dark charge is accumulated in the photoelectric conversion unit 42 of the pixel 41 because a bias voltage is applied. Since the dark charge generated in the pixel 41 becomes a noise component for the image data, the reset operation is performed at predetermined time intervals before the X-ray irradiation to remove the dark charge.
  • the reset operation is an operation of sweeping the dark charge generated in the pixel 41 through the signal line 45.
  • the reset operation is performed, for example, by a sequential reset method in which the pixels 41 are reset row by row.
  • gate pulses G1 to Gn are sequentially generated at predetermined intervals from the first gate driver 46 to the first scanning line 44 similarly to the readout operation of signal charges, and the first TFTs 43 are turned on one row at a time Make it
  • multiple rows of arrayed pixels are set as one group to sequentially reset within the group, and the parallel reset method that sweeps out the dark charges of the number of rows simultaneously or gate pulse is applied to all the rows.
  • An all pixel reset method may be used which simultaneously sweeps out the dark charge of. The reset operation can be speeded up by the parallel reset method or the all pixel reset method.
  • the signal processing circuit 47 includes an integration amplifier 49, a CDS circuit (CDS) 50, a multiplexer (MUX) 51, an A / D converter (A / D) 52, and the like.
  • the integration amplifier 49 is individually connected to each signal line 45.
  • the integral amplifier 49 includes an operational amplifier 49a and a capacitor 49b connected between the input and output terminals of the operational amplifier 49a.
  • the signal line 45 is connected to one input terminal of the operational amplifier 49a.
  • the other input terminal of the operational amplifier 49a is connected to the ground (GND).
  • a reset switch 49c is connected in parallel to the capacitor 49b.
  • the integrating amplifier 49 integrates the charges input from the signal line 45, converts it into analog voltage signals V1 to Vm, and outputs the voltage signals.
  • the MUX 51 is connected to the output terminal of the operational amplifier 49a of each column via the amplifier 53 and the CDS 50.
  • the A / D 52 is connected to the output side of the MUX 51.
  • the CDS 50 has a sample and hold circuit, performs correlated double sampling on the output voltage signal of the integration amplifier 49 to remove noise, and holds the output voltage signal of the integration amplifier 49 for a predetermined period (sample and hold ).
  • the MUX 51 selects one CDS 50 in order from the CDS 50 of each column connected in parallel with an electronic switch based on the operation control signal from the shift register (not shown), and outputs the voltage signal V1 ⁇ output from the selected CDS 50 Input Vm to A / D 52 serially.
  • An amplifier may be connected between the MUX 51 and the A / D 52.
  • the A / D 52 converts the input analog voltage signals V1 to Vm for one row into digital values, and outputs the digital values to the memory 54 incorporated in the electronic cassette 13.
  • digital values for one row are associated with the coordinates of the respective pixels 41 and recorded as image data representing an X-ray image for one row. Thus, reading of one row is completed.
  • the control unit 48 When the voltage signals V1 to Vm for one row from the integration amplifier 49 are read out by the MUX 51, the control unit 48 outputs a reset pulse RST to the integration amplifier 49 and turns on the reset switch 49c. Thereby, the signal charges for one row accumulated in the capacitor 49b are discharged and reset. After the integration amplifier 49 is reset, the reset switch 49 c is turned off again, and after a predetermined time has elapsed, one of the sample hold circuits of the CDS 50 is held, and the kTC noise component of the integration amplifier 49 is sampled. Thereafter, the gate pulse of the next row is output from the first gate driver 46, and readout of the signal charge of the pixels 41 of the next row is started.
  • a gate pulse is output, and after a predetermined time has elapsed, the signal charge of the pixel 41 of the next row is held by another sample hold circuit of the CDS 50. These operations are sequentially repeated to read out the signal charges of the pixels 41 of all the rows.
  • image data representing one X-ray image is recorded in the memory 54.
  • the image data is read from the memory 54, subjected to various image processing by the control unit 48, and then output to the console 14 through the communication I / F 55.
  • the X-ray image of the subject is detected.
  • the reset operation dark charge flows from the pixel 41 to the capacitor 49 b of the integration amplifier 49 through the signal line 45 while the first TFT 43 is in the on state. Unlike the read operation, the charge stored in the capacitor 49b is not read out by the MUX 51.
  • the reset pulse RST is output from the control unit 48 in synchronization with the generation of the gate pulses G1 to Gn, and the reset switch 49c is turned on. The charge stored in the capacitor 49b is discharged, and the integration amplifier 49 is reset.
  • the control unit 48 is provided with a circuit (not shown) that performs various image processing of offset correction, sensitivity correction, and defect correction on the X-ray image data of the memory 54.
  • the offset correction circuit subtracts the offset correction image acquired from the sensor panel 30 from the X-ray image in pixel units from the X-ray image without irradiating the X-rays, thereby fixing pattern noise caused by individual differences of the signal processing circuit 47 and the imaging environment. Remove.
  • the sensitivity correction circuit is also referred to as a gain correction circuit, and corrects variations in sensitivity of the photoelectric conversion unit 42 of each pixel 41, variations in output characteristics of the signal processing circuit 47, and the like.
  • the defect correction circuit linearly interpolates the pixel value of the defective pixel with the pixel value of the surrounding normal pixel based on the defective pixel information generated at the time of shipping or periodic inspection. Further, the defect correction circuit similarly interpolates the pixel value of the detection pixel 41b used for AEC, which will be described later.
  • the various image processing circuits described above may be provided in the console 14 and the various image processing may be performed by the console 14.
  • the pixel 41 includes a normal pixel 41 a and a detection pixel 41 b.
  • the normal pixel 41a is used to generate an X-ray image.
  • the detection pixel 41 b functions as a dose detection sensor that detects an arrival dose of X-rays to the imaging region 40.
  • the detection pixel 41 b is used for AEC to stop the irradiation of the X-ray by the X-ray source 10 when the ultimate dose of the X-ray reaches a predetermined value. In the drawing, the detection pixel 41b is hatched to distinguish it from the normal pixel 41a.
  • the detection pixels 41 b are disposed so as to be uniformly scattered in the imaging region 40 without being locally biased in the imaging region 40. It is preferable that the ratio of the detection pixel 41b to all the pixels 41 is about 0.01%.
  • a plurality of detection pixels 41b (every three rows in this example) are provided in the column of the pixels 41 to which the same signal line 41 is connected, and no detection pixel 41b is provided in the column where the detection pixels 41b are provided.
  • a plurality of rows are provided. If the pixels 41 are arranged in a matrix of 1024 rows and 1024 columns, for example, if 16 detection pixels 41 b are equally arranged for eight signal lines 41 in 128 columns, the ratio of the detection pixels 41 b is It becomes about 0.01%.
  • the position of the detection pixel 41b is known at the time of manufacture of the sensor panel 30, and the sensor panel 30 previously stores the position (coordinates) of all the detection pixels 41b in a non-volatile memory (not shown).
  • the detection pixels 41b may be concentrated and arranged locally, contrary to the present embodiment.
  • the detection pixels 41b may be arranged concentrated on the chest wall side.
  • the basic configuration of the photoelectric conversion unit 42 and the like of the normal pixel 41a and the detection pixel 41b is completely the same, but a second TFT 57 is connected to the detection pixel 41b in addition to the first TFT 43.
  • the second TFT 57 is driven by a second scan line 58 and a second gate driver 59 which are different from the first scan line 44 and the first gate driver 46 for driving the first TFT 43. Since the second TFT 57 is connected to the detection pixel 41b, the normal pixel 41a in the same row turns off the first TFT 43, and it is possible to read out the charge even during the accumulation operation of accumulating the signal charge.
  • the sensor panel 30 Since the pre-shooting and the main shooting are continuously performed, the sensor panel 30 starts the pre-shooting in order to reflect the X-ray irradiated in the pre-shooting on the X-ray image read out after the end of the main shooting. In addition, the accumulation operation of the normal pixel 41a is started, and thereafter, the accumulation operation is continued until the main photographing is completed. On the other hand, in the pre-shooting, the sensor panel 30 performs a dose detection operation using the detection pixel 41b for AEC.
  • the sensor panel 30 Since the second TFT 57 is connected to the detection pixel 41b, the sensor panel 30 turns the first TFT 43 to which the normal pixel 41a is connected to the OFF state and performs the accumulation operation of the normal pixel 41a in the pre-photographing. Then, the dose detection operation can be performed by turning on and off the second TFT 57.
  • the second gate driver 59 performs gate pulses g1, g4, g7,..., Gk for simultaneously driving the second TFTs 57 in the same row under the control of the control unit 48.
  • the second scanning lines 58 are activated sequentially by one row, and the second TFTs 57 connected to the second scanning lines 58 are sequentially turned on by one row. It will be in the state.
  • the time for the on state is defined by the pulse width of the gate pulses g1, g4, g7,...
  • the second TFT 57 returns to the off state when the time defined by the pulse width elapses.
  • the charge generated in the photoelectric conversion unit 42 of the detection pixel 41 b flows into the capacitor 49 b of the integration amplifier 49 via the signal line 45 while the second TFT 57 is on regardless of whether the first TFT 43 is on or off.
  • the charge from the detection pixel 41b accumulated in the integrating amplifier 49 is output to the A / D 52, and is converted into a digital voltage signal (hereinafter referred to as a dose signal) by the A / D 52.
  • the dose signal is output to the memory 54.
  • a dose signal is recorded in the memory 54 in association with coordinate information of each detection pixel 41 b in the imaging region 40.
  • the sensor panel 30 repeats such dose detection operation a plurality of times at a predetermined sampling rate.
  • the AEC unit 60 is drive-controlled by the control unit 48.
  • the AEC unit 60 reads out from the memory 54 the dose signal acquired a plurality of times at a predetermined sampling rate in the pre-shooting, and performs AEC based on the read dose signal.
  • the AEC unit 60 measures the accumulated dose of X-rays reaching the imaging region 40 by sequentially adding, for each coordinate, dose signals read from the memory 54 by a plurality of dose detection operations. More specifically, the AEC unit 60 obtains an accumulated dose for each divided area obtained by equally dividing the imaging area 40 into areas of a predetermined size. The accumulated dose of each divided area is obtained, for example, by calculating the integrated value of the dose signal of each of a plurality of detection pixels 41b present in each divided area, and adding the integrated value of each detected pixel 41b to the number of detected pixels 41b. The divided average value is used.
  • the AEC unit 60 defines, for example, the divided area having the lowest accumulated dose among the divided areas as a light collection area which is a determination target area of the AEC.
  • the light collection area may be determined according to the imaging region, or an arbitrary area may be designated as the light collection area by user setting.
  • the accumulated dose of each divided area may not be an average value, and may be the maximum value, the mode value, or the total value among the integrated values of the dose signal of each detection pixel 41b in each divided area.
  • the AEC unit 60 compares the accumulated dose of the light collection area with the preset irradiation stop threshold (target dose) to determine whether the accumulated dose has reached the irradiation stop threshold.
  • the AEC unit 60 outputs an irradiation stop signal to the control unit 48 when it is determined that the accumulated dose in the light receiving area exceeds the irradiation stop threshold and the accumulated dose of X-rays has reached the target dose.
  • the irradiation signal I / F 26 of the radiation source control device 11 is connected to the irradiation signal I / F 61 in a wired or wireless manner.
  • the irradiation signal I / F 61 is a synchronization signal transmitted / received during synchronization control with the radiation source control device 11, specifically, reception of an irradiation start request signal from the radiation source control device 11, and an irradiation start request It mediates the transmission to the source controller 11 of the exposure signal, which is the response to the signal.
  • the irradiation stop signal output from the AEC unit 60 is received through the control unit 48 and transmitted to the radiation source control device 11.
  • the communication I / F 55 is connected by wire or wirelessly to each of the console 14 and the radiation source control device 11, and mediates transmission and reception of information between the console 14 and the radiation source control device 11.
  • the communication I / F 55 receives the imaging conditions input by the operator and the determination conditions to be described later with the console 14, and inputs the information to the control unit 48. Between the radiation source control apparatus 11 and the communication I / F 22, the main imaging conditions determined by the control unit 48 are transmitted to the radiation source control apparatus 11.
  • the storage device 14 c of the console 14 stores a determination condition table 62 in which a plurality of determination conditions are recorded in advance for each imaging condition.
  • the determination conditions include the irradiation stop threshold and the required dose.
  • the irradiation stop threshold is information for the AEC unit 60 to determine the irradiation stop of the X-ray in comparison with the integrated value of the dose signal at the time of preliminary imaging. Since a small amount of X-rays is irradiated at the time of pre-imaging, if the irradiation stop threshold is too low, it will be affected by noise superimposed on the dose signal, which will cause an erroneous determination. Therefore, the irradiation stop threshold is set to a value that is not affected by noise.
  • the necessary dose is used when the control unit 48 determines the imaging conditions for the main imaging.
  • the required dose is the cumulative dose of X-rays required for the main imaging, and is set to a value that makes the X-ray image obtained for the main imaging have a good image quality for diagnosis.
  • the console 14 When the imaging condition is input by the operator, the console 14 reads out from the determination condition table 62 the determination conditions corresponding to the imaging region, the tube voltage and the tube current included in the imaging condition. The console 14 transmits the read determination condition to the electronic cassette 13 together with the imaging condition. The electronic cassette 13 receives the imaging condition and the determination condition through the communication I / F 55 and inputs the same to the control unit 48. The control unit 48 provides the AEC unit 60 with the irradiation stop threshold among the determination conditions.
  • the control unit 48 is provided with a timer 63.
  • the timer 63 is a time taken from the transmission of the irradiation permission signal to the radiation source control device 11 until the AEC unit 60 outputs the irradiation stop signal in the AEC executed at the time of pre-photographing, that is, the accumulated dose in the light collection area The irradiation time until reaching the irradiation stop threshold is counted.
  • the control unit 48 uses the X-ray irradiation time (time to reach the irradiation stop threshold) in the pre-shooting timed by the timer 63 and the necessary dose and the irradiation stop threshold input from the console 14 under the imaging conditions of the main imaging Determine a certain irradiation time.
  • the irradiation time for main imaging is the time until the required dose is obtained in main imaging with the same tube current as in preliminary imaging, so it can be determined by proportional calculation from the irradiation time taken to reach the irradiation stop threshold in preliminary imaging .
  • the irradiation time T2 T1 ⁇ D2 / D1 (1)
  • the required dose in the main imaging can be a value obtained by subtracting the dose already irradiated in the preliminary imaging.
  • the control unit 48 transmits the irradiation time T2 for the main imaging thus determined to the radiation source control apparatus 11 via the communication I / F 55 as the main imaging condition.
  • the irradiation time T2 is transmitted as the main imaging condition, a tube current time product, which is the product of the irradiation time T2 and the tube current, may be transmitted.
  • the subject When performing X-ray imaging in the X-ray imaging system 2, first, the subject is set to a predetermined imaging position of either the standing position or the photographing position 15 or 16 of the recumbent position, and the height and horizontal position of the electronic cassette 13 Adjust the position of the subject with the subject. Then, the height and horizontal position of the X-ray source 10 and the size of the irradiation field are adjusted in accordance with the position of the electronic cassette 13 and the size of the imaging region. Next, imaging conditions (imaging region, tube current, tube voltage) are set in the radiation source control device 11 and the console 14. The imaging conditions set by the console 14 are provided to the electronic cassette 13. Further, as shown in FIG. 6, the determination conditions (irradiation stop threshold value, necessary dose) according to the imaging conditions are read out on the console 14 and provided to the electronic cassette 13 together with the imaging conditions.
  • imaging conditions imaging region, tube current, tube voltage
  • the irradiation switch 12 When the preparation for imaging is completed, the irradiation switch 12 is half-pressed (SW1 ON) by the operator. When the irradiation switch 12 is pressed halfway, the radiation source control device 11 of the X-ray generator 2a issues a warm-up start signal to the high voltage generator 20 to cause the X-ray source 10 to start warming up. Further, when the warm-up of the X-ray source 10 is completed, the radiation source control device 11 transmits an irradiation start request signal (request) to the electronic cassette 13.
  • irradiation start request signal request
  • the sensor panel 30 of the electronic cassette 13 In the standby mode before X-ray imaging, the sensor panel 30 of the electronic cassette 13 repeatedly performs the reset operation and waits for an irradiation start request signal.
  • the sensor panel 30 When receiving the irradiation start request signal from the radiation source control device 11, the sensor panel 30 transmits a radiation permission signal (permission) to the radiation source control device 11 after performing a state check.
  • the sensor panel 30 finishes the reset operation, starts the accumulation operation and the dose detection operation, and switches from the standby mode to the imaging mode. Also, measurement of the X-ray irradiation time T1 of the pre-imaging by the timer 63 is started.
  • the radiation source control device 11 When the radiation source control device 11 receives the radiation permission signal from the sensor panel 30, the radiation source control device 11 issues a first radiation start signal to the high voltage generator 20 to cause the X-ray source 10 to start pre-imaging X-ray radiation.
  • the X-rays emitted from the X-ray source 10 pass through the subject and enter the sensor panel 30.
  • the sensor panel 30 In the dose detection operation, the sensor panel 30 repeatedly reads out the charge generated in the detection pixel 41b at a predetermined sampling rate.
  • the AEC unit 60 calculates the accumulated dose for each divided area based on the dose signal from the detection pixel 41b read out at a predetermined sampling rate, and determines the divided area indicating the accumulated dose of the minimum value as the lighting area . Then, the AEC unit 60 compares the cumulative dose of the light collection area with the irradiation stop threshold to determine whether the cumulative dose has reached the irradiation stop threshold.
  • the AEC unit 60 outputs an irradiation stop signal when the accumulated dose in the light receiving area reaches the irradiation stop threshold.
  • the timer 63 stops measuring the X-ray irradiation time T1 of the pre-imaging.
  • the irradiation stop signal is transmitted to the radiation source control device 11.
  • the radiation source control device 11 receives the radiation stop signal and stops the radiation of the X-ray by the X-ray source 10.
  • the radiation source control device 11 continues the warm-up completion state without returning the X-ray source 10 to the initial state even after the X-ray irradiation by the X-ray source 10 is stopped.
  • the sensor panel 30 continues the accumulation operation even after the AEC unit 60 outputs the irradiation stop signal.
  • the control unit 48 executes the main imaging condition determination process.
  • the control unit 48 determines the main exposure X-ray irradiation time T2 based on the irradiation time T1 counted by the timer 63 and the irradiation stop threshold set as the determination condition and the required dose. .
  • Information on the determined irradiation time T2 is transmitted to the radiation source control device 11. In the radiation source control device 11, the received irradiation time T2 is set in the timer 25.
  • the radiation source control device 11 After pressing the irradiation switch 12 halfway, the operator fully presses the irradiation switch 12 in anticipation of the time required for warm-up and pre-shooting.
  • the radiation source control device 11 transmits an irradiation start request signal (start) to the electronic cassette 13 to perform synchronous control before starting irradiation of the main imaging.
  • start irradiation start request signal
  • the electronic cassette 13 since the sensor panel 30 continues the accumulation operation from the pre-shooting, when the electronic cassette 13 receives the irradiation start request signal, it immediately transmits the irradiation permission signal (permission) to the radiation source control device 11. Send.
  • the radiation source control device 11 When the radiation source control device 11 receives the radiation permission signal, the radiation source control device 11 issues a second radiation start signal to the high voltage generator 20 to cause the X-ray source 10 to start X-ray radiation for the main imaging. Since the X-ray source 10 continues to be warmed up even after the pre-imaging, the X-ray irradiation of the main imaging can be immediately started without performing the warm-up before the main imaging.
  • the radiation source control device 11 counts the irradiation time by the timer 25 and stops the X-ray irradiation when the counted irradiation time reaches the irradiation time T2.
  • the accumulation operation of the normal pixel 41a is performed subsequently to the pre-photographing.
  • the timer 63 of the control unit 48 also counts the elapsed time since the second transmission of the irradiation permission signal. Then, when the elapsed time reaches the irradiation time T2, the operation of the sensor panel 30 is shifted from the accumulation operation to the read operation. As a result, image data representing one X-ray image is output to the memory 54. After the read operation, the sensor panel 30 returns to the standby mode in which the reset operation is performed.
  • the various image processing circuits of the control unit 48 perform various image processing on the X-ray image output to the memory 54 in the reading operation.
  • the image-processed X-ray image is transmitted to the console 14 and displayed on the display 14 b for diagnosis. This completes one X-ray imaging for setting the pre-imaging and the main imaging.
  • the warm-up of the X-ray source 10 is performed before the irradiation of the pre-imaging, and the warm-up is completed without returning the X-ray source 10 to the initial state even after the irradiation of the pre-imaging Keep in state.
  • it is possible to omit the warm-up before the irradiation of the main imaging and it takes time for one X-ray imaging to be performed as compared to the conventional case where warm-up is performed twice before the pre-imaging and the main imaging irradiation. Can be shortened. This improves the diagnostic efficiency and is particularly effective in mass screening where it is necessary to crawl many patients within a limited time.
  • Pre-imaging is performed until the cumulative dose necessary to determine the imaging conditions for the actual imaging is irradiated, and the irradiation time T1 of the pre-imaging measured by the timer 63 and the irradiation stop threshold set as the determination condition and the required dose Since the irradiation time T2, which is the imaging condition of the main imaging, is determined based on the above, the main imaging can be always performed under the appropriate imaging condition regardless of the individual differences such as the body type of the subject and the density of internal tissues. As compared with the case where the operator adjusts the imaging condition according to the individual difference of the subject, accurate and easy imaging can be performed.
  • AEC is performed only at the time of pre-imaging where the amount of X-ray irradiation is small. This has the following merits compared with the case of performing AEC in real shooting.
  • the irradiation stop signal is transmitted from the electronic cassette 13 to the radiation source control device 11.
  • the irradiation stop signal is delayed to be appropriate. In some cases, X-ray irradiation can not be stopped at the timing.
  • the irradiation stop signal is delayed, X-rays more than necessary are irradiated, so the exposure dose of the subject increases.
  • AEC is performed in pre-imaging with a small amount of X-ray irradiation, even if a delay occurs in the irradiation stop signal, an increase in unnecessary exposure can be suppressed as compared with the case of performing actual imaging.
  • the same tube current is set for the pre-shooting and the main shooting, but for example, in the pre-shooting, the tube current may be smaller than that for the main shooting.
  • the irradiation time of the main photographing is calculated in consideration of the difference in tube current between the preliminary photographing and the main photographing.
  • the readout operation is not performed in the pre-imaging and the accumulation operation of the normal pixel 41a is continued from the start of the pre-imaging to the end of the main imaging, the X-rays irradiated in the pre-imaging can be prevented from being wasted. The amount of exposure to the subject can be reduced accordingly.
  • the image quality of the X-ray image may be degraded due to the body movement of the subject between the pre-imaging and the main imaging.
  • the radiation for the main imaging is immediately performed without warm-up, and the radiation for the pre-imaging and the main imaging is performed without a gap, the influence of the body movement on the X-ray image can be reduced. .
  • the reset operation may be performed at the time of stopping the X-ray irradiation in the pre-imaging, the charges accumulated in the pre-imaging may be discarded, and the accumulation operation may be restarted at the start of the X-ray irradiation in the main imaging.
  • the exposure time T2 of the main imaging is determined without subtracting the cumulative dose (D1) in the pre-exposure corresponding to the irradiation stop threshold from the required dose (D2) using the equation (1) in the main imaging condition determination process Ask.
  • the irradiation start request signal may be transmitted when the irradiation switch 12 is pressed halfway or may be transmitted during warm-up.
  • the electronic cassette 13 transmits the irradiation permission signal which is a response to the irradiation start request signal and then starts counting the irradiation time T1, if there is an interval between the transmission timing of the irradiation permission signal and the irradiation start timing of the pre-shooting The accuracy of the irradiation time T1 is lost. Therefore, it is preferable to transmit the irradiation start request signal when the warm-up is completed as shown in the above example.
  • the dose signal read from the detection pixel 41b is used only for AEC in the dose detection operation during pre-shooting, but image information based on the dose signal is transmitted from the electronic cassette 13 to the console 14 as a preview image. And may be previewed on the display 14b.
  • the detection pixels 41b are distributed throughout the entire imaging area 40, and the dose signal from each detection pixel 41b is recorded in the memory 54 in association with the coordinates of each detection pixel 41b. Be done. Therefore, although the image information recorded in the memory 54 has low resolution and can not be used for diagnosis, it can be used to confirm the position of the subject and the imaging region. Therefore, if the image information based on the dose signal is displayed as a preview, the operator can confirm that the position of the subject or the region to be imaged is not appropriate due to movement of the subject at the time of pre-imaging.
  • the main shooting may be stopped if it is clearly found that shooting failed during pre-shooting. it can.
  • half-pressing of the irradiation switch 12 may be released.
  • an initialization signal is issued from the control unit 21 and the X-ray source 10 is returned to the initial state.
  • the operator operates the console 14 to return the electronic cassette 13 to the standby mode in which the sensor panel 30 repeats the reset operation. Then, after correcting the subject's positioning, start shooting again from the beginning.
  • the operator usually monitors during shooting whether or not the subject's body movement occurs through the glass in the shooting room, so when the body movement is noticed visually, the irradiation is performed. By releasing the switch 12 half-pressed, the real shooting can be stopped.
  • the X-ray source 10 is returned to the initial state before the start of warmup when the half-pressing of the irradiation switch 12 is released, but instead, the X-ray source 10 is half-pressed after the irradiation switch 12 is half-pressed
  • the elapsed time may be measured, and if the next operation is not performed even if the elapsed time passes a preset threshold, it may be determined that the main imaging has been canceled and the X-ray source 10 may be returned to the initial state.
  • the electronic cassette 13 may shift the sensor panel 30 from the accumulation operation to the reset operation, judging that the main imaging has been stopped when the dose signal is approximately 0 in the predetermined sampling.
  • warm-up and pre-shooting irradiation are performed by half-pressing the switch 12 (SW1 on) and full-shooting (SW2 on) is performed for the main-shooting irradiation. It is not limited and may be an embodiment shown in FIG. In the second embodiment shown in FIG. 8, warm-up is performed by half-pressing the irradiation switch 12, and irradiation of pre-shooting is performed by the subsequent full-press.
  • the irradiation switch 12 is returned to a half-pushed state (SW1 is turned on and SW2 is turned off) so as to be surrounded by a dot-dash circle and full-exposure is performed by fully pressing again.
  • the source control device 11 issues a warm-up start signal to the X-ray source 10 to start the warm-up when the irradiation switch 12 is half-pressed, as in the first embodiment. It is. In the first embodiment, if the irradiation switch 12 is half-pressed, X-ray irradiation of the pre-shooting is started after the warm-up is completed, but in the second embodiment, after the warm-up is completed, the irradiation switch 12 is all When pressed, the radiation source controller 11 issues a first radiation start signal, and the X-ray source 10 starts X-ray radiation for preliminary imaging.
  • synchronous control is performed between the radiation source control device 11 and the electronic cassette 13 by transmitting and receiving an irradiation start request signal and an irradiation permission signal. Then, the irradiation switch 12 is once returned from the fully-pressed state to the half-pressed state by the operator. After that, when fully pressed again, the radiation source control device 11 performs synchronous control with the electronic cassette 13 and issues a second radiation start signal to the X-ray source 10 to irradiate the X-ray source 10 with the main imaging. To start.
  • the operation of the electronic cassette 13 during the pre-imaging X-ray irradiation is the same as that of the first embodiment, such as measurement of the irradiation time T1 and determination of the irradiation time T2.
  • the irradiation switch is not limited to the two-step push, and a three-step push irradiation switch may be used.
  • a three-step push irradiation switch may be used.
  • warm-up is performed by one-step push (SW1 on), and then pre-shooting irradiation is performed by the next push (SW2 on).
  • the full shooting may be performed by fully pressing (SW3 on).
  • the radiation source control device 11 issues a warm-up start signal to the X-ray source 10 to start the warm-up, and when the radiation switch is pressed halfway, it issues a first radiation start signal.
  • the radiation source 10 is caused to start irradiation for pre-imaging, and when it is fully pressed, a second irradiation start signal is issued to cause the X-ray source 10 to start irradiation for main imaging.
  • a second irradiation start signal is issued to cause the X-ray source 10 to start irradiation for main imaging.
  • the conventional irradiation switch mainly uses two-step pressing, it is better to use the two-step pressing irradiation switch according to the first and second embodiments than the three-step pressing according to the present embodiment because the operation feeling is used. More preferable.
  • warm-up may be performed simply by pressing the irradiation switch 12 halfway, and irradiation of the pre-photographing and the main photographing may be automatically and continuously performed by full-pressing.
  • the pre-shooting and the main shooting are automatically performed without the operation of the radiation switch 12 before the main shooting as described above, the subject may move during the pre-shooting, and the shooting may be clearly identified as a shooting failure. Since it is not possible to cope with the case where the user wants to stop the shooting, it is better to start the irradiation of the main photographing after putting in one action as in the first to third embodiments. By putting one action before the start of the main exposure, the operator can recognize the boundary between the pre exposure and the main exposure by his / her operation, and stop the main exposure by looking at the result of the pre exposure, positioning the subject, The shooting conditions can also be corrected.
  • the information on the irradiation time T2 is transmitted from the electronic cassette 13 to the console 14 instead of the information on the irradiation time T2, which is the main imaging condition, directly transmitted from the electronic cassette 13 to the radiation source control device 11.
  • Information on the irradiation time T2 may be transmitted to the radiation source control device 11.
  • the detection pixel 41b provided with the second TFT 57 driven separately from the first TFT 43 is illustrated in the above embodiment, the pixel in which the source electrode and the drain electrode of the first TFT 43 are shorted, or the first TFT 43 does not exist.
  • a pixel in which 42 is directly connected to the signal line 45 may be used as a detection pixel.
  • the dose value can be detected by monitoring the current value of the bias line connected to a specific pixel.
  • a pixel for monitoring the current value is a detection pixel.
  • the leak current flowing out of the pixel may be monitored to detect the dose, and in this case as well, the pixel for monitoring the leak current is the detection pixel.
  • a dose detection sensor having a different configuration and an independent output separately from the pixels may be provided in the imaging region.
  • the form of the dose detection sensor for performing these AECs may be any other form.
  • photography may be fixed.
  • the detection pixel 41b may be present, but if the image information of the pre-photographing is read out from the normal pixel 41a and the condition of the main photographing is determined based on the value, the AEC It can be carried out.
  • the irradiation time of the pre-photographing a value sufficiently smaller than the irradiation time of the main photographing is preset as a setting value.
  • the irradiation stop signal is output when the accumulated dose of X-rays in the pre-imaging reaches the irradiation stop threshold, but it is predicted that the accumulated dose of X-rays reaches the irradiation stop threshold based on the integrated value of the dose signal.
  • the calculated time may be calculated, and the irradiation stop signal may be transmitted to the radiation source control device when the calculated prediction time is reached, or information of the prediction time itself may be transmitted to the radiation source control device.
  • the integrated value is not limited to the average value of the dose signal in the above embodiment, but may be the maximum value, the mode or the total value of the dose signal of the detection pixel 41b in each divided area.
  • console 14 and the electronic cassette 13 are described as being separate, but the console 14 does not have to be an independent device, and the electronic cassette 13 may have the function of the console 14.
  • a processing unit for determining the main imaging conditions may be provided on the console 14.
  • a photographing control device may be provided which executes part of the function of controlling the electronic cassette 13 of the console 14.
  • the present invention is not limited to the electronic cassette which is a portable X-ray image detection device, and may be applied to an X-ray image detection device of a type installed on a photographing table. Furthermore, the present invention can be applied not only to X-rays but also to other radiations such as ⁇ -rays as imaging targets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

The present invention reduces the time taken for a single radiographic imaging operation in which pre-imaging and actual imaging is set. An irradiation switch of an X-ray imaging system is a two-step press switch in which SW2 cannot be switched on without first pressing SW1. A radiation source control device starts warming up an X-ray source when the irradiation switch is half pressed (i.e., SW1 is on). When the irradiation switch is kept half pressed after the X-ray source has warmed up, the warmed up state is maintained, and when the irradiation switch is pressed all the way down (i.e., SW2 is on), the X-ray source starts emitting radiation for actual imaging without carrying out a second warm up.

Description

放射線撮影システム、放射線発生装置およびその作動方法Radiography system, radiation generator and method of operating the same
 本発明は、放射線画像を撮影する放射線撮影システム、放射線発生装置およびその作動方法に関する。 The present invention relates to a radiation imaging system for taking a radiation image, a radiation generation apparatus, and an operation method thereof.
 医療分野において、放射線、例えばX線を利用したX線撮影システムが知られている。X線撮影システムは、X線を発生するX線発生装置と、被写体(患者)を透過したX線で形成されるX線画像を撮影するX線撮影装置とを備えている。X線発生装置は、X線を被写体に向けて照射するX線源、X線源の駆動を制御する線源制御装置、およびX線源を動作させるための駆動指示を線源制御装置に入力する照射スイッチを有している。X線撮影装置は、被写体を透過したX線を電気信号に変換することによってX線画像を検出するX線画像検出装置、およびX線画像検出装置の駆動制御、X線画像の保存や表示を行うコンソールを有している。 In the medical field, X-ray imaging systems using radiation such as X-rays are known. The X-ray imaging system includes an X-ray generator that generates an X-ray, and an X-ray imaging apparatus that captures an X-ray image formed by X-rays transmitted through a subject (patient). The X-ray generator inputs an X-ray source for irradiating X-rays toward a subject, a radiation source control device for controlling the drive of the X-ray source, and a drive instruction for operating the X-ray source to the radiation source control device Irradiation switch. The X-ray imaging apparatus detects an X-ray image detection apparatus that detects an X-ray image by converting an X-ray transmitted through a subject into an electrical signal, and drive control of the X-ray image detection apparatus. Have a console to do.
 X線源は、高電圧を印加することによりフィラメント(陰極)から熱電子を放出し、放出された熱電子をターゲット(陽極)に衝突させることによりX線を放射するX線管を有している。熱電子が衝突するターゲットの焦点が高温になるため、X線管としては熱を分散できるようにターゲットを回転させる回転陽極型が一般的である。回転陽極型のX線源では、X線の照射を行う前にターゲットの回転数を規定回転数まで上昇させる等のウォームアップが行われる。一方照射スイッチとしては、半押しと全押しの2段階の押圧操作が可能な2段階押しスイッチが一般的である。2段階押しスイッチの場合、線源制御装置は、照射スイッチから半押しによる駆動指示の入力を受けると、X線源にウォームアップを開始させ、全押しによる駆動指示の入力を受けると、X線源にX線の照射を開始させる。 The X-ray source has an X-ray tube which emits thermoelectrons from a filament (cathode) by applying a high voltage, and emits X-rays by colliding the emitted thermoelectrons with a target (anode). There is. Since the focal point of the target which the thermal electrons collide with is heated to a high temperature, a rotating anode type is generally used as an X-ray tube in which the target is rotated to dissipate heat. In the rotary anode type X-ray source, warm-up such as raising the rotational speed of the target to a prescribed rotational speed is performed before X-ray irradiation. On the other hand, as an irradiation switch, a two-step push switch capable of two-step press operation of half press and full press is generally used. In the case of a two-step push switch, the source controller causes the X-ray source to start warm-up when receiving an input of a drive instruction by a half press from the irradiation switch, and receives an input of a drive instruction by a full press. The source is started to emit X-rays.
 X線撮影装置としては、X線フイルムやIP(イメージングプレート)カセッテを利用したX線画像記録装置に代わって、X線画像を電子的に検出するX線画像検出装置を用いたものが普及している。X線画像検出装置は、フラットパネルディテクタ(FPD;flat panel detector)とも呼ばれるセンサーパネルを有する。 As an X-ray imaging apparatus, instead of an X-ray image recording apparatus using an X-ray film or an IP (imaging plate) cassette, one using an X-ray image detection apparatus that electronically detects an X-ray image ing. The X-ray image detection device has a sensor panel also referred to as a flat panel detector (FPD).
 センサーパネルは、X線の入射量に応じた信号電荷を蓄積する画素が行列状に配置された撮像領域を有する。画素は、電荷を発生し、発生した電荷を蓄積する光電変換部、およびTFT等のスイッチング素子を備える。センサーパネルは、画素毎に信号電荷を蓄積し、蓄積した信号電荷をTFT等のスイッチング素子を介して信号処理回路に読み出し、信号処理回路で電圧信号に変換することでX線画像を電気的に検出する。 The sensor panel has an imaging area in which pixels for storing signal charges according to the amount of incident X-rays are arranged in a matrix. The pixel includes a photoelectric conversion unit that generates charge and stores the generated charge, and a switching element such as a TFT. The sensor panel stores signal charges for each pixel, reads out the stored signal charges to a signal processing circuit via a switching element such as a TFT, and converts the X-ray image into a voltage signal by the signal processing circuit. To detect.
 また、X線撮影システムにおいては、被写体への被曝量を抑えつつ適正な画質の放射線画像を得るために、X線の撮影中(照射中)にX線の線量の積算値(累積線量)を測定して、累積線量が目標線量に達した時点でX線源によるX線の照射を停止させるAEC(Automatic Exposure Control、自動露出制御)が行われる場合がある。X線源が照射する線量は、X線の照射時間(単位;s)とX線源が単位時間当たりに照射する線量を規定する管電流(単位;mA)との積である管電流時間積(mAs値)によって決まる。照射時間や管電流といった撮影条件は、被写体の撮影部位(胸部や頭部)、性別、年齢などによっておおよその推奨値はあるものの、被写体の体格などの個人差によってX線の透過率が変わるため、より適切な画質を得るためにAECが行われる。 In addition, in the X-ray imaging system, the integrated value (accumulated dose) of X-ray dose is acquired during X-ray imaging (during irradiation) in order to obtain a radiation image of appropriate image quality while suppressing the exposure dose to the subject. AEC (Automatic Exposure Control) may be performed to stop the irradiation of the X-ray by the X-ray source when the measured cumulative dose reach the target dose. The dose irradiated by the X-ray source is the tube current time product which is the product of the X-ray irradiation time (unit; s) and the tube current (unit; mA) that defines the dose irradiated by the X-ray source per unit time Determined by (mAs value). Although imaging conditions such as irradiation time and tube current have approximate recommended values depending on the imaging site (chest and head) of the subject, gender, age, etc., X-ray transmittance changes due to individual differences such as the physical constitution of the subject AEC will be conducted to obtain more appropriate image quality.
 AECの方法としては、例えば、特開2011-115368号公報に記載されているように、1回のX線撮影をプレ撮影と本撮影のセットで行い、プレ撮影の結果を踏まえて本撮影の撮影条件、例えばX線の照射時間や管電流時間積(mAs値)を決定する方法がある。プレ撮影の撮影条件は、例えば、撮影部位と、年齢や性別などの患者情報に基づいて決定される。 As the method of AEC, for example, as described in JP-A-2011-115368, one X-ray imaging is performed by a set of pre-imaging and main imaging, and based on the result of the pre-imaging, the main imaging There is a method of determining imaging conditions such as X-ray irradiation time and tube current time product (mAs value). The imaging conditions of the pre-imaging are determined based on, for example, the imaging region and patient information such as age and gender.
 特開2011-115368号のX線撮影システムでは、照射スイッチの1回の押圧操作に応じて、プレ撮影、本撮影の撮影条件の決定、本撮影という一連の処理が連続的に実行される。プレ撮影と本撮影の前にそれぞれX線源のウォームアップが行われる。 In the X-ray imaging system of JP 2011-115368 A, a series of processes of pre-imaging, determination of imaging conditions for main imaging, and main imaging are continuously executed according to one pressing operation of the irradiation switch. Before the pre-shooting and the main shooting, warm-up of the X-ray source is performed respectively.
 特開2011-115368号では、X線源のウォームアップをプレ撮影と本撮影の前に都合2回行っているので、プレ撮影と本撮影をセットとする1回のX線撮影に掛かる時間がそれだけ長くなる。ウォームアップは回転陽極の回転を上昇させるといった機械的な動作が含まれるため、数秒程度掛かり、数十ミリ秒から長くても数秒のオーダのX線の照射時間と比較して長い。しかも、1回のX線撮影であればウォームアップによって増加する時間が僅かであっても、集団検診など多数の患者の撮影を行う場合にはその時間が累積されるため、診断効率への影響も大きい。 In JP 2011-115368 A, since warm-up of the X-ray source is performed twice before the pre-shooting and the main taking, the time taken for one X-ray taking a set of the pre-taking and the main taking is taken It will be so long. The warm-up includes mechanical operation such as increasing the rotation of the rotary anode, and thus takes several seconds, and is longer than the irradiation time of X-rays of the order of several seconds to several seconds. In addition, even if the time increased by warm-up in a single X-ray imaging is short, the time is accumulated when imaging a large number of patients such as mass screening, so the influence on the diagnostic efficiency Too big.
 本発明は、プレ撮影と本撮影をセットとする1回の放射線撮影に掛かる時間を短縮し、診断効率を向上させることができる放射線撮影システム、放射線発生装置およびその作動方法を提供することを目的とする。 An object of the present invention is to provide a radiation imaging system, a radiation generation apparatus, and an operation method thereof that can shorten the time required for one radiation imaging that combines pre-imaging and main imaging and improve the diagnostic efficiency. I assume.
 上記目的を達成するために、本発明の放射線撮影システムは、放射線発生装置と放射線撮影装置とを備える。放射線発生装置は、被写体に向けて放射線を照射する。放射線撮影装置は、被写体を透過した放射線を受けて放射線画像を撮影する。放射線撮影システムは、放射線画像を撮影するための本撮影と、本撮影に先立って本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う。放射線発生装置は、放射線源、照射スイッチ、及び線源制御装置を備える。放射線源は、プレ撮影用の第1照射と、本撮影用の第2照射を実行する。照射スイッチは、少なくとも2段階の押圧操作が可能で、押圧操作により駆動指示を入力する。線源制御装置は、駆動指示に基づいて放射線源の駆動を制御する。さらに、線源制御装置は、照射スイッチの1段階目の押圧操作による駆動指示の入力を受けて、放射線源に対して、第1照射の前にウォームアップを開始させ、ウォームアップの完了後、1段階目の押圧操作が解除されない間はウォームアップが完了した状態を維持し、1段階目の押圧操作が解除されることなく照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに第2照射を開始させる。 In order to achieve the above object, a radiation imaging system of the present invention comprises a radiation generating device and a radiation imaging device. The radiation generator emits radiation toward the subject. The radiation imaging apparatus receives radiation transmitted through a subject and takes a radiation image. The radiation imaging system performs one imaging by a main imaging for capturing a radiation image and a pre-imaging for determining imaging conditions for the main imaging prior to the main imaging. The radiation generator comprises a radiation source, an irradiation switch, and a source controller. The radiation source performs a first irradiation for pre-imaging and a second irradiation for main imaging. The irradiation switch can perform at least two steps of pressing operation, and inputs a drive instruction by the pressing operation. The radiation source control device controls the drive of the radiation source based on the drive instruction. Furthermore, the radiation source control device receives an input of a drive instruction by the first pressing operation of the irradiation switch, and causes the radiation source to start warm-up before the first irradiation, and after the completion of the warm-up While the first-step pressing operation is not released, the warm-up is maintained, and the driving instruction by the pressing operation after the second step of the irradiation switch is input without releasing the first-step pressing operation. In the case, the second irradiation is started without warming up.
 ウォームアップの完了後、第2照射が開始されるまでの間に、第1照射が行われることが好ましい。 Preferably, the first irradiation is performed after the warm-up is completed and until the second irradiation is started.
 照射スイッチは、例えば、1段階目の押圧操作である半押しと、2段階目の押圧操作である全押しが可能な2段階押しスイッチである。この場合、線源制御装置は、半押しによる駆動指示の入力を受けてウォームアップを開始させ、さらにウォームアップに引き続き第1照射を開始させ、全押しによる駆動指示の入力を受けて第2照射を開始させる。あるいは、線源制御装置は、半押しによる駆動指示の入力を受けてウォームアップを開始させ、さらに、1回目の全押しによる駆動指示の入力を受けて第1照射を開始させ、その後、半押しに戻してからの2回目の全押しによる駆動指示の入力を受けて第2照射を開始させる。 The irradiation switch is, for example, a two-step push switch capable of full-pressing, which is a first-step pressing operation, and a second-step pressing operation. In this case, the radiation source control device starts the warm-up upon receiving the input of the drive instruction by the half press, and further starts the first irradiation following the warm-up, and receives the input of the drive instruction by the full press. To start. Alternatively, the radiation source control device starts the warm-up upon receiving the drive instruction input by the half press, and further receives the drive instruction input by the first full press to initiate the first irradiation, and then the half press The second irradiation is started in response to the input of the drive instruction by the second full-press after returning to.
 照射スイッチは1段階目の押圧操作である1段押し、2段階目の押圧操作である中押し、3段階目の押圧操作である全押しが可能な3段階押しスイッチであってもよい。この場合、線源制御装置は、1段押しによる駆動指示の入力を受けてウォームアップを開始させ、中押しによる駆動指示の入力を受けて第1照射を開始させ、全押しによる駆動指示の入力を受けて第2照射を開始させる。 The irradiation switch may be a three-step push switch capable of full-pressing, which is a first-step pressing operation, a first-step pressing, a second-step pressing operation, and a third-step pressing operation. In this case, the radiation source control device starts the warm-up upon receiving the drive instruction input by one-step push, receives the drive instruction input from the middle push, starts the first irradiation, and receives the drive instruction input by the full-press. Receive and start the second irradiation.
 線源制御装置は、例えば、第1照射および第2照射のそれぞれを行う前に、放射線撮影装置に対して照射開始の許可を求める照射開始要求信号を送信し、照射開始要求信号に対する応答として、放射線撮影装置から照射許可信号を受信した場合に第1照射および第2照射のそれぞれを開始させる。 The radiation source control apparatus transmits, for example, an irradiation start request signal for requesting permission of irradiation start to the radiation imaging apparatus before performing each of the first irradiation and the second irradiation, and as a response to the irradiation start request signal, When the radiation permission signal is received from the radiation imaging apparatus, each of the first radiation and the second radiation is started.
 線源制御装置は、例えば、照射スイッチによる1段階目の押圧操作による駆動指示の入力を受けた後、1段階目の押圧操作が解除された場合には、放射線源をウォームアップ開始前の初期状態に戻す。あるいは、線源制御装置は、照射スイッチによる1段階目の押圧操作による駆動指示の入力を受けた後、1段階目の押圧操作が解除されず、かつ、2段階目以降の押圧操作による駆動指示の入力が無い状態が所定時間継続した場合には、放射線源をウォームアップ開始前の状態に戻してもよい。 The radiation source control apparatus receives an input of a drive instruction by the first-stage pressing operation by the irradiation switch, for example, and then releases the radiation source to the initial stage before the warm-up starts when the first-stage pressing operation is cancelled. Return to state. Alternatively, the radiation source control device does not cancel the first-step pressing operation after receiving the input of the driving instruction by the first-step pressing operation by the irradiation switch, and the driving instruction by the second-step and subsequent pressing operations When the state where there is no input continues for a predetermined time, the radiation source may be returned to the state before the start of the warm-up.
 放射線撮影装置は、例えば、放射線画像検出装置、線量検出センサ、タイマー、本撮影条件決定部、及び通信部を備える。放射線画像検出装置は、被写体を透過した放射線の線量に応じた電荷を蓄積する画素が行列状に配置された撮像領域を有するセンサーパネルをもち、放射線画像を検出する。線量検出センサは、プレ撮影において、第1照射による放射線の線量を検出する。タイマーは、プレ撮影において、線量検出センサで検出した線量の積算値が、予め設定された目標線量に達するまでの第1照射の照射時間を計時する。本撮影条件決定部は、タイマーが計時した照射時間と、本撮影における第2照射に必要な線量とに基づいて、本撮影の撮影条件を決定する。通信部は、決定した本撮影の撮影条件を放射線発生装置に対して送信する。 The radiation imaging apparatus includes, for example, a radiation image detection apparatus, a dose detection sensor, a timer, a main imaging condition determination unit, and a communication unit. The radiation image detection apparatus has a sensor panel having an imaging area in which pixels storing charge corresponding to the dose of radiation transmitted through an object are arranged in a matrix, and detects a radiation image. The dose detection sensor detects the dose of radiation due to the first irradiation in the pre-shooting. The timer counts the irradiation time of the first irradiation until the integrated value of the dose detected by the dose detection sensor reaches the preset target dose in the preliminary imaging. The main photographing condition determination unit determines the photographing conditions of the main photographing based on the irradiation time counted by the timer and the dose necessary for the second irradiation in the main photographing. The communication unit transmits the determined imaging conditions for the main imaging to the radiation generating apparatus.
 本撮影条件決定部は、例えば、本撮影における第2照射に必要な線量から、プレ撮影における第1照射の線量を控除した線量に基づいて、本撮影の撮影条件を決定する。 The main imaging condition determination unit determines, for example, the imaging condition of the main imaging based on a dose obtained by subtracting the dose of the first irradiation in the preliminary imaging from the dose necessary for the second irradiation in the main imaging.
 放射線画像検出装置は、プレ撮影において、積算値が目標線量に達したときに放射線発生装置に対して第1照射を停止させるための照射停止信号を出力するAEC部を備えることが好ましい。 The radiation image detection apparatus preferably includes an AEC unit that outputs an irradiation stop signal for stopping the first irradiation to the radiation generation apparatus when the integrated value reaches the target dose in the pre-imaging.
 放射線画像検出装置は、プレ撮影中において、第1照射の線量に応じた電荷を画像に蓄積させる蓄積動作を実行し、蓄積した電荷を掃き出さずに本撮影へ移行することが好ましい。 The radiation image detecting apparatus preferably executes an accumulation operation of accumulating charges corresponding to the dose of the first irradiation in the image during the pre-imaging, and shifts to the main imaging without sweeping out the accumulated charges.
 放射線画像検出装置は、センサーパネル、線量検出センサおよび本撮影条件決定部が可搬型の筐体に収納された電子カセッテであることが好ましい。また、線量検出センサは、撮像領域に配置されていることが好ましい。この場合、放射線画像検出装置は、プレ撮影において、線量検出センサで検出した線量の積算値に基づく画像情報をプレビュー画像として出力する。 Preferably, the radiation image detection apparatus is an electronic cassette in which a sensor panel, a dose detection sensor, and a main imaging condition determination unit are housed in a portable case. Moreover, it is preferable that the dose detection sensor be disposed in the imaging region. In this case, the radiation image detection apparatus outputs, as a preview image, image information based on the integrated value of the dose detected by the dose detection sensor in the preliminary imaging.
 本発明の放射線発生装置は、被写体に放射線を照射して被写体の放射線画像を撮影するための本撮影と、本撮影に先立って本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う放射線撮影システムに用いられる。放射線発生装置は、放射線源、照射スイッチ、及び線源制御装置を備える。放射線源は、プレ撮影用の第1照射と、本撮影用の第2照射を実行する。照射スイッチは、少なくとも2段階の押圧操作が可能で、押圧操作により駆動指示を入力する。線源制御装置は、駆動指示に基づいて放射線源の駆動を制御する。さらに、線源制御装置は、照射スイッチの1段階目の押圧操作による駆動指示の入力を受けて、放射線源に対して、第1照射の前にウォームアップを開始させ、ウォームアップの完了後、1段階目の押圧操作が解除されない間はウォームアップが完了した状態を維持し、1段階目の押圧操作が解除されることなく照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに第2照射を開始させる。 The radiation generating apparatus according to the present invention is a single imaging operation for applying radiation to a subject and capturing a radiographic image of the subject, and a pre-shooting for determining imaging conditions for the main imaging prior to the main imaging. It is used in a radiation imaging system that performs imaging. The radiation generator comprises a radiation source, an irradiation switch, and a source controller. The radiation source performs a first irradiation for pre-imaging and a second irradiation for main imaging. The irradiation switch can perform at least two steps of pressing operation, and inputs a drive instruction by the pressing operation. The radiation source control device controls the drive of the radiation source based on the drive instruction. Furthermore, the radiation source control device receives an input of a drive instruction by the first pressing operation of the irradiation switch, and causes the radiation source to start warm-up before the first irradiation, and after the completion of the warm-up While the first-step pressing operation is not released, the warm-up is maintained, and the driving instruction by the pressing operation after the second step of the irradiation switch is input without releasing the first-step pressing operation. In the case, the second irradiation is started without warming up.
 また、本発明の放射線発生装置の作動方法は、被写体に放射線を照射して被写体の放射線画像を撮影するための本撮影と、本撮影に先立って本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う放射線撮影システムに用いられる放射線発生装置の作動方法である。放射線発生装置の作動方法は、以下を含む。プレ撮影用の第1照射と、本撮影用の第2照射を放射線源に実行させること。少なくとも2段階の押圧操作が可能で、押圧操作により駆動指示を入力するための照射スイッチから、1段階目の押圧操作による駆動指示の入力を受けて、放射線源に対して、第1照射の前にウォームアップを開始させること。ウォームアップの完了後、1段階目の押圧操作が解除されない間はウォームアップが完了した状態を維持し、1段階目の押圧操作が解除されることなく照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに第2照射を開始させること。 Further, according to the operation method of the radiation generating apparatus of the present invention, the main imaging for capturing the radiation image of the subject by irradiating the radiation to the subject and the pre-imaging for determining the imaging condition of the main imaging prior to the main imaging And a method of operating a radiation generating apparatus used in a radiation imaging system that performs imaging once. The method of operation of the radiation generator comprises: Having the radiation source execute a first irradiation for pre-imaging and a second irradiation for main imaging. At least two steps of pressing operation are possible, and from the irradiation switch for inputting the driving instruction by the pressing operation, the input of the driving instruction by the pressing operation of the first stage is received, and before the first irradiation to the radiation source. To start a warm up. After completion of the warm-up, while the first-step pressing operation is not released, the state where the warm-up is completed is maintained, and the pressing operation of the first step is not canceled When the drive instruction is input, start the second irradiation without warming up.
 本発明によれば、プレ撮影と本撮影のセットで1回の放射線撮影を行う場合に、プレ撮影後、放射線源のウォームアップを行わずに本撮影を行うので、1回の放射線撮影に掛かる時間を短縮することができ、診断効率を向上させることができる。 According to the present invention, in the case of performing one radiation imaging in a set of pre-imaging and main imaging, after the pre-imaging, since the main imaging is performed without performing the warm-up of the radiation source, it takes one radiation imaging The time can be shortened and the diagnostic efficiency can be improved.
X線撮影システムの概略図である。FIG. 1 is a schematic view of an X-ray imaging system. X線の到達線量と時間の関係を表すグラフである。It is a graph showing the relation between the dose of X-rays and the time. 線源制御装置の内部構成を示す図である。It is a figure which shows the internal structure of a radiation source control apparatus. 電子カセッテを示す外観斜視図である。It is an appearance perspective view showing an electronic cassette. 電子カセッテの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of an electronic cassette. AECと本撮影条件決定処理の説明図である。It is explanatory drawing of AEC and this imaging | photography condition determination processing. X線撮影の手順を示すタイミングチャートである。It is a timing chart which shows the procedure of radiography. 別の態様のX線撮影の手順を示すタイミングチャートである。It is a timing chart which shows the procedure of the radiography of another mode. 3段階押しの照射スイッチを用いた場合のX線撮影の手順を示すタイミングチャートである。It is a timing chart which shows the procedure of X-ray imaging at the time of using the irradiation switch of 3 steps of push.
[第1実施形態]
 図1において、X線撮影システム2は、X線源10と、X線源10の動作を制御する線源制御装置11と、X線源10へのウォームアップ開始とX線の照射開始を指示するための照射スイッチ12と、被写体(患者)を透過したX線を検出してX線画像を出力する電子カセッテ13と、電子カセッテ13の動作制御やX線画像の表示処理を担うコンソール14と、被写体を立位姿勢で撮影するための立位撮影台15と、臥位姿勢で撮影するための臥位撮影台16とを有する。X線源10、線源制御装置11、および照射スイッチ12はX線発生装置2a、電子カセッテ13、およびコンソール14はX線撮影装置2bをそれぞれ構成する。この他にもX線源10を所望の方向および位置にセットするための線源移動装置(図示せず)が設けられており、X線源10は立位撮影台15および臥位撮影台16で共用される。
First Embodiment
In FIG. 1, the X-ray imaging system 2 instructs the X-ray source 10, the radiation source control device 11 for controlling the operation of the X-ray source 10, and the warm-up start and X-ray irradiation start to the X-ray source 10. Switch 12 for controlling the electronic cassette 13, an electronic cassette 13 for detecting X-rays transmitted through the subject (patient) and outputting an X-ray image, and a console 14 for controlling the operation of the electronic cassette 13 and displaying the X-ray image. The camera comprises a standing shooting stand 15 for shooting a subject in a standing posture, and a lying shooting stand 16 for shooting in a lying posture. The X-ray source 10, the radiation source control device 11, and the irradiation switch 12 constitute an X-ray generator 2a, and the electronic cassette 13 and the console 14 constitute an X-ray imaging device 2b. In addition to this, a source moving device (not shown) for setting the X-ray source 10 in a desired direction and position is provided. Shared by
 X線源10は、X線管と、X線管が放射するX線の照射野を限定する照射野限定器(コリメータ)とを有する。X線管は、熱電子を放出するフィラメントである陰極と、陰極から放出された熱電子が衝突してX線を放射する陽極(ターゲット)とを有している。ウォームアップ開始の指示があると陽極が回転を開始し、規定の回転数となったらウォームアップが終了する。照射野限定器は、例えば、X線を遮蔽する4枚の鉛板を四角形の各辺上に配置し、X線を透過させる四角形の照射開口が中央に形成されたものであり、鉛板の位置を移動することで照射開口の大きさを変化させて、照射野を限定する。 The X-ray source 10 has an X-ray tube and a field limiter (collimator) that limits the X-ray radiation field emitted by the X-ray tube. The X-ray tube has a cathode, which is a filament that emits thermal electrons, and an anode (target), which the thermal electrons emitted from the cathode collide to emit X-rays. The anode starts to rotate when instructed to start the warm-up, and the warm-up is ended when the rotational speed reaches a specified value. The irradiation field limiter has, for example, four lead plates for shielding X-rays arranged on each side of a square, and a rectangular irradiation opening for transmitting X-rays formed at the center, By moving the position, the size of the irradiation opening is changed to limit the irradiation field.
 コンソール14は、有線方式や無線方式により電子カセッテ13と通信可能に接続されており、キーボード等の入力デバイス14aを介したオペレータからの入力操作に応じて電子カセッテ13の動作を制御する。電子カセッテ13からのX線画像はコンソール14のディスプレイ14bに表示される他、そのデータがコンソール14内のストレージデバイス14cやメモリ(図示せず)、あるいはコンソール14とネットワーク接続された画像蓄積サーバ等のデータストレージに記憶される。 The console 14 is communicably connected to the electronic cassette 13 by a wired method or a wireless method, and controls the operation of the electronic cassette 13 in accordance with an input operation from an operator via the input device 14 a such as a keyboard. The X-ray image from the electronic cassette 13 is displayed on the display 14 b of the console 14, and the data is stored in the storage device 14 c or memory (not shown) in the console 14 or an image storage server etc. Stored in the data storage of
 コンソール14は、被写体の性別、年齢、撮影部位、撮影目的等の情報が含まれる検査オーダの入力を受け付けて、検査オーダをディスプレイ14bに表示する。検査オーダは、HIS(病院情報システム)やRIS(放射線情報システム)等の患者情報や放射線検査に係る検査情報を管理する外部システムから入力されるか、放射線技師等のオペレータにより手動入力される。検査オーダには、頭部、胸部、腹部、手、指等の撮影部位の項目がある。撮影部位には、正面、側面、斜位、PA(X線を被写体の背面から照射)、AP(X線を被写体の正面から照射)等の撮影方向も含まれる。オペレータは、検査オーダの内容をディスプレイ14bで確認し、その内容に応じた撮影条件をディスプレイ14bに映された操作画面を通じて入力デバイス14aで入力する。 The console 14 receives the input of the examination order including the information such as the sex, the age, the imaging region, and the imaging purpose of the subject, and displays the examination order on the display 14 b. The examination order is input from an external system that manages patient information such as HIS (hospital information system) or RIS (radiation information system) or examination information related to a radiological examination, or is manually input by an operator such as a radiologist. The examination order includes items of imaging sites such as the head, chest, abdomen, hands, and fingers. The imaging site also includes imaging directions such as front, side, oblique position, PA (irradiating X-rays from the back of the subject), AP (irradiating X-rays from the front of the subject), and the like. The operator confirms the contents of the inspection order on the display 14b, and inputs imaging conditions according to the contents on the input device 14a through the operation screen displayed on the display 14b.
 撮影条件には、撮影部位の他、X線源10が照射するX線のエネルギースペクトルを決める管電圧(単位;kV)、単位時間当たりの照射量を決める管電流(単位;mA)、およびX線の照射時間(単位;s)などが含まれる。管電流と照射時間の積でX線の累積の照射量が決まるため、撮影条件としては、管電流と照射時間のそれぞれの値を個別に入力する代わりに、両者の積である管電流時間積(mAs値)の値が入力される場合もある。しかし、後述するように、本例ではAECが行われて照射時間が決められる。そのため、X線撮影システム2で決定した照射時間が、コンソール14から入力された照射時間よりも優先して適用される。 The imaging conditions include the tube voltage (unit: kV) that determines the energy spectrum of the X-ray irradiated by the X-ray source 10, the tube current (unit; mA) that determines the irradiation amount per unit time, and the X-ray source 10 Line irradiation time (unit; s) etc. are included. Since the cumulative irradiation dose of X-rays is determined by the product of the tube current and the irradiation time, the tube current time product, which is the product of the two, instead of individually inputting the values of the tube current and the irradiation time as imaging conditions The value of (mAs value) may be input. However, as described later, in this example, AEC is performed to determine the irradiation time. Therefore, the irradiation time determined by the X-ray imaging system 2 is applied prior to the irradiation time input from the console 14.
 X線撮影システム2では、診断に供する1枚分のX線画像を取得する1回のX線撮影をプレ撮影と本撮影のセットで行う。プレ撮影は、本撮影において適切な画質のX線画像を得るために、被写体に応じて必要な本撮影の撮影条件を決めるために行われる。このためプレ撮影では本撮影よりも少ない線量のX線を被写体に照射する。本撮影では、プレ撮影によって決定された撮影条件にてX線を照射する。 In the X-ray imaging system 2, one set of X-ray imaging for acquiring one X-ray image to be provided for diagnosis is performed as a set of pre-imaging and main imaging. The pre-shooting is performed in order to determine the shooting conditions of the main shooting necessary for the subject in order to obtain an X-ray image of appropriate image quality in the main shooting. For this reason, in the pre-imaging, the subject is irradiated with an X-ray having a dose smaller than that of the main imaging. In the main imaging, X-rays are irradiated under imaging conditions determined by the pre-imaging.
 図2に示すように、同じ管電圧、管電流でX線を照射した場合、すなわち、X線源10が照射するX線の照射量が同じであっても、被写体の体格に応じてX線の透過率が異なるため、電子カセッテ13に到達する到達線量が変わる。例えば被写体厚が比較的厚い場合は、実線のグラフで示すように、被写体を透過して電子カセッテ13に到達する単位時間当たりのX線の到達線量が少なくなるため、必要な累積線量に到達するための照射時間Taは長くなり、逆に被写体厚が薄い場合は点線のグラフで示すように短くなる(照射時間Tb)。また、体内組織の密度が比較的高い場合もX線の透過率が低下するため照射時間が長くなり、低い場合は短くなる。 As shown in FIG. 2, when X-rays are irradiated with the same tube voltage and tube current, that is, even if the irradiation amount of X-rays emitted by the X-ray source 10 is the same, X-rays according to the physique of the subject Because the transmittances of X.sub.x and H.sub.x are different, the reaching dose to reach the electronic cassette 13 changes. For example, when the subject thickness is relatively thick, as shown by the solid line graph, the required dose of X-rays per unit time which passes through the subject and reaches the electronic cassette 13 decreases, so the required cumulative dose is reached. The irradiation time Ta for the purpose becomes longer, and conversely, when the subject thickness is thin, it becomes shorter as shown by the dotted line graph (irradiation time Tb). In addition, even when the density of internal tissue is relatively high, the X-ray transmittance decreases, so the irradiation time becomes long, and when it is low, the irradiation time becomes short.
 良好な画質のX線画像を得るための必要な累積線量は決まっているので、X線撮影システム2においては、被写体の体格が異なっても必要な累積線量が得られるようにAECが行われる。具体的には、実線や点線のグラフで示される台形の面積であるX線の累積線量が必要な累積線量と同じになるように照射時間を調節する。X線撮影システム2では、プレ撮影において、累積線量が所定の閾値まで達するまでの照射時間を測定する。プレ撮影では本撮影と比較してX線の照射量は少ないが、測定された照射時間は、被写体の体格に応じたX線の透過率が反映された値となる。X線撮影システム2は、プレ撮影の照射時間に基づいて、本撮影において必要な累積線量を得るための本撮影の照射時間を本撮影条件として決定し、その条件で本撮影を行う。 Since the necessary cumulative dose for obtaining a good quality X-ray image is fixed, the X-ray imaging system 2 performs AEC so that the necessary cumulative dose can be obtained even if the physical size of the subject is different. Specifically, the irradiation time is adjusted so that the cumulative dose of X-rays, which is the area of a trapezoid shown by the solid or dotted line graph, becomes the same as the required cumulative dose. The X-ray imaging system 2 measures the irradiation time until the accumulated dose reaches a predetermined threshold in the pre-imaging. Although the irradiation amount of X-rays is smaller in the pre-imaging than in the main imaging, the measured irradiation time is a value reflecting the X-ray transmittance according to the physical size of the subject. The X-ray imaging system 2 determines the irradiation time of the main imaging to obtain the accumulated dose necessary for the main imaging as the main imaging condition based on the irradiation time of the pre-imaging, and performs the main imaging under the condition.
 図3に示すように、線源制御装置11は、トランスによって入力電圧を昇圧して高圧の管電圧を発生し、高電圧ケーブルを通じてX線源10に供給する高電圧発生器20と、X線源10に与える管電圧および管電流と、X線の照射時間を制御する制御部21と、コンソール14との主要な情報、信号の送受信を媒介する通信I/F22と、電子カセッテ13との信号の送受信を媒介する照射信号I/F26と、メモリ23と、タッチパネル24とを備える。 As shown in FIG. 3, the source controller 11 boosts the input voltage with a transformer to generate a high tube voltage, and supplies the high voltage generator 20 to the X-ray source 10 through a high voltage cable; The tube voltage and tube current given to the source 10, the control unit 21 for controlling the X-ray irradiation time, the main information with the console 14, the communication I / F 22 for mediating transmission and reception of the signal, and the signal of the electronic cassette 13 And a memory 23, and a touch panel 24.
 制御部21には照射スイッチ12とメモリ23とタッチパネル24が接続されている。照射スイッチ12は、制御部21に対して駆動指示を入力するスイッチであり、照射スイッチとして一般的な、2段階の押圧操作が可能な2段階押しスイッチである。操作ボタンであるSW1とSW2は、入れ子構造になっており、SW1を押してからでないとSW2をオンできない。こうした構造により、1段階目の押圧操作である半押し(SW1オン)と、2段階目の押圧操作である全押し(SW2のオン)の2段階の押圧操作がなされる。照射スイッチ12が半押し(SW1オン)されると、制御部21に対して、SW1がオンされたことを表す信号が半押しによる駆動指示として入力される。同様に全押し(SW2)されると、SW2がオンされたことを表す信号が全押しによる駆動指示として入力される。 The irradiation switch 12, the memory 23, and the touch panel 24 are connected to the control unit 21. The irradiation switch 12 is a switch for inputting a drive instruction to the control unit 21. The irradiation switch 12 is a general two-step push switch capable of two-step pressing operation as an irradiation switch. The operation buttons SW1 and SW2 have a nested structure, and can not turn on SW2 unless the user presses SW1. With such a structure, a two-step pressing operation of half-pressing (SW1 on) which is a first-step pressing operation and full-pressing (SW2 on) which is a second-step pressing operation is performed. When the irradiation switch 12 is half-pressed (SW1 on), a signal indicating that the SW1 is turned on is input to the control unit 21 as a drive instruction by the half-press. Similarly, when full-pressed (SW2), a signal indicating that SW2 is turned on is input as a drive instruction by full-press.
 制御部21は、照射スイッチ12からの駆動指示の入力に応じて、X線源10の駆動を制御する制御信号を発生する。制御信号には、X線源10のウォームアップを開始させるためのウォームアップ開始信号と、プレ撮影用の照射を開始させるための第1照射開始信号と、本撮影用の照射を開始させるための第2照射開始信号と、X線源10を初期状態に戻す初期化信号とがある。 The control unit 21 generates a control signal for controlling the drive of the X-ray source 10 in response to the input of the drive instruction from the irradiation switch 12. The control signals include a warm-up start signal for starting the warm-up of the X-ray source 10, a first irradiation start signal for starting the irradiation for pre-imaging, and the irradiation for the main imaging. There are a second irradiation start signal and an initialization signal for returning the X-ray source 10 to an initial state.
 制御部21は、照射スイッチ12が半押しされると、高電圧発生器20に対してウォームアップ開始信号を発して、X線源10にウォームアップを開始させる。制御部21は、ウォームアップ完了後で照射スイッチ12の半押しが解除されていない場合は、X線撮影装置2bとの間で同期信号の送受信による同期制御を行ったうえで、プレ撮影用の第1照射開始信号を高電圧発生器20に発して、X線源10にプレ撮影用のX線照射を開始させる。 When the irradiation switch 12 is half-depressed, the control unit 21 issues a warm-up start signal to the high voltage generator 20 to cause the X-ray source 10 to start warm-up. If the half depression of the irradiation switch 12 is not released after the warm-up is completed, the control unit 21 performs synchronization control by transmitting and receiving synchronization signals with the X-ray imaging apparatus 2b, and then performs pre-imaging A first irradiation start signal is issued to the high voltage generator 20 to cause the X-ray source 10 to start X-ray irradiation for pre-imaging.
 照射スイッチ12が半押しの状態からさらに押し込まれて全押しがなされると、制御部21は、プレ撮影と同様に、X線撮影装置2bとの同期制御を行ったうえで、第2照射開始信号を高電圧発生器20に発して、X線源10に本撮影用のX線照射を開始させる。 When the irradiation switch 12 is further pressed from the half-pressed state and fully pressed, the control unit 21 performs the synchronization control with the X-ray imaging apparatus 2b as in the pre-imaging, and then starts the second irradiation A signal is emitted to the high voltage generator 20 to cause the X-ray source 10 to start X-ray irradiation for main imaging.
 制御部21は、照射スイッチ12がいったん半押しされた後、半押しが解除されたときに初期化信号を発生する。制御部21は、照射スイッチ12が半押しされてX線源10のウォームアップが開始された後、プレ撮影用の照射や本撮影の照射が完了するまでの間に、照射スイッチ12の半押しが解除されると、高電圧発生器20に対して初期化信号を発して、X線源10の回転陽極の回転を停止して、X線源10をウォームアップ開始前の初期状態に戻す。これらの信号は、信号ケーブルを通じて線源制御装置11からX線源10に入力される。 The control unit 21 generates an initialization signal when the half-pressing is released after the irradiation switch 12 is once-half-pressed. After the irradiation switch 12 is half-pressed and warm-up of the X-ray source 10 is started, the control unit 21 half-pushes the irradiation switch 12 until the irradiation for pre-imaging and the irradiation for the main imaging are completed. Is released, an initialization signal is issued to the high voltage generator 20 to stop the rotation of the rotary anode of the X-ray source 10, and the X-ray source 10 is returned to the initial state before the start of the warm-up. These signals are input from the source controller 11 to the X-ray source 10 through the signal cable.
 また、制御部21は、プレ撮影のX線照射が停止された後も照射スイッチ12の半押しが解除されない間はX線源10を初期状態に戻さずに、ウォームアップが完了した状態を維持する。このため、半押しに続いて照射スイッチ12が全押しされると、X線源10は、ウォームアップを行うことなく、直ちに本撮影用のX線照射を開始することができる。 Further, the control unit 21 maintains the warm-up completed state without returning the X-ray source 10 to the initial state while the half depression of the irradiation switch 12 is not released even after the X-ray irradiation of the pre-imaging is stopped. Do. Therefore, when the irradiation switch 12 is fully pressed following the half-press, the X-ray source 10 can immediately start X-ray irradiation for main imaging without performing warm-up.
 メモリ23は、管電圧、管電流等の撮影条件を予め数種類格納している。撮影条件はタッチパネル24を通じてオペレータにより手動で設定される。タッチパネル24には、メモリ23から読み出された撮影条件が複数種類表示される。表示された撮影条件の中から、コンソール14に入力した撮影条件と同じ撮影条件をオペレータが選択することにより、線源制御装置11に対して撮影条件が設定される。もちろん、予め用意されている撮影条件の値を微調整することも可能である。コンソール14に入力された撮影条件を線源制御装置11に送信することで線源制御装置11の撮影条件の設定を自動化してもよい。 The memory 23 stores several types of imaging conditions such as tube voltage and tube current in advance. The imaging conditions are manually set by the operator through the touch panel 24. A plurality of types of imaging conditions read from the memory 23 are displayed on the touch panel 24. Among the displayed imaging conditions, the operator selects the same imaging conditions as the imaging conditions input to the console 14, whereby the imaging conditions are set for the radiation source control device 11. Of course, it is also possible to finely adjust the values of imaging conditions prepared in advance. The setting of the imaging conditions of the source control apparatus 11 may be automated by transmitting the imaging conditions input to the console 14 to the source control apparatus 11.
 撮影条件として設定された管電圧、管電流は、プレ撮影、本撮影ともに同じ値が使用される。照射時間については、プレ撮影では、後述するようにX線撮影装置2bにおいてAECが行われて目標線量に到達するまでの照射時間が測定されるため、測定中に照射が停止しないように余裕を持った値が設定される。この値は、プレ撮影における照射時間が本撮影と比較して非常に短いこと、また、管電流や撮影部位に応じて電子カセッテ13への到達線量が目標線量に到達するまでの照射時間が変わることなどを考慮して設定される。X線源10において安全規制上設定されている照射時間の最大値を設定してもよい。 For tube voltage and tube current set as imaging conditions, the same values are used for pre-imaging and main imaging. As for the irradiation time, in the pre-imaging, as described later, since the irradiation time until AEC is performed in the X-ray imaging apparatus 2b and the target dose is measured, a margin is provided so that the irradiation does not stop during measurement. The value you set is set. In this value, the irradiation time in the pre-photographing is very short compared to the main photographing, and the irradiation time until the reaching dose to the electronic cassette 13 reaches the target dose changes according to the tube current and the photographing site It is set in consideration of things. The maximum value of the irradiation time set in the safety regulation in the X-ray source 10 may be set.
 本撮影の照射時間は、プレ撮影の結果に基づいてX線撮影装置2bにおいて計算で求められた値が設定される。制御部21にはタイマー25が設けられており、タイマー25は、本撮影において、プレ撮影の結果に基づき決定されたX線の照射時間を計測する。本撮影において、制御部21は、タイマー25が設定された照射時間を計測したら、照射停止信号を高電圧発生器20に発してX線の照射を停止させる。 As the irradiation time of the main imaging, a value obtained by calculation in the X-ray imaging apparatus 2b is set based on the result of the pre-imaging. The control unit 21 is provided with a timer 25. The timer 25 measures the irradiation time of X-rays determined based on the result of the preliminary imaging in the main imaging. In the main imaging, when the control unit 21 measures the irradiation time set by the timer 25, the control unit 21 issues an irradiation stop signal to the high voltage generator 20 to stop the X-ray irradiation.
 照射信号I/F26は、線源制御装置11がX線撮影装置2bとの間で行う同期制御において、同期信号の送受信を媒介する。制御部21は、プレ撮影と本撮影のX線照射開始前に、X線撮影装置2bに対してX線の照射を開始してよいか否かを問い合わせる同期信号である照射開始要求信号を送信する。そして、X線撮影装置2bから、照射開始要求信号に対する応答として、照射を受ける準備が完了したことを表す同期信号である照射許可信号を受信する。また、照射信号I/F26は、プレ撮影においてX線撮影装置2bがAECを実行したときに、X線撮影装置2bが発する照射停止信号を受信する。 The irradiation signal I / F 26 mediates transmission and reception of synchronization signals in synchronization control performed by the radiation source control device 11 with the X-ray imaging device 2b. The control unit 21 transmits an irradiation start request signal which is a synchronous signal inquiring whether the X-ray imaging apparatus 2b may start the X-ray irradiation before starting the X-ray irradiation in the pre-imaging and the main imaging. Do. Then, as a response to the irradiation start request signal, the X-ray imaging apparatus 2b receives an irradiation permission signal, which is a synchronous signal indicating that preparation for receiving irradiation has been completed. The irradiation signal I / F 26 receives an irradiation stop signal emitted by the X-ray imaging apparatus 2 b when the X-ray imaging apparatus 2 b executes AEC in the pre-imaging.
 通信I/F22は、プレ撮影の結果に基づいてX線撮影装置2bにおいて算出された本撮影の撮影条件を受信する。これら照射信号I/F26や通信I/F22は、有線方式でもよいし無線方式でもよい。 The communication I / F 22 receives the imaging condition of the main imaging calculated in the X-ray imaging apparatus 2b based on the result of the preliminary imaging. The irradiation signal I / F 26 and the communication I / F 22 may be wired or wireless.
 図4において、電子カセッテ13は、センサーパネル30とこれを収容する扁平な箱型をした可搬型の筐体31とで構成される。筐体31は例えば導電性樹脂で形成されている。X線が入射する筐体31の前面31aには矩形状の開口が形成されており、開口には天板として透過板32が取り付けられている。透過板32は、軽量で剛性が高く、かつX線透過性が高いカーボン材料で形成されている。筐体31は、電子カセッテ13への電磁ノイズの侵入、および電子カセッテ13から外部への電磁ノイズの放射を防止する電磁シールドとしても機能する。なお、筐体31には、電子カセッテ13の各部に所定の電圧の電力を供給するためのバッテリ(二次電池)や、コンソール14とX線画像等のデータの無線通信を行うためのアンテナがセンサーパネル30の他に内蔵されている。 In FIG. 4, the electronic cassette 13 is configured of a sensor panel 30 and a flat box-shaped portable case 31 for housing the sensor panel 30. The housing 31 is formed of, for example, a conductive resin. A rectangular opening is formed on the front surface 31a of the housing 31 on which the X-rays are incident, and the transmission plate 32 is attached to the opening as a top plate. The transmission plate 32 is formed of a carbon material that is lightweight, has high rigidity, and has high X-ray transparency. The housing 31 also functions as an electromagnetic shield that prevents the penetration of electromagnetic noise into the electronic cassette 13 and the emission of electromagnetic noise from the electronic cassette 13 to the outside. In the housing 31, a battery (secondary battery) for supplying power of a predetermined voltage to each part of the electronic cassette 13, and an antenna for performing wireless communication of data such as an X-ray image with the console 14 are provided. It is built in other than sensor panel 30.
 筐体31は、フイルムカセッテやIPカセッテと略同様の国際規格ISO4090:2001に準拠した大きさである。電子カセッテ13は、筐体31の前面31aがX線源10と対向する姿勢で保持されるよう、各撮影台15、16のホルダ15a、16a(図1参照)に着脱自在にセットされる。そして、使用する撮影台に応じて、線源移動装置によりX線源10が移動される。また、電子カセッテ13は、各撮影台15、16にセットされる他に、被写体が仰臥するベッド上に置いたり被写体自身に持たせたりして単体で使用されることもある。なお、電子カセッテ13は、サイズがフイルムカセッテやIPカセッテと略同様の大きさであるため、フイルムカセッテやIPカセッテ用の既存の撮影台にも取り付け可能である。 The housing 31 has a size in conformity with the international standard ISO 4090: 2001 substantially the same as a film cassette or an IP cassette. The electronic cassette 13 is detachably set on the holders 15a and 16a (see FIG. 1) of the imaging bases 15 and 16 so that the front surface 31a of the housing 31 is held in a posture to face the X-ray source 10. Then, the X-ray source 10 is moved by the radiation source moving device according to the imaging table to be used. Further, the electronic cassette 13 may be placed on a bed on which the subject lies or held by the subject itself and used alone, in addition to being set on each of the imaging platforms 15 and 16. The electronic cassette 13 has a size substantially the same as that of a film cassette and an IP cassette, and therefore can be attached to an existing photographing table for a film cassette and an IP cassette.
 図5において、センサーパネル30は、TFTアクティブマトリクス基板を有し、この基板上に撮像領域40が形成されている。撮像領域40には、X線の到達線量に応じた電荷を蓄積する複数の画素41が、所定のピッチでn行(x方向)Xm列(Y方向)の行列状に配置されている。なお、n、mは2以上の整数である。 In FIG. 5, the sensor panel 30 has a TFT active matrix substrate, and an imaging region 40 is formed on this substrate. In the imaging region 40, a plurality of pixels 41 for accumulating charges according to the X-ray arrival dose are arranged in a matrix of n rows (x direction) x m columns (Y direction) at a predetermined pitch. Note that n and m are integers of 2 or more.
 センサーパネル30は、X線を可視光に変換するシンチレータ(蛍光体、図示せず)を有し、シンチレータによって変換された可視光を画素41で光電変換する間接変換型である。シンチレータは、CsI:Tl(タリウム賦活ヨウ化セシウム)やGOS(GdS:Tb、テルビウム賦活ガドリウムオキシサルファイド)等からなり、画素41が配列された撮像領域40の全面と対向するように配置されている。なお、シンチレータとTFTアクティブマトリクス基板は、X線の入射する側からみてシンチレータ、基板の順に配置されるPSS(Penetration Side Sampling)方式でもよいし、逆に基板、シンチレータの順に配置されるISS(Irradiation Side sampling)方式でもよい。また、シンチレータを用いず、X線を直接電荷に変換する変換層(アモルファスセレン等)を用いた直接変換型のセンサーパネルを用いてもよい。 The sensor panel 30 has a scintillator (phosphor, not shown) that converts X-rays into visible light, and is an indirect conversion type in which visible light converted by the scintillator is photoelectrically converted by the pixels 41. The scintillator is made of CsI: Tl (thallium activated cesium iodide), GOS (Gd 2 O 2 S: Tb, terbium activated gadolium oxysulfide) or the like, and faces the entire surface of the imaging region 40 in which the pixels 41 are arrayed. Is located in The scintillator and the TFT active matrix substrate may be a PSS (Penetration Side Sampling) method in which the scintillator and the substrate are arranged in order of the X-ray incident side, or conversely, the ISS (irradiation) is arranged in the substrate and the scintillator in order. It may be a side sampling method. Alternatively, a direct conversion type sensor panel may be used which uses a conversion layer (amorphous selenium or the like) for converting X-rays directly into electric charge without using a scintillator.
 画素41は、周知のように、可視光の入射によって電荷(電子-正孔対)を発生し、発生した電荷を蓄積する光電変換部42、およびスイッチング素子である第1TFT43を備える。なお、光電変換部42とは別に電荷を蓄積するキャパシタを設けてもよい。 As well known, the pixel 41 includes a photoelectric conversion unit 42 which generates a charge (electron-hole pair) upon incidence of visible light and stores the generated charge, and a first TFT 43 which is a switching element. Note that a capacitor for storing charge may be provided separately from the photoelectric conversion unit 42.
 光電変換部42は、電荷を発生する半導体層(例えばPIN型)とその上下に上部電極および下部電極を配した構造を有している。光電変換部42は、下部電極に第1TFT43が接続され、上部電極にはバイアス線が接続されている。バイアス線は画素41の行数分(n行分)設けられて1本の母線に接続されている。母線はバイアス電源に繋がれている。母線とその子線のバイアス線を通じて、バイアス電源から光電変換部42の上部電極にバイアス電圧が印加される。バイアス電圧の印加により半導体層内に電界が生じ、光電変換により半導体層内で発生した電荷(電子-正孔対)は、一方がプラス、他方がマイナスの極性をもつ上部電極と下部電極に移動て、光電変換部42に電荷が蓄積される。 The photoelectric conversion unit 42 has a structure in which an upper electrode and a lower electrode are disposed above and below a semiconductor layer (for example, a PIN type) that generates an electric charge. In the photoelectric conversion unit 42, the first TFT 43 is connected to the lower electrode, and a bias line is connected to the upper electrode. The bias lines are provided for the number of rows of the pixels 41 (n rows) and connected to one bus. The bus bar is connected to a bias power supply. A bias voltage is applied from the bias power supply to the upper electrode of the photoelectric conversion unit 42 through the bias line of the bus bar and its daughter line. An electric field is generated in the semiconductor layer by application of a bias voltage, and charges (electron-hole pairs) generated in the semiconductor layer by photoelectric conversion move to the upper electrode and the lower electrode having one plus polarity and the other minus polarity. Thus, charge is accumulated in the photoelectric conversion unit 42.
 第1TFT43は、ゲート電極が第1走査線44に、ソース電極が信号線45に、ドレイン電極が光電変換部42にそれぞれ接続される。第1走査線44と信号線45は格子状に配線されており、第1走査線44は1行分の画素41に対して共通に1本ずつ、画素41の行数分(n行分)設けられている。また信号線45は1列分の画素41に対して共通に1本ずつ、画素41の列数分(m列分)設けられている。第1走査線44は第1ゲートドライバ46に接続され、信号線45は信号処理回路47に接続される。 In the first TFT 43, the gate electrode is connected to the first scanning line 44, the source electrode is connected to the signal line 45, and the drain electrode is connected to the photoelectric conversion unit 42. The first scanning line 44 and the signal line 45 are wired in a grid, and the first scanning line 44 is common to one row of pixels 41, one for each row of pixels 41 (n rows) It is provided. Further, one signal line 45 is provided in common to the pixels 41 for one column, the number of which is equal to the number of columns of the pixels 41 (m columns). The first scan line 44 is connected to the first gate driver 46, and the signal line 45 is connected to the signal processing circuit 47.
 第1ゲートドライバ46は、制御部48の制御の下に第1TFT43を駆動することにより、X線の到達線量に応じた信号電荷を画素41に蓄積する蓄積動作と、画素41から蓄積された信号電荷を読み出す読み出し動作と、リセット動作とをセンサーパネル30に行わせる。蓄積動作では第1TFT43がオフ状態にされ、その間に画素41に信号電荷が蓄積される。読み出し動作では、第1ゲートドライバ46から同じ行の第1TFT43を一斉に駆動するゲートパルスG1~Gnを所定の間隔で順次発生して、第1走査線44を1行ずつ順に活性化し、第1走査線44に接続された第1TFT43を1行分ずつオン状態とする。画素41の光電変換部42に蓄積された電荷は、第1TFT43がオン状態になると信号線45に読み出されて、信号処理回路47に入力される。 The first gate driver 46 drives the first TFT 43 under the control of the control unit 48 to accumulate signal charges corresponding to the X-ray arrival dose in the pixel 41, and the signal accumulated from the pixel 41. The sensor panel 30 is caused to perform the read operation for reading out the charge and the reset operation. In the accumulation operation, the first TFT 43 is turned off, while the signal charge is accumulated in the pixel 41. In the read operation, gate pulses G1 to Gn for driving the first TFTs 43 in the same row are sequentially generated at a predetermined interval from the first gate driver 46 to activate the first scanning lines 44 one row at a time, The first TFTs 43 connected to the scanning line 44 are turned on one row at a time. The charge accumulated in the photoelectric conversion unit 42 of the pixel 41 is read out to the signal line 45 when the first TFT 43 is turned on, and is input to the signal processing circuit 47.
 光電変換部42の半導体層には、X線の入射の有無に関わらず暗電荷が発生する。この暗電荷はバイアス電圧が印加されているために画素41の光電変換部42に蓄積される。画素41において発生する暗電荷は、画像データに対してはノイズ成分となるので、これを除去するためにX線の照射前には所定時間間隔でリセット動作が行われる。リセット動作は、画素41に発生する暗電荷を、信号線45を通じて掃き出す動作である。 Dark charges are generated in the semiconductor layer of the photoelectric conversion unit 42 regardless of the presence or absence of X-rays. The dark charge is accumulated in the photoelectric conversion unit 42 of the pixel 41 because a bias voltage is applied. Since the dark charge generated in the pixel 41 becomes a noise component for the image data, the reset operation is performed at predetermined time intervals before the X-ray irradiation to remove the dark charge. The reset operation is an operation of sweeping the dark charge generated in the pixel 41 through the signal line 45.
 リセット動作は、例えば、1行ずつ画素41をリセットする順次リセット方式で行われる。順次リセット方式では、信号電荷の読み出し動作と同様、第1ゲートドライバ46から第1走査線44に対してゲートパルスG1~Gnを所定の間隔で順次発生して、第1TFT43を1行ずつオン状態にする。 The reset operation is performed, for example, by a sequential reset method in which the pixels 41 are reset row by row. In the sequential reset method, gate pulses G1 to Gn are sequentially generated at predetermined intervals from the first gate driver 46 to the first scanning line 44 similarly to the readout operation of signal charges, and the first TFTs 43 are turned on one row at a time Make it
 順次リセット方式に代えて、配列画素の複数行を1グループとしてグループ内で順次リセットを行い、グループ数分の行の暗電荷を同時に掃き出す並列リセット方式や、全行にゲートパルスを入れて全画素の暗電荷を同時に掃き出す全画素リセット方式を用いてもよい。並列リセット方式や全画素リセット方式によりリセット動作を高速化することができる。 Instead of the sequential reset method, multiple rows of arrayed pixels are set as one group to sequentially reset within the group, and the parallel reset method that sweeps out the dark charges of the number of rows simultaneously or gate pulse is applied to all the rows. An all pixel reset method may be used which simultaneously sweeps out the dark charge of. The reset operation can be speeded up by the parallel reset method or the all pixel reset method.
 信号処理回路47は、積分アンプ49、CDS回路(CDS)50、マルチプレクサ(MUX)51、およびA/D変換器(A/D)52等を備える。積分アンプ49は、各信号線45に対して個別に接続される。積分アンプ49は、オペアンプ49aとオペアンプ49aの入出力端子間に接続されたキャパシタ49bとからなり、信号線45はオペアンプ49aの一方の入力端子に接続される。オペアンプ49aのもう一方の入力端子はグランド(GND)に接続される。キャパシタ49bにはリセットスイッチ49cが並列に接続されている。積分アンプ49は、信号線45から入力される電荷を積算し、アナログ電圧信号V1~Vmに変換して出力する。各列のオペアンプ49aの出力端子には、増幅器53、CDS50を介してMUX51が接続される。MUX51の出力側には、A/D52が接続される。 The signal processing circuit 47 includes an integration amplifier 49, a CDS circuit (CDS) 50, a multiplexer (MUX) 51, an A / D converter (A / D) 52, and the like. The integration amplifier 49 is individually connected to each signal line 45. The integral amplifier 49 includes an operational amplifier 49a and a capacitor 49b connected between the input and output terminals of the operational amplifier 49a. The signal line 45 is connected to one input terminal of the operational amplifier 49a. The other input terminal of the operational amplifier 49a is connected to the ground (GND). A reset switch 49c is connected in parallel to the capacitor 49b. The integrating amplifier 49 integrates the charges input from the signal line 45, converts it into analog voltage signals V1 to Vm, and outputs the voltage signals. The MUX 51 is connected to the output terminal of the operational amplifier 49a of each column via the amplifier 53 and the CDS 50. The A / D 52 is connected to the output side of the MUX 51.
 CDS50はサンプルホールド回路を有し、積分アンプ49の出力電圧信号に対して相関二重サンプリングを施してノイズを除去するとともに、サンプルホールド回路で積分アンプ49の出力電圧信号を所定期間保持(サンプルホールド)する。MUX51は、シフトレジスタ(図示せず)からの動作制御信号に基づき、パラレルに接続される各列のCDS50から順に一つのCDS50を電子スイッチで選択し、選択したCDS50から出力される電圧信号V1~VmをシリアルにA/D52に入力する。なお、MUX51とA/D52の間に増幅器を接続してもよい。 The CDS 50 has a sample and hold circuit, performs correlated double sampling on the output voltage signal of the integration amplifier 49 to remove noise, and holds the output voltage signal of the integration amplifier 49 for a predetermined period (sample and hold ). The MUX 51 selects one CDS 50 in order from the CDS 50 of each column connected in parallel with an electronic switch based on the operation control signal from the shift register (not shown), and outputs the voltage signal V1 ̃ output from the selected CDS 50 Input Vm to A / D 52 serially. An amplifier may be connected between the MUX 51 and the A / D 52.
 A/D52は、入力された1行分のアナログの電圧信号V1~Vmをデジタル値に変換して、電子カセッテ13に内蔵されるメモリ54に出力する。メモリ54には、1行分のデジタル値が、それぞれの画素41の座標に対応付けられて、1行分のX線画像を表す画像データとして記録される。こうして1行分の読み出しが完了する。 The A / D 52 converts the input analog voltage signals V1 to Vm for one row into digital values, and outputs the digital values to the memory 54 incorporated in the electronic cassette 13. In the memory 54, digital values for one row are associated with the coordinates of the respective pixels 41 and recorded as image data representing an X-ray image for one row. Thus, reading of one row is completed.
 MUX51によって積分アンプ49からの1行分の電圧信号V1~Vmが読み出されると、制御部48は、積分アンプ49に対してリセットパルスRSTを出力し、リセットスイッチ49cをオンする。これにより、キャパシタ49bに蓄積された1行分の信号電荷が放電されてリセットされる。積分アンプ49をリセットした後、再度リセットスイッチ49cをオフして所定時間経過後にCDS50のサンプルホールド回路の一つをホールドし、積分アンプ49のkTCノイズ成分をサンプリングする。その後、第1ゲートドライバ46から次の行のゲートパルスが出力され、次の行の画素41の信号電荷の読み出しを開始させる。さらにゲートパルスが出力されて所定時間経過後に次の行の画素41の信号電荷をCDS50のもう一つのサンプルホールド回路でホールドする。これらの動作を順次繰り返して全行の画素41の信号電荷を読み出す。 When the voltage signals V1 to Vm for one row from the integration amplifier 49 are read out by the MUX 51, the control unit 48 outputs a reset pulse RST to the integration amplifier 49 and turns on the reset switch 49c. Thereby, the signal charges for one row accumulated in the capacitor 49b are discharged and reset. After the integration amplifier 49 is reset, the reset switch 49 c is turned off again, and after a predetermined time has elapsed, one of the sample hold circuits of the CDS 50 is held, and the kTC noise component of the integration amplifier 49 is sampled. Thereafter, the gate pulse of the next row is output from the first gate driver 46, and readout of the signal charge of the pixels 41 of the next row is started. Further, a gate pulse is output, and after a predetermined time has elapsed, the signal charge of the pixel 41 of the next row is held by another sample hold circuit of the CDS 50. These operations are sequentially repeated to read out the signal charges of the pixels 41 of all the rows.
 全行の読み出しが完了すると、1枚分のX線画像を表す画像データがメモリ54に記録される。この画像データはメモリ54から読み出され、制御部48で各種画像処理を施された後通信I/F55を通じてコンソール14に出力される。こうして被写体のX線画像が検出される。 When the reading of all the rows is completed, image data representing one X-ray image is recorded in the memory 54. The image data is read from the memory 54, subjected to various image processing by the control unit 48, and then output to the console 14 through the communication I / F 55. Thus, the X-ray image of the subject is detected.
 なお、リセット動作では、第1TFT43がオン状態になっている間、画素41から暗電荷が信号線45を通じて積分アンプ49のキャパシタ49bに流れる。読み出し動作と異なり、MUX51によるキャパシタ49bに蓄積された電荷の読み出しは行われず、各ゲートパルスG1~Gnの発生と同期して、制御部48からリセットパルスRSTが出力されてリセットスイッチ49cがオンされ、キャパシタ49bに蓄積された電荷が放電されて積分アンプ49がリセットされる。 In the reset operation, dark charge flows from the pixel 41 to the capacitor 49 b of the integration amplifier 49 through the signal line 45 while the first TFT 43 is in the on state. Unlike the read operation, the charge stored in the capacitor 49b is not read out by the MUX 51. The reset pulse RST is output from the control unit 48 in synchronization with the generation of the gate pulses G1 to Gn, and the reset switch 49c is turned on. The charge stored in the capacitor 49b is discharged, and the integration amplifier 49 is reset.
 制御部48には、メモリ54のX線画像データに対してオフセット補正、感度補正、および欠陥補正の各種画像処理を施す回路(図示せず)が設けられている。オフセット補正回路は、X線を照射せずにセンサーパネル30から取得したオフセット補正画像をX線画像から画素単位で差し引くことで、信号処理回路47の個体差や撮影環境に起因する固定パターンノイズを除去する。感度補正回路はゲイン補正回路とも呼ばれ、各画素41の光電変換部42の感度のばらつきや信号処理回路47の出力特性のばらつき等を補正する。欠陥補正回路は、出荷時や定期点検時に生成される欠陥画素情報に基づき、欠陥画素の画素値を周囲の正常な画素の画素値で線形補間する。また、欠陥補正回路は、後述する、AECに用いられる検出画素41bの画素値も同様に補間する。なお、上記の各種画像処理回路をコンソール14に設け、各種画像処理をコンソール14で行ってもよい。 The control unit 48 is provided with a circuit (not shown) that performs various image processing of offset correction, sensitivity correction, and defect correction on the X-ray image data of the memory 54. The offset correction circuit subtracts the offset correction image acquired from the sensor panel 30 from the X-ray image in pixel units from the X-ray image without irradiating the X-rays, thereby fixing pattern noise caused by individual differences of the signal processing circuit 47 and the imaging environment. Remove. The sensitivity correction circuit is also referred to as a gain correction circuit, and corrects variations in sensitivity of the photoelectric conversion unit 42 of each pixel 41, variations in output characteristics of the signal processing circuit 47, and the like. The defect correction circuit linearly interpolates the pixel value of the defective pixel with the pixel value of the surrounding normal pixel based on the defective pixel information generated at the time of shipping or periodic inspection. Further, the defect correction circuit similarly interpolates the pixel value of the detection pixel 41b used for AEC, which will be described later. The various image processing circuits described above may be provided in the console 14 and the various image processing may be performed by the console 14.
 画素41には通常画素41aと検出画素41bがある。通常画素41aはX線画像を生成するために用いられる。一方検出画素41bは撮像領域40へのX線の到達線量を検出する線量検出センサとして機能する。検出画素41bは、X線の到達線量が所定値に達したときに、X線源10によるX線の照射を停止させるAECのために用いられる。なお、図では検出画素41bにハッチングを施し通常画素41aと区別している。 The pixel 41 includes a normal pixel 41 a and a detection pixel 41 b. The normal pixel 41a is used to generate an X-ray image. On the other hand, the detection pixel 41 b functions as a dose detection sensor that detects an arrival dose of X-rays to the imaging region 40. The detection pixel 41 b is used for AEC to stop the irradiation of the X-ray by the X-ray source 10 when the ultimate dose of the X-ray reaches a predetermined value. In the drawing, the detection pixel 41b is hatched to distinguish it from the normal pixel 41a.
 検出画素41bは、撮像領域40内で局所的に偏ることなく撮像領域40内に満遍なく散らばるよう配置される。全画素41に対して検出画素41bの占める割合は約0.01%程度であることが好ましい。検出画素41bは、例えば、同じ信号線41が接続された画素41の列に複数個(本例では3行おき)設けられ、検出画素41bが設けられた列は、検出画素41bが設けられない列を複数列挟んで設けられる。画素41が1024行×1024列のマトリクス配置であった場合、例えば128列毎の8本の信号線41に対して16個ずつ均等に検出画素41bを配置すれば、検出画素41bの占める割合は約0.01%となる。検出画素41bの位置はセンサーパネル30の製造時に既知であり、センサーパネル30は全検出画素41bの位置(座標)を不揮発性のメモリ(図示せず)に予め記憶している。 The detection pixels 41 b are disposed so as to be uniformly scattered in the imaging region 40 without being locally biased in the imaging region 40. It is preferable that the ratio of the detection pixel 41b to all the pixels 41 is about 0.01%. For example, a plurality of detection pixels 41b (every three rows in this example) are provided in the column of the pixels 41 to which the same signal line 41 is connected, and no detection pixel 41b is provided in the column where the detection pixels 41b are provided. A plurality of rows are provided. If the pixels 41 are arranged in a matrix of 1024 rows and 1024 columns, for example, if 16 detection pixels 41 b are equally arranged for eight signal lines 41 in 128 columns, the ratio of the detection pixels 41 b is It becomes about 0.01%. The position of the detection pixel 41b is known at the time of manufacture of the sensor panel 30, and the sensor panel 30 previously stores the position (coordinates) of all the detection pixels 41b in a non-volatile memory (not shown).
 なお、上記例は1例であり、検出画素41bの配置、個数、割合は適宜変更が可能である。例えば、配置に関しては、本実施形態とは逆に検出画素41bを局所に集中して配置してもよい。例えば乳房を撮影対象とするマンモグラフィ装置では胸壁側に集中して検出画素41bを配置するとよい。 The above example is one example, and the arrangement, the number, and the ratio of the detection pixels 41 b can be changed as appropriate. For example, with regard to the arrangement, the detection pixels 41b may be concentrated and arranged locally, contrary to the present embodiment. For example, in a mammography apparatus for imaging a breast, the detection pixels 41b may be arranged concentrated on the chest wall side.
 通常画素41aと検出画素41bは光電変換部42等の基本的な構成は全く同じであるが、検出画素41bには第1TFT43に加えて第2TFT57が接続されている。第2TFT57は、第1TFT43を駆動するための第1走査線44および第1ゲートドライバ46とは別の第2走査線58および第2ゲートドライバ59により駆動される。検出画素41bは第2TFT57が接続されているので、同じ行の通常画素41aが第1TFT43をオフ状態とされ、信号電荷を蓄積する蓄積動作中であっても電荷を読み出すことが可能である。 The basic configuration of the photoelectric conversion unit 42 and the like of the normal pixel 41a and the detection pixel 41b is completely the same, but a second TFT 57 is connected to the detection pixel 41b in addition to the first TFT 43. The second TFT 57 is driven by a second scan line 58 and a second gate driver 59 which are different from the first scan line 44 and the first gate driver 46 for driving the first TFT 43. Since the second TFT 57 is connected to the detection pixel 41b, the normal pixel 41a in the same row turns off the first TFT 43, and it is possible to read out the charge even during the accumulation operation of accumulating the signal charge.
 プレ撮影と本撮影は連続的に行われるため、プレ撮影において照射されたX線を、本撮影終了後に読み出されるX線画像に反映させるために、センサーパネル30は、プレ撮影が開始されるときに、通常画素41aの蓄積動作を開始して、以後、本撮影が終了するまで蓄積動作を継続する。一方、プレ撮影においては、センサーパネル30は、AECのために検出画素41bを用いた線量検出動作を実行する。検出画素41bに第2TFT57が接続されていることで、センサーパネル30は、プレ撮影において、通常画素41aが接続されている第1TFT43をオフ状態として通常画素41aの蓄積動作を実行しながら、それと並行して、第2TFT57をオンオフすることにより線量検出動作を実行することができる。 Since the pre-shooting and the main shooting are continuously performed, the sensor panel 30 starts the pre-shooting in order to reflect the X-ray irradiated in the pre-shooting on the X-ray image read out after the end of the main shooting. In addition, the accumulation operation of the normal pixel 41a is started, and thereafter, the accumulation operation is continued until the main photographing is completed. On the other hand, in the pre-shooting, the sensor panel 30 performs a dose detection operation using the detection pixel 41b for AEC. Since the second TFT 57 is connected to the detection pixel 41b, the sensor panel 30 turns the first TFT 43 to which the normal pixel 41a is connected to the OFF state and performs the accumulation operation of the normal pixel 41a in the pre-photographing. Then, the dose detection operation can be performed by turning on and off the second TFT 57.
 プレ撮影時に実行される線量検出動作において、第2ゲートドライバ59は、制御部48の制御の下、同じ行の第2TFT57を一斉に駆動するゲートパルスg1、g4、g7、・・・、gk(k=1+3(n-1))を所定の間隔で順次発生して、第2走査線58を1行ずつ順に活性化し、第2走査線58に接続された第2TFT57を1行分ずつ順次オン状態とする。オン状態となる時間は、ゲートパルスg1、g4、g7・・・のパルス幅で規定されており、第2TFT57はパルス幅で規定された時間が経過するとオフ状態に復帰する。検出画素41bの光電変換部42で発生した電荷は、第1TFT43のオン/オフに関わらず、第2TFT57がオン状態の間、信号線45を介して積分アンプ49のキャパシタ49bに流入する。積分アンプ49に蓄積された検出画素41bからの電荷はA/D52に出力され、A/D52でデジタル電圧信号(以下、線量信号という)に変換される。線量信号はメモリ54に出力される。メモリ54には、撮像領域40内の各検出画素41bの座標情報と対応付けて線量信号が記録される。センサーパネル30は、こうした線量検出動作を、所定のサンプリングレートで複数回繰り返す。 In the dose detection operation performed at the time of pre-shooting, the second gate driver 59 performs gate pulses g1, g4, g7,..., Gk for simultaneously driving the second TFTs 57 in the same row under the control of the control unit 48. By sequentially generating k = 1 + 3 (n-1) at predetermined intervals, the second scanning lines 58 are activated sequentially by one row, and the second TFTs 57 connected to the second scanning lines 58 are sequentially turned on by one row. It will be in the state. The time for the on state is defined by the pulse width of the gate pulses g1, g4, g7,... The second TFT 57 returns to the off state when the time defined by the pulse width elapses. The charge generated in the photoelectric conversion unit 42 of the detection pixel 41 b flows into the capacitor 49 b of the integration amplifier 49 via the signal line 45 while the second TFT 57 is on regardless of whether the first TFT 43 is on or off. The charge from the detection pixel 41b accumulated in the integrating amplifier 49 is output to the A / D 52, and is converted into a digital voltage signal (hereinafter referred to as a dose signal) by the A / D 52. The dose signal is output to the memory 54. A dose signal is recorded in the memory 54 in association with coordinate information of each detection pixel 41 b in the imaging region 40. The sensor panel 30 repeats such dose detection operation a plurality of times at a predetermined sampling rate.
 図6において、AEC部60は、制御部48により駆動制御される。AEC部60は、プレ撮影において、所定のサンプリングレートで複数回取得される線量信号をメモリ54から読み出して、読み出した線量信号に基づいてAECを行う。 In FIG. 6, the AEC unit 60 is drive-controlled by the control unit 48. The AEC unit 60 reads out from the memory 54 the dose signal acquired a plurality of times at a predetermined sampling rate in the pre-shooting, and performs AEC based on the read dose signal.
 AEC部60は、複数回の線量検出動作によってメモリ54から読み出される線量信号を、座標毎に順次加算することにより、撮像領域40に到達するX線の累積線量を測定する。より具体的には、AEC部60は、撮像領域40を予め所定の大きさの領域に等分割した分割領域毎に累積線量を求める。各分割領域の累積線量は、例えば、各分割領域内に存在する複数の検出画素41bのそれぞれの線量信号の積算値を求め、各検出画素41bの積算値の加算値を検出画素41bの個数で除算した平均値が使用される。AEC部60は、各分割領域のうちの例えば累積線量が最も低い分割領域をAECの判定対象領域となる採光野領域に定める。 The AEC unit 60 measures the accumulated dose of X-rays reaching the imaging region 40 by sequentially adding, for each coordinate, dose signals read from the memory 54 by a plurality of dose detection operations. More specifically, the AEC unit 60 obtains an accumulated dose for each divided area obtained by equally dividing the imaging area 40 into areas of a predetermined size. The accumulated dose of each divided area is obtained, for example, by calculating the integrated value of the dose signal of each of a plurality of detection pixels 41b present in each divided area, and adding the integrated value of each detected pixel 41b to the number of detected pixels 41b. The divided average value is used. The AEC unit 60 defines, for example, the divided area having the lowest accumulated dose among the divided areas as a light collection area which is a determination target area of the AEC.
 なお、採光野領域の決め方は一例であり、撮影部位に応じて採光野領域を決めてもよいし、ユーザ設定により任意の領域を採光野領域として指定できるようにしてもよい。また、各分割領域の累積線量は、平均値でなくてもよく、各分割領域内の各検出画素41bの線量信号の積算値の中の最大値、最頻値、または合計値でもよい。 Note that how to determine the light collection area is an example, and the light collection area may be determined according to the imaging region, or an arbitrary area may be designated as the light collection area by user setting. The accumulated dose of each divided area may not be an average value, and may be the maximum value, the mode value, or the total value among the integrated values of the dose signal of each detection pixel 41b in each divided area.
 AEC部60は、採光野領域の累積線量と予め設定された照射停止閾値(目標線量)とを比較して、累積線量が照射停止閾値に達したか否かを判定する。AEC部60は、採光野領域の累積線量が照射停止閾値を上回り、X線の累積線量が目標線量に達したと判定したときに制御部48に照射停止信号を出力する。 The AEC unit 60 compares the accumulated dose of the light collection area with the preset irradiation stop threshold (target dose) to determine whether the accumulated dose has reached the irradiation stop threshold. The AEC unit 60 outputs an irradiation stop signal to the control unit 48 when it is determined that the accumulated dose in the light receiving area exceeds the irradiation stop threshold and the accumulated dose of X-rays has reached the target dose.
 照射信号I/F61には、線源制御装置11の照射信号I/F26が有線または無線接続される。照射信号I/F61は、線源制御装置11との間の同期制御の際に送受信される同期信号、具体的には、線源制御装置11からの照射開始要求信号の受信と、照射開始要求信号に対する応答である照射許可信号の線源制御装置11への送信を媒介する。この他、AEC部60が出力する照射停止信号を、制御部48を介して受け取って線源制御装置11に向けて送信する。 The irradiation signal I / F 26 of the radiation source control device 11 is connected to the irradiation signal I / F 61 in a wired or wireless manner. The irradiation signal I / F 61 is a synchronization signal transmitted / received during synchronization control with the radiation source control device 11, specifically, reception of an irradiation start request signal from the radiation source control device 11, and an irradiation start request It mediates the transmission to the source controller 11 of the exposure signal, which is the response to the signal. Besides, the irradiation stop signal output from the AEC unit 60 is received through the control unit 48 and transmitted to the radiation source control device 11.
 通信I/F55は、コンソール14および線源制御装置11のそれぞれと有線または無線接続され、コンソール14および線源制御装置11との間の情報の送受信を媒介する。通信I/F55は、コンソール14との間では、オペレータによって入力された撮影条件と、後述する判定条件とを受信してこれらの情報を制御部48に入力する。線源制御装置11との間では、通信I/F22と通信して、制御部48が決定した本撮影条件を線源制御装置11に送信する。 The communication I / F 55 is connected by wire or wirelessly to each of the console 14 and the radiation source control device 11, and mediates transmission and reception of information between the console 14 and the radiation source control device 11. The communication I / F 55 receives the imaging conditions input by the operator and the determination conditions to be described later with the console 14, and inputs the information to the control unit 48. Between the radiation source control apparatus 11 and the communication I / F 22, the main imaging conditions determined by the control unit 48 are transmitted to the radiation source control apparatus 11.
 コンソール14のストレージデバイス14cには、撮影条件毎に複数の判定条件が予め記録された判定条件テーブル62が格納されている。判定条件には、照射停止閾値と必要線量が含まれる。照射停止閾値は、上述したとおり、プレ撮影時にAEC部60が線量信号の積算値と比較してX線の照射停止を判定するための情報である。プレ撮影時に照射されるX線は少量であるため、照射停止閾値が低すぎると、線量信号に重畳されるノイズの影響を受けて誤判定の要因となる。そのため、照射停止閾値は、ノイズの影響を受けない程度の値が設定される。必要線量は、制御部48が本撮影の撮影条件を決定する際に用いられる。必要線量は、本撮影で必要とされるX線の累積線量であり、本撮影で得られるX線画像が診断に供する良好な画質となる値に設定される。 The storage device 14 c of the console 14 stores a determination condition table 62 in which a plurality of determination conditions are recorded in advance for each imaging condition. The determination conditions include the irradiation stop threshold and the required dose. As described above, the irradiation stop threshold is information for the AEC unit 60 to determine the irradiation stop of the X-ray in comparison with the integrated value of the dose signal at the time of preliminary imaging. Since a small amount of X-rays is irradiated at the time of pre-imaging, if the irradiation stop threshold is too low, it will be affected by noise superimposed on the dose signal, which will cause an erroneous determination. Therefore, the irradiation stop threshold is set to a value that is not affected by noise. The necessary dose is used when the control unit 48 determines the imaging conditions for the main imaging. The required dose is the cumulative dose of X-rays required for the main imaging, and is set to a value that makes the X-ray image obtained for the main imaging have a good image quality for diagnosis.
 コンソール14は、オペレータによって撮影条件が入力されたときに、その撮影条件に含まれる、撮影部位、管電圧および管電流に対応する判定条件を判定条件テーブル62から読み出す。コンソール14は、読み出した判定条件を撮影条件と一緒に電子カセッテ13に送信する。電子カセッテ13は、撮影条件と判定条件を通信I/F55で受信して、制御部48に入力する。制御部48は、判定条件のうち、照射停止閾値をAEC部60に提供する。 When the imaging condition is input by the operator, the console 14 reads out from the determination condition table 62 the determination conditions corresponding to the imaging region, the tube voltage and the tube current included in the imaging condition. The console 14 transmits the read determination condition to the electronic cassette 13 together with the imaging condition. The electronic cassette 13 receives the imaging condition and the determination condition through the communication I / F 55 and inputs the same to the control unit 48. The control unit 48 provides the AEC unit 60 with the irradiation stop threshold among the determination conditions.
 制御部48にはタイマー63が設けられている。タイマー63は、プレ撮影時に実行されるAECにおいて、線源制御装置11に照射許可信号を送信してからAEC部60が照射停止信号を出力するまでの時間、すなわち、採光野領域における累積線量が照射停止閾値に達するまでの照射時間を計時する。 The control unit 48 is provided with a timer 63. The timer 63 is a time taken from the transmission of the irradiation permission signal to the radiation source control device 11 until the AEC unit 60 outputs the irradiation stop signal in the AEC executed at the time of pre-photographing, that is, the accumulated dose in the light collection area The irradiation time until reaching the irradiation stop threshold is counted.
 制御部48は、タイマー63で計時されたプレ撮影におけるX線の照射時間(照射停止閾値に達するまでの時間)と、コンソール14から入力された必要線量および照射停止閾値から本撮影の撮影条件である照射時間を決定する。本撮影の照射時間は、プレ撮影と同じ管電流で本撮影において必要線量が得られるまでの時間であるから、プレ撮影において照射停止閾値までに達するまでに掛かった照射時間から比例計算により求められる。求める本撮影の照射時間をT2、必要線量をD2、プレ撮影の照射時間をT1、照射停止閾値(プレ撮影における累積線量)をD1とすると、照射時間T2は、次式(1)で求められる。
 T2=T1・D2/D1・・・(1)
The control unit 48 uses the X-ray irradiation time (time to reach the irradiation stop threshold) in the pre-shooting timed by the timer 63 and the necessary dose and the irradiation stop threshold input from the console 14 under the imaging conditions of the main imaging Determine a certain irradiation time. The irradiation time for main imaging is the time until the required dose is obtained in main imaging with the same tube current as in preliminary imaging, so it can be determined by proportional calculation from the irradiation time taken to reach the irradiation stop threshold in preliminary imaging . Assuming that the irradiation time of the main imaging to be obtained is T2, the required dose is D2, the irradiation time of the preliminary imaging is T1, and the irradiation stop threshold (the cumulative dose in the preliminary imaging) is D1, the irradiation time T2 can be obtained by the following equation (1) .
T2 = T1 · D2 / D1 (1)
 ただし、上述したように、通常画素41aの蓄積動作は、プレ撮影から本撮影まで中断することなく継続されるので、通常画素41aには、プレ撮影において照射された線量に応じた信号電荷も蓄積されている。そのため、本撮影における必要線量は、プレ撮影において既に照射済みの線量を控除した値とすることができる。この場合には、本撮影の照射時間T2は、次式(2)で求められる。
 T2=T1・(D2-D1)/D1・・・(2)
However, as described above, since the accumulation operation of the normal pixel 41a is continued without interruption from the pre-shooting to the main shooting, the signal charge corresponding to the dose irradiated in the pre-shooting is also stored in the normal pixel 41a. It is done. Therefore, the required dose in the main imaging can be a value obtained by subtracting the dose already irradiated in the preliminary imaging. In this case, the irradiation time T2 of the main imaging can be obtained by the following equation (2).
T2 = T1 · (D2-D1) / D1 (2)
 制御部48は、こうして求めた本撮影の照射時間T2を本撮影条件として、通信I/F55を介して線源制御装置11に送信する。なお、本撮影条件としては、照射時間T2を送信しているが、照射時間T2と管電流の積である管電流時間積を送信してもよい。 The control unit 48 transmits the irradiation time T2 for the main imaging thus determined to the radiation source control apparatus 11 via the communication I / F 55 as the main imaging condition. Although the irradiation time T2 is transmitted as the main imaging condition, a tube current time product, which is the product of the irradiation time T2 and the tube current, may be transmitted.
 次に、図7のタイミングチャートを参照して、X線撮影システム2においてプレ撮影と本撮影をセットとする1回のX線撮影を行う場合の手順を説明する。 Next, with reference to the timing chart of FIG. 7, a procedure in the case of performing one X-ray imaging in which the pre-imaging and the main imaging are set in the X-ray imaging system 2 will be described.
 X線撮影システム2においてX線撮影を行う場合は、まず、被写体を立位、臥位の各撮影台15、16のいずれかの所定の撮影位置にセットし、電子カセッテ13の高さや水平位置を調節して、被写体の撮影部位と位置を合わせる。そして、電子カセッテ13の位置および撮影部位の大きさに応じて、X線源10の高さや水平位置、照射野の大きさを調整する。次いで線源制御装置11とコンソール14に撮影条件(撮影部位、管電流、管電圧)を設定する。コンソール14で設定された撮影条件は電子カセッテ13に提供される。また、図6で示したように、コンソール14において撮影条件に応じた判定条件(照射停止閾値、必要線量)が読み出されて撮影条件とともに電子カセッテ13に提供される。 When performing X-ray imaging in the X-ray imaging system 2, first, the subject is set to a predetermined imaging position of either the standing position or the photographing position 15 or 16 of the recumbent position, and the height and horizontal position of the electronic cassette 13 Adjust the position of the subject with the subject. Then, the height and horizontal position of the X-ray source 10 and the size of the irradiation field are adjusted in accordance with the position of the electronic cassette 13 and the size of the imaging region. Next, imaging conditions (imaging region, tube current, tube voltage) are set in the radiation source control device 11 and the console 14. The imaging conditions set by the console 14 are provided to the electronic cassette 13. Further, as shown in FIG. 6, the determination conditions (irradiation stop threshold value, necessary dose) according to the imaging conditions are read out on the console 14 and provided to the electronic cassette 13 together with the imaging conditions.
 撮影準備が完了すると、オペレータによって照射スイッチ12が半押し(SW1オン)される。X線発生装置2aの線源制御装置11は、照射スイッチ12が半押しされると、ウォームアップ開始信号を高電圧発生器20に発して、X線源10にウォームアップを開始させる。また、X線源10のウォームアップが完了すると、線源制御装置11は、照射開始要求信号(要求)を電子カセッテ13に送信する。 When the preparation for imaging is completed, the irradiation switch 12 is half-pressed (SW1 ON) by the operator. When the irradiation switch 12 is pressed halfway, the radiation source control device 11 of the X-ray generator 2a issues a warm-up start signal to the high voltage generator 20 to cause the X-ray source 10 to start warming up. Further, when the warm-up of the X-ray source 10 is completed, the radiation source control device 11 transmits an irradiation start request signal (request) to the electronic cassette 13.
 X線撮影前の待機モードでは、電子カセッテ13のセンサーパネル30はリセット動作を繰り返し行っており、照射開始要求信号を待ち受けている。センサーパネル30は、線源制御装置11から照射開始要求信号を受信すると、状態チェックを行った後に線源制御装置11に照射許可信号(許可)を送信する。同時にセンサーパネル30はリセット動作を終えて蓄積動作と線量検出動作を開始し、待機モードから撮影モードに切り替わる。また、タイマー63によるプレ撮影のX線の照射時間T1の計測が開始される。 In the standby mode before X-ray imaging, the sensor panel 30 of the electronic cassette 13 repeatedly performs the reset operation and waits for an irradiation start request signal. When receiving the irradiation start request signal from the radiation source control device 11, the sensor panel 30 transmits a radiation permission signal (permission) to the radiation source control device 11 after performing a state check. At the same time, the sensor panel 30 finishes the reset operation, starts the accumulation operation and the dose detection operation, and switches from the standby mode to the imaging mode. Also, measurement of the X-ray irradiation time T1 of the pre-imaging by the timer 63 is started.
 線源制御装置11は、センサーパネル30から照射許可信号を受信すると、高電圧発生器20に対して第1照射開始信号を発して、X線源10にプレ撮影のX線照射を開始させる。X線源10から照射されたX線は被写体を透過してセンサーパネル30に入射する。 When the radiation source control device 11 receives the radiation permission signal from the sensor panel 30, the radiation source control device 11 issues a first radiation start signal to the high voltage generator 20 to cause the X-ray source 10 to start pre-imaging X-ray radiation. The X-rays emitted from the X-ray source 10 pass through the subject and enter the sensor panel 30.
 線量検出動作において、センサーパネル30は、検出画素41bで発生した電荷の読み出しが所定のサンプリングレートで繰り返し行われる。AEC部60は、所定のサンプリングレートで読み出される検出画素41bからの線量信号に基づいて、分割領域毎の累積線量を計算して、最小値の累積線量を示す分割領域を採光野領域に決定する。そして、AEC部60は、採光野領域の累積線量と照射停止閾値とを比較して、累積線量が照射停止閾値に到達したか否かを判定する。 In the dose detection operation, the sensor panel 30 repeatedly reads out the charge generated in the detection pixel 41b at a predetermined sampling rate. The AEC unit 60 calculates the accumulated dose for each divided area based on the dose signal from the detection pixel 41b read out at a predetermined sampling rate, and determines the divided area indicating the accumulated dose of the minimum value as the lighting area . Then, the AEC unit 60 compares the cumulative dose of the light collection area with the irradiation stop threshold to determine whether the cumulative dose has reached the irradiation stop threshold.
 AEC部60は、採光野領域の累積線量が照射停止閾値に到達すると照射停止信号を出力する。これと同時に、タイマー63は、プレ撮影のX線の照射時間T1の計時を停止する。照射停止信号は線源制御装置11に送信される。線源制御装置11は照射停止信号を受けてX線源10によるX線の照射を停止する。線源制御装置11は、X線源10によるX線照射を停止した後も、X線源10を初期状態に復帰させることなく、ウォームアップを完了した状態を継続させる。 The AEC unit 60 outputs an irradiation stop signal when the accumulated dose in the light receiving area reaches the irradiation stop threshold. At the same time, the timer 63 stops measuring the X-ray irradiation time T1 of the pre-imaging. The irradiation stop signal is transmitted to the radiation source control device 11. The radiation source control device 11 receives the radiation stop signal and stops the radiation of the X-ray by the X-ray source 10. The radiation source control device 11 continues the warm-up completion state without returning the X-ray source 10 to the initial state even after the X-ray irradiation by the X-ray source 10 is stopped.
 センサーパネル30は、AEC部60が照射停止信号を出力した後も蓄積動作を続行する。制御部48は、照射停止信号が送信された後、本撮影条件決定処理を実行する。本撮影条件決定処理では、制御部48は、タイマー63で計時した照射時間T1と、判定条件として設定された照射停止閾値および必要線量とに基づいて本撮影のX線の照射時間T2を決定する。決定された照射時間T2の情報は、線源制御装置11に送信される。線源制御装置11では、受信した照射時間T2がタイマー25に設定される。 The sensor panel 30 continues the accumulation operation even after the AEC unit 60 outputs the irradiation stop signal. After the irradiation stop signal is transmitted, the control unit 48 executes the main imaging condition determination process. In the main imaging condition determination process, the control unit 48 determines the main exposure X-ray irradiation time T2 based on the irradiation time T1 counted by the timer 63 and the irradiation stop threshold set as the determination condition and the required dose. . Information on the determined irradiation time T2 is transmitted to the radiation source control device 11. In the radiation source control device 11, the received irradiation time T2 is set in the timer 25.
 オペレータは、照射スイッチ12を半押しした後、ウォームアップおよびプレ撮影に要する時間を見計らって、照射スイッチ12を全押しする。照射スイッチ12が全押しされると、線源制御装置11は、本撮影の照射を開始する前に、電子カセッテ13に対して照射開始要求信号(開始)を送信して同期制御を行う。電子カセッテ13において、センサーパネル30はプレ撮影から蓄積動作を継続しているので、電子カセッテ13は、照射開始要求信号を受信すると、直ちに線源制御装置11に対して照射許可信号(許可)を送信する。 After pressing the irradiation switch 12 halfway, the operator fully presses the irradiation switch 12 in anticipation of the time required for warm-up and pre-shooting. When the irradiation switch 12 is fully pressed, the radiation source control device 11 transmits an irradiation start request signal (start) to the electronic cassette 13 to perform synchronous control before starting irradiation of the main imaging. In the electronic cassette 13, since the sensor panel 30 continues the accumulation operation from the pre-shooting, when the electronic cassette 13 receives the irradiation start request signal, it immediately transmits the irradiation permission signal (permission) to the radiation source control device 11. Send.
 線源制御装置11は、照射許可信号を受信すると、高電圧発生器20に対して第2照射開始信号を発して、X線源10に本撮影のX線照射を開始させる。X線源10はプレ撮影後もウォームアップが完了した状態が継続されているため、本撮影前にウォームアップを行うことなく本撮影のX線照射を直ちに開始することができる。線源制御装置11は、タイマー25で照射時間を計時して、計時した照射時間が照射時間T2に達した時点でX線の照射を停止させる。 When the radiation source control device 11 receives the radiation permission signal, the radiation source control device 11 issues a second radiation start signal to the high voltage generator 20 to cause the X-ray source 10 to start X-ray radiation for the main imaging. Since the X-ray source 10 continues to be warmed up even after the pre-imaging, the X-ray irradiation of the main imaging can be immediately started without performing the warm-up before the main imaging. The radiation source control device 11 counts the irradiation time by the timer 25 and stops the X-ray irradiation when the counted irradiation time reaches the irradiation time T2.
 センサーパネル30ではプレ撮影から引き続いて通常画素41aの蓄積動作が行われている。制御部48のタイマー63においても、2回目に照射許可信号を送信してからの経過時間を計時する。そして、経過時間が照射時間T2となった時点で、センサーパネル30の動作が蓄積動作から読み出し動作に移行される。これにより1枚分のX線画像を表す画像データがメモリ54に出力される。読み出し動作後、センサーパネル30はリセット動作を行う待機モードに戻る。 In the sensor panel 30, the accumulation operation of the normal pixel 41a is performed subsequently to the pre-photographing. The timer 63 of the control unit 48 also counts the elapsed time since the second transmission of the irradiation permission signal. Then, when the elapsed time reaches the irradiation time T2, the operation of the sensor panel 30 is shifted from the accumulation operation to the read operation. As a result, image data representing one X-ray image is output to the memory 54. After the read operation, the sensor panel 30 returns to the standby mode in which the reset operation is performed.
 制御部48の各種画像処理回路により、読み出し動作でメモリ54に出力されたX線画像に対して各種画像処理が行われる。画像処理済みのX線画像はコンソール14に送信され、ディスプレイ14bに表示されて診断に供される。これにてプレ撮影と本撮影をセットする1回のX線撮影が終了する。 The various image processing circuits of the control unit 48 perform various image processing on the X-ray image output to the memory 54 in the reading operation. The image-processed X-ray image is transmitted to the console 14 and displayed on the display 14 b for diagnosis. This completes one X-ray imaging for setting the pre-imaging and the main imaging.
 以上説明したとおり、X線撮影システム2では、プレ撮影の照射前にX線源10のウォームアップを行い、プレ撮影の照射後もX線源10を初期状態に戻すことなくウォームアップを完了した状態に維持する。これにより、本撮影の照射前のウォームアップを省くことができ、従来のようにプレ撮影と本撮影の照射前に都合2回ウォームアップを行う場合と比べて1回のX線撮影に掛かる時間を短縮することができる。これにより診断効率が向上し、多くの患者を限られた時間内で捌く必要がある集団検診において特に効果を発揮する。 As described above, in the X-ray imaging system 2, the warm-up of the X-ray source 10 is performed before the irradiation of the pre-imaging, and the warm-up is completed without returning the X-ray source 10 to the initial state even after the irradiation of the pre-imaging Keep in state. As a result, it is possible to omit the warm-up before the irradiation of the main imaging, and it takes time for one X-ray imaging to be performed as compared to the conventional case where warm-up is performed twice before the pre-imaging and the main imaging irradiation. Can be shortened. This improves the diagnostic efficiency and is particularly effective in mass screening where it is necessary to crawl many patients within a limited time.
 本撮影の撮影条件を決定するために必要な累積線量が照射されるまでプレ撮影を行い、タイマー63で計時したプレ撮影の照射時間T1、および判定条件として設定された照射停止閾値と必要線量に基づいて本撮影の撮影条件である照射時間T2を決定するので、被写体の体型や体内組織の密度等の個体差によらず常に適正な撮影条件で本撮影を行うことができる。オペレータが被写体の個体差に応じて撮影条件を調整する場合と比較して、正確でかつ簡単に適正な撮影を行うことができる。 Pre-imaging is performed until the cumulative dose necessary to determine the imaging conditions for the actual imaging is irradiated, and the irradiation time T1 of the pre-imaging measured by the timer 63 and the irradiation stop threshold set as the determination condition and the required dose Since the irradiation time T2, which is the imaging condition of the main imaging, is determined based on the above, the main imaging can be always performed under the appropriate imaging condition regardless of the individual differences such as the body type of the subject and the density of internal tissues. As compared with the case where the operator adjusts the imaging condition according to the individual difference of the subject, accurate and easy imaging can be performed.
 また、AECはX線の照射量が少ないプレ撮影時のみ行う。これは本撮影でAECを行う場合と比べて次のようなメリットがある。AECを行う場合には、電子カセッテ13から線源制御装置11に対して照射停止信号を送信することになるが、通信遅延などが生じた場合には、照射停止信号に遅延が生じて適正なタイミングでX線照射を停止できない場合がある。照射停止信号が遅延すると、必要以上のX線が照射されることになるため、被写体の被曝量が多くなる。X線の照射量が少ないプレ撮影でAECを行えば、照射停止信号の遅延が生じた場合でも、本撮影で行う場合と比べれば無用な被曝量の増加を抑えることができる。 Also, AEC is performed only at the time of pre-imaging where the amount of X-ray irradiation is small. This has the following merits compared with the case of performing AEC in real shooting. When AEC is performed, the irradiation stop signal is transmitted from the electronic cassette 13 to the radiation source control device 11. However, when a communication delay or the like occurs, the irradiation stop signal is delayed to be appropriate. In some cases, X-ray irradiation can not be stopped at the timing. When the irradiation stop signal is delayed, X-rays more than necessary are irradiated, so the exposure dose of the subject increases. If AEC is performed in pre-imaging with a small amount of X-ray irradiation, even if a delay occurs in the irradiation stop signal, an increase in unnecessary exposure can be suppressed as compared with the case of performing actual imaging.
 上記例においては、プレ撮影と本撮影で、同じ管電流を設定しているが、例えば、プレ撮影では本撮影よりも管電流を小さくしてもよい。こうすれば、プレ撮影において照射停止信号の遅延が生じた場合でも、単位時間当たりのX線の照射量を決める管電流が小さい分、無用な被曝量の増加をさらに抑えることができる。ただしこの場合、本撮影条件決定処理においては、プレ撮影と本撮影の管電流の違いを考慮して、本撮影の照射時間を計算することになる。 In the above example, the same tube current is set for the pre-shooting and the main shooting, but for example, in the pre-shooting, the tube current may be smaller than that for the main shooting. In this way, even when the irradiation stop signal is delayed in the pre-imaging, an increase in the unnecessary dose can be further suppressed because the tube current that determines the dose of X-rays per unit time is small. However, in this case, in the main photographing condition determination process, the irradiation time of the main photographing is calculated in consideration of the difference in tube current between the preliminary photographing and the main photographing.
 プレ撮影で読み出し動作を行わずプレ撮影開始から本撮影終了までは通常画素41aの蓄積動作を続行するため、プレ撮影で照射したX線が無駄にならずに済む。その分、被写体への被曝量を低減することができる。また、このようにプレ撮影の照射を診断に供するX線画像に反映させた場合、プレ撮影と本撮影の照射の間の被写体の体動の影響でX線画像の画質が劣化するおそれがあるが、本発明ではウォームアップを行わずに直ちに本撮影の照射に移り、間を空けずにプレ撮影と本撮影の照射を行うので、X線画像への体動の影響を低減することができる。 Since the readout operation is not performed in the pre-imaging and the accumulation operation of the normal pixel 41a is continued from the start of the pre-imaging to the end of the main imaging, the X-rays irradiated in the pre-imaging can be prevented from being wasted. The amount of exposure to the subject can be reduced accordingly. In addition, when the irradiation of the pre-imaging is reflected on the X-ray image to be used for diagnosis in this way, the image quality of the X-ray image may be degraded due to the body movement of the subject between the pre-imaging and the main imaging. However, in the present invention, since the radiation for the main imaging is immediately performed without warm-up, and the radiation for the pre-imaging and the main imaging is performed without a gap, the influence of the body movement on the X-ray image can be reduced. .
 なお、プレ撮影のX線照射の停止時にリセット動作を行ってプレ撮影で蓄積された電荷を棄て、本撮影のX線照射の開始時に改めて蓄積動作を再開してもよい。この場合は、本撮影条件決定処理では式(1)を用い、必要線量(D2)から照射停止閾値に相当するプレ撮影における累積線量(D1)を減算せずに、本撮影の照射時間T2を求める。 Note that the reset operation may be performed at the time of stopping the X-ray irradiation in the pre-imaging, the charges accumulated in the pre-imaging may be discarded, and the accumulation operation may be restarted at the start of the X-ray irradiation in the main imaging. In this case, the exposure time T2 of the main imaging is determined without subtracting the cumulative dose (D1) in the pre-exposure corresponding to the irradiation stop threshold from the required dose (D2) using the equation (1) in the main imaging condition determination process Ask.
 また、上記例では、線源制御装置11と電子カセッテ13のプレ撮影時の同期制御に関して、図7に示すように、X線源10のウォームアップが完了したときに線源制御装置11から電子カセッテ13に照射開始要求信号(要求)を送信しているが、照射スイッチ12が半押しされたときに照射開始要求信号を送信してもよいし、ウォームアップの途中で送信してもよい。しかし、電子カセッテ13では照射開始要求信号の応答である照射許可信号を送信してから照射時間T1の計時を開始するので、照射許可信号の送信タイミングとプレ撮影の照射開始タイミングに間隔が空くと、照射時間T1の正確性が損なわれる。そのため、上記例で示したようにウォームアップが完了したときに照射開始要求信号を送信することが好ましい。 Further, in the above example, with regard to synchronous control at the time of preliminary imaging of the radiation source control device 11 and the electronic cassette 13, as shown in FIG. 7, when warm-up of the X-ray source 10 is completed Although the irradiation start request signal (request) is transmitted to the cassette 13, the irradiation start request signal may be transmitted when the irradiation switch 12 is pressed halfway or may be transmitted during warm-up. However, since the electronic cassette 13 transmits the irradiation permission signal which is a response to the irradiation start request signal and then starts counting the irradiation time T1, if there is an interval between the transmission timing of the irradiation permission signal and the irradiation start timing of the pre-shooting The accuracy of the irradiation time T1 is lost. Therefore, it is preferable to transmit the irradiation start request signal when the warm-up is completed as shown in the above example.
 また、上記例では、プレ撮影中の線量検出動作において検出画素41bから読み出される線量信号をAECのみに利用しているが、線量信号に基づく画像情報をプレビュー画像として電子カセッテ13からコンソール14に送信し、これをディスプレイ14bにプレビュー表示してもよい。上記例においては、検出画素41bは、撮像領域40内の全領域に満遍なく分散配置されており、各検出画素41bからの線量信号は、メモリ54内において各検出画素41bの座標と対応付けて記録される。そのため、メモリ54に記録された画像情報は、解像度が低く診断には供せないものの、被写体の位置や撮影部位の確認には利用することができる。したがって、線量信号に基づく画像情報をプレビュー表示すれば、プレ撮影時に被写体が動いたりして被写体の位置や撮影部位が適正でないことをオペレータが確認することができる。 In the above example, the dose signal read from the detection pixel 41b is used only for AEC in the dose detection operation during pre-shooting, but image information based on the dose signal is transmitted from the electronic cassette 13 to the console 14 as a preview image. And may be previewed on the display 14b. In the above example, the detection pixels 41b are distributed throughout the entire imaging area 40, and the dose signal from each detection pixel 41b is recorded in the memory 54 in association with the coordinates of each detection pixel 41b. Be done. Therefore, although the image information recorded in the memory 54 has low resolution and can not be used for diagnosis, it can be used to confirm the position of the subject and the imaging region. Therefore, if the image information based on the dose signal is displayed as a preview, the operator can confirm that the position of the subject or the region to be imaged is not appropriate due to movement of the subject at the time of pre-imaging.
 このように、プレ撮影時の線量信号に基づく画像情報をプレビュー画像に利用して本撮影の前にプレビュー表示を行えば、プレ撮影時に明らかに撮影失敗と分かった場合に本撮影を止めることができる。プレビュー表示の時点で本撮影を止める場合には照射スイッチ12の半押しを解除すればよい。照射スイッチ12の半押しが解除されると、制御部21から初期化信号が発せられてX線源10が初期状態に戻される。また、オペレータは、コンソール14を操作して、電子カセッテ13をセンサーパネル30がリセット動作を繰り返す待機モード)に戻す。そして、被写体のポジショニングを修正した後に、再度最初から撮影をやり直す。 As described above, if image information based on the dose signal at the time of pre-shooting is used as a preview image to perform preview display before main shooting, the main shooting may be stopped if it is clearly found that shooting failed during pre-shooting. it can. In order to stop the main photographing at the time of the preview display, half-pressing of the irradiation switch 12 may be released. When the half depression of the irradiation switch 12 is released, an initialization signal is issued from the control unit 21 and the X-ray source 10 is returned to the initial state. Further, the operator operates the console 14 to return the electronic cassette 13 to the standby mode in which the sensor panel 30 repeats the reset operation. Then, after correcting the subject's positioning, start shooting again from the beginning.
 なお、プレビュー画像を確認できなかったとしても、オペレータは通常撮影室のガラス越しに被写体の体動があるか否かを撮影中に監視しているため、目視で体動に気付いたときに照射スイッチ12の半押しを解除することで本撮影を止めることができる。 Even if the preview image can not be confirmed, the operator usually monitors during shooting whether or not the subject's body movement occurs through the glass in the shooting room, so when the body movement is noticed visually, the irradiation is performed. By releasing the switch 12 half-pressed, the real shooting can be stopped.
 上記実施形態では、照射スイッチ12の半押しが解除されたときにX線源10をウォームアップ開始前の初期状態に戻しているが、これに代えて、照射スイッチ12が半押しされてからの経過時間を計り、経過時間が予め設定された閾値を過ぎても次の操作がされなかった場合は本撮影を中止したと判断してX線源10を初期状態に戻してもよい。また、電子カセッテ13では、所定回のサンプリングで線量信号がほぼ0であった場合に本撮影を中止したと判断してセンサーパネル30を蓄積動作からリセット動作に移行させてもよい。 In the above embodiment, the X-ray source 10 is returned to the initial state before the start of warmup when the half-pressing of the irradiation switch 12 is released, but instead, the X-ray source 10 is half-pressed after the irradiation switch 12 is half-pressed The elapsed time may be measured, and if the next operation is not performed even if the elapsed time passes a preset threshold, it may be determined that the main imaging has been canceled and the X-ray source 10 may be returned to the initial state. The electronic cassette 13 may shift the sensor panel 30 from the accumulation operation to the reset operation, judging that the main imaging has been stopped when the dose signal is approximately 0 in the predetermined sampling.
[第2実施形態]
 上記第1実施形態では、照射スイッチ12の半押し(SW1オン)でウォームアップとプレ撮影の照射を行い、全押し(SW2オン)で本撮影の照射を行っているが、本発明はこれに限定されず、図8に示す態様としてもよい。図8に示す第2実施形態では、照射スイッチ12の半押しでウォームアップを行い、続く全押しでプレ撮影の照射を行う。プレ撮影の照射後、1点鎖線の丸で囲むように照射スイッチ12を半押しの状態に戻し(SW1はオンのままSW2をオフし)、再び全押しすることで本撮影の照射を行う。
Second Embodiment
In the first embodiment, warm-up and pre-shooting irradiation are performed by half-pressing the switch 12 (SW1 on) and full-shooting (SW2 on) is performed for the main-shooting irradiation. It is not limited and may be an embodiment shown in FIG. In the second embodiment shown in FIG. 8, warm-up is performed by half-pressing the irradiation switch 12, and irradiation of pre-shooting is performed by the subsequent full-press. After the pre-shooting irradiation, the irradiation switch 12 is returned to a half-pushed state (SW1 is turned on and SW2 is turned off) so as to be surrounded by a dot-dash circle and full-exposure is performed by fully pressing again.
 この場合、線源制御装置11は、照射スイッチ12が半押しされたときに、X線源10に対してウォームアップ開始信号を発してウォームアップを開始させる点は、上記第1実施形態と同じである。第1実施形態では、照射スイッチ12が半押しされていれば、ウォームアップ完了後、プレ撮影のX線照射が開始されたが、第2実施形態では、ウォームアップ完了後、照射スイッチ12が全押しされたときに、線源制御装置11が第1照射開始信号を発して、X線源10がプレ撮影のX線照射を開始する。プレ撮影のX線照射の前には、線源制御装置11と電子カセッテ13との間で、照射開始要求信号と照射許可信号の送受信により同期制御が行われる。そして、照射スイッチ12は、オペレータによって全押し状態からいったん半押し状態に戻される。その後、再び全押しされると、線源制御装置11は、電子カセッテ13との間で同期制御を行い、X線源10に第2照射開始信号を発してX線源10に本撮影の照射を開始させる。プレ撮影のX線照射中における電子カセッテ13の動作は、照射時間T1の計測や照射時間T2の決定など、上記第1実施形態と同様である。 In this case, the source control device 11 issues a warm-up start signal to the X-ray source 10 to start the warm-up when the irradiation switch 12 is half-pressed, as in the first embodiment. It is. In the first embodiment, if the irradiation switch 12 is half-pressed, X-ray irradiation of the pre-shooting is started after the warm-up is completed, but in the second embodiment, after the warm-up is completed, the irradiation switch 12 is all When pressed, the radiation source controller 11 issues a first radiation start signal, and the X-ray source 10 starts X-ray radiation for preliminary imaging. Before X-ray irradiation in pre-imaging, synchronous control is performed between the radiation source control device 11 and the electronic cassette 13 by transmitting and receiving an irradiation start request signal and an irradiation permission signal. Then, the irradiation switch 12 is once returned from the fully-pressed state to the half-pressed state by the operator. After that, when fully pressed again, the radiation source control device 11 performs synchronous control with the electronic cassette 13 and issues a second radiation start signal to the X-ray source 10 to irradiate the X-ray source 10 with the main imaging. To start. The operation of the electronic cassette 13 during the pre-imaging X-ray irradiation is the same as that of the first embodiment, such as measurement of the irradiation time T1 and determination of the irradiation time T2.
[第3実施形態]
 照射スイッチは2段階押しに限らず、3段階押しの照射スイッチを用いてもよい。3段階押しの照射スイッチの場合は、図9に示す第3実施形態のように、1段押し(SW1オン)でウォームアップを行い、続く中押し(SW2オン)でプレ撮影の照射を行って、全押し(SW3オン)で本撮影の照射を行えばよい。線源制御装置11は、照射スイッチが1段押しされると、X線源10に対してウォームアップ開始信号を発してウォームアップを開始させ、中押しされると第1照射開始信号を発してX線源10にプレ撮影の照射を開始させ、全押しされると、第2照射開始信号を発してX線源10に本撮影の照射を開始させる。なお、従来の照射スイッチは2段階押しが主流であるため、操作感が慣れている分、本実施形態の3段階押しよりも第1、第2実施形態の2段階押しの照射スイッチを用いるほうがより好ましい。
Third Embodiment
The irradiation switch is not limited to the two-step push, and a three-step push irradiation switch may be used. In the case of the three-step push irradiation switch, as in the third embodiment shown in FIG. 9, warm-up is performed by one-step push (SW1 on), and then pre-shooting irradiation is performed by the next push (SW2 on). The full shooting may be performed by fully pressing (SW3 on). When the radiation switch is pressed one step, the radiation source control device 11 issues a warm-up start signal to the X-ray source 10 to start the warm-up, and when the radiation switch is pressed halfway, it issues a first radiation start signal. The radiation source 10 is caused to start irradiation for pre-imaging, and when it is fully pressed, a second irradiation start signal is issued to cause the X-ray source 10 to start irradiation for main imaging. In addition, since the conventional irradiation switch mainly uses two-step pressing, it is better to use the two-step pressing irradiation switch according to the first and second embodiments than the three-step pressing according to the present embodiment because the operation feeling is used. More preferable.
 また、単純に照射スイッチ12の半押しでウォームアップを行い、全押しでプレ撮影と本撮影の照射を自動的に連続して行ってもよい。ただし、このように本撮影前に照射スイッチ12への操作を入れずにプレ撮影と本撮影の照射を自動的に行うと、プレ撮影時に被写体が動いたりして明らかに撮影失敗と分かり本撮影を止めたい場合に対処することができないため、上記第1~第3実施形態のようにワンアクション入れてから本撮影の照射を開始するほうがよい。本撮影の照射開始前にワンアクションを入れることで、オペレータが自らの操作でプレ撮影と本撮影の境目を認識することができ、プレ撮影の結果をみて本撮影を中止し、被写体のポジショニングや撮影条件を修正することもできる。 Alternatively, warm-up may be performed simply by pressing the irradiation switch 12 halfway, and irradiation of the pre-photographing and the main photographing may be automatically and continuously performed by full-pressing. However, if the pre-shooting and the main shooting are automatically performed without the operation of the radiation switch 12 before the main shooting as described above, the subject may move during the pre-shooting, and the shooting may be clearly identified as a shooting failure. Since it is not possible to cope with the case where the user wants to stop the shooting, it is better to start the irradiation of the main photographing after putting in one action as in the first to third embodiments. By putting one action before the start of the main exposure, the operator can recognize the boundary between the pre exposure and the main exposure by his / her operation, and stop the main exposure by looking at the result of the pre exposure, positioning the subject, The shooting conditions can also be corrected.
 なお、電子カセッテ13から直接本撮影条件である照射時間T2の情報を線源制御装置11に送信するのではなく、電子カセッテ13からコンソール14に照射時間T2の情報を送信し、さらにコンソール14から線源制御装置11に照射時間T2の情報を送信してもよい。 The information on the irradiation time T2 is transmitted from the electronic cassette 13 to the console 14 instead of the information on the irradiation time T2, which is the main imaging condition, directly transmitted from the electronic cassette 13 to the radiation source control device 11. Information on the irradiation time T2 may be transmitted to the radiation source control device 11.
 上記実施形態では、第1TFT43とは別に駆動される第2TFT57を設けた検出画素41bを例示しているが、第1TFT43のソース電極とドレイン電極が短絡された画素、あるいは第1TFT43がなく光電変換部42が直接信号線45に接続された画素を検出画素としてもよい。 Although the detection pixel 41b provided with the second TFT 57 driven separately from the first TFT 43 is illustrated in the above embodiment, the pixel in which the source electrode and the drain electrode of the first TFT 43 are shorted, or the first TFT 43 does not exist. A pixel in which 42 is directly connected to the signal line 45 may be used as a detection pixel.
 また、各画素にバイアス電圧を供給するバイアス線に画素で発生する電荷に基づく電流が流れることを利用して、ある特定の画素に繋がるバイアス線の電流値をモニタリングして線量を検出してもよい。この場合は電流値をモニタリングする画素が検出画素となる。同様に画素から流れ出るリーク電流をモニタリングして線量を検出してもよく、この場合もリーク電流をモニタリングする画素が検出画素となる。さらに、画素とは別に構成が異なり出力が独立した線量検出センサを撮像領域に設けてもよい。これらAECを行うための線量検出センサの形態はその他どのようなものであってもよい。 In addition, even if the current value based on the charge generated in the pixel flows in the bias line that supplies the bias voltage to each pixel, the dose value can be detected by monitoring the current value of the bias line connected to a specific pixel. Good. In this case, a pixel for monitoring the current value is a detection pixel. Similarly, the leak current flowing out of the pixel may be monitored to detect the dose, and in this case as well, the pixel for monitoring the leak current is the detection pixel. Furthermore, a dose detection sensor having a different configuration and an independent output separately from the pixels may be provided in the imaging region. The form of the dose detection sensor for performing these AECs may be any other form.
 さらに、上記実施形態では、プレ撮影において、採光野領域の累積線量と予め設定された照射停止閾値(目標線量)とをAEC部60で比較して、累積線量が照射停止閾値に達したか否かを判定してX線の照射を停止する例を記載したが、プレ撮影の照射時間は固定であってもよい。この場合は検出画素41bはあってもよいが、プレ撮影の画像情報を通常画素41aから読み出し、その値に基づいて本撮影の条件を決めるようにすれば、検出画素41bがなくてもAECを行うことができる。プレ撮影の照射時間は、本撮影の照射時間よりも十分に小さい値が設定値として予め設定される。 Furthermore, in the above embodiment, in the pre-shooting, whether the accumulated dose reaches the irradiation stop threshold or not by comparing the accumulated dose in the daylight area with the preset irradiation stop threshold (target dose) in the AEC unit 60 Although the example which determines irradiation and stops irradiation of X-ray was described, the irradiation time of pre imaging | photography may be fixed. In this case, the detection pixel 41b may be present, but if the image information of the pre-photographing is read out from the normal pixel 41a and the condition of the main photographing is determined based on the value, the AEC It can be carried out. As the irradiation time of the pre-photographing, a value sufficiently smaller than the irradiation time of the main photographing is preset as a setting value.
 上記実施形態では、プレ撮影におけるX線の累積線量が照射停止閾値に達したら照射停止信号を出力しているが、線量信号の積算値に基づきX線の累積線量が照射停止閾値に達すると予測される時間を算出し、算出した予測時間に達したときに照射停止信号を線源制御装置に送信する、あるいは予測時間の情報そのものを線源制御装置に送信してもよい。また、積算値を計算するのは上記実施形態の線量信号の平均値に限らず、各分割領域の検出画素41bの線量信号の最大値、最頻値、または合計値でもよい。 In the above embodiment, the irradiation stop signal is output when the accumulated dose of X-rays in the pre-imaging reaches the irradiation stop threshold, but it is predicted that the accumulated dose of X-rays reaches the irradiation stop threshold based on the integrated value of the dose signal. The calculated time may be calculated, and the irradiation stop signal may be transmitted to the radiation source control device when the calculated prediction time is reached, or information of the prediction time itself may be transmitted to the radiation source control device. Further, the integrated value is not limited to the average value of the dose signal in the above embodiment, but may be the maximum value, the mode or the total value of the dose signal of the detection pixel 41b in each divided area.
 上記実施形態では、コンソール14と電子カセッテ13が別体である例で説明したが、コンソール14は独立した装置である必要はなく、電子カセッテ13にコンソール14の機能を搭載してもよい。また、電子カセッテ13の機能の一部、例えば、本撮影条件を決定する処理部をコンソール14にもたせてもよい。また、電子カセッテ13とコンソール14に加えて、コンソール14が有する電子カセッテ13を制御する機能の一部を実行する撮影制御装置を設けてもよい。 In the above embodiment, the console 14 and the electronic cassette 13 are described as being separate, but the console 14 does not have to be an independent device, and the electronic cassette 13 may have the function of the console 14. In addition, part of the functions of the electronic cassette 13, for example, a processing unit for determining the main imaging conditions may be provided on the console 14. In addition to the electronic cassette 13 and the console 14, a photographing control device may be provided which executes part of the function of controlling the electronic cassette 13 of the console 14.
 上記実施形態では、TFT型のセンサーパネルを例示しているが、CMOS型のセンサーパネルを用いてもよい。また、可搬型のX線画像検出装置である電子カセッテに限らず、撮影台に据え付けるタイプのX線画像検出装置に適用してもよい。さらに、本発明は、X線に限らず、γ線等の他の放射線を撮影対象とした場合にも適用することができる。 Although the TFT type sensor panel is illustrated in the above embodiment, a CMOS type sensor panel may be used. Further, the present invention is not limited to the electronic cassette which is a portable X-ray image detection device, and may be applied to an X-ray image detection device of a type installed on a photographing table. Furthermore, the present invention can be applied not only to X-rays but also to other radiations such as γ-rays as imaging targets.

Claims (18)

  1.  被写体に向けて放射線を照射する放射線発生装置と、被写体を透過した放射線を受けて放射線画像を撮影する放射線撮影装置とを備え、放射線画像を撮影するための本撮影と、前記本撮影に先立って前記本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う放射線撮影システムにおいて、
     前記放射線発生装置は、
     前記プレ撮影用の第1照射と、前記本撮影用の第2照射を実行する放射線源と、
     少なくとも2段階の押圧操作が可能で、前記押圧操作により駆動指示を入力するための照射スイッチと、
     前記照射スイッチの1段階目の押圧操作による駆動指示の入力を受けて、前記放射線源に対して、前記第1照射の前にウォームアップを開始させ、ウォームアップの完了後、前記1段階目の押圧操作が解除されない間は前記ウォームアップが完了した状態を維持し、前記1段階目の押圧操作が解除されることなく前記照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに前記第2照射を開始させる線源制御装置とを備える放射線撮影システム。
    A radiation generating apparatus for emitting radiation toward a subject, and a radiation imaging apparatus for capturing a radiation image by receiving radiation transmitted through the subject, a main imaging for capturing a radiographic image, and prior to the main imaging In a radiation imaging system that performs one imaging by pre-imaging to determine imaging conditions for the main imaging,
    The radiation generator
    A radiation source for performing the first radiation for the pre-shooting and the second radiation for the main shooting;
    An irradiation switch capable of at least two steps of pressing operation, and inputting a drive instruction by the pressing operation;
    In response to the input of the drive instruction by the first stage pressing operation of the irradiation switch, the radiation source is started to warm up before the first irradiation, and after the warm up is completed, the first stage is performed In the case where the warm-up is completed while the pressing operation is not released, and the driving instruction by the pressing operation of the second and subsequent stages of the irradiation switch is input without releasing the first pressing operation. And a radiation source control apparatus for starting the second irradiation without warm-up.
  2.  前記ウォームアップの完了後、前記第2照射が開始されるまでの間に、前記第1照射が行われる請求の範囲第1項に記載の放射線撮影システム。 The radiography system according to claim 1, wherein the first irradiation is performed after the completion of the warm-up and before the second irradiation is started.
  3.  前記照射スイッチは1段階目の押圧操作である半押しと、2段階目の押圧操作である全押しが可能な2段階押しスイッチである請求の範囲第1項に記載の放射線撮影システム。 The radiation imaging system according to claim 1, wherein the irradiation switch is a two-step push switch capable of full-pressing as a first-step pressing operation and full-pressing as a second-step pressing operation.
  4.  前記線源制御装置は、前記半押しによる駆動指示の入力を受けて前記ウォームアップを開始させ、さらに前記ウォームアップに引き続き前記第1照射を開始させ、前記全押しによる駆動指示の入力を受けて前記第2照射を開始させる請求の範囲第3項に記載の放射線撮影システム。 The radiation source control device receives the input of the drive instruction by the half press to start the warm-up, and further starts the first irradiation following the warm-up, and receives the input of the drive instruction by the full press. The radiography system according to claim 3, wherein the second irradiation is started.
  5.  前記線源制御装置は、前記半押しによる駆動指示の入力を受けて前記ウォームアップを開始させ、さらに、1回目の前記全押しによる駆動指示の入力を受けて前記第1照射を開始させ、その後、前記半押しに戻してからの2回目の全押しによる駆動指示の入力を受けて前記第2照射を開始させる請求の範囲第3項の放射線撮影システム。 The radiation source control device receives the input of the drive instruction by the half press to start the warm-up, and further receives the input of the drive instruction by the first full press to start the first irradiation, and thereafter The radiation imaging system according to claim 3, wherein the second irradiation is started upon receiving an input of a drive instruction by a second full-press after returning to the half-press.
  6.  前記照射スイッチは1段階目の押圧操作である1段押し、2段階目の押圧操作である中押し、3段階目の押圧操作である全押しが可能な3段階押しスイッチであり、
     前記線源制御装置は、1段押しによる駆動指示の入力を受けて前記ウォームアップを開始させ、中押しによる駆動指示の入力を受けて前記第1照射を開始させ、全押しによる駆動指示の入力を受けて前記第2照射を開始させる請求の範囲第1項の放射線撮影システム。
    The irradiation switch is a three-step push switch capable of full-pressing, which is a first-step pressing operation, a first-step pressing, a second-step pressing operation, and a third-step pressing operation,
    The radiation source control device receives an input of a drive instruction by one-step push to start the warm-up, receives an input of a drive instruction by middle push, starts the first irradiation, and inputs a drive instruction by full-press. The radiation imaging system according to claim 1, wherein the second radiation is received to start the second radiation.
  7.  前記線源制御装置は、前記第1照射および前記第2照射のそれぞれを行う前に、前記放射線撮影装置に対して照射開始の許可を求める照射開始要求信号を送信し、
     前記照射開始要求信号に対する応答として、前記放射線撮影装置から照射許可信号を受信した場合に前記第1照射および前記第2照射のそれぞれを開始させる請求の範囲第1項に記載の放射線撮影システム。
    The radiation source control apparatus transmits, to the radiation imaging apparatus, an irradiation start request signal for requesting permission to start irradiation before performing each of the first irradiation and the second irradiation;
    The radiation imaging system according to claim 1, wherein each of the first irradiation and the second irradiation is started when an irradiation permission signal is received from the radiation imaging apparatus as a response to the irradiation start request signal.
  8.  前記線源制御装置は、前記照射スイッチによる前記1段階目の押圧操作による駆動指示の入力を受けた後、前記1段階目の押圧操作が解除された場合には、前記放射線源を前記ウォームアップ開始前の初期状態に戻す請求の範囲第1項に記載の放射線撮影システム。 The radiation source control apparatus warms up the radiation source when the first-step pressing operation is canceled after receiving an input of a drive instruction by the first-step pressing operation by the irradiation switch. The radiography system according to claim 1, wherein the radiography system is returned to the initial state before the start.
  9.  前記線源制御装置は、前記照射スイッチによる前記1段階目の押圧操作による駆動指示の入力を受けた後、前記1段階目の押圧操作が解除されず、かつ、2段階目以降の押圧操作による駆動指示の入力が無い状態が所定時間継続した場合には、前記放射線源を前記ウォームアップ開始前の状態に戻す請求の範囲第1項に記載の放射線撮影システム。 After the radiation source control device receives an input of a drive instruction by the first stage pressing operation by the irradiation switch, the first stage pressing operation is not canceled, and the radiation source control apparatus is operated by the second and subsequent stage pressing operations. The radiation imaging system according to claim 1, wherein the radiation source is returned to a state before the start of the warm-up when a state where there is no input of a drive instruction continues for a predetermined time.
  10.  前記放射線撮影装置は、
     被写体を透過した放射線の線量に応じた電荷を蓄積する画素が行列状に配置された撮像領域を有するセンサーパネルをもち、前記放射線画像を検出する放射線画像検出装置と、
     前記プレ撮影において、前記第1照射による前記放射線の線量を検出する線量検出センサと、
     前記プレ撮影において、前記線量検出センサで検出した線量の積算値が、予め設定された目標線量に達するまでの前記第1照射の照射時間を計時するタイマーと、
     前記タイマーが計時した前記照射時間と、前記本撮影における前記第2照射に必要な線量とに基づいて、前記本撮影の撮影条件を決定する本撮影条件決定部と、
     決定した前記本撮影の撮影条件を前記放射線発生装置に対して送信する通信部とを備える請求の範囲第1項に記載の放射線撮影システム。
    The radiation imaging apparatus
    A radiation image detection apparatus having a sensor panel having an imaging area in which pixels storing charge corresponding to a dose of radiation transmitted through an object are arranged in a matrix, and detecting the radiation image;
    A dose detection sensor that detects a dose of the radiation by the first irradiation in the pre-shooting;
    A timer for counting the irradiation time of the first irradiation until the integrated value of the dose detected by the dose detection sensor reaches a preset target dose in the pre-shooting;
    A main imaging condition determination unit that determines an imaging condition for the main imaging based on the irradiation time counted by the timer and a dose necessary for the second irradiation in the main imaging;
    The radiation imaging system according to claim 1, further comprising: a communication unit that transmits the determined imaging conditions for the main imaging to the radiation generating apparatus.
  11.  前記本撮影条件決定部は、前記本撮影における前記第2照射に必要な線量から、前記プレ撮影における前記第1照射の線量を控除した線量に基づいて、前記本撮影の撮影条件を決定する請求の範囲第10項に記載の放射線撮影システム。 The main imaging condition determining unit determines the imaging condition for the main imaging based on a dose obtained by subtracting the dose of the first irradiation in the pre-imaging from the dose necessary for the second irradiation in the main imaging. The radiation imaging system according to claim 10 in range.
  12.  前記放射線画像検出装置は、前記プレ撮影において、前記積算値が前記目標線量に達したときに前記放射線発生装置に対して前記第1照射を停止させるための照射停止信号を出力するAEC部を備える請求の範囲第10項に記載の放射線撮影システム。 The radiation image detection apparatus includes an AEC unit that outputs an irradiation stop signal for stopping the first irradiation to the radiation generator when the integrated value reaches the target dose in the pre-imaging. The radiography system of Claim 10.
  13.  前記放射線画像検出装置は、前記プレ撮影中において、前記第1照射の線量に応じた電荷を前記画像に蓄積させる蓄積動作を実行し、蓄積した前記電荷を掃き出さずに前記本撮影へ移行する請求の範囲第10項に記載の放射線撮影システム。 The radiation image detection apparatus executes an accumulation operation for accumulating charges corresponding to the dose of the first irradiation in the image during the pre-shooting, and shifts to the main shooting without sweeping out the accumulated charges. The radiography system of Claim 10.
  14.  前記放射線画像検出装置は、前記センサーパネル、前記線量検出センサおよび前記本撮影条件決定部が可搬型の筐体に収納された電子カセッテである請求の範囲第10項に記載の放射線撮影システム。 11. The radiation imaging system according to claim 10, wherein the radiation image detection apparatus is an electronic cassette in which the sensor panel, the dose detection sensor, and the main imaging condition determination unit are housed in a portable case.
  15.  前記線量検出センサは、前記撮像領域に配置されている請求の範囲第10項に記載の放射線撮影システム。 The radiation imaging system according to claim 10, wherein the dose detection sensor is disposed in the imaging region.
  16.  前記放射線画像検出装置は、前記プレ撮影において、前記線量検出センサで検出した線量の積算値に基づく画像情報をプレビュー画像として出力する請求の範囲第15項の放射線撮影システム。 The radiation imaging system according to claim 15, wherein the radiation image detection apparatus outputs, as a preview image, image information based on an integrated value of the dose detected by the dose detection sensor in the preliminary imaging.
  17.  被写体に放射線を照射して被写体の放射線画像を撮影するための本撮影と、前記本撮影に先立って前記本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う放射線撮影システムに用いられる放射線発生装置において、
     前記プレ撮影用の第1照射と、前記本撮影用の第2照射を実行する放射線源と、
     少なくとも2段階の押圧操作が可能で、前記押圧操作により駆動指示を入力するための照射スイッチと、
     前記照射スイッチの1段階目の押圧操作による駆動指示の入力を受けて、前記放射線源に対して、前記第1照射の前にウォームアップを開始させ、ウォームアップの完了後、前記1段階目の押圧操作が解除されない間は前記ウォームアップが完了した状態を維持し、前記1段階目の押圧操作が解除されることなく前記照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに前記第2照射を開始させる線源制御装置とを備える放射線発生装置。
    A radiation imaging system that performs one imaging by a main imaging for imaging a radiation image of a subject by irradiating radiation to the object and a pre-imaging for determining imaging conditions for the main imaging prior to the main imaging Radiation generator used for
    A radiation source for performing the first radiation for the pre-shooting and the second radiation for the main shooting;
    An irradiation switch capable of at least two steps of pressing operation, and inputting a drive instruction by the pressing operation;
    In response to the input of the drive instruction by the first stage pressing operation of the irradiation switch, the radiation source is started to warm up before the first irradiation, and after the warm up is completed, the first stage is performed In the case where the warm-up is completed while the pressing operation is not released, and the driving instruction by the pressing operation of the second and subsequent stages of the irradiation switch is input without releasing the first pressing operation. And a radiation source control device for starting the second irradiation without warm-up.
  18.  被写体に放射線を照射して被写体の放射線画像を撮影するための本撮影と、前記本撮影に先立って前記本撮影の撮影条件を決定するためのプレ撮影とにより1回の撮影を行う放射線撮影システムに用いられる放射線発生装置の作動方法において、
     前記プレ撮影用の第1照射と、前記本撮影用の第2照射を放射線源に実行させ、
     少なくとも2段階の押圧操作が可能で、前記押圧操作により駆動指示を入力するための照射スイッチから、1段階目の押圧操作による駆動指示の入力を受けて、前記放射線源に対して、前記第1照射の前にウォームアップを開始させ、
     前記ウォームアップの完了後、前記1段階目の押圧操作が解除されない間は前記ウォームアップが完了した状態を維持し、
     前記1段階目の押圧操作が解除されることなく前記照射スイッチの2段階目以降の押圧操作による駆動指示が入力された場合には、ウォームアップを行わずに前記第2照射を開始させる放射線発生装置の作動方法。
    A radiation imaging system that performs one imaging by a main imaging for imaging a radiation image of a subject by irradiating radiation to the object and a pre-imaging for determining imaging conditions for the main imaging prior to the main imaging In the method of operating the radiation generator used in
    Causing the radiation source to execute the first irradiation for the pre-imaging and the second irradiation for the main imaging;
    At least two steps of pressing operations are possible, and from the irradiation switch for inputting a driving instruction by the pressing operation, the input of the driving instruction by the pressing operation of the first step is received, and the first radiation source is received. Start warming up before irradiation,
    After completion of the warm-up, the state where the warm-up is completed is maintained while the first-step pressing operation is not released.
    Radiation generation that causes the second irradiation to be started without performing warm-up when a drive instruction is input by pressing operation after the second stage of the irradiation switch without releasing the first stage pressing operation. Method of operation of the device.
PCT/JP2013/073113 2012-09-04 2013-08-29 Radiographic imaging system, radiation generating apparatus and method for operating same WO2014038461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012194583A JP5984294B2 (en) 2012-09-04 2012-09-04 Radiation imaging system, radiation generation apparatus and method of operating the same
JP2012-194583 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038461A1 true WO2014038461A1 (en) 2014-03-13

Family

ID=50237073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073113 WO2014038461A1 (en) 2012-09-04 2013-08-29 Radiographic imaging system, radiation generating apparatus and method for operating same

Country Status (2)

Country Link
JP (1) JP5984294B2 (en)
WO (1) WO2014038461A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385179B2 (en) * 2014-07-18 2018-09-05 キヤノン株式会社 Radiation imaging apparatus and driving method thereof
JP6869090B2 (en) * 2017-04-25 2021-05-12 富士フイルム株式会社 Radiation detection system, radiation generator and radiation detection device
KR102600970B1 (en) * 2017-11-30 2023-11-09 엘지디스플레이 주식회사 Digital x-ray detector and control device of controlling the detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130098A (en) * 1994-10-31 1996-05-21 Shimadzu Corp Anode revolution controlling method for x-ray equipment and x-ray equipment using the method
JP2010005089A (en) * 2008-06-26 2010-01-14 Fujifilm Corp Radiation image capturing apparatus
JP2011036393A (en) * 2009-08-11 2011-02-24 Konica Minolta Medical & Graphic Inc Radiation image photographing system
JP2011115368A (en) * 2009-12-03 2011-06-16 Konica Minolta Medical & Graphic Inc Radiographic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130098A (en) * 1994-10-31 1996-05-21 Shimadzu Corp Anode revolution controlling method for x-ray equipment and x-ray equipment using the method
JP2010005089A (en) * 2008-06-26 2010-01-14 Fujifilm Corp Radiation image capturing apparatus
JP2011036393A (en) * 2009-08-11 2011-02-24 Konica Minolta Medical & Graphic Inc Radiation image photographing system
JP2011115368A (en) * 2009-12-03 2011-06-16 Konica Minolta Medical & Graphic Inc Radiographic apparatus

Also Published As

Publication number Publication date
JP2014050418A (en) 2014-03-20
JP5984294B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5602198B2 (en) Radiation imaging apparatus, radiographic image detection apparatus used therefor, and operating method thereof
JP5859934B2 (en) Radiation imaging system and operation method thereof, radiation image detection apparatus and operation program thereof
JP5975733B2 (en) Radiation image detection apparatus, drive control method thereof, and radiation imaging system
JP5890286B2 (en) Radiation image detection device
JP6122522B2 (en) Radiation imaging system, operating method thereof, and radiation image detection apparatus
US9931096B2 (en) Radiographic system, drive control method for radiographic system, recording medium for drive control program and radiological image detection device
JP5460674B2 (en) Radiation imaging apparatus, control method therefor, and radiation imaging system
JP5583191B2 (en) Radiation image detection apparatus and operation method thereof
JP5878444B2 (en) Radiation image detection device
JP5816316B2 (en) RADIOGRAPHIC IMAGE DETECTION DEVICE, ITS OPERATION METHOD, AND RADIOGRAPHY DEVICE
JP5744949B2 (en) Radiation image detection apparatus and operation method thereof
JP5840947B2 (en) Radiation image detection apparatus and driving method thereof
WO2014030467A1 (en) Electronic radiography system and signal relay device
JP2013198548A (en) Radiation image detecting device, method of controlling the same, and radiation imaging system
JP2014219248A (en) Radiation image detection device and operation method of the same
JP5775812B2 (en) Radiation image detection apparatus and driving method thereof
WO2014038461A1 (en) Radiographic imaging system, radiation generating apparatus and method for operating same
JP6093069B2 (en) Radiation irradiation start determination device, operation method thereof, and radiation irradiation start determination system
JP6068700B2 (en) Radiation image detection apparatus and operation method thereof
JP2014012109A (en) Radiographic apparatus and radiation image detector
JP5925937B2 (en) Radiation irradiation start determination device, operation method thereof, and radiation irradiation start determination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834569

Country of ref document: EP

Kind code of ref document: A1