WO2014034574A1 - Zirconium alloy, bone anchor, and method for producing zirconium alloy - Google Patents
Zirconium alloy, bone anchor, and method for producing zirconium alloy Download PDFInfo
- Publication number
- WO2014034574A1 WO2014034574A1 PCT/JP2013/072618 JP2013072618W WO2014034574A1 WO 2014034574 A1 WO2014034574 A1 WO 2014034574A1 JP 2013072618 W JP2013072618 W JP 2013072618W WO 2014034574 A1 WO2014034574 A1 WO 2014034574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zirconium alloy
- mass
- present
- phase
- zirconium
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/186—High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
Definitions
- the present invention relates to a zirconium alloy, a bone fixture, and a method for producing a zirconium alloy.
- a bone fixing tool used for fracture treatment a bone fixing tool made of stainless steel or titanium alloy is clinically used.
- the elastic modulus (Young's modulus: about 100 GPa to 200 GPa) of stainless steel and titanium alloy is much larger than that of cortical bone (Young's modulus: about 20 GPa).
- zirconium alloys are attracting attention as biomaterials. So far, for example, a zirconium alloy having a low magnetic susceptibility and an occurrence of artifacts in magnetic resonance imaging (magnetic resonance imaging, MRI) has been disclosed (see, for example, Japanese Patent Application Laid-Open No. 2010-074413). Application to industrial materials is expected.
- magnetic resonance imaging magnetic resonance imaging
- Zirconium has low cytotoxicity and low affinity with bone, so it is advantageous as a material for bone anchors. If a zirconium alloy with low elastic modulus is obtained, it is difficult for stress shielding to occur. Can provide a fixture.
- the present invention was made under the above situation.
- the problem to be solved by the present invention is to provide a zirconium alloy having a low elastic modulus. Furthermore, the problem to be solved by the present invention is to provide a bone anchor that hardly causes stress shielding.
- Niobium is contained in an amount of 8% by mass to 11% by mass, and at least one of tin and aluminum is contained in a total amount of 1% by mass to 5% by mass with the balance being substantially zirconium, and the ⁇ ′ phase as a main component.
- Zirconium alloy as a phase.
- a zirconium alloy having a low elastic modulus is provided. Furthermore, according to the present invention, a bone anchor that does not easily cause stress shielding is provided.
- FIG. 3 is a graph showing the Young's modulus of the zirconium alloy produced in Example 1.
- 2 is an X-ray diffraction spectrum of a zirconium alloy produced in Example 1.
- FIG. 3 is a graph showing the Young's modulus of the zirconium alloy produced in Example 2.
- 3 is an X-ray diffraction spectrum of a zirconium alloy produced in Example 2.
- It is the shape of the zirconium alloy raw material produced in Example 5.
- 6 is a graph showing the magnetic susceptibility of a zirconium alloy material produced in Example 5.
- 6 is an X-ray diffraction spectrum of a zirconium alloy material produced in Example 5.
- FIG. 7 is an X-ray diffraction spectrum of a zirconium alloy produced in Example 6.
- the zirconium alloy of the present invention contains 8 mass% to 11 mass% of Nb (niobium), contains one or both of Sn (tin) and Al (aluminum) in total of 1 mass% to 5 mass%, and the balance is substantially Zr (zirconium), and the ⁇ ′ phase is the main phase.
- the zirconium alloy having such a configuration has a low elastic modulus and is suitable for a bone anchor. Further, the zirconium alloy having such a configuration has a low magnetic susceptibility and is suitable for a bone fixing device.
- the elastic modulus (Young's modulus) of the zirconium alloy is preferably 70 GPa or less, more preferably 60 GPa or less, and even more preferably 50 GPa or less.
- the susceptibility (mass susceptibility) of the zirconium alloy is preferably 2.0 ⁇ 10 ⁇ 8 m 3 / kg or less, more preferably 1.8 ⁇ 10 ⁇ 8 m 3 / kg or less, and 1.6 More preferably, it is not more than ⁇ 10 ⁇ 8 m 3 / kg.
- the zirconium alloy of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1% by mass to 5% by mass, and at least one of Sn and Al within the content range. It is necessary for the main phase of the zirconium alloy to be the ⁇ ′ phase (details will be described later).
- the main phase of the crystal structure is the ⁇ ′ phase
- Zr alone Consisting of ⁇ phase, Young's modulus: 95 GPa
- the Zr—Nb alloy ⁇ phase is the main phase
- the main phase of the crystal structure is the ⁇ ′ phase.
- the ratio of the ⁇ ′ phase is not particularly limited as long as the ratio is the highest among the phases constituting the zirconium alloy, but is preferably 50% or more of the total phase and 80% or more of the total phase from the viewpoint of keeping the elastic modulus low. Is more preferable.
- the zirconium alloy of the present invention may have a phase other than the ⁇ ′ phase, for example, a ⁇ phase.
- phase of the zirconium alloy and the ratio of the phases can be confirmed by crystal structure analysis by an X-ray diffraction method.
- the zirconium alloy of the present invention is mainly composed of Zr, and the balance other than Nb, Sn and Al is substantially Zr. “The balance is substantially Zr” means that impurities that are inevitably mixed in the manufacturing process (unavoidable impurities) may be contained, and unless the effects of the present invention are impaired. This means that other components may be contained.
- Zr has an advantage of low affinity with bone compared to Ti (titanium).
- Ti titanium
- the bone fixing device may adhere to the bone, and it may be difficult to remove after bone fusion.
- the zirconium alloy of the present invention contains Zr as a main component, It is difficult to adhere to and easy to remove.
- the zirconium alloy of the present invention has high biocompatibility.
- the zirconium alloy of the present invention contains Nb in the range of 8% by mass to 11% by mass.
- the lower limit of the Nb content is preferably 8.5% by mass or more
- the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
- the zirconium alloy of the present invention has higher mechanical strength than Zr alone.
- the zirconium alloy of the present invention contains one or both of Sn and Al.
- the total content of Sn and Al in the zirconium alloy of the present invention is 1% by mass to 5% by mass.
- the lower limit of the total content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the total content is preferably 4% by mass or less.
- the Sn content is preferably 1% by mass to 5% by mass.
- the lower limit of the Sn content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Sn content is preferably 4% by mass or less.
- the Al content is preferably 1% by mass to 5% by mass.
- the lower limit of the Al content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Al content is preferably 4% by mass or less.
- the zirconium alloy of the present invention may contain inevitable impurities mixed in during the production process.
- Inevitable impurities include B (boron), C (carbon), N (nitrogen), O (oxygen), Na (sodium), Mg (magnesium), Si (silicon), P (phosphorus), and S (sulfur).
- K potassium
- Ca calcium
- Mn manganesese
- the component composition of the zirconium alloy can be confirmed by fluorescent X-ray analysis.
- the zirconium alloy of the present invention can be manufactured by the manufacturing method described below.
- the zirconium alloy material of the present invention is an alloy containing 8 mass% to 11 mass% of Nb, one or both of Sn and Al in total of 1 mass% to 5 mass%, and the balance being substantially Zr.
- the manufacturing method of the zirconium alloy of this invention includes performing cold plastic working to the zirconium alloy raw material of this invention. By subjecting the zirconium alloy material of the present invention to cold plastic working, the crystal structure in which the ⁇ phase is the main phase is transformed to make the main phase the ⁇ ′ phase, thereby obtaining a zirconium alloy having a low elastic modulus.
- the zirconium alloy material of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1 to 5% by mass.
- Sn and Al are components that can lower the magnetic susceptibility of an alloy.
- Zr and Nb are components that can lower the magnetic susceptibility of an alloy.
- the elastic modulus of the alloy is reduced.
- the effect of decreasing is an effect that cannot be predicted from the prior art.
- Sn and Al have similar properties in that they are dissolved in the crystal structure of the alloy and are involved in the phase structure.
- Sn and Al are advantageous as components of an alloy that has a magnetic susceptibility lower than that of Zr as a base material and is desired to have low magnetism.
- Sn and Al are advantageous as components of a biomedical alloy compared to other elements of the same family in terms of low toxicity.
- the total content of Sn and Al in the zirconium alloy material of the present invention is 1% by mass to 5% by mass in order to cause phase transformation by cold plastic working and make the main phase an ⁇ ′ phase. If the total content is less than 1%, the ⁇ 'phase does not appear even when the alloy material is subjected to cold plastic working. On the other hand, if the total content exceeds 5%, a phase other than the ⁇ phase may appear in the alloy material. Even if cold plastic working is performed on an alloy material in which a phase other than the ⁇ phase appears, the ⁇ ′ phase is difficult to become the main phase.
- the lower limit of the total content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the total content is preferably 4% by mass or less.
- the Sn content is preferably 1% by mass to 5% by mass.
- the lower limit of the Sn content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Sn content is preferably 4% by mass or less.
- the Al content is preferably 1% by mass to 5% by mass.
- the lower limit of the Al content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Al content is preferably 4% by mass or less.
- the zirconium alloy material of the present invention contains Nb in the range of 8% by mass to 11% by mass.
- the lower limit of the Nb content is preferably 8.5% by mass or more
- the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
- the zirconium alloy material of the present invention may contain components other than Zr, Nb, Sn, and Al as long as it does not prevent the ⁇ ′ phase from becoming the main phase by performing cold plastic working. .
- the zirconium alloy material of the present invention may contain unavoidable impurities (B, C, N, O, N, Mg, Si, P, S, K, Ca, Mn, etc.) mixed in the manufacturing process.
- the total content is preferably less than 0.1% by mass.
- the zirconium alloy material of the present invention contains 8% by mass to 11% by mass of Nb, one or both of Sn and Al in total, containing 1% by mass to 5% by mass, and the balance of Zr as a raw material. Can be obtained by casting.
- the zirconium alloy material of the present invention has been subjected to a homogenization treatment (for example, a heat treatment of 500 ° C. to 1000 ° C./1 minute to 60 minutes) for the purpose of homogenizing the alloy components and the alloy structure and removing internal stress. Is preferred.
- a homogenization treatment for example, a heat treatment of 500 ° C. to 1000 ° C./1 minute to 60 minutes
- the zirconium alloy material of the present invention may be obtained by chamfering the segregation layer on the ingot surface.
- the method for producing a zirconium alloy of the present invention includes a step of performing cold plastic working on the zirconium alloy material of the present invention. Furthermore, the method for producing a zirconium alloy of the present invention includes a step of casting the zirconium alloy material of the present invention using a mixture containing Nb, at least one of Sn and Al, and Zr as a raw material; It may include at least one of a step of homogenizing the zirconium alloy material of the invention.
- the cold plastic working performed on the zirconium alloy material of the present invention is not particularly limited as long as it is plastic working performed at a temperature lower than the recrystallization temperature. For example, rolling, forging, extrusion, drawing, drawing, performed at room temperature. , Swaging, pressing, and bending.
- the processing rate of the cold plastic working applied to the zirconium alloy material of the present invention is not particularly limited, and the range in which the zirconium alloy material of the present invention undergoes phase transformation and can have the ⁇ ′ phase as the main phase is selected according to the processing method.
- the rolling reduction sheet thickness reduction rate
- the processing rate cross-sectional area reduction rate
- the zirconium alloy material of the present invention has a low elastic modulus by performing cold plastic working, and furthermore, the magnetic susceptibility is kept low even by performing cold plastic working. It is advantageous as a material for manufacturing a bone fixing device.
- the bone anchor of the present invention is made of the zirconium alloy of the present invention. Since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low elastic modulus, stress shielding is unlikely to occur. Further, since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low magnetic susceptibility, the occurrence of artifacts in MRI hardly occurs. Furthermore, the bone fixing device of the present invention is made of the zirconium alloy of the present invention having a low affinity with bone, so that it is difficult to adhere to the bone and can be easily removed.
- the bone anchor of the present invention can be manufactured by forming into a desired shape while subjecting the zirconium alloy material of the present invention to cold plastic working and phase transformation to the zirconium alloy of the present invention. In this case, machining such as cutting and grinding; surface treatment such as various blast treatments;
- the bone fixing device of the present invention is obtained by subjecting the zirconium alloy material of the present invention to cold plastic working and transforming it to the zirconium alloy of the present invention, and then machining such as cutting and grinding; And the like can be formed into a desired shape and manufactured.
- the bone anchor include an osteosynthesis plate, an osteosynthesis nail, an osteosynthesis screw, an osteosynthesis plate, and an intramedullary nail.
- Young's modulus is measured using a free resonance type elastic modulus measuring apparatus (JE-RT manufactured by Nippon Techno-Plus), and magnetic susceptibility is measured by a magnetic balance (MSB manufactured by Sherwood Scientific). -MKI).
- a prismatic alloy material (20 mm ⁇ 10 mm ⁇ 10 mm) and a columnar shape (diameter 5 mm ⁇ length 50 mm) were obtained for each of the above compositions.
- a dumbbell-type zirconium alloy material was also produced.
- these zirconium alloy materials are referred to as casting materials.
- the prismatic and columnar zirconium alloy materials obtained above were subjected to a homogenization treatment by heat treatment at 900 ° C./60 minutes.
- the zirconium alloy material after the homogenization treatment is referred to as an STQ material.
- the prismatic and cylindrical STQ materials having the respective compositions were used in Examples 1 to 4 described later.
- the Zr-9Nb-3Sn cast material decreased in Young's modulus with repeated plastic deformation at room temperature.
- Example 1> (Production of rolled material) A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm ⁇ 10 mm surface was the rolled surface.
- the rolled materials of Examples 1-2 to 1-5 were produced by changing the rolling reduction as shown in Table 3.
- Example 1-1 is an STQ material that has not been rolled.
- rolled materials of Comparative Examples 1-2 to 1-4 were prepared from Zr-14Nb prismatic STQ materials. Comparative Example 1-1 is an STQ material that has not been rolled.
- Test pieces for measuring Young's modulus were collected from the materials of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4, and Young's modulus was measured. The results are shown in Table 3 and FIG.
- the test piece for measuring Young's modulus is such that the length direction of the test piece is matched with the RD direction (rolling direction), the width direction of the test piece is matched with the TD direction (direction perpendicular to the rolling direction), and the thickness of the test piece is measured. The direction was collected so as to coincide with the ND direction (rolling surface normal direction).
- Examples 1-2 to 1-5 are compared with Example 1-1 (zirconium alloy material of the present invention) that was not subjected to cold rolling.
- the Young's modulus was low. That is, the Young's modulus of the Zr-9Nb-3Sn STQ material (the zirconium alloy material of the present invention) was lowered by cold rolling.
- Comparative Examples 1-2 to 1-4 had higher Young's modulus than Comparative Example 1-1 that was not subjected to cold rolling. That is, the Zr-14Nb STQ material increased in Young's modulus by cold rolling.
- FIG. 4 shows, in order from the bottom, X-ray diffraction spectra of the materials of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Example 1-5.
- the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the ⁇ ′ phase, ⁇ phase, and ⁇ phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
- the X-ray diffractometer and measurement conditions are as follows. ⁇ Device: D8 Advance made by Bruker AXS X-ray source: X-ray diffraction measurement was performed on Cu—K ⁇ ray and the rolled surface.
- Example 1-1 zirconium alloy material of the present invention
- the ⁇ phase was the main phase
- Examples 1-2 to 1-5 zirconium alloy of the present invention
- the ⁇ ′ phase Was the main phase. That is, when the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) was subjected to cold rolling, the crystal structure in which the ⁇ phase was the main phase was transformed, and the ⁇ ′ phase became the main phase.
- Example 2 [Production of wire (swage processed material)] A Zr-9Nb-3Sn cylindrical STQ material was swaged (processed by compressing from the radial direction and extending in the longitudinal direction) at room temperature to produce a wire. Wire rods of Examples 2-2 to 2-9 were produced by changing the processing rate (cross-sectional area reduction rate) as shown in Table 4.
- Example 2-1 is an STQ material that was not swaged.
- Test pieces for measuring Young's modulus were collected from each material of Examples 2-1 to 2-9, and Young's modulus was measured. The results are shown in Table 4 and FIG. In addition, the test piece for Young's modulus measurement was collected with the length direction of the test piece coinciding with the drawing direction of the swaging process (longitudinal direction of the wire).
- Examples 2-2 to 2-9 were compared with Example 2-1 (zirconium alloy material of the present invention) which was not subjected to cold swaging.
- the Young's modulus was low. In other words, the Young's modulus of the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) decreased due to cold swaging.
- FIG. 6 shows, in order from the bottom, Example 2-1, Example 2-2, Example 2-3, Example 2-4, Example 2-5, Example 2-7, and Example 2-8.
- the X-ray diffraction spectrum of each material is shown.
- the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the ⁇ ′ phase, ⁇ phase, and ⁇ phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
- the X-ray diffractometer and measurement conditions are as follows.
- ⁇ Device D8 Advance made by Bruker AXS X-ray source: Cu-K ⁇ ray X-ray diffraction measurement was performed on a plane perpendicular to the longitudinal direction of the wire.
- Example 2-1 zirconium alloy material of the present invention
- the ⁇ phase was the main phase
- Examples 2-2 to 2-5, 2-7, 2-8 present invention
- the zirconium alloy has an ⁇ ′ phase as a main phase. That is, when cold swaging was applied to an STQ material of Zr-9Nb-3Sn (the zirconium alloy material of the present invention), the crystal structure in which the ⁇ phase was the main phase was transformed, and the ⁇ ′ phase became the main phase. .
- Example 3> (Production of rolled material) A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm ⁇ 10 mm surface was the rolled surface. The rolled materials of Examples 3-2 to 3-5 were produced by changing the rolling reduction as shown in Table 5.
- Example 3-1 is an STQ material that has not been rolled.
- Table 5 shows the results of measuring the magnetic susceptibility of each material of Examples 3-1 to 3-5 in the ND direction and the TD direction.
- Examples 3-2 to 3-5 have the same magnetic susceptibility as Example 3-1 (zirconium alloy material of the present invention) that was not cold-rolled. Met. That is, the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) did not significantly increase the magnetic susceptibility even when cold-rolled, and was maintained at the same level.
- Example 4 (Production of rolled material) A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm ⁇ 10 mm surface was the rolled surface. The rolled material of Example 4-2 was produced with the rolling reduction as described in Table 6.
- Example 4-1 is an STQ material that has not been rolled.
- rolled materials of Comparative Examples 4-2 and 4-4 were produced from Zr-14Nb and Zr-20Nb prismatic STQ materials. Comparative Examples 4-1 and 4-3 are STQ materials that were not rolled.
- Table 6 shows the results of measuring the magnetic susceptibility of each material of Examples 4-1 to 4-2 and Comparative Examples 4-1 to 4-4 in the ND direction and the TD direction.
- the rolled material of Zr-9Nb-3Sn (Example 4-2) (zirconium alloy of the present invention) is a rolled material of Zr-14Nb (Comparative Example 4-2) and a rolled material of Zr-20Nb.
- the magnetic susceptibility was lower in both the ND and TD directions.
- the zirconium alloy material of the present invention is subjected to cold plastic working to cause phase transformation, and the ⁇ ′ phase becomes the main phase, whereby the zirconium alloy of the present invention is produced.
- the zirconium alloy of the present invention has a low elastic modulus (the one produced in Examples 1 and 2 has a Young's modulus of 60 GPa or less), and therefore, the bone anchoring device. When applied to, stress shielding is unlikely to occur.
- the zirconium alloy of the present invention has a low magnetic susceptibility (the ones produced in Examples 3 and 4 have a mass magnetic susceptibility of 1.6 ⁇ 10 ⁇ 8 m 3 / kg. Therefore, when applied to a bone anchor, artifacts in MRI are less likely to occur.
- Example 5 [Production of zirconium alloy material] A mixture of each composition shown in Table 7 was prepared, and a button-shaped ingot was melted using a non-consumable argon arc melting furnace equipped with a tungsten electrode. This button-shaped ingot was cast into the shape shown in FIG. 7 using an argon arc centrifugal casting machine. Thus, dumbbell-type zirconium alloy materials were obtained for the following compositions. Further, in the same manner, a columnar (diameter 3 mm ⁇ length 40 mm) zirconium alloy material was obtained for each of the following compositions.
- Example 9 shows (a) Comparative Example 5-1, (b) Example 5-1, (c) Example 5-2, (d) Example 5-3, (e) Example. 5-4, (f) Example 5-5, (g) Example 5-6, (h) Example 5-7, (i) Comparative Example 5-2.
- the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
- the zirconium alloy material containing 9% by mass of Nb decreased in Young's modulus and increased in magnetic susceptibility as the amount of Sn added increased.
- the zirconium alloy material was thought to stabilize the ⁇ phase by adding Sn, resulting in a decrease in Young's modulus and an increase in magnetic susceptibility.
- the zirconium alloy material of the present invention containing 9% by mass of Nb and Sn in the range of 1% by mass to 5% by mass has a lower Young's modulus as the content of Sn is higher in this range. Is expensive. Although the zirconium alloy material of the present invention undergoes cold plastic working, the ⁇ phase is transformed into the ⁇ ′ phase and the Young's modulus decreases (see Example 1). Little decrease (see Example 3). Therefore, the zirconium alloy material of the present invention containing 9% by mass of Nb and containing Sn has a Sn content of 3% by mass in consideration of the balance between Young's modulus and magnetic susceptibility after cold plastic working. A range of ⁇ 4% by mass is particularly preferred.
- Example 6> [Tensile test] Using the dumbbell-type zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2, using an tensile tester (AG-200B, manufactured by Shimadzu Corporation), the initial strain rate at room temperature. The sample was pulled at 9.27 ⁇ 10 ⁇ 4 s ⁇ 1 until it broke. And the alloy was cut out in the disk shape of diameter 3mm from the fracture
- FIG. 10 shows an X-ray diffraction spectrum.
- the X-ray diffraction spectra of FIG. 10 are (a) Example 6-2, (b) Example 6-3, (c) Example 6-4, (d) Example 6-5, (e) Example. 6-6.
- the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
- a zirconium alloy material containing 9% by mass of Nb and Sn contains a Sn content of 3% by mass to 4% by mass from the viewpoint of certainty of appearance of ⁇ ′ phase when cold plastic working is performed. It is particularly preferable that the range is
- the zirconium alloy material of the present invention is an alloy (Zr—Nb—Sn ternary alloy) containing Zr, Nb and Sn as main components and containing 9% by mass of Nb.
- the Sn content is preferably in the range of 1% by mass to 5% by mass, particularly preferably in the range of 3% by mass to 4% by mass.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
A zirconium alloy containing niobium in an amount of 8 to 11 mass% inclusive and also containing tin and/or aluminum in a total amount of 1 to 5 mass% inclusive, with the remainder being substantially zirconium. The zirconium alloy contains an α' phase as the main phase.
Description
本発明は、ジルコニウム合金、骨固定具、及びジルコニウム合金の製造方法に関する。
The present invention relates to a zirconium alloy, a bone fixture, and a method for producing a zirconium alloy.
骨折治療に用いられる骨固定具として、ステンレス鋼やチタン合金からなる骨固定具が臨床で使用されている。
しかし、ステンレス鋼やチタン合金の弾性率(ヤング率:約100GPa~200GPa)は皮質骨の弾性率(ヤング率:約20GPa)よりもはるかに大きいので、ステンレス鋼やチタン合金からなる骨固定具を使用した場合、荷重負荷が骨組織に伝わりにくく、その結果、荷重負荷が遮断(ストレスシールディング)された骨組織では、骨吸収が促進され骨萎縮が起こる。
これまで、弾性率を低下させる目的で様々な合金の開発が試みられているが、ヤング率は低くてせいぜい85GPa程度であり、皮質骨の弾性率との差は大きいのが現状である(例えば、特開2004-089580号公報参照)。 As a bone fixing tool used for fracture treatment, a bone fixing tool made of stainless steel or titanium alloy is clinically used.
However, the elastic modulus (Young's modulus: about 100 GPa to 200 GPa) of stainless steel and titanium alloy is much larger than that of cortical bone (Young's modulus: about 20 GPa). When used, it is difficult for the load to be transmitted to the bone tissue. As a result, in the bone tissue in which the load is blocked (stress shielding), bone resorption is promoted and bone atrophy occurs.
Up to now, various alloys have been developed for the purpose of lowering the elastic modulus, but the Young's modulus is low and is about 85 GPa at most, and the difference from the elastic modulus of cortical bone is large at present (for example, JP 2004-089580 A).
しかし、ステンレス鋼やチタン合金の弾性率(ヤング率:約100GPa~200GPa)は皮質骨の弾性率(ヤング率:約20GPa)よりもはるかに大きいので、ステンレス鋼やチタン合金からなる骨固定具を使用した場合、荷重負荷が骨組織に伝わりにくく、その結果、荷重負荷が遮断(ストレスシールディング)された骨組織では、骨吸収が促進され骨萎縮が起こる。
これまで、弾性率を低下させる目的で様々な合金の開発が試みられているが、ヤング率は低くてせいぜい85GPa程度であり、皮質骨の弾性率との差は大きいのが現状である(例えば、特開2004-089580号公報参照)。 As a bone fixing tool used for fracture treatment, a bone fixing tool made of stainless steel or titanium alloy is clinically used.
However, the elastic modulus (Young's modulus: about 100 GPa to 200 GPa) of stainless steel and titanium alloy is much larger than that of cortical bone (Young's modulus: about 20 GPa). When used, it is difficult for the load to be transmitted to the bone tissue. As a result, in the bone tissue in which the load is blocked (stress shielding), bone resorption is promoted and bone atrophy occurs.
Up to now, various alloys have been developed for the purpose of lowering the elastic modulus, but the Young's modulus is low and is about 85 GPa at most, and the difference from the elastic modulus of cortical bone is large at present (for example, JP 2004-089580 A).
一方、生体用金属材料としてジルコニウム合金が注目されている。これまでに例えば、磁化率が低く磁気共鳴画像診断(magnetic resonance imaging、MRI)におけるアーチファクトの発生が起こりにくいジルコニウム合金が開示されており(例えば、特開2010-075413号公報参照)、各種の医療用部材への適用が期待されている。
On the other hand, zirconium alloys are attracting attention as biomaterials. So far, for example, a zirconium alloy having a low magnetic susceptibility and an occurrence of artifacts in magnetic resonance imaging (magnetic resonance imaging, MRI) has been disclosed (see, for example, Japanese Patent Application Laid-Open No. 2010-074413). Application to industrial materials is expected.
ジルコニウムは細胞毒性が低く、また、骨との親和性が低いので、ジルコニウム合金は骨固定具の素材として有利であり、弾性率の低いジルコニウム合金が得られれば、ストレスシールディングが発生しにくい骨固定具を提供できる。
Zirconium has low cytotoxicity and low affinity with bone, so it is advantageous as a material for bone anchors. If a zirconium alloy with low elastic modulus is obtained, it is difficult for stress shielding to occur. Can provide a fixture.
本発明は、上記状況のもとになされた。本発明が解決しようとする課題は、弾性率が低いジルコニウム合金を提供することである。さらに本発明が解決しようとする課題は、ストレスシールディングが発生しにくい骨固定具を提供することである。
The present invention was made under the above situation. The problem to be solved by the present invention is to provide a zirconium alloy having a low elastic modulus. Furthermore, the problem to be solved by the present invention is to provide a bone anchor that hardly causes stress shielding.
前記課題を達成するための具体的手段は以下の通りである。
<1> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであり、α’相を主相とする、ジルコニウム合金。
<2> 前記<1>に記載のジルコニウム合金からなる骨固定具。
<3> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムである、ジルコニウム合金素材。
<4> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであるジルコニウム合金素材に、冷間塑性加工を施すことを含む、ジルコニウム合金の製造方法。 Specific means for achieving the above object are as follows.
<1> Niobium is contained in an amount of 8% by mass to 11% by mass, and at least one of tin and aluminum is contained in a total amount of 1% by mass to 5% by mass with the balance being substantially zirconium, and the α ′ phase as a main component. Zirconium alloy as a phase.
<2> A bone anchor made of the zirconium alloy according to <1>.
<3> A zirconium alloy material containing 8% by mass to 11% by mass of niobium, containing at least one of tin and aluminum in a total of 1% by mass to 5% by mass, with the balance being substantially zirconium.
<4> A zirconium alloy material containing 8 mass% or more and 11 mass% or less of niobium, containing at least one of tin and aluminum in total of 1 mass% or more and 5 mass% or less, with the balance being substantially zirconium. A method for producing a zirconium alloy, comprising performing interplastic processing.
<1> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであり、α’相を主相とする、ジルコニウム合金。
<2> 前記<1>に記載のジルコニウム合金からなる骨固定具。
<3> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムである、ジルコニウム合金素材。
<4> ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであるジルコニウム合金素材に、冷間塑性加工を施すことを含む、ジルコニウム合金の製造方法。 Specific means for achieving the above object are as follows.
<1> Niobium is contained in an amount of 8% by mass to 11% by mass, and at least one of tin and aluminum is contained in a total amount of 1% by mass to 5% by mass with the balance being substantially zirconium, and the α ′ phase as a main component. Zirconium alloy as a phase.
<2> A bone anchor made of the zirconium alloy according to <1>.
<3> A zirconium alloy material containing 8% by mass to 11% by mass of niobium, containing at least one of tin and aluminum in a total of 1% by mass to 5% by mass, with the balance being substantially zirconium.
<4> A zirconium alloy material containing 8 mass% or more and 11 mass% or less of niobium, containing at least one of tin and aluminum in total of 1 mass% or more and 5 mass% or less, with the balance being substantially zirconium. A method for producing a zirconium alloy, comprising performing interplastic processing.
本発明によれば、弾性率が低いジルコニウム合金が提供される。さらに本発明によれば、ストレスシールディングが発生しにくい骨固定具が提供される。
According to the present invention, a zirconium alloy having a low elastic modulus is provided. Furthermore, according to the present invention, a bone anchor that does not easily cause stress shielding is provided.
以下に、本発明の実施の形態について説明するが、これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
Hereinafter, embodiments of the present invention will be described. However, these descriptions and examples illustrate the present invention and do not limit the scope of the present invention.
本明細書において「~」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
In this specification, “to” indicates a range including the numerical values described before and after the minimum and maximum values, respectively.
<ジルコニウム合金>
本発明のジルコニウム合金は、Nb(ニオブ)を8質量%~11質量%含有し、Sn(スズ)及びAl(アルミニウム)の一方又は両方を合計1質量%~5質量%含有し、残部が実質的にZr(ジルコニウム)であり、α’相を主相とする。かかる構成のジルコニウム合金は、弾性率が低く、骨固定具に好適である。また、かかる構成のジルコニウム合金は、磁化率が低く、骨固定具に好適である。 <Zirconium alloy>
The zirconium alloy of the present invention contains 8 mass% to 11 mass% of Nb (niobium), contains one or both of Sn (tin) and Al (aluminum) in total of 1 mass% to 5 mass%, and the balance is substantially Zr (zirconium), and the α ′ phase is the main phase. The zirconium alloy having such a configuration has a low elastic modulus and is suitable for a bone anchor. Further, the zirconium alloy having such a configuration has a low magnetic susceptibility and is suitable for a bone fixing device.
本発明のジルコニウム合金は、Nb(ニオブ)を8質量%~11質量%含有し、Sn(スズ)及びAl(アルミニウム)の一方又は両方を合計1質量%~5質量%含有し、残部が実質的にZr(ジルコニウム)であり、α’相を主相とする。かかる構成のジルコニウム合金は、弾性率が低く、骨固定具に好適である。また、かかる構成のジルコニウム合金は、磁化率が低く、骨固定具に好適である。 <Zirconium alloy>
The zirconium alloy of the present invention contains 8 mass% to 11 mass% of Nb (niobium), contains one or both of Sn (tin) and Al (aluminum) in total of 1 mass% to 5 mass%, and the balance is substantially Zr (zirconium), and the α ′ phase is the main phase. The zirconium alloy having such a configuration has a low elastic modulus and is suitable for a bone anchor. Further, the zirconium alloy having such a configuration has a low magnetic susceptibility and is suitable for a bone fixing device.
本発明において、ジルコニウム合金の弾性率(ヤング率)は、70GPa以下が好ましく、60GPa以下がより好ましく、50GPa以下が更に好ましい。本発明において、ジルコニウム合金の磁化率(質量磁化率)は、2.0×10-8m3/kg以下が好ましく、1.8×10-8m3/kg以下がより好ましく、1.6×10-8m3/kg以下が更に好ましい。
In the present invention, the elastic modulus (Young's modulus) of the zirconium alloy is preferably 70 GPa or less, more preferably 60 GPa or less, and even more preferably 50 GPa or less. In the present invention, the susceptibility (mass susceptibility) of the zirconium alloy is preferably 2.0 × 10 −8 m 3 / kg or less, more preferably 1.8 × 10 −8 m 3 / kg or less, and 1.6 More preferably, it is not more than × 10 −8 m 3 / kg.
従来、10質量%程度のNb及び残部Zrからなる生体用のZr-Nb合金が知られている(例えば、特開2010-075413号公報参照)。
これに対し、本発明のジルコニウム合金は、Nbのほかに更にSn及びAlの一方又は両方を合計1質量%~5質量%含有するものであり、該含有率の範囲でSn及びAlの少なくともいずれかを含有することが、ジルコニウム合金の主相をα’相とするために必要である(詳細は後述する。)。
そして、本発明のジルコニウム合金は、結晶構造の主相がα’相であることにより、Zr単体(β相からなる。ヤング率:95GPa)や前記Zr-Nb合金(β相が主相である。)に比べて弾性率が低い。 Conventionally, a biological Zr—Nb alloy comprising about 10% by mass of Nb and the balance Zr has been known (see, for example, Japanese Patent Application Laid-Open No. 2010-075413).
On the other hand, the zirconium alloy of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1% by mass to 5% by mass, and at least one of Sn and Al within the content range. It is necessary for the main phase of the zirconium alloy to be the α ′ phase (details will be described later).
In the zirconium alloy of the present invention, since the main phase of the crystal structure is the α ′ phase, Zr alone (consisting of β phase, Young's modulus: 95 GPa) or the Zr—Nb alloy (β phase is the main phase). )) Is lower than the elastic modulus.
これに対し、本発明のジルコニウム合金は、Nbのほかに更にSn及びAlの一方又は両方を合計1質量%~5質量%含有するものであり、該含有率の範囲でSn及びAlの少なくともいずれかを含有することが、ジルコニウム合金の主相をα’相とするために必要である(詳細は後述する。)。
そして、本発明のジルコニウム合金は、結晶構造の主相がα’相であることにより、Zr単体(β相からなる。ヤング率:95GPa)や前記Zr-Nb合金(β相が主相である。)に比べて弾性率が低い。 Conventionally, a biological Zr—Nb alloy comprising about 10% by mass of Nb and the balance Zr has been known (see, for example, Japanese Patent Application Laid-Open No. 2010-075413).
On the other hand, the zirconium alloy of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1% by mass to 5% by mass, and at least one of Sn and Al within the content range. It is necessary for the main phase of the zirconium alloy to be the α ′ phase (details will be described later).
In the zirconium alloy of the present invention, since the main phase of the crystal structure is the α ′ phase, Zr alone (consisting of β phase, Young's modulus: 95 GPa) or the Zr—Nb alloy (β phase is the main phase). )) Is lower than the elastic modulus.
本発明のジルコニウム合金は、結晶構造の主相がα’相である。α’相の割合は、ジルコニウム合金を構成する各相の中で最も割合が高ければ特に制限されないが、弾性率を低く抑える観点から、全相の50%以上が好ましく、全相の80%以上がより好ましい。
In the zirconium alloy of the present invention, the main phase of the crystal structure is the α ′ phase. The ratio of the α ′ phase is not particularly limited as long as the ratio is the highest among the phases constituting the zirconium alloy, but is preferably 50% or more of the total phase and 80% or more of the total phase from the viewpoint of keeping the elastic modulus low. Is more preferable.
本発明のジルコニウム合金は、α’相以外の相を有していてよく、例えばβ相を有していてよい。
The zirconium alloy of the present invention may have a phase other than the α ′ phase, for example, a β phase.
ジルコニウム合金の相の種類および相の割合は、X線回折法による結晶構造解析により確認することができる。
The kind of phase of the zirconium alloy and the ratio of the phases can be confirmed by crystal structure analysis by an X-ray diffraction method.
本発明のジルコニウム合金は、Zrを主成分とし、Nb、Sn及びAl以外の残部が実質的にZrである。「残部が実質的にZrである」とは、製造過程で不可避的に混入する不純物(不可避的不純物)が含有されていてもよいことを意味し、また、本発明の効果を損なわない限りにおいて、他の成分が含まれていてもよいことを意味する。
The zirconium alloy of the present invention is mainly composed of Zr, and the balance other than Nb, Sn and Al is substantially Zr. “The balance is substantially Zr” means that impurities that are inevitably mixed in the manufacturing process (unavoidable impurities) may be contained, and unless the effects of the present invention are impaired. This means that other components may be contained.
Zrは、Ti(チタン)に比べて骨との親和性が低いという利点がある。チタン合金を骨固定具に適用した場合、骨固定具が骨に癒着してしまい、骨癒合後に抜去しにくくなる場合があるが、本発明のジルコニウム合金は、Zrを主成分とするので、骨に癒着しにくく、抜去が容易である。
Zr has an advantage of low affinity with bone compared to Ti (titanium). When a titanium alloy is applied to a bone fixing device, the bone fixing device may adhere to the bone, and it may be difficult to remove after bone fusion. However, since the zirconium alloy of the present invention contains Zr as a main component, It is difficult to adhere to and easy to remove.
また、Zrは、細胞毒性が低く、耐食性が高く、生体内での耐久性に優れている、という性質を有するので、本発明のジルコニウム合金は、生体適合性が高い。
Further, since Zr has properties such as low cytotoxicity, high corrosion resistance, and excellent durability in vivo, the zirconium alloy of the present invention has high biocompatibility.
本発明のジルコニウム合金は、Nbを8質量%~11質量%の範囲で含有する。Nbの含有率の下限は、8.5質量%以上が好ましく、Nbの含有率の上限は、10質量%以下が好ましく、9.5質量%以下がより好ましい。
上記の含有率でNbを含有することにより、本発明のジルコニウム合金は、Zr単体に比べて磁化率が低くなる。したがって、本発明のジルコニウム合金は、骨固定具等の医療用部材とした場合に、Zr単体に比べて、MRIにおけるアーチファクトの発生が起こりにくい。 The zirconium alloy of the present invention contains Nb in the range of 8% by mass to 11% by mass. The lower limit of the Nb content is preferably 8.5% by mass or more, and the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
By containing Nb at the above content, the zirconium alloy of the present invention has a lower magnetic susceptibility than Zr alone. Therefore, when the zirconium alloy of the present invention is used as a medical member such as a bone anchor, artifacts in MRI are less likely to occur compared to Zr alone.
上記の含有率でNbを含有することにより、本発明のジルコニウム合金は、Zr単体に比べて磁化率が低くなる。したがって、本発明のジルコニウム合金は、骨固定具等の医療用部材とした場合に、Zr単体に比べて、MRIにおけるアーチファクトの発生が起こりにくい。 The zirconium alloy of the present invention contains Nb in the range of 8% by mass to 11% by mass. The lower limit of the Nb content is preferably 8.5% by mass or more, and the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
By containing Nb at the above content, the zirconium alloy of the present invention has a lower magnetic susceptibility than Zr alone. Therefore, when the zirconium alloy of the present invention is used as a medical member such as a bone anchor, artifacts in MRI are less likely to occur compared to Zr alone.
単体のZrは、単体のTiに比べ力学的強度にやや劣るが、Nbを含有させ合金化することにより力学的強度を向上させ得る。したがって、本発明のジルコニウム合金は、Zr単体に比べて力学的強度が高い。
Although single Zr is slightly inferior in mechanical strength as compared with single Ti, the mechanical strength can be improved by alloying with Nb. Therefore, the zirconium alloy of the present invention has higher mechanical strength than Zr alone.
本発明のジルコニウム合金は、Sn及びAlの一方又は両方を含有する。本発明のジルコニウム合金中のSnとAlとを合計した含有率は、1質量%~5質量%である。該合計含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、該合計含有率の上限は、4質量%以下が好ましい。
The zirconium alloy of the present invention contains one or both of Sn and Al. The total content of Sn and Al in the zirconium alloy of the present invention is 1% by mass to 5% by mass. The lower limit of the total content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the total content is preferably 4% by mass or less.
本発明のジルコニウム合金が、Zr、Nb及びSnを主要成分とする合金(Zr-Nb-Sn三元合金)である場合、Snの含有率は1質量%~5質量%が好ましい。そして、Snの含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、Snの含有率の上限は、4質量%以下が好ましい。
When the zirconium alloy of the present invention is an alloy containing Zr, Nb and Sn as main components (Zr—Nb—Sn ternary alloy), the Sn content is preferably 1% by mass to 5% by mass. The lower limit of the Sn content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Sn content is preferably 4% by mass or less.
本発明のジルコニウム合金が、Zr、Nb及びAlを主要成分とする合金(Zr-Nb-Al三元合金)である場合、Alの含有率は1質量%~5質量%が好ましい。そして、Alの含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、Alの含有率の上限は、4質量%以下が好ましい。
When the zirconium alloy of the present invention is an alloy containing Zr, Nb and Al as main components (Zr—Nb—Al ternary alloy), the Al content is preferably 1% by mass to 5% by mass. The lower limit of the Al content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Al content is preferably 4% by mass or less.
本発明のジルコニウム合金は、製造過程で混入する不可避的不純物を含有していてもよい。不可避的不純物としては、B(ホウ素)、C(炭素)、N(窒素)、O(酸素)、Na(ナトリウム)、Mg(マグネシウム)、Si(シリコン)、P(リン)、S(硫黄)、K(カリウム)、Ca(カルシウム)、Mn(マンガン)等が挙げられる。不可避的不純物の含有量は少ないほど好ましく、合計0.1質量%未満が好ましい。
The zirconium alloy of the present invention may contain inevitable impurities mixed in during the production process. Inevitable impurities include B (boron), C (carbon), N (nitrogen), O (oxygen), Na (sodium), Mg (magnesium), Si (silicon), P (phosphorus), and S (sulfur). , K (potassium), Ca (calcium), Mn (manganese) and the like. The smaller the content of inevitable impurities, the better. The total content is preferably less than 0.1% by mass.
ジルコニウム合金の成分組成は、蛍光X線分析により確認することができる。
The component composition of the zirconium alloy can be confirmed by fluorescent X-ray analysis.
本発明のジルコニウム合金は、以下に説明する製造方法で製造することができる。
The zirconium alloy of the present invention can be manufactured by the manufacturing method described below.
<ジルコニウム合金素材、ジルコニウム合金の製造方法>
本発明のジルコニウム合金素材は、Nbを8質量%~11質量%含有し、Sn及びAlの一方又は両方を合計1質量%~5質量%含有し、残部が実質的にZrの合金である。
そして、本発明のジルコニウム合金の製造方法は、本発明のジルコニウム合金素材に冷間塑性加工を施すことを含む。本発明のジルコニウム合金素材に冷間塑性加工を施すことによって、β相が主相である結晶構造を相変態させ主相をα’相とし、弾性率の低いジルコニウム合金とする。 <Zirconium alloy material, production method of zirconium alloy>
The zirconium alloy material of the present invention is an alloy containing 8 mass% to 11 mass% of Nb, one or both of Sn and Al in total of 1 mass% to 5 mass%, and the balance being substantially Zr.
And the manufacturing method of the zirconium alloy of this invention includes performing cold plastic working to the zirconium alloy raw material of this invention. By subjecting the zirconium alloy material of the present invention to cold plastic working, the crystal structure in which the β phase is the main phase is transformed to make the main phase the α ′ phase, thereby obtaining a zirconium alloy having a low elastic modulus.
本発明のジルコニウム合金素材は、Nbを8質量%~11質量%含有し、Sn及びAlの一方又は両方を合計1質量%~5質量%含有し、残部が実質的にZrの合金である。
そして、本発明のジルコニウム合金の製造方法は、本発明のジルコニウム合金素材に冷間塑性加工を施すことを含む。本発明のジルコニウム合金素材に冷間塑性加工を施すことによって、β相が主相である結晶構造を相変態させ主相をα’相とし、弾性率の低いジルコニウム合金とする。 <Zirconium alloy material, production method of zirconium alloy>
The zirconium alloy material of the present invention is an alloy containing 8 mass% to 11 mass% of Nb, one or both of Sn and Al in total of 1 mass% to 5 mass%, and the balance being substantially Zr.
And the manufacturing method of the zirconium alloy of this invention includes performing cold plastic working to the zirconium alloy raw material of this invention. By subjecting the zirconium alloy material of the present invention to cold plastic working, the crystal structure in which the β phase is the main phase is transformed to make the main phase the α ′ phase, thereby obtaining a zirconium alloy having a low elastic modulus.
従来知られていた、10質量%程度のNb及び残部ZrからなるZr-Nb合金に冷間塑性加工を施すと、β相が主相である結晶構造にω相が出現しやすい。ω相は合金の弾性率を高めるので、前記Zr-Nb合金に冷間塑性加工を施した場合、弾性率が高くなる傾向がある。
これに対して、本発明のジルコニウム合金素材は、Nbのほかに更にSn及びAlの一方又は両方を合計1質量%~5質量%含有する。Sn及びAlは本発明のジルコニウム合金素材の結晶構造の中に固溶しジルコニウム合金の相構成に関与すると考えられ、該合金素材に冷間塑性加工を施すと、β相が主相である結晶構造が相変態し主相がα’相となる。そして、α’相は合金の弾性率を低めるので、該合金素材に冷間塑性加工を施してなる本発明のジルコニウム合金は、弾性率が低いものとなる。 When cold plastic working is applied to a conventionally known Zr—Nb alloy composed of about 10% by mass of Nb and the balance Zr, the ω phase tends to appear in the crystal structure in which the β phase is the main phase. Since the ω phase increases the elastic modulus of the alloy, when the Zr—Nb alloy is subjected to cold plastic working, the elastic modulus tends to increase.
On the other hand, the zirconium alloy material of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1 to 5% by mass. It is considered that Sn and Al are dissolved in the crystal structure of the zirconium alloy material of the present invention and are involved in the phase structure of the zirconium alloy, and when the alloy material is subjected to cold plastic working, a crystal whose β phase is the main phase. The structure undergoes phase transformation and the main phase becomes α ′ phase. Since the α ′ phase lowers the elastic modulus of the alloy, the zirconium alloy of the present invention obtained by subjecting the alloy material to cold plastic working has a low elastic modulus.
これに対して、本発明のジルコニウム合金素材は、Nbのほかに更にSn及びAlの一方又は両方を合計1質量%~5質量%含有する。Sn及びAlは本発明のジルコニウム合金素材の結晶構造の中に固溶しジルコニウム合金の相構成に関与すると考えられ、該合金素材に冷間塑性加工を施すと、β相が主相である結晶構造が相変態し主相がα’相となる。そして、α’相は合金の弾性率を低めるので、該合金素材に冷間塑性加工を施してなる本発明のジルコニウム合金は、弾性率が低いものとなる。 When cold plastic working is applied to a conventionally known Zr—Nb alloy composed of about 10% by mass of Nb and the balance Zr, the ω phase tends to appear in the crystal structure in which the β phase is the main phase. Since the ω phase increases the elastic modulus of the alloy, when the Zr—Nb alloy is subjected to cold plastic working, the elastic modulus tends to increase.
On the other hand, the zirconium alloy material of the present invention further contains one or both of Sn and Al in addition to Nb in a total amount of 1 to 5% by mass. It is considered that Sn and Al are dissolved in the crystal structure of the zirconium alloy material of the present invention and are involved in the phase structure of the zirconium alloy, and when the alloy material is subjected to cold plastic working, a crystal whose β phase is the main phase. The structure undergoes phase transformation and the main phase becomes α ′ phase. Since the α ′ phase lowers the elastic modulus of the alloy, the zirconium alloy of the present invention obtained by subjecting the alloy material to cold plastic working has a low elastic modulus.
Sn及びAlについて、従来、合金の磁化率を低下させ得る成分であることは知られていたが、本発明における組成でZr及びNbと共に合金化し冷間塑性加工を施すことによって合金の弾性率が低下するという効果は、従来技術からは予測し得ない効果である。
Conventionally, it has been known that Sn and Al are components that can lower the magnetic susceptibility of an alloy. However, by alloying with Zr and Nb with the composition in the present invention and performing cold plastic working, the elastic modulus of the alloy is reduced. The effect of decreasing is an effect that cannot be predicted from the prior art.
SnとAlとは、合金の結晶構造の中に固溶し相構成に関与する点において同様の性質を有する。
また、SnとAlとは、磁化率が母材であるZrより低く、磁性が低いことが望まれる合金の成分として有利である。
さらに、SnとAlとは、毒性が低い点で同族の他の元素に比べて生体用合金の成分として有利である。 Sn and Al have similar properties in that they are dissolved in the crystal structure of the alloy and are involved in the phase structure.
Sn and Al are advantageous as components of an alloy that has a magnetic susceptibility lower than that of Zr as a base material and is desired to have low magnetism.
Furthermore, Sn and Al are advantageous as components of a biomedical alloy compared to other elements of the same family in terms of low toxicity.
また、SnとAlとは、磁化率が母材であるZrより低く、磁性が低いことが望まれる合金の成分として有利である。
さらに、SnとAlとは、毒性が低い点で同族の他の元素に比べて生体用合金の成分として有利である。 Sn and Al have similar properties in that they are dissolved in the crystal structure of the alloy and are involved in the phase structure.
Sn and Al are advantageous as components of an alloy that has a magnetic susceptibility lower than that of Zr as a base material and is desired to have low magnetism.
Furthermore, Sn and Al are advantageous as components of a biomedical alloy compared to other elements of the same family in terms of low toxicity.
本発明のジルコニウム合金素材中のSnとAlとを合計した含有率は、冷間塑性加工によって相変態を起こし主相をα’相とするために1質量%~5質量%である。該合計含有率が1%に満たないと、合金素材に冷間塑性加工を施してもα’相が出現しない。一方、該合計含有率が5%を超えると、合金素材にβ相以外の相が出現していることがある。β相以外の相が出現している合金素材に冷間塑性加工を施してもα’相が主相となりにくい。該合計含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、該合計含有率の上限は、4質量%以下が好ましい。
The total content of Sn and Al in the zirconium alloy material of the present invention is 1% by mass to 5% by mass in order to cause phase transformation by cold plastic working and make the main phase an α ′ phase. If the total content is less than 1%, the α 'phase does not appear even when the alloy material is subjected to cold plastic working. On the other hand, if the total content exceeds 5%, a phase other than the β phase may appear in the alloy material. Even if cold plastic working is performed on an alloy material in which a phase other than the β phase appears, the α ′ phase is difficult to become the main phase. The lower limit of the total content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the total content is preferably 4% by mass or less.
本発明のジルコニウム合金素材が、Zr、Nb及びSnを主要成分とする合金(Zr-Nb-Sn三元合金)である場合、Snの含有率は1質量%~5質量%が好ましい。そして、Snの含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、Snの含有率の上限は、4質量%以下が好ましい。
When the zirconium alloy material of the present invention is an alloy containing Zr, Nb and Sn as main components (Zr—Nb—Sn ternary alloy), the Sn content is preferably 1% by mass to 5% by mass. The lower limit of the Sn content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Sn content is preferably 4% by mass or less.
本発明のジルコニウム合金素材が、Zr、Nb及びAlを主要成分とする合金(Zr-Nb-Al三元合金)である場合、Alの含有率は1質量%~5質量%が好ましい。そして、Alの含有率の下限は、2質量%以上が好ましく、3質量%以上がより好ましく、Alの含有率の上限は、4質量%以下が好ましい。
When the zirconium alloy material of the present invention is an alloy containing Zr, Nb and Al as main components (Zr—Nb—Al ternary alloy), the Al content is preferably 1% by mass to 5% by mass. The lower limit of the Al content is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit of the Al content is preferably 4% by mass or less.
本発明のジルコニウム合金素材は、Nbを8質量%~11質量%の範囲で含有する。Nbの含有率の下限は、8.5質量%以上が好ましく、Nbの含有率の上限は、10質量%以下が好ましく、9.5質量%以下がより好ましい。
上記の含有率でNbを含有することにより、本発明のジルコニウム合金素材は、Zr単体に比べて磁化率が低いと考えられる。そして本発明のジルコニウム合金素材は、冷間塑性加工を施しても磁化率が低いままに保たれる。 The zirconium alloy material of the present invention contains Nb in the range of 8% by mass to 11% by mass. The lower limit of the Nb content is preferably 8.5% by mass or more, and the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
By containing Nb at the above content, it is considered that the zirconium alloy material of the present invention has a lower magnetic susceptibility than Zr alone. And the zirconium alloy raw material of this invention is kept with low magnetic susceptibility even if it performs cold plastic working.
上記の含有率でNbを含有することにより、本発明のジルコニウム合金素材は、Zr単体に比べて磁化率が低いと考えられる。そして本発明のジルコニウム合金素材は、冷間塑性加工を施しても磁化率が低いままに保たれる。 The zirconium alloy material of the present invention contains Nb in the range of 8% by mass to 11% by mass. The lower limit of the Nb content is preferably 8.5% by mass or more, and the upper limit of the Nb content is preferably 10% by mass or less, and more preferably 9.5% by mass or less.
By containing Nb at the above content, it is considered that the zirconium alloy material of the present invention has a lower magnetic susceptibility than Zr alone. And the zirconium alloy raw material of this invention is kept with low magnetic susceptibility even if it performs cold plastic working.
本発明のジルコニウム合金素材は、冷間塑性加工を施すことによってα’相が主相となることを妨げない限りにおいて、Zr、Nb、Sn及びAl以外の他の成分が含まれていてもよい。
The zirconium alloy material of the present invention may contain components other than Zr, Nb, Sn, and Al as long as it does not prevent the α ′ phase from becoming the main phase by performing cold plastic working. .
本発明のジルコニウム合金素材は、製造過程で混入する不可避的不純物(B、C、N、O、N、Mg、Si、P、S、K、Ca、Mn等)を含んでいてもよい。不可避的不純物の含有量は少ないほど好ましく、合計0.1質量%未満が好ましい。
The zirconium alloy material of the present invention may contain unavoidable impurities (B, C, N, O, N, Mg, Si, P, S, K, Ca, Mn, etc.) mixed in the manufacturing process. The smaller the content of inevitable impurities, the better. The total content is preferably less than 0.1% by mass.
本発明のジルコニウム合金素材は、Nbを8質量%~11質量%含有し、Sn及びAlの一方又は両方を合計1質量%~5質量%含有し、残部がZrである混合物を原料にして、鋳造によって得ることができる。
The zirconium alloy material of the present invention contains 8% by mass to 11% by mass of Nb, one or both of Sn and Al in total, containing 1% by mass to 5% by mass, and the balance of Zr as a raw material. Can be obtained by casting.
本発明のジルコニウム合金素材は、合金成分及び合金組織の均一化や内部応力の除去を図る目的で均質化処理(例えば、500℃~1000℃/1分~60分の熱処理)が施されたものが好ましい。また、本発明のジルコニウム合金素材は、鋳塊表面の偏析層を面削したものでもよい。
The zirconium alloy material of the present invention has been subjected to a homogenization treatment (for example, a heat treatment of 500 ° C. to 1000 ° C./1 minute to 60 minutes) for the purpose of homogenizing the alloy components and the alloy structure and removing internal stress. Is preferred. In addition, the zirconium alloy material of the present invention may be obtained by chamfering the segregation layer on the ingot surface.
本発明のジルコニウム合金の製造方法は、本発明のジルコニウム合金素材に冷間塑性加工を施す工程を含む。さらに、本発明のジルコニウム合金の製造方法は、Nbと、Sn及びAlの少なくともいずれかと、Zrとを含む混合物を原料にして、本発明のジルコニウム合金素材を鋳造する工程;鋳造して得た本発明のジルコニウム合金素材に均質化処理を施す工程;の少なくともいずれかを含んでもよい。
The method for producing a zirconium alloy of the present invention includes a step of performing cold plastic working on the zirconium alloy material of the present invention. Furthermore, the method for producing a zirconium alloy of the present invention includes a step of casting the zirconium alloy material of the present invention using a mixture containing Nb, at least one of Sn and Al, and Zr as a raw material; It may include at least one of a step of homogenizing the zirconium alloy material of the invention.
本発明のジルコニウム合金素材に施す冷間塑性加工としては、再結晶温度未満の温度下で行う塑性加工であれば特に制限されず、例えば、常温下で行う、圧延、鍛造、押出し、引抜き、線引き、スウェージ加工、プレス加工、曲げ加工が挙げられる。
The cold plastic working performed on the zirconium alloy material of the present invention is not particularly limited as long as it is plastic working performed at a temperature lower than the recrystallization temperature. For example, rolling, forging, extrusion, drawing, drawing, performed at room temperature. , Swaging, pressing, and bending.
本発明のジルコニウム合金素材に施す冷間塑性加工の加工率は、特に制限されず、本発明のジルコニウム合金素材に相変態を起こしα’相を主相とし得る範囲を加工方法に応じて選択する。例えば、圧延加工する場合は、圧下率(板厚減少率)を10%以上にすることが好ましく、スウェージ加工する場合は、加工率(断面積の減少率)を10%以上にすることが好ましい。
The processing rate of the cold plastic working applied to the zirconium alloy material of the present invention is not particularly limited, and the range in which the zirconium alloy material of the present invention undergoes phase transformation and can have the α ′ phase as the main phase is selected according to the processing method. . For example, when rolling, the rolling reduction (sheet thickness reduction rate) is preferably 10% or more, and when swaging, the processing rate (cross-sectional area reduction rate) is preferably 10% or more. .
本発明のジルコニウム合金素材は、冷間塑性加工を施すことで弾性率が低いものとなり、その上、冷間塑性加工を施しても磁化率が低いままに保たれるので、医療用部材(特に骨固定具)の製造用の素材として有利である。
The zirconium alloy material of the present invention has a low elastic modulus by performing cold plastic working, and furthermore, the magnetic susceptibility is kept low even by performing cold plastic working. It is advantageous as a material for manufacturing a bone fixing device.
<骨固定具>
本発明の骨固定具は、本発明のジルコニウム合金からなる。
本発明の骨固定具は、弾性率が低い本発明のジルコニウム合金からなることにより、ストレスシールディングが発生しにくい。
また、本発明の骨固定具は、磁化率が低い本発明のジルコニウム合金からなることにより、MRIにおけるアーチファクトの発生が起こりにくい。
さらに、本発明の骨固定具は、骨との親和性が低い本発明のジルコニウム合金からなることにより、骨に癒着しにくく抜去が容易である。 <Bone Fixture>
The bone anchor of the present invention is made of the zirconium alloy of the present invention.
Since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low elastic modulus, stress shielding is unlikely to occur.
Further, since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low magnetic susceptibility, the occurrence of artifacts in MRI hardly occurs.
Furthermore, the bone fixing device of the present invention is made of the zirconium alloy of the present invention having a low affinity with bone, so that it is difficult to adhere to the bone and can be easily removed.
本発明の骨固定具は、本発明のジルコニウム合金からなる。
本発明の骨固定具は、弾性率が低い本発明のジルコニウム合金からなることにより、ストレスシールディングが発生しにくい。
また、本発明の骨固定具は、磁化率が低い本発明のジルコニウム合金からなることにより、MRIにおけるアーチファクトの発生が起こりにくい。
さらに、本発明の骨固定具は、骨との親和性が低い本発明のジルコニウム合金からなることにより、骨に癒着しにくく抜去が容易である。 <Bone Fixture>
The bone anchor of the present invention is made of the zirconium alloy of the present invention.
Since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low elastic modulus, stress shielding is unlikely to occur.
Further, since the bone anchor of the present invention is made of the zirconium alloy of the present invention having a low magnetic susceptibility, the occurrence of artifacts in MRI hardly occurs.
Furthermore, the bone fixing device of the present invention is made of the zirconium alloy of the present invention having a low affinity with bone, so that it is difficult to adhere to the bone and can be easily removed.
本発明の骨固定具は、本発明のジルコニウム合金素材に冷間塑性加工を施して本発明のジルコニウム合金へと相変態させながら所望の形状に成形し、製造することができる。この場合、更に、切削、研削のような機械加工;各種ブラスト処理のような表面処理;等を施してもよい。
ほかに、本発明の骨固定具は、本発明のジルコニウム合金素材に冷間塑性加工を施して本発明のジルコニウム合金へと相変態させた後に、切削、研削のような機械加工;各種ブラスト処理のような表面処理;等を施して所望の形状に成形し、製造することができる。 The bone anchor of the present invention can be manufactured by forming into a desired shape while subjecting the zirconium alloy material of the present invention to cold plastic working and phase transformation to the zirconium alloy of the present invention. In this case, machining such as cutting and grinding; surface treatment such as various blast treatments;
In addition, the bone fixing device of the present invention is obtained by subjecting the zirconium alloy material of the present invention to cold plastic working and transforming it to the zirconium alloy of the present invention, and then machining such as cutting and grinding; And the like can be formed into a desired shape and manufactured.
ほかに、本発明の骨固定具は、本発明のジルコニウム合金素材に冷間塑性加工を施して本発明のジルコニウム合金へと相変態させた後に、切削、研削のような機械加工;各種ブラスト処理のような表面処理;等を施して所望の形状に成形し、製造することができる。 The bone anchor of the present invention can be manufactured by forming into a desired shape while subjecting the zirconium alloy material of the present invention to cold plastic working and phase transformation to the zirconium alloy of the present invention. In this case, machining such as cutting and grinding; surface treatment such as various blast treatments;
In addition, the bone fixing device of the present invention is obtained by subjecting the zirconium alloy material of the present invention to cold plastic working and transforming it to the zirconium alloy of the present invention, and then machining such as cutting and grinding; And the like can be formed into a desired shape and manufactured.
骨固定具の具体例としては、骨接合板、骨接合用くぎ、骨接合用ねじ、骨固定用プレート、髄内釘などが挙げられる。
Specific examples of the bone anchor include an osteosynthesis plate, an osteosynthesis nail, an osteosynthesis screw, an osteosynthesis plate, and an intramedullary nail.
以下に実施例を挙げて、本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
以下の実施例においては、特に断りのない限り、ヤング率は自由共振型弾性率測定装置(日本テクノプラス社製JE-RT)を用いて測定し、磁化率は磁気天秤(Sherwood Scientific社製MSB-MKI)を用いて測定した。
In the following examples, unless otherwise noted, Young's modulus is measured using a free resonance type elastic modulus measuring apparatus (JE-RT manufactured by Nippon Techno-Plus), and magnetic susceptibility is measured by a magnetic balance (MSB manufactured by Sherwood Scientific). -MKI).
<ジルコニウム合金素材の作製>
〔鋳造〕
表1に示す各組成の混合物をそれぞれアーク溶解炉に入れ、昇温し溶解させた。次に、溶解させた混合物(溶湯)を鋳型に流し込み、溶湯を冷却し凝固させた。そして、鋳型から凝固した合金を取り出し、表面にサンドブラスト処理を施し、表面を清浄化した。 <Production of zirconium alloy material>
〔casting〕
Each of the mixtures having the compositions shown in Table 1 was put into an arc melting furnace and heated to be melted. Next, the dissolved mixture (molten metal) was poured into a mold, and the molten metal was cooled and solidified. Then, the solidified alloy was taken out from the mold, and the surface was subjected to sand blasting to clean the surface.
〔鋳造〕
表1に示す各組成の混合物をそれぞれアーク溶解炉に入れ、昇温し溶解させた。次に、溶解させた混合物(溶湯)を鋳型に流し込み、溶湯を冷却し凝固させた。そして、鋳型から凝固した合金を取り出し、表面にサンドブラスト処理を施し、表面を清浄化した。 <Production of zirconium alloy material>
〔casting〕
Each of the mixtures having the compositions shown in Table 1 was put into an arc melting furnace and heated to be melted. Next, the dissolved mixture (molten metal) was poured into a mold, and the molten metal was cooled and solidified. Then, the solidified alloy was taken out from the mold, and the surface was subjected to sand blasting to clean the surface.
こうして、上記の各組成について、角柱状(20mm×10mm×10mm)及び円柱状(直径5mm×長さ50mm)のジルコニウム合金素材を得た。Zr-9Nb-3Snについては、ダンベル型のジルコニウム合金素材も作製した。以下、これらのジルコニウム合金素材を鋳造材と称する。
Thus, a prismatic alloy material (20 mm × 10 mm × 10 mm) and a columnar shape (diameter 5 mm × length 50 mm) were obtained for each of the above compositions. For Zr-9Nb-3Sn, a dumbbell-type zirconium alloy material was also produced. Hereinafter, these zirconium alloy materials are referred to as casting materials.
〔均質化熱処理〕
上記で得た角柱状及び円柱状のジルコニウム合金素材に、900℃/60分間の熱処理による均質化処理を施した。以下、均質化処理後のジルコニウム合金素材をSTQ材と称する。各組成の角柱状及び円柱状のSTQ材を、後述する実施例1~4に使用した。 [Homogenization heat treatment]
The prismatic and columnar zirconium alloy materials obtained above were subjected to a homogenization treatment by heat treatment at 900 ° C./60 minutes. Hereinafter, the zirconium alloy material after the homogenization treatment is referred to as an STQ material. The prismatic and cylindrical STQ materials having the respective compositions were used in Examples 1 to 4 described later.
上記で得た角柱状及び円柱状のジルコニウム合金素材に、900℃/60分間の熱処理による均質化処理を施した。以下、均質化処理後のジルコニウム合金素材をSTQ材と称する。各組成の角柱状及び円柱状のSTQ材を、後述する実施例1~4に使用した。 [Homogenization heat treatment]
The prismatic and columnar zirconium alloy materials obtained above were subjected to a homogenization treatment by heat treatment at 900 ° C./60 minutes. Hereinafter, the zirconium alloy material after the homogenization treatment is referred to as an STQ material. The prismatic and cylindrical STQ materials having the respective compositions were used in Examples 1 to 4 described later.
〔ジルコニウム合金素材の引張試験〕
Zr-9Nb-3Snのダンベル型鋳造材を試験片とし、引張荷重を加えて試験片の変位を測定し該変位からヤング率を算出する引張試験を行った。具体的には、試験装置のクロスヘッドを一定速度で上側に移動することによりダンベル型鋳造材に約0.6%の塑性歪を発生させたのち、クロスヘッドを同じ速度で下側に移動し、荷重がゼロになるまで除荷することを1サイクルとし、これを繰り返した。サイクルと試験片の変位との関係を図1に示す。負荷および除荷ごとの試料のヤング率を表2及び図2に示す。 [Tensile test of zirconium alloy material]
Using a Zr-9Nb-3Sn dumbbell cast material as a test piece, a tensile test was performed by applying a tensile load to measure the displacement of the test piece and calculating the Young's modulus from the displacement. Specifically, by moving the crosshead of the test device upward at a constant speed, about 0.6% plastic strain was generated in the dumbbell-shaped cast material, and then the crosshead was moved downward at the same speed. Unloading until the load became zero was defined as one cycle, and this was repeated. The relationship between the cycle and the displacement of the test piece is shown in FIG. The Young's modulus of the sample for each load and unloading is shown in Table 2 and FIG.
Zr-9Nb-3Snのダンベル型鋳造材を試験片とし、引張荷重を加えて試験片の変位を測定し該変位からヤング率を算出する引張試験を行った。具体的には、試験装置のクロスヘッドを一定速度で上側に移動することによりダンベル型鋳造材に約0.6%の塑性歪を発生させたのち、クロスヘッドを同じ速度で下側に移動し、荷重がゼロになるまで除荷することを1サイクルとし、これを繰り返した。サイクルと試験片の変位との関係を図1に示す。負荷および除荷ごとの試料のヤング率を表2及び図2に示す。 [Tensile test of zirconium alloy material]
Using a Zr-9Nb-3Sn dumbbell cast material as a test piece, a tensile test was performed by applying a tensile load to measure the displacement of the test piece and calculating the Young's modulus from the displacement. Specifically, by moving the crosshead of the test device upward at a constant speed, about 0.6% plastic strain was generated in the dumbbell-shaped cast material, and then the crosshead was moved downward at the same speed. Unloading until the load became zero was defined as one cycle, and this was repeated. The relationship between the cycle and the displacement of the test piece is shown in FIG. The Young's modulus of the sample for each load and unloading is shown in Table 2 and FIG.
表2及び図2から分かるとおり、Zr-9Nb-3Snの鋳造材(本発明のジルコニウム合金素材)は、常温下の塑性変形の繰返しにともなってヤング率が低下した。
As can be seen from Table 2 and FIG. 2, the Zr-9Nb-3Sn cast material (the zirconium alloy material of the present invention) decreased in Young's modulus with repeated plastic deformation at room temperature.
<実施例1>
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表3に記載のとおりに変えて、実施例1-2~1-5の圧延材を作製した。実施例1-1は、圧延を施さなかったSTQ材である。
同様にして、Zr-14Nbの角柱状STQ材から、比較例1-2~1-4の圧延材を作製した。比較例1-1は、圧延を施さなかったSTQ材である。 <Example 1>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled materials of Examples 1-2 to 1-5 were produced by changing the rolling reduction as shown in Table 3. Example 1-1 is an STQ material that has not been rolled.
In the same manner, rolled materials of Comparative Examples 1-2 to 1-4 were prepared from Zr-14Nb prismatic STQ materials. Comparative Example 1-1 is an STQ material that has not been rolled.
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表3に記載のとおりに変えて、実施例1-2~1-5の圧延材を作製した。実施例1-1は、圧延を施さなかったSTQ材である。
同様にして、Zr-14Nbの角柱状STQ材から、比較例1-2~1-4の圧延材を作製した。比較例1-1は、圧延を施さなかったSTQ材である。 <Example 1>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled materials of Examples 1-2 to 1-5 were produced by changing the rolling reduction as shown in Table 3. Example 1-1 is an STQ material that has not been rolled.
In the same manner, rolled materials of Comparative Examples 1-2 to 1-4 were prepared from Zr-14Nb prismatic STQ materials. Comparative Example 1-1 is an STQ material that has not been rolled.
〔圧延材のヤング率の測定〕
実施例1-1~1-5及び比較例1-1~1-4の各材から、ヤング率測定用の試験片を採取し、ヤング率を測定した。その結果を表3及び図3に示す。なお、ヤング率測定用の試験片は、試験片の長さ方向をRD方向(圧延方向)に一致させ、試験片の幅方向をTD方向(圧延直角方向)に一致させ、試験片の厚さ方向をND方向(圧延面法線方向)に一致させて採取した。 [Measurement of Young's modulus of rolled material]
Test pieces for measuring Young's modulus were collected from the materials of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4, and Young's modulus was measured. The results are shown in Table 3 and FIG. The test piece for measuring Young's modulus is such that the length direction of the test piece is matched with the RD direction (rolling direction), the width direction of the test piece is matched with the TD direction (direction perpendicular to the rolling direction), and the thickness of the test piece is measured. The direction was collected so as to coincide with the ND direction (rolling surface normal direction).
実施例1-1~1-5及び比較例1-1~1-4の各材から、ヤング率測定用の試験片を採取し、ヤング率を測定した。その結果を表3及び図3に示す。なお、ヤング率測定用の試験片は、試験片の長さ方向をRD方向(圧延方向)に一致させ、試験片の幅方向をTD方向(圧延直角方向)に一致させ、試験片の厚さ方向をND方向(圧延面法線方向)に一致させて採取した。 [Measurement of Young's modulus of rolled material]
Test pieces for measuring Young's modulus were collected from the materials of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4, and Young's modulus was measured. The results are shown in Table 3 and FIG. The test piece for measuring Young's modulus is such that the length direction of the test piece is matched with the RD direction (rolling direction), the width direction of the test piece is matched with the TD direction (direction perpendicular to the rolling direction), and the thickness of the test piece is measured. The direction was collected so as to coincide with the ND direction (rolling surface normal direction).
表3及び図3に示すとおり、実施例1-2~1-5(本発明のジルコニウム合金)は、冷間圧延を施さなかった実施例1-1(本発明のジルコニウム合金素材)に比べて、ヤング率が低かった。即ち、Zr-9Nb-3SnのSTQ材(本発明のジルコニウム合金素材)は、冷間圧延によってヤング率が低下した。
As shown in Table 3 and FIG. 3, Examples 1-2 to 1-5 (zirconium alloy of the present invention) are compared with Example 1-1 (zirconium alloy material of the present invention) that was not subjected to cold rolling. The Young's modulus was low. That is, the Young's modulus of the Zr-9Nb-3Sn STQ material (the zirconium alloy material of the present invention) was lowered by cold rolling.
一方、表3及び図3に示すとおり、比較例1-2~1-4は、冷間圧延を施さなかった比較例1-1に比べて、ヤング率が高かった。即ち、Zr-14NbのSTQ材は、冷間圧延によってヤング率が増加した。
On the other hand, as shown in Table 3 and FIG. 3, Comparative Examples 1-2 to 1-4 had higher Young's modulus than Comparative Example 1-1 that was not subjected to cold rolling. That is, the Zr-14Nb STQ material increased in Young's modulus by cold rolling.
〔圧延材のX線回折〕
実施例1-1~1-5の各材について、X線回折装置を用いて、X線回折法による結晶構造解析を行った。その結果を図4に示す。図4には、下から順に、実施例1-1、実施例1-2、実施例1-3、実施例1-4、実施例1-5の各材のX線回折スペクトルを示す。図4中において、各ピークに付された三角印、丸印、四角印は、各ピークがそれぞれα’相、β相、ω相に帰属することを示し、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。
X線回折装置および測定条件は、下記のとおりである。
・装置:Bruker AXS社製D8 Advance
・X線源:Cu-Kα線
・圧延面に対してX線回折測定を行った。 [X-ray diffraction of rolled material]
Each material of Examples 1-1 to 1-5 was subjected to crystal structure analysis by an X-ray diffraction method using an X-ray diffractometer. The result is shown in FIG. FIG. 4 shows, in order from the bottom, X-ray diffraction spectra of the materials of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Example 1-5. In FIG. 4, the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the α ′ phase, β phase, and ω phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
The X-ray diffractometer and measurement conditions are as follows.
・ Device: D8 Advance made by Bruker AXS
X-ray source: X-ray diffraction measurement was performed on Cu—Kα ray and the rolled surface.
実施例1-1~1-5の各材について、X線回折装置を用いて、X線回折法による結晶構造解析を行った。その結果を図4に示す。図4には、下から順に、実施例1-1、実施例1-2、実施例1-3、実施例1-4、実施例1-5の各材のX線回折スペクトルを示す。図4中において、各ピークに付された三角印、丸印、四角印は、各ピークがそれぞれα’相、β相、ω相に帰属することを示し、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。
X線回折装置および測定条件は、下記のとおりである。
・装置:Bruker AXS社製D8 Advance
・X線源:Cu-Kα線
・圧延面に対してX線回折測定を行った。 [X-ray diffraction of rolled material]
Each material of Examples 1-1 to 1-5 was subjected to crystal structure analysis by an X-ray diffraction method using an X-ray diffractometer. The result is shown in FIG. FIG. 4 shows, in order from the bottom, X-ray diffraction spectra of the materials of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Example 1-5. In FIG. 4, the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the α ′ phase, β phase, and ω phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
The X-ray diffractometer and measurement conditions are as follows.
・ Device: D8 Advance made by Bruker AXS
X-ray source: X-ray diffraction measurement was performed on Cu—Kα ray and the rolled surface.
図4から分かるとおり、実施例1-1(本発明のジルコニウム合金素材)はβ相が主相であったが、実施例1-2~1-5(本発明のジルコニウム合金)はα’相が主相であった。即ち、Zr-9Nb-3SnのSTQ材(本発明のジルコニウム合金素材)に冷間圧延を施すと、β相が主相であった結晶構造が相変態しα’相が主相となった。
As can be seen from FIG. 4, in Example 1-1 (zirconium alloy material of the present invention), the β phase was the main phase, but in Examples 1-2 to 1-5 (zirconium alloy of the present invention), the α ′ phase Was the main phase. That is, when the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) was subjected to cold rolling, the crystal structure in which the β phase was the main phase was transformed, and the α ′ phase became the main phase.
<実施例2>
〔線材(スウェージ加工材)の作製〕
Zr-9Nb-3Snの円柱状STQ材に、室温下でスウェージ加工(半径方向から圧縮し長手方向に伸ばす加工)を施し、線材を作製した。加工率(断面積の減少率)を表4に記載のとおりに変えて、実施例2-2~2-9の線材を作製した。実施例2-1は、スウェージ加工を施さなかったSTQ材である。 <Example 2>
[Production of wire (swage processed material)]
A Zr-9Nb-3Sn cylindrical STQ material was swaged (processed by compressing from the radial direction and extending in the longitudinal direction) at room temperature to produce a wire. Wire rods of Examples 2-2 to 2-9 were produced by changing the processing rate (cross-sectional area reduction rate) as shown in Table 4. Example 2-1 is an STQ material that was not swaged.
〔線材(スウェージ加工材)の作製〕
Zr-9Nb-3Snの円柱状STQ材に、室温下でスウェージ加工(半径方向から圧縮し長手方向に伸ばす加工)を施し、線材を作製した。加工率(断面積の減少率)を表4に記載のとおりに変えて、実施例2-2~2-9の線材を作製した。実施例2-1は、スウェージ加工を施さなかったSTQ材である。 <Example 2>
[Production of wire (swage processed material)]
A Zr-9Nb-3Sn cylindrical STQ material was swaged (processed by compressing from the radial direction and extending in the longitudinal direction) at room temperature to produce a wire. Wire rods of Examples 2-2 to 2-9 were produced by changing the processing rate (cross-sectional area reduction rate) as shown in Table 4. Example 2-1 is an STQ material that was not swaged.
〔線材のヤング率の測定〕
実施例2-1~2-9の各材から、ヤング率測定用の試験片を採取し、ヤング率を測定した。その結果を表4及び図5に示す。なお、ヤング率測定用の試験片は、試験片の長さ方向をスウェージ加工の延伸方向(線材の長手方向)に一致させて採取した。 [Measurement of Young's modulus of wire]
Test pieces for measuring Young's modulus were collected from each material of Examples 2-1 to 2-9, and Young's modulus was measured. The results are shown in Table 4 and FIG. In addition, the test piece for Young's modulus measurement was collected with the length direction of the test piece coinciding with the drawing direction of the swaging process (longitudinal direction of the wire).
実施例2-1~2-9の各材から、ヤング率測定用の試験片を採取し、ヤング率を測定した。その結果を表4及び図5に示す。なお、ヤング率測定用の試験片は、試験片の長さ方向をスウェージ加工の延伸方向(線材の長手方向)に一致させて採取した。 [Measurement of Young's modulus of wire]
Test pieces for measuring Young's modulus were collected from each material of Examples 2-1 to 2-9, and Young's modulus was measured. The results are shown in Table 4 and FIG. In addition, the test piece for Young's modulus measurement was collected with the length direction of the test piece coinciding with the drawing direction of the swaging process (longitudinal direction of the wire).
表4及び図5に示すとおり、実施例2-2~2-9(本発明のジルコニウム合金)は、冷間スウェージ加工を施さなかった実施例2-1(本発明のジルコニウム合金素材)に比べて、ヤング率が低かった。即ち、Zr-9Nb-3SnのSTQ材(本発明のジルコニウム合金素材)は、冷間スウェージ加工によってヤング率が低下した。
As shown in Table 4 and FIG. 5, Examples 2-2 to 2-9 (zirconium alloy of the present invention) were compared with Example 2-1 (zirconium alloy material of the present invention) which was not subjected to cold swaging. The Young's modulus was low. In other words, the Young's modulus of the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) decreased due to cold swaging.
〔線材のX線回折〕
実施例2-1~2-5、2-7、2-8の各材について、X線回折装置を用いて、X線回折法による結晶構造解析を行った。その結果を図6に示す。図6には、下から順に、実施例2-1、実施例2-2、実施例2-3、実施例2-4、実施例2-5、実施例2-7、実施例2-8の各材のX線回折スペクトルを示す。図6中において、各ピークに付された三角印、丸印、四角印は、各ピークがそれぞれα’相、β相、ω相に帰属することを示し、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。
X線回折装置および測定条件は、下記のとおりである。
・装置:Bruker AXS社製D8 Advance
・X線源:Cu-Kα線
・線材の長手方向に対して垂直な面に対してX線回折測定を行った。 [X-ray diffraction of wire]
Each material of Examples 2-1 to 2-5, 2-7, and 2-8 was subjected to crystal structure analysis by an X-ray diffraction method using an X-ray diffractometer. The result is shown in FIG. FIG. 6 shows, in order from the bottom, Example 2-1, Example 2-2, Example 2-3, Example 2-4, Example 2-5, Example 2-7, and Example 2-8. The X-ray diffraction spectrum of each material is shown. In FIG. 6, the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the α ′ phase, β phase, and ω phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
The X-ray diffractometer and measurement conditions are as follows.
・ Device: D8 Advance made by Bruker AXS
X-ray source: Cu-Kα ray X-ray diffraction measurement was performed on a plane perpendicular to the longitudinal direction of the wire.
実施例2-1~2-5、2-7、2-8の各材について、X線回折装置を用いて、X線回折法による結晶構造解析を行った。その結果を図6に示す。図6には、下から順に、実施例2-1、実施例2-2、実施例2-3、実施例2-4、実施例2-5、実施例2-7、実施例2-8の各材のX線回折スペクトルを示す。図6中において、各ピークに付された三角印、丸印、四角印は、各ピークがそれぞれα’相、β相、ω相に帰属することを示し、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。
X線回折装置および測定条件は、下記のとおりである。
・装置:Bruker AXS社製D8 Advance
・X線源:Cu-Kα線
・線材の長手方向に対して垂直な面に対してX線回折測定を行った。 [X-ray diffraction of wire]
Each material of Examples 2-1 to 2-5, 2-7, and 2-8 was subjected to crystal structure analysis by an X-ray diffraction method using an X-ray diffractometer. The result is shown in FIG. FIG. 6 shows, in order from the bottom, Example 2-1, Example 2-2, Example 2-3, Example 2-4, Example 2-5, Example 2-7, and Example 2-8. The X-ray diffraction spectrum of each material is shown. In FIG. 6, the triangle mark, circle mark, and square mark attached to each peak indicate that each peak belongs to the α ′ phase, β phase, and ω phase, respectively, and the numbers attached to the peaks are The plane orientation of the crystal plane to which the peak belongs is shown.
The X-ray diffractometer and measurement conditions are as follows.
・ Device: D8 Advance made by Bruker AXS
X-ray source: Cu-Kα ray X-ray diffraction measurement was performed on a plane perpendicular to the longitudinal direction of the wire.
図6から分かるとおり、実施例2-1(本発明のジルコニウム合金素材)はβ相が主相であったが、実施例2-2~2-5、2-7、2-8(本発明のジルコニウム合金)はα’相が主相であった。即ち、Zr-9Nb-3SnのSTQ材(本発明のジルコニウム合金素材)に冷間スウェージ加工を施すと、β相が主相であった結晶構造が相変態しα’相が主相となった。
As can be seen from FIG. 6, in Example 2-1 (zirconium alloy material of the present invention), the β phase was the main phase, but Examples 2-2 to 2-5, 2-7, 2-8 (present invention) The zirconium alloy) has an α ′ phase as a main phase. That is, when cold swaging was applied to an STQ material of Zr-9Nb-3Sn (the zirconium alloy material of the present invention), the crystal structure in which the β phase was the main phase was transformed, and the α ′ phase became the main phase. .
<実施例3>
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表5に記載のとおりに変えて、実施例3-2~3-5の圧延材を作製した。実施例3-1は、圧延を施さなかったSTQ材である。 <Example 3>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled materials of Examples 3-2 to 3-5 were produced by changing the rolling reduction as shown in Table 5. Example 3-1 is an STQ material that has not been rolled.
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表5に記載のとおりに変えて、実施例3-2~3-5の圧延材を作製した。実施例3-1は、圧延を施さなかったSTQ材である。 <Example 3>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled materials of Examples 3-2 to 3-5 were produced by changing the rolling reduction as shown in Table 5. Example 3-1 is an STQ material that has not been rolled.
〔圧延材の磁化率の測定〕
実施例3-1~3-5の各材の磁化率を、ND方向及びTD方向に測定した結果を表5に示す。 [Measurement of magnetic susceptibility of rolled material]
Table 5 shows the results of measuring the magnetic susceptibility of each material of Examples 3-1 to 3-5 in the ND direction and the TD direction.
実施例3-1~3-5の各材の磁化率を、ND方向及びTD方向に測定した結果を表5に示す。 [Measurement of magnetic susceptibility of rolled material]
Table 5 shows the results of measuring the magnetic susceptibility of each material of Examples 3-1 to 3-5 in the ND direction and the TD direction.
表5に示すとおり、実施例3-2~3-5(本発明のジルコニウム合金)は、冷間圧延を施さなかった実施例3-1(本発明のジルコニウム合金素材)と同程度の磁化率であった。即ち、Zr-9Nb-3SnのSTQ材(本発明のジルコニウム合金素材)は、冷間圧延を施しても、磁化率が大きく上昇することはなく、同程度に保たれていた。
As shown in Table 5, Examples 3-2 to 3-5 (zirconium alloy of the present invention) have the same magnetic susceptibility as Example 3-1 (zirconium alloy material of the present invention) that was not cold-rolled. Met. That is, the Zr-9Nb-3Sn STQ material (zirconium alloy material of the present invention) did not significantly increase the magnetic susceptibility even when cold-rolled, and was maintained at the same level.
<実施例4>
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表6に記載のとおりにして、実施例4-2の圧延材を作製した。実施例4-1は、圧延を施さなかったSTQ材である。
同様にして、Zr-14Nb及びZr-20Nbの角柱状STQ材から、比較例4-2及び4-4の圧延材を作製した。比較例4-1及び4-3は、圧延を施さなかったSTQ材である。 <Example 4>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled material of Example 4-2 was produced with the rolling reduction as described in Table 6. Example 4-1 is an STQ material that has not been rolled.
Similarly, rolled materials of Comparative Examples 4-2 and 4-4 were produced from Zr-14Nb and Zr-20Nb prismatic STQ materials. Comparative Examples 4-1 and 4-3 are STQ materials that were not rolled.
〔圧延材の作製〕
Zr-9Nb-3Snの角柱状STQ材を、圧延機によって室温下で圧延し、圧延材を作製した。圧延の際には、STQ材の20mm辺の方向を圧延方向とし、20mm×10mmの面を圧延面とした。圧下率を表6に記載のとおりにして、実施例4-2の圧延材を作製した。実施例4-1は、圧延を施さなかったSTQ材である。
同様にして、Zr-14Nb及びZr-20Nbの角柱状STQ材から、比較例4-2及び4-4の圧延材を作製した。比較例4-1及び4-3は、圧延を施さなかったSTQ材である。 <Example 4>
(Production of rolled material)
A Zr-9Nb-3Sn prismatic STQ material was rolled at room temperature with a rolling mill to produce a rolled material. During rolling, the direction of the 20 mm side of the STQ material was the rolling direction, and the 20 mm × 10 mm surface was the rolled surface. The rolled material of Example 4-2 was produced with the rolling reduction as described in Table 6. Example 4-1 is an STQ material that has not been rolled.
Similarly, rolled materials of Comparative Examples 4-2 and 4-4 were produced from Zr-14Nb and Zr-20Nb prismatic STQ materials. Comparative Examples 4-1 and 4-3 are STQ materials that were not rolled.
〔圧延材の磁化率の測定〕
実施例4-1~4-2及び比較例4-1~4-4の各材の磁化率を、ND方向及びTD方向に測定した結果を表6に示す。 [Measurement of magnetic susceptibility of rolled material]
Table 6 shows the results of measuring the magnetic susceptibility of each material of Examples 4-1 to 4-2 and Comparative Examples 4-1 to 4-4 in the ND direction and the TD direction.
実施例4-1~4-2及び比較例4-1~4-4の各材の磁化率を、ND方向及びTD方向に測定した結果を表6に示す。 [Measurement of magnetic susceptibility of rolled material]
Table 6 shows the results of measuring the magnetic susceptibility of each material of Examples 4-1 to 4-2 and Comparative Examples 4-1 to 4-4 in the ND direction and the TD direction.
表6に示すとおり、Zr-9Nb-3Snの圧延材(実施例4-2)(本発明のジルコニウム合金)は、Zr-14Nbの圧延材(比較例4-2)及びZr-20Nbの圧延材(比較例4-4)に比べて、ND方向及びTD方向ともに磁化率が低かった。
As shown in Table 6, the rolled material of Zr-9Nb-3Sn (Example 4-2) (zirconium alloy of the present invention) is a rolled material of Zr-14Nb (Comparative Example 4-2) and a rolled material of Zr-20Nb. Compared with (Comparative Example 4-4), the magnetic susceptibility was lower in both the ND and TD directions.
実施例1及び2の結果に明らかなとおり、本発明のジルコニウム合金素材に冷間塑性加工を施すことで相変態が起こり、α’相が主相となり、本発明のジルコニウム合金が製造される。
As is clear from the results of Examples 1 and 2, the zirconium alloy material of the present invention is subjected to cold plastic working to cause phase transformation, and the α ′ phase becomes the main phase, whereby the zirconium alloy of the present invention is produced.
実施例1及び2の結果に明らかなとおり、本発明のジルコニウム合金は、弾性率が低く(実施例1及び2で作製したものは、ヤング率が60GPa以下である。)、したがって、骨固定具に適用した場合、ストレスシールディングが発生しにくい。
As is apparent from the results of Examples 1 and 2, the zirconium alloy of the present invention has a low elastic modulus (the one produced in Examples 1 and 2 has a Young's modulus of 60 GPa or less), and therefore, the bone anchoring device. When applied to, stress shielding is unlikely to occur.
実施例3及び4の結果に明らかなとおり、本発明のジルコニウム合金は、磁化率が低く(実施例3及び4で作製したものは、質量磁化率が1.6×10-8m3/kg以下である。)、したがって、骨固定具に適用した場合、MRIにおけるアーチファクトの発生が起こりにくい。
As is apparent from the results of Examples 3 and 4, the zirconium alloy of the present invention has a low magnetic susceptibility (the ones produced in Examples 3 and 4 have a mass magnetic susceptibility of 1.6 × 10 −8 m 3 / kg. Therefore, when applied to a bone anchor, artifacts in MRI are less likely to occur.
<実施例5>
〔ジルコニウム合金素材の作製〕
表7に示す各組成の混合物をそれぞれ調製し、タングステン電極を備えた非消耗型アルゴンアーク溶解炉を用いて、ボタン状インゴットを溶製した。このボタン状インゴットを、アルゴンアーク遠心鋳造機を用いて、図7に示す形状に鋳造した。こうして、下記の各組成について、ダンベル型のジルコニウム合金素材を得た。また、同じ方法で、下記の各組成について、円柱状(直径3mm×長さ40mm)のジルコニウム合金素材を得た。 <Example 5>
[Production of zirconium alloy material]
A mixture of each composition shown in Table 7 was prepared, and a button-shaped ingot was melted using a non-consumable argon arc melting furnace equipped with a tungsten electrode. This button-shaped ingot was cast into the shape shown in FIG. 7 using an argon arc centrifugal casting machine. Thus, dumbbell-type zirconium alloy materials were obtained for the following compositions. Further, in the same manner, a columnar (diameter 3 mm × length 40 mm) zirconium alloy material was obtained for each of the following compositions.
〔ジルコニウム合金素材の作製〕
表7に示す各組成の混合物をそれぞれ調製し、タングステン電極を備えた非消耗型アルゴンアーク溶解炉を用いて、ボタン状インゴットを溶製した。このボタン状インゴットを、アルゴンアーク遠心鋳造機を用いて、図7に示す形状に鋳造した。こうして、下記の各組成について、ダンベル型のジルコニウム合金素材を得た。また、同じ方法で、下記の各組成について、円柱状(直径3mm×長さ40mm)のジルコニウム合金素材を得た。 <Example 5>
[Production of zirconium alloy material]
A mixture of each composition shown in Table 7 was prepared, and a button-shaped ingot was melted using a non-consumable argon arc melting furnace equipped with a tungsten electrode. This button-shaped ingot was cast into the shape shown in FIG. 7 using an argon arc centrifugal casting machine. Thus, dumbbell-type zirconium alloy materials were obtained for the following compositions. Further, in the same manner, a columnar (
〔X線回折、ヤング率の測定、及び磁化率の測定〕
実施例5-1~5-7及び比較例5-1~5-2の円柱状ジルコニウム合金素材について、実施例1における方法と同じ方法で、X線回折法による結晶構造解析と、ヤング率の測定を行った。また、実施例5-1、実施例5-4、実施例5-7、比較例5-1及び比較例5-2の円柱状ジルコニウム合金素材について、磁化率を測定した。その結果を表8に示す。また、図8に磁化率を示し、図9にX線回折スペクトルを示す。
図9のX線回折スペクトルは、(a)比較例5-1、(b)実施例5-1、(c)実施例5-2、(d)実施例5-3、(e)実施例5-4、(f)実施例5-5、(g)実施例5-6、(h)実施例5-7、(i)比較例5-2である。図9中において、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。 [X-ray diffraction, measurement of Young's modulus, and measurement of magnetic susceptibility]
For the cylindrical zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2, the crystal structure analysis by the X-ray diffraction method and the Young's modulus Measurements were made. Further, the magnetic susceptibility of the columnar zirconium alloy materials of Example 5-1, Example 5-4, Example 5-7, Comparative Example 5-1, and Comparative Example 5-2 was measured. The results are shown in Table 8. FIG. 8 shows the magnetic susceptibility, and FIG. 9 shows the X-ray diffraction spectrum.
The X-ray diffraction spectrum of FIG. 9 shows (a) Comparative Example 5-1, (b) Example 5-1, (c) Example 5-2, (d) Example 5-3, (e) Example. 5-4, (f) Example 5-5, (g) Example 5-6, (h) Example 5-7, (i) Comparative Example 5-2. In FIG. 9, the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
実施例5-1~5-7及び比較例5-1~5-2の円柱状ジルコニウム合金素材について、実施例1における方法と同じ方法で、X線回折法による結晶構造解析と、ヤング率の測定を行った。また、実施例5-1、実施例5-4、実施例5-7、比較例5-1及び比較例5-2の円柱状ジルコニウム合金素材について、磁化率を測定した。その結果を表8に示す。また、図8に磁化率を示し、図9にX線回折スペクトルを示す。
図9のX線回折スペクトルは、(a)比較例5-1、(b)実施例5-1、(c)実施例5-2、(d)実施例5-3、(e)実施例5-4、(f)実施例5-5、(g)実施例5-6、(h)実施例5-7、(i)比較例5-2である。図9中において、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。 [X-ray diffraction, measurement of Young's modulus, and measurement of magnetic susceptibility]
For the cylindrical zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2, the crystal structure analysis by the X-ray diffraction method and the Young's modulus Measurements were made. Further, the magnetic susceptibility of the columnar zirconium alloy materials of Example 5-1, Example 5-4, Example 5-7, Comparative Example 5-1, and Comparative Example 5-2 was measured. The results are shown in Table 8. FIG. 8 shows the magnetic susceptibility, and FIG. 9 shows the X-ray diffraction spectrum.
The X-ray diffraction spectrum of FIG. 9 shows (a) Comparative Example 5-1, (b) Example 5-1, (c) Example 5-2, (d) Example 5-3, (e) Example. 5-4, (f) Example 5-5, (g) Example 5-6, (h) Example 5-7, (i) Comparative Example 5-2. In FIG. 9, the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
表8から分かるとおり、Nbを9質量%含有するジルコニウム合金素材は、Snの添加量が多くなるにしたがって、ヤング率が低下し、磁化率が上昇した。ジルコニウム合金素材は、Snの添加によってβ相が安定化し、その結果、ヤング率は低下し磁化率は上昇すると考えられた。
As can be seen from Table 8, the zirconium alloy material containing 9% by mass of Nb decreased in Young's modulus and increased in magnetic susceptibility as the amount of Sn added increased. The zirconium alloy material was thought to stabilize the β phase by adding Sn, resulting in a decrease in Young's modulus and an increase in magnetic susceptibility.
Nbを9質量%含有し且つSnを1質量%~5質量%の範囲で含有する本発明のジルコニウム合金素材は、この範囲でSnの含有率が多いほど、ヤング率が低く、しかし、磁化率は高い。
本発明のジルコニウム合金素材は、冷間塑性加工を施すことによってβ相がα’相に相変態しヤング率は低下するが(実施例1参照)、冷間塑性加工を施しても磁化率はほとんど低下しない(実施例3参照)。
したがって、Nbを9質量%含有し且つSnを含有する本発明のジルコニウム合金素材は、冷間塑性加工を施した後のヤング率と磁化率のバランスを考慮すると、Snの含有率が3質量%~4質量%の範囲であることが特に好ましい。 The zirconium alloy material of the present invention containing 9% by mass of Nb and Sn in the range of 1% by mass to 5% by mass has a lower Young's modulus as the content of Sn is higher in this range. Is expensive.
Although the zirconium alloy material of the present invention undergoes cold plastic working, the β phase is transformed into the α ′ phase and the Young's modulus decreases (see Example 1). Little decrease (see Example 3).
Therefore, the zirconium alloy material of the present invention containing 9% by mass of Nb and containing Sn has a Sn content of 3% by mass in consideration of the balance between Young's modulus and magnetic susceptibility after cold plastic working. A range of ˜4% by mass is particularly preferred.
本発明のジルコニウム合金素材は、冷間塑性加工を施すことによってβ相がα’相に相変態しヤング率は低下するが(実施例1参照)、冷間塑性加工を施しても磁化率はほとんど低下しない(実施例3参照)。
したがって、Nbを9質量%含有し且つSnを含有する本発明のジルコニウム合金素材は、冷間塑性加工を施した後のヤング率と磁化率のバランスを考慮すると、Snの含有率が3質量%~4質量%の範囲であることが特に好ましい。 The zirconium alloy material of the present invention containing 9% by mass of Nb and Sn in the range of 1% by mass to 5% by mass has a lower Young's modulus as the content of Sn is higher in this range. Is expensive.
Although the zirconium alloy material of the present invention undergoes cold plastic working, the β phase is transformed into the α ′ phase and the Young's modulus decreases (see Example 1). Little decrease (see Example 3).
Therefore, the zirconium alloy material of the present invention containing 9% by mass of Nb and containing Sn has a Sn content of 3% by mass in consideration of the balance between Young's modulus and magnetic susceptibility after cold plastic working. A range of ˜4% by mass is particularly preferred.
<実施例6>
〔引張試験〕
実施例5-1~5-7及び比較例5-1~5-2のダンベル型ジルコニウム合金素材を、引張試験機(島津製作所社製AG-200B) を用いて、室温下で、初期ひずみ速度9.27 ×10-4s-1にて、破断するまで引っ張った。そして、破断した各合金の破断部近傍から、直径3mmの円板状に合金を切り出した。こうして、実施例5-1~5-7及び比較例5-1~5-2のジルコニウム合金素材に引張試験を行って(即ち、冷間塑性加工を施して)、実施例6-1~6-7及び比較例6-1~6-2のジルコニウム合金を得た。 <Example 6>
[Tensile test]
Using the dumbbell-type zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2, using an tensile tester (AG-200B, manufactured by Shimadzu Corporation), the initial strain rate at room temperature. The sample was pulled at 9.27 × 10 −4 s −1 until it broke. And the alloy was cut out in the disk shape of diameter 3mm from the fracture | rupture part vicinity of each fractured alloy. In this way, tensile tests were performed on the zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2 (that is, cold plastic working was performed), and Examples 6-1 to 6 were performed. Zirconium alloys of -7 and Comparative Examples 6-1 and 6-2 were obtained.
〔引張試験〕
実施例5-1~5-7及び比較例5-1~5-2のダンベル型ジルコニウム合金素材を、引張試験機(島津製作所社製AG-200B) を用いて、室温下で、初期ひずみ速度9.27 ×10-4s-1にて、破断するまで引っ張った。そして、破断した各合金の破断部近傍から、直径3mmの円板状に合金を切り出した。こうして、実施例5-1~5-7及び比較例5-1~5-2のジルコニウム合金素材に引張試験を行って(即ち、冷間塑性加工を施して)、実施例6-1~6-7及び比較例6-1~6-2のジルコニウム合金を得た。 <Example 6>
[Tensile test]
Using the dumbbell-type zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2, using an tensile tester (AG-200B, manufactured by Shimadzu Corporation), the initial strain rate at room temperature. The sample was pulled at 9.27 × 10 −4 s −1 until it broke. And the alloy was cut out in the disk shape of diameter 3mm from the fracture | rupture part vicinity of each fractured alloy. In this way, tensile tests were performed on the zirconium alloy materials of Examples 5-1 to 5-7 and Comparative Examples 5-1 to 5-2 (that is, cold plastic working was performed), and Examples 6-1 to 6 were performed. Zirconium alloys of -7 and Comparative Examples 6-1 and 6-2 were obtained.
〔X線回折〕
実施例6-2~6-6の各合金について、実施例1における方法と同じ方法で、X線回折法による結晶構造解析を行った。その結果を、実施例5-1~5-7及び比較例5-1~5-2の結果とともに、表9に示す。また、図10にX線回折スペクトルを示す。
図10のX線回折スペクトルは、(a)実施例6-2、(b)実施例6-3、(c)実施例6-4、(d)実施例6-5、(e)実施例6-6である。図10中において、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。 [X-ray diffraction]
For each of the alloys of Examples 6-2 to 6-6, the crystal structure analysis was performed by the X-ray diffraction method in the same manner as in Example 1. The results are shown in Table 9 together with the results of Examples 5-1 to 5-7 and Comparative examples 5-1 to 5-2. FIG. 10 shows an X-ray diffraction spectrum.
The X-ray diffraction spectra of FIG. 10 are (a) Example 6-2, (b) Example 6-3, (c) Example 6-4, (d) Example 6-5, (e) Example. 6-6. In FIG. 10, the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
実施例6-2~6-6の各合金について、実施例1における方法と同じ方法で、X線回折法による結晶構造解析を行った。その結果を、実施例5-1~5-7及び比較例5-1~5-2の結果とともに、表9に示す。また、図10にX線回折スペクトルを示す。
図10のX線回折スペクトルは、(a)実施例6-2、(b)実施例6-3、(c)実施例6-4、(d)実施例6-5、(e)実施例6-6である。図10中において、ピークのそばに付された数字は、そのピークが帰属する結晶面の面方位を示す。 [X-ray diffraction]
For each of the alloys of Examples 6-2 to 6-6, the crystal structure analysis was performed by the X-ray diffraction method in the same manner as in Example 1. The results are shown in Table 9 together with the results of Examples 5-1 to 5-7 and Comparative examples 5-1 to 5-2. FIG. 10 shows an X-ray diffraction spectrum.
The X-ray diffraction spectra of FIG. 10 are (a) Example 6-2, (b) Example 6-3, (c) Example 6-4, (d) Example 6-5, (e) Example. 6-6. In FIG. 10, the number attached to the side of the peak indicates the plane orientation of the crystal plane to which the peak belongs.
表9に示すとおり、実施例6-4~6-6の合金にα’相が出現していることが確認された。Nbを9質量%含有し且つSnを含有するジルコニウム合金素材は、冷間塑性加工を施したときのα’相の出現の確実さの観点で、Snの含有率が3質量%~4質量%の範囲であることが特に好ましい。
As shown in Table 9, it was confirmed that α ′ phase appeared in the alloys of Examples 6-4 to 6-6. A zirconium alloy material containing 9% by mass of Nb and Sn contains a Sn content of 3% by mass to 4% by mass from the viewpoint of certainty of appearance of α ′ phase when cold plastic working is performed. It is particularly preferable that the range is
実施例5-1~5-7の合金素材は、Snの添加によってヤング率が低下しているが(表8参照)、この素材に冷間塑性加工を施せば、α’相が出現し、ヤング率がより低下した合金となり得る。
In the alloy materials of Examples 5-1 to 5-7, the Young's modulus is reduced by the addition of Sn (see Table 8). However, when this material is subjected to cold plastic working, an α ′ phase appears, An alloy having a lower Young's modulus can be obtained.
実施例5及び6の結果が示すとおり、本発明のジルコニウム合金素材が、Zr、Nb及びSnを主要成分とする合金(Zr-Nb-Sn三元合金)でありNbを9質量%含有する場合、Snの含有率は、1質量%~5質量%の範囲が好ましく、3質量%~4質量%の範囲が特に好ましい。
As shown in the results of Examples 5 and 6, when the zirconium alloy material of the present invention is an alloy (Zr—Nb—Sn ternary alloy) containing Zr, Nb and Sn as main components and containing 9% by mass of Nb. The Sn content is preferably in the range of 1% by mass to 5% by mass, particularly preferably in the range of 3% by mass to 4% by mass.
2012年8月28日に出願の日本国出願番号第2012-187593号の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2012-187593 filed on August 28, 2012 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2012-187593 filed on August 28, 2012 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
Claims (4)
- ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであり、α’相を主相とする、ジルコニウム合金。 Niobium is contained in an amount of 8% by mass or more and 11% by mass or less, at least one of tin and aluminum is contained in a total of 1% by mass or more and 5% by mass or less, the remainder is substantially zirconium, and the α ′ phase is a main phase. , Zirconium alloy.
- 請求項1に記載のジルコニウム合金からなる骨固定具。 A bone anchor made of the zirconium alloy according to claim 1.
- ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムである、ジルコニウム合金素材。 A zirconium alloy material containing niobium in an amount of 8% by mass to 11% by mass and containing at least one of tin and aluminum in a total of 1% by mass to 5% by mass with the balance being substantially zirconium.
- ニオブを8質量%以上11質量%以下含有し、スズ及びアルミニウムの少なくともいずれかを合計1質量%以上5質量%以下含有し、残部が実質的にジルコニウムであるジルコニウム合金素材に、冷間塑性加工を施すことを含む、ジルコニウム合金の製造方法。 Cold plastic working into a zirconium alloy material containing niobium in an amount of 8 mass% to 11 mass% and containing at least one of tin and aluminum in a total of 1 mass% to 5 mass% with the balance being substantially zirconium. The manufacturing method of a zirconium alloy including applying.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012187593A JP2015212400A (en) | 2012-08-28 | 2012-08-28 | Zirconium alloy, bone anchor, and method of producing zirconium alloy |
JP2012-187593 | 2012-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034574A1 true WO2014034574A1 (en) | 2014-03-06 |
Family
ID=50183387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072618 WO2014034574A1 (en) | 2012-08-28 | 2013-08-23 | Zirconium alloy, bone anchor, and method for producing zirconium alloy |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015212400A (en) |
WO (1) | WO2014034574A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047611A1 (en) * | 2016-09-08 | 2018-03-15 | トクセン工業株式会社 | Biocompatible alloy and medical product |
CN113604704A (en) * | 2021-08-11 | 2021-11-05 | 燕山大学 | Low-elasticity-modulus zirconium alloy and preparation method and application thereof |
CZ309191B6 (en) * | 2020-12-08 | 2022-04-27 | Univerzita Karlov | High-strength zirconium alloy and processing it |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018040028A (en) * | 2016-09-06 | 2018-03-15 | 国立大学法人 東京医科歯科大学 | Zirconium alloy powder for metal laminate molding, and method for producing implant using the same |
JP7138905B2 (en) * | 2018-02-19 | 2022-09-20 | 国立大学法人 筑波大学 | Superelastic low magnetic susceptibility zirconium alloy |
CN113481409B (en) * | 2021-07-02 | 2022-04-22 | 中南大学 | Biomedical zirconium-based nickel-free low-magnetization-rate shape memory alloy, preparation method thereof and biomedical material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001124882A (en) * | 1999-10-25 | 2001-05-11 | Nuclear Fuel Ind Ltd | High-strength zirconium alloy |
JP2012066017A (en) * | 2010-09-27 | 2012-04-05 | Tokyo Medical & Dental Univ | Zirconium alloy for biological use, and bone fixator |
-
2012
- 2012-08-28 JP JP2012187593A patent/JP2015212400A/en active Pending
-
2013
- 2013-08-23 WO PCT/JP2013/072618 patent/WO2014034574A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001124882A (en) * | 1999-10-25 | 2001-05-11 | Nuclear Fuel Ind Ltd | High-strength zirconium alloy |
JP2012066017A (en) * | 2010-09-27 | 2012-04-05 | Tokyo Medical & Dental Univ | Zirconium alloy for biological use, and bone fixator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047611A1 (en) * | 2016-09-08 | 2018-03-15 | トクセン工業株式会社 | Biocompatible alloy and medical product |
CZ309191B6 (en) * | 2020-12-08 | 2022-04-27 | Univerzita Karlov | High-strength zirconium alloy and processing it |
CN113604704A (en) * | 2021-08-11 | 2021-11-05 | 燕山大学 | Low-elasticity-modulus zirconium alloy and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2015212400A (en) | 2015-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019222883B2 (en) | Thermo-mechanical processing of nickel-titanium alloys | |
Haghighi et al. | Effect of α ″martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys | |
Ehtemam-Haghighi et al. | Influence of Nb on the β→ α ″martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys | |
WO2014034574A1 (en) | Zirconium alloy, bone anchor, and method for producing zirconium alloy | |
JP2009138218A (en) | Titanium alloy member and method for manufacturing titanium alloy member | |
JPH0730420B2 (en) | Chromium and tantalum modified .GAMMA.-titanium-aluminum alloys and methods for their production | |
KR20130134014A (en) | Beta type titanium alloy with low elastic modulus and high strength | |
CN104862566A (en) | High-strength high-plasticity medical magnesium alloy, and preparation method and applications thereof | |
CN107532249A (en) | Formable magnesium-based wrought alloy | |
JP2010275606A (en) | Titanium alloy | |
JP6704276B2 (en) | Method for producing cast material using aluminum alloy for casting | |
Azevedo et al. | The mechanical behavior of TiNbSn alloys according to alloying contents, cold rolling and aging | |
JP5180638B2 (en) | Bio-based Co-based alloy and method for producing the same | |
JP2011256443A (en) | Spinal fixation rod made of titanium alloy, having superior fatigue strength and low elastic modulus and method for producing the same | |
JP5408525B2 (en) | Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method | |
JP2008196044A (en) | Beta-type titanium alloy and product thereof | |
JP2006274319A (en) | High strength low young's modulus titanium alloy and its production method | |
JP2009270163A (en) | Titanium alloy | |
Ge et al. | Microstructures and mechanical properties of as-cast TiCuFeC alloys for biomedical applications | |
JP2012066017A (en) | Zirconium alloy for biological use, and bone fixator | |
JP4528109B2 (en) | Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same | |
Azevedo et al. | Fracture mechanics behavior of TiNbSn alloys as a function of alloy content, cold working and aging | |
JP6812460B2 (en) | High-strength low thermal expansion alloy | |
JP5929251B2 (en) | Iron alloy | |
JP6536916B2 (en) | Artifact-free superelastic alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832136 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832136 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |