WO2014034073A1 - Excitation light source for optical amplifier and method for controlling excitation light source for optical amplifier - Google Patents
Excitation light source for optical amplifier and method for controlling excitation light source for optical amplifier Download PDFInfo
- Publication number
- WO2014034073A1 WO2014034073A1 PCT/JP2013/005004 JP2013005004W WO2014034073A1 WO 2014034073 A1 WO2014034073 A1 WO 2014034073A1 JP 2013005004 W JP2013005004 W JP 2013005004W WO 2014034073 A1 WO2014034073 A1 WO 2014034073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive current
- light source
- light emitting
- optical amplifier
- control means
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1301—Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
- H01S3/13013—Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4018—Lasers electrically in series
Definitions
- the present invention relates to an excitation light source for an optical amplifier and a control method thereof, and more particularly to an excitation light source for an optical amplifier and a control method thereof that require long-term reliability.
- an optical amplifier In an optical communication system, an optical amplifier is used to amplify an optical signal that has been attenuated by propagating through an optical fiber.
- Such an optical amplifier is used in, for example, an optical repeater installed on the seabed in an optical submarine cable system, and therefore requires high reliability over a long period of time.
- an optical fiber type optical amplifier is widely used as an optical amplifier, in which a rare earth element such as erbium (Er) is added to an optical fiber and pumped by a pumping light source.
- a rare earth element such as erbium (Er)
- erbium (Er) is added to an optical fiber and pumped by a pumping light source.
- high reliability over a long period is also required for the excitation light source.
- Patent Document 1 An example of an optical amplifier using such a pumping light source is described in Patent Document 1.
- the related optical amplifier described in Patent Document 1 includes a pumping light source 5a driven by a driving circuit 4a, a pumping light source 5b driven separately by a driving circuit 4b, a photoelectric converter 11a, a photoelectric converter 11b, and voltage synthesis.
- the photoelectric converter 11a photoelectrically converts a part of the excitation light generated by the excitation light source 5a
- the photoelectric converter 11b photoelectrically converts a part of the excitation light generated by the excitation light source 5b. Convert.
- the voltage synthesizer 12 synthesizes the voltage signals photoelectrically converted by the photoelectric converters 11a and 11b.
- the comparator 13 compares the voltage signal output from the voltage synthesizer 12 with the reference voltage from the reference voltage generator 9, and outputs a variable control signal that makes the reference voltage constant to the drive circuit 4b. To do.
- the excitation light source 5a is driven with a constant drive current regardless of the excitation light output.
- the pumping light source 5a deteriorates and the pumping light output decreases, the combined light that has been optically combined decreases, and as a result, the voltage signal from the voltage synthesizer 12 decreases.
- the drive circuit 4b increases the excitation light output of the excitation light source 5b until the voltage signal becomes a predetermined constant value. In this way, even if the pumping light source 5a is deteriorated, the pumping light supplied to the rare earth-doped optical fiber 1 is kept constant, and stable light amplification characteristics can be obtained.
- Patent Document 2 describes an optical amplifier having a plurality of excitation light sources, output level detection means, output level control means, excitation light level detection means, excitation light level control means, and optical multiplexing means.
- the output level detection means detects the level of the output optical signal of the optical amplifier.
- the output level control means controls one excitation light source among the plurality of excitation light sources so that the output light level is stabilized based on the detected output light level signal.
- the excitation light level detection means detects the level of excitation light output from an excitation light source other than one excitation light source.
- the pumping light level control means controls each pumping light source so that each pumping light level is stabilized based on each detected pumping light level signal.
- the optical multiplexing means generates excitation light for multiplexing and amplifying the excitation light output from all the excitation light sources.
- JP 2006-128382 A paragraphs “0015” to “0019”, FIG. 2
- Japanese Patent Laid-Open No. 7-253602 paragraphs “0008” to “0020”, FIG. 1
- the related optical amplifier employs a redundant configuration using a plurality of pumping light sources in order to increase the reliability of the optical amplifier.
- the plurality of excitation light sources are individually controlled, there is a problem that the configuration of the excitation light source becomes complicated if the redundancy is increased.
- the related optical amplifier has a problem that the configuration of the pumping light source becomes complicated if the reliability of the optical amplifier is increased.
- the object of the present invention is the above-described problem, and in the related optical amplifier, the pumping light source of the optical amplifier and the control thereof solve the problem that the configuration of the pumping light source becomes complicated if the reliability of the optical amplifier is increased. It is to provide a method.
- the pumping light source of the optical amplifier of the present invention has a plurality of light emitting units connected in series, a current control unit that controls a drive current flowing through the plurality of light emitting units, and a control unit that controls the current control unit.
- the light emitting unit includes an optical output monitor unit, and the control unit controls the current control unit based on each output of the optical output monitor unit.
- the pumping light source of the optical amplifier of the present invention includes a plurality of first light emitting units each including a first light output monitoring unit, and a first light source unit in which a first current control unit is connected in series.
- a plurality of second light emitting units each having a second light output monitor unit, a second light source unit in which a second current control unit is connected in series, an output of the first light output monitor unit, and a second light output unit
- the first current control unit is connected to control the first drive current flowing through the first light emitting unit, and the second current control unit controls the second drive current flowing through the second light emitting unit. .
- a driving current is supplied in series to a plurality of light emitting units, and a part of the light output of each of the plurality of light emitting units is detected. Control the current.
- a first driving current is supplied in series to a plurality of first light emitting units, and a second driving current is connected in series to a plurality of second light emitting units. And detecting a part of the light output of each of the plurality of first light emitting units to acquire a first photocurrent, and detecting a part of the light output of the plurality of second light emitting units to detect the first light current.
- the second photocurrent is acquired, and the first drive current and the second drive current are controlled so that the sum of the first photocurrent and the second photocurrent is constant.
- an optical amplifier excitation light source having a simple configuration that achieves high reliability of the optical amplifier can be obtained.
- FIG. 1 is a block diagram showing a configuration of an excitation light source 100 of an optical amplifier according to the first embodiment of the present invention.
- the excitation light source 100 of the optical amplifier includes a plurality of light emitting units 110 connected in series, a current control unit 120 that controls a drive current flowing through the plurality of light emitting units 110, and a control unit 130 that controls the current control unit 120.
- the light emitting unit 110 includes a light output monitoring unit.
- the control unit 130 controls the current control unit 120 based on each output of the light output monitoring unit.
- the present invention is not limited to this, and a configuration in which three or more light emitting units are connected in series may be employed. . Even in this case, only one current control unit 120 may be provided.
- the light emitting unit 110 may include a semiconductor laser (Laser Diode: LD), and the light output monitor unit may include a photodiode (Photodiode: PD).
- the photodiode outputs photocurrents PC1 and PC2 corresponding to the optical output of the semiconductor laser to the control unit 130, respectively.
- the control unit 130 determines a drive current set value that is a value of the drive current so that the sum of the photocurrents PC1 and PC2 is constant, and the current is set so that the drive current is substantially the same as the drive current set value.
- the control unit 120 may be configured to be controlled.
- the pumping light source 100 of the optical amplifier has a configuration in which a plurality of typically semiconductor lasers (LDs) are connected in series as a light emitting unit (for example, two in the case shown in FIG. 1). ).
- LDs typically semiconductor lasers
- the emission efficiencies (electro-optical conversion efficiencies) of the respective semiconductor lasers are substantially equal.
- the currents flowing through the plurality of semiconductor lasers are controlled so that the sum of the currents of the photodiodes (PDs) built in the semiconductor lasers for monitoring the rear light output of the semiconductor lasers is constant.
- the total sum of the optical outputs of the excitation light source 100 of the optical amplifier can be kept constant.
- the output of the optical amplifier can be kept constant over a long period of time.
- a method for controlling the excitation light source of the optical amplifier according to the present embodiment will be described.
- a drive current is supplied in series to a plurality of light emitting units. Then, a part of the light output of each of the plurality of light emitting units is detected, and the drive current of the light emitting unit is controlled based on the detected result.
- it is possible to obtain a photocurrent by detecting a part of the light outputs of the plurality of light emitting units, and to control the drive current so that the total sum of the photocurrents at this time is constant.
- the pumping light source of the optical amplifier of the present embodiment the pumping light output as the pumping light source is ensured over a long period of time even when the optical output is reduced in some of the plurality of semiconductor lasers. It is possible. Therefore, the output of the optical amplifier can be maintained for a long time.
- FIG. 2 is a block diagram showing a configuration of an excitation light source 2000 for an optical amplifier according to the second embodiment of the present invention.
- the pumping light source 2000 of the optical amplifier includes a first light source unit 2100, a second light source unit 2200 connected in parallel with the first light source unit 2100, and a control unit 2300.
- the first light source unit 2100 has a configuration in which a plurality of first light emitting units 2110 and first current control units 2120 each having a first light output monitor unit are connected in series.
- the second light source unit 2200 has a configuration in which a plurality of second light emitting units 2210 and second current control units 2220 each having a second light output monitor unit are connected in series.
- the first current control unit 2120 controls the first drive current I1 flowing through the first light emitting unit 2110
- the second current control unit 2220 performs the second drive current flowing through the second light emitting unit 2210. I2 is controlled.
- the control unit 2300 controls the first current control unit 2120 and the second current control unit 2220 based on the output of the first light output monitor unit and the output of the second light output monitor unit.
- FIG. 2 shows a case where the first light source unit 2100 and the second light source unit 2200 include two first light emitting units 2111, 2112, and second light emitting units 2211, 2122, respectively.
- the present invention is not limited to this, and a configuration in which three or more light emitting units are connected in series may be employed. Even in this case, each of the first light source unit 2100 and the second light source unit 2200 may include one first current control unit 2120 and one second current control unit 2220.
- the pumping light source 2000 of the optical amplifier of the present embodiment the number of current control units can be reduced as compared with the number of light emitting units.
- an excitation light source for an optical amplifier having a simple configuration can be obtained.
- the first light source unit 2100 and the second light source unit 2200 are connected in parallel, when one of the light emitting units fails and the circuit of one of the light source units is disconnected. Even if it exists, light output can be maintained by the other light source part. Therefore, according to the excitation light source 2000 of the optical amplifier of this embodiment, it is possible to realize further high reliability of the optical amplifier.
- each of the first light emitting unit 2110 and the second light emitting unit 2210 can be configured to include a semiconductor laser (LD1, LD2, LD3, and LD4 in FIG. 2).
- LD1, LD2, LD3, and LD4 in FIG. 2
- each of the first light output monitor unit and the second light output monitor unit may include a photodiode. These photodiodes respectively output photocurrents (PC1, PC2, PC3, PC4) corresponding to the optical output of the semiconductor laser.
- the control unit 2300 can be configured to control the first current control unit 2120 and the second current control unit 2220 so that the total sum of photocurrents (PC1 + PC2 + PC3 + PC4) is constant.
- the control unit 2300 can include a first drive current control unit 2310, a second drive current control unit 2320, and a drive current setting unit 2330.
- the drive current setting unit 2330 uses a first drive current set value that is the value of the first drive current and a value of the second drive current so that the total of the photocurrents (PC1 + PC2 + PC3 + PC4) is constant. A certain second drive current set value is determined.
- the first drive current control unit 2310 controls the first current control unit 2120 so that the first drive current I1 is substantially the same as the first drive current setting value.
- the second drive current control unit 2320 controls the second current control unit 2220 so that the second drive current I2 is substantially the same as the second drive current setting value.
- the drive current setting unit 2330 acquires photocurrents (PC1, PC2, PC3, PC4) corresponding to the optical output of each semiconductor laser from the photodiode as the optical output monitor unit of each semiconductor laser. Based on this photocurrent, it is determined whether the operating state of each semiconductor laser is a normal operation or a failure operation.
- the drive current setting unit 2330 increases at least one of the first drive current set value and the second drive current set value described above.
- the first drive current control unit 2310 (or the second drive current control unit 2320) determines the drive current set value after the first drive current I1 (or the second drive current I2) has increased.
- the first current control unit 2120 (or the second current control unit 2220) is controlled so as to be substantially the same.
- the total of the photocurrents (PC1 + PC2 + PC3 + PC4) corresponding to the optical output of each semiconductor laser (LD) is constant. Can be kept in. As a result, the excitation light output as the excitation light source can be kept constant.
- FIG. 3 is a diagram showing an example of control logic when a semiconductor laser (LD) serving as a light emitting unit fails, and shows a case where four semiconductor lasers (LD) are used.
- the vertical row in FIG. 3 is a classification based on the number (p) of semiconductor lasers in a failure operation state.
- Each horizontal column indicates the optical output of each semiconductor laser (LD), specifically, the classification for each photocurrent (PC) of each photodiode, and the drive currents I1 and I2 of each semiconductor laser (LD).
- the symbol “ ⁇ ” indicates the case where the operating state of the semiconductor laser is a normal operation
- the symbol “X” indicates the case where the operating state of the semiconductor laser is a failure operation.
- the control unit 2300 controls the drive currents (I1 and I2) flowing through each semiconductor laser (LD) based on a logical operation corresponding to the operating state of each semiconductor laser (LD). Thus, feedback control is performed so that the pumping light output, which is the sum of the light outputs of the respective semiconductor lasers, is constant.
- the drive current I1 flows through the semiconductor lasers LD1 and LD2, and the semiconductor lasers LD3 and LD4 flow.
- Each of the drive currents I2 is increased to 4/3 times.
- the light output from the semiconductor laser LD4 cannot be obtained, but the semiconductor lasers LD1 and LD2 and LD3 can obtain light outputs proportional to “(4/3) I”, respectively. Therefore, a value proportional to “4I” is obtained as the pumping light output that is the sum of the light outputs of the respective semiconductor lasers. That is, it becomes possible to ensure the same pumping light output as when three semiconductor lasers use four semiconductor lasers.
- the present invention is not limited to this, and only two of the four semiconductor lasers are used during the initial operation, and the remaining two semiconductors are used.
- the laser may be deactivated and used as a standby system.
- the drive current I1 flowing through the semiconductor lasers LD1 and LD2 can be set to zero, and the drive current I2 flowing through the semiconductor lasers LD3 and LD4 can be rated.
- the pumping light output can be made constant, it is possible to always ensure the output of the optical amplifier.
- a method for controlling the excitation light source of the optical amplifier according to the present embodiment will be described.
- a first drive current is supplied in series to the plurality of first light emitting units, and the second driving unit is connected in series to the plurality of second light emitting units.
- Supply drive current At this time, a part of the light output of the plurality of first light emitting units is detected to acquire the first photocurrent, and a part of the light output of the plurality of second light emitting units is detected to detect the second. Get the photocurrent.
- the first drive current and the second drive current are controlled so that the sum of the first photocurrent and the second photocurrent is constant.
- each operation state of the first light emitting unit and the second light emitting unit is a normal operation or a failure operation. If it is determined that a failure operation is included, at least one of the first drive current and the second drive current may be increased.
- one current control unit is provided for each light source unit even in a redundant configuration in which a plurality of light source units including a plurality of light emitting units are connected in parallel. It can be configured. Therefore, according to the present embodiment, it is possible to obtain an excitation light source for an optical amplifier having a simple configuration that realizes high reliability of the optical amplifier.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
Abstract
Since configurations of excitation light sources become complicated when reliability of the optical amplifiers is improved in conventional optical amplifiers, this excitation light source for optical amplifiers has a plurality of light emitting units connected in series, a current control unit that controls drive currents flowing in the light emitting units, and a control unit that controls the current control unit. The light emitting units are provided with light output monitor units, respectively, and the control unit controls the current control unit on the basis of output from each of the light output monitor units.
Description
本発明は、光増幅器の励起用光源およびその制御方法に関し、特に、長期信頼性が要求される光増幅器の励起用光源およびその制御方法に関する。
The present invention relates to an excitation light source for an optical amplifier and a control method thereof, and more particularly to an excitation light source for an optical amplifier and a control method thereof that require long-term reliability.
光通信システムにおいては、光ファイバ中を伝播して減衰した光信号を増幅するために光増幅器が用いられる。このような光増幅器は、例えば光海底ケーブルシステムにおいては海底に設置された光中継器等で使用されるため、長期間にわたる高信頼性が要求される。
In an optical communication system, an optical amplifier is used to amplify an optical signal that has been attenuated by propagating through an optical fiber. Such an optical amplifier is used in, for example, an optical repeater installed on the seabed in an optical submarine cable system, and therefore requires high reliability over a long period of time.
光通信システムでは光増幅器として、エルビウム(Er)等の希土類元素を光ファイバに添加し励起用光源によって励起する光ファイバ型の光増幅器が広く用いられている。この場合、光増幅器の長期信頼性を確保するためには、励起用光源に対しても長期間にわたる高信頼性が要求される。
In an optical communication system, an optical fiber type optical amplifier is widely used as an optical amplifier, in which a rare earth element such as erbium (Er) is added to an optical fiber and pumped by a pumping light source. In this case, in order to ensure long-term reliability of the optical amplifier, high reliability over a long period is also required for the excitation light source.
このような励起用光源を用いた光増幅器の一例が特許文献1に記載されている。特許文献1に記載された関連する光増幅器は、駆動回路4aにより駆動される励起光源5a、駆動回路4bにより別途駆動される励起光源5b、光電気変換器11a、光電気変換器11b、電圧合成器12、比較器13、および基準電圧発生器9を有する。ここで、光電気変換器11aは、励起光源5aにより発生された励起光の一部を光電気変換し、光電気変換器11bは、励起光源5bにより発生された励起光の一部を光電気変換する。電圧合成器12は、光電気変換器11a、11bにより光電気変換された電圧信号を合成する。比較器13は、電圧合成器12から出力された電圧信号と基準電圧発生器9からの基準電圧とを比較し、その電圧信号が基準電圧一定となるような可変制御信号を駆動回路4bに出力する。
An example of an optical amplifier using such a pumping light source is described in Patent Document 1. The related optical amplifier described in Patent Document 1 includes a pumping light source 5a driven by a driving circuit 4a, a pumping light source 5b driven separately by a driving circuit 4b, a photoelectric converter 11a, a photoelectric converter 11b, and voltage synthesis. A comparator 12, a comparator 13, and a reference voltage generator 9. Here, the photoelectric converter 11a photoelectrically converts a part of the excitation light generated by the excitation light source 5a, and the photoelectric converter 11b photoelectrically converts a part of the excitation light generated by the excitation light source 5b. Convert. The voltage synthesizer 12 synthesizes the voltage signals photoelectrically converted by the photoelectric converters 11a and 11b. The comparator 13 compares the voltage signal output from the voltage synthesizer 12 with the reference voltage from the reference voltage generator 9, and outputs a variable control signal that makes the reference voltage constant to the drive circuit 4b. To do.
ここで、励起光源5aはその励起光出力にかかわらず、一定の駆動電流で駆動される。この励起光源5aが劣化してその励起光出力が低下すると、光合波された合波光が低下し、その結果、電圧合成器12からの電圧信号が低下する。すると、駆動回路4bは、電圧信号が予め設定された一定値になるまで励起光源5bの励起光出力を上げる。このようにして、励起光源5aが劣化しても希土類添加光ファイバ1に供給される励起光は一定に保たれ、安定した光増幅特性が得られる、としている。
Here, the excitation light source 5a is driven with a constant drive current regardless of the excitation light output. When the pumping light source 5a deteriorates and the pumping light output decreases, the combined light that has been optically combined decreases, and as a result, the voltage signal from the voltage synthesizer 12 decreases. Then, the drive circuit 4b increases the excitation light output of the excitation light source 5b until the voltage signal becomes a predetermined constant value. In this way, even if the pumping light source 5a is deteriorated, the pumping light supplied to the rare earth-doped optical fiber 1 is kept constant, and stable light amplification characteristics can be obtained.
また、特許文献2には、複数の励起光源、出力レベル検出手段、出力レベル制御手段、励起光レベル検出手段、励起光レベル制御手段、および光合波手段を有する光増幅器が記載されている。ここで、出力レベル検出手段は、光増幅器の出力光信号のレベルを検出する。出力レベル制御手段は、検出された出力光レベル信号に基づいて出力光レベルが安定化するように複数の励起光源のうちの一励起光源を制御する。励起光レベル検出手段は、一励起光源以外の励起光源が出力する励起光のレベルをそれぞれ検出する。励起光レベル制御手段は、検出された各励起光レベル信号に基づいて各励起光レベルが安定化するように各励起光源を制御する。光合波手段は、全ての励起光源が出力する励起光を合波して光増幅するための励起光を生成する。
Patent Document 2 describes an optical amplifier having a plurality of excitation light sources, output level detection means, output level control means, excitation light level detection means, excitation light level control means, and optical multiplexing means. Here, the output level detection means detects the level of the output optical signal of the optical amplifier. The output level control means controls one excitation light source among the plurality of excitation light sources so that the output light level is stabilized based on the detected output light level signal. The excitation light level detection means detects the level of excitation light output from an excitation light source other than one excitation light source. The pumping light level control means controls each pumping light source so that each pumping light level is stabilized based on each detected pumping light level signal. The optical multiplexing means generates excitation light for multiplexing and amplifying the excitation light output from all the excitation light sources.
このような構成とすることにより、特許文献2に記載された関連する光増幅器によれば、励起光源を複数有していても、簡単な構成で出力レベル制御を実現できる、としている。
By adopting such a configuration, according to the related optical amplifier described in Patent Document 2, output level control can be realized with a simple configuration even if a plurality of excitation light sources are provided.
上述したように、関連する光増幅器においては、光増幅器の信頼性を高めるために、複数の励起光源を用いた冗長構成を採用している。しかしながら、複数の励起光源を個別に制御することとしているので、冗長度を高めると、励起光源の構成が複雑になるという問題があった。
As described above, the related optical amplifier employs a redundant configuration using a plurality of pumping light sources in order to increase the reliability of the optical amplifier. However, since the plurality of excitation light sources are individually controlled, there is a problem that the configuration of the excitation light source becomes complicated if the redundancy is increased.
このように、関連する光増幅器においては、光増幅器の信頼性を高めると励起光源の構成が複雑になる、という問題があった。
Thus, the related optical amplifier has a problem that the configuration of the pumping light source becomes complicated if the reliability of the optical amplifier is increased.
本発明の目的は、上述した課題である、関連する光増幅器においては、光増幅器の信頼性を高めると励起光源の構成が複雑になる、という課題を解決する光増幅器の励起用光源およびその制御方法を提供することにある。
The object of the present invention is the above-described problem, and in the related optical amplifier, the pumping light source of the optical amplifier and the control thereof solve the problem that the configuration of the pumping light source becomes complicated if the reliability of the optical amplifier is increased. It is to provide a method.
本発明の光増幅器の励起用光源は、直列に接続された複数の発光部と、複数の発光部を流れる駆動電流を制御する電流制御部と、電流制御部を制御する制御部、とを有し、発光部は光出力モニタ部をそれぞれ備え、制御部は、光出力モニタ部の各出力に基づいて電流制御部を制御する。
The pumping light source of the optical amplifier of the present invention has a plurality of light emitting units connected in series, a current control unit that controls a drive current flowing through the plurality of light emitting units, and a control unit that controls the current control unit. The light emitting unit includes an optical output monitor unit, and the control unit controls the current control unit based on each output of the optical output monitor unit.
また、本発明の光増幅器の励起用光源は、第1の光出力モニタ部をそれぞれ備えた複数の第1の発光部と第1の電流制御部が直列に接続された第1の光源部と、第2の光出力モニタ部をそれぞれ備えた複数の第2の発光部と第2の電流制御部が直列に接続された第2の光源部と、第1の光出力モニタ部の出力と第2の光出力モニタ部の出力に基づいて、第1の電流制御部と第2の電流制御部を制御する制御部、とを有し、第1の光源部と第2の光源部は並列に接続され、第1の電流制御部は、第1の発光部を流れる第1の駆動電流を制御し、第2の電流制御部は、第2の発光部を流れる第2の駆動電流を制御する。
The pumping light source of the optical amplifier of the present invention includes a plurality of first light emitting units each including a first light output monitoring unit, and a first light source unit in which a first current control unit is connected in series. A plurality of second light emitting units each having a second light output monitor unit, a second light source unit in which a second current control unit is connected in series, an output of the first light output monitor unit, and a second light output unit A first current control unit and a control unit for controlling the second current control unit based on the output of the two light output monitor units, wherein the first light source unit and the second light source unit are arranged in parallel. The first current control unit is connected to control the first drive current flowing through the first light emitting unit, and the second current control unit controls the second drive current flowing through the second light emitting unit. .
本発明の光増幅器の励起用光源の制御方法は、複数の発光部に直列に駆動電流を供給し、複数の発光部の光出力の一部をそれぞれ検知し、検知した結果に基づいて、駆動電流を制御する。
According to the optical amplifier excitation light source control method of the present invention, a driving current is supplied in series to a plurality of light emitting units, and a part of the light output of each of the plurality of light emitting units is detected. Control the current.
また、本発明の光増幅器の励起用光源の制御方法は、複数の第1の発光部に直列に第1の駆動電流を供給し、複数の第2の発光部に直列に第2の駆動電流を供給し、複数の第1の発光部の光出力の一部をそれぞれ検知して第1の光電流を取得し、複数の第2の発光部の光出力の一部をそれぞれ検知して第2の光電流を取得し、第1の光電流と第2の光電流の総和が一定となるように、第1の駆動電流と第2の駆動電流を制御する。
In the method for controlling an excitation light source of an optical amplifier according to the present invention, a first driving current is supplied in series to a plurality of first light emitting units, and a second driving current is connected in series to a plurality of second light emitting units. And detecting a part of the light output of each of the plurality of first light emitting units to acquire a first photocurrent, and detecting a part of the light output of the plurality of second light emitting units to detect the first light current. The second photocurrent is acquired, and the first drive current and the second drive current are controlled so that the sum of the first photocurrent and the second photocurrent is constant.
本発明の光増幅器の励起用光源およびその制御方法によれば、光増幅器の高信頼性を実現する簡易な構成の光増幅器の励起用光源が得られる。
According to the optical amplifier excitation light source and the control method therefor according to the present invention, an optical amplifier excitation light source having a simple configuration that achieves high reliability of the optical amplifier can be obtained.
以下に、図面を参照しながら、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る光増幅器の励起用光源100の構成を示すブロック図である。光増幅器の励起用光源100は、直列に接続された複数の発光部110、これらの複数の発光部110を流れる駆動電流を制御する電流制御部120、および電流制御部120を制御する制御部130を有する。ここで、発光部110は光出力モニタ部をそれぞれ備える。制御部130は、光出力モニタ部の各出力に基づいて電流制御部120を制御する。図1では、光増幅器の励起用光源100が2個の発光部111、112を備えた場合について示したが、これに限らず、3個以上の発光部が直列に接続された構成としてもよい。この場合でも電流制御部120は1個だけ備えればよい。 [First Embodiment]
FIG. 1 is a block diagram showing a configuration of anexcitation light source 100 of an optical amplifier according to the first embodiment of the present invention. The excitation light source 100 of the optical amplifier includes a plurality of light emitting units 110 connected in series, a current control unit 120 that controls a drive current flowing through the plurality of light emitting units 110, and a control unit 130 that controls the current control unit 120. Have Here, the light emitting unit 110 includes a light output monitoring unit. The control unit 130 controls the current control unit 120 based on each output of the light output monitoring unit. Although FIG. 1 illustrates the case where the excitation light source 100 of the optical amplifier includes the two light emitting units 111 and 112, the present invention is not limited to this, and a configuration in which three or more light emitting units are connected in series may be employed. . Even in this case, only one current control unit 120 may be provided.
図1は、本発明の第1の実施形態に係る光増幅器の励起用光源100の構成を示すブロック図である。光増幅器の励起用光源100は、直列に接続された複数の発光部110、これらの複数の発光部110を流れる駆動電流を制御する電流制御部120、および電流制御部120を制御する制御部130を有する。ここで、発光部110は光出力モニタ部をそれぞれ備える。制御部130は、光出力モニタ部の各出力に基づいて電流制御部120を制御する。図1では、光増幅器の励起用光源100が2個の発光部111、112を備えた場合について示したが、これに限らず、3個以上の発光部が直列に接続された構成としてもよい。この場合でも電流制御部120は1個だけ備えればよい。 [First Embodiment]
FIG. 1 is a block diagram showing a configuration of an
ここで、発光部110は半導体レーザ(Laser Diode:LD)を備え、光出力モニタ部はフォトダイオード(Photodiode:PD)を備えた構成とすることができる。フォトダイオードは半導体レーザの光出力に応じた光電流PC1、PC2をそれぞれ制御部130に出力する。そして制御部130は、光電流PC1とPC2の総和が一定となるように、駆動電流の値である駆動電流設定値を決定し、駆動電流がこの駆動電流設定値と略同一となるように電流制御部120を制御する構成とすることができる。
Here, the light emitting unit 110 may include a semiconductor laser (Laser Diode: LD), and the light output monitor unit may include a photodiode (Photodiode: PD). The photodiode outputs photocurrents PC1 and PC2 corresponding to the optical output of the semiconductor laser to the control unit 130, respectively. Then, the control unit 130 determines a drive current set value that is a value of the drive current so that the sum of the photocurrents PC1 and PC2 is constant, and the current is set so that the drive current is substantially the same as the drive current set value. The control unit 120 may be configured to be controlled.
このように、本実施形態による光増幅器の励起用光源100は、発光部として複数の典型的には半導体レーザ(LD)を直列に接続した構成である(例えば、図1に示す場合は2個)。ここで、各半導体レーザの発光効率(電気-光変換効率)は略等しいことが望ましい。そして、半導体レーザの後方光出力モニタ用として半導体レーザに内蔵したフォトダイオード(PD)の電流の総和が一定となるように、複数の半導体レーザに流れる電流を制御する。これにより、個々の半導体レーザに何らかの障害が発生した場合であっても、光増幅器の励起用光源100の光出力の総和を一定に保つことができる。その結果、光増幅器の出力も長期間にわたり一定に維持することが可能となる。
As described above, the pumping light source 100 of the optical amplifier according to the present embodiment has a configuration in which a plurality of typically semiconductor lasers (LDs) are connected in series as a light emitting unit (for example, two in the case shown in FIG. 1). ). Here, it is desirable that the emission efficiencies (electro-optical conversion efficiencies) of the respective semiconductor lasers are substantially equal. Then, the currents flowing through the plurality of semiconductor lasers are controlled so that the sum of the currents of the photodiodes (PDs) built in the semiconductor lasers for monitoring the rear light output of the semiconductor lasers is constant. As a result, even if any failure occurs in each semiconductor laser, the total sum of the optical outputs of the excitation light source 100 of the optical amplifier can be kept constant. As a result, the output of the optical amplifier can be kept constant over a long period of time.
次に、本実施形態による光増幅器の励起用光源の制御方法について説明する。本実施形態による光増幅器の励起用光源の制御方法においては、まず、複数の発光部に直列に駆動電流を供給する。そして、これらの複数の発光部の光出力の一部をそれぞれ検知し、検知した結果に基づいて、発光部の駆動電流を制御する。ここで、複数の発光部の光出力の一部を検知して光電流をそれぞれ取得し、このときの光電流の総和が一定となるように駆動電流を制御する構成とすることができる。
Next, a method for controlling the excitation light source of the optical amplifier according to the present embodiment will be described. In the method for controlling the excitation light source of the optical amplifier according to the present embodiment, first, a drive current is supplied in series to a plurality of light emitting units. Then, a part of the light output of each of the plurality of light emitting units is detected, and the drive current of the light emitting unit is controlled based on the detected result. Here, it is possible to obtain a photocurrent by detecting a part of the light outputs of the plurality of light emitting units, and to control the drive current so that the total sum of the photocurrents at this time is constant.
上述したように本実施形態によれば、複数の発光部110を有する冗長構成とした場合であっても、1個の電流制御部を備えた構成とすることができる。そのため、本実施形態によれば、光増幅器の高信頼性を実現する簡易な構成の光増幅器の励起用光源100が得られる。
As described above, according to the present embodiment, even when a redundant configuration including a plurality of light emitting units 110 is used, a configuration including one current control unit can be provided. Therefore, according to the present embodiment, it is possible to obtain an excitation light source 100 for an optical amplifier having a simple configuration that realizes high reliability of the optical amplifier.
また一般に、光増幅器の安定な出力を長期間にわたって維持するためには、励起用光源の光出力も長期間にわたって安定に保つことが必要である。しかし、励起用光源の発光部に用いられる半導体レーザ等は光学部品であるため、部品固有の障害モードにより、その光出力が低下する可能性がある。しかしながら本実施形態の光増幅器の励起用光源によれば、複数の半導体レーザの一部で光出力の低下が発生した場合であっても、励起用光源としての励起光出力を長期間にわたって確保することが可能である。そのため、光増幅器の出力を長期間にわたって維持することができる。
In general, in order to maintain the stable output of the optical amplifier over a long period of time, it is necessary to keep the optical output of the excitation light source stable over a long period of time. However, since a semiconductor laser or the like used in the light emitting unit of the excitation light source is an optical component, its light output may be reduced due to a failure mode unique to the component. However, according to the pumping light source of the optical amplifier of the present embodiment, the pumping light output as the pumping light source is ensured over a long period of time even when the optical output is reduced in some of the plurality of semiconductor lasers. It is possible. Therefore, the output of the optical amplifier can be maintained for a long time.
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る光増幅器の励起用光源2000の構成を示すブロック図である。光増幅器の励起用光源2000は、第1の光源部2100、第1の光源部2100と並列に接続された第2の光源部2200、および制御部2300を有する。 [Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a configuration of anexcitation light source 2000 for an optical amplifier according to the second embodiment of the present invention. The pumping light source 2000 of the optical amplifier includes a first light source unit 2100, a second light source unit 2200 connected in parallel with the first light source unit 2100, and a control unit 2300.
次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る光増幅器の励起用光源2000の構成を示すブロック図である。光増幅器の励起用光源2000は、第1の光源部2100、第1の光源部2100と並列に接続された第2の光源部2200、および制御部2300を有する。 [Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a configuration of an
第1の光源部2100は、第1の光出力モニタ部をそれぞれ備えた複数の第1の発光部2110と第1の電流制御部2120が直列に接続された構成である。また、第2の光源部2200は、第2の光出力モニタ部をそれぞれ備えた複数の第2の発光部2210と第2の電流制御部2220が直列に接続された構成である。ここで、第1の電流制御部2120は第1の発光部2110を流れる第1の駆動電流I1を制御し、第2の電流制御部2220は第2の発光部2210を流れる第2の駆動電流I2を制御する。
The first light source unit 2100 has a configuration in which a plurality of first light emitting units 2110 and first current control units 2120 each having a first light output monitor unit are connected in series. Further, the second light source unit 2200 has a configuration in which a plurality of second light emitting units 2210 and second current control units 2220 each having a second light output monitor unit are connected in series. Here, the first current control unit 2120 controls the first drive current I1 flowing through the first light emitting unit 2110, and the second current control unit 2220 performs the second drive current flowing through the second light emitting unit 2210. I2 is controlled.
制御部2300は、第1の光出力モニタ部の出力と第2の光出力モニタ部の出力に基づいて、第1の電流制御部2120と第2の電流制御部2220を制御する。
The control unit 2300 controls the first current control unit 2120 and the second current control unit 2220 based on the output of the first light output monitor unit and the output of the second light output monitor unit.
図2では、第1の光源部2100および第2の光源部2200は、それぞれ2個の第1の発光部2111、2112および第2の発光部2211、2212を備えた場合について示す。しかし、これに限らず、それぞれ3個以上の発光部が直列に接続された構成としてもよい。この場合であっても、第1の光源部2100および第2の光源部2200には、第1の電流制御部2120および第2の電流制御部2220をそれぞれ一個ずつ備えればよい。
FIG. 2 shows a case where the first light source unit 2100 and the second light source unit 2200 include two first light emitting units 2111, 2112, and second light emitting units 2211, 2122, respectively. However, the present invention is not limited to this, and a configuration in which three or more light emitting units are connected in series may be employed. Even in this case, each of the first light source unit 2100 and the second light source unit 2200 may include one first current control unit 2120 and one second current control unit 2220.
このような構成としたことにより、本実施形態の光増幅器の励起用光源2000によれば、発光部の個数に比べて電流制御部の個数を削減することができるので、光増幅器の高信頼性を実現する簡易な構成の光増幅器の励起用光源が得られる。さらに、第1の光源部2100と第2の光源部2200が並列に接続された構成としているので、いずれかの発光部が故障して、一方の光源部の回路が切断状態となった場合であっても、他方の光源部により光出力を維持することができる。そのため本実施形態の光増幅器の励起用光源2000によれば、光増幅器のさらなる高信頼性を実現することができる。
With such a configuration, according to the pumping light source 2000 of the optical amplifier of the present embodiment, the number of current control units can be reduced as compared with the number of light emitting units. Thus, an excitation light source for an optical amplifier having a simple configuration can be obtained. Furthermore, since the first light source unit 2100 and the second light source unit 2200 are connected in parallel, when one of the light emitting units fails and the circuit of one of the light source units is disconnected. Even if it exists, light output can be maintained by the other light source part. Therefore, according to the excitation light source 2000 of the optical amplifier of this embodiment, it is possible to realize further high reliability of the optical amplifier.
ここで、第1の発光部2110および第2の発光部2210はそれぞれ半導体レーザ(図2中のLD1、LD2、LD3、LD4)を備えた構成とすることができる。ここで、各半導体レーザの発光効率(電気-光変換効率)は略等しいことが望ましい。また、第1の光出力モニタ部および第2の光出力モニタ部はそれぞれフォトダイオードを備えた構成とすることができる。これらのフォトダイオードは半導体レーザの光出力に応じた光電流(PC1、PC2、PC3、PC4)をそれぞれ出力する。そして制御部2300は光電流の総和(PC1+PC2+PC3+PC4)が一定となるように、第1の電流制御部2120と第2の電流制御部2220を制御する構成とすることができる。
Here, each of the first light emitting unit 2110 and the second light emitting unit 2210 can be configured to include a semiconductor laser (LD1, LD2, LD3, and LD4 in FIG. 2). Here, it is desirable that the emission efficiencies (electro-optical conversion efficiencies) of the respective semiconductor lasers are substantially equal. In addition, each of the first light output monitor unit and the second light output monitor unit may include a photodiode. These photodiodes respectively output photocurrents (PC1, PC2, PC3, PC4) corresponding to the optical output of the semiconductor laser. The control unit 2300 can be configured to control the first current control unit 2120 and the second current control unit 2220 so that the total sum of photocurrents (PC1 + PC2 + PC3 + PC4) is constant.
次に、制御部2300の構成について、さらに詳細に説明する。制御部2300は、第1の駆動電流制御部2310、第2の駆動電流制御部2320、および駆動電流設定部2330を備えた構成とすることができる。
Next, the configuration of the control unit 2300 will be described in more detail. The control unit 2300 can include a first drive current control unit 2310, a second drive current control unit 2320, and a drive current setting unit 2330.
ここで、駆動電流設定部2330は、光電流の総和(PC1+PC2+PC3+PC4)が一定となるように、第1の駆動電流の値である第1の駆動電流設定値と、第2の駆動電流の値である第2の駆動電流設定値を決定する。
Here, the drive current setting unit 2330 uses a first drive current set value that is the value of the first drive current and a value of the second drive current so that the total of the photocurrents (PC1 + PC2 + PC3 + PC4) is constant. A certain second drive current set value is determined.
そして、第1の駆動電流制御部2310は、第1の駆動電流I1が第1の駆動電流設定値と略同一となるように第1の電流制御部2120を制御する。また、第2の駆動電流制御部2320は、第2の駆動電流I2が第2の駆動電流設定値と略同一となるように第2の電流制御部2220を制御する。
Then, the first drive current control unit 2310 controls the first current control unit 2120 so that the first drive current I1 is substantially the same as the first drive current setting value. Further, the second drive current control unit 2320 controls the second current control unit 2220 so that the second drive current I2 is substantially the same as the second drive current setting value.
このような構成とすることにより、複数の半導体レーザ(LD)の一部で光出力の低下が発生した場合であっても、各半導体レーザ(LD)の光出力に応じた光電流の総和(PC1+PC2+PC3+PC4)は一定に保たれる。そのため、このような場合であっても、励起用光源としての励起光出力を一定に保持することが可能である。その結果、光増幅器の出力を長期間にわたって維持することができる。
By adopting such a configuration, even when the light output is reduced in a part of the plurality of semiconductor lasers (LD), the sum of photocurrents corresponding to the light output of each semiconductor laser (LD) ( PC1 + PC2 + PC3 + PC4) is kept constant. Therefore, even in such a case, it is possible to keep the excitation light output as the excitation light source constant. As a result, the output of the optical amplifier can be maintained for a long time.
次に、本実施形態による光増幅器の励起用光源2000の動作について説明する。駆動電流設定部2330は、各半導体レーザの光出力モニタ部としてのフォトダイオードから、各半導体レーザの光出力に応じた光電流(PC1、PC2、PC3、PC4)を取得する。そして、この光電流に基づいて各半導体レーザの動作状態が正常動作であるか故障動作であるかを判別する。
Next, the operation of the excitation light source 2000 of the optical amplifier according to the present embodiment will be described. The drive current setting unit 2330 acquires photocurrents (PC1, PC2, PC3, PC4) corresponding to the optical output of each semiconductor laser from the photodiode as the optical output monitor unit of each semiconductor laser. Based on this photocurrent, it is determined whether the operating state of each semiconductor laser is a normal operation or a failure operation.
その結果、故障動作状態にある半導体レーザが存在すると判断した場合、駆動電流設定部2330は上述した第1の駆動電流設定値および第2の駆動電流設定値の少なくとも一方を増大する。このとき、第1の駆動電流制御部2310(または第2の駆動電流制御部2320)は、第1の駆動電流I1(または第2の駆動電流I2)が、増大した後の駆動電流設定値と略同一となるように第1の電流制御部2120(または第2の電流制御部2220)を制御する。
As a result, when it is determined that there is a semiconductor laser in a failure operation state, the drive current setting unit 2330 increases at least one of the first drive current set value and the second drive current set value described above. At this time, the first drive current control unit 2310 (or the second drive current control unit 2320) determines the drive current set value after the first drive current I1 (or the second drive current I2) has increased. The first current control unit 2120 (or the second current control unit 2220) is controlled so as to be substantially the same.
これにより、複数の半導体レーザ(LD)の一部が故障状態となり、光出力が低下した場合であっても、各半導体レーザ(LD)の光出力に応じた光電流の総和(PC1+PC2+PC3+PC4)を一定に保つことができる。その結果、励起用光源としての励起光出力を一定に保持することが可能となる。
As a result, even if a part of the plurality of semiconductor lasers (LD) is in a failure state and the optical output is reduced, the total of the photocurrents (PC1 + PC2 + PC3 + PC4) corresponding to the optical output of each semiconductor laser (LD) is constant. Can be kept in. As a result, the excitation light output as the excitation light source can be kept constant.
続いて、本実施形態による光増幅器の励起用光源2000の動作について、図3を用いて具体的に説明する。
Subsequently, the operation of the excitation light source 2000 of the optical amplifier according to the present embodiment will be specifically described with reference to FIG.
図3は、発光部としての半導体レーザ(LD)の故障時における制御論理の一例を示す図であり、4個の半導体レーザ(LD)を使用した場合について示す。図3の縦の行は、故障動作状態にある半導体レーザの個数(p)による分類である。また、横の各列は各半導体レーザ(LD)の光出力、具体的には各フォトダイオードの光電流(PC)毎の分類、および各半導体レーザ(LD)の駆動電流I1、I2を示す。同図中、記号「○」は半導体レーザの動作状態が正常動作である場合を、記号「×」は半導体レーザの動作状態が故障動作である場合をそれぞれ示す。
FIG. 3 is a diagram showing an example of control logic when a semiconductor laser (LD) serving as a light emitting unit fails, and shows a case where four semiconductor lasers (LD) are used. The vertical row in FIG. 3 is a classification based on the number (p) of semiconductor lasers in a failure operation state. Each horizontal column indicates the optical output of each semiconductor laser (LD), specifically, the classification for each photocurrent (PC) of each photodiode, and the drive currents I1 and I2 of each semiconductor laser (LD). In the figure, the symbol “◯” indicates the case where the operating state of the semiconductor laser is a normal operation, and the symbol “X” indicates the case where the operating state of the semiconductor laser is a failure operation.
制御部2300は、それぞれの半導体レーザ(LD)の動作状態に応じた論理演算に基づいて、各半導体レーザ(LD)に流れる駆動電流(I1およびI2)を制御する。これにより、各半導体レーザの光出力の総和である励起光出力が一定となるようにフィードバック制御を行う。
The control unit 2300 controls the drive currents (I1 and I2) flowing through each semiconductor laser (LD) based on a logical operation corresponding to the operating state of each semiconductor laser (LD). Thus, feedback control is performed so that the pumping light output, which is the sum of the light outputs of the respective semiconductor lasers, is constant.
4個の半導体レーザがいずれも正常動作している場合(図3の1行目)、駆動電流I1およびI2をそれぞれ「I」とすると、各半導体レーザの光出力の総和である励起光出力は「4I」に比例する値となる。
When all of the four semiconductor lasers are operating normally (first line in FIG. 3), if the drive currents I1 and I2 are “I”, the pumping light output, which is the sum of the optical outputs of the semiconductor lasers, is The value is proportional to “4I”.
4個の半導体レーザのうち、例えば、半導体レーザLD4(PC4)のみが故障した場合(図3中の2行目)、半導体レーザLD1とLD2に流れる駆動電流I1、および半導体レーザLD3とLD4に流れる駆動電流I2をそれぞれ4/3倍にする。このとき、半導体レーザLD4からの光出力は得られないが、半導体レーザLD1とLD2、およびLD3からは「(4/3)I」に比例する光出力がそれぞれ得られる。したがって、各半導体レーザの光出力の総和である励起光出力としては、「4I」に比例する値が得られる。すなわち、3個の半導体レーザで4個の半導体レーザを用いたときと同じ励起光出力を確保することが可能となる。
Of the four semiconductor lasers, for example, when only the semiconductor laser LD4 (PC4) fails (second row in FIG. 3), the drive current I1 flows through the semiconductor lasers LD1 and LD2, and the semiconductor lasers LD3 and LD4 flow. Each of the drive currents I2 is increased to 4/3 times. At this time, the light output from the semiconductor laser LD4 cannot be obtained, but the semiconductor lasers LD1 and LD2 and LD3 can obtain light outputs proportional to “(4/3) I”, respectively. Therefore, a value proportional to “4I” is obtained as the pumping light output that is the sum of the light outputs of the respective semiconductor lasers. That is, it becomes possible to ensure the same pumping light output as when three semiconductor lasers use four semiconductor lasers.
なお、上述の説明では、4個の半導体レーザを同時に使用することとしたが、これに限らず、初期動作時は4個の半導体レーザのうち2個だけを使用し、残りの2個の半導体レーザは非動作とし、予備系として用いることとしてもよい。例えば、半導体レーザLD1が故障した場合には、半導体レーザLD1およびLD2を流れる駆動電流I1をゼロとし、半導体レーザLD3およびLD4に流れる駆動電流I2を定格動作させることができる。この場合にも、励起光出力を一定とすることができるので、光増幅器の出力を常に確保することが可能となる。
In the above description, four semiconductor lasers are used simultaneously. However, the present invention is not limited to this, and only two of the four semiconductor lasers are used during the initial operation, and the remaining two semiconductors are used. The laser may be deactivated and used as a standby system. For example, when the semiconductor laser LD1 fails, the drive current I1 flowing through the semiconductor lasers LD1 and LD2 can be set to zero, and the drive current I2 flowing through the semiconductor lasers LD3 and LD4 can be rated. Also in this case, since the pumping light output can be made constant, it is possible to always ensure the output of the optical amplifier.
次に、本実施形態による光増幅器の励起用光源の制御方法について説明する。本実施形態による光増幅器の励起用光源の制御方法においては、まず、複数の第1の発光部に直列に第1の駆動電流を供給し、複数の第2の発光部に直列に第2の駆動電流を供給する。このとき、複数の第1の発光部の光出力の一部をそれぞれ検知して第1の光電流を取得し、複数の第2の発光部の光出力の一部をそれぞれ検知して第2の光電流を取得する。そして、第1の光電流と第2の光電流の総和が一定となるように、第1の駆動電流と第2の駆動電流を制御する。
Next, a method for controlling the excitation light source of the optical amplifier according to the present embodiment will be described. In the method for controlling the light source for excitation of the optical amplifier according to the present embodiment, first, a first drive current is supplied in series to the plurality of first light emitting units, and the second driving unit is connected in series to the plurality of second light emitting units. Supply drive current. At this time, a part of the light output of the plurality of first light emitting units is detected to acquire the first photocurrent, and a part of the light output of the plurality of second light emitting units is detected to detect the second. Get the photocurrent. Then, the first drive current and the second drive current are controlled so that the sum of the first photocurrent and the second photocurrent is constant.
また、第1の光電流と第2の光電流に基づいて、第1の発光部および第2の発光部のそれぞれの動作状態が正常動作であるか故障動作であるかを判別する。そして、故障動作が含まれると判断した場合は、第1の駆動電流および第2の駆動電流の少なくとも一方を増大させることとしてもよい。
In addition, based on the first photocurrent and the second photocurrent, it is determined whether each operation state of the first light emitting unit and the second light emitting unit is a normal operation or a failure operation. If it is determined that a failure operation is included, at least one of the first drive current and the second drive current may be increased.
上述したように本実施形態によれば、複数の発光部を備えた光源部を並列に複数個接続した冗長構成とした場合であっても、光源部ごとに1個の電流制御部を備えた構成とすることができる。そのため、本実施形態によれば、光増幅器の高信頼性を実現する簡易な構成の光増幅器の励起用光源が得られる。
As described above, according to the present embodiment, one current control unit is provided for each light source unit even in a redundant configuration in which a plurality of light source units including a plurality of light emitting units are connected in parallel. It can be configured. Therefore, according to the present embodiment, it is possible to obtain an excitation light source for an optical amplifier having a simple configuration that realizes high reliability of the optical amplifier.
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.
この出願は、2012年8月28日に出願された日本出願特願2012-187590を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2012-187590 filed on August 28, 2012, the entire disclosure of which is incorporated herein.
100、2000 光増幅器の励起用光源
110 発光部
120 電流制御部
130 制御部
2100 第1の光源部
2110 第1の発光部
2120 第1の電流制御部
2200 第2の光源部
2210 第2の発光部
2220 第2の電流制御部
2300 制御部
2310 第1の駆動電流制御部
2320 第2の駆動電流制御部
2330 駆動電流設定部 100, 2000 Light source for excitation ofoptical amplifier 110 Light emitting unit 120 Current control unit 130 Control unit 2100 First light source unit 2110 First light emitting unit 2120 First current control unit 2200 Second light source unit 2210 Second light emitting unit 2220 2nd current control part 2300 Control part 2310 1st drive current control part 2320 2nd drive current control part 2330 Drive current setting part
110 発光部
120 電流制御部
130 制御部
2100 第1の光源部
2110 第1の発光部
2120 第1の電流制御部
2200 第2の光源部
2210 第2の発光部
2220 第2の電流制御部
2300 制御部
2310 第1の駆動電流制御部
2320 第2の駆動電流制御部
2330 駆動電流設定部 100, 2000 Light source for excitation of
Claims (10)
- 直列に接続された複数の発光手段と、
前記複数の発光手段を流れる駆動電流を制御する電流制御手段と、
前記電流制御手段を制御する制御手段、とを有し、
前記発光手段は光出力モニタ手段をそれぞれ備え、
前記制御手段は、前記光出力モニタ手段の各出力に基づいて前記電流制御手段を制御する
光増幅器の励起用光源。 A plurality of light emitting means connected in series;
Current control means for controlling drive current flowing through the plurality of light emitting means;
Control means for controlling the current control means,
The light emitting means includes light output monitoring means,
The control means controls the current control means based on each output of the light output monitor means. - 請求項1に記載した光増幅器の励起用光源において、
前記発光手段は半導体レーザを備え、
前記光出力モニタ手段はフォトダイオードを備え、
前記フォトダイオードは前記半導体レーザの光出力に応じた光電流をそれぞれ出力し、
前記制御手段は、前記光電流の総和が一定となるように、前記駆動電流の値である駆動電流設定値を決定し、前記駆動電流が前記駆動電流設定値と略同一となるように前記電流制御手段を制御する
光増幅器の励起用光源。 The excitation light source of the optical amplifier according to claim 1,
The light emitting means comprises a semiconductor laser;
The light output monitoring means includes a photodiode,
Each of the photodiodes outputs a photocurrent corresponding to the light output of the semiconductor laser,
The control means determines a drive current set value that is a value of the drive current so that the total sum of the photocurrents is constant, and the current is set so that the drive current is substantially the same as the drive current set value. Light source for pumping optical amplifier that controls the control means. - 第1の光出力モニタ手段をそれぞれ備えた複数の第1の発光手段と第1の電流制御手段が直列に接続された第1の光源手段と、
第2の光出力モニタ手段をそれぞれ備えた複数の第2の発光手段と第2の電流制御手段が直列に接続された第2の光源手段と、
前記第1の光出力モニタ手段の出力と前記第2の光出力モニタ手段の出力に基づいて、前記第1の電流制御手段と前記第2の電流制御手段を制御する制御手段、とを有し、
前記第1の光源手段と前記第2の光源手段は並列に接続され、
前記第1の電流制御手段は、前記第1の発光手段を流れる第1の駆動電流を制御し、
前記第2の電流制御手段は、前記第2の発光手段を流れる第2の駆動電流を制御する
光増幅器の励起用光源。 A plurality of first light emitting means each including a first light output monitoring means and a first light source means in which a first current control means are connected in series;
A plurality of second light emitting means each having a second light output monitoring means and a second light source means in which a second current control means is connected in series;
Control means for controlling the first current control means and the second current control means based on the output of the first light output monitor means and the output of the second light output monitor means. ,
The first light source means and the second light source means are connected in parallel;
The first current control means controls a first drive current flowing through the first light emitting means,
The second current control means is a light source for exciting an optical amplifier that controls a second drive current flowing through the second light emitting means. - 請求項3に記載した光増幅器の励起用光源において、
前記第1の発光手段および第2の発光手段はそれぞれ半導体レーザを備え、
前記第1の光出力モニタ手段および前記第2の光出力モニタ手段はそれぞれフォトダイオードを備え、前記フォトダイオードは前記半導体レーザの光出力に応じた光電流をそれぞれ出力し、
前記制御手段は、前記光電流の総和が一定となるように、前記第1の電流制御手段と前記第2の電流制御手段を制御する
光増幅器の励起用光源。 The excitation light source of the optical amplifier according to claim 3,
Each of the first light emitting means and the second light emitting means includes a semiconductor laser,
The first optical output monitoring means and the second optical output monitoring means each include a photodiode, and the photodiode outputs a photocurrent corresponding to the optical output of the semiconductor laser, respectively.
The control means controls the first current control means and the second current control means so that the total sum of the photocurrents is constant. - 請求項4に記載した光増幅器の励起用光源において、
前記制御手段は、駆動電流設定手段と、第1の駆動電流制御手段と、第2の駆動電流制御手段とを備え、
前記駆動電流設定手段は、前記光電流の総和が一定となるように、前記第1の駆動電流の値である第1の駆動電流設定値と、前記第2の駆動電流の値である第2の駆動電流設定値を決定し、
前記第1の駆動電流制御手段は、前記第1の駆動電流が前記第1の駆動電流設定値と略同一となるように前記第1の電流制御手段を制御し、
前記第2の駆動電流制御手段は、前記第2の駆動電流が前記第2の駆動電流設定値と略同一となるように前記第2の電流制御手段を制御する
光増幅器の励起用光源。 The excitation light source of the optical amplifier according to claim 4,
The control means comprises drive current setting means, first drive current control means, and second drive current control means,
The drive current setting means has a first drive current set value that is the value of the first drive current and a second value that is the value of the second drive current so that the total sum of the photocurrents is constant. Determine the drive current setting value of
The first drive current control means controls the first current control means so that the first drive current is substantially the same as the first drive current setting value;
The second drive current control means is a light source for exciting an optical amplifier that controls the second current control means so that the second drive current is substantially the same as the second drive current setting value. - 請求項5に記載した光増幅器の励起用光源において、
前記駆動電流設定手段は、前記光電流に基づいて各半導体レーザの動作状態が正常動作であるか故障動作であるかを判別し、
故障動作状態にある半導体レーザが存在すると判断した場合は、前記第1の駆動電流設定値および前記第2の駆動電流設定値の少なくとも一方を増大する
光増幅器の励起用光源。 In the excitation light source of the optical amplifier according to claim 5,
The drive current setting means determines whether the operation state of each semiconductor laser is a normal operation or a failure operation based on the photocurrent,
An excitation light source for an optical amplifier that increases at least one of the first drive current set value and the second drive current set value when it is determined that there is a semiconductor laser in a failure operation state. - 複数の発光手段に直列に駆動電流を供給し、
前記複数の発光手段の光出力の一部をそれぞれ検知し、
前記検知した結果に基づいて、前記駆動電流を制御する
光増幅器の励起用光源の制御方法。 A drive current is supplied in series to a plurality of light emitting means,
Detecting a part of the light output of the plurality of light emitting means,
A control method of an excitation light source of an optical amplifier that controls the drive current based on the detected result. - 請求項7に記載した光増幅器の励起用光源の制御方法において、
前記複数の発光手段の光出力の一部を検知して光電流をそれぞれ取得し、
前記光電流の総和が一定となるように前記駆動電流を制御する
光増幅器の励起用光源の制御方法。 In the control method of the light source for excitation of the optical amplifier according to claim 7,
Detecting a part of the light output of the plurality of light emitting means to obtain respective photocurrents,
A method for controlling an excitation light source for an optical amplifier, wherein the drive current is controlled so that a total sum of the photocurrents is constant. - 複数の第1の発光手段に直列に第1の駆動電流を供給し、
複数の第2の発光手段に直列に第2の駆動電流を供給し、
前記複数の第1の発光手段の光出力の一部をそれぞれ検知して第1の光電流を取得し、
前記複数の第2の発光手段の光出力の一部をそれぞれ検知して第2の光電流を取得し、
前記第1の光電流と前記第2の光電流の総和が一定となるように、前記第1の駆動電流と前記第2の駆動電流を制御する
光増幅器の励起用光源の制御方法。 Supplying a first drive current in series to a plurality of first light emitting means;
Supplying a second drive current in series to a plurality of second light emitting means;
Detecting a part of the light output of each of the plurality of first light emitting means to obtain a first photocurrent,
Detecting a part of the light output of each of the plurality of second light emitting means to obtain a second photocurrent,
A method of controlling an excitation light source for an optical amplifier, wherein the first drive current and the second drive current are controlled such that a sum of the first photocurrent and the second photocurrent is constant. - 請求項9に記載した光増幅器の励起用光源の制御方法において、
前記第1の光電流と前記第2の光電流に基づいて、前記第1の発光手段および前記第2の発光手段のそれぞれの動作状態が正常動作であるか故障動作であるかを判別し、
故障動作が含まれると判断した場合は、前記第1の駆動電流および前記第2の駆動電流の少なくとも一方を増大させる
光増幅器の励起用光源の制御方法。 In the control method of the light source for excitation of the optical amplifier according to claim 9,
Based on the first photocurrent and the second photocurrent, it is determined whether each operation state of the first light emitting means and the second light emitting means is a normal operation or a failure operation,
A method of controlling an excitation light source of an optical amplifier that increases at least one of the first drive current and the second drive current when it is determined that a failure operation is included.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014532776A JP6172151B2 (en) | 2012-08-28 | 2013-08-26 | Light source for pumping optical amplifier and control method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012187590 | 2012-08-28 | ||
JP2012-187590 | 2012-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034073A1 true WO2014034073A1 (en) | 2014-03-06 |
Family
ID=50182910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005004 WO2014034073A1 (en) | 2012-08-28 | 2013-08-26 | Excitation light source for optical amplifier and method for controlling excitation light source for optical amplifier |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6172151B2 (en) |
WO (1) | WO2014034073A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110383717A (en) * | 2017-03-17 | 2019-10-25 | 日本电气株式会社 | Light seabed cable system and light seabed trunking |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH043029A (en) * | 1990-04-20 | 1992-01-08 | Fujitsu Ltd | Method for driving pumping light source for optical amplification |
JPH0541552A (en) * | 1991-07-30 | 1993-02-19 | Nec Corp | Laser drive circuit for optical fiber amplifier excitation having changeover functions |
JPH05235445A (en) * | 1992-02-19 | 1993-09-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber amplifier |
JPH05268166A (en) * | 1992-03-18 | 1993-10-15 | Kokusai Denshin Denwa Co Ltd <Kdd> | Optical amplifier relay circuit |
JPH06204594A (en) * | 1992-08-21 | 1994-07-22 | American Teleph & Telegr Co <Att> | Light amplifier |
JPH1126852A (en) * | 1997-06-25 | 1999-01-29 | Oerlikon Contraves Ag | Method and device for operating quantum optical amplifier based on space by using optical waveguide |
JP2000196184A (en) * | 1998-12-28 | 2000-07-14 | Nec Corp | Laser diode module |
JP2012151313A (en) * | 2011-01-19 | 2012-08-09 | Nikon Corp | Fiber optical amplifier |
WO2013121744A1 (en) * | 2012-02-14 | 2013-08-22 | 日本電気株式会社 | Relay device, and excitation light supply device and excitation light supply method therefor |
-
2013
- 2013-08-26 WO PCT/JP2013/005004 patent/WO2014034073A1/en active Application Filing
- 2013-08-26 JP JP2014532776A patent/JP6172151B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH043029A (en) * | 1990-04-20 | 1992-01-08 | Fujitsu Ltd | Method for driving pumping light source for optical amplification |
JPH0541552A (en) * | 1991-07-30 | 1993-02-19 | Nec Corp | Laser drive circuit for optical fiber amplifier excitation having changeover functions |
JPH05235445A (en) * | 1992-02-19 | 1993-09-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber amplifier |
JPH05268166A (en) * | 1992-03-18 | 1993-10-15 | Kokusai Denshin Denwa Co Ltd <Kdd> | Optical amplifier relay circuit |
JPH06204594A (en) * | 1992-08-21 | 1994-07-22 | American Teleph & Telegr Co <Att> | Light amplifier |
JPH1126852A (en) * | 1997-06-25 | 1999-01-29 | Oerlikon Contraves Ag | Method and device for operating quantum optical amplifier based on space by using optical waveguide |
JP2000196184A (en) * | 1998-12-28 | 2000-07-14 | Nec Corp | Laser diode module |
JP2012151313A (en) * | 2011-01-19 | 2012-08-09 | Nikon Corp | Fiber optical amplifier |
WO2013121744A1 (en) * | 2012-02-14 | 2013-08-22 | 日本電気株式会社 | Relay device, and excitation light supply device and excitation light supply method therefor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110383717A (en) * | 2017-03-17 | 2019-10-25 | 日本电气株式会社 | Light seabed cable system and light seabed trunking |
EP3598668A4 (en) * | 2017-03-17 | 2020-03-18 | Nec Corporation | Optical undersea cable system and optical undersea relay device |
US11223427B2 (en) | 2017-03-17 | 2022-01-11 | Nec Corporation | Optical submarine cable system and optical submarine relay apparatus |
CN110383717B (en) * | 2017-03-17 | 2022-10-25 | 日本电气株式会社 | Optical submarine cable system and optical submarine repeater |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014034073A1 (en) | 2016-08-08 |
JP6172151B2 (en) | 2017-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9444219B2 (en) | Repeater, excitation light supply device used for the same, and excitation light supply method | |
EP3113301B1 (en) | Fiber laser device and method for detecting abnormality thereof | |
US9203518B2 (en) | Optical transmitter and waveform compensation method | |
JPH1012954A (en) | Optical amplifier | |
US6798567B2 (en) | Method and apparatus for controlling power transients in an optical communication system | |
EP3098911B1 (en) | Control method, control device, and light source device | |
WO2014208048A1 (en) | Laser diode driver, direct light amplification device, light signal transmission system and laser diode driving method | |
US6975448B2 (en) | Automatic gain controller of optical fiber amplifier | |
JP2009004903A (en) | Optical data link, and optical output control method | |
US20220102932A1 (en) | Optical amplification device and optical amplification method | |
JP6172151B2 (en) | Light source for pumping optical amplifier and control method thereof | |
JP2005038943A (en) | Light-emitting element driving device | |
JP2007214170A (en) | Optical fiber amplifier, optical fiber laser device, and fault detection method | |
WO2014141684A1 (en) | Optical amplifier and method for controlling same | |
JP2011243803A (en) | Optical fiber amplifier device, and optical signal amplifying method of optical fiber amplifier device | |
JP2015015398A (en) | Laser device | |
JP2005175272A (en) | Method for monitoring characteristic of excitation light source for optical amplification and optical amplifier | |
JP2011142137A (en) | Method of controlling optical transmitter | |
JP3923060B2 (en) | Optical amplifier | |
JP4773703B2 (en) | Optical amplifier | |
JP2019009395A (en) | Optical fiber amplifier and optical fiber amplifier system | |
WO2007134635A1 (en) | Optical amplifiers | |
JP2006128382A (en) | Optical amplifier | |
JP6273704B2 (en) | Optical repeater | |
JPWO2016001969A1 (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832824 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014532776 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832824 Country of ref document: EP Kind code of ref document: A1 |