Nothing Special   »   [go: up one dir, main page]

WO2014027391A1 - 空気調和装置の通信システム及び通信方法 - Google Patents

空気調和装置の通信システム及び通信方法 Download PDF

Info

Publication number
WO2014027391A1
WO2014027391A1 PCT/JP2012/070608 JP2012070608W WO2014027391A1 WO 2014027391 A1 WO2014027391 A1 WO 2014027391A1 JP 2012070608 W JP2012070608 W JP 2012070608W WO 2014027391 A1 WO2014027391 A1 WO 2014027391A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
air conditioning
signal
data
remote controller
Prior art date
Application number
PCT/JP2012/070608
Other languages
English (en)
French (fr)
Inventor
晃弘 小川
孝義 久保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/070608 priority Critical patent/WO2014027391A1/ja
Publication of WO2014027391A1 publication Critical patent/WO2014027391A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the present invention relates to a communication system for an air conditioner.
  • each device has a communication transmission / reception means, is connected by a communication line to form a communication network, and constitutes a communication system that performs communication (For example, refer to Patent Document 1).
  • the certain device when a certain device intends to acquire data possessed by another device, the certain device requests the transmission of a signal including the data to the other device. Then, the other device transmits a signal including data in response to the request.
  • an object of the present invention is to obtain a communication system for an air conditioner that can prevent an increase in communication traffic.
  • a communication system for an air conditioner is a communication system for an air conditioner that performs communication by connecting a plurality of devices related to air conditioning with a communication line to form a network. Included in the signal based on the communication command indicating the address and signal data content uniquely set for each device included in the signal received by the receiving unit and the signal received by the receiving unit Control means for performing processing for determining whether or not to acquire data and acquiring and processing data determined to be acquired.
  • the receiving means receives the signal flowing through the communication line including the signal sent to the other device, and if the control means includes data to be acquired, the acquisition processing is performed. It is possible to obtain desired data without requesting signal transmission for each data, and it is not necessary to send a signal including the same data to the communication line for each request, thereby reducing communication traffic of the entire system. be able to.
  • FIG. 2 is a diagram illustrating a configuration example of a remote controller device 100.
  • FIG. 2 is a diagram illustrating a configuration example of a central management device 200.
  • FIG. 3 is a diagram illustrating a configuration example of a maintenance device 250.
  • FIG. It is a figure for demonstrating the communication between the apparatuses which concern on Embodiment 1 of this invention. It is a figure for demonstrating the communication between the apparatuses which concern on Embodiment 2 of this invention.
  • FIG. 1 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioning heat source main device 50a and the air conditioning heat source auxiliary device 50b are connected in parallel by the refrigerant piping 300.
  • the air conditioning heat source device 50 (50a, 50b) and the air conditioning load devices 1a, 1b, 1c are connected by a refrigerant pipe 300 to form a refrigerant circuit.
  • the air conditioning heat source main device 50a, the air conditioning heat source auxiliary device 50b, and the air conditioning load devices 1a, 1b, and 1c are bus-connected by a communication line 400 to form a network. ing. Therefore, each device connected to the communication line 400 can receive a signal addressed to another device.
  • the central management device 200 and the maintenance device 250 are also connected to the communication line 400.
  • the communication line 400 may be either wired or wireless.
  • FIG. 2 is a diagram illustrating a configuration example of the air-conditioning load device 1.
  • the load control means 2 is composed of, for example, a microcomputer, and controls the operation of each device constituting the air-conditioning load device 1 based on a signal received by the load transmitting / receiving means 3.
  • a process of causing the load transmission / reception unit 3 to transmit a signal including suction temperature data related to the detection by the suction temperature detection unit 8 is performed.
  • the load transmission / reception means 3 is connected to the communication line 400, is an interface for signal communication between the communication line 400 and the load control means 2, and serves as a transmission means and reception means for various signals (in the transmission / reception means of the following apparatus). The same).
  • the load storage unit 4 stores data necessary for the load control unit 2 to perform processing. In the present embodiment, in particular, suction temperature data is stored. Moreover, the address for communication attached
  • the load side heat exchanger 5 performs heat exchange between the refrigerant passing through the heat exchanger and the air.
  • the load-side fan 6 sends air to the load-side heat exchanger 5 to exchange heat, and further sends the heat-exchanged air into the room.
  • the load side expansion valve 7 adjusts the opening degree of the valve based on the instruction of the load control means 2 and controls the flow rate of the refrigerant. Thus, the amount of refrigerant passing through the load-side heat exchanger 5 is controlled, and the amount of heat of evaporation / condensation heat of the refrigerant in the load-side heat exchanger 5 is adjusted.
  • the suction temperature detection means 8 detects the temperature of the air before flowing into the load side heat exchanger 5 by the load side fan 6.
  • FIG. 3 is a diagram illustrating a configuration example of the air-conditioning heat source device 50 (the air-conditioning heat source main device 50a and the air-conditioning heat source auxiliary device 50b).
  • the heat source machine control means 52 performs operation control of each device constituting the air-conditioning heat source device 50 based on, for example, a signal received by the heat source transmission / reception means 53.
  • movement is performed. For this reason, the process which transmits the signal for sending the signal containing various data to the heat source transmission / reception means 53 is performed.
  • the heat source machine control means 52 of the air-conditioning heat source auxiliary device 50b causes the heat source transmission / reception means 53 to transmit a signal including various data such as the frequency of the compressor 55 based on the signal received via the communication line 400. Process.
  • the heat source transmission / reception means 53 is connected to the communication line 400, serves as an interface for signal communication between the communication line 400 and the heat source unit control means 52, and transmits and receives various signals.
  • the heat source storage means 54 stores data necessary for the heat source machine control means 52 to perform processing. Here, various data of the air-conditioning heat source auxiliary device 50b are stored. Also, a communication address is stored.
  • the compressor 55 compresses the sucked refrigerant (gas), and sends out (discharges) the pressure based on the operating frequency.
  • the heat source side heat exchanger 56 performs heat exchange between the refrigerant passing through the heat exchanger and the air.
  • the heat source side fan 57 sends air to the heat source side heat exchanger 56 to exchange heat.
  • the switching valve 58 switches the refrigerant flow path by heating operation or cooling operation.
  • FIG. 4 is a diagram illustrating a configuration example of the remote controller device 100.
  • the remote controller device 100 transmits to the air-conditioning load device 1 a signal including operation command data such as operation or stop, set temperature, and air-conditioning operation mode input by an operator or the like.
  • a signal including data such as the operating state of the air-conditioning load device 1 is received and displayed.
  • the remote controller device 100 has a remote display means 101, a remote control means 102, a remote transmission / reception means 103, a remote storage means 104, and a remote input means 105.
  • the remote control unit 102 controls the operation of each unit of the remote controller device 100. In the present embodiment, particularly, based on the received signal, a determination process is performed to determine whether to acquire data included in the signal, and the data determined to be acquired is acquired.
  • the remote storage means 104 stores various data such as data for processing by each means of the remote controller device 100 temporarily or in the long term.
  • suction temperature data based on a signal from the air conditioning load device 1 related to acquisition is stored.
  • the remote transmission / reception means 103 is connected to the communication line 400 and serves as an interface for signal communication between the air conditioning load device 1 and the like and the remote control means 102. In this embodiment, a signal addressed to another device is received.
  • the remote display unit 101 performs display for an operator or the like based on the display signal transmitted from the remote control unit 102. Further, the remote input unit 105 transmits data such as instructions and settings input by an operator or the like to the remote control unit 102 as input signals.
  • FIG. 5 is a diagram illustrating a configuration example of the centralized management apparatus 200.
  • the central management device 200 centrally manages, for example, the plurality of air conditioning load devices 1 and the air conditioning heat source device 50.
  • the centralized management apparatus 200 includes a centralized display unit 201, a centralized control unit 202, a centralized transmission / reception unit 203, a centralized storage unit 204, and a centralized input unit 205.
  • the central control unit 202 controls the operation of each unit of the central management device 200. In the present embodiment, particularly, based on the received signal, a determination process is performed to determine whether to acquire data included in the signal, and the data determined to be acquired is acquired.
  • the centralized storage means 204 stores various data such as data for processing by each means of the centralized management apparatus 200 temporarily or for a long term.
  • suction temperature data based on a signal from the air conditioning load device 1 related to acquisition is stored.
  • the centralized transmission / reception means 203 is connected to the communication line 400 and serves as an interface for signal communication between the air conditioning load device 1 and the like and the centralized control means 202.
  • a signal requesting transmission of a signal related to the suction temperature is transmitted to the air-conditioning load device 1 (hereinafter, a signal requesting a signal including data to another device is referred to as a request signal).
  • the central display unit 201 performs display for a setter or the like based on the display signal transmitted from the central control unit 202. Further, the central input unit 205 transmits data such as instructions and settings input by the setter or the like to the central control unit 202 as input signals.
  • FIG. 6 is a diagram illustrating a configuration example of the maintenance device 250.
  • the maintenance device 250 is a device for performing maintenance of the air conditioning load device 1 and the air conditioning heat source device 50, for example. Here, it demonstrates as what maintains especially the air conditioning heat source auxiliary
  • the maintenance device 250 includes a maintenance control unit 252, a maintenance transmission / reception unit 253, and a maintenance storage unit 254.
  • the maintenance control unit 252 controls the operation of each unit of the maintenance device 250. In the present embodiment, particularly, based on the received signal, a determination process is performed to determine whether to acquire data included in the signal, and the data determined to be acquired is acquired.
  • the maintenance storage unit 254 stores various data such as data for processing by each unit of the maintenance device 250 temporarily or in a long term.
  • suction temperature data based on a signal from the air conditioning load device 1 related to acquisition is stored.
  • the maintenance transmission / reception means 253 is connected to the communication line 400 and serves as an interface for signal communication between the air conditioning load device 1 and the like and the maintenance control means 252. Here, a signal addressed to another device is received.
  • FIG. 7 is a diagram for explaining communication between apparatuses according to Embodiment 1 of the present invention.
  • the air conditioning load apparatus 1 is connected with the centralized management apparatus 200 and the remote controller apparatuses 100a and 100b by the communication line 400, and the network is formed.
  • the central management device 200 and the remote controller devices 100a and 100b each need data on the suction temperature of the air conditioning load device 1.
  • transmission / reception of signals via the communication line 400 is performed by each transmission / reception unit, and processing related to data acquisition is performed by each control unit.
  • the centralized management device 200 transmits a “request signal” to the air conditioning load device 1 via the communication line 400 in order to acquire suction temperature data held by the air conditioning load device 1.
  • the air conditioning load device 1 that has received the request signal transmits a signal including the suction temperature data held by itself to the central control device 200 via the communication line 400 (hereinafter, various types of signals sent to other devices in response to the request signal).
  • a signal containing data is called a response signal).
  • the signal is transmitted in a format conforming to a communication frame set in advance based on a protocol or the like, for example, as shown in FIG.
  • the communication frame includes, for example, a header part A including data such as a transmission source address, a transmission destination address, and a communication command message length, a communication command part B, and a frame check part C including a code for detecting a transmission error.
  • the communication command part B includes a communication command classifying part B1 indicating the control monitoring operation contents and target classification, an operation content part B2 indicating the control monitoring action contents, an action target part B3 indicating the control monitoring action object, and the like. Composed.
  • the centralized management device 200 receives the signal including the suction temperature data from the air conditioning load device 1 and acquires the suction temperature data.
  • the remote controller devices 100a and 100b also require the suction temperature data of the air conditioning load device 1.
  • the signal sent to the communication line 400 is also sent to the remote controller devices 100a and 100b. Therefore, based on the received signal, the remote controller devices 100a and 100b determine the transmission source address and the communication command.
  • the transmission source address represents the air conditioning load device 1 and the communication command is determined to be for the suction temperature data request signal
  • the signal is received and processed to acquire the suction temperature data.
  • the centralized management device 200 transmits a request signal, and the remote controller devices 100a and 100b acquire the suction temperature data based on the transmission source address and the communication command.
  • the present invention is not limited to this.
  • the remote controller device 100b and the centralized management device 200 may acquire the suction temperature data based on a request signal transmitted from the remote controller device 100a.
  • the remote controller device 100 acquires the suction temperature data, but the present invention is not limited to this. As long as it is a device (apparatus) that is communicably connected to the communication line 400 in the air conditioner, the suction temperature data may be acquired in another device.
  • the remote controller device 100 acquires the suction temperature data, but the present invention is not limited to this. Not only the suction temperature data but also the data required by the remote controller device can be acquired. At this time, the remote controller device 100 determines whether the data is useful based on the transmission source address and the communication command in the signal.
  • 100b receives the suction temperature data in the signal based on the transmission source address and the communication command in the signal, so that the suction temperature data can be obtained even if the remote controller device 100 does not transmit the request signal. Can be obtained.
  • the communication traffic of the entire system can be reduced.
  • FIG. FIG. 8 is a diagram for explaining communication between apparatuses according to Embodiment 2 of the present invention.
  • the air conditioning load device 1 is connected to the centralized management devices 200 a and 200 b and the remote controller devices 100 a and 100 b via the communication line 400.
  • the centralized management device 200b of the present embodiment is a device that monitors and operates the air-conditioning load device 1 at a place different from the centralized management device 200a.
  • the central management apparatus 200b holds the same data as the central management apparatus 200a.
  • the centralized management device 200a sends a signal (request signal) for requesting the air-conditioning load device 1 to transmit a signal including various data such as the suction temperature and the operating state of the air-conditioning load device via the communication line 400. To send.
  • the air conditioning load device 1 that has received the request signal transmits a signal including data held by itself to the centralized management device 200a via the communication line 400. At the time of transmission, a signal in a format according to a preset communication frame is sent. The centralized management device 200a receives the signal from the air conditioning load device 1 and acquires data.
  • the central management apparatus 200b has the same data as the central management apparatus 200a. Therefore, based on the signal received via the communication line 400, the centralized management apparatus 200b determines a transmission destination address and a communication command. When the transmission destination address represents the centralized management apparatus 200a and is determined as a response signal to the request signal, the signal is received and processed to acquire data.
  • the central management device 200b receives the signal flowing through the communication line 400, and the signal is based on the transmission destination address and the communication command in the signal. Since various types of data are acquired, for example, if the transmission destination address is the centralized management apparatus 200a, the same data can be acquired. For this reason, even if a plurality of centralized management devices 200 are connected to the communication line 400, communication traffic of the entire system can be suppressed.
  • FIG. 9 is a diagram for explaining communication between apparatuses according to Embodiment 3 of the present invention.
  • the air conditioning load devices 1a, 1b, and 1c, the air conditioning heat source device 50, the centralized management devices 200a and 200b, the remote controller devices 100a and 100b, and the maintenance device 250 are connected to the communication line 400. Connected with.
  • the air-conditioning heat source device 50 includes an air-conditioning heat source main device 50a and an air-conditioning heat source auxiliary device 50b.
  • the air conditioning heat source main device 50a transmits a request signal to the air conditioning heat source auxiliary device 50b via the communication line 400.
  • the pressure data of the air conditioning heat source auxiliary device 50b, the temperature data of the piping, the frequency data of the compressor 55, the control data such as the operating state, etc. are acquired, and the air conditioning The heat source device 50 as a whole performs a cooperative operation.
  • the maintenance device 250 of the present embodiment acquires data (maintenance data) for maintaining the air-conditioning heat source auxiliary device 50b. Therefore, based on the response signal sent from the air conditioning heat source main device 50a to the air conditioning heat source auxiliary device 50b, the pressure data, temperature data, and frequency data acquired by the air conditioning heat source main device 50a from the transmission source address and the communication command.
  • the data necessary for maintenance is determined from the control data such as the operation state, and the necessary data is acquired.
  • the central management devices 200a and 200b are also required for maintenance from the control data such as pressure data, temperature data, frequency data, and operating state acquired by the air-conditioning heat source main device 50a in the same manner as the maintenance device 250. Based on the information source address and communication command, it is determined as maintenance data, and a communication frame is received and acquired.
  • the maintenance device 250 and the centralized management devices 200a and 200b can acquire maintenance data of the air conditioning heat source auxiliary device without transmitting a data request signal. Therefore, even if a plurality of devices that acquire maintenance data are connected, the traffic of the entire system can be suppressed.
  • FIG. FIG. 10 is a diagram for explaining communication between apparatuses according to Embodiment 4 of the present invention.
  • Each device and connection form shown in FIG. 10 are the same as those in FIG. 7 described in the first embodiment.
  • the remote controller devices 100a and 100b also have a timing device such as a timer.
  • the present embodiment relates to processing of the remote controller device 100 when the centralized management device 200 that has sent a request signal to the air conditioning load device 1 breaks down.
  • the centralized management device 200 is a device that needs to periodically acquire data in about 60 seconds for displaying the suction temperature and holding various data.
  • the acquisition of the periodic suction temperature data may be about 100 seconds.
  • the remote controller devices 100a and 100b transmit the request signal in a cycle longer than the cycle in which the centralized management device 200 transmits the request signal.
  • the timing device is reset.
  • the communication cycle of the request signal of the remote controller device 100a is set to 101 seconds, for example, and the communication cycle of the request signal of the remote controller device 100b is set to 102 seconds, for example, and set with different cycles (time).
  • the communication cycle is an example, and does not limit the number of seconds (hereinafter the same).
  • the centralized management device 200 transmits a request signal to the air conditioning load device 1 every 60 seconds, and the air conditioning load device 1 receives the suction temperature data via the communication line 400. Send the containing signal.
  • the remote controller devices 100a and 100b receive the signal and acquire the suction temperature data, they reset the timing device. For this reason, basically, it is not necessary for the remote controller devices 100a and 100b to transmit a request signal to the air conditioning load device 1.
  • the remote controller device 100a or 100b may not be able to acquire the suction temperature data due to some cause such as failure of the centralized management device 200 or the influence of external noise during data transmission.
  • the remote controller device 100a cannot be acquired.
  • the remote controller device 100 a transmits a request signal to the air conditioning load device 1.
  • the air conditioning load device 1 that has received the request signal from the remote controller device 100a transmits a signal including the suction temperature data to the remote controller device 100a via the communication line 400.
  • the remote controller device 100a receives the signal including the suction temperature data from the air conditioning load device 1 and acquires the suction temperature data.
  • the remote controller device 100b acquires the suction temperature data based on the transmission source address of the received signal and the communication command.
  • the remote controller device 100 acquires the suction temperature data without transmitting the request signal because the cycle related to the request signal transmission is long. can do.
  • the request signal is transmitted to the air-conditioning load device 1 on the assumption that the remote controller device 100a cannot acquire, but the remote controller device 100b may transmit the request signal.
  • the communication cycle of the request signal of the remote controller device 100a is 101 seconds and the communication cycle of the request signal of the remote controller device 100a is 102 seconds, it is not limited to this.
  • the determination process based on the transmission source address and the communication command is performed, but the determination process may be performed based on the transmission destination address and the communication command as in the second embodiment.
  • the communication cycle of the request signal that is reset when the suction temperature data is acquired is set in the remote controller device 100, and is requested when the communication cycle is reached. Since the signal is transmitted, for example, the suction temperature data can be acquired by transmitting the request signal even if the suction temperature data cannot be acquired based on the signal addressed to the central management apparatus 200. Other devices that have not transmitted the request signal can acquire the suction temperature data based on the signal flowing through the communication line 400, and the traffic of the entire system can be suppressed. At this time, if different communication cycles are set between the remote controller device 100a and the remote controller device 100b, the possibility of transmitting request signals at the same time becomes extremely low, and signal collisions and the like can be prevented.
  • Embodiment 5 FIG.
  • the communication cycle of the request signal of the remote controller device 100a is 101 seconds
  • the communication cycle of the request signal of the remote controller device 100a is 102 seconds.
  • a communication cycle based on the address is set.
  • the communication cycle of the remote controller device 100 is set so that the request signal is transmitted after 100 seconds + the last digit of the address ⁇ 100 ms.
  • the address 101 is set in the remote controller device 100a, and the address 102 is set in the remote controller device 100b.
  • the communication cycle of the remote controller device 100a is 100.1 seconds, and the communication cycle of the remote controller device 100b is 100.2 seconds.
  • the air conditioning load is the same as in the fourth embodiment.
  • a request signal is transmitted to the device 1.
  • the determination process based on the transmission source address and the communication command is performed, but the determination process may be performed based on the transmission destination address and the communication command as in the second embodiment.
  • the communication cycle is determined based on the address uniquely determined for each apparatus.
  • the period does not have to be the same.
  • FIG. FIG. 11 is a diagram for explaining communication between apparatuses according to Embodiment 6 of the present invention.
  • the air conditioning load device 1 is connected to the centralized management devices 200 a and 200 b, the remote controller devices 100 a and 100 b, and the maintenance device 250 through the communication line 400.
  • the maintenance device 250 and the remote controller devices 100a and 100b also have a timing device such as a timer.
  • This embodiment relates to processing of other devices when the central management device 200a that has sent a request signal to the air conditioning load device 1 fails.
  • the central management device 200 is a device that needs to acquire data regularly in about 60 seconds for displaying the suction temperature, holding various data, and the like.
  • the acquisition of the periodic suction temperature data may be about 100 seconds.
  • the maintenance device 250 is also a device that needs to periodically acquire data in about 60 seconds in order to display the suction temperature and hold the data.
  • maintenance device 250 is a device connected to communication line 400 when maintenance is required.
  • the communication cycle of the request signal of the central management apparatus 200a is set to 60 seconds, for example. Further, the communication cycle of the request signal of the central management device 200b is set to 61 seconds, for example, and the communication cycle of the request signal of the maintenance device 250 is set to 65 seconds, for example. Furthermore, the communication cycle of the request signals of the remote controller devices 100a and 100b is 121 seconds.
  • the centralized management device 200 transmits a request signal to the air conditioning load device 1 every 60 seconds, and the air conditioning load device 1 transmits a signal including suction temperature data via the communication line 400.
  • the maintenance device 250, the central management device 200b, and the remote controller devices 100a and 100b receive the signal and acquire the suction temperature data, they reset the timing device. For this reason, basically, the maintenance device 250, the centralized management device 200b, and the remote controller devices 100a and 100b do not need to transmit a request signal to the air conditioning load device 1.
  • the central management device 200a due to the failure of the central management device 200a, the central management device 200b, the remote controller devices 100a and 100b, and the maintenance device 250 may not be able to acquire the suction temperature data.
  • the central management device 200b instead of the centralized management device 200a, one of the devices transmits a request signal to the air conditioning load device 1.
  • the apparatus which transmits a request signal with respect to the air conditioning load apparatus 1 is determined by the characteristic (function, kind) etc. which an apparatus has in a system.
  • the communication cycle is set by increasing the priority of a device that needs to acquire data in a short cycle to hold the data.
  • the communication cycle is set by always setting the priority of the device connected to the communication line 400 high. Therefore, (1) a device that is always connected to the communication line 400 and has a short data acquisition cycle, (2) a device that is connected to the communication line 400 when necessary and has a short data acquisition cycle, and (3) a communication line 400 that is always connected.
  • the priority order is determined in the order of devices having a long data acquisition cycle.
  • the central management device 200b since the communication cycle of 61 seconds is set for the central management device 200b that is always connected to the communication line 400 and has a short data acquisition cycle, the central management device 200b is connected to the air conditioning load device 1. In response, a request signal is transmitted. Thereby, for example, even if the centralized management device 200a breaks down, it is possible to continue processing related to acquisition of suction temperature data by another device. Further, when the central management device 200b fails, the maintenance device 250 having the next highest priority transmits a request signal every 65 seconds.
  • the central management apparatus 200a transmits a request signal every 60 seconds again, the other apparatuses acquire the suction temperature data without transmitting the request signal because the period related to the request signal transmission is long. be able to.
  • the priority order of the remote controller devices 100a and 100b is not particularly determined, and the communication cycle may be set to 121 seconds. At this time, as described in the fifth embodiment, the communication cycle may be set according to the priority order depending on the address.
  • the communication cycle is determined according to the characteristics of the device, it is possible to preferentially set a device that requires data in a short cycle. it can.
  • Embodiment 7 FIG.
  • the air conditioning heat source device 50 is configured by the air conditioning heat source main device 50a and the air conditioning heat source auxiliary device 50b, but is not limited thereto.
  • the air-conditioning heat source device 50 may be configured by only the air-conditioning heat source main device 50a.
  • Air conditioning load device 2 Load control means, 3 Load transmission / reception means, 4 Load storage means, 5 Load side heat exchanger, 6 Load side fan, 7 Load side expansion valve, 8 Suction temperature detection means 50 air conditioning heat source device, 50a air conditioning heat source main device, 50b air conditioning heat source auxiliary device, 52 heat source machine control means, 53 heat source transmission / reception means, 54 heat source storage means, 55 compressor, 56 heat source side heat exchanger, 57 heat source Side fan, 58 switching valve, 100, 100a, 100b remote controller device, 101 remote display means, 102 remote control means, 103 remote transmission / reception means, 104 remote storage means, 105 remote input means, 200, 200a, 200b centralized management device, 201 Centralized display means, 202 Centralized control hand , 203 centralized transmitting and receiving means, 204 centralized storage unit, 205 centralized input means, 250 maintenance device, 252 maintenance control unit, 253 maintenance transmitting and receiving means, 254 maintenance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和に係る複数の装置を通信線400で接続してネットワークを形成し、通信を行う空気調和装置の通信システムであって、リモートコントローラ装置100等の装置は、通信線400を流れる信号を受信するリモート送受信手段103等と、受信手段が受信した信号に含まれる、各装置に対して固有に設定されるアドレス及び信号のデータ内容を示す通信コマンドに基づいて、信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理するリモート制御手段102等とを備える。

Description

空気調和装置の通信システム及び通信方法
 この発明は、空気調和装置の通信システム等に関するものである。
 従来は、複数台の空気調和装置、リモートコントローラ装置及び集中管理装置を備え、各装置が通信送受信手段を有し、通信線で接続して通信ネットワークを形成し、通信を行う通信システムを構成している(例えば特許文献1参照)。
 ここで、ある装置が他の装置が有するデータを取得しようとする場合、ある装置が他の装置に対してデータを含む信号の送信を要求する。そして、他の装置は、要求に応じて、データを含む信号を送信する。
特開2001-330294号公報(図1)
 しかしながら、上記のような従来の通信システムにおいては、他の装置に対し、複数の装置から同じ要求がなされた場合、各装置の要求に応じて同じデータを含む信号をそれぞれ送信することになっていた。このため、不用意に通信トラフィックを増加させてしまっていた。
 そこで、上記のような課題を解決するため、この発明は、通信トラフィックの増加を防ぐことができる空気調和装置の通信システム等を得ることを目的とする。
 この発明に係る空気調和装置の通信システムは、空気調和に係る複数の装置を通信線で接続してネットワークを形成し、通信を行う空気調和装置の通信システムであって、各装置は、通信線を流れるすべての信号を受信する受信手段と、受信手段が受信した信号に含まれる、各装置に対して固有に設定されるアドレス及び信号のデータ内容を示す通信コマンドに基づいて、信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理する制御手段とを備える。
 本発明によれば、受信手段が通信線を流れる信号を他の装置に送る信号を含めて受信し、制御手段が取得すべきデータを含んでいれば取得処理するようにしたので、各機器がそれぞれデータに係る信号送信を要求しなくても、所望するデータを取得することができ、また要求毎に同じデータを含む信号を通信線に流す必要がないので、システム全体の通信トラフィックを低減することができる。
本発明の実施の形態1に係る空気調和装置の構成を表す図である。 空気調和負荷装置1の構成例を表す図である。 空気調和熱源装置50の構成例を表す図である。 リモートコントローラ装置100の構成例を表す図である。 集中管理装置200の構成例を表す図である。 保守装置250の構成例を表す図である。 本発明の実施の形態1に係る装置間の通信を説明するための図である。 本発明の実施の形態2に係る装置間の通信を説明するための図である。 本発明の実施の形態3に係る装置間の通信を説明するための図である。 本発明の実施の形態4に係る装置間の通信を説明するための図である。 本発明の実施の形態6に係る装置間の通信を説明するための図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。ここで、装置、機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。
実施の形態1.
 図1は本発明の実施の形態1に係る空気調和装置の構成を表す図である。まず、図1の装置の冷媒系統について、空気調和負荷装置1a、1b、1cとを冷媒配管300により並列に配管接続する。また、空気調和熱源主装置50aと空気調和熱源補助装置50bとを冷媒配管300により並列に配管接続している。空気調和熱源装置50(50a、50b)と空気調和負荷装置1a、1b、1cとを冷媒配管300で接続して冷媒回路を構成している。
 次に、本実施の形態における空気調和装置の通信系統について説明する。図1に示すように、本実施の形態では、空気調和熱源主装置50a、空気調和熱源補助装置50bと空気調和負荷装置1a、1b及び1cとが通信線400によりバス接続し、ネットワークを形成している。このため、通信線400に接続した各装置は、他の装置宛の信号を受信することができる。また、集中管理装置200及び保守装置250も通信線400に接続している。ここで通信線400は有線又は無線のいずれでもよい。
 図2は空気調和負荷装置1の構成例を表す図である。負荷制御手段2は、例えばマイクロコンピュータで構成され、負荷送受信手段3が受信した信号等に基づいて、空気調和負荷装置1を構成する各機器の動作制御を行う。ここでは、特に、通信線400を介して受信する信号に基づいて、吸い込み温度検出手段8の検出に係る吸い込み温度のデータを含む信号等を負荷送受信手段3に送信させる処理を行う。
 負荷送受信手段3は、通信線400と接続され、通信線400と負荷制御手段2との間における信号通信のインターフェースであり、各種信号の送信手段、受信手段となる(以下の装置の送受信手段においても同じ)。負荷記憶手段4は、負荷制御手段2が処理を行うために必要となるデータを記憶する。本実施の形態では、特に吸い込み温度のデータを記憶する。また、空気調和装置に接続された装置毎に付された通信用のアドレスも記憶している。
 負荷側熱交換器5は、熱交換器内を通過する冷媒と空気との熱交換を行う。負荷側ファン6は、負荷側熱交換器5に空気を送り熱交換させ、さらに熱交換された空気を室内に送り込む。負荷側膨張弁7は、負荷制御手段2の指示に基づいて、弁の開度を調整し、冷媒の流量を制御する。これにより、負荷側熱交換器5を通過する冷媒量を制御し、負荷側熱交換器5における冷媒の蒸発熱量/凝縮熱量などを調整する。吸い込み温度検出手段8は、負荷側ファン6によって負荷側熱交換器5に流入する前の空気の温度を検出する。
 図3は空気調和熱源装置50(空気調和熱源主装置50a、空気調和熱源補助装置50b)の構成例を表す図である。熱源機制御手段52は、例えば、熱源送受信手段53が受信した信号等に基づいて、空気調和熱源装置50を構成する各機器の動作制御を行う。ここで、空気調和熱源主装置50aが有する熱源機制御手段52では、空気調和熱源補助装置50bの各種データを取得して連携動作を行うための処理を行う。このため、熱源送受信手段53に各種データを含む信号を送るための信号を送信させる処理を行う。一方、空気調和熱源補助装置50bの熱源機制御手段52は、通信線400を介して受信する信号に基づいて、例えば圧縮機55の周波数等、各種データを含む信号を熱源送受信手段53に送信させる処理を行う。
 熱源送受信手段53は、通信線400と接続され、通信線400と熱源機制御手段52との間における信号通信のインターフェースとなり、各種信号の送信、受信を行う。熱源記憶手段54は、熱源機制御手段52が処理を行うために必要となるデータを記憶する。ここでは、特に空気調和熱源補助装置50bの各種データを記憶する。また、通信用のアドレスも記憶している。
 圧縮機55は吸入した冷媒(気体)を圧縮し、運転周波数に基づく圧力を加えて送り出す(吐出する)。熱源側熱交換器56は、熱交換器内を通過する冷媒と空気との熱交換を行う。熱源側ファン57は、熱源側熱交換器56に空気を送り熱交換させる。切替弁58は暖房運転又は冷房運転により冷媒流路を切り替える。
 図4はリモートコントローラ装置100の構成例を表す図である。リモートコントローラ装置100は、例えば操作者等が入力した運転又は停止、設定温度、冷暖房の運転モード等の操作指令のデータを含む信号を、空気調和負荷装置1に送信する。また、空気調和負荷装置1の運転状態等のデータを含む信号を受信し、表示等を行う。
 図4に示すように、リモートコントローラ装置100はリモート表示手段101、リモート制御手段102、リモート送受信手段103、リモート記憶手段104及びリモート入力手段105を有している。リモート制御手段102は、リモートコントローラ装置100の各手段の動作を制御する。本実施の形態では、特に受信した信号に基づいて、信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理する。
 リモート記憶手段104は、リモートコントローラ装置100の各手段が処理を行うためのデータ等の各種データを一時的又は長期的に記憶する。特に本実施の形態では、取得に係る空気調和負荷装置1からの信号に基づく吸い込み温度データを記憶する。
 リモート送受信手段103は、通信線400と接続され、空気調和負荷装置1等とリモート制御手段102との間における信号通信のインターフェースとなる。本実施の形態では、特に他の装置宛の信号を受信する。リモート表示手段101は、リモート制御手段102から送信される表示信号に基づいて、操作者等に対する表示を行う。また、リモート入力手段105は、操作者等が入力する指示、設定等のデータを入力信号としてリモート制御手段102に送信する。
 図5は集中管理装置200の構成例を表す図である。集中管理装置200は、例えば複数の空気調和負荷装置1、空気調和熱源装置50を集中して管理する。
 集中管理装置200は集中表示手段201、集中制御手段202、集中送受信手段203、集中記憶手段204及び集中入力手段205を有している。集中制御手段202は、集中管理装置200の各手段の動作を制御する。本実施の形態では、特に受信した信号に基づいて、信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理する。
 集中記憶手段204は、集中管理装置200の各手段が処理を行うためのデータ等の各種データを一時的又は長期的に記憶する。特に本実施の形態では、取得に係る空気調和負荷装置1からの信号に基づく吸い込み温度データを記憶する。
 集中送受信手段203は、通信線400と接続され、空気調和負荷装置1等と集中制御手段202との間における信号通信のインターフェースとなる。本実施の形態では、特に空気調和負荷装置1に吸い込み温度に係る信号の送信を要求する信号(以下、他の装置に対してデータを含む信号を要求する信号を要求信号という)を送信する。集中表示手段201は、集中制御手段202から送信される表示信号に基づいて、設定者等に対する表示を行う。また、集中入力手段205は、設定者等が入力する指示、設定等のデータを入力信号として集中制御手段202に送信する。
 図6は保守装置250の構成例を表す図である。保守装置250は、例えば空気調和負荷装置1、空気調和熱源装置50の保守を行うための装置である。ここでは、特に空気調和熱源補助装置50bを保守するものとして説明する。
 保守装置250は、保守制御手段252、保守送受信手段253及び保守記憶手段254を有している。保守制御手段252は、保守装置250の各手段の動作を制御する。本実施の形態では、特に受信した信号に基づいて、信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理する。
 保守記憶手段254は、保守装置250の各手段が処理を行うためのデータ等の各種データを一時的又は長期的に記憶する。特に本実施の形態では、取得に係る空気調和負荷装置1からの信号に基づく吸い込み温度データを記憶する。
 保守送受信手段253は、通信線400と接続され、空気調和負荷装置1等と保守制御手段252との間における信号通信のインターフェースとなる。ここでは特に他の装置宛の信号を受信する。
 図7は本発明の実施の形態1に係る装置間の通信を説明するための図である。図7(a)に示すように、空気調和負荷装置1は、集中管理装置200、リモートコントローラ装置100a、100bと通信線400で接続され、ネットワークが形成されている。ここで、集中管理装置200並びにリモートコントローラ装置100a及び100bは、それぞれ空気調和負荷装置1が有する吸い込み温度のデータを必要としているものとする。そして、各装置において、通信線400を介した信号の送受信は各送受信手段が行い、データ取得に係る処理は各制御手段が行うものとして説明する。
 集中管理装置200は空気調和負荷装置1が保有する吸い込み温度データを取得するために、空気調和負荷装置1に対して「要求信号」を通信線400を介して送信する。
 要求信号を受信した空気調和負荷装置1は自身が保有する吸い込み温度データを含む信号を通信線400を介して集中管理装置200に送信する(以下、要求信号に応じて、他の装置に送る各種データを含む信号を応答信号という)。要求信号等を含む通信線400に流す信号については、送信に際し、例えば図7(b)に示すように、プロトコル等に基づいてあらかじめ設定した通信フレームに則した形式で信号を送る。通信フレームは、例えば、送信元アドレス、送信先アドレス、通信コマンドの電文長等のデータを含むヘッダー部Aと、通信コマンド部Bと、伝送エラーを検出するコード等を含むフレームチェック部Cとで構成される。さらに、通信コマンド部Bは制御監視の動作内容や対象の分類を示す通信コマンド分類部B1、制御監視の動作内容を表す動作内容部B2及び制御監視の動作対象を表す動作の対象部B3等で構成される。
 集中管理装置200は空気調和負荷装置1から吸い込み温度データを含む信号を受信して吸い込み温度データを取得する。
 前述したように、リモートコントローラ装置100a、100bも空気調和負荷装置1の吸い込み温度データを必要とする。信号の送信先がいずれの装置であっても、通信線400に送られた信号はリモートコントローラ装置100a、100bにも送られる。そこで、受信した信号に基づき、リモートコントローラ装置100a、100bは、送信元アドレス及び通信コマンドを判断する。そして、送信元アドレスが空気調和負荷装置1を表すものであり、通信コマンドが吸い込み温度データの要求信号に対するものと判断すると、信号を受信して処理を行い、吸い込み温度データを取得する。
 ここで、本実施の形態1では、集中管理装置200が要求信号を送信し、リモートコントローラ装置100a、100bが送信元アドレスと通信コマンドとに基づいて、吸い込み温度データを取得するものとしたが、これに限定するものではない。例えばリモートコントローラ装置100aが送信した要求信号に対する信号に基づいて、リモートコントローラ装置100bと集中管理装置200とが吸い込み温度データを取得するようにしてもよい。
 また、本実施の形態では、リモートコントローラ装置100が吸い込み温度データを取得するようにしたが、これに限定するものではない。空気調和装置において通信線400に通信接続する装置(機器)であれば、他の装置において吸い込み温度データを取得するようにしてもよい。
 本実施の形態では、リモートコントローラ装置100は、吸い込み温度データを取得しているが、これに限定するものではない。吸い込み温度データに限らず、リモートコントローラ装置が必要とするデータを取得するようにすることができる。このとき、リモートコントローラ装置100は、信号中の送信元アドレスと通信コマンドに基づいて、有用なデータかどうかを判断する。
 以上のように、実施の形態1の空気調和装置の通信システムによれば、空気調和負荷装置1から集中管理装置200への信号等、通信線400(ネットワーク)に流れる信号を、リモートコントローラ装置100a、100bが受信し、信号中の送信元アドレスと通信コマンドに基づいて、信号中の吸い込み温度データを取得するようにしたので、リモートコントローラ装置100が要求信号を送信しなくても、吸い込み温度データを取得することができる。また、要求信号毎に空気調和負荷装置1から信号を送る必要がないので、システム全体の通信トラフィックを低減することができる。
実施の形態2.
 図8は本発明の実施の形態2に係る装置間の通信を説明するための図である。図8では、空気調和負荷装置1は集中管理装置200a、200b、リモートコントローラ装置100a、100bと通信線400で接続されている。ここで、本実施の形態の集中管理装置200bは、集中管理装置200aとは異なる場所で空気調和負荷装置1を監視・操作する装置である。そして、集中管理装置200bは集中管理装置200aと同じデータを保有するようにしている。
 集中管理装置200aは、空気調和負荷装置1に対して、例えば、吸い込み温度、空気調和負荷装置の運転状態等の各種データを含む信号の送信を要求する信号(要求信号)を通信線400を介して送信する。
 要求信号を受信した空気調和負荷装置1は自身が保有するデータを含む信号を通信線400を介して集中管理装置200aに送信する。送信に際し、あらかじめ設定した通信フレームに則した形式の信号が送られる。集中管理装置200aは空気調和負荷装置1から信号を受信してデータを取得する。
 前述したように、集中管理装置200bは、集中管理装置200aと同じデータを有するようにしている。そこで、通信線400を介して受信した信号に基づき、集中管理装置200bは、送信先アドレス及び通信コマンドを判断する。そして、送信先アドレスが集中管理装置200aを表すものであり、要求信号に対する応答信号と判断すると、信号を受信して処理を行い、データを取得する。
 以上のように、実施の形態2の空気調和装置の通信システムによれば、通信線400に流れる信号を、集中管理装置200bが受信し、信号中の送信先アドレスと通信コマンドに基づいて、信号中の各種データを取得するようにしたので、例えば送信先アドレスが集中管理装置200aであれば同じデータを取得することができる。このため、通信線400に集中管理装置200を複数台接続しても、システム全体の通信トラフィックを抑制することができる。
実施の形態3.
 図9は本発明の実施の形態3に係る装置間の通信を説明するための図である。図9に示すように、本実施の形態では、空気調和負荷装置1a、1b、1c、空気調和熱源装置50、集中管理装置200a、200b、リモートコントローラ装置100a、100b及び保守装置250を通信線400で接続している。
 ここで、空気調和熱源装置50は、空気調和熱源主装置50aと空気調和熱源補助装置50bとで構成している。例えば、空気調和熱源主装置50aが、通信線400を介して空気調和熱源補助装置50bに要求信号を送信する。そして、空気調和熱源補助装置50bからの応答信号に基づいて空気調和熱源補助装置50bの圧力データ、配管等の温度データ、圧縮機55の周波数データ、運転状態等の制御データを取得し、空気調和熱源装置50全体として連携動作を行っている。
 また、本実施の形態の保守装置250は、空気調和熱源補助装置50bを保守するためのデータ(保守データ)を取得する。このため、空気調和熱源主装置50aから空気調和熱源補助装置50bに送られる応答信号に基づいて、送信元アドレスと通信コマンドから、空気調和熱源主装置50aが取得する圧力データ、温度データ、周波数データ、運転状態等の制御データの中で保守に必要なデータを判断し、必要なデータを取得する。
 さらに、集中管理装置200a、200bも保守装置250と同様にして、空気調和熱源主装置50aが取得している圧力データ、温度データ、周波数データ、運転状態等の制御データから保守のために必要な情報送信元アドレスと通信コマンドで保守データと判断し通信フレームを受信し取得する。
 以上のように、実施の形態3の空気調和装置の通信システムにおいては、保守装置250、集中管理装置200a、200bはデータの要求信号を送信することなく空気調和熱源補助装置の保守データが取得可能となるため、保守データを取得する装置を複数台接続してもシステム全体のトラフィックの抑制が可能となる。
実施の形態4.
 図10は本発明の実施の形態4に係る装置間の通信を説明するための図である。図10に示す各装置及び接続形態については実施の形態1において説明した図7と同じである。ここで、本実施の形態では、リモートコントローラ装置100a、100bについても、タイマ等の計時装置を有しているものとする。本実施の形態は、空気調和負荷装置1に要求信号を送っていた集中管理装置200が故障等したときのリモートコントローラ装置100の処理等に関するものである。
 例えば、集中管理装置200は、吸い込み温度の表示、各種データの保持等のために60秒程度で定期的にデータの取得が必要な装置である。一方、リモートコントローラ装置100a、100bは、集中管理装置200よりも頻繁に表示を更新する必要性がないため、定期的な吸い込み温度データの取得は100秒程度でもよい。
 そこで、リモートコントローラ装置100a、100bは、集中管理装置200が要求信号を送信する周期よりも長い周期で要求信号を送信する。そして、吸い込み温度データを取得すると、計時装置をリセット処理する。ここで、リモートコントローラ装置100aの要求信号の通信周期を例えば101秒とし、リモートコントローラ装置100bの要求信号の通信周期を例えば102秒として、異なる周期(時間)で設定する。このように要求信号の通信周期を異ならせることで、リモートコントローラ装置100aと100bとが空気調和負荷装置に対して同時に要求信号を送信しないようにする。ここで、通信周期は例示であり、秒数等を限定するものではない(以下、同じ)。
 実施の形態1において説明したように、集中管理装置200は、空気調和負荷装置1に対し、60秒毎に要求信号を送信し、空気調和負荷装置1が通信線400を介して吸い込み温度データを含む信号を送信する。リモートコントローラ装置100a、100bは、信号を受信して吸い込み温度データを取得すると,計時装置をリセットする。このため、基本的には、リモートコントローラ装置100a、100bが空気調和負荷装置1に対して要求信号を送信する必要がない。
 しかし、図10に示すように、集中管理装置200の故障、データ送信の際、外来ノイズの影響など何らかの原因で、リモートコントローラ装置100a又は100bが吸い込み温度データを取得できない場合がある。ここではリモートコントローラ装置100aが取得できないものとする。このとき、リモートコントローラ装置100aは空気調和負荷装置1に対して要求信号を送信する。
 リモートコントローラ装置100aからの要求信号を受信した空気調和負荷装置1は、吸い込み温度データを含む信号を通信線400を介してリモートコントローラ装置100aに送信する。リモートコントローラ装置100aは空気調和負荷装置1から吸い込み温度データを含む信号を受信して吸い込み温度データを取得する。一方、リモートコントローラ装置100bは、受信した信号の送信元アドレス及び通信コマンドに基づいて、吸い込み温度データを取得する。
 そして、集中管理装置200が、再び60秒毎に要求信号を送信するようになると、リモートコントローラ装置100は要求信号送信に係る周期が長いため、要求信号を送信しなくても吸い込み温度データを取得することができる。
 ここでは、リモートコントローラ装置100aが取得できないものとして、空気調和負荷装置1に対して要求信号を送信するようにしたが、リモートコントローラ装置100bが要求信号を送信するようにしてもよい。
 また、リモートコントローラ装置100aの要求信号の通信周期を101秒とし、リモートコントローラ装置100aの要求信号の通信周期を102秒としたが、これに限定するものではない。
 ここでは、送信元アドレスと通信コマンドとに基づく判断処理を行ったが、実施の形態2等と同様に、送信先アドレスと通信コマンドとに基づいて行うようにしてもよい。
 以上のように、実施の形態4の空気調和装置の通信システムによれば、リモートコントローラ装置100に吸い込み温度データを取得するとリセットされる要求信号の通信周期を設定しておき、通信周期になると要求信号を送信するようにしたので、例えば、集中管理装置200宛の信号に基づいて吸い込み温度データが取得できなくても、要求信号を送信して吸い込み温度データを取得することができる。要求信号を送信しなかった他の装置は通信線400を流れる信号に基づいて吸い込み温度データを取得することができ、システム全体のトラフィックの抑制が可能となる。このとき、リモートコントローラ装置100aとリモートコントローラ装置100bとで異なる通信周期を設定しておけば、同時に要求信号を送信する可能性が極めて低くなり、信号の衝突等を防ぐことができる。
実施の形態5.
 前述した実施の形態4では、リモートコントローラ装置100aの要求信号の通信周期を101秒とし、リモートコントローラ装置100aの要求信号の通信周期を102秒とした。本実施の形態では、例えばアドレスは各装置において異なることから、アドレスに基づいた通信周期を設定するようにしたものである。
 本実施の形態においては、100秒+アドレスの下1桁×100ms後に要求信号を送信するようにリモートコントローラ装置100の通信周期を設定する。リモートコントローラ装置100aにアドレス101が設定されており、リモートコントローラ装置100bにアドレス102が設定されている。このため、リモートコントローラ装置100aの通信周期は100.1秒となり、リモートコントローラ装置100bの通信周期は100.2秒となる。
 そして、何らかの原因により、リモートコントローラ装置100a又は100bが、前述のように、アドレスに基づいて設定した通信周期の間に吸い込み温度データを取得できない場合には、実施の形態4と同様に空気調和負荷装置1に要求信号を送信する。
 ここでは、送信元アドレスと通信コマンドとに基づく判断処理を行ったが、実施の形態2等と同様に、送信先アドレスと通信コマンドとに基づいて行うようにしてもよい。
 以上のように、実施の形態5の空気調和装置の通信システムによれば、各装置に固有に定められたアドレスに基づいて通信周期を定めるようにしたので、通信システム内において、各装置の通信周期が同じにならずにすむ。
実施の形態6.
 図11は本発明の実施の形態6に係る装置間の通信を説明するための図である。図11では、空気調和負荷装置1は、集中管理装置200a、200b、リモートコントローラ装置100a、100b及び保守装置250と通信線400で接続されている。本実施の形態では、保守装置250、リモートコントローラ装置100a、100bについても、タイマ等の計時装置を有しているものとする。
 本実施の形態は、空気調和負荷装置1に要求信号を送っていた集中管理装置200aが故障等したときの他の装置の処理等に関するものである。例えば、集中管理装置200は、吸い込み温度の表示、各種データの保持等のために60秒程度で定期的にデータの取得が必要な装置である。一方、リモートコントローラ装置100a、100bは、集中管理装置200よりも頻繁に表示を更新する必要性がないため、定期的な吸い込み温度データの取得は100秒程度でもよい。また、保守装置250も、集中管理装置200と同様に、吸い込み温度の表示、データ保持のために、同じく60秒程度で定期的にデータの取得が必要な装置である。本実施の形態では、保守装置250は保守が必要な場合に通信線400に接続する装置である。
 本実施の形態では、集中管理装置200aの要求信号の通信周期を例えば60秒とする。また、集中管理装置200bの要求信号の通信周期を例えば61秒とし、保守装置250の要求信号の通信周期を例えば65秒とする。さらに、リモートコントローラ装置100a、100bの要求信号の通信周期を121秒とする。
 集中管理装置200は、空気調和負荷装置1に対し、60秒毎に要求信号を送信し、空気調和負荷装置1が通信線400を介して吸い込み温度データを含む信号を送信する。保守装置250、集中管理装置200b、リモートコントローラ装置100a、100bは、信号を受信して吸い込み温度データを取得すると,計時装置をリセットする。このため、基本的には、保守装置250、集中管理装置200b、リモートコントローラ装置100a、100bが空気調和負荷装置1に対して要求信号を送信する必要がない。
 しかし、集中管理装置200aの故障により、集中管理装置200b、リモートコントローラ装置100a、100b及び保守装置250が吸い込み温度データを取得できない場合がある。このとき、集中管理装置200aに変わって、いずれかの装置が、空気調和負荷装置1に対して要求信号を送信する。
 そして、本実施の形態では、空気調和負荷装置1に対して要求信号を送信する装置を、システムにおいて装置が有する特徴(機能、種類)等で決める。例えば、データを保持のために短い周期でデータを取得する必要のある装置の優先順位を高くして通信周期を設定する。また、短い周期でデータを取得する必要のある装置が複数ある場合には、常に通信線400と接続する装置の優先順位を高く設定して通信周期を設定する。そこで、(1)常に通信線400に接続し、データの取得周期が短い装置、(2)必要な場合に通信線400に接続し、データの取得周期が短い装置、(3)常に通信線400に接続し、データの取得周期が長い装置の順に、優先順位を定める。
 本実施の形態では、常に通信線400に接続し、データの取得周期が短い集中管理装置200bに対して61秒の通信周期を設定しているため、集中管理装置200bは空気調和負荷装置1に対して要求信号を送信する。これにより、例えば集中管理装置200aが故障しても、他の装置による吸い込み温度データの取得に係る処理を継続することができる。また、集中管理装置200bが故障等すると、次に優先順位が高い保守装置250が65秒毎に要求信号を送信する。
 一方、集中管理装置200aが、再び60秒毎に要求信号を送信するようになると、他の装置は要求信号送信に係る周期が長いため、要求信号を送信しなくても吸い込み温度データを取得することができる。
 ここで、リモートコントローラ装置100a、100bの優先順位は特に決めず、通信周期も121秒としたが設定するようにしてもよい。このとき、実施の形態5で説明したように、アドレスに依存した優先順位により通信周期を設定してもよい。
 以上のように、実施の形態6の空気調和装置の通信システムによれば、装置の特徴により通信周期を定めるようにしたので、短い周期でデータを必要とする装置を優先して設定することができる。
 実施の形態7.
 前述した各実施の形態の空気調和装置では、空気調和熱源装置50を空気調和熱源主装置50a、空気調和熱源補助装置50bで構成したがこれに限定するものではない。例えば実施の形態3を除いては、空気調和熱源主装置50aだけで空気調和熱源装置50を構成してもよい。
 1,1a,1b,1c 空気調和負荷装置、2 負荷制御手段、3 負荷送受信手段、4 負荷記憶手段、5 負荷側熱交換器、6 負荷側ファン、7 負荷側膨張弁、8 吸い込み温度検出手段、50 空気調和熱源装置、50a 空気調和熱源主装置、 50b 空気調和熱源補助装置、52 熱源機制御手段、53 熱源送受信手段、54 熱源記憶手段、55 圧縮機、56 熱源側熱交換器、57 熱源側ファン、58 切替弁、100,100a,100b リモートコントローラ装置、101 リモート表示手段、102 リモート制御手段、103 リモート送受信手段、104 リモート記憶手段、105 リモート入力手段、200,200a,200b 集中管理装置、201 集中表示手段、202 集中制御手段、203 集中送受信手段、204 集中記憶手段、205 集中入力手段、250 保守装置、252 保守制御手段、253 保守送受信手段、254 保守記憶手段、300 冷媒配管、400 通信線。

Claims (8)

  1.  空気調和に係る複数の装置を通信線で接続してネットワークを形成し、通信を行う空気調和装置の通信システムであって、
     前記複数の装置のうちの所定の装置は、
     前記通信線を流れる信号を受信する受信手段と、
     該受信手段が受信した前記信号に含まれる、前記各装置に対して固有に設定されるアドレス及び前記信号のデータ内容を示す通信コマンドに基づいて、前記信号に含まれるデータを取得するかどうかの判断処理を行い、取得するものと判断したデータを取得処理する制御手段と
    を備える空気調和装置の通信システム。
  2.  前記制御手段は、
     前記受信手段が受信した前記信号の送信元となる前記装置の前記アドレスに基づいて前記判断処理を行う請求項1記載の空気調和装置の通信システム。
  3.  前記制御手段は、
     前記受信手段が受信した前記信号の送信先となる前記装置の前記アドレスに基づいて前記判断処理を行う請求項1記載の空気調和装置の通信システム。
  4.  前記装置は、前記取得しようとするデータの送信を要求する信号を所定の通信周期で送る送信手段をさらに備え、
     前記制御手段は、前記受信手段が受信した前記信号から前記データを取得処理すると、前記通信周期をリセットする処理を行う請求項1~3のいずれか一項に記載の空気調和装置の通信システム。
  5.  前記装置の前記通信周期を、前記装置の前記アドレスに基づいて設定する請求項4記載の空気調和装置の通信システム。
  6.  システム内における前記装置の機能に基づいて、各装置の前記通信周期を設定する請求項4記載の空気調和装置の通信システム。
  7.  空気調和装置を構成する空気調和負荷装置への動作指示の入力、状態表示を行うリモートコントローラ装置、前記空気調和装置を構成する空気調和熱源装置及び前記空気調和負荷装置を管理する集中管理装置及び前記空気調和装置の保守を行う保守装置とを前記装置として有し、
     前記リモートコントローラ装置>前記保守装置>前記集中管理装置の順に前記通信周期を長く設定する請求項6記載の空気調和装置の通信システム。
  8.  空気調和に係る複数の装置を通信線で接続して形成したネットワークにおける空気調和装置の通信方法であって、
     前記複数の装置のうちの所定の装置は、
     前記通信線を流れる信号を受信する工程と、
     前記信号に含まれる、前記各装置に対して固有に設定されるアドレス及び前記信号のデータ内容を示す通信コマンドに基づいて、前記信号に含まれるデータを取得するかどうかを判断する工程と、
     取得するものと判断したデータを取得する工程と
    を有する空気調和装置の通信方法。
PCT/JP2012/070608 2012-08-13 2012-08-13 空気調和装置の通信システム及び通信方法 WO2014027391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070608 WO2014027391A1 (ja) 2012-08-13 2012-08-13 空気調和装置の通信システム及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070608 WO2014027391A1 (ja) 2012-08-13 2012-08-13 空気調和装置の通信システム及び通信方法

Publications (1)

Publication Number Publication Date
WO2014027391A1 true WO2014027391A1 (ja) 2014-02-20

Family

ID=50101286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070608 WO2014027391A1 (ja) 2012-08-13 2012-08-13 空気調和装置の通信システム及び通信方法

Country Status (1)

Country Link
WO (1) WO2014027391A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515027A (zh) * 2019-08-14 2019-11-29 国网湖北省电力有限公司武汉供电公司 一种非入户式一键电能表串户排查系统及方法
WO2020261749A1 (ja) * 2019-06-26 2020-12-30 伸和コントロールズ株式会社 温度制御装置及び温調装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134120A (ja) * 2001-10-24 2003-05-09 Matsushita Electric Works Ltd ネットワーク分散型ビル管理システム
JP2004235961A (ja) * 2003-01-30 2004-08-19 Sony Corp 制御装置および方法、記録媒体、並びにプログラム
JP2006309385A (ja) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd 電子機器システムおよびプログラム
JP2009105493A (ja) * 2007-10-19 2009-05-14 Panasonic Electric Works Co Ltd 負荷制御システム
JP2011114499A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd 機器制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134120A (ja) * 2001-10-24 2003-05-09 Matsushita Electric Works Ltd ネットワーク分散型ビル管理システム
JP2004235961A (ja) * 2003-01-30 2004-08-19 Sony Corp 制御装置および方法、記録媒体、並びにプログラム
JP2006309385A (ja) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd 電子機器システムおよびプログラム
JP2009105493A (ja) * 2007-10-19 2009-05-14 Panasonic Electric Works Co Ltd 負荷制御システム
JP2011114499A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd 機器制御システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261749A1 (ja) * 2019-06-26 2020-12-30 伸和コントロールズ株式会社 温度制御装置及び温調装置
KR20210005242A (ko) * 2019-06-26 2021-01-13 신와 콘트롤즈 가부시키가이샤 온도 제어 장치 및 온도조절 장치
JP2021004695A (ja) * 2019-06-26 2021-01-14 伸和コントロールズ株式会社 温度制御装置及び温調装置
CN112437858A (zh) * 2019-06-26 2021-03-02 伸和控制工业股份有限公司 温度控制装置和调温装置
KR102431611B1 (ko) 2019-06-26 2022-08-10 신와 콘트롤즈 가부시키가이샤 온도 제어 장치 및 온도조절 장치
CN112437858B (zh) * 2019-06-26 2023-09-12 伸和控制工业股份有限公司 温度控制装置和调温装置
CN110515027A (zh) * 2019-08-14 2019-11-29 国网湖北省电力有限公司武汉供电公司 一种非入户式一键电能表串户排查系统及方法

Similar Documents

Publication Publication Date Title
JP5084502B2 (ja) 空気調和システム
JP5030640B2 (ja) 空気調和システム
JP6021951B2 (ja) 空気調和システム
JP5959640B2 (ja) 空調システム及び中継装置
US10274910B2 (en) Air-conditioning control system
WO2020166447A1 (ja) 機器管理システム
JP2014194309A (ja) 空調システム
JP2018121445A (ja) 冷凍サイクル機器の遠隔制御システムおよび家電機器の遠隔制御システム
KR20090082727A (ko) 설비기기 제어시스템 및 그 비상제어방법
WO2014027391A1 (ja) 空気調和装置の通信システム及び通信方法
KR20120078891A (ko) 통합 제어 시스템 및 그 제어방법
WO2016035353A1 (ja) 省エネルギー支援装置、空調システム、及び空調ネットワークシステム
JP5125606B2 (ja) 空調制御システム
JP2011163763A (ja) 空気調和システム
JP7057531B2 (ja) 空調システム
KR20100030110A (ko) 공기조화기의 데이터 디버깅 방법
JP2011028571A (ja) 監視制御装置
JP2018119755A (ja) 空気調和システム
JP7170899B2 (ja) 空気調和装置および空気調和システム
JP2010114835A (ja) 設備機器の通信制御装置、管理システム及び通信制御方法
WO2014188574A1 (ja) 空気調和システム
JP3821157B2 (ja) 設備機器管理システム、管理装置、設備機器管理方法及び設備機器管理プログラム
JP4389595B2 (ja) 空調設備、空調管理システム及び空調設備の管理方法
JP7134352B2 (ja) リモートコントローラおよび空気調和システム
KR20150091917A (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP