Nothing Special   »   [go: up one dir, main page]

WO2014024889A1 - イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置 - Google Patents

イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2014024889A1
WO2014024889A1 PCT/JP2013/071277 JP2013071277W WO2014024889A1 WO 2014024889 A1 WO2014024889 A1 WO 2014024889A1 JP 2013071277 W JP2013071277 W JP 2013071277W WO 2014024889 A1 WO2014024889 A1 WO 2014024889A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
hetero
ring
atom
Prior art date
Application number
PCT/JP2013/071277
Other languages
English (en)
French (fr)
Inventor
石橋 孝一
和弘 長山
英司 小松
飯田 宏一朗
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020157003126A priority Critical patent/KR102132591B1/ko
Priority to CN201380042037.4A priority patent/CN104540841A/zh
Priority to EP13827851.0A priority patent/EP2883880B1/en
Priority to JP2014529515A priority patent/JPWO2014024889A1/ja
Publication of WO2014024889A1 publication Critical patent/WO2014024889A1/ja
Priority to US14/616,810 priority patent/US11430961B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an iridium complex compound, and relates to an iridium complex compound that emits red light, a composition containing the compound and an organic electroluminescent element, and a display device and an illumination device including the organic electroluminescent element.
  • organic electroluminescent elements such as organic EL lighting and organic EL displays
  • organic EL elements organic electroluminescent elements
  • An organic EL element has a low applied voltage, low power consumption, surface light emission, and can emit three primary colors. Therefore, application to lighting and displays has been actively studied. Therefore, improvement in luminous efficiency is required.
  • As an improvement in luminous efficiency for example, by utilizing the generation ratio of singlet excitons and triplet excitons generated by recombination of holes and electrons is 1: 3, It has been proposed to use phosphorescent materials.
  • Examples of the phosphorescent material include bis (2-phenylpyridinato-N, C2 ′) iridium acetylacetonate (Ir (ppy) 2 (acac)) and tris (2-phenylpyridinato-N, C2).
  • iridium acetylacetonate Ir (ppy) 2 (acac)
  • tris (2-phenylpyridinato-N, C2).
  • ') Orthometalated iridium complex compounds including iridium (Ir (ppy) 3 ) are widely known.
  • a vacuum deposition method is mainly used.
  • the device is usually manufactured by laminating a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer, the vacuum deposition method is complicated and inferior in productivity. It was extremely difficult to increase the size of lighting and display panels.
  • the organic EL element can be formed by a coating method to form a layer. Since the coating method can easily form a stable layer as compared with the vacuum deposition method, it is expected to be applied to mass production of displays and lighting devices and large devices.
  • a coating method it is necessary that the organic material contained in the layer is easily dissolved in an organic solvent.
  • an organic solvent to be used a low boiling point and low viscosity solvent such as toluene is used.
  • a film can be easily formed by a spin coating method or the like.
  • an organic solvent having a low volatility and a high flash point, such as phenylcyclohexane is more preferably used industrially from the viewpoint of the uniformity of the coating film and work safety.
  • phenyl (iso) quinoline-based red light-emitting phosphor materials that have been used in conventional vapor deposition methods, for example, compounds Ir (piq) 3 and Ir (pq) 3 described in Patent Document 1 and Patent Document 2
  • Ir (FMpiq) 3 has low solubility in organic solvents
  • Ir (nHexpiq) 3 described in Patent Document 2 has poor stability of the compound after wet film formation and is difficult to use in the wet film formation method. It was.
  • Patent Documents 3 and 4 are silent about the solubility in organic solvents, and the compounds described in Non-Patent Document 1 Has a short driving life and an improvement in electrical durability has been demanded.
  • the present invention provides an iridium complex compound that emits red light that solves the above-mentioned problems, an organic electroluminescent element having a long driving life and high electrical durability, and a display device and an illumination device using the organic electroluminescent element The task is to do.
  • Ir represents an iridium atom.
  • L 1 to L 3 each represents an organic ligand and each bond to Ir.
  • m is an integer of 1 to 3
  • n is an integer of 0 to 2
  • m + n is 3 or less.
  • at least one of L 1 to L 3 includes at least one partial structure represented by the following formula (2)
  • L 1 represents a ligand represented by the following formula (3).
  • L 1 to L 3 when at least one of L 1 to L 3 is plural, they may be the same or different.
  • Ar 1 represents a (hetero) aryl group having 3 to 20 carbon atoms
  • X represents an alkyl group having 5 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, a carbon number It represents a 4 to 20 alkoxy group, a (hetero) aryloxy group having 3 to 20 carbon atoms, or a substituent represented by the following formula (2-1).
  • Y represents a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • Z is a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, or ( A hetero) aryloxy group, and when there are a plurality of Z, they may be the same or different.
  • p represents an integer of 0 to 4
  • q represents an integer of 2 to 10
  • r represents an integer of 0 to 5.
  • Ring A represents a 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring containing carbon atoms C 1 , C 2 , and C 3 .
  • the hydrogen atom on ring A is each independently a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, or alkoxy having 1 to 20 carbon atoms.
  • R 1 to R 7 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylcarbonyl group having 20 carbon atoms, an arylcarbonyl group having 7-20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, or a (hetero) aryl group having 3-20 carbon atoms To express.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • Ir in the formula (1) and R 6 or R 7 form a bond.
  • R 1 ⁇ R 5 are the same respectively R 1 ⁇ R 5 at the above-mentioned formula (3).
  • R 8 to R 11 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylcarbonyl group having 20 carbon atoms, an arylcarbonyl group having 7-20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, or a (hetero) aryl group having 3-20 carbon atoms To express.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • R 8 to R 11 may combine with adjacent R 8 to R 11 with an alkylene group having 3 to 12 carbon atoms or an alkenylene group with 3 to 12 carbon atoms to form a ring. These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms in the alkyl group, arylsilyl group having 6 to 20 carbon atoms in the aryl group, alkylcarbonyl group having 2 to 20 carbon atoms, 7 carbon atoms
  • At least one group selected from the group consisting of an arylcarbonyl group having 20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, and a (hetero) aryl group having 3-20 carbon atoms May be substituted.
  • R 1 in the formula (3) is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted (hetero) aralkyl group having 7 to 40 carbon atoms, a substituted or unsubstituted carbon.
  • R 5 in the formula (3) is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted (hetero) aralkyl group having 7 to 40 carbon atoms, a substituted or unsubstituted carbon.
  • the above item [1] which is represented by an alkylamino group having 2 to 20 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 20 carbon atoms, or a substituted or unsubstituted (hetero) aryl group having 3 to 20 carbon atoms
  • a ligand the formula L 2 is in (1) represented by the following formula (4), n is 1 or 2, according to any one of items [1] to [6] An iridium complex compound.
  • ring B represents a 6-membered or 5-membered aromatic hydrocarbon ring or aromatic heterocycle containing carbon atoms C 4 and C 5
  • ring C represents carbon atom C 6.
  • a 6-membered or 5-membered aromatic heterocycle containing a nitrogen atom N 1 a 6-membered or 5-membered aromatic heterocycle containing a nitrogen atom N 1 .
  • the hydrogen atoms on ring B and ring C are each independently a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 alkoxy groups, (hetero) aryloxy groups having 3 to 20 carbon atoms, alkylsilyl groups having 1 to 20 carbon atoms in alkyl groups, arylsilyl groups having 6 to 20 carbon atoms in aryl groups, carbon numbers An alkylcarbonyl group having 2 to 20 carbon atoms, an arylcarbonyl group having 7 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms May be substituted.
  • R 12 to R 19 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero ) Represents an aralkyl group, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • R 12 to R 15 and R 16 to R 19 are respectively adjacent R 12 to R 15 and R 16 to R 19 and an alkylene group having 3 to 12 carbon atoms or an alkenylene having 3 to 12 carbon atoms.
  • a group may be bonded to form a ring.
  • R 15 and R 16 may be bonded to each other by an alkylene group having 3 to 12 carbon atoms or an alkenylene group having 3 to 12 carbon atoms to form a ring.
  • These rings further have a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkyl group.
  • a composition comprising the iridium complex compound according to any one of [1] to [9] above and a solvent.
  • An organic electroluminescent device having an anode, a cathode, and at least one organic layer between the anode and the cathode, wherein at least one of the organic layers is the above-mentioned items [1] to [9] Organic electroluminescent element containing the iridium complex compound as described in any one of these.
  • An organic electroluminescent device wherein the organic layer containing the iridium complex compound according to [11] is a layer formed using the composition according to [10].
  • the iridium complex compound of the present invention emits red light
  • the composition containing the iridium complex compound has a long pot life
  • the organic electroluminescent device prepared using the complex compound or the composition has a long driving life and an electrical durability.
  • the organic electroluminescent element is useful as a display device and a lighting device.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent element of the present invention.
  • the iridium complex compound of the present invention is represented by the following formula (1).
  • Ir represents an iridium atom.
  • L 1 to L 3 each represents an organic ligand and each bond to Ir.
  • m is an integer of 1 to 3
  • n is an integer of 0 to 2
  • m + n is 3 or less.
  • at least one of L 1 to L 3 includes at least one partial structure represented by the following formula (2)
  • L 1 represents a ligand represented by the following formula (3).
  • the partial structure represented by the formula (2) may be included in any of the ligands L 1 to L 3 , but L 2 is more preferable from the viewpoint of durability. That is, n is preferably 1 or more.
  • Ar 1 represents a (hetero) aryl group having 3 to 20 carbon atoms
  • X is an alkyl group having 5 to 20 carbon atoms
  • a (hetero) aralkyl group having 7 to 40 carbon atoms or a carbon number of 4
  • a (hetero) aryl group, a (hetero) aralkyl group, and a (hetero) aryloxy group are each an aryl group that may contain a heteroatom, an aralkyl group that may contain a heteroatom,
  • the aryloxy group which may contain the hetero atom is represented. “May contain a hetero atom” means that one or more carbon atoms of the carbon atom forming the main skeleton of the aryl group, aralkyl group or aryloxy group are substituted with a hetero atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, and a silicon atom. Among these, a nitrogen atom is preferable from the viewpoint of durability.
  • Y represents a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, It represents a (hetero) aryloxy group having 3 to 20 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms, and when a plurality of Y are present, they may be the same or different.
  • Z is a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, or ( A hetero) aryloxy group, and when there are a plurality of Z, they may be the same or different.
  • p represents an integer of 0 to 4
  • q represents an integer of 2 to 10
  • r represents an integer of 0 to 5.
  • p and r each represent the number of substituents replacing a hydrogen atom, and are each preferably 0 or 1, and more preferably 0, from the viewpoint of ease of synthesis.
  • q represents the number of m-phenylenes, and is preferably 2 to 10, more preferably 2 to 5, from the viewpoints of solubility in organic solvents and durability.
  • ring A represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle containing carbon atoms C 1 , C 2 , and C 3 .
  • the 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring include a benzene ring, a pyridine ring, and a pyrimidine ring.
  • a benzene ring, a pyridine ring, and a pyrimidine ring are preferable.
  • a benzene ring and a pyridine ring are more preferable, and a benzene ring is more preferable.
  • the hydrogen atom on ring A is each independently a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, or alkoxy having 1 to 20 carbon atoms.
  • adjacent substituents bonded to ring A may be bonded to form a ring.
  • specific examples of such rings include fluorene ring, naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, Examples include tetrahydronaphthalene ring, quinoline ring, quinazoline ring, quinoxaline ring, azaphenanthrene ring, azatriphenylene ring, etc., among which fluorene ring, naphthalene ring, carbazole ring, carboline ring, quinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene A ring is preferred.
  • R 1 to R 7 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylcarbonyl group having 20 carbon atoms, an arylcarbonyl group having 7-20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, or a (hetero) aryl group having 3-20 carbon atoms To express.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • Ir in the formula (1) and R 6 or R 7 form a bond.
  • Ar 1 represents a (hetero) aryl group having 3 to 20 carbon atoms.
  • the (hetero) aryl group having 3 to 20 carbon atoms means both an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence.
  • Benzofuran ring dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole Ring, thienothiophene ring, furopyrrole ring, furofuran ring, furofuran ring, having one free valence, Benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrol
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring having one free valence are preferable.
  • a benzene ring and a pyridine ring having a free valence of 2 are more preferable.
  • free valence can form bonds with other free valences as described in Organic Chemistry / Biochemical Nomenclature (above) (Revised 2nd edition, Nankodo, 1992). Say things. That is, for example, “a benzene ring having one free valence” refers to a phenyl group, and “a benzene ring having two free valences” refers to a phenylene group.
  • X is an alkyl group having 5 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 4 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, or the above formula ( 2-1) represents a substituent represented by:
  • the alkyl group is preferably an alkyl group having 5 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a substituent represented by the formula (2-1). It is more preferably a (hetero) aralkyl group having 7 to 40 carbon atoms, or a substituent represented by the above formula (2-1).
  • alkyl group having 5 to 20 carbon atoms include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group, and more specifically, an n-pentyl group, an n-hexyl group, an n -Octyl group, isopentyl group, cyclohexyl group and the like.
  • linear alkyl groups such as n-pentyl group, n-hexyl group, and n-octyl group are preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms include a linear alkyl group, a branched alkyl group, and a part of the hydrogen atoms constituting the cyclic alkyl group substituted with a (hetero) aryl group. More specifically, 1-phenyl-1-ethyl group, cumyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group And tetrahydronaphthyl group. Of these, a 5-phenyl-1-pentyl group, a 6-phenyl-1-hexyl group, and a 7-phenyl-1-heptyl group are preferable.
  • alkoxy group having 4 to 20 carbon atoms include hexyloxy group, cyclohexyloxy group, octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • Specific examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • Y represents a substituent of a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, It represents a (hetero) aryloxy group having 3 to 20 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms, and when a plurality of Y are present, they may be the same or different.
  • Z represents a substituent of a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, Alternatively, it represents a (hetero) aryloxy group having 3 to 20 carbon atoms, and when there are a plurality of Z, they may be the same or different.
  • alkyl group having 1 to 20 carbon atoms in Y and Z include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group, and more specifically, a methyl group, an ethyl group, n -Propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group, isobutyl group, isopentyl group, t-butyl group, cyclohexyl group and the like.
  • straight chain alkyl groups such as a methyl group, an ethyl group, an n-butyl group, and an n-hexyl group are preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms in Y and Z include a linear alkyl group, a branched alkyl group, and a part of the hydrogen atoms constituting the cyclic alkyl group are (hetero) aryl groups And more specifically, 1-phenyl-1-ethyl group, cumyl group, 3-phenyl-1-propyl group, 4-phenyl-1-butyl group, 5-phenyl- Examples include 1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, 4-phenyl-1-cyclohexyl group, tetrahydronaphthyl group and the like. Of these, a 5-phenyl-1-pentyl group, a 6-phenyl-1-hexyl group, and a 7-phenyl-1-heptyl group are preferable.
  • alkoxy group having 1 to 20 carbon atoms in Y and Z include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, hexyloxy group, cyclohexyloxy group, octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • Specific examples of the (hetero) aryloxy group having 3 to 20 carbon atoms in Y and Z include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • Specific examples of the (hetero) aryl group having 3 to 20 carbon atoms in Y are the same as those described in the section of ⁇ Ar 1 >.
  • the iridium complex compound of the present invention contains a ligand represented by the formula (3) as L 1 of the formula (1).
  • R 1 to R 7 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylcarbonyl group having 20 carbon atoms, an arylcarbonyl group having 7-20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, or a (hetero) aryl group having 3-20 carbon atoms To express.
  • a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms is more preferable. More preferred are a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms.
  • R 1 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, and an alkyl group having 6 to 20 carbon atoms from the viewpoint of durability.
  • An arylamino group or a substituted or unsubstituted (hetero) aryl group having 3 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted 3 to 20 carbon atoms (hetero) More preferably, it is an aryl group.
  • an alkyl group having 1 to 20 carbon atoms a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkylamino group having 2 to 20 carbon atoms More preferably an arylamino group having 6 to 20 carbon atoms, or a substituted or unsubstituted (hetero) aryl group having 3 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted group. More preferred is a (hetero) aryl group having 3 to 20 carbon atoms.
  • alkylsilyl group having 1 to 20 carbon atoms in the alkyl group include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylphenyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, etc. Among them, triisopropylsilyl group, t-butyldimethylsilyl group, and t-butyldiphenylsilyl group are preferable.
  • arylsilyl group having 6 to 20 carbon atoms in the aryl group include a diphenylmethylsilyl group and a triphenylsilyl group. Of these, a triphenylsilyl group is preferable.
  • alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, and a cyclohexylcarbonyl group, and among them, an acetyl group and a pivaloyl group are preferable.
  • arylcarbonyl group having 7 to 20 carbon atoms include a benzoyl group, a naphthoyl group, and an anthryl group, and among them, a benzoyl group is preferable.
  • alkylamino group having 2 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, and a dicyclohexylamino group. Group, dicyclohexylamino group is preferred.
  • arylamino group having 6 to 20 carbon atoms include phenylamino group, diphenylamino group, di (4-tolyl) amino group, di (2,6-dimethylphenyl) amino group and the like.
  • An amino group and a di (4-tolyl) amino group are preferred.
  • R 1 to R 7 groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, (Hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms in the alkyl group, arylsilyl group having 6 to 20 carbon atoms in the aryl group, alkyl having 2 to 20 carbon atoms Selected from the group consisting of a carbonyl group, an arylcarbonyl group having 7 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms May be substituted with at least one group. Specific examples of these substituents
  • L 1 represented by the formula (3) is a ligand bonded to Ir represented by the following formula (3-1) or (3-2). preferable.
  • R 1 ⁇ R 5 are the same respectively R 1 ⁇ R 5 at Formula (3).
  • R 8 to R 11 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylcarbonyl group having 20 carbon atoms, an arylcarbonyl group having 7-20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, or a (hetero) aryl group having 3-20 carbon atoms To express. Specific examples of these substituents are the same as those described above.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • R 8 to R 11 may combine with adjacent R 8 to R 11 with an alkylene group having 3 to 12 carbon atoms or an alkenylene group with 3 to 12 carbon atoms to form a ring.
  • a ring include a fluorene ring, a naphthalene ring, a tetrahydronaphthalene ring, and the like, among which a fluorene ring and a naphthalene ring are preferable.
  • These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms in the alkyl group, arylsilyl group having 6 to 20 carbon atoms in the aryl group, alkylcarbonyl group having 2 to 20 carbon atoms, 7 carbon atoms
  • At least one group selected from the group consisting of an arylcarbonyl group having 20 carbon atoms, an alkylamino group having 2-20 carbon atoms, an arylamino group having 6-20 carbon atoms, and a (hetero) aryl group having 3-20 carbon atoms May be substituted. Specific examples of these substituents are the same as those described above.
  • L 2 , L 3 There is no particular limitation to the organic ligand L 2, L 3 in the iridium complex compound in the present invention is preferably a monovalent bidentate ligand, more preferably represented by the following formula (4).
  • ring B represents a 6-membered or 5-membered aromatic hydrocarbon ring or aromatic heterocycle containing carbon atoms C 4 and C 5 , wherein ring C represents carbon atoms C 6 and A 6-membered or 5-membered aromatic heterocyclic ring containing a nitrogen atom N 1 is represented.
  • the 6-membered ring or 5-membered aromatic hydrocarbon ring or aromatic heterocycle include a benzene ring, a pyridine ring, a furan ring, a thiophene ring, a pyrrole ring, etc., among which a benzene ring and a pyridine ring are preferable. More preferred is a benzene ring.
  • Examples of the 6-membered or 5-membered aromatic heterocycle include a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, an imidazole ring, an oxazole ring, a thiazole ring, and the like.
  • a pyridine ring, a pyrazine ring, a pyrimidine ring, An oxazole ring and a thiazole ring are preferable, and a pyridine ring, an oxazole ring and a thiazole ring are more preferable.
  • the hydrogen atoms on ring B and ring C are each independently a fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 alkoxy groups, (hetero) aryloxy groups having 3 to 20 carbon atoms, alkylsilyl groups having 1 to 20 carbon atoms in alkyl groups, arylsilyl groups having 6 to 20 carbon atoms in aryl groups, carbon numbers An alkylcarbonyl group having 2 to 20 carbon atoms, an arylcarbonyl group having 7 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms In particular, it is preferably substituted with a fluorine atom, an alkyl group having 1 to 20 carbon atom
  • adjacent substituents bonded to ring B and ring C may be bonded to form a ring.
  • Specific examples of such rings include fluorene ring, naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, Examples thereof include a tetrahydronaphthalene ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azaphenanthrene ring, an azatriphenylene ring, a benzimidazole ring, a benzoxazole ring, and a benzthiazole ring.
  • a fluorene ring, naphthalene ring, carbazole ring, carboline ring, quinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, benzoxazole ring, and benzthiazole ring are preferable.
  • L 2 is preferably a ligand represented by the following formula (4-1).
  • R 12 to R 19 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, or (hetero) having 7 to 40 carbon atoms.
  • a hydrogen atom, a fluorine atom, an alkyl group having 1 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms are preferable. Specific examples of these substituents are the same as those described above.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • R 12 to R 15 and R 16 to R 19 are respectively adjacent R 12 to R 15 and R 16 to R 19 and an alkylene group having 3 to 12 carbon atoms or an alkenylene having 3 to 12 carbon atoms.
  • a group may be bonded to form a ring.
  • R 15 and R 16 may be bonded to each other by an alkylene group having 3 to 12 carbon atoms or an alkenylene group having 3 to 12 carbon atoms to form a ring.
  • Specific examples of such a ring include a carboline ring, a diazacarbazole ring, a quinoline ring, an isoquinoline ring, an azaphenanthrene ring, an azatriphenylene ring, and the like. Among them, a quinoline ring, an isoquinoline ring, an azaphenanthrene ring, an azatriphenylene ring, and the like.
  • a ring is preferred.
  • These rings further have a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkyl group.
  • alkylsilyl group having 1 to 20 carbon atoms an arylsilyl group having 6 to 20 carbon atoms in an aryl group, an alkylcarbonyl group having 2 to 20 carbon atoms, an arylcarbonyl group having 7 to 20 carbon atoms, and a carbon atom having 2 to 20 carbon atoms It may be substituted with at least one group selected from the group consisting of an alkylamino group, an arylamino group having 6 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms. Specific examples of these substituents are the same as those described above.
  • the molecular weight of the iridium complex compound of the present invention is usually 600 or more, preferably 900 or more, usually 3000 or less, preferably 2000 or less because of the high stability of the complex.
  • the iridium complex compound of the present invention is used as a side chain. It can use suitably also for the high molecular compound to contain.
  • the iridium complex compound of the present invention emits red light
  • an organic electroluminescent device produced by a coating method using a composition containing this compound has an effect of having a long driving life and high electrical durability.
  • the reason for this effect is considered as follows from the structural features.
  • Ligands that have been extensively studied as red phosphorescent iridium complex compounds include 2-phenylquinoline and 1-phenylisoquinoline ligands.
  • An organic electroluminescent device using a 2-phenylquinoline-based iridium complex compound has a high luminous efficiency and a long driving life, but its luminescent color is a red color close to orange.
  • an organic electroluminescent device using a 1-phenylisoquinoline-based iridium complex compound emits deep red light, but has a low luminous efficiency and a short driving life.
  • One of the reasons why the driving life is short in the phenylisoquinoline system is thought to be that the hydrogen atom on the phenyl ring and the hydrogen atom on the isoquinoline ring are twisted due to steric hindrance, thereby lowering the stability of the complex. Therefore, if red light can be emitted using a 2-phenylquinoline-based skeleton, it is considered that an organic electroluminescent device using the compound has a long driving life and high electrical durability.
  • the present inventors diligently studied and found that the partial structure represented by the formula (2) in the molecule, that is, an alkyl group, a (hetero) aralkyl group, an alkoxy group, a (hetero) aryloxy group, It was also revealed that the solubility is improved by having a group selected from the group consisting of groups in which two or more m-phenylene groups are linked. By having any of these substituents, the solvation energy received in the solution is increased, and the number of possible conformations is increased, so that the solubility is considered to be improved.
  • the composition containing the compound and the solvent has high storage stability and can be suitably used in the coating process.
  • the solubility of the compound is high, it is possible to prevent a decrease in light emission efficiency and a decrease in driving life due to aggregation of the light emitting material in the composition, so that the organic electroluminescent device containing the iridium complex compound of the present invention is driven. It is considered to have a long life and high electrical durability.
  • the present invention makes it possible to provide an iridium complex compound that emits red light and has high solubility in an organic solvent, and further provides an organic electroluminescent device having a long driving life and high electrical durability using the compound. It is possible to do.
  • the iridium complex compound of the present invention can be synthesized from a ligand and an Ir compound using a ligand that can be synthesized by a combination of known methods.
  • a tris complex is formed in one step as shown in the formula (A), and an intermediate such as an Ir2 nucleus complex as shown in the formula (B) is formed and then tris is formed.
  • R represents hydrogen or an arbitrary substituent, and a plurality of R may be the same or different.
  • the reaction can be promoted by using an excessive amount of the ligand, or the selectivity may be enhanced by using a small amount.
  • a plurality of types of ligands may be used and added sequentially to form a mixed ligand complex.
  • a reaction of 2 equivalents of a ligand and 1 equivalent of IrCl 3 ⁇ xH 2 O gives an Ir atom 2
  • An example is a method of obtaining a metal complex by obtaining an intermediate pair such as a binuclear metal complex composed of a single metal, and further reacting the ligand with 1 equivalent of Ir.
  • reaction ratio and selectivity of the actual ligand and Ir compound can be appropriately adjusted in consideration of the reaction efficiency and selectivity as in the reaction formula (A).
  • reaction formula (B) a mixed ligand complex can be easily formed by using a ligand added at the end different from that of the first ligand.
  • an appropriate Ir compound such as an Ir cyclooctadienyl complex may be used in addition to the above Ir (acac) 3 complex and IrCl 3 xH 2 O complex.
  • the reaction may be promoted by using a basic compound such as carbonate, or a halogen trapping agent such as Ag salt.
  • a reaction temperature of about 50 ° C. to 400 ° C. is preferably used. More preferably, a high temperature of 90 ° C. or higher is used.
  • the reaction may be carried out without a solvent, or a known solvent may be used.
  • the iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent element, that is, an organic electroluminescent element material, and can also be suitably used as a luminescent material such as an organic electroluminescent element and other light emitting elements. It is.
  • iridium complex compound-containing composition Since the iridium complex compound of this invention is excellent in solubility, it is preferable to be used with a solvent.
  • a solvent hereinafter, sometimes referred to as “iridium complex compound-containing composition”.
  • the iridium complex compound-containing composition of the present invention contains the above-described iridium complex compound of the present invention and a solvent.
  • the iridium complex compound-containing composition of the present invention is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming an organic layer of an organic electroluminescent element.
  • the organic layer is particularly preferably a light emitting layer. That is, the iridium complex compound-containing composition is preferably a composition for organic electroluminescent elements, and more preferably used as a composition for forming a light emitting layer.
  • the content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.1% by weight or more, preferably 1% by weight or more, usually 99.99% by weight or less, preferably 99.9% by weight or less. It is.
  • an adjacent layer for example, a hole transport layer or a hole blocking layer. Holes and electrons are efficiently injected into the layer, and the driving voltage can be reduced.
  • only 1 type may be contained in the iridium complex compound containing composition, and 2 or more types may be combined and contained in the iridium complex compound containing composition.
  • the iridium complex compound-containing composition of the present invention When used, for example, for an organic electroluminescent device, it contains a charge transporting compound used for an organic electroluminescent device, particularly a light emitting layer, in addition to the above-mentioned iridium complex compound and solvent. be able to.
  • the iridium complex compound of the present invention When forming the light emitting layer of the organic electroluminescence device using the iridium complex compound-containing composition of the present invention, the iridium complex compound of the present invention is used as a dopant material, and another charge transporting compound is included as a host material. Is preferred.
  • the solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used for forming a layer containing an iridium complex compound by wet film formation. Since the iridium complex compound of the present invention as a solute has high solubility, the solvent is not particularly limited as long as the charge transporting compound described later is well dissolved.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, and tetralin; chlorobenzene, dichlorobenzene, and trichlorobenzene Halogenated aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, Aromatic ethers such as 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate,
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the boiling point is usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower. Below this range, film formation stability may be reduced due to solvent evaporation from the composition during wet film formation.
  • the content of the solvent is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, particularly preferably 80 parts by weight or more, and preferably 99.95 parts by weight or less with respect to 100 parts by weight of the composition. More preferably, it is 99.9 parts by weight or less, particularly preferably 99.8 parts by weight or less.
  • the thickness of the light emitting layer is usually about 3 to 200 nm. However, if the solvent content is less than this lower limit, the viscosity of the composition becomes too high, and film forming workability may be lowered. On the other hand, if the upper limit is exceeded, the thickness of the film obtained by removing the solvent after film formation cannot be obtained, so that film formation tends to be difficult.
  • charge transportable compounds that can be contained in the iridium complex compound-containing composition of the present invention
  • those conventionally used as materials for organic electroluminescent elements can be used.
  • quinacridone derivatives DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds
  • benzopyran derivatives rhodamine derivatives
  • benzothioxanthene derivatives azabenzothioxanthene, aryl
  • condenoxanthene a con
  • the content of the other charge transporting compound in the iridium complex compound-containing composition of the present invention is usually 1 part by weight or more, usually 50 parts by weight or less, preferably 30 parts by weight when the composition is 100 parts by weight. Or less. Further, the content of the other charge transporting compound in the iridium complex compound-containing composition is usually 50% by weight or less, particularly 30% by weight or less, based on the iridium complex compound of the present invention in the iridium complex compound-containing composition. In general, it is preferably 0.01% by weight or more, particularly preferably 0.1% by weight or more.
  • the iridium complex compound-containing composition of the present invention may further contain other compounds, if necessary, in addition to the above-described compounds.
  • another solvent may be contained.
  • amides such as N, N-dimethylformamide and N, N-dimethylacetamide; dimethyl sulfoxide and the like. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the organic electroluminescent element of the present invention has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on a substrate, and at least one layer of the organic layers is of the present invention.
  • a complex compound is included.
  • the organic layer includes a light emitting layer.
  • the organic layer containing the complex compound of the present invention is more preferably a layer formed using the composition in the present invention, and further preferably a layer formed by a wet film forming method.
  • the layer formed by the wet film formation method is preferably the light emitting layer.
  • FIG. 1 is a schematic cross-sectional view showing a structure example suitable for the organic electroluminescent element 10 of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is an anode
  • reference numeral 3 is a hole injection layer
  • reference numeral 4 is A hole transport layer
  • reference numeral 5 denotes a light emitting layer
  • reference numeral 6 denotes a hole blocking layer
  • reference numeral 7 denotes an electron transport layer
  • reference numeral 8 denotes an electron injection layer
  • reference numeral 9 denotes a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates, metal foils, plastic films, sheets, and the like are used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • Anode 2 is provided on the substrate 1.
  • the anode 2 plays a role of injecting holes into a layer on the light emitting layer side (hole injection layer 3, hole transport layer 4, or light emitting layer 5).
  • This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or It is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode 2 is often formed by sputtering, vacuum deposition, or the like.
  • an appropriate binder resin solution is used.
  • the anode 2 can also be formed by dispersing and coating the substrate 1.
  • a conductive polymer a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett. 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode 2 varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably about 500 nm or less.
  • the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1.
  • the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
  • the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 5 and is usually formed on the anode 2.
  • the method for forming the hole injection layer 3 according to the present invention may be a vacuum deposition method or a wet film formation method, and is not particularly limited, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the material for forming the hole injection layer 3 is usually mixed with an appropriate solvent (a solvent for hole injection layer) to form a composition for film formation (a solvent for hole injection layer) is prepared, and this composition for forming the hole injection layer is applied onto a layer (usually an anode) corresponding to the lower layer of the hole injection layer 3 by an appropriate technique.
  • the hole injection layer 3 is formed by depositing and drying.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic electroluminescence device, and may be a polymer compound or the like, a monomer or the like. Although it may be a low molecular compound, it is preferably a high molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamines Derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a mer.
  • the hole transporting compound used as the material for the hole injection layer 3 may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. It is preferable to use the above in combination.
  • an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included.
  • Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (IV).
  • Ar 51 to Ar 55 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • represents a linking group selected from the following group of linking groups, and two groups of Ar 51 to Ar 55 bonded to the same N atom may be bonded to each other to form a ring. Good.
  • Ar 56 to Ar 66 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • R 111 and R 112 each independently represents a hydrogen atom or an arbitrary substituent.
  • aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 to Ar 66 benzene having two free valences from the viewpoint of the solubility, heat resistance, hole injection / transport properties of the polymer compound A ring, a naphthalene ring, a phenanthrene ring, a thiophene ring and a pyridine ring are preferable, and a benzene ring and a naphthalene ring having two free valences are more preferable.
  • the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 to Ar 66 may further have a substituent.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like are preferable.
  • examples of the substituent include alkyl groups, alkenyl groups, alkoxy groups, silyl groups, siloxy groups, aromatic hydrocarbon groups, aromatic heterocyclic groups, and the like. .
  • a hole transporting compound a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a polythiophene derivative, in a high molecular weight polystyrene sulfonic acid.
  • PEDOT / PSS a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a polythiophene derivative, in a high molecular weight polystyrene sulfonic acid.
  • the end of this polymer may be capped with methacrylate or the like.
  • a compound having an insolubilizing group described in the section “Hole transporting layer” described later may be used as the hole transporting compound. When a compound having an insolubilizing group is used, the film forming method is the same.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by weight or more, preferably in terms of film thickness uniformity. Is 0.1% by weight or more, more preferably 0.5% by weight or more, and usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron accepting compound as a constituent material of the hole injection layer.
  • the electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more is preferable, and 5 eV or more. More preferred is a compound that is
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, arylamine and metal halide salts, and arylamine and Lewis acid salts. 1 type or 2 or more types of compounds chosen from the group which consists of. More specifically, high-valent inorganic compounds such as iron (III) chloride (Japanese Unexamined Patent Publication No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene, tris (pentafluorophenyl) borane (Japanese Unexamined Patent Publication No.
  • These electron accepting compounds can improve the conductivity of the hole injection layer by oxidizing the hole transporting compound.
  • the content of the electron-accepting compound in the hole-injecting layer or the composition for forming a hole-injecting layer with respect to the hole-transporting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.
  • At least one of the solvents of the composition for forming a hole injection layer used in the wet film formation method is preferably a compound that can dissolve the constituent material of the hole injection layer.
  • the boiling point of this solvent is usually 110 ° C. or higher, preferably 140 ° C. or higher, more preferably 200 ° C. or higher, and usually 400 ° C. or lower, preferably 300 ° C. or lower. If the boiling point of the solvent is too low, the drying speed is too high and the film quality may be deteriorated. Further, if the boiling point of the solvent is too high, it is necessary to increase the temperature of the drying process, which may adversely affect other layers and the substrate.
  • ether solvents examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole .
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-me
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, phenylcyclohexane, 3-iropropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the composition After preparing the composition for forming the hole injection layer, the composition is applied on the layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by wet film formation, and dried.
  • the hole injection layer 3 can be formed.
  • the temperature in the coating step is preferably 10 ° C. or higher, and preferably 50 ° C. or lower in order to prevent film loss due to the formation of crystals in the composition.
  • coating process is not limited unless the effect of this invention is impaired remarkably, it is 0.01 ppm or more normally, and usually 80% or less.
  • the film of the composition for forming a hole injection layer is usually dried by heating or the like. Examples of the heating means used in the heating step include a clean oven and a hot plate.
  • the heating temperature in the heating step is preferably heated at a temperature equal to or higher than the boiling point of the solvent used in the composition for forming a hole injection layer as long as the effects of the present invention are not significantly impaired.
  • at least one type is preferably heated at a temperature equal to or higher than the boiling point of the solvent.
  • the heating step is preferably performed at 120 ° C or higher, preferably 410 ° C or lower.
  • the heating time is not limited as long as the heating temperature is equal to or higher than the boiling point of the solvent of the hole injection layer forming composition and sufficient insolubilization of the coating film does not occur, but preferably 10 seconds or more, 180 minutes or less. If the heating time is too long, the components of the other layers tend to diffuse, and if it is too short, the hole injection layer tends to be inhomogeneous. Heating may be performed in two steps.
  • the hole injection layer 3 is formed by vacuum deposition
  • one or more of the constituent materials of the hole injection layer 3 are placed in a vacuum vessel.
  • the crucibles installed (in case of using two or more materials, put them in each crucible), evacuate the inside of the vacuum vessel to about 10 -4 Pa with a suitable vacuum pump, then heat the crucible (two types When using the above materials, heat each crucible) and control the evaporation amount to evaporate (when using two or more materials, control each evaporation amount independently) and face the crucible
  • the hole injection layer 3 is formed on the anode 2 of the substrate placed on the substrate.
  • the hole injection layer 3 can also be formed by putting those mixtures into a crucible, heating and evaporating.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more, usually 9.0 ⁇ 10 ⁇ 6 Torr. (12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / second or more and usually 5.0 ⁇ / second or less.
  • the hole transport layer 4 is formed on the hole injection layer 3 when there is a hole injection layer and on the anode 2 when there is no hole injection layer 3. Can do.
  • the organic electroluminescent device of the present invention may have a configuration in which the hole transport layer is omitted.
  • the hole transport layer 4 may be formed by either a vacuum deposition method or a wet film formation method, and is not particularly limited, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the material forming the hole transport layer 4 is preferably a material having high hole transportability and capable of efficiently transporting injected holes. Therefore, it is preferable that the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is high, and impurities that become traps are not easily generated during manufacturing or use. In many cases, since the hole transport layer 4 is in contact with the light emitting layer 5, it does not quench the light emitted from the light emitting layer 5 or form an exciplex with the light emitting layer 5 to reduce the efficiency. Is preferred.
  • Such a material for the hole transport layer 4 may be any material conventionally used as a constituent material for the hole transport layer.
  • the hole transport property used for the hole injection layer 3 described above. What was illustrated as a compound is mentioned.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the polyarylamine derivative is preferably a polymer containing a repeating unit represented by the following formula (V).
  • a polymer composed of a repeating unit represented by the following formula (V) is preferable.
  • Ar a or Ar b may be different in each repeating unit.
  • Ar a and Ar b each independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.
  • 6-membered monocyclic ring or 2-5 condensed ring having 1 or 2 free valences such as a ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring, and the like are groups in which two or more rings are linked by a direct bond.
  • Ar a and Ar b are each independently a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene having 1 or 2 free valences from the viewpoint of solubility and heat resistance in an organic solvent.
  • aromatic hydrocarbon group and aromatic heterocyclic group in Ar a and Ar b may have, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a (hetero) aryloxy group, an alkoxycarbonyl group Groups, dialkylamino groups, diarylamino groups, acyl groups, halogen atoms, haloalkyl groups, alkylthio groups, arylthio groups, silyl groups, siloxy groups, cyano groups, aromatic hydrocarbon ring groups, aromatic heterocyclic groups, and the like. .
  • an arylene group such as an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent exemplified as Ar a or Ar b in the formula (V) is used as its repeating unit.
  • the polymer which has is mentioned.
  • R a to R d each independently represents an alkyl group, an alkoxy group, a phenylalkyl group, a phenylalkoxy group, a phenyl group, a phenoxy group, an alkylphenyl group, an alkoxyphenyl group, an alkylcarbonyl group, Represents an alkoxycarbonyl group or a carboxy group, and v and w each independently represent an integer of 0 to 3.
  • v or w is 2 or more, a plurality of R a or R b contained in one molecule is They may be the same or different, and adjacent R a or R b may form a ring.
  • R e and R f are each independently synonymous with R a to R d in formula (VI) above.
  • V and w are the same as v and w in formula (VI) above, respectively. And each independently represents an integer of 0 to 3.
  • v or w is 2 or more, a plurality of R e and R f contained in one molecule may be the same or different, Adjacent R e or R f may form a ring, and T represents an atom or a group of atoms constituting a 5-membered ring or a 6-membered ring.
  • T examples include —O—, —BR—, —NR—, —SiR 2 —, —PR—, —SR—, —CR 2 — or a group formed by bonding thereof.
  • R here represents a hydrogen atom or arbitrary organic groups.
  • the organic group in the present invention is a group containing at least one carbon atom.
  • the polyarylene derivative preferably has a repeating unit represented by the following formula (VIII) in addition to the repeating unit consisting of the formula (VI) and / or the formula (VII).
  • Ar c to Ar i each independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • ⁇ and ⁇ are each independently Represents 0 or 1)
  • Ar c to Ar i are the same as Ar a and Ar b in the formula (V).
  • Specific examples of the above formulas (VI) to (VIII) and polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
  • the composition for forming a hole transport layer contains a solvent in addition to the above hole transport compound.
  • the solvent used is the same as that used for the composition for forming a hole injection layer.
  • the film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer 3. In the case where the hole transport layer is formed by the vacuum deposition method, the film forming conditions are the same as those in the case of forming the hole injection layer 3.
  • the hole transport layer 4 may contain various light emitting materials, electron transport compounds, binder resins, coating property improving agents, and the like in addition to the hole transport compound.
  • the hole transport layer 4 is also preferably a layer formed by insolubilizing a compound having an insolubilizing group (hereinafter sometimes referred to as “insolubilizing compound”) from the viewpoint of heat resistance or film formability.
  • the insolubilizing compound is a compound having an insolubilizing group, and forms an insolubilizing polymer by insolubilization.
  • the insolubilizing group is a group that reacts by irradiation with heat and / or active energy rays, and is a group having an effect of lowering solubility in an organic solvent or water after the reaction than before the reaction.
  • the insolubilizing group is preferably a leaving group or a crosslinkable group.
  • the leaving group refers to a group that dissociates from a bonded aromatic hydrocarbon ring at 70 ° C. or more and is soluble in a solvent.
  • being soluble in a solvent means that the compound is dissolved in toluene at 0.1% by weight or more at room temperature in a state before reacting by irradiation with heat and / or active energy rays.
  • the solubility in toluene is preferably 0.5% by weight or more, more preferably 1% by weight or more.
  • the leaving group is preferably a group that is thermally dissociated without forming a polar group on the aromatic hydrocarbon ring side, and more preferably a group that is thermally dissociated by a reverse Diels-Alder reaction. Furthermore, it is preferably a group that thermally dissociates at 100 ° C. or higher, and preferably a group that thermally dissociates at 300 ° C. or lower.
  • crosslinkable group examples include groups derived from cyclic ethers such as oxetane and epoxy; groups derived from unsaturated double bonds such as vinyl group, trifluorovinyl group, styryl group, acrylic group, methacryloyl and cinnamoyl; Examples include groups derived from benzocyclobutane.
  • the insolubilizing compound may be any of a monomer, an oligomer and a polymer.
  • the insolubilizing compound may have only 1 type, and may have 2 or more types by arbitrary combinations and ratios.
  • a hole transporting compound having a crosslinkable group is preferably used as the insolubilizing compound.
  • hole transporting compounds include nitrogen-containing aromatic compound derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives, phthalocyanine derivatives, porphyrin derivatives; triphenylamine derivatives A silole derivative; an oligothiophene derivative; a condensed polycyclic aromatic derivative; a metal complex, and the like.
  • nitrogen-containing aromatic compound derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives, phthalocyanine derivatives, porphyrin derivatives; triphenylamine derivatives A silole derivative; an oligothiophene derivative; a condensed polycyclic aromatic derivative; a metal complex, and the like.
  • nitrogen-containing aromatic derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, and carbazole derivatives; triphenylamine derivatives; silole derivatives; condensed polycyclic aromatic derivatives; metal complexes, etc.
  • triphenylamine derivatives particularly preferred are triphenylamine derivatives.
  • a composition for forming a hole transporting layer in which the insolubilizing compound is dissolved or dispersed in a solvent is prepared and formed by wet film formation.
  • the composition for forming a hole transport layer may further contain a coating property improving agent such as a leveling agent and an antifoaming agent; an electron accepting compound; a binder resin and the like.
  • the insoluble compound is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, usually 50% by weight or less, preferably 20%. It is contained by weight% or less, more preferably 10% by weight or less.
  • the insolubilizing compound is heated and / or irradiated with active energy such as light. Insolubilize.
  • the heating method after film formation is not particularly limited. As heating temperature conditions, it is 120 degreeC or more normally, Preferably it is 400 degrees C or less.
  • the heating time is usually 1 minute or longer, preferably 24 hours or shorter.
  • the heating means is not particularly limited, and means such as placing a laminated body having a deposited layer on a hot plate or heating in an oven is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the light-emitting layer 5 is usually provided on the hole transport layer 4.
  • the light-emitting layer 5 was excited by recombination of holes injected from the anode 2 through the hole injection layer 3 and electrons injected from the cathode 9 through the electron transport layer 7 between the electrodes to which an electric field was applied. , Which is the main light-emitting layer.
  • the light emitting layer 5 preferably contains a light emitting material (dopant) and one or more host materials.
  • the light emitting layer 5 may be formed by a vacuum deposition method, but is particularly preferably a layer formed by a wet film forming method using the composition of the present invention.
  • the wet film forming method is, as described above, a composition containing a solvent, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating.
  • This method is a wet film formation method such as a method, an ink jet method, a screen printing method, a gravure printing method, or a flexographic printing method.
  • the light emitting layer 5 may contain other materials and components as long as the performance of the present invention is not impaired.
  • the thinner the film thickness between the electrodes the larger the effective electric field, the more current is injected, so the driving voltage is lowered.
  • the drive voltage of the organic electroluminescence device decreases when the total film thickness between the electrodes is thin, but if it is too thin, a short circuit occurs due to the protrusion caused by the electrode such as ITO, so a certain film thickness is required. It becomes.
  • the light emitting layer 5 and other organic materials such as the hole injection layer 3 and the electron transport layer 7 are used.
  • the total film thickness combined with the layer is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, usually 1000 nm or less, preferably 500 nm or less, and more preferably 300 nm or less.
  • the conductivity of the hole injection layer 3 other than the light emitting layer 5 and the electron injection layer 8 described later is high, the amount of charge injected into the light emitting layer 5 increases.
  • the film thickness of the light emitting layer 5 is usually 10 nm or more, preferably 20 nm or more, and usually 300 nm or less, preferably 200 nm or less.
  • the thickness of the light emitting layer 5 is usually 30 nm or more, preferably 50 nm or more, usually 500 nm or less, preferably 300 nm or less.
  • the hole blocking layer 6 is laminated on the light emitting layer 5 so as to be in contact with the cathode side interface of the light emitting layer 5.
  • a phosphorescent material or a blue light emitting material is used as the light emitting substance, it is effective to provide the hole blocking layer 6.
  • the hole blocking layer 6 has a function of confining holes and electrons in the light emitting layer 5 and improving luminous efficiency. That is, the hole blocking layer 6 is generated by increasing the recombination probability with electrons in the light emitting layer 5 by blocking the holes moving from the light emitting layer 5 from reaching the electron transport layer 7.
  • the physical properties required for the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). Is high.
  • Examples of the hole blocking layer material satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like.
  • Ligand complexes, metal complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes, and styryl compounds such as distyrylbiphenyl derivatives ( JP-A-11-242996), triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (Japanese Patent 7-41759), phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297) It is below.
  • the hole blocking material is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the hole blocking layer 6 can also be formed by the same method as the hole injection layer 3, but usually a vacuum deposition method is used.
  • the electron transport layer 7 is provided between the hole blocking layer 6 and the electron injection layer 8 for the purpose of further improving the light emission efficiency of the device.
  • the electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 between electrodes to which an electric field is applied in the direction of the light emitting layer 5.
  • the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and it has high electron mobility and can efficiently transport the injected electrons. It must be a compound that can be made.
  • Metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Unexamined Patent Publication No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives Distyrylbiphenyl derivatives, silole derivatives, 3- or 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • the lower limit of the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 100 nm.
  • the electron transport layer 7 is formed by a wet film forming method or a vacuum vapor deposition method in the same manner as the hole injection layer 3, but a vacuum vapor deposition method is usually used.
  • the electron injection layer 8 serves to efficiently inject electrons injected from the cathode 9 into the light emitting layer 5.
  • the material for forming the electron injection layer 8 is preferably a metal having a low work function, and alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium are used.
  • the thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • an ultra-thin insulating film such as LiF, MgF 2 , Li 2 O, Cs 2 CO 3 at the interface between the cathode 9 and the electron transport layer 7 also improves the efficiency of the device.
  • an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( Described in Japanese Laid-Open Patent Publication No. 10-270171, Japanese Laid-Open Patent Publication No. 2002-1000047, Japanese Laid-Open Patent Publication No. 2002-1000048, and the like, thereby improving electron injection / transport properties and achieving excellent film quality. It is preferable because it becomes possible.
  • the film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by a wet film forming method or a vacuum evaporation method in the same manner as the light emitting layer 5.
  • the evaporation source is put into a crucible or metal boat installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa with an appropriate vacuum pump, and then the crucible or metal boat is attached. Evaporate by heating to form an electron injection layer on the substrate placed facing the crucible or metal boat.
  • the alkali metal is deposited using an alkali metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal evaporates.
  • the organic electron transport material and alkali metal are co-evaporated, the organic electron transport material is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa with an appropriate vacuum pump.
  • Each crucible and dispenser are simultaneously heated and evaporated to form an electron injection layer on the substrate placed facing the crucible and dispenser. At this time, co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 8, but there may be a concentration distribution in the film thickness direction.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer side (such as the electron injection layer 8 or the light emitting layer 5).
  • the material used for the cathode 9 can be the material used for the anode 2, but a metal having a low work function is preferable for efficient electron injection, and tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the film thickness of the cathode 9 is usually the same as that of the anode 2.
  • a metal layer having a high work function and stable to the atmosphere may be further laminated thereon, thereby increasing the stability of the organic electroluminescent device. It can.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • the characteristics required for the electron blocking layer include high hole transportability, a large energy gap (difference between HOMO and LUMO), and a high excited triplet level (T1).
  • the electron blocking layer is also formed by a wet film forming method because the device manufacturing becomes easy. Therefore, it is preferable that the electron blocking layer also has wet film formation compatibility.
  • a material used for such an electron blocking layer a copolymer of dioctylfluorene and triphenylamine typified by F8-TFB (International Publication No. 2004/084260).
  • the organic electroluminescent element of the present invention can be provided between two substrates, at least one of which is highly transparent. Further, a structure in which a plurality of layers shown in FIG. 1 are stacked (a structure in which a plurality of light emitting units are stacked) may be employed. In this case, instead of the interface layer between the steps (between the light emitting units) (two layers when the anode is ITO and the cathode is Al), for example, V 2 O 5 or the like is used as the charge generation layer to form a barrier between the steps.
  • the present invention can be applied to any of organic electroluminescent elements, such as a single element, an element having a structure arranged in an array, and an element having an anode and a cathode arranged in an XY matrix. Can do.
  • the display device and the illumination device of the present invention use the organic electroluminescent element of the present invention as described above.
  • the display device and the illumination device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, published on August 20, 2004, Shizutoki Toki, Chiba Adachi, Hideyuki Murata). Can be formed.
  • Example 1 ⁇ Solubility and storage stability test of composition> (Example 1)
  • a brown sample bottle 1.5 mg of compound D-1 is weighed, and phenylcyclohexane is added to make 100 mg to completely dissolve compound D-1, and a composition containing compound D-1 (solid content concentration: 1. 5% by weight) was prepared.
  • the prepared composition was placed in a dark place at a room temperature of about 15 to 20 ° C., and the time until a solid precipitated was measured. Precipitation of the solid was visually confirmed using a 10-fold magnifier. The results are summarized in Table 1.
  • Example 1 a composition was prepared in the same manner as in Example 1 except that the iridium complex compound shown in Table 1 was used instead of the compound D-1, and the time until the solid content was precipitated was measured. The results are summarized in Table 1.
  • Comparative Example 2 preparation of a composition was attempted in the same manner as in Example 1 except that Ir (piq) 3 was used instead of Compound D-1, but the solid content was not completely dissolved. The results are summarized in Table 1. The structures of the compounds used are summarized below.
  • the iridium complex compound of the present invention has high solubility in an organic solvent, and the composition containing the iridium complex compound and the solvent has high storage stability, and an organic electroluminescent device is applied. It was found that it can be produced by the method.
  • Example 4 The organic electroluminescent element was produced by the method shown below. ⁇ Production of organic electroluminescence device> An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate to a thickness of 70 nm (Geomatec, sputtered film) is 2 mm wide using normal photolithography and hydrochloric acid etching. An anode was formed by patterning the stripes. The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with an aqueous surfactant solution, water cleaning with ultrapure water, ultrasonic cleaning with ultrapure water, and water cleaning with ultrapure water, followed by drying with compressed air, and finally UV irradiation. Ozone cleaning was performed. This ITO functions as a transparent electrode.
  • ITO indium tin oxide
  • a hole injection layer was formed by a wet film formation method under the following conditions.
  • a polymer compound having an aromatic amino group of the following formula (PB-1), a polymer compound having an aromatic amino group of the following formula (PB-2), and a structure shown below Using the electron-accepting compound (A-1) of the formula, spin coating was performed under the following conditions to produce a uniform thin film having a thickness of 40 nm.
  • composition for hole injection layer Solvent Ethyl benzoate Coating solution concentration PB-1 0.875 wt% PB-2 2.625 wt% A-1 0.525 wt% ⁇ Film formation conditions> Spin coat atmosphere Atmosphere 23 °C Drying conditions 230 ° C x 60 minutes
  • a hole transport layer was formed by a wet film forming method under the following conditions.
  • PB-3 charge transport material having the structural formula shown below as a material for the hole transport layer and using phenylcyclohexane as a solvent.
  • the following organic compound (H-1), organic compound (H-2), and iridium complex compound (D-1) as the light emitting material are used as charge transport materials.
  • the iridium complex compound-containing composition shown below was prepared and spin-coated on the hole transport layer under the following conditions to obtain a light emitting layer with a film thickness of 50 nm.
  • composition for light emitting layer Solvent Xylene Concentration in composition H-1: 1.0% by weight H-2: 3.0% by weight D-1: 0.28% by weight ⁇ Spin coating conditions> Spin coat atmosphere 35 °C in dry nitrogen Drying conditions 120 ° C x 20 minutes (under dry nitrogen)
  • the substrate on which the light emitting layer has been formed is transferred into a vacuum vapor deposition apparatus, exhausted until the degree of vacuum in the apparatus becomes 2.0 ⁇ 10 ⁇ 4 Pa or less, and then an organic compound having the structure shown below (BAlq) was deposited on the light emitting layer by controlling the vapor deposition rate in the range of 0.8 to 1.2 liters / second by a vacuum vapor deposition method to obtain a 10 nm thick hole blocking layer.
  • BAlq organic compound having the structure shown below
  • an organic compound (Alq 3 ) having the structure shown below was deposited on the hole blocking layer by controlling the deposition rate in the range of 0.8 to 1.2 liters / second by vacuum deposition. A 20 nm electron transport layer was formed.
  • the element on which the electron transport layer has been deposited is taken out once and placed in another deposition apparatus, and a 2 mm wide striped shadow mask is used as a cathode deposition mask so that it is perpendicular to the ITO ITO stripe.
  • the device was brought into close contact with the device and evacuated until the degree of vacuum in the apparatus was 2.3 ⁇ 10 ⁇ 4 Pa or less.
  • lithium fluoride (LiF) was first formed on the electron transport layer 7 at a deposition rate of 0.1 kg / second and a film thickness of 0.5 nm using a molybdenum boat.
  • aluminum was similarly heated as a cathode 9 by a molybdenum boat, and the deposition rate was controlled in the range of 1.0 to 4.9 liters / second to form an aluminum layer having a thickness of 80 nm.
  • the substrate temperature during the above two-layer deposition was kept at room temperature.
  • a sealing process was performed by the method described below.
  • a photocurable resin 30Y-437 manufactured by ThreeBond
  • a moisture getter sheet manufactured by Dynic
  • finished cathode formation was bonded together so that the vapor-deposited surface might oppose a desiccant sheet.
  • coated was irradiated with ultraviolet light, and resin was hardened.
  • Example 5 to 6 and Comparative Example 3 An organic electroluminescent device was produced in the same manner as in Example 4 except that in Example 4, the iridium complex compound D-1 was replaced with the iridium complex compound shown in Table 2. This device emitted red light when a voltage was applied, and exhibited the characteristics shown in Table 2. Table 2 shows the relative time until the initial luminance is attenuated to 80% when driven at a constant current with a current density of 20 mA / cm 2 .
  • Example 4 In Example 4, except that the iridium complex compound D-1 was replaced with Ir (piq) 3 , an organic electroluminescence device was prepared in the same manner as in Example 4. However, when the composition for the light emitting layer was prepared, The solid content was not completely dissolved, and the device could not be manufactured.
  • the organic electroluminescence device produced by the coating method using the iridium complex compound of the present invention has a long driving life and high electrical durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、赤色に発光するイリジウム錯体化合物、該イリジウム錯体化合物及び溶媒を含む組成物、前記化合物又は該組成物を用いて作製した、駆動寿命が長く電気的耐久性に優れた有機電界発光素子、並びに、該有機電界発光素子を用いた表示装置及び照明装置を提供することを目的とする。本発明は2-フェニルキナゾリン骨格及び特定の置換基を有するイリジウム錯体化合物溶媒に関する。

Description

イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
 本発明はイリジウム錯体化合物に関し、赤色に発光するイリジウム錯体化合物、該化合物を含有する組成物及び有機電界発光素子、並びに該有機電界発光素子を含む表示装置及び照明装置に関する。
 近年、有機EL照明や有機ELディスプレイなど、有機電界発光素子(以下、「有機EL素子」と称することもある。)を利用する各種電子デバイスが実用化されつつある。有機EL素子は、印加電圧が低く消費電力が小さく、面発光であり、三原色発光も可能であることから、照明やディスプレイへの適用が盛んに検討されている。そのためにも発光効率の改善が求められる。
 発光効率の改善としては、例えば、ホールと電子の再結合によって生成する一重項励起子と三重項励起子との生成比が1:3であることを利用して、有機EL素子の発光層に燐光発光材料を利用することが提案されている。燐光発光材料としては、例えば、ビス(2-フェニルピリジナト-N,C2’)イリジウムアセチルアセトナート(Ir(ppy)(acac))や、トリス(2-フェニルピリジナト-N,C2’)イリジウム(Ir(ppy))をはじめとした、オルトメタル化イリジウム錯体化合物が広く知られている。
 このような燐光発光材料を使用して有機EL素子を形成する方法としては、主に真空蒸着法が利用されている。しかし通常、素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される故、真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣り、かつ、これら素子からなる照明やディスプレイのパネルの大型化が極めて難しかった。
 一方、有機EL素子は、塗布法により成膜し、層を形成していくことも可能である。塗布法では、真空蒸着法に比べて安定した層を容易に形成できるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
 ここで塗布法による成膜のためには、層に含まれる有機材料が有機溶媒に溶解しやすいことが必要である。通常、用いられる有機溶媒としては、例えばトルエンのような低沸点で低粘度の溶媒が使用される。このような溶媒と有機材料とを含む組成物を用いることにより、スピンコート法などにより容易に成膜することができる。また、有機溶媒については、塗布膜の均一性や作業上の安全性の観点から、フェニルシクロヘキサンのような、揮発性が低く、引火点が高い有機溶媒が工業的にはより好ましく使用される。
日本国特開2006-290781号公報 国際公開第2004/026886号 米国特許出願公開第2007/0122655号明細書 中国特許出願公開第101899296号明細書
Journal of Materials Chemistry,2012年,22号,6878-6884頁.
 しかしながら、従来蒸着成膜法に使用されてきた、フェニル(イソ)キノリン系赤色発光燐光材料、例えば特許文献1に記載の化合物Ir(piq)やIr(pq)及び特許文献2に記載のIr(FMpiq)は、有機溶媒に対する溶解度が低く、また、特許文献2に記載のIr(nHexpiq)は、湿式成膜後の化合物の安定性が悪く、湿式成膜法に用いることが難しかった。また、フェニルキナゾリン系赤色発光燐光材料についても開示されているものの、特許文献3、4に記載の化合物は有機溶媒に対する溶解性については言及されておらず、また、非特許文献1に記載の化合物は駆動寿命が短く、電気的耐久性の向上が求められていた。
 本発明は、上記課題を解決した赤色に発光するイリジウム錯体化合物の提供、駆動寿命が長く電気的耐久性の高い有機電界発光素子、並びに該有機電界発光素子を用いた表示装置及び照明装置を提供することを課題とする。
 本発明者らは、上記課題に鑑み鋭意検討した結果、2-フェニルキナゾリン配位子と特定の置換基を含むイリジウム錯体化合物は赤色に発光し、該イリジウム錯体化合物を用いた有機電界発光素子は、駆動寿命が長くなることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、下記[1]~[14]に存する。
[1]下記式(1)で表されるイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000008
[式(1)において、Irはイリジウム原子を表す。L~Lは有機配位子を表し、それぞれIrと結合する。mは1~3の整数であり、nは0~2の整数であり、m+nは3以下である。ただし、L~Lのうち少なくとも1つは、下記式(2)で表される部分構造を少なくとも1つ含み、かつ、Lは、下記式(3)で表される配位子を表す。なお、L~Lのうち少なくとも1つが複数存在する場合は、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000009
[式(2)において、Arは炭素数3~20の(ヘテロ)アリール基を表し、Xは、炭素数5~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数4~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または下記式(2-1)で表される置換基を表す。]
Figure JPOXMLDOC01-appb-C000010
[式(2-1)において、Yは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表し、Yが複数存在する場合はそれぞれ同一でも異なっていてもよい。Zは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、または炭素数3~20の(ヘテロ)アリールオキシ基を表し、Zが複数存在する場合はそれぞれ同一でも異なっていてもよい。pは0~4の整数、qは2~10の整数、rは0~5の整数を表す。]
Figure JPOXMLDOC01-appb-C000011
[式(3)において、環Aは、炭素原子C、C、及びCを含む、6員環の、芳香族炭化水素環または芳香族複素環を表す。環A上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。
 R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
 また、式(1)におけるIrと、RまたはRとが結合を形成する。]
[2]前記式(1)におけるLとイリジウム原子との結合様式が下記式(3-1)または(3-2)で表される、前項[1]に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000012
[式(3-1)及び(3-2)において、R~Rは前記式(3)におけるR~Rとそれぞれ同義である。R~R11は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
 また、R~R11は、隣り合うR~R11と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。]
[3]前記式(1)におけるLとイリジウム原子との結合様式が前記式(3-1)で表される、前項[2]に記載のイリジウム錯体化合物。
[4]前記式(1)におけるLとイリジウム原子との結合様式が前記式(3-2)で表される、前項[2]に記載のイリジウム錯体化合物。
[5]前記式(3)におけるRが、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数7~40の(ヘテロ)アラルキル基、置換若しくは無置換の炭素数2~20のアルキルアミノ基、置換若しくは無置換の炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基で表される、前項[1]~[4]のいずれか一項に記載のイリジウム錯体化合物。
[6]前記式(3)におけるRが、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数7~40の(ヘテロ)アラルキル基、置換若しくは無置換の炭素数2~20のアルキルアミノ基、置換若しくは無置換の炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基で表される、前項[1]~[5]のいずれか一項に記載のイリジウム錯体化合物。
[7]前記式(1)におけるLが下記式(4)で表される配位子であり、nが1または2である、前項[1]~[6]のいずれか一項に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000013
[式(4)において、環Bは、炭素原子C及びCを含む6員環または5員環の、芳香族炭化水素環または芳香族複素環を表し、環Cは、炭素原子C及び窒素原子Nを含む6員環または5員環の芳香族複素環を表す。環B及び環C上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。また、環B及び環Cにそれぞれ結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。]
[8]前記式(1)におけるLが下記式(4-1)で表される配位子である、前項[7]に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000014
[式(4-1)において、R12~R19は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
 また、R12~R15、及び、R16~R19は、それぞれ隣り合うR12~R15、及び、R16~R19と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。また、R15とR16とが炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。]
[9]前記式(1)におけるLが、前記式(2)で表される部分構造を含む、前項[7]または[8]に記載のイリジウム錯体化合物。
[10]前項[1]~[9]のいずれか一項に記載のイリジウム錯体化合物及び溶媒を含む組成物。
[11]陽極、陰極、及び前記陽極と前記陰極の間に少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のうち少なくとも1層が、前項[1]~[9]のいずれか一項に記載のイリジウム錯体化合物を含む有機電界発光素子。
[12]前項[11]に記載のイリジウム錯体化合物を含む有機層が、前項[10]に記載の組成物を用いて形成された層である、有機電界発光素子。
[13]前項[11]または[12]に記載の有機電界発光素子を用いた表示装置。
[14]前項[11]または[12]に記載の有機電界発光素子を用いた照明装置。
 本発明のイリジウム錯体化合物は赤色に発光し、該イリジウム錯体化合物を含む組成物はポットライフが長く、前記錯体化合物又は前記組成物を用いて作製する有機電界発光素子は駆動寿命が長く電気的耐久性が高く有用であり、該有機電界発光素子は表示装置ならびに照明装置として有用である。
図1は本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 <イリジウム錯体化合物> 
 本発明のイリジウム錯体化合物は、下記式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000015
 式(1)において、Irはイリジウム原子を表す。L~Lは有機配位子を表し、それぞれIrと結合する。mは1~3の整数であり、nは0~2の整数であり、m+nは3以下である。ただし、L~Lのうち少なくとも1つは、下記式(2)で表される部分構造を少なくとも1つ含み、かつ、Lは、下記式(3)で表される配位子を表す。なお、L~Lのうち少なくとも1つが複数存在する場合は、それらは同一でも異なっていてもよい。
 式(2)で表される部分構造は、L~Lいずれの配位子が有していてもよいが、耐久性の観点からLが有していることがより好ましい。すなわちnが1以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(2)において、Arは炭素数3~20の(ヘテロ)アリール基を表し、Xは、炭素数5~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数4~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または下記式(2-1)で表される置換基を表す。
 なお、本明細書において(ヘテロ)アリール基、(ヘテロ)アラルキル基、(ヘテロ)アリールオキシ基とは、それぞれヘテロ原子を含んでいてもよいアリール基、ヘテロ原子を含んでいてもよいアラルキル基、ヘテロ原子を含んでいてもよいアリールオキシ基を表す。「ヘテロ原子を含んでいてもよい」とは、アリール基、アラルキル基又はアリールオキシ基の主骨格を形成する炭素原子のうち1又は2以上の炭素原子がヘテロ原子に置換されていることを表し、ヘテロ原子としては窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子等が挙げられ、中でも耐久性の観点から窒素原子が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(2-1)において、Yは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表し、Yが複数存在する場合はそれぞれ同一でも異なっていてもよい。Zは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、または炭素数3~20の(ヘテロ)アリールオキシ基を表し、Zが複数存在する場合はそれぞれ同一でも異なっていてもよい。pは0~4の整数、qは2~10の整数、rは0~5の整数を表す。
 p、rは水素原子を置換する置換基の数を表し、合成の簡便性の観点から、それぞれ0または1が好ましく、0がさらに好ましい。qは、m-フェニレンの数を表し、有機溶媒に対する溶解性、耐久性の観点から、2~10が好ましく、2~5がさらに好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(3)において、環Aは、炭素原子C、C、及びCを含む、6員環の、芳香族炭化水素環または芳香族複素環を表す。
 6員環の、芳香族炭化水素環または芳香族複素環としては、ベンゼン環、ピリジン環、ピリミジン環等が挙げられ、耐久性および合成の観点から、ベンゼン環、ピリジン環、ピリミジン環が好ましく、中でも、ベンゼン環、ピリジン環がより好ましく、ベンゼン環がさらに好ましい。
 環A上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。
 そのような環の具体例としては、フルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、キナゾリン環、キノキサリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられ、中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環が好ましい。
 R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
 また、式(1)におけるIrと、RまたはRとが結合を形成する。
 <Ar
 Arは炭素数3~20の(ヘテロ)アリール基を表す。炭素数3~20の(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基の両方を意味する。
 具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。
 量子収率及び耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましく、中でも、1個の遊離原子価を有する、ベンゼン環、ピリジン環がさらに好ましい。
 ここで、本発明において、遊離原子価とは、有機化学・生化学命名法(上)(改定第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものを言う。すなわち、例えば、「1個の遊離原子価を有するベンゼン環」はフェニル基のことを言い、「2個の遊離原子価を有するベンゼン環」はフェニレン基のことを言う。
 <X>
 Xは、炭素数5~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数4~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または前記式(2-1)で表される置換基を表す。
 耐久性の観点から、炭素数5~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、または前記式(2-1)で表される置換基のいずれかであることが好ましく、炭素数7~40の(ヘテロ)アラルキル基、または前記式(2-1)で表される置換基であることがより好ましい。
 炭素数5~20のアルキル基の具体例としては、直鎖のアルキル基および分岐のアルキル基、環状のアルキル基などであり、より具体的には、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソペンチル基、シクロヘキシル基などが挙げられる。中でも、n-ペンチル基、n-ヘキシル基、n-オクチル基などの直鎖のアルキル基が好ましい。
 炭素数7~40の(ヘテロ)アラルキル基の具体例としては、直鎖のアルキル基および分岐のアルキル基、環状のアルキル基を構成する水素原子の一部が(ヘテロ)アリール基で置換された基のことを指し、より具体的には、1-フェニル-1-エチル基、クミル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。
 炭素数4~20のアルコキシ基の具体例としては、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。
 炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。
 <Y、Z>
 Yは、水素原子の置換基を表し、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表し、Yが複数存在する場合はそれぞれ同一でも異なっていてもよい。
 Zは、水素原子の置換基を表し、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、または炭素数3~20の(ヘテロ)アリールオキシ基を表し、Zが複数存在する場合はそれぞれ同一でも異なっていてもよい。
 Y及びZにおける炭素数1~20のアルキル基の具体例としては、直鎖のアルキル基および分岐のアルキル基、環状のアルキル基などであり、より具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基などが挙げられる。中でも、メチル基、エチル基、n-ブチル基、n-ヘキシル基等の直鎖のアルキル基が好ましい。
 Y及びZにおける炭素数7~40の(ヘテロ)アラルキル基の具体例としては、直鎖のアルキル基および分岐のアルキル基、環状のアルキル基を構成する水素原子の一部が(ヘテロ)アリール基で置換された基のことを指し、より具体的には、1-フェニル-1-エチル基、クミル基、3-フェニル-1-プロピル基、4-フェニル-1-ブチル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、4-フェニル-1-シクロヘキシル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。
 Y及びZにおける炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。
 Y及びZにおける炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。
 Yにおける炭素数3~20の(ヘテロ)アリール基の具体例としては、<Ar>の項で説明したものと同様である。
 <L
 本発明のイリジウム錯体化合物は、前記式(1)のLとして前記式(3)で表される配位子を含む。
 R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。
 耐久性の観点から、水素原子、フッ素原子、炭素数1~20のアルキル基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基であることがより好ましく、水素原子、フッ素原子、炭素数1~20のアルキル基、炭素数3~20の(ヘテロ)アリール基であることがさらに好ましい。
 また、Rについては、耐久性の観点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基であることがより好ましく、炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基であることがさらに好ましい。さらに、Rについては、立体障害から所望の錯体化合物を得られやすいため、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基であることがより好ましく、炭素数1~20のアルキル基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基であることがさらに好ましい。
 炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数3~20の(ヘテロ)アリール基の具体例は、前記<Y、Z>の項及び<Ar>の項にて説明したものと同様である。
 アルキル基の炭素数が1~20であるアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられ、中でもトリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基が好ましい。
 アリール基の炭素数が6~20であるアリールシリル基の具体例としては、ジフェニルメチルシリル基、トリフェニルシリル基等が挙げられ、中でもトリフェニルシリル基が好ましい。
 炭素数2~20のアルキルカルボニル基の具体例としては、アセチル基、プロピオニル基、ピバロイル基、カプロイル基、デカノイル基、シクロヘキシルカルボニル基等が挙げられ、中でもアセチル基、ピバロイル基が好ましい。
 炭素数7~20のアリールカルボニル基の具体例としては、ベンゾイル基、ナフトイル基、アントライル基等が挙げられ、中でもベンゾイル基が好ましい。
 炭素数2~20のアルキルアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基等が挙げられ、中でもジメチルアミノ基、ジシクロヘキシルアミノ基が好ましい。
 炭素数6~20のアリールアミノ基の具体例としては、フェニルアミノ基、ジフェニルアミノ基、ジ(4-トリル)アミノ基、ジ(2,6-ジメチルフェニル)アミノ基等が挙げられ、中でもジフェニルアミノ基、ジ(4-トリル)アミノ基が好ましい。
 これらR~Rの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。これらの置換基の具体例は、前項までに説明したものと同様である。
 前記式(1)中、式(3)で表されるLは、下記式(3-1)または(3-2)で表される、Irと結合している配位子であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 R~Rは前記式(3)におけるR~Rとそれぞれ同義である。
 R~R11は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの置換基の具体例は、前項までに説明したものと同様である。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。これらの置換基の具体例は、前項までに説明したものと同様である。
 また、R~R11は、隣り合うR~R11と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。
 そのような環の具体例としては、フルオレン環、ナフタレン環、テトラヒドロナフタレン環等が挙げられ、中でも、フルオレン環、ナフタレン環が好ましい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。これらの置換基の具体例は、前項までに説明したものと同様である。
 <L、L
 本発明におけるイリジウム錯体化合物における有機配位子L、Lに特に制限は無いが、好ましくは1価の2座配位子であり、より好ましくは下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000020
 式(4)において、環Bは、炭素原子C及びCを含む6員環または5員環の、芳香族炭化水素環または芳香族複素環を表し、環Cは、炭素原子C及び窒素原子Nを含む6員環または5員環の芳香族複素環を表す。
 6員環または5員環の、芳香族炭化水素環または芳香族複素環としては、ベンゼン環、ピリジン環、フラン環、チオフェン環、ピロール環等が挙げられ、中でもベンゼン環、ピリジン環が好ましく、ベンゼン環であることがさらに好ましい。6員環または5員環の芳香族複素環としては、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環等が挙げられ、中でもピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環が好ましく、ピリジン環、オキサゾール環、チアゾール環がさらに好ましい。
 環B及び環C上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよく、中でも、フッ素原子、炭素数1~20のアルキル基、または炭素数3~20の(ヘテロ)アリール基で置換されていることが好ましい。これらの置換基の具体例は、前項までに説明したものと同様である。
 また、環B及び環Cにそれぞれ結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。そのような環の具体例としては、フルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザフェナントレン環、アザトリフェニレン環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環等が挙げられる。中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、ベンズオキサゾール環、ベンズチアゾール環が好ましい。
 また、Lは下記式(4-1)で表される配位子であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(4-1)において、R12~R19は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数が3~20の(ヘテロ)アリールオキシ基、または炭素数が3~20の(ヘテロ)アリール基を表す。
 中でも、水素原子、フッ素原子、炭素数1~20のアルキル基、炭素数3~20の(ヘテロ)アリール基であることが好ましい。これらの置換基の具体例は、前項までに説明したものと同様である。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。これらの置換基の具体例は、前項までに説明したものと同様である。
 また、R12~R15、及び、R16~R19は、それぞれ隣り合うR12~R15、及び、R16~R19と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。また、R15とR16とが炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。
 そのような環の具体例としては、カルボリン環、ジアザカルバゾール環、キノリン環、イソキノリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられ、中でも、キノリン環、イソキノリン環、アザフェナントレン環、アザトリフェニレン環が好ましい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。これらの置換基の具体例は、前項までに説明したものと同様である。
 <分子量>
 本発明のイリジウム錯体化合物の分子量は、錯体の安定性の高さから、通常600以上、好ましくは900以上、通常3000以下、好ましくは2000以下であるが、本発明のイリジウム錯体化合物を側鎖に含む高分子化合物にも好適に用いることができる。
 <具体例>
 以下に、本発明のイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。なお本明細書において、Meはメチル基、Etはエチル基、Phはフェニル基をそれぞれ表す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 <構造上の特徴>
 本発明のイリジウム錯体化合物は、赤色に発光し、この化合物を含む組成物を用いて塗布法により作製した有機電界発光素子は駆動寿命が長く電気的耐久性が高いという効果を奏する。本効果を奏する理由については、構造上の特徴から以下の通りと考えられる。
 赤色燐光発光イリジウム錯体化合物として広く研究がおこなわれてきた配位子は、2-フェニルキノリン系、1-フェニルイソキノリン系配位子が挙げられる。2-フェニルキノリン系イリジウム錯体化合物を利用した有機電界発光素子は発光効率が高く駆動寿命が長いものの、その発光色は橙色に近い赤色であった。一方、1-フェニルイソキノリン系イリジウム錯体化合物を利用した有機電界発光素子は、深い赤色を発光するものの、発光効率が低く駆動寿命が短かった。フェニルイソキノリン系で駆動寿命が短い理由のひとつは、フェニル環上の水素原子とイソキノリン環上の水素原子とが立体障害によりねじれることにより、錯体の安定性が低くなるためであると考えられる。そこで、2-フェニルキノリン系骨格を利用して赤色発光させることができれば、該化合物を利用した有機電界発光素子は駆動寿命が長く電気的耐久性が高くなるものと考えられる。
 また、発光材料の発光色を長波長化させるためには、配位子のLUMOを下げることが必要である。LUMOを下げる方法としては、例えば、キノリン環にさらに窒素原子を導入したキナゾリン環を利用する方法が挙げられる。上記の知見から本発明者らは、上記式(1)に示すような特定の構造をとることで赤色に発光することを見出した。
 さらに、有機溶媒への溶解性を高めるには、1)有機溶媒に溶解した際の溶媒和エネルギーを増加させること、および、2)溶液中でとりうるコンホメーションの数を増加させ、結晶化の際の再配列エネルギーを上昇させること、が必要となる。これらの観点から本発明者らが鋭意検討したところ、分子中に前記式(2)で表される部分構造、すなわち、アルキル基、(ヘテロ)アラルキル基、アルコキシ基、(ヘテロ)アリールオキシ基、及びm-フェニレン基が2以上連結した基からなる群より選ばれる基を有することで溶解性が向上することが明らかとなった。これらの置換基のいずれかを有することで、溶液中でうける溶媒和エネルギーが増加し、とりうるコンホメーションの数が増加するため、溶解性が向上するものと考えられる。
 上述の通り、本発明のイリジウム錯体化合物は有機溶媒に対する溶解性が高いため、該化合物と溶媒とを含む組成物は保管安定性が高く、塗布プロセスにおいて好適に用いることができる。また、該化合物の溶解性が高いため、組成物中における発光材料の凝集による発光効率の低下と駆動寿命の低下を防止することができることから本発明のイリジウム錯体化合物を含む有機電界発光素子は駆動寿命が長く電気的耐久性が高いものと考えられる。
 以上より、本発明は赤色に発光し、有機溶媒に対する溶解性が高いイリジウム錯体化合物の提供を可能とし、さらに該化合物を利用した駆動寿命が長く、電気的耐久性が高い有機電界発光素子を提供することを可能とする。
 <イリジウム錯体化合物の合成方法>
 本発明のイリジウム錯体化合物は、既知の方法の組み合わせなどにより合成され得る配位子を用い、配位子とIr化合物により合成することができる。
 イリジウム錯体化合物の合成方法については、式(A)に示すような一段階でトリス錯体を形成する方法、式(B)に示すようなIr2核錯体のような中間体を形成させたのちにトリス体を形成させる方法等が例示できるが、これらに限定されるものではない。なお、式(A)及び(B)において、Rは水素または任意の置換基を表し、複数存在するRは同一でも異なっていてもよい。
 例えば、典型的な反応としては、式(A)に示すように、配位子3当量とIr(acac)(イリジウムアセチルアセトナート錯体)1当量の反応により金属錯体を得る方法があげられる。
Figure JPOXMLDOC01-appb-C000028
 この際、配位子を過剰量もちいて反応を促進することもできるし、少量用いて選択性を高めても良い。また、配位子を複数種類用い、逐次的に添加し、混合配位子錯体を形成してもよい。
 また、他方の典型的な反応としては、式(B)に示すように、例えば配位子2当量とIrCl・xHO(イリジウムクロライド・x水和物)1当量の反応によりIr原子2個からなる2核金属錯体などの中間対を得たのち、さらに配位子をIrに対し1当量反応させて金属錯体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 反応式(A)と同様に反応の効率および選択性を考慮し、実際の配位子とIr化合物の仕込み比は適当に調整することができる。反応式(B)の場合、最後に添加する配位子を最初の配位子と異なるものを用いることにより、簡便に混合配位子錯体を形成できる。
 Ir化合物としては上記のIr(acac)錯体やIrCl・xHO錯体の他に、Irシクロオクタジエニル錯体など、適当なIr化合物を用いても良い。炭酸塩などの塩基化合物、Ag塩などのハロゲントラップ剤などを併用して反応を促進させてもよい。
 反応温度は50℃~400℃程度の温度が好ましく用いられる。より好ましくは90℃以上の高温が用いられる。反応は無溶媒で行っても良いし、既知の溶媒を用いてもよい。
 <イリジウム錯体化合物の用途>
 本発明のイリジウム錯体化合物は、有機電界発光素子に用いられる材料、すなわち有機電界発光素子材料として好適に使用可能であり、有機電界発光素子やその他の発光素子等の発光材料としても好適に使用可能である。
 <イリジウム錯体化合物含有組成物>
 本発明のイリジウム錯体化合物は、溶解性に優れることから、溶媒とともに使用されることが好ましい。以下、本発明のイリジウム錯体化合物と溶媒とを含有する組成物(以下、「イリジウム錯体化合物含有組成物」と称することがある。)について説明する。
 本発明のイリジウム錯体化合物含有組成物は、上述の本発明のイリジウム錯体化合物および溶媒を含有する。本発明のイリジウム錯体化合物含有組成物は通常湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であることが好ましい。
 つまり、イリジウム錯体化合物含有組成物は、有機電界発光素子用組成物であることが好ましく、更に発光層形成用組成物として用いられることが特に好ましい。
 該イリジウム錯体化合物含有組成物における本発明のイリジウム錯体化合物の含有量は、通常0.1重量%以上、好ましくは1重量%以上、通常99.99重量%以下、好ましくは99.9重量%以下である。組成物のイリジウム錯体化合物の含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、隣接する層(例えば、正孔輸送層や正孔阻止層)から発光層へ、効率よく正孔や電子の注入が行われ、駆動電圧を低減することができる。尚、本発明のイリジウム錯体化合物はイリジウム錯体化合物含有組成物中に、1種のみ含まれていてもよく、2種以上が組み合わされて含まれていてもよい。
 本発明のイリジウム錯体化合物含有組成物を例えば有機電界発光素子用に用いる場合には、上述のイリジウム錯体化合物や溶媒の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有することができる。
 本発明のイリジウム錯体化合物含有組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物をドーパント材料とし、他の電荷輸送性化合物をホスト材料として含むことが好ましい。
 本発明のイリジウム錯体化合物含有組成物に含有される溶媒は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
 該溶媒は、溶質である本発明のイリジウム錯体化合物が高い溶解性を有するために、後述する電荷輸送性化合物が良好に溶解する溶媒であれば特に限定されない。好ましい溶媒としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類等が挙げられる。中でも好ましくは、アルカン類や芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。
 これらの溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 溶媒の沸点は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上である。また、通常沸点270℃以下、好ましくは250℃以下、より好ましくは230℃以下である。この範囲を下回ると、湿式成膜時において、組成物からの溶媒蒸発により、成膜安定性が低下する可能性がある。
 溶媒の含有量は、組成物100重量部に対して、好ましくは10重量部以上、より好ましくは50重量部以上、特に好ましくは80重量部以上であり、また、好ましくは99.95重量部以下、より好ましくは99.9重量部以下、特に好ましくは99.8重量部以下である。
 通常発光層の厚みは3~200nm程度であるが、溶媒の含有量がこの下限を下回ると、組成物の粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、この上限を上回ると、成膜後、溶媒を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。
 本発明のイリジウム錯体化合物含有組成物が含有し得る他の電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ピリジン、カルバゾール、ナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテン、クマリン、p-ビス(2-フェニルエテニル)ベンゼンおよびそれらの誘導体、キナクリドン誘導体、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン、アリールアミノ基が置換された縮合芳香族環化合物、アリールアミノ基が置換されたスチリル誘導体等が挙げられる。
 これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 本発明のイリジウム錯体化合物含有組成物中の他の電荷輸送性化合物の含有量は、該組成物を100重量部とすると、通常1重量部以上、また、通常50重量部以下、好ましくは30重量部以下である。
 また、イリジウム錯体化合物含有組成物中の他の電荷輸送性化合物の含有量は、イリジウム錯体化合物含有組成物中の本発明のイリジウム錯体化合物に対して、通常50重量%以下、特に30重量%以下で、通常0.01重量%以上、特に0.1重量%以上であることが好ましい。
 本発明のイリジウム錯体化合物含有組成物には、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶媒の他に、別の溶媒を含有していてもよい。そのような溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 [有機電界発光素子]
 本発明の有機電界発光素子は、基板上に少なくとも陽極、陰極及び前記陽極と前記陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうち少なくとも1層が本発明の錯体化合物を含むことを特徴とする。前記有機層は発光層を含む。
 本発明の錯体化合物を含む有機層は、本発明における組成物を用いて形成された層であることがより好ましく、湿式成膜法により形成された層であることがさらに好ましい。前記湿式成膜法により形成された層は、該発光層であることが好ましい。
 図1は本発明の有機電界発光素子10に好適な構造例を示す断面の模式図であり、図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。
 [1]基板
 基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがある。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
 [2]陽極
 基板1上には陽極2が設けられる。陽極2は発光層側の層(正孔注入層3、正孔輸送層4又は発光層5など)への正孔注入の役割を果たすものである。
 この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。
 陽極2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また通常1000nm以下、好ましくは500nm以下程度である。
 不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには上記の陽極2の上に異なる導電材料を積層することも可能である。
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。
 [3]正孔注入層
 正孔注入層3は、陽極2から発光層5へ正孔を輸送する層であり、通常、陽極2上に形成される。本発明に係る正孔注入層3の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
 <湿式成膜法による正孔注入層の形成>
 湿式成膜法により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層3の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
 (正孔輸送性化合物)
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。
 正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 正孔注入層3の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することが好ましい。
 上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(IV)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式(IV)中、Ar51~Ar55は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。αは、下記の連結基群の中から選ばれる連結基を表す。また、Ar51~Ar55のうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。)
(連結基群)
Figure JPOXMLDOC01-appb-C000031
(上記各式中、Ar56~Ar66は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。R111及びR112は、各々独立して、水素原子又は任意の置換基を表す。)
 Ar51~Ar66の芳香族炭化水素基及び芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環が好ましく、さらに好ましくは、2個の遊離原子価を有する、ベンゼン環、ナフタレン環である。
 Ar51~Ar66の芳香族炭化水素基及び芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
 R111及びR112が任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
 さらに、正孔輸送性化合物としては、後述の「正孔輸送層」の項に記載の不溶化基を有する化合物を用いてもよい。不溶化基を有する化合物を用いる場合、成膜方法なども同様である。
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。
 (電子受容性化合物)
 正孔注入層形成用組成物は正孔注入層の構成材料として、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上である化合物がさらに好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、及びアリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;有機基の置換したオニウム塩(国際公開第2005/089024号);フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層の導電率を向上させることができる。
 正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
 (溶媒)
 湿式成膜法に用いる正孔注入層形成用組成物の溶媒のうち少なくとも1種は、上述の正孔注入層の構成材料を溶解しうる化合物であることが好ましい。また、この溶媒の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上がより好ましく、通常400℃以下、中でも300℃以下であることが好ましい。溶媒の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶媒の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
 溶媒としては例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、フェニルシクロヘキサン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
 (成膜方法)
 正孔注入層形成用組成物を調製後、この組成物を湿式成膜により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成することができる。
 塗布工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましい。
 塗布工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
 塗布後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレートなどが挙げられる。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶媒の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶媒が2種類以上含まれている混合溶媒の場合、少なくとも1種類がその溶媒の沸点以上の温度で加熱されるのが好ましい。溶媒の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
 加熱工程において、加熱温度が正孔注入層形成用組成物の溶媒の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上で、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。
 <真空蒸着法による正孔注入層の形成>
 真空蒸着により正孔注入層3を形成する場合には、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10-4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板の陽極2上に正孔注入層3を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、通常9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。
 [4]正孔輸送層
 正孔輸送層4は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。また、本発明の有機電界発光素子は、正孔輸送層を省いた構成であってもよい。
 正孔輸送層4の形成方法は真空蒸着法でも湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、正孔輸送層4は発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 このような正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体としては、下記式(V)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(V)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Figure JPOXMLDOC01-appb-C000032
(式(V)中、Ar及びArは、各々独立して、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。)
 置換基を有していてもよい芳香族炭化水素基としては、例えば、1個または2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、1個または2個の遊離原子価を有する、6員環の単環又は2~5縮合環及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 置換基を有していてもよい芳香族複素環基としては、例えば1個または2個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、1個または2個の遊離原子価を有する、5又は6員環の単環又は2~4縮合環及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 有機溶媒に対して溶解性、耐熱性の点から、Ar及びArは、各々独立に、1個または2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、及びフルオレン環からなる群より選ばれる1以上の環やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基(ビフェニレン基)やターフェニル基(ターフェニレン基))が好ましい。
 中でも、1個または2個の遊離原子価を有する、ベンゼン、ビフェニル及びフルオレンが好ましい。
 Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、(ヘテロ)アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
 ポリアリーレン誘導体としては、前記式(V)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。ポリアリーレン誘導体としては、下記式(VI)及び/又は下記式(VII)からなる繰り返し単位を有する重合体が好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(VI)中、R~Rは、各々独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。v及びwは、各々独立に、0~3の整数を表す。v又はwが2以上の場合、一分子中に含まれる複数のR又はRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000034
(式(VII)中、R及びRは、各々独立に、上記式(VI)におけるR~Rと同義である。v及びwは、上記式(VI)におけるv及びwとそれぞれ同義であり、各々独立に、0~3の整数を表す。v又はwが2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。Tは、5員環又は6員環を構成する、原子又は原子群を表す。)
 Tの具体例としては、-O-、-BR-、-NR-、-SiR-、-PR-、-SR-、-CR-又はこれらが結合してなる基などが挙げられる。尚、ここでのRは、水素原子又は任意の有機基を表す。本発明における有機基とは、少なくとも一つの炭素原子を含む基である。
 また、ポリアリーレン誘導体としては、前記式(VI)及び/又は前記式(VII)からなる繰り返し単位に加えて、さらに下記式(VIII)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(VIII)中、Ar~Arは、各々独立に、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。γ及びδは、各々独立に0又は1を表す。)
 Ar~Arの具体例としては、前記式(V)における、Ar及びArと同様である。
 上記式(VI)~(VIII)の具体例及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜し、さらに加熱乾燥させる。
 正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
 正孔輸送層4はまた、不溶化基を有する化合物(以下、「不溶化性化合物」と称することがある。)を不溶化して形成される層が耐熱性、あるいは成膜性の観点から好ましい。不溶化性化合物は、不溶化基を有する化合物であって、不溶化することにより不溶化ポリマーを形成する。
 不溶化基とは、熱及び/又は活性エネルギー線の照射により反応する基であり、反応後は反応前に比べて有機溶媒や水への溶解性を低下させる効果を有する基である。本発明においては、不溶化基は、脱離基又は架橋性基であることが好ましい。
 脱離基とは、結合している芳香族炭化水素環から70℃以上で解離し、さらに溶媒に対して可溶性を示す基をいう。ここで、溶媒に対して可溶性を示すとは、化合物が熱及び/又は活性エネルギー線の照射によって反応する前の状態で、常温でトルエンに0.1重量%以上溶解することをいい、化合物のトルエンへの溶解性は、好ましくは0.5重量%以上、より好ましくは1重量%以上である。
 この脱離基として好ましくは、芳香族炭化水素環側に極性基を形成せずに熱解離する基であり、逆ディールスアルダー反応により熱解離する基であることがより好ましい。またさらに、100℃以上で熱解離する基であることが好ましく、300℃以下で熱解離する基であることが好ましい。
 また、架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブタン由来の基などが挙げられる。
 不溶化性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。不溶化性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。
 不溶化性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体;縮合多環芳香族誘導体;金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体;シロール誘導体;縮合多環芳香族誘導体;金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
 不溶化性化合物を不溶化して正孔輸送層4を形成するには、通常、不溶化性化合物を溶媒に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して不溶化させる。
 正孔輸送層形成用組成物には、さらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂などを含有していてもよい。
 正孔輸送層形成用組成物は、不溶化性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
 このような濃度で不溶化性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱及び/又は光などの活性エネルギー照射により、不溶化性化合物を不溶化させる。
 成膜時の温度、湿度などの条件は、前記正孔注入層3の湿式成膜時と同様である。成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。加熱時間としては、通常1分以上、好ましくは24時間以下である。
 加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
 光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ等を用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
 [5]発光層
 正孔輸送層4の上には通常、発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から正孔注入層3を通じて注入された正孔と、陰極9から電子輸送層7を通じて注入された電子との再結合により励起された、主たる発光源となる層である。
 発光層5は発光材料(ドーパント)と1種又は2種以上のホスト材料を含むことが好ましい。発光層5は、真空蒸着法で形成してもよいが、本発明の組成物を用い、湿式成膜法によって作製された層であることが特に好ましい。
 ここで、湿式成膜法とは、前述の如く、溶媒を含む組成物を、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等湿式で成膜される方法をいう。
 なお、発光層5は、本発明の性能を損なわない範囲で、他の材料、成分を含んでいてもよい。一般に有機電界発光素子において、同じ材料を用いた場合、電極間の膜厚が薄い方が、実効電界が大きくなる為に注入される電流が多くなるので、駆動電圧は低下する。その為、電極間の総膜厚は薄い方が有機電界発光素子の駆動電圧は低下するが、あまりに薄いと、ITO等の電極に起因する突起により短絡が発生する為、ある程度の膜厚が必要となる。
 本発明においては、発光層5以外に、正孔注入層3及び後述の電子輸送層7等の有機層を有する場合、発光層5と正孔注入層3や電子輸送層7等の他の有機層とを合わせた総膜厚は通常30nm以上、好ましくは50nm以上であり、さらに好ましくは100nm以上で、通常1000nm以下、好ましくは500nm以下であり、さらに好ましくは300nm以下である。また、発光層5以外の正孔注入層3や後述の電子注入層8の導電性が高い場合、発光層5に注入される電荷量が増加する為、例えば正孔注入層3の膜厚を厚くして発光層5の膜厚を薄くし、総膜厚をある程度の厚みに維持したまま駆動電圧を下げることも可能である。
 よって、発光層5の膜厚は、通常10nm以上、好ましくは20nm以上で、通常300nm以下、好ましくは200nm以下である。なお、本発明の有機電界発光素子が、陽極及び陰極の両極間に、発光層5のみを有する場合の発光層5の膜厚は、通常30nm以上、好ましくは50nm以上、通常500nm以下、好ましくは300nm以下である。
 [6]正孔阻止層
 正孔阻止層6は、発光層5の上に、発光層5の陰極側の界面に接するように積層形成される。特に、発光物質として燐光材料を用いたり、青色発光材料を用いたりする場合、正孔阻止層6を設けることは効果的である。
 正孔阻止層6は正孔と電子を発光層5内に閉じこめて、発光効率を向上させる機能を有する。即ち、正孔阻止層6は、発光層5から移動してくる正孔が電子輸送層7に到達するのを阻止することで、発光層5内で電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、電子輸送層7から注入された電子を効率よく発光層5の方向に輸送する役割がある。
 正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMOとLUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 このような条件を満たす正孔阻止層材料としては、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)が挙げられる。
 さらに、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も正孔阻止材料として好ましい。正孔阻止層6の膜厚は、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。正孔阻止層6も正孔注入層3と同様の方法で形成することができるが、通常は真空蒸着法が用いられる。
 [7]電子輸送層
 電子輸送層7は素子の発光効率をさらに向上させることを目的として、正孔阻止層6と電子注入層8との間に設けられる。電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物により形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し、注入された電子を効率よく輸送することができる化合物であることが必要である。
 このような条件を満たす材料としては、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-又は5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5,645,948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層7の膜厚は、通常下限は1nm、好ましくは5nm程度であり、上限は通常300nm、好ましくは100nm程度である。
 電子輸送層7は、正孔注入層3と同様にして湿式成膜法、或いは真空蒸着法により形成されるが、通常は、真空蒸着法が用いられる。
 [8]電子注入層
 電子注入層8は陰極9から注入された電子を効率よく発光層5へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましく、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属が用いられる。電子注入層8の膜厚は0.1~5nmが好ましい。
 また、陰極9と電子輸送層7との界面にLiF、MgF、LiO、CsCO等の極薄絶縁膜(0.1~5nm)を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;日本国特開平10-74586号公報;IEEE Trans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,154頁)。さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下である。
 電子注入層8は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により形成される。真空蒸着法の場合には、真空容器内に設置されたるつぼ又は金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、るつぼ又は金属ボートを加熱して蒸発させ、るつぼ又は金属ボートと向き合って置かれた基板上に電子注入層を形成する。
 アルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアルカリ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱することにより、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発する。有機電子輸送材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置されたるつぼに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、各々のるつぼ及びディスペンサーを同時に加熱して蒸発させ、るつぼ及びディスペンサーと向き合って置かれた基板上に電子注入層を形成する。
 このとき、電子注入層8の膜厚方向において均一に共蒸着されるが、膜厚方向において濃度分布があっても構わない。
 [9]陰極
 陰極9は、発光層側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9として用いられる材料は、前記陽極2に使用される材料を用いることも可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数合金電極が挙げられる。
 陰極9の膜厚は通常、陽極2と同様である。
 低仕事関数金属から成る陰極を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層してもよく、これにより有機電界発光素子の安定性を増すことができる。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
 [10]その他の構成層
 以上、図1に示す層構成の素子を中心に説明してきたが、本発明の有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよく、また発光層5以外の任意の層を省略してもよい。
 正孔阻止層6と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達するのを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMOとLUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。また、発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
 なお、図1とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。
 さらには、図1に示す層構成を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その際には段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合はその2層)の代わりに、例えばV等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造の素子など、いずれにおいても適用することができる。
 <表示装置及び照明装置>
 本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を用いたものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限または下限の値と下記実施例の値または実施例同士の値との組合せで規定される範囲であってもよい。
<本発明化合物(D-1)の合成>
(中間体1の合成)
Figure JPOXMLDOC01-appb-C000036
 3-ブロモベンズアルデヒド(25.0g、0.135mol)、フェニルボロン酸(17.4g、0.143mol)、トルエン/エタノール混合溶液(3:1、280mL)、リン酸三カリウム水溶液(2.0M、180mL)を順に加えた後、窒素バブリングを60分間おこなった。そこに、Pd(PPh(4.12g、3.37mmol)を加えたのち、加熱還流させながら、3時間半、撹拌を行った。室温に戻した後、蒸留水を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、中間体1(21.0g、収率85%)を得た。
(中間体2の合成)
Figure JPOXMLDOC01-appb-C000037
 中間体1(20.9g、0.114mol)、2-アミノベンズアミド(15.6g、0.114mol)、N,N-ジメチルアセトアミド(DMAc)(110mL)、NaHSO(23.9g、0.230mol)を順に加え、120℃にて11時間撹拌した。放冷後、反応液を水800mLに注ぎ、吸引ろ過をおこなった。ろ取物を水、エタノールにて洗浄し、乾燥させることで、中間体2(29.9g、収率87%)を得た。
(中間体3の合成)
Figure JPOXMLDOC01-appb-C000038
 中間体2(10.9g、36.5mmol)、クロロホルム(50mL)を順に加えたのち、POCl(16mL)をゆっくりと滴下した。4時間半還流させたのち室温に戻し、氷水に注いだ。水酸化ナトリウム水溶液を用いて水相をアルカリ性とし、塩化メチレンにて抽出し、有機層をMgSOにて乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィーに処し、中間体3(10.8g、quant.)を得た。
(中間体4の合成)
Figure JPOXMLDOC01-appb-C000039
 中間体3(10.2g、32.2mmol)、2,6-ジメチルフェニルボロン酸(5.0g、33.2mmol)、ジメチルエーテル(DME)(110mL)、蒸留水(110mL)を順に加えたのち、窒素バブリングを30分間おこなった。Pd(PPh(1.12g、0.969mmol)、Ba(OH)(20.4g、64.6mmol)を加え、1時間加熱還流した。放冷後、水を加え、塩化メチレンにて抽出し、有機相をMgSOにて乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィーに処し、中間体4(7.75g、収率62%)を得た。
(中間体5の合成)
Figure JPOXMLDOC01-appb-C000040
 中間体4(5.4g、14.0mmol)、IrCl・nHO(2.47g、6.67mmol)、2-EtOEtOH(55mL)、HO(16mL)を順に加え、窒素バブリングを45分間おこなった。110~145℃にて10時間加熱をおこない、放冷した。反応液中にエタノール、水を加えたのち、吸引濾過した。ろ取物をエタノールにて洗浄し、乾燥することで、中間体5(5.40g、収率84%)を得た。
(中間体11の合成)
Figure JPOXMLDOC01-appb-C000041
 4-フェニル-2-クロロピリジン(40g)、ヨウ化ナトリウム(177g)、メチルエチルケトン(MEK)(350mL)溶液を順に加え、20分間窒素バブリングをおこなった。そこに57%ヨウ化水素水溶液(47.3g)を加え、17時間加熱還流した。室温に戻したのち、水を加え、塩化メチレンにて抽出した。有機層を飽和食塩水にて洗浄し、MgSOにて乾燥し、減圧下溶媒留去した。シリカゲルカラムクロマトグラフィーにて精製をおこない、中間体11(50.8g)を純度88%にて得た。なお、4-フェニル-2-クロロピリジンは、国際公開第2010/094242号に記載の方法を参考にして合成した。
(中間体12の合成)
Figure JPOXMLDOC01-appb-C000042
 中間体11(純度88%、50.8g)、3-ブロモフェニルボロン酸(33.2g)、トルエン(232mL)、エタノール(186mL)、リン酸三カリウム水溶液(2.0mol/L、186mL)を順に加えた後、60℃にて窒素バブリングを30分間おこなった。そこに、Pd(PPh(3.82g)を加えたのち、加熱還流させながら、3時間半、撹拌を行った。室温に戻した後、蒸留水を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、中間体12(31.0g、収率60%)を得た。なお、3-ブロモフェニルボロン酸は、東京化成工業株式会社製のものを使用した。
(中間体6の合成)
Figure JPOXMLDOC01-appb-C000043
 中間体12(25.5g)、中間体13(32.9g)、トルエン(127mL)、エタノール(102mL)、リン酸三カリウム水溶液(2.0mol/L、102mL)を順に加えた後、60℃にて窒素バブリングを30分間おこなった。そこに、Pd(PPh(1.89g)を加えたのち、加熱還流させながら、3時間、撹拌を行った。室温に戻した後、蒸留水を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、中間体6(21.7g、収率56%)を得た。なお、中間体13は、独国特許出願公開第102009023154号明細書に記載の方法を参考にして合成した。
(化合物D-1の合成)
Figure JPOXMLDOC01-appb-C000044
 中間体5(2.54g、1.27mmol)、中間体6(1.19g、2.54mmol)、ジグリム(40mL)を順に加えたのち、窒素バブリングを45分間おこなった。そこに銀トリフラート(AgOTf)(0.78g、3.04mmol)を加え、150℃にて1時間加熱撹拌した。室温に戻したのち、活性白土を加え吸引濾過をおこない、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィーに処し、化合物D-1(351mg、収率10%)を得た。
 得られた化合物のH-NMRの測定結果を以下に示す。
H-NMR(CDCl、ppm);8.72(d,1H)、8.67(d,1H)、8.13(d,1H)、8.04(d,1H)、7.96(d,1H)、7.80(d,1H)、7.70-7.64(m,6H)、7.55-7.02(m,35H)、6.90(t,2H)、6.79(d,1H)、2.64-2.56(m,4H)、2.17(s,3H)、2.11(s,3H)、1.97(s,3H)、1.82(s,3H)、1.65-1.59(m,4H)、1.38-1.36(m,4H).
<本発明化合物(D-2)の合成>
Figure JPOXMLDOC01-appb-C000045
 化合物D-1(255mg)をジエチレングリコールモノエチルエーテルに溶解し、窒素雰囲気下、200℃にて2時間加熱をおこなった。室温に戻したのち、トルエンを加え、有機相を水、食塩水で洗浄し、MgSOにて乾燥し、減圧濃縮をおこなった。残渣をカラムクロマトグラフィーに処し、化合物D-2(47mg)を得た。
 得られた化合物のH-NMRの測定結果を以下に示す。
H-NMR(CDCl、ppm);8.85(d,1H)、8.55(d,1H)、8.25-8.22(m,2H)、8.00(m,1H)、7.91-7.87(m,1H)、7.78-7.76(m,2H)、7.70-7.66(m,4H)、7.52-6.96(m,32H)、6.84(d,2H)、6.63(d,1H)、6.40(d,1H)、6.29(t,1H)、5.77(d,1H)、2.59-2.55(m,4H)、2.41(s,3H)、2.03(s,3H)、1.60-1.55(m,4H)、1.36-1.32(m,7H)、0.84(s,3H).
<本発明化合物(D-3)の合成>
(中間体7の合成)
Figure JPOXMLDOC01-appb-C000046
 乾燥窒素雰囲気下、乾燥させたフラスコに、ジフェニルアミン(9.41g、55.6mmol)の脱水DMF(N,N-ジメチルホルムアミド)溶液(50mL)を入れたのち、氷浴にて冷却した。水素化ナトリウムの流動パラフィン分散物(55%、3.63g、83.2mmol)を少しずつ加え、室温にて1時間撹拌した。再び、氷浴を用いて冷却しながら、中間体3(13.3g、44.5mmol)の脱水DMF溶液(80mL)をゆっくりと滴下したのち、室温にて24時間撹拌した。氷をゆっくりと加え、発泡しなくなったのを確認後、水とトルエンを加え、有機相を分離した。有機相を飽和食塩水にて3度洗浄し、MgSOにて乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに処し、中間体7(14.8g、収率59%)を得た。
(中間体8の合成)
Figure JPOXMLDOC01-appb-C000047
 中間体7(12.0g、26.7mmol)、IrCl・nHO(4.70g、12.7mmol)、2-EtOEtOH(120mL)、HO(36mL)を順に加え、窒素バブリングを45分間おこなった。110~145℃にて20時間加熱をおこない、放冷した。反応液中に塩化メチレンを加えたのち、有機相を水、食塩水にて洗浄し、減圧濃縮した。残渣にエタノールを加え、析出した結晶を吸引濾過した。ろ取物をエタノールにて洗浄し、乾燥することで、中間体8(9.93g、収率65%)を得た。
(化合物D-3の合成)
Figure JPOXMLDOC01-appb-C000048
 中間体8(5.06g、2.25mmol)、中間体6(4.20g、8.98mmol)、ジグリム(70mL)を順に加えたのち、窒素バブリングを45分間おこなった。そこに銀トリフラート(AgOTf)(1.39g、5.41mmol)を加え、150℃にて1時間加熱撹拌した。室温に戻したのち、活性白土を加え吸引濾過をおこない、ろ液を減圧濃縮した。残渣をカラムクロマトグラフィーに処し、化合物D-3(895mg、収率13%)を得た。
 得られた化合物のH-NMRの測定結果を以下に示す。
H-NMR(CDCl、ppm);8.19(s,2H)、7.99-7.95(m,4H)、7.89(d,1H)、7.70-7.66(m,4H)、7.51-7.05(m,47H)、6.96-6.82(m,4H)、2.65-2.55(m,8H)、1.65-1.58(m,8H)、1.38-1.36(m,8H).
<比較化合物D-4の合成>
Figure JPOXMLDOC01-appb-C000049
 中間体8(0.50g、0.44mmol)の塩化メチレン溶液(50mL)に、ピコリン酸ナトリウム(0.19g、1.33mmol)を加え、6時間撹拌した。水を加えたのち、有機相を分離し、MgSOにて乾燥し、減圧濃縮した。残渣をカラムクロマトグラフィーに処し、エタノールにて結晶化させることにより化合物D-4(0.20g、収率37%)を得た。
 得られた化合物のH-NMRの測定結果を以下に示す。
H-NMR(ジメチルスルホキシド(DMSO)-d、ppm);8.53(d,1H)、8.04-7.98(m,2H)、7.83-7.80(m,1H)、7.75-7.69(m,2H)、7.59-7.34(m,30H)、7.30-7.09(m,8H)、7.01-6.96(m,2H)、6.73(d,1H)、6.31(d,1H).
<溶解性および組成物の保存安定性試験>
 (実施例1)
 褐色サンプル瓶に、化合物D-1を1.5mg量りとり、フェニルシクロヘキサンを加えて100mgとし、化合物D-1を完全に溶解させ、化合物D-1を含有する組成物(固形分濃度:1.5重量%)を調製した。調製した組成物は室温約15~20℃の暗所に置き、固体が析出するまでの時間を測定した。固体の析出は10倍のルーペを用いて目視にて確認した。結果を表1にまとめた。
 (実施例2~3、比較例1)
 実施例1において、化合物D-1の代わりに表1に示したイリジウム錯体化合物を用いたほかは実施例1と同様に組成物の調製をおこない、固形分が析出するまでの時間を測定した。結果を表1にまとめた。
 (比較例2)
 実施例1において、化合物D-1の代わりにIr(piq)を用いたほかは実施例1と同様に組成物の調製を試みたが、固形分は完全には溶解しなかった。結果を表1にまとめた。
 なお、用いた化合物の構造を下記にまとめて示す。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
 表1から明らかなように、本発明のイリジウム錯体化合物は有機溶媒に対する溶解性が高く、また、該イリジウム錯体化合物と溶媒とを含有する組成物は保管安定性が高く、有機電界発光素子を塗布法にて作製できることがわかった。
 (実施例4)
 有機電界発光素子は以下に示す方法にて作製した。
<有機電界発光素子の作製>
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を70nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。このITOは、透明電極として機能する。
 次いで、正孔注入層を以下の条件で湿式成膜法によって形成した。正孔注入層の材料として、下記式(PB-1)の芳香族アミノ基を有する高分子化合物と、下記式(PB-2)の芳香族アミノ基を有する高分子化合物と、下記に示す構造式の電子受容性化合物(A-1)とを用い、下記の条件でスピンコートし、膜厚40nmの均一な薄膜を作製した。
Figure JPOXMLDOC01-appb-C000052
 <正孔注入層用組成物>
   溶媒    安息香酸エチル
   塗布液濃度 PB-1 0.875重量%
         PB-2 2.625重量%
         A-1  0.525重量%
 <成膜条件>
   スピンコート雰囲気 大気下  23℃
   乾燥条件      230℃×60分
 続いて、正孔輸送層を以下の条件で湿式製膜法によって形成した。正孔輸送層の材料として、下記に示す構造式の電荷輸送材料(PB-3)の芳香族アミノ基を有する高分子化合物を用い、溶媒としてフェニルシクロヘキサンを用いて有機電界発光素子用組成物を調製し、この有機電界発光素子用組成物を用いて下記の条件でスピンコートし、膜厚15nmの薄膜を作成した。
Figure JPOXMLDOC01-appb-C000053
 <正孔輸送層形成用塗布液>
   溶媒    フェニルシクロヘキサン
   塗布液濃度 1.0重量%
 <成膜条件>
   スピンコート雰囲気 窒素雰囲気下
   加熱条件      230℃、1時間(窒素雰囲気下)
 次に、発光層を形成するにあたり、電荷輸送材料として、以下に示す、有機化合物(H-1)、有機化合物(H-2)及び、発光材料として、前記イリジウム錯体化合物(D-1)を用いて下記に示すイリジウム錯体化合物含有組成物を調製し、以下に示す条件で正孔輸送層上にスピンコートして膜厚50nmで発光層を得た。
Figure JPOXMLDOC01-appb-C000054
 <発光層用組成物>
   溶媒     キシレン
   組成物中濃度 H-1: 1.0重量%
          H-2: 3.0重量%
          D-1: 0.28重量%
 <スピンコート条件>
   スピンコート雰囲気 乾燥窒素中 35℃
   乾燥条件      120℃×20分(乾燥窒素下)
 ここで、発光層までを成膜した基板を、真空蒸着装置内に移し、装置内の真空度が2.0×10-4Pa以下になるまで排気した後、下記に示す構造を有する有機化合物(BAlq)を真空蒸着法にて蒸着速度を0.8~1.2Å/秒の範囲で制御し、発光層の上に積層させ、膜厚10nmの正孔阻止層を得た。
 引き続き、下記に示す構造を有する有機化合物(Alq)を真空蒸着法にて蒸着速度を0.8~1.2Å/秒の範囲で制御し、正孔阻止層の上に積層させ、膜厚20nmの電子輸送層を形成した。
Figure JPOXMLDOC01-appb-C000055
 ここで、電子輸送層までの蒸着を行った素子を一度取り出し、別の蒸着装置に設置し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように素子に密着させて、装置内の真空度が2.3×10-4Pa以下になるまで排気を行った。
 電子注入層として、先ずフッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.1Å/秒、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、蒸着速度1.0~4.9Å/秒の範囲で制御し、膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。
 引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
 窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂30Y-437(スリーボンド社製)を塗布し、中央部に水分ゲッターシート(ダイニック社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子は電圧を印加することにより赤色に発光し、表2に示すような特性を示した。表2には、電流密度20mA/cmの定電流にて駆動した際に、初期輝度が80%にまで減衰するまでの時間を相対値で示した。
 (実施例5~6および比較例3)
 実施例4において、イリジウム錯体化合物D-1を表2に示したイリジウム錯体化合物に置き換えたほかは、実施例4と同様に有機電界発光素子を作製した。この素子は電圧を印加することにより赤色に発光し、表2に示す特性を示した。表2には、電流密度20mA/cmの定電流にて駆動した際に、初期輝度が80%にまで減衰するまでの時間を相対値で示した。
 (比較例4)
 実施例4において、イリジウム錯体化合物D-1をIr(piq)に置き換えたほかは、実施例4と同様に有機電界発光素子を作製しようとしたが、発光層用組成物を作製する際に固形分が完全に溶解せず、素子を作製することができなかった。
Figure JPOXMLDOC01-appb-T000056
 表2から明らかなように、本発明のイリジウム錯体化合物を用いて塗布法にて作製した有機電界発光素子は駆動寿命が長く電気的耐久性が高いことがわかった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年8月8日出願の日本特許出願(特願2012-176097)及び2012年9月6日出願の日本特許出願(特願2012-196543)に基づくものであり、その内容はここに参照として取り込まれる。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子

Claims (14)

  1.  下記式(1)で表されるイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)において、Irはイリジウム原子を表す。L~Lは有機配位子を表し、それぞれIrと結合する。mは1~3の整数であり、nは0~2の整数であり、m+nは3以下である。ただし、L~Lのうち少なくとも1つは、下記式(2)で表される部分構造を少なくとも1つ含み、かつ、Lは、下記式(3)で表される配位子を表す。なお、L~Lのうち少なくとも1つが複数存在する場合は、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)において、Arは炭素数3~20の(ヘテロ)アリール基を表し、Xは、炭素数5~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数4~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または下記式(2-1)で表される置換基を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式(2-1)において、Yは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表し、Yが複数存在する場合はそれぞれ同一でも異なっていてもよい。Zは、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、または炭素数3~20の(ヘテロ)アリールオキシ基を表し、Zが複数存在する場合はそれぞれ同一でも異なっていてもよい。pは0~4の整数、qは2~10の整数、rは0~5の整数を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(3)において、環Aは、炭素原子C、C、及びCを含む、6員環の、芳香族炭化水素環または芳香族複素環を表す。環A上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。
     R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
     また、式(1)におけるIrと、RまたはRとが結合を形成する。]
  2.  前記式(1)におけるLとイリジウム原子との結合様式が下記式(3-1)または(3-2)で表される、請求項1に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式(3-1)及び(3-2)において、R~Rは前記式(3)におけるR~Rとそれぞれ同義である。R~R11は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
     また、R~R11は、隣り合うR~R11と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。]
  3.  前記式(1)におけるLとイリジウム原子との結合様式が前記式(3-1)で表される、請求項2に記載のイリジウム錯体化合物。
  4.  前記式(1)におけるLとイリジウム原子との結合様式が前記式(3-2)で表される、請求項2に記載のイリジウム錯体化合物。
  5.  前記式(3)におけるRが、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数7~40の(ヘテロ)アラルキル基、置換若しくは無置換の炭素数2~20のアルキルアミノ基、置換若しくは無置換の炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基で表される、請求項1~4のいずれか一項に記載のイリジウム錯体化合物。
  6.  前記式(3)におけるRが、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数7~40の(ヘテロ)アラルキル基、置換若しくは無置換の炭素数2~20のアルキルアミノ基、置換若しくは無置換の炭素数6~20のアリールアミノ基、または置換若しくは無置換の炭素数3~20の(ヘテロ)アリール基で表される、請求項1~5のいずれか一項に記載のイリジウム錯体化合物。
  7.  前記式(1)におけるLが下記式(4)で表される配位子であり、nが1または2である、請求項1~6のいずれか一項に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(4)において、環Bは、炭素原子C及びCを含む6員環または5員環の、芳香族炭化水素環または芳香族複素環を表し、環Cは、炭素原子C及び窒素原子Nを含む6員環または5員環の芳香族複素環を表す。環B及び環C上の水素原子は、それぞれ独立して、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。また、環B及び環Cにそれぞれ結合する隣り合う置換基どうしが結合してさらに環を形成していてもよい。]
  8.  前記式(1)におけるLが下記式(4-1)で表される配位子である、請求項7に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式(4-1)において、R12~R19は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。
     また、R12~R15、及び、R16~R19は、それぞれ隣り合うR12~R15、及び、R16~R19と炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。また、R15とR16とが炭素数3~12のアルキレン基または炭素数3~12のアルケニレン基で結合して環を形成してもよい。これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、及び炭素数3~20の(ヘテロ)アリール基からなる群より選ばれる少なくとも1の基で置換されていてもよい。]
  9.  前記式(1)におけるLが、前記式(2)で表される部分構造を含む、請求項7または8に記載のイリジウム錯体化合物。
  10.  請求項1~9のいずれか一項に記載のイリジウム錯体化合物及び溶媒を含む組成物。
  11.  陽極、陰極、及び前記陽極と前記陰極の間に少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のうち少なくとも1層が、請求項1~9のいずれか一項に記載のイリジウム錯体化合物を含む有機電界発光素子。
  12.  請求項11に記載のイリジウム錯体化合物を含む有機層が、請求項10に記載の組成物を用いて形成された層である、有機電界発光素子。
  13.  請求項11または12に記載の有機電界発光素子を用いた表示装置。
  14.  請求項11または12に記載の有機電界発光素子を用いた照明装置。
PCT/JP2013/071277 2012-08-08 2013-08-06 イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置 WO2014024889A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157003126A KR102132591B1 (ko) 2012-08-08 2013-08-06 이리듐 착물 화합물, 그리고 그 화합물을 포함하는 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
CN201380042037.4A CN104540841A (zh) 2012-08-08 2013-08-06 铱配位化合物以及含有该化合物的组合物、有机场致发光元件、显示装置和照明装置
EP13827851.0A EP2883880B1 (en) 2012-08-08 2013-08-06 Iridium complex compound, and composition, organic electroluminescent element, display device and lighting device each cotaining the compound
JP2014529515A JPWO2014024889A1 (ja) 2012-08-08 2013-08-06 イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
US14/616,810 US11430961B2 (en) 2012-08-08 2015-02-09 Iridium complex compound, and composition, organic electroluminescent element, display device, and lighting device each containing the compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-176097 2012-08-08
JP2012176097 2012-08-08
JP2012196543 2012-09-06
JP2012-196543 2012-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/616,810 Continuation US11430961B2 (en) 2012-08-08 2015-02-09 Iridium complex compound, and composition, organic electroluminescent element, display device, and lighting device each containing the compound

Publications (1)

Publication Number Publication Date
WO2014024889A1 true WO2014024889A1 (ja) 2014-02-13

Family

ID=50068114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071277 WO2014024889A1 (ja) 2012-08-08 2013-08-06 イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置

Country Status (7)

Country Link
US (1) US11430961B2 (ja)
EP (1) EP2883880B1 (ja)
JP (3) JPWO2014024889A1 (ja)
KR (1) KR102132591B1 (ja)
CN (2) CN107501332A (ja)
TW (1) TWI613204B (ja)
WO (1) WO2014024889A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087961A1 (ja) * 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2017048184A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2017188671A (ja) * 2016-04-01 2017-10-12 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP2018039763A (ja) * 2016-09-09 2018-03-15 国立研究開発法人産業技術総合研究所 ヘテロレプティックイリジウム錯体、ならびに該化合物を用いた発光材料および有機発光素子
WO2019093369A1 (ja) 2017-11-07 2019-05-16 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR20220024000A (ko) 2019-06-13 2022-03-03 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105615A1 (ja) * 2012-01-13 2013-07-18 三菱化学株式会社 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
EP3152115B1 (en) * 2014-06-06 2021-05-05 Canntrust Inc. Method of preparing a single-serve beverage container containing cannabis
KR102520516B1 (ko) 2014-09-30 2023-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR102609664B1 (ko) * 2015-05-29 2023-12-04 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
US11196010B2 (en) * 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11127906B2 (en) 2016-10-03 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11183642B2 (en) * 2016-10-03 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11189804B2 (en) * 2016-10-03 2021-11-30 Universal Display Corporation Organic electroluminescent materials and devices
US11050028B2 (en) * 2017-01-24 2021-06-29 Universal Display Corporation Organic electroluminescent materials and devices
CN108690083A (zh) * 2017-04-06 2018-10-23 北京鼎材科技有限公司 化合物及其有机电致发光器件
CN108690084A (zh) * 2017-04-06 2018-10-23 北京鼎材科技有限公司 化合物及有机电致发光器件
US10862055B2 (en) * 2017-05-05 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US20190081252A1 (en) * 2017-09-13 2019-03-14 Samsung Display Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and organic light-emitting apparatus including the organic light-emitting device
CN111344295A (zh) * 2017-11-29 2020-06-26 三菱化学株式会社 铱配位化合物、含有该化合物和溶剂的组合物、含有该化合物的有机电致发光元件、显示装置和照明装置
KR20200034900A (ko) * 2018-09-21 2020-04-01 삼성디스플레이 주식회사 유기 발광 소자, 이를 포함한 장치 및 유기금속 화합물
JP7528458B2 (ja) * 2020-02-06 2024-08-06 三菱ケミカル株式会社 イリジウム錯体

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006290781A (ja) 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体
US20070122655A1 (en) 2004-09-20 2007-05-31 Eastman Kodak Company Electroluminescent device with quinazoline complex emitter
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2010094242A1 (en) 2009-02-20 2010-08-26 Merck Sharp & Dohme Corp. Spiropyrrolidine beta-secretase inhibitors for the treatment of alzheimer's disease
CN101899296A (zh) 2010-07-13 2010-12-01 西安瑞联近代电子材料有限责任公司 含芳基联喹唑啉类金属铱配合物红色有机电致磷光材料及其有机电致发光器件
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
WO2012007103A1 (de) * 2010-07-15 2012-01-19 Merck Patent Gmbh Metallkomplexe mit organischen liganden und deren verwendung in oleds
CN102503986A (zh) * 2011-11-09 2012-06-20 南京邮电大学 一种磷光铱配合物及制备方法和有机电致发光器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306807A (ja) * 2005-04-28 2006-11-09 Idemitsu Kosan Co Ltd 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
US7993763B2 (en) * 2007-05-10 2011-08-09 Universal Display Corporation Organometallic compounds having host and dopant functionalities
JP2009023938A (ja) * 2007-07-19 2009-02-05 Showa Denko Kk イリジウム錯体化合物、有機エレクトロルミネッセンス素子およびその用途
JP2009040728A (ja) 2007-08-09 2009-02-26 Canon Inc 有機金属錯体及びこれを用いた有機発光素子
JP5258271B2 (ja) * 2007-11-28 2013-08-07 キヤノン株式会社 有機金属錯体及びこれを用いた発光素子並びに表示装置
JP5707704B2 (ja) * 2009-02-03 2015-04-30 三菱化学株式会社 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
DE102009041414A1 (de) * 2009-09-16 2011-03-17 Merck Patent Gmbh Metallkomplexe
JP5546238B2 (ja) * 2009-12-28 2014-07-09 昭和電工株式会社 イリジウム錯体化合物、有機エレクトロルミネッセンス素子およびその用途
JP2012006878A (ja) * 2010-06-25 2012-01-12 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
DE102010046512A1 (de) * 2010-09-24 2012-03-29 Merck Patent Gmbh Phosphorhaltige Metallkomplexe
JP5621482B2 (ja) * 2010-10-04 2014-11-12 三菱化学株式会社 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機電界発光表示装置および有機電界発光照明装置
US20140350642A1 (en) * 2011-12-27 2014-11-27 Merck Patent Gmbh Metal Complexes Comprising 1,2,3-Triazoles
WO2013105615A1 (ja) * 2012-01-13 2013-07-18 三菱化学株式会社 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
US11917901B2 (en) * 2012-08-07 2024-02-27 Udc Ireland Limited Metal complexes
KR101899296B1 (ko) 2016-12-15 2018-09-17 재원산업 주식회사 폐 n-메틸-2-피롤리돈 혼합액의 정제 방법

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
US20070122655A1 (en) 2004-09-20 2007-05-31 Eastman Kodak Company Electroluminescent device with quinazoline complex emitter
JP2006290781A (ja) 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2010094242A1 (en) 2009-02-20 2010-08-26 Merck Sharp & Dohme Corp. Spiropyrrolidine beta-secretase inhibitors for the treatment of alzheimer's disease
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
CN101899296A (zh) 2010-07-13 2010-12-01 西安瑞联近代电子材料有限责任公司 含芳基联喹唑啉类金属铱配合物红色有机电致磷光材料及其有机电致发光器件
WO2012007103A1 (de) * 2010-07-15 2012-01-19 Merck Patent Gmbh Metallkomplexe mit organischen liganden und deren verwendung in oleds
CN102503986A (zh) * 2011-11-09 2012-06-20 南京邮电大学 一种磷光铱配合物及制备方法和有机电致发光器件

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Yuki-kagaku/Sei-kagaku Meimei-ho (jo) (revised second edition, )", 1992, NANKODO CO., LTD.
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
APPL. PHYS. LETT., vol. 70, 1997, pages 152
IEEE TRANS. ELECTRON. DEVICES, vol. 44, 1997, pages 1245
JOURNAL OFMATERIALS CHEMISTRY, 2012, pages 6878 - 6884
See also references of EP2883880A4
SID 04 DIGEST, pages 154
TOKITO SHIZUO; ADACHI CHIHAYA; MURATA HIDEYUKI: "Yüki EL Disupurei", 20 August 2004, OHMSHA, LTD.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600974B2 (en) 2013-12-12 2020-03-24 Mitsubishi Chemical Corporation Iridium complex compound, process for producing the compound, composition including the compound, organic electroluminescent element, display device, and illuminator
WO2015087961A1 (ja) * 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2017048184A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2017048390A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP7370400B2 (ja) 2015-09-03 2023-10-27 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2022068208A (ja) * 2015-09-03 2022-05-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
KR20210130259A (ko) * 2016-04-01 2021-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2021185158A (ja) * 2016-04-01 2021-12-09 株式会社半導体エネルギー研究所 有機金属錯体および発光素子
KR102388993B1 (ko) 2016-04-01 2022-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP7258968B2 (ja) 2016-04-01 2023-04-17 株式会社半導体エネルギー研究所 有機金属錯体および発光素子
JP2017188671A (ja) * 2016-04-01 2017-10-12 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP2018039763A (ja) * 2016-09-09 2018-03-15 国立研究開発法人産業技術総合研究所 ヘテロレプティックイリジウム錯体、ならびに該化合物を用いた発光材料および有機発光素子
KR20200078499A (ko) 2017-11-07 2020-07-01 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물 및 용제를 함유하는 조성물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
WO2019093369A1 (ja) 2017-11-07 2019-05-16 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR20230173735A (ko) 2017-11-07 2023-12-27 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물 및 용제를 함유하는 조성물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR20220024000A (ko) 2019-06-13 2022-03-03 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치

Also Published As

Publication number Publication date
KR102132591B1 (ko) 2020-07-10
JP5810417B2 (ja) 2015-11-11
EP2883880B1 (en) 2016-11-30
KR20150040912A (ko) 2015-04-15
US20150155502A1 (en) 2015-06-04
CN104540841A (zh) 2015-04-22
JPWO2014024889A1 (ja) 2016-07-25
TW201412755A (zh) 2014-04-01
JP2015096528A (ja) 2015-05-21
EP2883880A1 (en) 2015-06-17
CN107501332A (zh) 2017-12-22
TWI613204B (zh) 2018-02-01
EP2883880A4 (en) 2015-08-05
JP2015083587A (ja) 2015-04-30
US11430961B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP5810417B2 (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP5459447B2 (ja) イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
JP5163837B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP6922734B2 (ja) イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP6879342B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5707704B2 (ja) 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2020235562A1 (ja) 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
JP6540771B2 (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP2011105676A (ja) 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2012006878A (ja) 有機金属錯体、発光材料、有機電界発光素子材料、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP6119171B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP2020152746A (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置。
JP6286872B2 (ja) イリジウム錯体化合物、有機電界発光素子、表示装置および照明装置
JP5621482B2 (ja) 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機電界発光表示装置および有機電界発光照明装置
WO2020251031A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2010189453A (ja) 有機金属錯体組成物、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP7276059B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP5644196B2 (ja) 化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2014058457A (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP2012119471A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2021127325A (ja) 芳香族ジアミン誘導体
JP2021075493A (ja) Oled素子形成用組成物及びoled素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529515

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003126

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013827851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013827851

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE