Nothing Special   »   [go: up one dir, main page]

WO2014024757A1 - Co2回収装置およびco2回収方法 - Google Patents

Co2回収装置およびco2回収方法 Download PDF

Info

Publication number
WO2014024757A1
WO2014024757A1 PCT/JP2013/070810 JP2013070810W WO2014024757A1 WO 2014024757 A1 WO2014024757 A1 WO 2014024757A1 JP 2013070810 W JP2013070810 W JP 2013070810W WO 2014024757 A1 WO2014024757 A1 WO 2014024757A1
Authority
WO
WIPO (PCT)
Prior art keywords
rich solution
oxygen
tower
absorption
solution
Prior art date
Application number
PCT/JP2013/070810
Other languages
English (en)
French (fr)
Inventor
大石 剛司
長安 弘貢
田中 裕士
琢也 平田
上條 孝
大輔 島田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/420,248 priority Critical patent/US9901873B2/en
Priority to NO13827456A priority patent/NO2883594T3/no
Priority to AU2013300659A priority patent/AU2013300659B2/en
Priority to EP13827456.8A priority patent/EP2883594B1/en
Priority to CA2881159A priority patent/CA2881159C/en
Publication of WO2014024757A1 publication Critical patent/WO2014024757A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • B01D19/0015Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid in contact columns containing plates, grids or other filling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a CO 2 recovery apparatus and a CO 2 recovery method that reliably deaerate oxygen from a rich solution and that do not re-engage bubbles.
  • a method is disclosed in which the absorption liquid as described above is used to absorb and remove CO 2 from the exhaust gas, and then CO 2 is diffused and recovered, and the absorption liquid is regenerated and recycled to the CO 2 absorption tower for reuse. (For example, refer to Patent Document 1).
  • Patent Document 2 Proposal of a deaeration technique using the above has been made.
  • the present invention has been made to solve the problems described above, with reliably degassing oxygen from the rich solution, and to provide a re-entrainment is not CO 2 recovery apparatus and a CO 2 recovery method of the bubbles.
  • a CO 2 absorption part that makes the basic amine compound absorption liquid absorb CO 2 in the exhaust gas by bringing exhaust gas into contact with the basic amine compound absorption liquid, and decarboxylation in which CO 2 is removed by the CO 2 absorption part and the CO 2 absorber and a washing unit for removing entrained material entrained in the decarbonated flue gas by contacting the flue gas with the wash water, the basic separating the CO 2 from the rich solution that has absorbed the CO 2
  • An absorption liquid regeneration tower that regenerates the amine compound absorption liquid to obtain a lean solution, and a CO 2 recovery apparatus that reuses the lean solution from which the CO 2 has been removed as the basic amine compound absorption liquid in the CO 2 absorption tower
  • a degassing tank which is interposed in a rich solution supply line for supplying the Litch solution from the CO 2 absorption tower to the absorption liquid regeneration tower and has a retention part for removing oxygen in the rich solution.
  • the deaeration tank has a retention part for removing oxygen in the rich solution by floating separation, and a rich solution from which oxygen in the rich solution is removed by the retention part on a wall surface.
  • the CO 2 recovery apparatus includes: a partition wall that drops along the partition wall; and a storage unit that stores a rich solution from which oxygen that has dropped along the partition wall is removed.
  • a third invention is the CO 2 recovery apparatus according to the first or second invention, further comprising purge gas introducing means for purging the gas not containing oxygen in the deaeration tank.
  • a deaeration tower which is provided on the downstream side of the deaeration tank and further deaerates the rich solution from which oxygen has been removed under reduced pressure. It is in the CO 2 collection
  • a fifth aspect of the present invention is the CO 2 recovery according to any one of the first to fourth aspects, further comprising a heat exchange section that is provided on the upstream side of the degassing tank and that warms the rich solution. In the device.
  • the sixth aspect of the present invention the CO 2 absorption tower for removing CO 2 by contacting the CO 2 containing exhaust gas and the basic amine compounds containing CO 2, the from the basic amine compound that has absorbed the CO 2 CO
  • a CO 2 recovery method in which a lean solution from which CO 2 has been removed in the absorption liquid regeneration tower is reused in a CO 2 absorption tower using an absorption liquid regeneration tower that separates 2 and regenerates a CO 2 absorption liquid.
  • oxygen in the rich solution is removed by floating separation while the rich solution is retained for a predetermined time.
  • a seventh aspect of the invention is the CO 2 recovery method according to the sixth aspect of the invention, wherein the dissolved oxygen is removed while flowing down the rich solution along the partition wall, and the dissolved oxygen is removed and stored in a storage section. It is in.
  • An eighth invention is the CO 2 recovery method according to the sixth or seventh invention, wherein oxygen remaining in the rich solution from which oxygen in the rich solution has been removed is further removed under reduced pressure conditions.
  • a ninth invention is the CO 2 recovery method according to any one of the sixth to eighth inventions, wherein the rich solution is heated before the staying treatment.
  • the present invention since a deaeration layer having a staying portion is provided, bubbles entrained in the rich solution can be reliably removed when fed from the CO 2 absorption tower to the regeneration tower, The oxygen concentration in the CO 2 gas recovered from the regeneration tower can be reduced.
  • FIG. 1 is a schematic diagram of a CO 2 recovery apparatus according to the first embodiment.
  • FIG. 2 is a perspective view of the deaeration tank according to the present embodiment.
  • FIG. 3 is a schematic diagram of a CO 2 recovery apparatus according to the second embodiment.
  • FIG. 4 is a schematic diagram of a CO 2 recovery apparatus according to the third embodiment.
  • FIG. 1 is a schematic diagram of a CO 2 recovery apparatus according to the first embodiment.
  • CO 2 recovery apparatus 10A CO 2 containing exhaust gas 11A and the basic amine compound absorbent a is the CO 2 absorbing liquid containing CO 2 (hereinafter referred to as "absorbing solution") and CO 2 absorbing section 13A which is brought into contact with 12 to remove the CO 2, the CO 2 absorbing section 13A in contacting the and the washing water 20 decarbonated exhaust gas 11B of the CO 2 has been removed the decarbonated flue gas 11B a washing unit 21 and the CO 2 absorption tower (hereinafter referred to as "absorption column") 13 having to remove entrained entraining agent, CO 2 absorbent having absorbed CO 2 absorbing solution regeneration tower for reproducing (rich solution 12A) ( hereinafter as “regeneration tower” hereinafter) 14, the a CO 2 recovery system to recycle the lean solution 12B which CO
  • absorbing solution the CO 2 absorbing liquid containing CO 2
  • CO 2 absorption tower hereinafter referred to as "a
  • the decarbonized gas 11B from which CO 2 has been absorbed and removed by the absorbent 12 in the CO 2 absorbing portion 13A is raised to the water washing portion 21 side.
  • the washing water 20 falls from the tower top side through the nozzle and is washed in countercurrent contact with the rising decarbonation exhaust gas 11 ⁇ / b> B, and the washing water 20 is collected in the liquid storage section 24. .
  • the collected washing water 20 is circulated and used by a circulation pump 25 interposed in the circulation washing water line L 1 . Also been cooled to a predetermined temperature by the cooling unit 26 interposed circulating wash water line L 1.
  • a rich / lean solution heat exchanger 52 is provided to exchange heat between the rich solution 12A and the lean solution 12B from which CO 2 has been removed.
  • reference numeral 13a is a tower top
  • 13b is a tower bottom
  • 19 is a mist eliminator that captures mist in the gas
  • 51 is a rich solution pump
  • 54 is a lean solution pump
  • L 0 is a gas introduction of CO 2 containing exhaust gas 11A.
  • Line L 11 is a rich solution supply line
  • L 12 is a lean solution supply line.
  • the CO 2 -containing exhaust gas 11 ⁇ / b > A is in countercurrent contact with an amine-based absorption liquid 12 based on, for example, alkanolamine in a CO 2 absorption section 13 ⁇ / b > A provided on the lower side of the absorption tower 13.
  • 2 CO 2 in the contained exhaust gas 11A is absorbed in the CO 2 absorbent 12 by a chemical reaction (R—NH 2 + H 2 O + CO 2 ⁇ R—NH 3 HCO 3 ).
  • R—NH 2 + H 2 O + CO 2 ⁇ R—NH 3 HCO 3 As a result, almost no CO 2 remains in the decarbonized exhaust gas 11B that passes through the CO 2 absorption section 13A and rises inside the absorption tower 13.
  • the decarbonized exhaust gas 11B rises to the water washing section 21 side through the chimney tray 16, and comes into gas-liquid contact with the washing water 20 supplied from the top side of the water washing section 21, so that the CO accompanying the decarbonized exhaust gas 11B. 2
  • the absorbent 12 is recovered by circulating cleaning.
  • the washing water 20 stored in the liquid storage section 24 of the chimney tray 16 is circulated through the circulation washing water line L 1 for circulation washing.
  • the circulating washing water line L 1 is provided with a cooling unit 26 for cooling to a predetermined temperature (for example, 40 ° C. or lower).
  • Rich solution 12A that has absorbed CO 2 in the absorption tower 13 is withdrawn from the bottom portion 13b, is boosted by the rich solution pump 51 interposed in the rich-solution supply line L 11, supplied to the top side of the regenerator 14 Is done.
  • a deaeration tank 80 is provided in the rich solution supply line L 11 for feeding the rich solution 12A that has absorbed the CO 2 extracted from the tower bottom 13b of the absorption tower 13 to the regeneration tower 14 side. Has been.
  • FIG. 2 is a perspective view of the deaeration tank according to the present embodiment.
  • the deaeration tank 80 has a retention part 82 that removes oxygen in the rich solution 12A, and the oxygen in the rich solution 12A is surely retained by retaining in the retention part 82 for a predetermined time. I am degassed.
  • the deaeration tank 80 At least one partition wall 81 is provided, and the inside of the deaeration tank 80, the staying part 82, and the storage part 83 are provided. Then, the rich solution 12 ⁇ / b> A that has been allowed to stay for a predetermined time to float and separate oxygen is allowed to spontaneously drop 84 along the wall surface of the partition wall 81 beyond the partition wall 81.
  • the natural drop 84 is slowly transmitted to the wall, and even in the natural drop 84, oxygen in the rich solution 12A is separated.
  • the rich solution 12 ⁇ / b> A from which oxygen has been deaerated when stored in the storage unit 83 is pressurized by the rich solution pump 51 and supplied to the top side of the regeneration tower 14.
  • the rich solution supply line L 11 for sending the rich solution 12A to the regeneration tower 14 side is provided with the deaeration layer 80 having the staying portion 82, so that the bubbles entrained in the rich solution 12A are absorbed. Since it can be reliably removed when fed from the tower 13 to the regeneration tower 14, the oxygen concentration in the CO 2 gas recovered from the regeneration tower 14 can be reduced.
  • the deaeration is reliably performed by floating and separating in the staying portion 82 over a predetermined time.
  • the inside is purged with a gas 85 that does not contain oxygen, even if bubbles are generated during the fall, it is a gas that does not contain oxygen, preventing re-entrainment of the oxygen concentration. Is done.
  • one partition wall 81 is provided and one staying portion 82 is provided.
  • the present invention is not limited to this, and two or more partition walls 81 are provided and two staying portions 82 are provided.
  • the residence time may be increased to improve the floating separation efficiency of bubbles from the rich solution 12A.
  • the residence time of the rich solution 12A in the residence portion 82 is, for example, about 30 minutes to 2 hours, and the remaining bubbles in the rich solution 12A are floated and separated.
  • a gas 85 not containing oxygen is introduced into the deaeration tank 80 from a purge gas introduction means (not shown), so that the inside of the deaeration tank 80 is in a substantially oxygen-free state.
  • a gas 85 not containing oxygen for example, a gas having an oxygen concentration of less than 1%, nitrogen gas, or recovered CO 2 gas is used.
  • the gas 85 that does not contain oxygen is introduced from the reservoir 83 side so as to be in countercurrent contact with the rich solution 12A, and is discharged to the outside as the exhaust gas 86 from above the staying portion 82.
  • the rich solution 12A released into the tower from the top side of the regeneration tower 14 releases most of the CO 2 by heating with water vapor from the bottom of the tower.
  • the CO 2 absorbent 12 that has released part or most of the CO 2 in the regeneration tower 14 is referred to as a “semi-lean solution”.
  • This lean solution 12B is saturated steam 62 in the regeneration heater 61 interposed in the circulation line L 20, obtained is heated.
  • the saturated steam 62 after heating becomes steam condensed water 63. Steam condensate 63 is discharged from the discharge line L 23 to the outside.
  • the CO 2 gas 41 accompanied by water vapor dissipated from the rich solution 12A and a semi-lean solution (not shown) is released from the top 14a of the regeneration tower 14 in the tower.
  • CO 2 gas 41 accompanied by water vapor is derived by the gas discharge line L 21
  • the water vapor is condensed by the cooling unit 42 interposed in the gas discharge line L 21
  • condensed water 44 is separated in the separation drum 43
  • the CO 2 gas 45 is discharged out of the system from the separation drum 43 and separately subjected to post-processing such as compression recovery.
  • Condensed water 44 separated in the separation drum 43 is supplied to the upper portion of the regeneration tower 14 by the condensed water circulation pump 46 interposed in condensate line L 22.
  • a part of the condensed water 44 may be supplied to the circulating cleaning water line L 1 and used as the cleaning water 20 for the CO 2 absorbent 12 accompanying the outlet gas 11C.
  • the regenerated CO 2 absorbent (lean solution 12B) is sent to the absorption tower 13 side by the lean solution pump 54 via the lean solution supply line L 12 and circulated and used as the CO 2 absorbent 12. At this time, the lean solution 12B is cooled to a predetermined temperature by the cooling unit 55 and is supplied to the CO 2 absorption unit 13A through the nozzle 56.
  • the CO 2 absorbent 12 forms a closed path that circulates between the absorption tower 13 and the regeneration tower 14 and is reused in the CO 2 absorption section 13A of the absorption tower 13.
  • the CO 2 absorbent 12 is supplied from a replenishment line (not shown) as necessary, and the CO 2 absorbent 12 is regenerated by a reclaimer (not shown) as needed.
  • the CO 2 -containing exhaust gas 11A supplied to the CO 2 absorption tower 13 is cooled by the cooling water 71 in the cooling tower 70 provided on the upstream side thereof, and then introduced into the absorption tower 13.
  • a part of the cooling water 71 is also supplied to the top of the water washing section 21 as the washing water 20 of the absorption tower 13 and may be used for washing the CO 2 absorbent 12 accompanying the decarbonation exhaust gas 11B.
  • Reference numeral 72 denotes a circulation pump
  • 73 denotes a cooling unit
  • L 30 denotes a circulation line.
  • the deaeration tank 80 having the staying part 82 since the deaeration tank 80 having the staying part 82 is provided, bubbles containing oxygen entrained inside the absorption tower 13 can be reliably removed by natural levitation separation. As a result, the oxygen concentration in the CO 2 gas recovered from the regeneration tower 14 can be reduced.
  • FIG. 3 is a schematic diagram of a CO 2 recovery apparatus according to the second embodiment.
  • the CO 2 recovery apparatus 10B according to the present embodiment is provided with a deaeration tower 87 on the downstream side of the deaeration tank 80 in the CO 2 recovery apparatus 10A of Example 1 shown in FIG. Provided.
  • This deaeration tower 87 has a decompression pump 88 in the exhaust line L 13 , and the inside of the deaeration tower 87 is brought into a negative pressure state to further deaerate oxygen remaining in the rich solution 12A.
  • the rich solution 12A from which oxygen is further deaerated in the deaeration tower 87 is pressurized by the rich solution pump 51 and supplied to the top side of the regeneration tower 14.
  • the deaeration tower 87 that can be reduced in pressure by the depressurization means is provided on the downstream side of the deaeration tank 80, the bubbles remaining without being deaerated in the deaeration tank 80 are provided. Therefore, the oxygen concentration in the CO 2 gas recovered from the regeneration tower 14 can be further reduced as compared with the first embodiment.
  • the oxygen concentration in the rich solution 12A is about 10 ppm by installing the degassing tank 80, it is possible to reduce the oxygen concentration to, for example, 0.1 ppm or less by installing the degassing tower 87.
  • Reference numeral 89 shows a pump for feeding the rich solution 12A from the deaeration tank 80 to the deaeration tower 87.
  • FIG. 4 is a schematic diagram of a CO 2 recovery apparatus according to the third embodiment.
  • the CO 2 recovery apparatus 10C according to the present embodiment is similar to the CO 2 recovery apparatus 10B of the second embodiment shown in FIG. 3 between the absorption tower 13 and the deaeration tank 80 and from the tower bottom 13b.
  • a heat exchanging portion 91 for heating the extracted rich solution 12A is provided. In the heat exchanging portion 91, the extracted rich solution 12A is heated to a predetermined temperature to reduce the viscosity of the rich solution 12A. As a result, the floating separation efficiency of bubbles from the rich solution 12A having a reduced viscosity is improved.
  • the temperature of the rich solution 12A withdrawn from the tower bottom portion 13b differs depending on the operating conditions of the CO 2 recovery device 10C and the type of the absorbing solution, but the temperature of the rich solution heated by the heat exchange unit 91 is, for example, Heating is preferably performed at a temperature between 50 ° C and 60 ° C.
  • the deaeration tower 87 is installed, but the deaeration tower 87 may not be installed.
  • the first to fifth heat exchange media A 1-5 in the heat exchange unit 91 can use heat generated in the CO 2 recovery apparatus 10C.
  • heat is exchanged using heat extracted from five locations.
  • the first heat exchange medium A 1 supplied to the heat exchange unit 91 is extracted from the downstream side of the lean solution pump 54 of the lean solution supply line L 12 , and the heat exchange medium B 1 after heat exchange is supplied with the lean solution. It is returned to the downstream side of the extraction side of the line L 12.
  • the second heat exchange medium A 2 supplied to the heat exchange unit 91 is extracted from the downstream side of the circulation pump 25 of the circulating water washing line L 1 , and the heat exchange medium B 2 after the heat exchange is the circulating water washing line. It is made to return to the downstream side from the side from which L 1 is extracted.
  • the fourth heat exchange medium A 4 supplied to the heat exchange unit 91 is extracted from the discharge line L 23 of the steam condensed water 63, and the heat exchange medium B 4 after the heat exchange is the discharge line L 23 of the steam condensed water 63. It is made to return to the wake side from the extracted side.
  • the fifth heat exchange medium A 5 supplied to the heat exchange unit 91 is extracted from the gas introduction line L 0 for introducing the CO 2 -containing exhaust gas 11A, and the heat exchange medium B 5 after the heat exchange is the gas introduction line L 0. It is made to return to the wake side from the extracted side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

 CO2を含有するCO2含有排ガス11Aと塩基性アミン化合物吸収液であるCO2吸収液12とを接触させてCO2を除去するCO吸収部13Aと、前記CO吸収部13AでCOを除去された脱炭酸排ガス11Bと洗浄水20とを接触させて前記脱炭酸排ガス11Bに同伴する同伴物質を除去する水洗部21とを有するCO2吸収塔13と、CO2を吸収したCO2吸収液(リッチ溶液12A)を再生する吸収液再生塔14と、前記再生塔14でCO2が除去されたリーン溶液12Bを吸収塔13で再利用するCO2回収装置であって、前記CO2吸収塔13から吸収液再生塔14へリッチ溶液12Aを供給するリッチ溶液供給ラインL11に介装され、前記リッチ溶液12A中の酸素を除去する滞留部82を有する脱気槽80を有する。

Description

CO2回収装置およびCO2回収方法
 本発明は、リッチ溶液中から酸素を確実に脱気すると共に、気泡の再巻き込みがないCO2回収装置およびCO2回収方法に関する。
 地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては、化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い、大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの排ガスをアミン化合物水溶液などのアミン系吸収液と接触させ、排ガス中のCO2を除去し回収する方法が精力的に研究されている。
 前記のような吸収液を用い、排ガスからCO2を吸収除去した後に、CO2を放散回収させ、吸収液は再生して再びCO2吸収塔に循環して再使用する方法が開示されている(例えば、特許文献1参照)。
 しかしながら、CO2含有ガスと吸収液とが向流接触し、吸収液中に巻き込まれる気泡に含まれる酸素量は、溶存酸素量よりも大きいので、従来、吸収液から酸素を除去する例えば液体サイクロン等を用いた脱気技術の提案がなされている(特許文献2)。
特開2002-126439号公報 特開2010-253370号公報
 しかしながら、特許文献2のような、CO2吸収塔で吸収液に巻き込まれた気泡を除去する液体サイクロン等では、旋回流を発生させるので、気泡(空気)の再巻き込みが発生する、という問題がある。
 よって、リッチ溶液中から酸素を確実に脱気すると共に、気泡の再巻き込みがないようなCO2回収技術の出現が望まれている。
 本発明は上述した課題を解決するものであり、リッチ溶液中から酸素を確実に脱気すると共に、気泡の再巻き込みがないCO2回収装置およびCO2回収方法を提供することを課題とする。
 排ガスと塩基性アミン化合物吸収液とを接触させて前記排ガス中のCOを前記塩基性アミン化合物吸収液に吸収させるCO吸収部と、前記CO吸収部でCOが除去された脱炭酸排ガスと洗浄水とを接触させて前記脱炭酸排ガスに同伴する同伴物質を除去する水洗部とを有するCO吸収塔と、前記CO2を吸収したリッチ溶液からCO2を分離して前記塩基性アミン化合物吸収液を再生してリーン溶液とする吸収液再生塔と、前記CO2が除去された前記リーン溶液を前記CO2吸収塔で前記塩基性アミン化合物吸収液として再利用するCO2回収装置であって、前記CO2吸収塔から前記吸収液再生塔へリ前記ッチ溶液を供給するリッチ溶液供給ラインに介装され、前記リッチ溶液中の酸素を除去する滞留部を有する脱気槽を有することを特徴とするCO回収装置にある。
 第2の発明は、第1の発明において、前記脱気槽は、前記リッチ溶液中の酸素を浮上分離により除去する滞留部と、滞留部でリッチ溶液の酸素を除去したリッチ溶液を、壁面に沿って落下させる仕切壁と、前記仕切壁に沿って落下した酸素が除去されたリッチ溶液を貯留する貯留部とを有することを特徴とするCO回収装置にある。
 第3の発明は、第1又は2の発明において、前記脱気槽内に酸素を含まないガスをパージするパージガス導入手段を有することを特徴とするCO回収装置にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記脱気槽の後流側に設けられ、酸素を除去したリッチ溶液をさらに減圧状態で脱気する脱気塔を有することを特徴とするCO回収装置にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記脱気槽の前流側に設けられ、前記リッチ溶液を加温する熱交換部を有することを特徴とするCO回収装置にある。
 第6の発明は、CO2を含有するCO2含有排ガスと塩基性アミン化合物とを接触させてCO2を除去するCO2吸収塔と、前記CO2を吸収した前記塩基性アミン化合物から前記CO2を分離してCO2吸収液を再生する吸収液再生塔とを用い、前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔で再利用するCO2回収方法であって、リッチ溶液中を所定時間滞留させつつ、前記リッチ溶液中の酸素を浮上分離により除去することを特徴とするCO回収方法にある。
 第7の発明は、第6の発明において、前記酸素を除去したリッチ溶液を仕切壁に沿って、流下させつつ溶存する酸素を除去し、貯留部で貯留することを特徴とするCO回収方法にある。
 第8の発明は、第6又は7の発明において、前記リッチ溶液中の酸素を除去したリッチ溶液中に残存する酸素を減圧条件でさらに除去することを特徴とするCO回収方法にある。
 第9の発明は、第6乃至8のいずれか一つの発明において、前記滞留処理の前に、前記リッチ溶液を加温することを特徴とするCO回収方法にある。
 本発明によれば、滞留部を有する脱気層を設けているので、リッチ溶液中に巻き込まれた気泡をCO2吸収塔から再生塔に送給する際に確実に除去することができるため、再生塔から回収されたCO2ガス中の酸素濃度を低減することができる。
図1は、実施例1に係るCO2回収装置の概略図である。 図2は、本実施例に係る脱気槽の斜視図である。 図3は、実施例2に係るCO2回収装置の概略図である。 図4は、実施例3に係るCO2回収装置の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図1は、実施例1に係るCO2回収装置の概略図である。
 図1に示すように、本実施例に係るCO2回収装置10Aは、CO2を含有するCO2含有排ガス11Aと塩基性アミン化合物吸収液であるCO2吸収液(以下「吸収液」という)12とを接触させてCO2を除去するCO吸収部13Aと、前記CO吸収部13AでCOを除去された脱炭酸排ガス11Bと洗浄水20とを接触させて前記脱炭酸排ガス11Bに同伴する同伴物質を除去する水洗部21とを有するCO2吸収塔(以下「吸収塔」という)13と、CO2を吸収したCO2吸収液(リッチ溶液12A)を再生する吸収液再生塔(以下「再生塔」という)14と、前記再生塔14でCO2が除去されたリーン溶液12Bを吸収塔13で再利用するCO2回収装置であって、前記CO2吸収塔13から吸収液再生塔14へリッチ溶液12Aを供給するリッチ溶液供給ラインL11に介装され、前記リッチ溶液12A中の酸素を除去する滞留部82を有する脱気槽80を有する。
 CO2吸収部13AでCO2が吸収液12により吸収除去された脱炭酸ガス11Bは、水洗部21側に上昇される。
 そして、水洗部21では、洗浄水20が塔頂側からノズルを介して落下し、上昇する脱炭酸排ガス11Bと向流接触して洗浄し、洗浄水20は液貯留部24で回収されている。
 回収された洗浄水20は、循環洗浄水ラインL1に介装された循環ポンプ25で循環利用されている。また、循環洗浄水ラインL1に介装された冷却部26で所定温度に冷却している。
 本実施例では、リッチ溶液12Aと、CO2が除去されたリーン溶液12Bとを熱交換するリッチ・リーン溶液熱交換器52を具備している。
 図1中、符号13aは塔頂部、13bは塔底部、19はガス中のミストを捕捉するミストエリミネータ、51はリッチ溶液ポンプ、54はリーン溶液ポンプ、L0はCO2含有排ガス11Aのガス導入ライン、L11はリッチ溶液供給ライン、L12はリーン溶液供給ラインを各々図示する。
 前記吸収塔13では、CO2含有排ガス11Aは、吸収塔13の下部側に設けられたCO2吸収部13Aにおいて、例えばアルカノールアミンをベースとするアミン系の吸収液12と向流接触し、CO2含有排ガス11A中のCO2は、化学反応(R-NH2+H2O+CO2→R-NH3HCO3)によりCO2吸収液12に吸収される。
 この結果、CO2吸収部13Aを通過して、吸収塔13の内部を上昇する脱炭酸排ガス11Bには、CO2が殆ど残存しないものとなる。
 その後、脱炭酸排ガス11Bは、チムニートレイ16を介して水洗部21側へ上昇し、水洗部21の頂部側から供給される洗浄水20と気液接触して、脱炭酸排ガス11Bに同伴するCO2吸収液12を循環洗浄により回収する。
 水洗部21では、チムニートレイ16の液貯留部24で貯留した洗浄水20を循環洗浄水ラインL1で循環させて、循環洗浄するようにしている。
 なお、循環洗浄水ラインL1には冷却部26を設け、所定の温度(例えば40℃以下)まで冷却している。
 吸収塔13でCO2を吸収したリッチ溶液12Aは、その塔底部13bから抜き出され、リッチ溶液供給ラインL11に介装されたリッチ溶液ポンプ51により昇圧され、再生塔14の頂部側に供給される。
 本実施例では、吸収塔13の塔底部13bから抜き出されたCO2を吸収したリッチ溶液12Aを、再生塔14側に送液するリッチ溶液供給ラインL11に、脱気槽80が介装されている。
 図2は、本実施例に係る脱気槽の斜視図である。
 図2に示すように、脱気槽80は、リッチ溶液12A中の酸素を除去する滞留部82を有するものであり、滞留部82で所定時間滞留させることで、リッチ溶液12A中の酸素を確実に脱気している。
 また、脱気槽80では、仕切壁81を少なくとも1枚設け、脱気槽80内と滞留部82と貯留部83とを備えるようにしている。
 そして、所定時間滞留させて、酸素を浮上分離させた後のリッチ溶液12Aを仕切壁81を越えて、該仕切壁81の壁面に沿って、自然落下84させるようにしている。
 この自然落下84はゆっくり壁に伝わって行うようにしており、この自然落下84の際においても、リッチ溶液12A中の酸素が分離される。
 そして、貯留部83で貯留された際、酸素が脱気されたリッチ溶液12Aは、リッチ溶液ポンプ51により昇圧され、再生塔14の頂部側に供給される。
 この結果、リッチ溶液12Aを、再生塔14側に送液するリッチ溶液供給ラインL11に、滞留部82を有する脱気層80を設けているので、リッチ溶液12A中に巻き込まれた気泡を吸収塔13から再生塔14に送給する際に確実に除去することができるため、前記再生塔14から回収されたCO2ガス中の酸素濃度を低減することができる。
 すなわち、従来技術のような旋回形式のサイクロン等での脱気の場合には、旋回流の発生により、脱気した後に再度気泡を巻き込むので、完全な脱気をすることができなかったが、本実施例では、滞留部82で所定時間かけて浮上分離させることで、脱気が確実になされる。
 さらに、酸素を含まないガス85で、内部をパージするので、たとえ落下の際に、気泡が発生しても酸素が含まないガスの巻き込みであるので、酸素濃度の再巻き込みが発生することが防止される。
 本実施例では、仕切壁81を一枚設け、滞留部82を一つとしているが、本発明はこれに限定されるものではなく、仕切壁81を二枚以上設け、滞留部82を二つ以上として、滞留時間を稼ぐようにし、リッチ溶液12Aからの気泡の浮上分離効率を向上させるようにしてもよい。
 ここで、滞留部82でのリッチ溶液12Aの滞留時間としては、例えば30分から2時間程度とし、リッチ溶液12A中の残存している気泡を浮上分離させるようにしている。
 また、脱気槽80内には図示しないパージガス導入手段から酸素を含まないガス85を内部に導入し、脱気槽80内を略無酸素状態としている。
 酸素を含まないガス85としては、例えば酸素濃度1%未満のガスや窒素ガスや、回収されたCO2ガスを用いるようにしている。
 酸素を含まないガス85は、リッチ溶液12Aと向流接触するように、貯留部83側から導入し、滞留部82の上方から排気ガス86として外部に排出するようにしている。
 なお、前記再生塔14の頂部側から塔内部に放出されたリッチ溶液12Aは、その塔底部からの水蒸気による加熱により、大部分のCO2を放出する。再生塔14内で一部または大部分のCO2を放出したCO2吸収液12は「セミリーン溶液」と呼称される。この図示しないセミリーン溶液は、再生塔14の底部に流下する頃には、ほぼ全てのCO2が除去されたリーン溶液12Bとなる。このリーン溶液12Bは循環ラインL20に介装された再生加熱器61で飽和水蒸気62により、加熱されて得られる。加熱後の飽和水蒸気62は水蒸気凝縮水63となる。水蒸気凝縮水63は排出ラインL23から外部へ排出される。
 一方、再生塔14の塔頂部14aからは塔内においてリッチ溶液12A及び図示しないセミリーン溶液から逸散された水蒸気を伴ったCO2ガス41が放出される。
 そして、水蒸気を伴ったCO2ガス41がガス排出ラインL21により導出され、ガス排出ラインL21に介装された冷却部42により水蒸気が凝縮され、分離ドラム43にて凝縮水44が分離される。その後、CO2ガス45が分離ドラム43から系外に放出されて、別途圧縮回収等の後処理がなされる。
 分離ドラム43にて分離された凝縮水44は凝縮水ラインL22に介装された凝縮水循環ポンプ46にて再生塔14の上部に供給される。
 なお、図示していないが、一部の凝縮水44は循環洗浄水ラインL1に供給され、出口ガス11Cに同伴するCO2吸収液12の洗浄水20として用いるようにしてもよい。
 再生されたCO2吸収液(リーン溶液12B)はリーン溶液供給ラインL12を介してリーン溶液ポンプ54により吸収塔13側に送られ、CO2吸収液12として循環利用される。この際、リーン溶液12Bは、冷却部55により所定の温度まで冷却されて、CO2吸収部13A内にノズル56を介して、供給されている。
 よって、CO2吸収液12は、吸収塔13と再生塔14とを循環する閉鎖経路を形成し、吸収塔13のCO2吸収部13Aで再利用される。なお、必要に応じて図示しない補給ラインによりCO2吸収液12は供給され、また必要に応じて図示しないリクレーマによりCO2吸収液12を再生するようにしている。
 なお、CO2吸収塔13に供給されるCO2含有排ガス11Aは、その前段側に設けられた冷却塔70において、冷却水71により冷却され、その後吸収塔13内に導入される。なお、冷却水71の一部も吸収塔13の洗浄水20として水洗部21の頂部に供給され、脱炭酸排ガス11Bに同伴するCO2吸収液12の洗浄に用いる場合もある。なお、符号72は循環ポンプ、73は冷却部、L30は循環ラインを図示する。
 本実施例では、滞留部82を有する脱気槽80を設けているので、吸収塔13の内部で巻き込まれた酸素を含む気泡を、自然浮上分離により、確実に除去することができる。この結果、前記再生塔14から回収されたCO2ガス中の酸素濃度を低減することができる。
 本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図3は、実施例2に係るCO2回収装置の概略図である。
 図3に示すように、本実施例に係るCO2回収装置10Bは、図1に示す実施例1のCO2回収装置10Aにおいて、さらに脱気槽80の後流側に、脱気塔87を設けている。
 この脱気塔87は、排気ラインL13に減圧ポンプ88を有しており、脱気塔87内を負圧状態として、リッチ溶液12A中に残存する酸素をさらに脱気させるようにしている。
 この脱気塔87で、酸素がさらに脱気されたリッチ溶液12Aは、リッチ溶液ポンプ51により昇圧され、再生塔14の頂部側に供給される。
 本実施例では、減圧手段により内部を減圧状態とすることができる脱気塔87を、脱気槽80の後流側に設けているので、脱気槽80で脱気されずに残留する気泡を確実に除去することができるため、実施例1に較べて、前記再生塔14から回収されたCO2ガス中の酸素濃度をさらに低減することができる。
 例えば、脱気槽80の設置により、リッチ溶液12A中の酸素濃度が10ppm程度の場合、脱気塔87を設置することにより、例えば0.1ppm以下にまで酸素濃度を低減することが可能となる。符号89はリッチ溶液12Aを脱気槽80から脱気塔87へ送液するポンプを図示する。
 本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図4は、実施例3に係るCO2回収装置の概略図である。
 図4に示すように、本実施例に係るCO2回収装置10Cは、図3に示す実施例2のCO2回収装置10Bにおいて、吸収塔13と脱気槽80と間に、塔底部13bから抜出したリッチ溶液12Aを加温する熱交換部91を設けている。
 この熱交換部91において、抜出されたリッチ溶液12Aを所定温度に加温することで、リッチ溶液12Aの粘度を低減させるようにしている。この結果、粘度が低下したリッチ溶液12Aからの気泡の浮上分離効率が向上する。
 ここで、CO2回収装置10Cの運転条件や吸収液の種類により、塔底部13bから抜出されるリッチ溶液12Aの温度は異なるが、熱交換部91により、加温されたリッチ溶液の温度が例えば50~60℃の間となるように加温するようにするのが好ましい。
 これは、50℃以下では、白濁状態となり、気泡の浮上分離が好ましくなく、一方60℃を超える場合には、リッチ溶液12AからCO2の放出が生じるので好ましくないからである。
 熱交換部91を設けて、リッチ溶液12Aを所定温度に加温することで、液の粘度が低下する。この結果、脱気槽80の滞留部82内で所定時間滞留する際において、内部に残存する気泡の移動速度が速くなり、脱気効率がさらに向上する。
 なお、本実施例では、脱気塔87を設置しているが、脱気塔87を設置しないようにしてもよい。
 熱交換部91での第1~第5の熱交換媒体A1-5は、CO2回収装置10C内で発生する熱を用いることができる。
 本実施例では、5箇所から抜出した熱を用いて、熱交換するようにしている。
 熱交換部91に供給する第1の熱交換媒体A1としては、リーン溶液供給ラインL12のリーン溶液ポンプ54の後流側から抜出し、熱交換後の熱交換媒体B1は、リーン溶液供給ラインL12の抜き出した側より後流側に戻すようにしている。
 熱交換部91に供給する第2の熱交換媒体A2としては、循環水洗浄ラインL1の循環ポンプ25の後流側から抜出し、熱交換後の熱交換媒体B2は、循環水洗浄ラインL1の抜き出した側より後流側に戻すようにしている。
 熱交換部91に供給する第3の熱交換媒体A3としては、ガス排出ラインL21の冷却部42の前流側から抜出し、熱交換後の熱交換媒体B3は、ガス排出ラインL21の抜き出した側より後流側に戻すようにしている。
 熱交換部91に供給する第4の熱交換媒体A4としては、水蒸気凝縮水63の排出ラインL23から抜出し、熱交換後の熱交換媒体B4は、水蒸気凝縮水63の排出ラインL23の抜き出した側より後流側に戻すようにしている。
 熱交換部91に供給する第5の熱交換媒体A5としては、CO2含有排ガス11Aを導入するガス導入ラインL0から抜出し、熱交換後の熱交換媒体B5は、ガス導入ラインL0の抜き出した側より後流側に戻すようにしている。
 10A~10C CO2回収装置
 11A CO2含有排ガス
 11B 脱炭酸排ガス
 12 CO2吸収液
 12A リッチ溶液
 12B リーン溶液
 13 CO2吸収塔
 13A CO吸収部
 20 洗浄水
 21 水洗部
 80 脱気槽
 87 脱気塔
 91 熱交換部

Claims (9)

  1.  排ガスと塩基性アミン化合物吸収液とを接触させて前記排ガス中のCOを前記塩基性アミン化合物吸収液に吸収させるCO吸収部と、前記CO吸収部でCOが除去された脱炭酸排ガスと洗浄水とを接触させて前記脱炭酸排ガスに同伴する同伴物質を除去する水洗部とを有するCO吸収塔と、
     前記CO2を吸収したリッチ溶液からCO2を分離して前記塩基性アミン化合物吸収液を再生してリーン溶液とする吸収液再生塔と、
     前記CO2が除去された前記リーン溶液を前記CO2吸収塔で前記塩基性アミン化合物吸収液として再利用するCO2回収装置であって、
     前記CO2吸収塔から前記吸収液再生塔へリ前記ッチ溶液を供給するリッチ溶液供給ラインに介装され、前記リッチ溶液中の酸素を除去する滞留部を有する脱気槽を有することを特徴とするCO回収装置。
  2.  請求項1において、
     前記脱気槽は、前記リッチ溶液中の酸素を浮上分離により除去する滞留部と、
     滞留部でリッチ溶液の酸素を除去したリッチ溶液を、壁面に沿って落下させる仕切壁と、
     前記仕切壁に沿って落下した酸素が除去されたリッチ溶液を貯留する貯留部とを有することを特徴とするCO回収装置。
  3.  請求項1又は2において、
     前記脱気槽内に酸素を含まないガスをパージするパージガス導入手段を有することを特徴とするCO回収装置。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記脱気槽の後流側に設けられ、酸素を除去したリッチ溶液をさらに減圧状態で脱気する脱気塔を有することを特徴とするCO回収装置。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記脱気槽の前流側に設けられ、前記リッチ溶液を加温する熱交換部を有することを特徴とするCO回収装置。
  6.  CO2を含有するCO2含有排ガスと塩基性アミン化合物とを接触させてCO2を除去するCO2吸収塔と、前記CO2を吸収した前記塩基性アミン化合物から前記CO2を分離してCO2吸収液を再生する吸収液再生塔とを用い、前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔で再利用するCO2回収方法であって、
     リッチ溶液中を所定時間滞留させつつ、前記リッチ溶液中の酸素を浮上分離により除去することを特徴とするCO回収方法。
  7.  請求項6において、
     前記酸素を除去したリッチ溶液を仕切壁に沿って、流下させつつ溶存する酸素を除去し、貯留部で貯留することを特徴とするCO回収方法。
  8.  請求項6又は7において、
     前記リッチ溶液中の酸素を除去したリッチ溶液中に残存する酸素を減圧条件でさらに除去することを特徴とするCO回収方法。
  9.  請求項6乃至8のいずれか一つにおいて、
     滞留処理の前に、前記リッチ溶液を加温することを特徴とするCO回収方法。
PCT/JP2013/070810 2012-08-09 2013-07-31 Co2回収装置およびco2回収方法 WO2014024757A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/420,248 US9901873B2 (en) 2012-08-09 2013-07-31 CO2 recovery device and CO2 recovery method
NO13827456A NO2883594T3 (ja) 2012-08-09 2013-07-31
AU2013300659A AU2013300659B2 (en) 2012-08-09 2013-07-31 CO2 recovery device and CO2 recovery method
EP13827456.8A EP2883594B1 (en) 2012-08-09 2013-07-31 Co2 recovery device and co2 recovery method
CA2881159A CA2881159C (en) 2012-08-09 2013-07-31 Co2 recovery device and co2 recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177389A JP6016513B2 (ja) 2012-08-09 2012-08-09 Co2回収装置およびco2回収方法
JP2012-177389 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024757A1 true WO2014024757A1 (ja) 2014-02-13

Family

ID=50067988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070810 WO2014024757A1 (ja) 2012-08-09 2013-07-31 Co2回収装置およびco2回収方法

Country Status (7)

Country Link
US (1) US9901873B2 (ja)
EP (1) EP2883594B1 (ja)
JP (1) JP6016513B2 (ja)
AU (1) AU2013300659B2 (ja)
CA (1) CA2881159C (ja)
NO (1) NO2883594T3 (ja)
WO (1) WO2014024757A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938340B2 (ja) * 2012-12-10 2016-06-22 株式会社東芝 二酸化炭素回収システムおよびその運転方法
WO2015056272A2 (en) * 2013-10-09 2015-04-23 Reliance Industries Limited A multi-compression system and process for capturing carbon dioxide
CA2981366A1 (en) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Device and method for separating carbon dioxide from a gas flow
JP6718419B2 (ja) * 2017-08-31 2020-07-08 フタバ産業株式会社 二酸化炭素施用装置
JP7530163B2 (ja) * 2019-07-30 2024-08-07 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
CN110749778A (zh) * 2019-10-21 2020-02-04 马鞍山钢铁股份有限公司 一种纯水脱气氢电导率的在线测量方法及测量装置
CN111579348A (zh) * 2020-05-12 2020-08-25 南京华天科技发展股份有限公司 一种液体脱气方法及脱气电导装置与系统
WO2024008336A1 (en) * 2022-07-07 2024-01-11 Nuovo Pignone Tecnologie - S.R.L. Ultrasonic degasification for carbon capture solvents
CN115501746B (zh) * 2022-08-24 2024-04-19 常熟理工学院 一种炼油厂烟气脱碳协同转化炼厂气的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671109A (ja) * 1991-10-16 1994-03-15 A Ahlstroem Oy 脱気槽
JP2001025628A (ja) * 1999-06-10 2001-01-30 Praxair Technol Inc 希薄燃料から二酸化炭素を回収するためのシステム
JP2002126439A (ja) 2000-10-25 2002-05-08 Kansai Electric Power Co Inc:The アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP2007137725A (ja) * 2005-11-18 2007-06-07 Toshiba Corp 二酸化炭素回収システムおよび二酸化炭素回収方法
JP2010253370A (ja) 2009-04-23 2010-11-11 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2回収方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790096A (fr) * 1971-10-21 1973-04-13 Mobil Oil Corp Reduction de la corrosion des compartiments destines a la cargaison desnavires petroliers
JPS5539210A (en) * 1978-09-11 1980-03-19 Hitachi Ltd Degassing apparatus
JPS58190500U (ja) * 1982-06-14 1983-12-17 株式会社クボタ 熱処理汚泥の脱気装置
JPS5986205U (ja) * 1982-11-30 1984-06-11 石川島播磨重工業株式会社 破泡装置
JP2758448B2 (ja) * 1989-08-03 1998-05-28 三菱製紙株式会社 抄紙原料の脱気タンク
DE4401183C2 (de) 1993-02-24 1996-07-11 Dbf Dienstleistungen Fuer Beha Vorrichtung zur FCKW-Öl-Trennung
JP3105725B2 (ja) * 1993-12-27 2000-11-06 株式会社日本コンラックス 紙幣識別装置
US6071484A (en) 1997-01-24 2000-06-06 Mpr Services, Inc. Process for treating gas with ultra-lean amine
FI103519B1 (fi) * 1998-01-30 1999-07-15 Valmet Corp Laite kaasun poistamiseksi massakuituja sisältävästä vesisuspensiosta
DE602006011899D1 (de) * 2005-07-18 2010-03-11 Union Engineering As Verfahren zur rückgewinnung von hochreinem kohlendioxid aus einer stickstoffverbindungen enthaltenden gasförmigen quelle
US7588631B2 (en) * 2006-02-15 2009-09-15 The Western States Machine Company Vacuum deaerator
SE531100C2 (sv) 2007-03-26 2008-12-16 Hydac Fluidteknik Ab Tankenhet med inbyggd apparat för avgasning
WO2010044956A1 (en) 2008-10-14 2010-04-22 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream
JP5812661B2 (ja) * 2011-04-21 2015-11-17 三菱重工業株式会社 二酸化炭素回収システム
JP2012236166A (ja) * 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671109A (ja) * 1991-10-16 1994-03-15 A Ahlstroem Oy 脱気槽
JP2001025628A (ja) * 1999-06-10 2001-01-30 Praxair Technol Inc 希薄燃料から二酸化炭素を回収するためのシステム
JP2002126439A (ja) 2000-10-25 2002-05-08 Kansai Electric Power Co Inc:The アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP2007137725A (ja) * 2005-11-18 2007-06-07 Toshiba Corp 二酸化炭素回収システムおよび二酸化炭素回収方法
JP2010253370A (ja) 2009-04-23 2010-11-11 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2回収方法

Also Published As

Publication number Publication date
AU2013300659A1 (en) 2015-02-26
JP2014034014A (ja) 2014-02-24
EP2883594A1 (en) 2015-06-17
EP2883594A4 (en) 2016-05-11
CA2881159C (en) 2017-01-31
US9901873B2 (en) 2018-02-27
US20150217227A1 (en) 2015-08-06
NO2883594T3 (ja) 2018-04-21
CA2881159A1 (en) 2014-02-13
AU2013300659B2 (en) 2016-06-09
EP2883594B1 (en) 2017-11-22
JP6016513B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6016513B2 (ja) Co2回収装置およびco2回収方法
JP5507584B2 (ja) アミン放出物制御のための方法およびプラント
CA2684156C (en) Co2 recovering apparatus
JP4875522B2 (ja) Co2回収装置及び廃棄物抽出方法
WO2010122830A1 (ja) Co2回収装置及びco2回収方法
JP5968159B2 (ja) Co2回収装置およびco2回収方法
JP2012236166A (ja) Co2回収装置およびco2回収方法
WO2012176430A1 (ja) 燃焼排ガス処理システムおよび燃焼排ガス処理方法
WO2013039041A1 (ja) Co2回収装置およびco2回収方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
WO2015107958A1 (ja) リクレーミング装置及び方法、co2又はh2s又はその双方の回収装置
WO2010103392A1 (en) Flue gas treatment system and the method using amonia solution
KR101726162B1 (ko) 산성가스 포집을 위한 탈거장치의 에너지원 재사용 방법
JP2016215105A (ja) 二酸化炭素回収装置および二酸化炭素回収方法
JP6004821B2 (ja) Co2回収装置およびco2回収方法
JP5237204B2 (ja) Co2回収装置及び方法
JP6581768B2 (ja) Co2回収装置およびco2回収方法
JP6845744B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP2011000528A (ja) Co2回収装置及び方法
JP6811759B2 (ja) Co2回収装置およびco2回収方法
JP5726589B2 (ja) 二酸化炭素回収システム
Oishi et al. CO 2 recovery device and CO 2 recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2881159

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14420248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013827456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013827456

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013300659

Country of ref document: AU

Date of ref document: 20130731

Kind code of ref document: A