WO2014024358A1 - トンネル磁気抵抗素子の製造装置 - Google Patents
トンネル磁気抵抗素子の製造装置 Download PDFInfo
- Publication number
- WO2014024358A1 WO2014024358A1 PCT/JP2013/003014 JP2013003014W WO2014024358A1 WO 2014024358 A1 WO2014024358 A1 WO 2014024358A1 JP 2013003014 W JP2013003014 W JP 2013003014W WO 2014024358 A1 WO2014024358 A1 WO 2014024358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- substrate transfer
- oxidation
- transfer device
- sputtering
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 323
- 230000003647 oxidation Effects 0.000 claims abstract description 138
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 138
- 238000004544 sputter deposition Methods 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 44
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 40
- 229910001882 dioxygen Inorganic materials 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000007800 oxidant agent Substances 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 239000000470 constituent Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 abstract description 20
- 238000011109 contamination Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 82
- 238000011282 treatment Methods 0.000 description 60
- 239000002184 metal Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000007789 gas Substances 0.000 description 28
- 238000001179 sorption measurement Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 12
- 230000005415 magnetization Effects 0.000 description 11
- 238000000137 annealing Methods 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 6
- 229910019236 CoFeB Inorganic materials 0.000 description 5
- 238000001552 radio frequency sputter deposition Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67184—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67173—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the present invention relates to a tunnel magnetoresistive element manufacturing apparatus.
- MRAM Magnetic random access memory
- TMR tunnel magnetoresistance effect
- In-plane in-plane magnetization type
- Perpendicular perpendicular magnetization type
- Non-Patent Document 1 sputtering film formation (film formation on an opposing substrate by sputtering a target made of a desired film formation material ( The method (hereinafter also simply referred to as sputtering) is widely used (Patent Document 1).
- Patent Document 1 shows a configuration in which four sputtering chambers each having three targets are connected to one substrate transfer chamber including a substrate introduction chamber by oxidation, heating and cleaning (etching).
- the substrate introduction chamber continuously carries the substrate into the transfer chamber, there is a problem that the ultimate vacuum is deteriorated and impurities in the atomic layer order are adsorbed on the substrate in the transfer chamber.
- impurities are adsorbed to the interface, there is a problem that in the metal laminated film structure, crystal defects are generated and characteristics are deteriorated.
- the present invention has been made with the above-described problem as an opportunity, and an object thereof is to provide an apparatus for manufacturing a TMR element capable of reducing the mixing of impurities into a magnetic film.
- one aspect of the present invention is a tunnel magnetoresistive element manufacturing apparatus, which is connected to a load lock device for carrying in / out a substrate to / from the outside, and the load lock device.
- the present invention contamination of impurities into the magnetic film can be reduced. Therefore, in the formation of a magnetoresistive element structure that requires the formation of a larger number of laminated films, it is possible to reduce the occurrence of crystal defects and deterioration of characteristics in the metal laminated film structure, and to improve throughput and productivity.
- FIG. 1 shows an example of the configuration of a TMR element manufacturing apparatus 400 according to the present embodiment.
- the manufacturing apparatus 400 includes a robot arm 427, a transfer apparatus 403 to which at least one substrate processing apparatus is connected, and a transfer apparatus 401 for carrying a substrate into the transfer apparatus 403 or carrying out a process-completed substrate.
- the manufacturing apparatus 400 may include placement chambers 404A and 404B for carrying the substrate in and out of the transfer apparatus 405 from the transfer apparatus 403.
- the loading / unloading chambers 402A and 402B are so-called load lock (LL) chambers for loading / unloading the substrate to / from the outside of the manufacturing apparatus 400, and each of the chambers has an exhaust device for evacuating the inside of the device and an atmospheric pressure.
- the gas introduction mechanism is connected.
- gate valves 415A and 415B are provided between the carry-in / out chambers 402A and 402B and the transfer device 403, respectively.
- Exhaust devices 403a and 405a for exhausting the inside of the device to a vacuum are connected to the transfer device 403 and the transfer device 405, respectively.
- the exhaust devices 403a and 405a various exhaust devices capable of obtaining a degree of vacuum necessary for the present embodiment, such as a turbo molecular pump and a cryopump, can be used.
- the degree of vacuum in the transfer device 405 is preferably higher than the degree of vacuum in the transfer device 403.
- a gate valve is provided between the transfer device 403 and the transfer device 405.
- the placement chambers 404A and 404B are provided between the transfer device 403 and the transfer device 405, between the placement chambers 404A and 404B and the transfer device 405, or between the placement chambers 404A and 404B and the transfer device 403, By providing a gate valve in at least one of them, the space between the transfer device 403 and the transfer device 405 is separated, and the transfer device 405 can maintain a high degree of vacuum.
- two placement chambers 404A and 404B are provided between the transfer device 403 and the transfer device 405, and a gate is provided between each of the transfer device 403, the placement chambers 404A and 404B, and the transfer device 405.
- Valves 420A, 420B, 421A, and 421B are provided so that the transfer device 405 can be maintained at a higher vacuum.
- the gate valves 420A and 420B and the gate valves 421A and 421B located between the transfer device 403 and the transfer device 405 are not simultaneously opened and closed, so that the degree of vacuum generated when the substrate is loaded into the transfer device 405 is further suppressed. Is done. Thereby, the vacuum degree of the conveying apparatus 405 can be kept more stable and favorable.
- the manufacturing apparatus 400 forms an etching apparatus 406 for removing a natural oxide film and impurities adhering to the substrate surface and various metal films of the TMR element before forming the TMR element.
- a sputtering apparatus a sputtering apparatus (5PVD) 407 having five sputtering target cathodes is further provided.
- the manufacturing apparatus 400 further includes a sputtering apparatus (2PVD) 408 having two sputtering target cathodes and an oxidizing apparatus 409 for oxidizing a metal film.
- the etching apparatus 406 is connected to the transfer apparatus 403, and the sputtering apparatus (5PVD) 407 is connected to the transfer apparatus 403 and the transfer apparatus 405.
- a sputtering device (2PVD) 408 is connected to the transfer device 405.
- the connection of the sputtering apparatus (5PVD) 407 or sputtering apparatus (2PVD) 408, which is a sputtering apparatus provided with a plurality of sputtering cathodes, to the transfer apparatus 403 and the transfer apparatus 405 is appropriately changed according to the substrate processing process to be performed. Is possible.
- the oxidation device 409 is connected to the transport device 405.
- a gate valve 418 is provided between the etching device 406 and the transfer device 403, and gate valves 416 and 417 are provided between the sputtering device (5PVD) 407 and the transfer device 403.
- a gate valve 422 is provided between the sputtering device 407 and the transfer device 405, and a gate valve 424 is provided between the sputtering device (2PVD) 408 and the transfer device 405, and the oxidation device 409. And a transfer device 405 are provided with a gate valve 423.
- the manufacturing apparatus 400 includes a transfer device 405 that is connected to a transfer device 403 that is in contact with an LL chamber that carries in and out a substrate and a transfer device 405 that is connected via a gate valve, in order to suppress impurity adsorption to the interface due to deterioration in vacuum. Provided. For this reason, the conveying device 405 can be kept in an ultrahigh vacuum.
- the oxidizer 409 is connected to the transfer device 405, so that it is possible to suppress the adsorption of impurities particularly when forming or treating a film that contributes to element characteristics. Generation
- the oxidizer 409 is connected to the transfer device 405 that is not directly connected to the LL chamber for taking in and out the substrate to the outside but connected to the LL chamber via another transfer device (403). Yes. Therefore, the degree of vacuum of the reaction apparatus 405 itself can be increased, and the oxidation apparatus 409 that is required to have a very high degree of vacuum is connected to the transfer apparatus 405 in which ultra-vacuum is established. As a result, the inside of the oxidation apparatus 409 can be kept in an ultra-vacuum even if continuous film formation is performed on a large number of substrates. Therefore, as described above, in the oxidation treatment in the manufacture of the TMR element, it is possible to reduce the adsorption of impurities to the substrate (film that has been formed).
- the sputtering apparatus 1 includes a processing container 2 that can be evacuated, an exhaust chamber 8 provided adjacent to the processing container 2 via an exhaust port, and an exhaust device 48 that exhausts the inside of the processing container 2 via the exhaust chamber 8. It is equipped with.
- a target holder 6 that holds the target 4 via a back plate 5 is provided in the processing container 2.
- a target shutter 14 is installed so as to shield the target holder 6.
- the target shutter 14 has a rotating shutter structure.
- the target shutter 14 is provided with a target shutter drive mechanism 33 for opening and closing the target shutter 14.
- the processing container 2 has an inert gas introduction system 15 for introducing an inert gas (Ar, etc.) into the processing container 2 and a reactive gas introduction for introducing a reactive gas (oxygen, nitrogen, etc.).
- a system 17 and a pressure gauge 44 for measuring the pressure in the processing vessel 2 are provided.
- a gas supply device for supplying gas is connected to each introduction system.
- a pipe for introducing gas, a mass flow controller (MFC) for controlling the flow rate, and the like are provided and controlled by a control device (for example, the control device shown in FIG. 13).
- MFC mass flow controller
- a reactive gas supply device (gas cylinder) 18 for supplying a reactive gas is connected to the reactive gas introduction system 17.
- the reactive gas introduction system 17 has piping for introducing a reactive gas, an MFC for controlling the flow rate of an inert gas, and valves for shutting off and starting the gas flow. is doing.
- the reactive gas introduction system 17 may have a pressure reducing valve, a filter or the like as necessary. With such a configuration, the reactive gas introduction system 17 can stably flow a gas flow rate designated by a control device (not shown).
- the inner surface of the processing container 2 is electrically grounded.
- a cylindrical shield 40 that is electrically grounded is provided on the inner surface of the processing container 2 between the target holder 6 and the substrate holder 7.
- the exhaust chamber 8 connects between the processing container 2 and the exhaust device 48.
- a magnet 13 for realizing magnetron sputtering is disposed behind the target 4. The magnet 13 is held by the magnet holder 3 and can be rotated by a magnet holder rotating mechanism (not shown).
- the target holder 6 is connected to a power source 12 for applying sputtering discharge power.
- the sputtering apparatus 1 shown in FIG. 15 includes a DC power supply, but may include an RF power supply.
- the target holder 6 is insulated from the processing container 2 having the ground potential by an insulator 34.
- a back plate 5 installed between the target 4 and the target holder 6 holds the target 4.
- a target shutter 14 is installed so as to cover the target holder 6.
- the target shutter 14 functions as a shielding member for closing the space between the substrate holder 7 and the target holder 6 or opening the space between the substrate holder 7 and the target holder 6.
- a shielding member having a ring shape (hereinafter also referred to as “cover ring 21”) is provided on the surface of the substrate holder 7 and on the outer edge side (outer peripheral portion) of the mounting portion of the substrate 10.
- the cover ring 21 prevents or reduces the adhesion of sputtered particles to a place other than the film formation surface of the substrate 10 placed on the substrate holder 7.
- the substrate holder 7 is provided with a substrate holder driving mechanism 31 for moving the substrate holder 7 up and down or rotating at a predetermined speed.
- a substrate shutter 19 is disposed between the substrate holder 7 and the target holder 6 in the vicinity of the substrate 10. The shutter 19 is supported by a substrate shutter support member 20 so as to cover the surface of the substrate 10.
- the substrate shutter drive mechanism 32 rotates and translates the substrate shutter support member 20 to insert the shutter 19 between the target 4 and the substrate 10 at a position near the surface of the substrate 10 (closed state). By inserting the shutter 19 between the target 4 and the substrate 10, the space between the target 4 and the substrate 10 is shielded. Further, when the shutter 19 is retracted from between the target holder 6 (target 4) and the substrate holder 7 (substrate 10) by the operation of the substrate shutter drive mechanism 32, the target holder 6 (target 4) and the substrate holder 7 (substrate 10). Is opened (open state).
- the substrate shutter drive mechanism 32 drives the shutter 19 to open and close in order to enter a closed state that shields between the substrate holder 7 and the target holder 6 or an open state that opens between the substrate holder 7 and the target holder 6. .
- the shutter 19 is stored in the shutter storage unit 23.
- the shutter housing portion 23, which is the retreating place of the shutter 19 be accommodated in the conduit of the exhaust path to the exhaust device 48 for high vacuum exhaust, because the device area can be reduced.
- FIG. 2 shows an example of the configuration of a TMR element manufacturing apparatus 500 according to this embodiment.
- the manufacturing apparatus 500 includes a robot arm 527, a transfer apparatus 403 to which at least one substrate processing apparatus is connected, and a transfer for loading a substrate into the transfer apparatus 503 or for unloading a substrate that has been processed.
- a transfer apparatus 505 having an apparatus 501, carry-in / out chambers 502 A and 502 B, and a robot arm 528, and a plurality of substrate processing apparatuses connected thereto, and a placement chamber 504 A for carrying a substrate into and out of the transfer apparatus 505 from the transfer apparatus 503. , 504B.
- Exhaust devices 503a and 505a for exhausting the inside of the apparatus to a vacuum are connected to the transfer device 503 and the transfer device 505, respectively.
- various exhaust devices capable of obtaining a degree of vacuum necessary for the present embodiment such as a turbo molecular pump and a cryopump, can be used.
- gate valves 520A, 520B, 521A, and 521B are provided between the placement chambers 504A and 504B and the transfer device 505, and between the placement chambers 504A and 504B and the transfer device 503, respectively.
- the transfer device 505 is maintained at a high vacuum.
- gate valves 515A and 515B are provided between the carry-in / out chambers 502A and 502B and the transfer device 503, respectively.
- the manufacturing apparatus 500 includes an etching apparatus 506 for removing a natural oxide film and impurities adhering to the substrate surface and four metal films for forming various metal films of the TMR element before forming the TMR element. And a sputtering apparatus (4PVD) 507 provided with a sputtering cathode. Furthermore, the manufacturing apparatus 500 includes an oxidation apparatus 508 for oxidizing the metal film.
- a gate valve 519 is provided between the etching apparatus 506 and the transfer apparatus 503, and gate valves 516, 517, and 518 are provided between the sputtering apparatus (4PVD) 507 and the transfer apparatus 503. .
- Gate valves 523, 524, 525, and 526 are provided between the sputtering apparatus (4PVD) 507 and the transfer apparatus 505, and the gate valve 522 is provided between the oxidation apparatus 508 and the transfer apparatus 505. Is provided. Since the transfer device 505 is connected to the LL chamber via the transfer device 503, the inside of the transfer device 505 can be maintained at a high vacuum. Therefore, when a metal film is formed by the sputtering apparatus 507 connected to the transfer apparatus 505 and then the oxidation process is performed by the oxidation apparatus 508, the adsorption of impurities on the substrate surface when the substrate is transferred in the transfer apparatus 505 is suppressed. it can.
- a metal oxide film having good uniformity on the atomic layer order can be formed.
- the metal laminated film is formed by the sputtering device 507 connected to the transfer device 505 and further formed by another sputtering device 507 connected to the transfer device 505, since the impurity adsorption at the interface is small, A metal laminated film with few lattice defects can be manufactured.
- the placement chambers 504A and 504B may have a cryopump. By connecting a cryopump to the mounting chambers 504A and 504B, the degree of vacuum of the transfer device 505 can be kept more stable and favorable.
- the moisture partial pressure in the transfer device 505 can be lowered, and impurities at the interface of the metal laminated film can be reduced. It is possible to suppress the formation of a TMR element having a high resistance change rate.
- the floor area occupied by the manufacturing apparatus 500 is reduced and the degree of vacuum of the substrate transfer apparatus 505 is improved by disposing the oxidation apparatus 508 at a position adjacent to the substrate placement chambers 504A and 504A with respect to the transfer apparatus 505. It becomes possible to make it.
- the oxidation apparatus 409 is connected to the transfer apparatus 405 at a position far from the substrate transfer apparatus 404.
- a sputtering apparatus is further added to the substrate transfer apparatus 405 as necessary.
- the sputtering apparatus used here is a sputtering apparatus equipped with a plurality of target cathodes in order to form a multilayer laminated film in a consistent vacuum.
- a multilayer laminated film can be formed by using a cluster type manufacturing apparatus in which a necessary number of sputtering apparatuses each having a plurality of target cathodes are connected.
- the sputtering apparatus is a sputtering apparatus provided with a large number of sputtering cathodes, and a multilayer laminated film can be suitably produced by using a large number of sputtering targets.
- the sputtering apparatus in which a large number of sputtering targets are arranged is generally large, when the sputtering apparatus is arranged at a position adjacent to the substrate mounting chamber 404A or 404B, the sputtering apparatus 407 provided on the substrate transfer apparatus 403 side.
- the sputtering apparatus 407 provided on the substrate transfer apparatus 403 side.
- the floor area of the apparatus increases, and it is necessary to increase the size of at least one of the transfer device 403, the mounting chambers 404A and 404B, and the transfer device 405, and the degree of vacuum may be easily reduced.
- each of the sputtering devices 407 connected to the transfer device 403 and the transfer device 405 includes an exhaust chamber and an exhaust device on the side opposite to the gate valve connected to the transfer device in each sputtering device 407. .
- the sputtering apparatus 507 having a plurality of targets is arranged with a small oxidation apparatus 508 adjacent to the substrate transfer apparatus 505, thereby connecting the sputtering apparatus connected to the transfer apparatus 503.
- the interval between the transfer device 503 and the transfer device 505 necessary for avoiding contact with 507 can be reduced. For this reason, the enlargement of each conveyance device can be prevented, and the degree of vacuum in each conveyance device can be favorably maintained.
- robot arms 527 and 528 are provided as transfer means at substantially the center of each transfer apparatus.
- the robot arms 527 and 528 each have a rotation shaft at substantially the center of the transfer device, and transfer the substrate by extending and contracting the arm provided on the rotation shaft.
- the robot arms 527 and 528 as transfer means in the present embodiment have two arms, and these arms may rotate as a unit, or may be configured to be independently rotatable.
- the connection surface of each transfer apparatus and each mounting chamber in the transfer device is perpendicular to the direction of expansion and contraction of the arm, and is configured to make the transfer port of the substrate in the connection surface as small as possible. With such a configuration, the atmosphere in the transfer device 505 can be maintained at a higher vacuum. Further, by using a pivotable arm whose central axis rotates, dust generation is suppressed and high vacuum is easily maintained as compared with a slide-type arm whose central axis slides inside the transfer device.
- a total of seven loading chambers and processing devices are connected to the transfer device 505 and a total of eight are connected to the transfer device 503 around the rotation axis of the transfer means.
- a manufacturing apparatus using a transfer device having a polygonal surface with five or more corners connected to each device around the rotation axis as in the present embodiment it is provided next to the mounting chamber of the transfer device 503 in particular. Contact between the processed apparatus and the processing apparatus provided adjacent to the mounting chamber of the transfer apparatus 505 is likely to be a problem.
- a relatively small oxidizer among the processing apparatuses is provided in the transfer device 505 adjacent to the mounting chamber 504A or 504B, thereby suppressing an increase in size of the manufacturing apparatus, and in each transfer device.
- the vacuum degree can be maintained well.
- FIG. 3 shows the configuration of a TMR element manufacturing apparatus 530 according to this embodiment.
- the manufacturing apparatus 530 has a structure in which one of the sputtering apparatuses 507 provided in the manufacturing apparatus 500 of FIG.
- the crystallinity of the barrier layer, the free layer and the reference layer can be improved, and the resistance change rate can be improved. This is because the metal film surface formed by sputtering is transferred to the annealing apparatus 510 without using the transfer apparatus 505 maintained at a high degree of vacuum, and the process is performed.
- the annealing apparatus 510 has a substrate cooling function, and can cool the substrate immediately after heating. When the next sputtering process is performed while the substrate is at a high temperature, the sputtered metal film diffuses, and the flatness at the atomic layer level may be deteriorated, resulting in deterioration of characteristics. Therefore, after the substrate heat treatment, it may be necessary to cool the substrate, and although not shown in the figure, the apparatus of the present invention may be provided with a cooling device independently.
- the annealing apparatus 510 for example, an apparatus shown in International Publication WO2010 / 150590 is preferably used.
- FIG. 4 shows a configuration of a TMR element manufacturing apparatus 600 according to the present embodiment.
- the manufacturing apparatus 600 has a structure in which one of the sputtering apparatuses 507 provided in the manufacturing apparatus 500 of FIG.
- Non-Patent Document 3 when manufacturing a TMR element having an oxide layer other than a tunnel barrier layer, oxidation treatment is required twice.
- FIG. 14 shows an oxidation process of the TMR element in a manufacturing apparatus having only one oxidation apparatus.
- FIG. 8 shows the relationship between the process before and after the oxidation process and the timing of each process between the substrates when manufacturing the TMR element shown in Non-Patent Document 3 in the manufacturing apparatus shown in FIG. .
- a metal film that is oxidized is formed on the substrate.
- the metal film is oxidized.
- a metal film to be oxidized is formed, and the metal film is oxidized.
- one oxidation apparatus 508 needs to be used twice. As shown in FIG.
- the time during which the substrate waits for the oxidation process is performed by alternately performing the oxidation process during the time when the metal films are formed. Can be shortened.
- the third sheet needs to wait until the oxidation process for the second sheet is completed.
- the flow of processing for the third and subsequent sheets is a repetition of the first and second sheets, and a standby time occurs in the third, fifth, seventh, and odd-numbered substrates.
- the adhesion of impurities can be sufficiently reduced as compared with the conventional case, and the occurrence of crystal defects and characteristic deterioration can be reduced well. It is preferable that the throughput and the device characteristics can be further improved as compared with the case where the oxidation treatment is performed once.
- FIG. 9 shows the relationship between the processes before and after the oxidation process and the timing of each process between the substrates when manufacturing the TMR element shown in Non-Patent Document 3 in the apparatus according to this embodiment.
- the manufacturing apparatus 600 can manufacture a TMR element having further excellent characteristics while further improving the throughput.
- the transfer device 505 it is desirable that there are a plurality of oxidizers connected to the transfer device 505 from the viewpoint of improving productivity and suppressing generation of crystal defects and deterioration of characteristics in the metal laminated film structure.
- the oxidation treatment is required twice or more, it is further desirable from the viewpoint of improvement of productivity, generation of crystal defects in the metal laminated film structure, and suppression of characteristic deterioration. It is preferable from the viewpoint of simplification of the control program that the number of oxidation treatments and the number of oxidation apparatuses are set to be the same.
- one of the sputtering devices 507 may be replaced with the annealing device 510.
- the placement chambers 504A and 504B are arranged between the transfer apparatus 505 and the transfer apparatus 503. For this reason, the transfer device 505 is maintained at a higher vacuum than the transfer device 503.
- the degree of vacuum of the transport device 505 is likely to be lowered by oxygen gas or the like introduced into the oxidation device.
- a method of performing exhaustion until the inside of the oxidation apparatus reaches a specified vacuum degree after performing a predetermined oxidation process on the substrate in the oxidation apparatus can be considered. The next oxidation treatment cannot be performed until exhaust in the oxidizer is completed, resulting in a decrease in throughput.
- step S71 the control device executes an oxidation process in at least one of the oxidation device 508 and the oxidation device 511.
- step S ⁇ b> 72 after the substrate oxidation process is completed in at least one of the oxidation apparatus 508 and the oxidation apparatus 511, another control target substrate is transferred from the transfer apparatus 505 to the transfer apparatus 505. It is determined whether or not it is carried into the oxidation apparatus, the sputtering apparatus, or the placement chambers 504A and 504B.
- step S73 the control device until the control device can confirm that the substrate present in the transfer device 505 has been carried into each processing apparatus or the mounting chamber, It waits in the state which mounted the board
- FIG. It is not always necessary to carry in the other substrate to be oxidized in the oxidation apparatus, but it is desirable that the substrate is carried into the oxidation apparatus in order to stabilize the element characteristics.
- step S74 the control device determines whether or not the gate valves provided in the respective substrates are closed after all the substrates are loaded into the sputtering apparatus, another oxidation apparatus, or the substrate placement chamber 504A or 504B. . If there is a gate valve that is not yet closed, in step S75, the control device causes the substrate to stand by in the oxidation device. After all the gate valves are closed, in step S76, the control device opens the gate valve between the oxidation device on which the substrate on which the oxidation process is completed and the substrate transfer device 505 are opened, and the process proceeds to step S77. Then, the transfer device carries the substrate out by the robot arm 528.
- step S78 the control device closes the gate valve of the oxidation device.
- the control device is configured so that one of the gate valve provided between the oxidation device and the transfer device 505 and the gate valve provided between the transfer device 505 and the placement chambers 504A and 504B are opened.
- the gate valve is controlled so as not to open the other. In this way, by not matching the gate valve opening timing of the oxidation apparatus after the substrate processing with the opening timing of the other gate valves, it is possible to suppress the inflow of oxygen gas into the other processing apparatus.
- the effect demonstrated by this embodiment is the case where there are a plurality of oxidizers as described in the third or fourth embodiment, rather than the case where there is one oxidizer as in the first or second embodiment. Is more effective.
- a substance having a larger adsorption energy with respect to oxygen gas than MgO constituting the tunnel barrier layer having a great influence on the element characteristics of the TMR element is preferable to use.
- the adsorption energy of MgO for oxygen gas is about 150 kcal / mol, and materials larger than this include Ti, Ta, Mg, Cr and Zr.
- Ti structural members are preferable from the viewpoints of ease of processing and effective oxygen adsorption.
- a substance having an oxygen getter effect is used for a device component even for a magnetic film in which magnetic properties are deteriorated by oxidation, further improvement of element characteristics can be expected. Examples of such a substance include Ti and Ta.
- a target containing a substance having the oxygen getter effect may be provided in the sputtering apparatus. And before the film-forming process to the board
- getter film sputtering it is not always necessary to perform getter film sputtering before film formation on a substrate in all sputtering apparatuses, but at least before film formation of MgO or a magnetic film, which has a significant effect on the element characteristics of TMR. Is desirable. Ti or Ta is suitable as the substance having an oxygen getter effect. Further, the getter film may be sputtered after the constituent members of the getter film are provided in the sputtering apparatus.
- an RF power source may be attached to the sputtering apparatus 507 connected to the transfer apparatus 505, and RF sputtering using direct reactive sputtering or an oxide target may be used together.
- a plurality of RF sputterings can be mounted in accordance with a desired TMR element. That is, when a plurality of RF cathodes are provided in the sputtering apparatus 507 or two oxide layers are required, one RF cathode can be provided in each of the two sputtering apparatuses 507. Further, the above oxidation treatment and RF sputtering may be combined. By installing a plurality of RF cathodes in one chamber, the film formation rate increases in proportion to the number, so that the throughput can be improved.
- the insulating film formed by RF sputtering may be annealed using an annealing apparatus 510. Since the surface of the insulating film formed by RF sputtering is quickly transferred to the annealing device 510 using the transfer device 505 maintained at a high degree of vacuum, the adsorption of impurities to the interface is suppressed, and the metal is suppressed. Generation of crystal defects and deterioration of characteristics in the laminated film structure can be suppressed.
- the oxidation apparatus 800 includes a processing container 801, a vacuum pump 802 as an exhaust unit for exhausting the inside of the processing container, a substrate holder 804 for holding the substrate 803 provided in the processing container 801, and the processing container 801.
- a cylindrical member 805 provided inside, a gas introduction unit 806 as oxygen gas introduction means for introducing oxygen gas into the processing container 801, and a substrate transfer port 807 are provided.
- the substrate transfer port 807 is provided with a slit valve (not shown).
- the substrate holder 804 includes a substrate holding surface 804a for holding the substrate 803, and a mounting portion 804b on which the substrate holding surface 804a is formed.
- the substrate 803 is mounted on the substrate holding surface 804a. Is done.
- a heater 808 serving as a heating device is provided inside the substrate holder 804.
- the substrate holder 804 is connected to a substrate holder driving unit 809 as position changing means for changing the relative position between the substrate holder 804 and the cylindrical member 805.
- the substrate holder driving unit 809 moves the substrate holder 804 in an arrow direction P (a direction in which the substrate holder 804 is brought closer to the oxidation treatment space 810 and a direction in which the substrate holder 804 is moved away from the oxidation treatment space 810).
- the substrate holder 804 is moved to the position shown in FIG. At the time of carrying in the substrate, in this state, the substrate 803 is carried into the processing container 801 through the substrate carrying port 807, and the substrate 803 is placed on the substrate holding surface 804a. When the substrate is unloaded, the substrate 803 held on the substrate holding surface 804a is unloaded from the processing container 801 through the substrate transfer port 807. On the other hand, during the oxidation process, the substrate holder 804 is moved to the position shown in FIG. In this state, the oxygen treatment is performed by introducing the oxygen gas limitedly into the oxidation treatment space 810 by the gas introduction unit 806 (by introducing the oxygen gas limitedly into one space in the treatment container 801). .
- the gas introduction unit 806 is provided apart from the wall 801a of the processing container 801 facing the substrate holder 804, and is provided in the shower plate 811 having a large number of holes and the wall 801a, and oxygen gas is introduced into the processing container 801.
- An oxygen introduction path 812 having a gas introduction port for introduction, and a space between the shower plate 811 and the wall 801a and a gas diffusion space 813 for diffusing oxygen gas introduced from the oxygen introduction path 812 are provided.
- an oxygen introduction path 812 is provided so that oxygen gas is introduced into the diffusion space 813, and the oxygen gas introduced from the oxygen introduction path 812 and diffused in the diffusion space 813 passes through the shower plate 811. Through the substrate. Note that a plurality of oxygen introduction paths 812 may be provided.
- the cylindrical member 805 is attached to the wall 801a so as to surround the region 801b including at least a portion to which the oxygen introduction path 812 is connected and the shower plate 811 of the wall 801a of the processing container 801, and the wall 801a and the wall 801a are connected to the wall 801a. It is a member having an extending portion 805a extending toward the opposite side (here, the substrate holder 804 side).
- the cylindrical member 805 is a cylindrical member having a circular cross section cut perpendicular to the extending direction, but the cross section may have another shape such as a polygon.
- the cylinder member 805 is made of, for example, Al. Al is preferable because the cylindrical member 805 can be easily processed.
- the cylindrical member 805 may be configured to be detachable from the wall 801a.
- a shower plate 811 is provided in the space surrounded by the extending portion 805a, that is, in the hollow portion of the tubular member 805, and the portion of the tubular member 805 on the wall 801a side with respect to the shower plate 811 and the above-mentioned in the wall 801a
- a diffusion space 813 is formed by at least a part of the region 801 b and the shower plate 811.
- oxygen gas can be supplied more uniformly to the surface of the substrate 803, and the unevenness of the oxidation distribution of MgO in the plane of the substrate 803 caused by oxidation can be reduced. it can. Therefore, the RA distribution can be improved.
- the shower plate 811 Since oxygen gas is introduced from the hole of the shower plate 811 into the oxidation treatment space 810, the shower plate 811 is provided with a portion of the gas introduction unit 806 for introducing oxygen gas into the oxidation treatment space in a limited manner. It can be said that this region is also referred to as an “oxygen gas introduction region”. Note that when the shower plate 811 is not provided as an example, the oxygen gas is limitedly introduced into the oxidation treatment space 810 from the oxygen introduction path 812, so that the region 801b becomes an oxygen gas introduction region. In this embodiment, it can be said that the oxidation treatment space 810 is formed by the oxygen gas introduction region, the cylindrical member 805, and the substrate holder 804 (substrate holding surface 804a).
- the cylindrical member 805 when the substrate holder 804 is inserted into the opening 805b of the cylindrical member 805, the cylindrical member 805 has at least a part of the extending portion 805a and the substrate holder 804 (the mounting portion 804b). ) So as to form a gap 815. That is, when the oxidation treatment space 810 is formed, the cylindrical member 805 surrounds the substrate holding surface 804a, and a gap 815 is provided between the mounting portion 804b on which the substrate holding surface 804a is formed and the extending portion 805a. It is configured as follows.
- the oxygen gas introduced into the oxidation treatment space 810 from the gas introduction unit 806 is exhausted from the oxidation treatment space 810 to the external space 814 of the oxidation treatment space 810 through the gap 815.
- the oxygen gas exhausted from the oxidation processing space 810 to the external space 814 through the gap 815 is exhausted from the processing container 801 by the vacuum pump 802.
- the substrate holder driving unit 809 moves the substrate holder 804 in the arrow direction P so that the substrate holding surface 804a is accommodated in the cylindrical member 805, and the substrate holding surface 804a (mounting portion 804b) is inserted into the opening 805b.
- the movement of the substrate holder 804 is stopped at the predetermined position.
- an oxidation treatment space 810 communicating with the external space 814 only by the gap 815 is formed.
- the oxidation treatment space 810 is formed by the shower plate 811, the extending portion 805 a, and the substrate holder 804 (substrate holding surface 804 a). Therefore, in this embodiment, the enclosure part of this invention is the shower plate 811 and the extension part 805a.
- the cylindrical member 805 showers the oxidation treatment space 810 so that the oxygen gas introduced by the gas introduction unit 806 is limitedly introduced into the oxidation treatment space 810 in the treatment container 801 during the oxidation treatment.
- It is an enclosing member for partitioning together with the plate 811 and the substrate holder 804 (substrate holding surface 804a). Note that when the shower plate 811 is not provided as an example as described above, the oxidation treatment space 810 is formed by the region 801b, the extending portion 805a, and the substrate holder 804.
- the surrounding portion is a region 801b that is a part of the inner wall of the processing container 801, and an extending portion 805a.
- the substrate holder 804 and the cylindrical member 805 can be changed by the substrate holder driving unit 809 so that the oxidation treatment space 810 can be formed.
- 809 is configured such that the substrate holder 804 can be moved in an arrow direction P which is a uniaxial direction.
- the present invention is not limited to this configuration, and at least during the oxidation treatment, the substrate holding surface 804a can be positioned inside the cylindrical member 805 to form the oxidation treatment space 810, and otherwise (for example, during substrate transfer), the substrate holding can be performed. Any configuration may be adopted as long as the surface 804a can be positioned outside the cylindrical member 805.
- the substrate holder 804 is fixed, the cylindrical member 805 and the gas introduction unit 806 are unitized, and the unitized cylindrical member 805 and the gas introduction unit 806 are brought close to the substrate holder 804 to form the oxidation treatment space 810. You may comprise so that it may form.
- the substrate holder 804 is configured to be slidable in the left-right direction of the cylindrical member 805, and is configured to move the substrate holder 804 to a position that does not face the opening 805b except when the oxidation treatment space 810 is formed. You may do it.
- the shape of the substrate holding surface 804a is circular, and the cross section of the cylindrical member 805 cut perpendicular to the extending direction of the extending portion 805a is the outer shape of the substrate holding surface 804a (mounting portion 804b). And similar shape. That is, the cross section is circular. Further, when the oxidation treatment space 810 is formed, the shower plate 811 and the substrate holding surface 804 a are opposed to each other, and the gap 815 is also opposed to the shower plate 811. At this time, the size of the gap 815 is preferably the same in the circumferential direction of the substrate holding surface 804a.
- the exhaust conductance can be set to the same value in all the gaps 815 formed in the circumferential direction of the substrate holding surface 804a. That is, exhaust can be performed uniformly over the entire periphery of the gap 815 that functions as an exhaust port from the oxidation treatment space 810. Therefore, when the oxidation treatment space 810 is formed, the oxygen pressure on the surface of the substrate 803 placed on the substrate holder 804 can be made uniform, and the RA distribution can be improved.
- the substrate holder driving unit 809 is configured to move the substrate holder 804 along the extending direction of the extending portion 805a inside the cylindrical member 805. That is, the substrate holder driving unit 809 can move the substrate holder 804 in the direction of approaching the shower plate 811 as the oxygen gas introduction region and the direction of moving away from the shower plate 811 inside the cylindrical member 805.
- the mounting portion 804b that has the substrate holding surface 804a and forms the gap 815 in the substrate holder 804 has the same gap 815 along the extending direction of the extending portion 805a. It is comprised so that it may become a size. That is, the diameter of the cylindrical member 805 is constant along the extending direction of the extending portion 805a, and the diameter along the extending direction of the mounting portion 804b is also constant, and the substrate is formed inside the cylindrical member 805. Even if the mounting portion 804b of the holder 804, which is the portion closest to the extending portion 805a, is moved in a direction toward and away from the shower plate 811, the exhaust conductance of gas from the oxidation treatment space 810 in the gap 815 is increased.
- the substrate holder 804 and the cylindrical member 805 are configured so as not to change. Therefore, even if the substrate holder 804 is moved inside the cylindrical member 805, oxygen gas can be similarly exhausted from the oxidation treatment space 810, and the complexity of process control can be reduced.
- the inner wall portion of the cylindrical member 805 is smoothed by, for example, electrolytic polishing treatment or chemical polishing treatment. That is, in this embodiment, the inner wall of the cylindrical member 805 is flattened.
- the surface roughness on the inner wall of the cylindrical member 805 the adsorption of oxygen gas to the inner wall of the cylindrical member 805 and the release of oxygen gas adsorbed on the inner wall can be reduced.
- the adsorption of oxygen to the inner wall surface can be reduced.
- the inner wall surface of the cylindrical member 805 can be flattened and an oxide film can be formed.
- the oxide film can reduce the adsorption of oxygen to the cylindrical member 805.
- a space (oxidation treatment space 810) smaller than the space defined by the inner wall of the processing container 801 is formed inside the processing container 801, and the oxidation processing space 810 is partitioned.
- the substrate is a substrate holding surface 804a, and the substrate 803 held by the substrate holding surface 804a is exposed to the oxidation treatment space 810.
- the oxygen gas is supplied in a limited manner into the oxidation treatment space 810 to oxidize the substrate 803.
- the oxidation processing space 810 is exhausted by a gap 815 formed between the cylindrical member 805 and the substrate holder 804.
- the oxygen gas is supplied only to the limited space (oxidation process space 810) of the processing container 801 and the oxidation process is performed.
- the time until the space filled with oxygen gas reaches a predetermined pressure can be reduced, and the time required for exhausting can also be reduced. Therefore, when the substrate is transferred between the oxidation apparatus 507 and the transfer chamber 505, the outflow of oxygen gas to the transfer chamber 505 having a high degree of vacuum can be suppressed, and a higher quality thin film is formed. It becomes possible.
- a space (oxidation treatment space 810) smaller than the space defined by the inner wall of the treatment container 801 is formed in the treatment container 801 and oxidation treatment is performed therein, the oxidation treatment is performed as compared with the conventional case.
- the surface area of the member that divides the space where the process is performed can be greatly reduced. Accordingly, it is possible to reduce the amount of oxygen attached to the cylindrical member 805 that forms the oxidation treatment space 810 in which the oxidation treatment is performed, and greatly increase the amount of oxygen released from the inner wall of the cylindrical member 805 after exhaust. Can be reduced. This is also advantageous in that the high vacuum degree of the transfer chamber 505 is maintained.
- the oxidation treatment space 810 is partitioned inside the processing vessel 801 using a cylindrical member 805 that is a member separate from the inner wall of the treatment vessel 801, the shape of the oxidation treatment space 810 can be freely set. be able to. Therefore, the cross-sectional shape of the oxidation treatment space 810 cut in parallel with the surface of the substrate 803 (substrate holding surface 804a) can be made similar to the outer shape of the substrate 803 (substrate holding surface 804a).
- the processing container when the outer shape of the substrate (substrate holding surface) is a square, the section of the space where the oxidation process is performed, cut parallel to the surface of the substrate (substrate holding surface) is It is circular and is different from the outer shape of the substrate (substrate holding surface).
- the processing container 801 when the processing container 801 is cylindrical and the outer shape of the substrate 803 (substrate holding surface 804a) is a quadrangle, the cylindrical member 805 having a quadrangular cross section is used as the processing container 801.
- the cross-sectional shape of the oxidation treatment space 810 can be made similar to the outer shape of the substrate 803 (substrate holding surface 804a).
- the width of the gap 815 is made equal in the circumferential direction of the substrate 803 (substrate holding surface 804a).
- the exhaust conductance can be the same. Therefore, the oxidation distribution on the surface of the substrate 803 can be reduced.
- the amount of oxygen introduced for the oxidation treatment of the substrate can be reduced, and oxygen gas can be quickly exhausted after the predetermined oxidation treatment is performed. Is possible. For this reason, the flow rate of the oxygen gas flowing out from the oxidizers 508 and 511 to the transfer device 505 can be reduced, and the transfer device 505 can be maintained at a higher vacuum.
- an oxidation apparatus 508 is connected to a transfer apparatus 505 having a higher degree of vacuum in order to form a high-quality tunnel barrier layer.
- the oxygen pressure in the transfer device 505 may be improved by the oxygen gas flowing out from the oxidation device 508. Such a problem may occur particularly when the interior of the oxidizer 508 cannot be exhausted sufficiently after the oxidation treatment in the oxidizer 508 from the viewpoint of improving throughput.
- oxygen pressure in the transfer device 505 increases, oxygen is adsorbed on the thin film interface or unintentional oxidation occurs when the substrate is transferred to another processing device after the thin film is formed by the sputtering device 507, and the device characteristics are improved. Can deteriorate.
- thin films that make up the device thin films that require a cleaner atmosphere are processed using a processing apparatus connected to the transfer apparatus 505. It is desirable to reduce as much as possible.
- the time during which the substrate stays in the transfer device 505 is shorter than that of the transfer device 503, so that the thin film interface is oxygenated.
- the exposure time exposure to oxygen gas
- a substrate processing system according to this embodiment is shown in FIG.
- the number of robot arms 527 provided in the transfer apparatus 503 is two, whereas the number of robot arms 528 provided in the transfer apparatus 505 is one.
- two or more robot arms are provided in the transfer device, and the number of substrates that can stay in the substrate processing system is increased.
- the residence time of the substrate in the transfer device 503 and the transfer device 505 tends to be longer than in the case of one robot arm.
- the transfer apparatus provided with two robot arms will be described as an example.
- the second substrate is moved from the first processing apparatus by the first arms of the two robot arms. It is carried out.
- the first substrate held by the second arm of the two robot arms is carried into the first processing apparatus.
- the second arm is made to stand by in front of the second processing apparatus where the second substrate is to be loaded next.
- the third substrate is unloaded by the second arm.
- the second substrate held by the first arm is carried into the second processing apparatus.
- the substrate that has been processed in each processing apparatus waits in front of the processing apparatus of the transfer apparatus until the processing of the substrate being processed in the next processing apparatus is completed. Become. During this standby, the thin film surface formed on the outermost surface of the substrate is exposed to oxygen gas in the transfer device.
- the number of robot arms 527 provided in the transfer device 503 is two, whereas the number of robot arms 528 provided in the transfer device 505 is one.
- a substrate that has been processed by each processing apparatus is immediately carried into the next processing apparatus.
- the processing of the substrate is completed, and the substrate is transported after the substrate is loaded into the next processing apparatus. Therefore, it is possible to eliminate the time that the substrate waits in the transfer device and to shorten the time that the substrate stays in the transfer device as much as possible.
- the transfer apparatus 503 is provided with two robot arms, the substrate processing time in the processing apparatus connected to the transfer apparatus 503 and the substrate processing time in the processing apparatus connected to the transfer apparatus 505 are adjusted. Thus, it is possible to reduce the residence time of the substrate in the transfer device 505 while suppressing a decrease in throughput.
- the transport method when using the two robot arms described in the ninth embodiment is the first mode
- the transport method when using one robot arm is the second. This mode is called.
- the present embodiment is characterized in that the first mode and the second mode are switched when a substrate is transported by a robot arm provided in the transport device 505.
- a substrate is processed in each processing apparatus connected to the transfer apparatus 505, but the outermost surface of the substrate when each process ends and the substrate is carried out to the transfer apparatus 505 is relatively less affected by oxygen. Can also exist. Even if the substrate in such a state where the influence of oxygen is small is caused to stand by by the transfer device 505, the influence on the element is small.
- the substrate is transferred in the first mode, and then a film having a large influence of oxygen is formed on the outermost surface of the substrate. After that, the mode is shifted to the second mode.
- Non-Patent Document 2 the multilayer film disclosed in Non-Patent Document 2 will be specifically described using an example in which the multilayer film is manufactured using the substrate processing system 850 according to the present embodiment.
- impurities and the like attached to the surface of the substrate carried into the substrate processing system 850 are removed by an etching device 506 connected to the transfer device 503.
- it is conveyed to the conveying apparatus 505 and carried into the sputtering apparatus 507B.
- a seed layer made of RuCoFe and Ta is formed to flatten the substrate surface.
- a CoFeB layer that is a magnetization free layer and an Mg layer that becomes a tunnel barrier layer are formed by subsequent oxidation treatment.
- the transfer from the mounting chamber 504A or 504B to the sputtering apparatus 507B and the transfer from the sputtering apparatus 507B to the sputtering apparatus 507C are less affected by oxidation on the substrate surface and the seed layer surface after etching.
- the substrate is transferred in the mode. After the Mg layer is formed on the substrate, the substrate is carried into an oxidizer 508 and subjected to an oxidation treatment to form a tunnel barrier layer.
- the Fe layer and the CoFeB layer which are magnetization fixed layers, are carried into the sputtering apparatus 507D.
- the Ta layer, the Co layer, and the Pt layer are formed by being transferred to the sputtering apparatus 507E.
- the substrate is transferred to the transfer device 503 via the placement chamber 504A or 504B, and films after the Pt layer are formed by the sputtering devices 507A, 507F, and 507G.
- the surface of the Mg layer that is oxidized and becomes a tunnel barrier layer, the MgO layer that is a tunnel barrier layer, or the CoFeB layer that is a magnetization fixed layer is exposed to a large amount of oxygen gas, The quality of the layer is deteriorated, or the magnetic characteristics in the magnetization fixed layer are deteriorated. Therefore, when transported from the sputtering apparatus 507C to the oxidation apparatus 508, when transported from the oxidation apparatus 508 to the sputtering apparatus 507D, and when transported from the sputtering apparatus 507D to the sputtering apparatus 507E, the residence time in the transport apparatus 505 is maintained. It is desirable that the sheet is transported in the second mode to be shortened.
- the substrate When transporting in the second mode, the substrate should not be in the next processing apparatus when transporting from one processing apparatus to the next processing apparatus. Therefore, in order to make the next processing device available, it is necessary to make another processing device available. Therefore, after switching to the second mode, the substrate is transported in the second mode until it is transported to the placement chamber 504A or 504B.
- the substrate In the above example, the case where the surfaces of the Mg layer, the MgO layer, and the CoFeB layer are exposed to the atmosphere in the transfer device 505 has been described.
- the tunnel barrier layer The film quality and the magnetic characteristics of the magnetization free layer and the magnetization fixed layer in contact therewith are very important. Accordingly, the switching timing between the first mode and the second mode is determined so as to shorten the time during which these films are exposed to the atmosphere in the transfer device 505.
- the control device includes a main control unit 900, and the storage device 901 provided in the main control unit 900 stores control programs for executing various substrate processing processes according to the present invention.
- the control program is implemented as a mask ROM.
- a control program can be installed in a storage device 901 configured by a hard disk drive (HDD) or the like via an external recording medium or a network.
- the main controller 900 controls the opening / closing operation of the gate valve provided between each processing device, each transfer device, the loading chamber, and the LL chamber, and the transfer means provided in the transfer device.
- an exhaust device, a gas introduction unit, and the like provided in each device can be controlled.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
特許文献1に記載の製造方法では、垂直磁化型積層膜として、Ta、Ru、CoFeB、MgOの4種類の材料をスパッタした構造が示されているが、高密度化が進むとSTT(Spin Transfer Torque)-MRAM積層構造が複雑化し、より多くの積層膜を形成する必要がある。具体的には、非特許文献2に示される構造である。多くの積層膜をスパッタする場合、同一チャンバ内に滞在する時間を短縮しないとスループットが遅くなり、生産性が劣化し、半導体デバイスにおけるコストが増加する。そのため、多種材料をスループットや生産性の低下を抑制しつつスパッタし、且つ特性改善のためのアニール処理や酸化膜形成のための酸化処理を短時間で行われなければならないという課題がある。
図1に本実施の形態に係るTMR素子の製造装置400の構成の一例を示す。製造装置400は、ロボットアーム427を有し、少なくとも1つの基板処理装置が接続された搬送装置403と、基板を搬送装置403に搬入するまたはプロセスが完了した基板を搬出するための搬送装置401と、搬出入室402A、402Bと、ロボットアーム428を有し、複数の基板処理装置が接続された搬送装置405とを備える。さらに、製造装置400は、搬送装置403から搬送装置405へ基板を搬出入するための載置室404Aおよび404Bを備えてもよい。搬出入室402Aおよび402Bは、製造装置400の外部に対して基板を搬入出するための所謂ロードロック(LL)室であり、それぞれ装置内を真空に排気するための排気装置と大気圧にするためのガス導入機構が接続されている。また、搬出入室402A、402Bと搬送装置403との間にそれぞれゲートバルブ415A、415Bが設けられている。
搬送装置403と搬送装置405とには、それぞれ装置内を真空に排気するための排気装置403a、405aが接続されている。この排気装置403a、405aは例えばターボ分子ポンプやクライオポンプ等の本実施形態に必要な真空度が得られる各種の排気装置を用いることができる。
なお、搬送装置405内の真空度が、搬送装置403内の真空度よりも高いことが好ましい。
エッチング装置406と搬送装置403との間にはゲートバルブ418が設けられており、スパッタ装置(5PVD)407と搬送装置403との間には、ゲートバルブ416、417が設けられている。また、スパッタ装置407と搬送装置405との間にはゲートバルブ422が設けられており、スパッタ装置(2PVD)408と搬送装置405との間にはゲートバルブ424が設けられており、酸化装置409と搬送装置405との間にはゲートバルブ423が設けられている。
図2に本実施形態に係るTMR素子の製造装置500の構成の一例を示す。製造装置500は、ロボットアーム527を有し、少なくとも1つの基板処理装置が接続された搬送装置403と、基板を搬送装置503に搬入するための、またはプロセスが完了した基板を搬出するための搬送装置501と搬出入室502A、502Bと、ロボットアーム528を有し、複数の基板処理装置が接続された搬送装置505と、搬送装置503から搬送装置505へ基板を搬出入するための載置室504A、504Bとを備えている。搬送装置503と搬送装置505とには、それぞれ装置内を真空に排気するための排気装置503a、505aが接続されている。この排気装置503a、505aは例えばターボ分子ポンプやクライオポンプ等の本実施形態に必要な真空度が得られる各種の排気装置を用いることができる。
さらに載置室504A、504Bと搬送装置505との間、および、載置室504A、504Bと搬送装置503との間の両方にゲートバルブ520A、520B、521A、521Bが設けられている。搬送装置505は高真空に維持されている。また、搬送装置505に対する基板搬入時に発生する真空度劣化がより抑制されている。搬送装置505の真空度をより安定で良好に保つことができる。また、搬出入室502A、502Bと搬送装置503との間にそれぞれゲートバルブ515A、515Bが設けられている。
エッチング装置506と搬送装置503との間には、ゲートバルブ519が設けられており、スパッタ装置(4PVD)507と搬送装置503との間には、ゲートバルブ516、517、518が設けられている。また、スパッタ装置(4PVD)507と搬送装置505との間には、ゲートバルブ523、524、525、526とが設けられており、酸化装置508と搬送装置505との間には、ゲートバルブ522が設けられている。
搬送装置505はLL室に対して搬送装置503を介して接続されているため、搬送装置505内を高真空に維持することが可能である。このため、搬送装置505に接続されたスパッタ装置507で金属膜を成膜後に酸化装置508で酸化処理を行う場合、搬送装置505内で基板を搬送する際の基板表面への不純物の吸着を抑制できる。金属膜表面への不純物を抑制しつつ、該金属膜を酸化することで、原子層オーダーで均一性が良好な金属酸化膜を形成できる。また、搬送装置505に接続されたスパッタ装置507で金属積層膜を形成し、さらに搬送装置505に接続された別のスパッタ装置507で金属積層膜を形成する場合、界面の不純物吸着が少ないため、格子欠陥の少ない金属積層膜の製造が可能となる。特に垂直磁化膜においては多数の金属膜を積層させて形成するため、界面の不純物吸着が少ないことが重要であり、本実施形態に係る装置を用いることで垂直磁化膜の磁気特性の劣化を抑制し、高い抵抗変化率を持つTMR素子の作成が可能である。なお、載置室504Aおよび504Bにはクライオポンプがついていてもよい。
載置室504Aおよび504Bにクライオポンプを接続することにより、搬送装置505の真空度をさらに安定で良好に保つことができる。クライオポンプを載置室504Aおよび504Bに設けることにより、例えば、搬送装置505における水分分圧を下げることができ、金属積層膜の界面における不純物を低減できるため、垂直磁化膜の磁気特性の劣化を抑制し、高い抵抗変化率を持つTMR素子の形成が可能である。
図1の製造装置では、酸化装置409が、基板搬送装置404に対して遠く離れた位置で搬送装置405に接続されている。このような装置構成において、例えば多数の積層膜からなるSTT-TMRを下層から上層まで真空一貫で製造する場合、必要に応じて基板搬送装置405に更にスパッタ装置を増設する。ここで用いられるスパッタ装置は、図4でも説明した通り、多層の積層膜を真空一貫で形成するために複数のターゲットカソードを搭載したスパッタ装置が用いられる。複数のターゲットカソードを搭載したスパッタ装置を必要な数だけ接続したクラスタ型製造装置を使用することで、多層の積層膜を形成することができる。スパッタ装置は、多数のスパッタリングカソードを備えたスパッタ装置で、多数のスパッタリングターゲットを用いることで多層の積層膜を好適に作製できる。
これに対し、図5に示すように、複数のターゲットを備えるスパッタ装置507に対して小型の酸化装置508を基板搬送装置505に隣接して配置することで、搬送装置503に接続されたスパッタ装置507との接触を避けるために必要な搬送装置503と搬送装置505の間隔を小さくできる。このため、各搬送装置の大型化を防ぎ、各搬送装置内の真空度を良好に保持できる。
図3に本実施形態に係るTMR素子の製造装置530の構成を示す。この製造装置530は、図2の製造装置500に設けられたスパッタ装置507の1つをアニール装置510に置き換えた構造となっている。このアニール装置510を用いて金属膜および金属酸化膜をアニールした結果、特にバリア層、フリー層およびリファレンス層の結晶性が改善でき、抵抗変化率を改善できる。これは、スパッタにより成膜された金属膜表面を高い真空度で維持された搬送装置505を用いて真空中に待機させることなくアニール装置510に搬送して処理が行われるため、界面への不純物吸着が抑制され、金属積層膜構造における結晶欠陥の発生や特性劣化を抑制することができたためと考えられる。また、アニール装置510は基板冷却機能を備えており、加熱後すぐに基板を冷却することができる。基板が高温のまま次のスパッタ処理を行った場合、スパッタされた金属膜が拡散し、原子層レベルの平坦性を劣化させ、特性劣化を引き起こすことがある。そのため、基板加熱処理後は、冷却することが必要となる場合もあり、図に示していないが、本発明の装置に、冷却装置を独立に備えても良い。アニール装置510としては、例えば国際公開WO2010/150590号に示される装置が好適に用いられる。
図4に本実施形態に係るTMR素子の製造装置600の構成を示す。この製造装置600は、図2の製造装置500に設けられたスパッタ装置507の1つを酸化装置511に置き換えた構造となっている。例えば、非特許文献3に示されるように、トンネルバリア層以外の酸化物層を有するTMR素子を製造する場合、酸化処理が2回必要となる。
ここで、酸化装置を1つだけ有する製造装置における、TMR素子の酸化プロセスを図14に示す。
上述した実施形態に係る装置では、搬送装置505と搬送装置503との間に載置室504Aおよび504Bが配される。このため、搬送装置503に比して搬送装置505が高真空に維持される。しかし、搬送装置505に酸化装置が設けられている形態では、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が低下しやすい。このような問題に対し、酸化装置において、基板に所定の酸化処理を行った後、酸化装置内が規定の真空度に達するまで排気を行うという方法が考えられるが、この方法に依れば、酸化装置内の排気が完了するまで次の酸化処理が行えず、スループットの低下を招く。
各基板処理装置、載置室および各搬送装置の間には、各々の空間を隔離する開閉可能なゲートバルブ515A、515B、516、517、518、519、520A、520B、521A、521B、522、523、524、525、526が設けられる。本実施形態では製造装置700に備えられた制御装置(例えば、図13に示す制御装置900)により、上記各ゲートバルブと搬送装置503のロボットアーム527、搬送装置505のロボットアーム528が制御される。
制御装置(例えば、図13に示す制御装置900)は図7に示されるフローに従って、各ゲートバルブおよびロボットアーム527、528を制御する。
まず、ステップS71にて、制御装置は、酸化装置508および酸化装置511の少なくとも一方にて酸化処理を実行する。ステップS72にて、制御装置は、酸化装置508および酸化装置511の少なくとも一方において、基板の酸化処理が完了した後に、他の被処理基板が、搬送装置505から搬送装置505に接続された他の酸化装置やスパッタ装置、載置室504Aおよび504Bの装置内に搬入されているか否かを判断する。未だ搬入されていない基板が存在する場合は、ステップS73にて、制御装置は、搬送装置505に存在する基板が各処理装置または載置室に搬入されたのを確認できるまで、酸化装置508、511内に基板を載置した状態で待機する。
なお、これから酸化処理が行われる他の基板は必ずしも酸化装置内への搬入が完了している必要は無いが、素子特性安定のために、酸化装置内に基板が搬入されていることが望ましい。
このようにして、基板処理後の酸化装置のゲートバルブ開放タイミングと、他のゲートバルブの開放タイミングを一致させないことで、酸素ガスの他の処理装置内への流入を抑制することができる。
なお、本実施形態で説明した効果は、第1または第2の形態のように酸化装置が1つの場合よりも、第3または第4の実施形態で説明したような酸化装置が複数である場合の方が効果が大きい。
上述の通り、特に第4または第5の実施形態では、搬送装置505に酸化装置が複数設けられているため、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が特に低下しやすい。また、第1または第2の実施形態でも、搬送装置505に酸化装置が接続されているため、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が低下しやすいという問題は起こり得る。本実施形態ではこの問題に対し、搬送装置505に接続された処理装置内に酸素ゲッタ効果を有する物質を用いたシールド等の構成部材を配することを特徴とする。
また、酸化によって磁気特性の劣化が生じる磁性膜に対しても酸素ゲッタ効果を有する物質が装置構成部材に用いられていると、更なる素子特性の改善が望める。そのような物質としてはTiやTaが挙げられる。
上述した各実施形態において搬送装置505に接続されたスパッタ装置507にRF電源を取り付け、直接反応性スパッタや酸化物ターゲットなどを使用したRFスパッタを併せて用いて形成しても良い。このRFスパッタは、所望のTMR素子に合わせ、複数の搭載ができる。つまり、スパッタ装置507に複数のRFカソードを設けることや、2層の酸化層が必要な場合は、2台のスパッタ装置507の各々に1台のRFカソードを設けることができる。また、上述の酸化処理とRFスパッタとを組み合わせても良い。
複数台のRFカソードを1つのチャンバに設置することにより、成膜速度は台数に比例して増加するため、スループットを向上させることができる。
本実施形態では、搬送装置505に接続される酸化装置508および511について、より搬送装置505を高真空に維持するのに適した酸化装置を用いている。図11、図12において、本実施形態に係る酸化装置800について説明する。
酸化装置800は、処理容器801と、処理容器内を排気するための排気部としての真空ポンプ802と、処理容器801内に設けられた基板803を保持するための基板ホルダ804と、処理容器801内に設けられた筒部材805と、処理容器801内に酸素ガスを導入する酸素ガス導入手段としてのガス導入部806と、基板搬送口807とを備えている。該基板搬送口807には図示しないスリットバルブが設けられている。
なお、一例としてシャワープレート811を設けない場合は、酸素ガスは、酸素導入経路812から酸化処理空間810内に限定的に導入されるので、領域801bが酸素ガス導入領域となる。
本実施形態では、酸素ガス導入領域、筒部材805、および基板ホルダ804(基板保持面804a)により、酸化処理空間810が形成されると言える。
なお、上述のように一例としてシャワープレート811を設けない場合は、酸化処理空間810は、領域801bと、延在部805aと、基板ホルダ804とにより形成されるので、この場合は、本発明の囲み部は、処理容器801の内壁の一部である領域801b、および延在部805aである。
本発明に係る基板処理システムにおいては、良質なトンネルバリア層を形成するために、より真空度の高い搬送装置505に酸化装置508が接続されている。しかしながら、真空度の高い搬送装置505に酸化装置508を接続した場合、酸化装置508から流出した酸素ガスにより搬送装置505内の酸素圧力が向上する可能性がある。このような問題は、特にスループット向上の観点から酸化装置508内における酸化処理後に酸化装置508内を十分に排気できない場合に生じ得る。
このような搬送方法によれば、各処理装置で処理が終了した基板は、次の処理装置で処理されている基板の処理が終了するまで、搬送装置の該処理装置の前で待機することになる。この待機中に基板最表面に形成された薄膜表面は搬送装置内の酸素ガスに曝露されることになる。
また搬送装置503にはロボットアームが2つ設けられているため、搬送装置503に接続された処理装置における基板処理時間と、搬送装置505に接続された処理装置における基板処理時間とを調整することで、スループットの低下を抑制しつつ、搬送装置505における基板の滞在時間を短縮することが可能となる。
上述した第9の実施形態では、搬送装置503に設ける搬送手段としてのロボットアームを2つ以上とし、搬送装置505に設ける搬送手段としてのロボットアームを1つとすることで、スループットの低下を抑制しつつ、搬送装置505における基板の滞在時間を低減した。
これに対して本実施形態では搬送装置505に設けられるロボットアームを2つ以上とした上で、搬送装置505における基板の滞在時間を低減することを目的とする。
搬送装置505に接続された各処理装置において基板が処理されるが、各々の処理が終了して基板が搬送装置505に搬出される際の基板の最表面が、比較的酸素による影響が小さい処理も存在しうる。このような酸素による影響が小さい状態の基板を搬送装置505にて待機させたとしても素子に及ぼす影響は小さい。本実施形態では、搬送装置505に搬送された基板のうち、酸素による影響が比較的小さい状態においては第1のモードで搬送し、その後に酸素による影響が大きい膜が基板の最表面に形成されてからは第2のモードに移行することを特徴とする。
まず、基板処理システム850に搬入された基板は搬送装置503に接続されたエッチング装置506にて、表面に付着した不純物等を除去する。次に搬送装置505に搬送され、スパッタ装置507Bに搬入される。スパッタ装置507BではRuCoFeおよびTaからなるシード層が形成され、基板表面を平坦化する。次に、スパッタ装置507Cに搬入され、磁化自由層であるCoFeB層およびその後の酸化処理によりトンネルバリア層となるMg層が形成される。このとき、載置室504Aまたは504Bからスパッタ装置507Bへの搬送、およびスパッタ装置507Bからスパッタ装置507Cへの搬送については、エッチング後の基板表面およびシード層表面が酸化による影響が小さいため、第1のモードで基板の搬送を行う。
基板にMg層が形成された後、基板は酸化装置508に搬入され、酸化処理が施されることでトンネルバリア層が形成される。その後、スパッタ装置507Dに搬入されて磁化固定層であるFe層およびCoFeB層が形成される。次にスパッタ装置507Eに搬送され、Ta層、Co層およびPt層が形成される。その後、基板は載置室504Aまたは504Bを経由して搬送装置503に搬送され、Pt層以降の膜がスパッタ装置507A、507F、507Gにより形成される。この製造工程において、酸化処理が施されてトンネルバリア層となるMg層や、トンネルバリア層であるMgO層、磁化固定層であるCoFeB層の表面が多量の酸素ガスに曝露されると、トンネルバリア層の品質が劣化し、あるいは磁化固定層における磁気特性が劣化する。従って、スパッタ装置507Cから酸化装置508に搬送される場合、酸化装置508からスパッタ装置507Dに搬送される場合、およびスパッタ装置507Dからスパッタ装置507Eに搬送される場合は、搬送装置505における滞在時間が短くなる第2のモードで搬送されることが望ましい。なお、第2のモードで搬送する場合、ある処理装置から次の処理装置への搬送の際には、該次の処理装置に基板が在ってはならない。従って、次の処理装置を空けるためにさらに次の処理装置を空ける必要がある。従って、第2のモードに切り替わった後は、基板が載置室504Aまたは504Bに搬送されるまで第2のモードで搬送されることになる。
なお、上述の例ではMg層およびMgO層、CoFeB層の表面が搬送装置505内の雰囲気に晒される場合について説明したが、非特許文献2に示されるようなTMR素子においては、トンネルバリア層の膜質およびそれに接する磁化自由層および磁化固定層の磁気特性が非常に重要となる。従ってこれらの膜が搬送装置505内の雰囲気に曝露される時間を短くするように第1のモードと第2のモードとの切り替えタイミングは決定される。
Claims (14)
- 外部との基板の搬入出を行うためのロードロック装置と、
前記ロードロック装置と接続され、少なくとも1つの基板処理装置が接続された第1基板搬送装置と、
前記第1基板搬送装置に設けられた第1排気手段と、
前記第1基板搬送装置と接続され、複数の基板処理装置が接続された第2基板搬送装置と、
前記第2基板搬送装置に設けられた第2排気手段とを備え、
前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つは酸化装置であることを特徴とするトンネル磁気抵抗素子の製造装置。 - 前記第1基板搬送装置と前記第2基板搬送装置の間には基板載置室が設けられていることを特徴とする請求項1に記載の製造装置。
- 前記第2基板搬送装置には、酸化装置が複数接続されていることを特徴とする請求項1に記載の製造装置。
- 前記基板載置室にはクライオポンプが設けられていることを特徴とする請求項2に記載の製造装置。
- 前記複数の酸化装置のうち少なくとも1つは、前記基板載置室に隣り合わせて前記第2基板搬送装置に接続されることを特徴とする請求項3に記載の製造装置。
- 前記第1基板搬送装置に接続された少なくとも1つの基板処理装置のうち少なくとも1つはスパッタ装置であり、
前記スパッタ装置は前記第1基板搬送装置と接続している側と反対の側に排気室を備え、
前記スパッタ装置は前記基板載置室と隣接して前記第1基板搬送装置に接続されていることを特徴とする請求項5に記載の製造装置。 - 前記基板載置室と前記第2基板搬送装置との間に設けられた第1ゲートバルブと、
前記第2基板搬送装置と前記酸化装置との間に設けられた第2ゲートバルブと、
制御部と、を備え、
前記制御部は、前記酸化装置において前記基板の酸化処理が終了した後に、前記第1ゲートバルブが閉じられていることを確認し、前記第1ゲートバルブが閉じられている状態で前記第2ゲートバルブを開放することを特徴とする請求項1に記載の製造装置。 - 前記制御部は、前記第1ゲートバルブおよび前記第2ゲートバルブの一方が開放されている間は、前記第1ゲートバルブおよび前記第2ゲートバルブの他方を開放しないことを特徴とする請求項7に記載の製造装置。
- 前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つはスパッタリング装置であり、
前記スパッタリング装置内には酸素ガスに対するゲッタ効果を有する物質を含む構成部材が設けられていることを特徴とする請求項1に記載の製造装置。 - 前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つはスパッタリング装置であり、
前記スパッタリング装置内にはRFカソードが設けられていることを特徴とする請求項1に記載の製造装置。 - 前記酸素ゲッタ効果を有する物質はTiまたはTaであることを特徴とする請求項9に記載の製造装置。
- 前記第2基板搬送装置内の真空度が前記第1基板搬送装置内の真空度よりも高いことを特徴とする請求項1に記載の製造装置。
- 前記第2基板搬送装置に接続された複数の基板処理装置のうちの少なくとも1つは加熱処理装置であることを特徴とする請求項1に記載の製造装置。
- 前記第1基板搬送装置は、基板を搬送するための搬送手段を2つ以上有し、
前記第2基板搬送装置は、基板を搬送するための搬送手段を少なくとも1つ以上有することを特徴とする請求項1に記載の製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014529250A JP5745699B2 (ja) | 2012-08-10 | 2013-05-10 | トンネル磁気抵抗素子の製造装置 |
KR20147026799A KR20140129279A (ko) | 2012-08-10 | 2013-05-10 | 터널 자기저항소자 제조장치 |
US14/462,860 US20140353149A1 (en) | 2012-08-10 | 2014-08-19 | Tunnel magneto-resistance element manufacturing apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012178207 | 2012-08-10 | ||
JP2012-178207 | 2012-08-10 | ||
JP2012287202 | 2012-12-28 | ||
JP2012-287202 | 2012-12-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/462,860 Continuation US20140353149A1 (en) | 2012-08-10 | 2014-08-19 | Tunnel magneto-resistance element manufacturing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014024358A1 true WO2014024358A1 (ja) | 2014-02-13 |
Family
ID=50067630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003014 WO2014024358A1 (ja) | 2012-08-10 | 2013-05-10 | トンネル磁気抵抗素子の製造装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140353149A1 (ja) |
JP (1) | JP5745699B2 (ja) |
KR (1) | KR20140129279A (ja) |
TW (1) | TWI514500B (ja) |
WO (1) | WO2014024358A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5882502B2 (ja) | 2012-12-20 | 2016-03-09 | キヤノンアネルバ株式会社 | 磁気抵抗効果素子の製造方法 |
JP6016946B2 (ja) | 2012-12-20 | 2016-10-26 | キヤノンアネルバ株式会社 | 酸化処理装置、酸化方法、および電子デバイスの製造方法 |
JP6998664B2 (ja) * | 2017-03-23 | 2022-01-18 | 東京エレクトロン株式会社 | ガスクラスター処理装置およびガスクラスター処理方法 |
KR102451018B1 (ko) | 2017-11-13 | 2022-10-05 | 삼성전자주식회사 | 가변 저항 메모리 장치의 제조 방법 |
DE102018107547A1 (de) * | 2017-11-15 | 2019-05-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Vorrichtung zur behandlung von substraten oder waferen |
US11948810B2 (en) | 2017-11-15 | 2024-04-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus for processing substrates or wafers |
JP6970624B2 (ja) * | 2018-02-13 | 2021-11-24 | 東京エレクトロン株式会社 | 成膜システム及び基板上に膜を形成する方法 |
KR20220056600A (ko) * | 2020-10-28 | 2022-05-06 | 삼성전자주식회사 | 반도체 소자의 제조 장치 |
WO2022177370A1 (ko) * | 2021-02-19 | 2022-08-25 | 주식회사 플라즈맵 | 플라즈마 처리 장치 및 이를 이용한 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037352A (ja) * | 1973-08-06 | 1975-04-08 | ||
JP2002171011A (ja) * | 2000-12-04 | 2002-06-14 | Ken Takahashi | 磁気抵抗効果素子及びその製造方法並びに磁気抵抗効果センサ |
JP2003253439A (ja) * | 2002-03-01 | 2003-09-10 | Ulvac Japan Ltd | スパッタ装置 |
WO2009060541A1 (ja) * | 2007-11-09 | 2009-05-14 | Canon Anelva Corporation | インライン型ウェハ搬送装置 |
JP2011138844A (ja) * | 2009-12-26 | 2011-07-14 | Canon Anelva Corp | 真空処理装置および半導体デバイスの製造方法 |
WO2012086183A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社アルバック | トンネル磁気抵抗素子の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5286296A (en) * | 1991-01-10 | 1994-02-15 | Sony Corporation | Multi-chamber wafer process equipment having plural, physically communicating transfer means |
JP3486462B2 (ja) * | 1994-06-07 | 2004-01-13 | 東京エレクトロン株式会社 | 減圧・常圧処理装置 |
US5934856A (en) * | 1994-05-23 | 1999-08-10 | Tokyo Electron Limited | Multi-chamber treatment system |
JP2000034563A (ja) * | 1998-07-14 | 2000-02-02 | Japan Energy Corp | 高純度ルテニウムスパッタリングターゲットの製造方法及び高純度ルテニウムスパッタリングターゲット |
US6188512B1 (en) * | 1998-11-02 | 2001-02-13 | Southwall Technologies, Inc. | Dual titanium nitride layers for solar control |
JP2002083783A (ja) * | 2000-09-07 | 2002-03-22 | Seiko Epson Corp | Rfスパッタ装置及び半導体装置の製造方法 |
US6574079B2 (en) * | 2000-11-09 | 2003-06-03 | Tdk Corporation | Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys |
JP2005142355A (ja) * | 2003-11-06 | 2005-06-02 | Hitachi Kokusai Electric Inc | 基板処理装置及び半導体装置の製造方法 |
JP2007056336A (ja) * | 2005-08-25 | 2007-03-08 | Tokyo Electron Ltd | 基板処理装置,基板処理装置の基板搬送方法,プログラム,プログラムを記録した記録媒体 |
CN101615653B (zh) * | 2006-03-03 | 2012-07-18 | 佳能安内华股份有限公司 | 磁阻效应元件的制造方法以及制造设备 |
US8133367B1 (en) * | 2006-08-11 | 2012-03-13 | Raytheon Company | Sputtering system and method using a loose granular sputtering target |
US8174800B2 (en) * | 2007-05-07 | 2012-05-08 | Canon Anelva Corporation | Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus |
WO2010044134A1 (ja) * | 2008-10-14 | 2010-04-22 | キヤノンアネルバ株式会社 | 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子製造プログラム |
JP2010135744A (ja) * | 2008-10-29 | 2010-06-17 | Kyocera Corp | 吸着搬送部材およびこれを用いた基板搬送装置 |
US20100304027A1 (en) * | 2009-05-27 | 2010-12-02 | Applied Materials, Inc. | Substrate processing system and methods thereof |
TW201213581A (en) * | 2010-09-23 | 2012-04-01 | Hon Hai Prec Ind Co Ltd | Magnets holder and sputtering device having same |
-
2013
- 2013-05-10 KR KR20147026799A patent/KR20140129279A/ko not_active Application Discontinuation
- 2013-05-10 WO PCT/JP2013/003014 patent/WO2014024358A1/ja active Application Filing
- 2013-05-10 JP JP2014529250A patent/JP5745699B2/ja active Active
- 2013-08-09 TW TW102128633A patent/TWI514500B/zh active
-
2014
- 2014-08-19 US US14/462,860 patent/US20140353149A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5037352A (ja) * | 1973-08-06 | 1975-04-08 | ||
JP2002171011A (ja) * | 2000-12-04 | 2002-06-14 | Ken Takahashi | 磁気抵抗効果素子及びその製造方法並びに磁気抵抗効果センサ |
JP2003253439A (ja) * | 2002-03-01 | 2003-09-10 | Ulvac Japan Ltd | スパッタ装置 |
WO2009060541A1 (ja) * | 2007-11-09 | 2009-05-14 | Canon Anelva Corporation | インライン型ウェハ搬送装置 |
JP2011138844A (ja) * | 2009-12-26 | 2011-07-14 | Canon Anelva Corp | 真空処理装置および半導体デバイスの製造方法 |
WO2012086183A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社アルバック | トンネル磁気抵抗素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140353149A1 (en) | 2014-12-04 |
JPWO2014024358A1 (ja) | 2016-07-25 |
TW201423890A (zh) | 2014-06-16 |
KR20140129279A (ko) | 2014-11-06 |
JP5745699B2 (ja) | 2015-07-08 |
TWI514500B (zh) | 2015-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5745699B2 (ja) | トンネル磁気抵抗素子の製造装置 | |
US10468237B2 (en) | Substrate processing apparatus | |
TWI673891B (zh) | 氧化處理裝置、氧化方法、及電子裝置的製造方法 | |
US9752226B2 (en) | Manufacturing apparatus | |
KR101726031B1 (ko) | 진공 처리 장치, 진공 처리 방법 및 기억 매체 | |
JP4354519B2 (ja) | 磁気抵抗効果素子の製造方法 | |
CN101098980A (zh) | 溅射装置和成膜方法 | |
TW201413854A (zh) | 層積膜之製造方法及真空處理裝置 | |
KR102304166B1 (ko) | 산화 처리 모듈, 기판 처리 시스템 및 산화 처리 방법 | |
TW201725767A (zh) | 磁阻元件之製造方法及磁阻元件之製造系統 | |
US12077848B2 (en) | Vacuum processing apparatus | |
JP2023032920A (ja) | 真空処理装置及び基板処理方法 | |
JP2011168828A (ja) | 基板処理装置及び半導体装置の製造方法 | |
JP2011168827A (ja) | 基板処理装置及び半導体装置の製造方法 | |
TW201531579A (zh) | 磁阻效應元件之製造方法 | |
JP2011058072A (ja) | 基板処理装置及び半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13827108 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014529250 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147026799 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13827108 Country of ref document: EP Kind code of ref document: A1 |