WO2014024345A1 - 点火プラグ - Google Patents
点火プラグ Download PDFInfo
- Publication number
- WO2014024345A1 WO2014024345A1 PCT/JP2013/001886 JP2013001886W WO2014024345A1 WO 2014024345 A1 WO2014024345 A1 WO 2014024345A1 JP 2013001886 W JP2013001886 W JP 2013001886W WO 2014024345 A1 WO2014024345 A1 WO 2014024345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistor
- axis
- spark plug
- shaft hole
- average number
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/40—Sparking plugs structurally combined with other devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/40—Sparking plugs structurally combined with other devices
- H01T13/41—Sparking plugs structurally combined with other devices with interference suppressing or shielding means
Definitions
- the present invention relates to a spark plug used for an internal combustion engine or the like.
- a spark plug is attached to a combustion apparatus (for example, an internal combustion engine or the like) and is used for igniting an air-fuel mixture or the like.
- a spark plug includes an insulator having a shaft hole, a center electrode inserted into the front end side of the shaft hole, a terminal electrode inserted into the rear end side of the shaft hole, and a metal shell provided on the outer periphery of the insulator. It has.
- a resistor for suppressing radio noise generated with the operation of the combustion device may be provided in the shaft hole and between the center electrode and the terminal electrode (see, for example, Patent Document 1). ). *
- a resistor is filled in a shaft hole with a resistor composition including a glass powder containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 5 ), a conductive material such as carbon black, and ceramic particles.
- a resistor composition including a glass powder containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 5 ), a conductive material such as carbon black, and ceramic particles.
- SiO 2 silicon dioxide
- B 2 O 5 boron oxide
- the formed resistor is in a phase-separated state in which an intervening phase containing a relatively large amount of B 2 O 5 exists around a granular aggregate phase containing a relatively large amount of SiO 2 .
- the aggregate phase is composed of glass particles formed by melting a glass component rich in B 2 O 5
- the intervening phase is composed mainly of a glass component rich in B 2 O 5
- the intervening phase contains a conductive material and ceramic particles, and the center electrode and the terminal electrode are electrically connected via a conductive path made of the conductive material in the intervening phase.
- glass powder having a large average particle diameter is relatively difficult to dissolve during heating (the B 2 O 5 rich glass component eluted from the glass particles is small), so that the intergranular phases are not filled with intervening phases, and bone A gap (pore) is generated between the material phases. Therefore, the pressure tends to escape during compression.
- the pressure loss is not so large, and a sufficiently large pressure is applied to the tip side of the resistor composition (side away from the terminal electrode). Can be added. Therefore, in the entire area of the resistor, the gaps (pores) between the aggregate phases can be crushed by compression, and as a result, the aggregate phases are filled with the intervening phase, The density of can be made sufficiently large.
- a glass powder having a relatively large average particle diameter and a glass powder having a relatively small average particle diameter are uniformly mixed so that an interphase is provided between the aggregate phases. It is conceivable to prevent a decrease in the viscosity of the glass during heating while satisfying the above. However, in this case, a phenomenon occurs in which glass particles having a small average particle diameter are aggregated. Therefore, in some parts of the resistor, the space between the aggregate phases is filled with the intervening phase, but in the part excluding the part, the same as when only the glass powder having a relatively large average particle diameter is used. In addition, a gap is formed between the aggregate phases. As a result, the density of the resistor cannot be increased, and the load life performance is insufficient. *
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spark plug in which the distance from the front end of the terminal electrode to the rear end of the center electrode is relatively large and it is difficult to increase the density of the resistor.
- the purpose is to make the density of the resistor sufficiently large and to realize excellent load life performance.
- the spark plug of this configuration includes an insulator having an axial hole penetrating in the axial direction; A center electrode inserted on the tip side of the shaft hole; A terminal electrode inserted on the rear end side of the shaft hole; A resistor which is disposed between the center electrode and the terminal electrode in the shaft hole and includes a conductive material and glass containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 5 ); A spark plug comprising: The distance along the axis from the front end of the terminal electrode to the rear end of the center electrode is 15 mm or more, The glass is a phase-separated glass having an aggregate phase containing SiO 2 and an intervening phase located between the aggregate phases, The aggregate phase is greater than the content of SiO 2 content of SiO 2 is in the intermediate phase, The intervening phases is greater than the content of B 2 O 5 content of B 2 O 5 is in the aggregate phase, In the cross section of the resistor including the axis and having a width of 1.3 mm along the direction orthogonal
- a plurality of lines perpendicular to the axis are drawn at intervals of 0.1 mm along the axial direction, and the number of the aggregate phases located on the lines is determined per line, and consists of five continuous lines.
- the line groups when the average number of the numbers is obtained, three or more line groups in which the average number in the line group is 5 or more larger than the minimum value of the average number are consecutive.
- the spark plug of this configuration has the length of the resistor along the axis with respect to the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode in the configuration 1 described above. It is characterized by being 50% or more.
- the inner diameter of the shaft hole is 3.5 mm or less at the tip of the range in which only the resistor exists in the shaft hole in the cross section perpendicular to the axis in the configuration 1 or 2. It is characterized by that.
- the inner diameter of the shaft hole is 2.9 mm at the tip in a range where only the resistor is present in the shaft hole in a cross section orthogonal to the axis. It is characterized by the following. *
- the spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 4, a distance along the axis from the front end of the terminal electrode to the rear end of the center electrode is 17 mm or more.
- the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode is 15 mm or more. Therefore, there is a concern about a decrease in density in the resistor.
- the spark plug of configuration 1 when the average number of aggregate phases in each of the line groups is obtained, there are three line groups in which the average number of the self is 5 or more larger than the minimum value of the average number.
- a portion where three or more line groups in which the average number in the resistor is 5 or more larger than the minimum value of the average number continues is referred to as a “fine portion”.
- the resistor includes a portion where the average particle size of the aggregate phase (glass powder) is relatively large (coarse portion) and a portion where the average particle size of the aggregate phase (glass powder) is relatively small (fine portion).
- the thickness of the fine part (volume of the fine part) along the axial direction is sufficiently large. Therefore, at the time of heating when forming the resistor, a large amount of the B 2 O 5 rich glass component (glass component constituting the intervening phase) is melted out from the fine part where the average particle diameter of the glass powder is relatively small.
- the aggregate phases can be filled with the intervening phase in the coarse portion. Thereby, formation of the clearance gap between aggregate phases can be suppressed, and the density of a resistor can be made large enough.
- the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode is 15 mm or more, and combined with the fact that the resistor can be made relatively long, realizes a very good load life performance. can do.
- the glass is easily melted out by adjusting the particle size, not by changing the composition. Therefore, the intervening phase can be more reliably formed in a fine mesh pattern, and a large number of conductive paths can be more reliably formed. As a result, excellent load life performance can be stably realized in the resistor.
- the length of the resistor along the axis with respect to the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode is 50% or more. Therefore, the resistor becomes sufficiently long, and the effect of suppressing radio noise can be further improved.
- the resistor when the length of the resistor along the axis is 50% or more with respect to the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode, the resistor (resistor It is difficult to apply pressure to the tip side of the composition. Therefore, the density of the resistor tends to be small, and the load life performance is likely to be lowered.
- the density of the resistor can be made sufficiently large.
- the length of the resistor along the axis with respect to the distance along the axis from the tip of the terminal electrode to the rear end of the center electrode is particularly significant in a spark plug having a thickness of 50% or more.
- the inner diameter of the shaft hole is 3.5 mm or less at the tip of the range where only the resistor exists in the shaft hole, like the spark plug of the configuration 3 described above. Even so, the density of the resistor can be sufficiently increased. In other words, the configuration 1 is particularly significant in a spark plug having an inner diameter of 3.5 mm or less.
- the configuration 1 is very effective in a spark plug having an inner diameter of 2.9 mm or less.
- the distance along the axis from the front end of the terminal electrode to the rear end of the center electrode is set to 17 mm or more. Therefore, the resistor can be made longer, and the effect of suppressing radio noise can be further improved.
- the configuration 1 is particularly significant in a spark plug in which the distance is set to 17 mm or more in order to further improve the suppression effect of radio noise.
- two or more fine portions are provided so as to sandwich the coarse portion. Therefore, between the aggregate phases can be more reliably filled with the intervening phase in the coarse portion, and formation of a gap between the aggregate phases can be remarkably suppressed. As a result, the density of the resistor can be further increased, and the load life performance can be further improved.
- FIG. 1 It is a partially broken front view which shows the structure of a spark plug.
- A is an enlarged cross-sectional schematic diagram which shows the structure of a coarse part
- (b) is an enlarged cross-sectional schematic diagram which shows the structure of a fine part.
- It is a partial expanded sectional view which shows a resistor.
- It is a cross-sectional schematic diagram for demonstrating the measuring method of the average number of aggregate phases in each line group. It is a graph which shows the average number of aggregate phases in each line group. It is explanatory drawing for demonstrating the method to measure the number of aggregate phases.
- FIG. 1 is a partially cutaway front view showing a spark plug 1.
- the direction of the axis CL ⁇ b> 1 of the spark plug 1 is the vertical direction in the drawing, the lower side is the front end side, and the upper side is the rear end side. *
- the spark plug 1 includes an insulator 2 as a cylindrical insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like. *
- the insulator 2 is formed by firing alumina or the like, and in its outer portion, a rear end side body portion 10 formed on the rear end side, and a front end than the rear end side body portion 10.
- a large-diameter portion 11 that protrudes radially outward on the side, a middle body portion 12 that is smaller in diameter than the large-diameter portion 11, and a tip portion that is more distal than the middle body portion 12.
- the leg length part 13 formed in diameter smaller than this on the side is provided.
- the large-diameter portion 11, the middle trunk portion 12, and most of the leg long portions 13 are accommodated inside the metal shell 3.
- a tapered portion 14 that tapers toward the distal end side is formed at the connecting portion between the middle body portion 12 and the long leg portion 13, and the insulator 2 is locked to the metal shell 3 at the tapered portion 14. ing. *
- a shaft hole 4 is formed through the insulator 2 along the axis CL1.
- the shaft hole 4 includes a small-diameter portion 15 at the tip thereof, and a large-diameter portion 16 whose inner diameter is larger than the inner diameter of the small-diameter portion 15 on the rear end side of the small-diameter portion 15. Further, a tapered step portion 17 is formed between the small diameter portion 15 and the large diameter portion 16.
- the center electrode 5 is inserted and fixed on the distal end side (small diameter portion 15) of the shaft hole 4. More specifically, a bulging portion 18 that bulges toward the outer peripheral side is formed at the rear end portion of the center electrode 5, and the bulging portion 18 is locked to the stepped portion 17. Thus, the center electrode 5 is fixed in the shaft hole 4.
- the center electrode 5 is composed of an inner layer 5A made of copper or a copper alloy and an outer layer 5B made of an alloy containing nickel (Ni) as a main component.
- the center electrode 5 has a rod-like shape (cylindrical shape) as a whole, and its tip protrudes from the tip of the insulator 2. *
- the terminal electrode 6 is inserted and fixed to the rear end side (large diameter portion 16) of the shaft hole 4 in a state of protruding from the rear end of the insulator 2.
- the distance A along the axis CL1 from the tip of the terminal electrode 6 to the rear end of the center electrode 5 is 15 mm or more (in this embodiment, 17 mm or more).
- a conductive resistor 7 having a cylindrical shape is disposed between the center electrode 5 and the terminal electrode 6 of the shaft hole 4.
- the resistor 7 is for suppressing radio noise, and its resistance value is, for example, 100 ⁇ or more, although it varies depending on the specifications of the spark plug.
- the resistor 7 is made of a conductive material (eg, carbon black), glass powder containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 5 ), ceramic particles [eg, zirconium oxide (ZrO 2 ). It is formed by heat-sealing a resistor composition comprising particles, titanium oxide (TiO 2 ) particles, etc.] (note that the configuration of the resistor 7 will be described in detail later).
- both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 through the glass seal layers 8 and 9 having conductivity (for example, a resistance value of about several hundred m ⁇ ). ing.
- the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a spark plug 1 is attached to the outer peripheral surface of the metal shell 3 in a mounting hole for a combustion device (for example, an internal combustion engine or a fuel cell reformer).
- a threaded portion (male threaded portion) 19 is formed for attachment to the housing.
- a hook-shaped seat portion 20 is formed on the rear end side of the screw portion 19, and a ring-shaped gasket 22 is fitted on the screw neck 21 at the rear end of the screw portion 19.
- a tool engaging portion 23 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the combustion device is provided on the rear end side of the metal shell 3.
- a caulking portion 24 for holding the insulator 2 is provided.
- the insulator 2 and the metal shell 3 have a relatively small diameter in order to reduce the diameter (miniaturization) of the spark plug 1, and the screw diameter of the screw portion 19 is also relatively small (for example, , M12 or less).
- a tapered step portion 25 for locking the insulator 2 is provided on the inner peripheral surface on the front end side of the metal shell 3.
- the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the taper portion 14 of the insulator 2 is locked to the step portion 25 of the metal shell 3. It is fixed to the metal shell 3 by caulking the rear end side opening portion radially inward, that is, by forming the caulking portion 24.
- An annular plate packing 26 is interposed between the taper portion 14 and the step portion 25.
- annular ring members 27 and 28 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 27. , 28 is filled with talc 29 powder. That is, the metal shell 3 holds the insulator 2 via the plate packing 26, the ring members 27 and 28, and the talc 29.
- the ground electrode 31 includes an outer layer 31A formed of an alloy containing Ni as a main component and an inner layer 31B formed of a copper alloy, pure copper, or the like, which is a better heat conductive metal than the Ni alloy.
- a gap 32 is formed between the tip of the center electrode 5 and the tip of the ground electrode 31, and spark discharge is performed in the gap 32 in a direction substantially along the axis CL1. ing. *
- the resistor 7 is formed by heat-sealing a resistor composition including a conductive material, glass powder, and ceramic particles as described above, and includes a conductive material and glass. As shown in FIGS. 2A and 2B, the resistor 7 includes an aggregate phase 41 containing SiO 2 and an intervening phase 42 existing so as to cover the aggregate phase 41 (in FIG. Part with a dot pattern).
- Aggregate phase 41 is constituted by glass particles B 2 O 5-rich glass component is melted, the content of SiO 2 is larger than the content of SiO 2 in the intervening phase 42.
- intervention phase 42 is constituted mainly by the glass component of out the B 2 O 5 rich melt from glass powder, the content of B 2 O 5 is than the content of B 2 O 5 in the aggregate phase 41 Is also big.
- conductive material and ceramic particles are dissolved in the intervening phase 42.
- the intervening phase 42 is finely divided into a network.
- the conductive path made of a conductive material is finely divided by the presence of the glass component and ceramic particles. That is, the conductive path in the resistor 7 is very finely branched due to the presence of the aggregate phase 41, ceramic particles, and the like.
- the aggregate phase 41 in the resistor 7 is configured as follows in the cross section including the axis line CL1. That is, as shown in FIG. 3 (note that only the resistor 7 is shown in FIG. 3), the axis CL1 is included, and the width along the direction orthogonal to the axis CL1 is 1.3 mm with the axis CL1 as the center. A cross section of the resistor 7 (a part with a dotted pattern in FIG. 3) is taken. Then, as shown in FIG. 4 (in FIG. 4, the aggregate phase 41 is schematically shown as a circle having a size corresponding to the particle size), the cross section has a cross section of 0. 0 along the direction of the axis CL1.
- One line of the aggregate phase 41 located on the lines L1, L2,..., Ln-1, Ln is drawn by drawing a plurality of lines L1, L2,. Find the number of hits.
- the average number of aggregate phases 41 per line is obtained as shown in FIG.
- three or more line groups in which the average number in the self is 5 or more larger than the minimum value of the average number are continuous.
- the resistor 7 includes a coarse portion 51 in which the average particle diameter of the aggregate phase 41 is relatively large and the average number is relatively small, and FIG. b), the aggregate phase 41 has a relatively small average particle size and a relatively large number of fine portions 52, and the thickness (fine portion) of the fine portions 52 along the direction of the axis CL1. 52) is sufficiently large.
- a portion where three or more line groups in which the average number of the self is 5 or more larger than the minimum value of the average number is continuous can be referred to as a fine portion 52.
- the number of aggregate phases 41 on one line can be determined as follows. That is, using an EPMA (electron beam microanalyzer) with an acceleration voltage of 20 kV, an irradiation current of 5 ⁇ 0.5 ⁇ 10 ⁇ 8 A, an irradiation beam diameter of 10 ⁇ m, and an effective time (capture time) of 10 ms, As shown in FIG. 6, the Si content is measured every 10 ⁇ m in the line to obtain a total Si content of 130 points. And while calculating
- EPMA electron beam microanalyzer
- the fine portions 52 are configured to be positioned between the coarse portions 51, and in the present embodiment, there are two or more fine portions 52. That is, three or more consecutive line groups in which the average number in the self is 5 or more larger than the minimum value of the average number are different from the line group in which the average number in the self is different from the minimum value of the average number by less than 5. It is comprised so that two or more may exist on both sides. *
- the inner diameter D of the shaft hole 4 (large diameter portion 16) is 3.5 mm or less (in this embodiment, 2.9 mm or less), and the resistor 7 has a relatively small diameter. . *
- the range RA along the axis CL1 in which only the resistor 7 exists in the shaft hole 4 in the cross section orthogonal to the axis CL1 is obtained by using, for example, a TOSHIBA micro CT scanner [product name: TOSCANER (registered trademark)]. It can be specified by the obtained fluoroscopic image.
- TOSHIBA micro CT scanner product name: TOSCANER (registered trademark)
- the length L of the resistor 7 along the axis CL1 is 50% or more with respect to the distance A, and the resistor 7 is relatively long.
- the metal shell 3 is processed in advance. That is, a through-hole is formed by subjecting a cylindrical metal material (for example, an iron-based material such as S17C or S25C or a stainless material) to a cold forging process, and a rough shape is manufactured. Thereafter, the outer shape is adjusted by cutting to obtain a metal shell intermediate.
- a cylindrical metal material for example, an iron-based material such as S17C or S25C or a stainless material
- the ground electrode 31 made of Ni alloy or the like is resistance-welded to the front end surface of the metal shell intermediate.
- so-called “sag” is generated, and after the “sag” is removed, the threaded portion 19 is formed by rolling at a predetermined portion of the metal shell intermediate body.
- the metal shell 3 to which the ground electrode 31 is welded is obtained.
- the metal shell 3 to which the ground electrode 31 is welded is subjected to galvanization or nickel plating. In order to improve the corrosion resistance, the surface may be further subjected to chromate treatment. *
- the insulator 2 is formed separately from the metal shell 3.
- a raw material powder containing alumina as a main component and containing a binder or the like is used to prepare a green granulated material for molding, and rubber press molding is used to obtain a cylindrical molded body.
- molding by grinding-processing with respect to the obtained molded object the shape
- the center electrode 5 is manufactured. That is, the center electrode 5 is produced by forging a Ni alloy in which a copper alloy or the like for improving heat dissipation is arranged at the center. *
- a powdery resistor composition for forming the resistor 7 is prepared.
- two types of resistor compositions a first resistor composition and a second resistor composition
- first, carbon black, ceramic particles, and a predetermined binder are blended and mixed using water as a medium.
- the slurry obtained by mixing is dried, and an SiO 2 —B 2 O 5 —BaO—Li 2 O-based slurry having a relatively large average particle size (for example, an average particle size of about 300 ⁇ m to 400 ⁇ m).
- a first resistor composition is obtained by mixing and stirring the glass powder.
- the second resistor composition can be obtained by mixing and stirring the glass powder having a relatively small average particle size (for example, an average particle size of about 100 ⁇ m) into the dried slurry.
- the insulator 2 and the center electrode 5, the resistor 7, and the terminal electrode 6 obtained as described above are sealed and fixed by the glass seal layers 8 and 9. More specifically, first, the center electrode 5 is inserted into the small diameter portion 15 of the shaft hole 4, and the bulging portion 18 of the center electrode 5 is locked to the stepped portion 17 of the shaft hole 4. Next, a conductive glass powder generally prepared by mixing borosilicate glass and metal powder is filled into the shaft hole 4, and the filled conductive glass powder is pre-compressed. Next, both resistor compositions are filled into the shaft hole 4 so that the second resistor composition is positioned between the first resistor compositions and pre-compressed in the same manner. Further, the conductive glass powder is filled into the shaft hole 4 and pre-compression is performed in the same manner.
- Both resistor compositions and conductive glass powder are heated at a predetermined target temperature (for example, 900 ° C.) equal to or higher than the glass softening point.
- both the resistor composition and the conductive glass powder in the laminated state become the resistor 7 and the glass seal layers 8 and 9, and are centered with respect to the insulator 2 by the glass seal layers 8 and 9.
- the electrode 5, the terminal electrode 6, and the resistor 7 are sealed and fixed.
- the formation process of the resistor 7 will be described in detail.
- a glass component rich in B 2 O 5 is melted from the glass powder of the resistor composition, and becomes rich in SiO 2 due to the melting of B 2 O 5.
- a relatively high viscosity aggregate phase 41 which is the glass powder is formed.
- the aggregate phase 41 not only on the second resistor composition side but also on the first resistor composition side due to the B 2 O 5 rich glass component (intervening phase) that has melted in the second resistor composition. The gap between them will be filled more reliably.
- the insulator 2 including the center electrode 5 and the resistor 7 and the like and the metal shell 3 including the ground electrode 31 are fixed. More specifically, after the insulator 2 is inserted into the metal shell 3, the rear end side opening of the metal shell 3 formed relatively thin is caulked radially inward, that is, the caulking portion 24 described above. As a result, the insulator 2 and the metal shell 3 are fixed.
- spark plug 1 is obtained by bending the ground electrode 31 and adjusting the size of the gap 32 formed between the center electrode 5 and the ground electrode 31.
- the resistor 7 includes the coarse portion 51 and the fine portion 52, and the thickness of the fine portion 52 (volume of the fine portion 52) along the axis CL1 is sufficiently large. Therefore, at the time of heating when forming the resistor 7, the glass component (intervening phase 42) rich in B 2 O 5 is formed from the fine portion 52 (second resistor composition) in which the average particle diameter of the glass powder is relatively small.
- the glass component melts in a large amount, and the glass component enters between the aggregate phases 41 in the coarse portion 51 (first resistor composition), so that the interphase 42 is interposed between the aggregate phases 41 in the coarse portion 51. Can be filled with. Thereby, in both the coarse part 51 and the fine part 52, formation of the clearance gap between the aggregate phases 41 can be suppressed, and the density of the resistor 7 can be made sufficiently large. As a result, the distance A is set to 15 mm or more, and coupled with the fact that the resistor 7 is made relatively long, very excellent load life performance can be realized.
- the length L (L / A) of the resistor 7 along the axis CL1 with respect to the distance A is set to 50% or more. Therefore, the resistor 7 becomes sufficiently long, and the effect of suppressing radio noise can be further improved. In the present embodiment, since the distance A is 17 mm or more, the load life performance can be further improved.
- two or more fine portions 52 are provided so as to sandwich the coarse portion 51. Therefore, between the aggregate phases 41 can be more reliably filled with the intervening phase 42 in the coarse portion 51, and formation of a gap between the aggregate phases 41 can be remarkably suppressed. As a result, the density of the resistor 7 can be further increased, and the load life performance can be further improved.
- the inner diameter D, the distance A, the difference between the maximum value and the minimum value of the average number of aggregate phases, the number of fine parts, the distance A Spark plug samples having various length L ratios (L / A) were prepared, and a load life performance evaluation test and a radio noise performance evaluation test were performed on each sample.
- the outline of the load life performance evaluation test is as follows. That is, each sample was attached to an automobile transistor ignition device, discharged under a temperature of 350 ° C. with a discharge voltage of 20 kV, 3600 times per minute, and the time when the resistance value at room temperature became 100 k ⁇ or more (lifetime) It was measured. Next, each sample was divided into 10 stages according to the lifetime, and the load lifetime performance of each sample was evaluated. Here, the score is “1” for a sample whose lifetime was less than 10 hours, “2” for a sample whose lifetime was 10 hours or more and less than 20 hours, and a lifetime of 20 hours or more.
- the outline of the radio noise performance evaluation test is as follows. That is, for each sample, five resistance values having the same resistance (5 ⁇ 0.3 k ⁇ ) are prepared, and each sample is subjected to a radio noise evaluation test according to JASO D002-2. The average value of radio noise suppression effect (electric noise suppression performance) was obtained. Among them, the comparison of the noise suppression performance of 300 MHz was performed. And each sample was divided into 10 grades according to the improvement width of the noise suppression performance based on the noise suppression performance of the sample 17 in Table 1 described later. Here, a sample whose improvement width was less than 1.0 dB was assigned a score of “1”, a sample whose improvement width was 1.0 dB or more and less than 2.0 dB was assigned a score of “2”.
- the score was increased by 1 (for example, the score of the sample whose improvement width was 4.0 dB or more and less than 5.0 dB was “5”). In addition, the score was set to “10” for the sample whose improvement width was 9.0 dB or more. If the score is 5 points or more, it is evaluated as “ ⁇ ” as having an excellent radio noise suppression effect. On the other hand, if the score is 4 points or less, An evaluation of “x” was given as being inferior in the noise suppression effect. *
- Table 1 shows the test results of the two tests for each sample.
- the number of aggregate phases was measured using an EPMA (electron beam microanalyzer) after mirror polishing by the above-described method. Moreover, when the aggregate phases were in a welded state, the number of aggregate phases was determined as one aggregate phase without separating them.
- the resistor was basically formed using the first resistor composition in which the average particle size of the glass powder was about 300 ⁇ m to 400 ⁇ m. However, when providing the fine part in the resistor, the fine part was formed using 0.01 g of the second resistor composition in which the average particle diameter of the glass powder was about 100 ⁇ m. *
- the distance A was set to be less than 15 mm, or a portion where the difference between the maximum value and the minimum value of the average number of aggregate phases was 5 or more did not exist (that is, fine)
- the samples (samples 1 to 5, 9 to 13, 17 to 20, 23 to 26, 31, 34, 35) in which no part is provided have at least one of the load life performance and the radio noise suppression effect. It turned out to be insufficient. This is because the resistance is relatively short because the distance A is less than 15 mm, and the resistance value of the resistor is caused by oxidation of a part of the conductive path because the fine portion is not provided. This is thought to be due to the fact that the structure has risen rapidly. *
- samples (samples 2, 10, and 24) with distance A less than 17 mm samples (samples 3, 11, and 25) with distance A of 17 mm or more have a more improved radio noise suppression effect.
- the load life performance is more likely to deteriorate. This is presumably because the greater the distance A, the less the pressure is transmitted to the distal end portion of the resistor composition in the axial direction.
- the samples (samples 6 to 8, 14 to 16, 21, 22, 27 to 30, 32, 33) in which the distance A is set to 15 mm or more and the fine portions are provided have the effect of suppressing radio noise, And it was confirmed that it is excellent in both load life performance. This is because the distance A is set to 15 mm or more, the resistor becomes relatively long, and the fine portion is provided, so that formation of a gap between the aggregate phases is suppressed, and resistance is reduced. This is thought to be due to the formation of many conductive paths in the body. *
- samples 29 and 30 were further excellent in load life performance as compared with the samples (samples 15 and 16) provided with one fine part. This is considered to be because the formation of a gap between the aggregate phases was further suppressed by providing two or more fine portions.
- the distance A is set to 15 mm or more, and the average number of aggregate phases in itself is smaller than the minimum value of the average number. It can be said that it is preferable that three or more line groups that are 5 or more are continuous.
- the above configuration is particularly significant in a spark plug in which the inner diameter D is set to 3.5 mm or less and the load life performance is likely to be deteriorated.
- the inner diameter D is set to 2.9 mm or less, and the load life performance is reduced. It can be said that it is extremely significant in a spark plug of great concern.
- the above-described configuration is particularly significant in a spark plug in which the distance A is 17 mm or more and a further improvement in the suppression effect of radio noise can be expected, while a decrease in load life performance is more concerned. . *
- ZrO 2 particles and TiO 2 particles are exemplified as the ceramic particles, but other ceramic particles may be used. Therefore, for example, aluminum oxide (Al 2 O 3 ) particles or the like may be used.
- the tool engaging portion 23 has a hexagonal cross section, but the shape of the tool engaging portion 23 is not limited to such a shape.
- it may be a Bi-HEX (deformed 12-angle) shape [ISO 22777: 2005 (E)].
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Spark Plugs (AREA)
Abstract
抵抗体の密度を大きくすることが難しい点火プラグにおいて、抵抗体の密度を十分に大きなものとし、優れた負荷寿命性能を実現する。点火プラグ1は、中心電極5と、端子電極6と、両電極5,6間に配置されSiO2及びB2O5を含有するガラスを含む抵抗体7とを備える。端子電極6の先端から中心電極5の後端までの距離が15mm以上であり、前記ガラスは、骨材相41と介在相42とを有する分相ガラスである。幅が1.3mmの抵抗体7の断面において、軸線CL1方向に沿って0.1mmの間隔で軸線CL1と直交する複数のラインを引き、前記ライン上に位置する骨材相41の1ライン当たりの個数を求め、連続する5本のラインからなるライン群のそれぞれにおいて前記個数の平均個数を求めたとき、自身における平均個数が平均個数の最小値よりも5以上大きいライン群が3つ以上連続する。
Description
本発明は、内燃機関等に使用される点火プラグに関する。
点火プラグは、燃焼装置(例えば、内燃機関等)に取付けられ、混合気等への着火のために用いられるものである。一般に点火プラグは、軸孔を有する絶縁体と、軸孔の先端側に挿通される中心電極と、軸孔の後端側に挿通される端子電極と、絶縁体の外周に設けられる主体金具とを備えている。また、軸孔内であって、中心電極及び端子電極の間には、燃焼装置の動作に伴い発生する電波雑音を抑制するための抵抗体が設けられることがある(例えば、特許文献1等参照)。
一般に抵抗体は、二酸化ケイ素(SiO2)及び酸化ボロン(B2O5)を含むガラス粉末やカーボンブラック等の導電性材料、セラミックス粒子などを含んでなる抵抗体組成物を軸孔に充填した上で、熱間にて中心電極側に向けて端子電極を押圧し、抵抗体組成物を加熱・圧縮することにより形成されている。ここで、形成された抵抗体は、SiO2を比較的多量に含む粒状の骨材相の周囲に、B2O5を比較的多量に含む介在相が存在する分相状態となっている。骨材相は、B2O5リッチのガラス成分が溶け出してなるガラス粒子により構成され、介在相は、主として溶け出したB2O5リッチのガラス成分により構成されている。また、介在相には、導電性材料やセラミック粒子が含まれており、介在相中の導電性材料からなる導電経路を介して中心電極及び端子電極間が電気的に接続されている。
ところで、電波雑音の抑制効果を高めるという点では、軸線に沿った中心電極及び端子電極間の距離を増大させ、抵抗体をより長いものとすることが好ましい。しかしながら、平均粒径が比較的大きな前記ガラス粉末を有する抵抗体組成物を用いた上で、中心電極及び端子電極間の距離を比較的大きなものとした場合には、抵抗体の密度を十分に増大させることが難しくなる。これは、次の理由による。
すなわち、平均粒径の大きなガラス粉末は、加熱時に比較的溶けにくい(ガラス粒子から溶出するB2O5リッチのガラス成分が少ない)ため、骨材相同士の間が介在相で満たされず、骨材相同士の間に隙間(気孔)が生じる。そのため、圧縮時に圧力が逃げてしまいやすい。ここで、中心電極及び端子電極間の距離が比較的小さなときには、圧力の損失はさほど大きなものとならず、抵抗体組成物の先端側(端子電極から離間した側)にまで十分に大きな圧力を加えることができる。従って、抵抗体の全域において、圧縮により骨材相同士の間の隙間(気孔)を押し潰すことができ、結果的に、骨材相同士の間が介在相で満たされた状態となり、抵抗体の密度を十分に大きなものとすることができる。
一方で、中心電極及び端子電極間の距離が比較的大きなときには、圧縮時における圧力の損失が大きくなってしまい、抵抗体組成物の先端側に加わる圧力が小さくなってしまう。そのため、抵抗体の先端側において、骨材相同士の間に隙間が形成されたままとなり、抵抗体の密度が小さなものとなってしまう。尚、抵抗体の密度が小さいということは、抵抗体中における導電経路の数が少ないということである。そのため、密度の小さな抵抗体は、使用に伴う導電経路の一部の酸化により、抵抗値が急激に増大してしまうおそれがあり、負荷寿命性能に劣る。
また、抵抗体の密度を増大させるべく、平均粒径が小さく(例えば、100μm程度で)、比較的溶けやすいガラス粉末を用いることで、ガラス粒子からB2O5リッチのガラス成分をより多く溶出させ、骨材相同士の間を介在相でより確実に満たすように構成することが考えられる。しかしながら、この場合には、加熱により溶融したガラスにおいて、比較的粘度の低いB2O5リッチのガラス成分が増大するため、ガラスの粘度が低くなる(水に近い状態となる)。従って、抵抗体組成物に圧力を加えた際に、端子電極の外周面と軸孔の内周面との間の隙間に対して、より多くのガラスが入り込んでしまいやすく、圧縮による前記隙間(気孔)の押し潰しが不足してしまいやすい。その結果、抵抗体の密度が小さくなってしまい、結局のところ、負荷寿命性能が不十分となってしまうおそれがある。
また、抵抗体組成物中に、平均粒径が比較的大きなガラス粉末と平均粒径が比較的小さなガラス粉末とが均一に混在するように構成することで、骨材相同士の間を介在相で満たしつつ、加熱時におけるガラスの粘度低下を防止することが考えられる。ところが、この場合には、平均粒径の小さなガラス粒子同士が凝集してしまうという現象が生じる。そのため、抵抗体の一部においては、骨材相同士の間が介在相で満たされるものの、その一部を除いた部位においては、平均粒径が比較的大きなガラス粉末のみを用いた場合と同様に、骨材相同士の間に隙間が形成されてしまう。その結果、抵抗体の密度を増大させることができず、負荷寿命性能が不十分なものとなってしまう。
本発明は、上記事情を鑑みてなされたものであり、その目的は、端子電極の先端から中心電極の後端までの距離が比較的大きく、抵抗体の密度を大きくすることが難しい点火プラグにおいて、抵抗体の密度を十分に大きなものとし、優れた負荷寿命性能を実現することにある。
以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。
構成1.本構成の点火プラグは、軸線方向に貫通する軸孔を有する絶縁体と、
前記軸孔の先端側に挿設された中心電極と、
前記軸孔の後端側に挿設された端子電極と、
前記軸孔内において前記中心電極及び前記端子電極間に配置され、導電性材料、並びに、二酸化ケイ素(SiO2)及び酸化ボロン(B2O5)を含有するガラスを含む抵抗体と
を備える点火プラグであって、
前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離が15mm以上であり、
前記ガラスは、SiO2を含む骨材相と、当該骨材相間に位置する介在相とを有する分相ガラスであり、
前記骨材相は、SiO2の含有量が前記介在相におけるSiO2の含有量よりも大きく、
前記介在相は、B2O5の含有量が前記骨材相におけるB2O5の含有量よりも大きく、
前記軸線を含み、前記軸線を中心とする、前記軸線と直交する方向に沿った幅が1.3mmの前記抵抗体の断面において、
前記軸線方向に沿って0.1mmの間隔で前記軸線と直交する複数のラインを引き、前記ライン上に位置する前記骨材相の1ライン当たりの個数を求め、連続する5本のラインからなるライン群のそれぞれにおいて、前記個数の平均個数を求めたとき、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が3つ以上連続することを特徴とする。
前記軸孔の先端側に挿設された中心電極と、
前記軸孔の後端側に挿設された端子電極と、
前記軸孔内において前記中心電極及び前記端子電極間に配置され、導電性材料、並びに、二酸化ケイ素(SiO2)及び酸化ボロン(B2O5)を含有するガラスを含む抵抗体と
を備える点火プラグであって、
前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離が15mm以上であり、
前記ガラスは、SiO2を含む骨材相と、当該骨材相間に位置する介在相とを有する分相ガラスであり、
前記骨材相は、SiO2の含有量が前記介在相におけるSiO2の含有量よりも大きく、
前記介在相は、B2O5の含有量が前記骨材相におけるB2O5の含有量よりも大きく、
前記軸線を含み、前記軸線を中心とする、前記軸線と直交する方向に沿った幅が1.3mmの前記抵抗体の断面において、
前記軸線方向に沿って0.1mmの間隔で前記軸線と直交する複数のラインを引き、前記ライン上に位置する前記骨材相の1ライン当たりの個数を求め、連続する5本のラインからなるライン群のそれぞれにおいて、前記個数の平均個数を求めたとき、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が3つ以上連続することを特徴とする。
構成2.本構成の点火プラグは、上記構成1において、前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離に対して、前記軸線に沿った前記抵抗体の長さが50%以上であることを特徴とする。
構成3.本構成の点火プラグは、上記構成1又は2において、前記軸線と直交する断面において前記軸孔内に前記抵抗体のみが存在する範囲の先端において、前記軸孔の内径が3.5mm以下であることを特徴とする。
構成4.本構成の点火プラグは、上記構成1乃至3のいずれかにおいて、前記軸線と直交する断面において前記軸孔内に前記抵抗体のみが存在する範囲の先端において、前記軸孔の内径が2.9mm以下であることを特徴とする。
構成5.本構成の点火プラグは、上記構成1乃至4のいずれかにおいて、前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離が17mm以上であることを特徴とする。
構成6.本構成の点火プラグは、上記構成1乃至5のいずれかにおいて、3つ以上連続する、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が、自身における前記平均個数が前記平均個数の最小値と5未満だけ異なる前記ライン群を挟んで2つ以上あることを特徴とする。
構成1の点火プラグによれば、端子電極の先端から中心電極の後端までの間の軸線に沿った距離が15mm以上とされている。従って、抵抗体における密度の低下が懸念される。
この点、構成1の点火プラグによれば、ライン群のそれぞれにおいて骨材相の平均個数を求めたとき、自身における前記平均個数が前記平均個数の最小値よりも5以上大きいライン群が3つ以上連続するように構成されている(以下、抵抗体のうち、自身における前記平均個数が前記平均個数の最小値よりも5以上大きいライン群が3つ以上連続する部位を「微細部」と称する)。すなわち、抵抗体は、骨材相(ガラス粉末)の平均粒径が比較的大きな部位(粗大部)と、骨材相(ガラス粉末)の平均粒径が比較的小さな部位(微細部)とを備えるとともに、軸線方向に沿った微細部の厚さ(微細部の体積)が十分に大きなものとされている。従って、抵抗体を形成する際の加熱時には、ガラス粉末の平均粒径が比較的小さな微細部からB2O5リッチのガラス成分(介在相を構成するガラス成分)が多量に溶け出し、当該ガラス成分が粗大部における骨材相間に入り込むことで、粗大部において骨材相同士の間を介在相で満たすことができる。これにより、骨材相同士の間における隙間の形成を抑制することができ、抵抗体の密度を十分に大きなものとすることができる。その結果、端子電極の先端から中心電極の後端までの間の軸線に沿った距離が15mm以上とされ、抵抗体を比較的長くできることと相俟って、非常に優れた負荷寿命性能を実現することができる。
ところで、抵抗体を形成する際にガラスを溶け出しやすくするため、抵抗体の一部においてガラスの組成を変更することが考えられる。しかしながら、一部で異なる組成のガラスを用いた場合には、介在相を細かい網の目状に形成することが難しくなる。従って、抵抗体中における導電経路の減少を招いてしまい、負荷寿命性能を十分に向上させることができないおそれがある。
これに対して、構成1の点火プラグによれば、組成の変更ではなく、粒径の調節により、ガラスの溶け出しが生じやすくなるように構成されている。従って、介在相をより確実に細かい網の目状に形成することができ、多数の導電経路をより確実に形成することができる。その結果、抵抗体において、優れた負荷寿命性能を安定的に実現することができる。
構成2の点火プラグによれば、端子電極の先端から中心電極の後端までの間の軸線に沿った距離に対する、軸線に沿った抵抗体の長さが50%以上とされている。従って、抵抗体が十分に長いものとなり、電波雑音の抑制効果を一層向上させることができる。
一方で、端子電極の先端から中心電極の後端までの間の軸線に沿った距離に対して、軸線に沿った抵抗体の長さを50%以上とした場合には、抵抗体(抵抗体組成物)の先端側に圧力が加わりにくくなる。そのため、抵抗体の密度が小さくなりやすく、負荷寿命性能の低下を招いてしまいやすい。
しかしながら、前記構成1を採用することで、構成2の点火プラグのように抵抗体が比較的長い場合であっても、抵抗体の密度を十分に大きなものとすることができる。換言すれば、前記構成1は、電波雑音の抑制効果を向上させるべく、端子電極の先端から中心電極の後端までの間の軸線に沿った距離に対して、軸線に沿った抵抗体の長さを50%以上とした点火プラグにおいて、特に有意である。
近年、点火プラグの小径化の要請があり、軸孔のうち抵抗体が配置される部位の内径を比較的小さくすることがある。しかしながら、このように内径が小さい場合には、抵抗体(抵抗体組成物)の先端側に圧力が加わりにくくなる。そのため、抵抗体の密度が小さくなりやすく、負荷寿命性能の低下を招いてしまいやすい。
この点、前記構成1を採用することで、上記構成3の点火プラグのように、軸孔内に抵抗体のみが存在する範囲の先端において軸孔の内径が3.5mm以下とされている場合であっても、抵抗体の密度を十分に大きくすることができる。換言すれば、上記構成1は、前記内径が3.5mm以下の点火プラグにおいて、特に有意である。
構成4の点火プラグのように、軸孔内に抵抗体のみが存在する範囲の先端において軸孔の内径が2.9mm以下とされている場合には、抵抗体における密度の低下が一層懸念されるが、前記構成1を採用することで、このような懸念を払拭することができる。換言すれば、前記構成1は、前記内径が2.9mm以下の点火プラグにおいて、非常に効果的である。
構成5の点火プラグによれば、端子電極の先端から中心電極の後端までの間の軸線に沿った距離が17mm以上とされている。従って、抵抗体を一層長くすることができ、電波雑音の抑制効果をより一層向上させることができる。
一方で、前記距離を17mm以上としたときには、抵抗体(抵抗体組成物)の先端側に圧力が一層加わりにくくなるため、負荷寿命性能の低下をより懸念される。しかしながら、前記構成1を採用することで、このような懸念を払拭することができる。換言すれば、前記構成1は、電波雑音の抑制効果の更なる向上を図るべく、前記距離を17mm以上とした点火プラグにおいて、特に有意である。
構成6の点火プラグによれば、微細部が粗大部を挟むようにして2箇所以上設けられている。従って、粗大部において骨材相同士の間を一層確実に介在相で満たすことができ、骨材相同士の間における隙間の形成を顕著に抑制することができる。その結果、抵抗体の密度をさらに増大させることができ、負荷寿命性能を一段と向上させることができる。
以下に、一実施形態について図面を参照して説明する。図1は、点火プラグ1を示す一部破断正面図である。尚、図1では、点火プラグ1の軸線CL1方向を図面における上下方向とし、下側を点火プラグ1の先端側、上側を後端側として説明する。
点火プラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。
絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれよりも細径に形成された脚長部13とを備えている。絶縁碍子2のうち、大径部11、中胴部12、及び、大部分の脚長部13は、主体金具3の内部に収容されている。そして、中胴部12と脚長部13との連接部には、先端側に向けて先細るテーパ部14が形成されており、当該テーパ部14にて絶縁碍子2が主体金具3に係止されている。
さらに、絶縁碍子2には、軸線CL1に沿って軸孔4が貫通形成されている。当該軸孔4は、その先端部に小径部15を備えるとともに、当該小径部15よりも後端側に、自身の内径が小径部15の内径よりも大きい大径部16を備えている。また、前記小径部15及び大径部16の間には、テーパ状の段差部17が形成されている。
加えて、軸孔4の先端側(小径部15)には中心電極5が挿入、固定されている。より詳しくは、中心電極5の後端部には、外周側に向けて膨出する膨出部18が形成されており、当該膨出部18が前記段差部17に対して係止された状態で、中心電極5が軸孔4内に固定されている。また、中心電極5は、銅又は銅合金からなる内層5Aと、ニッケル(Ni)を主成分とする合金からなる外層5Bとにより構成されている。尚、中心電極5は、全体として棒状(円柱状)をなし、その先端部が絶縁碍子2の先端から突出している。
また、軸孔4の後端側(大径部16)には、絶縁碍子2の後端から突出した状態で端子電極6が挿入、固定されている。尚、本実施形態では、端子電極6の先端から中心電極5の後端までの軸線CL1に沿った距離Aが、15mm以上(本実施形態では、17mm以上)とされている。
さらに、軸孔4の中心電極5と端子電極6との間には、円柱状をなす導電性の抵抗体7が配設されている。当該抵抗体7は、電波雑音を抑制するためのものであり、その抵抗値は、点火プラグの仕様によって異なるが、例えば、100Ω以上とされている。また、抵抗体7は、導電性材料(例えば、カーボンブラック等)や二酸化ケイ素(SiO2)及び酸化ボロン(B2O5)を含有するガラス粉末、セラミック粒子〔例えば、酸化ジルコニウム(ZrO2)粒子や酸化チタン(TiO2)粒子等〕等からなる抵抗体組成物が加熱封着されることで形成されている(尚、抵抗体7の構成については後に詳述する)。加えて、抵抗体7の両端部は、導電性(例えば、抵抗値が数百mΩ程度)のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。
加えて、主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面には点火プラグ1を燃焼装置(例えば、内燃機関や燃料電池改質器等)の取付孔に取付けるためのねじ部(雄ねじ部)19が形成されている。
また、ねじ部19よりも後端側には鍔状の座部20が形成され、ねじ部19後端のねじ首21にはリング状のガスケット22が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3を燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部23が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部24が設けられている。
また、ねじ部19よりも後端側には鍔状の座部20が形成され、ねじ部19後端のねじ首21にはリング状のガスケット22が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3を燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部23が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部24が設けられている。
尚、本実施形態では、点火プラグ1の小径化(小型化)を図るべく、絶縁碍子2や主体金具3が比較的小径とされており、ねじ部19のねじ径も比較的小さなもの(例えば、M12以下)とされている。
また、主体金具3の先端側内周面には、絶縁碍子2を係止するためのテーパ状の段部25が設けられている。そして、絶縁碍子2は、主体金具3に対してその後端側から先端側に向かって挿入され、自身のテーパ部14が主体金具3の段部25に係止された状態で、主体金具3の後端側開口部を径方向内側に加締めること、つまり上記加締め部24を形成することによって主体金具3に固定されている。尚、テーパ部14及び段部25の間には、円環状の板パッキン26が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料ガスが外部に漏れないようになっている。
さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材27,28が介在され、リング部材27,28間にはタルク(滑石)29の粉末が充填されている。すなわち、主体金具3は、板パッキン26、リング部材27,28及びタルク29を介して絶縁碍子2を保持している。
また、主体金具3の先端部には、自身の中間部が曲げ返されて、先端部側面が中心電極5の先端部と対向する接地電極31が接合されている。接地電極31は、Niを主成分とする合金により形成された外層31Aと、前記Ni合金よりも良熱導電性金属である銅合金や純銅等により形成された内層31Bとから構成されている。
さらに、中心電極5の先端部と接地電極31の先端部との間には、間隙32が形成されており、当該間隙32にて軸線CL1にほぼ沿った方向で火花放電が行われるようになっている。
次いで、抵抗体7の構成について詳述する。抵抗体7は、上述のように導電性材料やガラス粉末、セラミック粒子を含む抵抗体組成物が加熱封着されることで形成されたものであり、導電性材料とガラスとを含んでいる。抵抗体7は、図2(a),(b)に示すように、SiO2を含む骨材相41と、当該骨材相41を覆うようにして存在する介在相42(図2中、散点模様を付した部位)とを備えている。
骨材相41は、B2O5リッチのガラス成分が溶け出したガラス粒子により構成され、SiO2の含有量が介在相42におけるSiO2の含有量よりも大きなものである。一方で、介在相42は、主としてガラス粉末から溶け出したB2O5リッチのガラス成分により構成されており、B2O5の含有量が骨材相41におけるB2O5の含有量よりも大きなものである。また、介在相42には、導電性材料やセラミックス粒子が溶け込んでいる。
尚、中心電極5と端子電極6との間においては、導電性材料を含む介在相42を伝わって電流が流れることとなるが、抵抗体7を断面視した際に、骨材相41の存在によって、介在相42は網目状に細かく分かれた状態となっている。また、介在相42中においては、ガラス成分やセラミック粒子の存在によって、導電性材料からなる導電経路は細かく分かれている。すなわち、抵抗体7における導電経路は、骨材相41やセラミック粒子等の存在により非常に細かく枝分かれした状態となっている。
さらに、本実施形態では、軸線CL1を含む断面において、抵抗体7における骨材相41が次のように構成されている。すなわち、図3(尚、図3では、抵抗体7のみを示す)に示すように、軸線CL1を含むとともに、軸線CL1を中心とし、軸線CL1と直交する方向に沿った幅が1.3mmの抵抗体7の断面(図3中、散点模様を付した部位)を取る。そして、図4(尚、図4では、骨材相41を、その粒径に対応する大きさの円として模式的に示す)に示すように、前記断面において、軸線CL1方向に沿って0.1mmの間隔で軸線CL1と直交する複数のラインL1,L2,…,Ln-1,Lnを引き、前記ラインL1,L2,…,Ln-1,Ln上に位置する骨材相41の1ライン当たりの個数を求める。次いで、連続する5本のラインからなるライン群LG1,LG2,…,LGm-1,LGmのそれぞれにおいて、図5に示すように、骨材相41の1ライン当たりの平均個数を求める。このとき、本実施形態では、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が3つ以上連続するように構成されている。
すなわち、本実施形態において、抵抗体7は、図2(a)に示すように、骨材相41の平均粒径が比較的大きく、前記平均個数が比較的少ない粗大部51と、図2(b)に示すように、骨材相41の平均粒径が比較的小さく、前記平均個数が比較的多い微細部52とを備えるとともに、軸線CL1方向に沿った微細部52の厚さ(微細部52の体積)が十分に大きなものとされている。尚、抵抗体7のうち、自身の前記平均個数が前記平均個数の最小値よりも5以上大きくなるライン群が3つ以上連続する部位を、微細部52ということができる。
また、1本のライン上における骨材相41の個数は、次のようにして求めることができる。すなわち、加速電圧を20kV、照射電流を5±0.5×10-8A、照射ビーム径を10μm、有効時間(取込時間)を10msとしたEPMA(電子線マイクロアナライザ)を用いて、図6に示すように、前記ラインにおいて10μmごとにSiの含有量を測定し、計130ポイントにおけるSi含有量を得る。そして、得られたSi含有量のピーク値を求めるとともに、Si含有量が前記ピーク値の60%以上となっているポイントを特定する。次いで、前記ピーク値の60%以上となっているポイントの数を測定し、当該数をライン上における骨材相41の個数として求める。尚、前記ピーク値の60%以上となっているポイントが隣接している場合には、隣接するポイント群を1として骨材相41の個数が計測される。
加えて、本実施形態において、微細部52は、各粗大部51間に位置するように構成されており、本実施形態では、微細部52が2箇所以上存在している。すなわち、3つ以上連続する、自身における前記平均個数が前記平均個数の最小値よりも5以上大きいライン群が、自身における前記平均個数が前記平均個数の最小値と5未満だけ異なる前記ライン群を挟んで2つ以上存在するように構成されている。
加えて、本実施形態では、絶縁碍子2の小径化に伴い、図7に示すように、軸線CL1と直交する断面において軸孔4内に抵抗体7のみが存在する軸線CL1に沿った範囲RAの先端4Fにおいて、軸孔4(大径部16)の内径Dが、3.5mm以下(本実施形態では、2.9mm以下)とされており、抵抗体7は比較的小径とされている。
尚、軸線CL1と直交する断面において軸孔4内に抵抗体7のみが存在する軸線CL1に沿った範囲RAは、例えば、TOSHIBA製マイクロCTスキャナ〔製品名:TOSCANER(登録商標)〕を用いて得られた透視画像によって特定することができる。
また、図1に示すように、前記距離Aに対して、軸線CL1に沿った抵抗体7の長さLが50%以上とされており、抵抗体7が比較的長いものとされている。
次に、上記のように構成されてなる点火プラグ1の製造方法について説明する。
まず、主体金具3を予め加工しておく。すなわち、円柱状の金属素材(例えば、S17CやS25Cといった鉄系素材やステンレス素材)に冷間鍛造加工を施すことにより貫通孔を形成するとともに、概形を製造する。その後、切削加工を施すことで外形を整え、主体金具中間体を得る。
続いて、主体金具中間体の先端面に、Ni合金等からなる接地電極31が抵抗溶接される。当該溶接に際してはいわゆる「ダレ」が生じるので、その「ダレ」を除去した後、主体金具中間体の所定部位にねじ部19が転造によって形成される。これにより、接地電極31の溶接された主体金具3が得られる。次いで、接地電極31の溶接された主体金具3に、亜鉛メッキ或いはニッケルメッキが施される。尚、耐食性向上を図るべく、その表面に、さらにクロメート処理を施すこととしてもよい。
一方、前記主体金具3とは別に、絶縁碍子2を成形加工しておく。例えば、アルミナを主体としバインダ等を含む原料粉末を用い、成形用素地造粒物を調製し、これを用いてラバープレス成形を行うことで、筒状の成形体が得られる。そして、得られた成形体に対して、研削加工を施すことで整形するとともに、整形したものを焼成炉へ投入し焼成することで、絶縁碍子2が得られる。
また、前記主体金具3、絶縁碍子2とは別に、中心電極5を製造しておく。すなわち、中央部に放熱性向上を図るための銅合金等を配置したNi合金を鍛造加工して中心電極5を作製する。
さらに、抵抗体7を形成するための粉末状の抵抗体組成物を調製しておく。尚、本実施形態では、2種類の抵抗体組成物(第1抵抗体組成物、及び、第2抵抗体組成物)を用意する。より詳しくは、まず、カーボンブラックと、セラミックス粒子と、所定のバインダとをそれぞれ配合し、水を媒体として混合する。そして、混合して得られたスラリーを乾燥させ、これに平均粒径が比較的大きい(例えば、平均粒径が300μm~400μm程度の)SiO2-B2O5-BaO-Li2O系のガラス粉末を混合攪拌することで、第1抵抗体組成物が得られる。また、前記スラリーを乾燥させたものに、平均粒径が比較的小さい(例えば、平均粒径が100μm程度の)前記ガラス粉末を混合攪拌することで、第2抵抗体組成物が得られる。
次に、上記のようにして得られた絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定される。より詳しくは、まず、軸孔4の小径部15に中心電極5を挿入し、中心電極5の膨出部18を軸孔4の段差部17に対して係止する。次いで、一般的にホウ珪酸ガラスと金属粉末とが混合されて調製された導電性ガラス粉末を軸孔4内に充填し、充填した導電性ガラス粉末を予備圧縮する。次に、前記第1抵抗体組成物の間に前記第2抵抗体組成物が位置するように、両抵抗体組成物を軸孔4に充填して同様に予備圧縮をする。さらに、軸孔4に前記導電性ガラス粉末を充填し、同じく予備圧縮を行う。そして、端子電極6を軸孔4の後端側開口から挿入した上で、端子電極6により両抵抗体組成物や導電性ガラス粉末を軸線CL1方向先端側に押圧した状態で、焼成炉内においてガラス軟化点以上の所定の目標温度(例えば、900℃)で両抵抗体組成物や導電性ガラス粉末を加熱する。
加熱圧縮することにより、積層状態にある前記両抵抗体組成物及び導電性ガラス粉末が、抵抗体7及びガラスシール層8,9となり、ガラスシール層8,9により、絶縁碍子2に対して中心電極5、端子電極6、及び、抵抗体7が封着固定される。
尚、抵抗体7の形成過程について詳述すると、加熱時には、抵抗体組成物のガラス粉末からB2O5リッチのガラス成分が溶け出し、B2O5の溶け出しにより、SiO2リッチとなった前記ガラス粉末である比較的高粘度の骨材相41が形成される。
そして、骨材相41間の隙間(気孔)に、前記B2O5リッチのガラス成分である比較的低粘度の介在相42が入り込む。このとき、ガラス粉末の平均粒径が比較的小さな第2抵抗体組成物においては、ガラス粉末が溶けやすく、第1抵抗体組成物よりもB2O5リッチのガラス成分が溶け出しやすい。そのため、第2抵抗体組成物において溶け出したB2O5リッチのガラス成分(介在相)により、第2抵抗体組成物側だけでなく、第1抵抗体組成物側においても骨材相41間の隙間がより確実に埋められることとなる。
そして、骨材相41間の隙間(気孔)に、前記B2O5リッチのガラス成分である比較的低粘度の介在相42が入り込む。このとき、ガラス粉末の平均粒径が比較的小さな第2抵抗体組成物においては、ガラス粉末が溶けやすく、第1抵抗体組成物よりもB2O5リッチのガラス成分が溶け出しやすい。そのため、第2抵抗体組成物において溶け出したB2O5リッチのガラス成分(介在相)により、第2抵抗体組成物側だけでなく、第1抵抗体組成物側においても骨材相41間の隙間がより確実に埋められることとなる。
その後、上記のようにそれぞれ作製された中心電極5や抵抗体7等を備える絶縁碍子2と、接地電極31を備える主体金具3とが固定される。より詳しくは、主体金具3に対して絶縁碍子2を挿通した上で、比較的薄肉に形成された主体金具3の後端側開口部を径方向内側に加締めること、つまり上記加締め部24を形成することによって絶縁碍子2と主体金具3とが固定される。
そして最後に、接地電極31を屈曲させるとともに、中心電極5と接地電極31との間に形成された間隙32の大きさを調整することで、上述した点火プラグ1が得られる。
以上詳述したように、本実施形態によれば、ライン群LG1,LG2,…,LGm-1,LGmのそれぞれにおいて骨材相41の平均個数を求めたとき、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が3つ以上連続するように構成されている。すなわち、抵抗体7が、粗大部51と微細部52とを備えるとともに、軸線CL1方向に沿った微細部52の厚さ(微細部52の体積)が十分に大きなものとされている。従って、抵抗体7を形成する際の加熱時には、ガラス粉末の平均粒径が比較的小さな微細部52(第2抵抗体組成物)からB2O5リッチのガラス成分(介在相42を構成するガラス成分)が多量に溶け出し、当該ガラス成分が粗大部51(第1抵抗体組成物)における骨材相41間に入り込むことで、粗大部51において骨材相41同士の間を介在相42で満たすことができる。これにより、粗大部51及び微細部52の双方において、骨材相41同士の間における隙間の形成を抑制することができ、抵抗体7の密度を十分に大きなものとすることができる。その結果、前記距離Aが15mm以上とされ、抵抗体7を比較的長くされることと相俟って、非常に優れた負荷寿命性能を実現することができる。
さらに、本実施形態では、前記距離Aに対する軸線CL1に沿った抵抗体7の長さL(L/A)が50%以上とされている。従って、抵抗体7が十分に長いものとなり、電波雑音の抑制効果をより向上させることができる。尚、本実施形態では、距離Aが17mm以上とされているため、負荷寿命性能を一層の向上を図ることができる。
加えて、本実施形態では、微細部52が粗大部51を挟むようにして2箇所以上設けられている。従って、粗大部51において骨材相41同士の間を一層確実に介在相42で満たすことができ、骨材相41同士の間における隙間の形成を顕著に抑制することができる。その結果、抵抗体7の密度をさらに増大させることができ、負荷寿命性能を一段と向上させることができる。
尚、本実施形態のように、L/Aを50%以上としたり、距離Aを15mm以上(17mm以上)としたり、前記内径Dを3.5mm以下(2.9mm以下)としたりした点火プラグ1は、抵抗体の密度が小さくなりやすく、負荷寿命性能の低下が懸念されるが、本実施形態によれば、このような懸念を払拭することができる。
次いで、上記実施形態によって奏される作用効果を確認すべく、前記内径D、前記距離A、前記骨材相の平均個数の最大値と最小値との差、微細部の数、前記距離Aに対する前記長さLの割合(L/A)を種々変更してなる点火プラグのサンプルを作製し、各サンプルについて、負荷寿命性能評価試験及び電波雑音性能評価試験を行った。
負荷寿命性能評価試験の概要は、次の通りである。すなわち、各サンプルを自動車用トランジスタ点火装置に取り付け、350℃の温度条件下において、20kVの放電電圧で、毎分3600回放電させ、常温における抵抗値が100kΩ以上となった時間(寿命時間)を測定した。次いで、寿命時間に応じて各サンプルを10段階に点数分けして、各サンプルの負荷寿命性能を評価した。ここで、前記点数は、寿命時間が10時間未満であったサンプルについては「1」とし、寿命時間が10時間以上20時間未満であったサンプルについては「2」とし、寿命時間が20時間以上100時間未満であったサンプルについては「3」とし、寿命時間が100時間以上120時間未満であったサンプルについては「4」とし、寿命時間が120時間以上140時間未満であったサンプルについては「5」とした。以降、寿命時間が20時間延びるごとに点数を1点ずつ増加させ(例えば、寿命時間が160時間以上180時間未満であったサンプルの点数は、「7」となる)、寿命時間が220時間以上であったサンプルについては「10」とした。そして、点数が7点以上となった場合には、優れた負荷寿命性能を有するとして「○」の評価を下すこととし、一方で、点数が6点以下となった場合には、負荷寿命性能に劣るとして「×」の評価を下すこととした。
また、電波雑音性能評価試験の概要は、次の通りである。すなわち、各サンプルにおいて、抵抗値をほぼ同一(5±0.3kΩ)としたものを5本ずつ用意するとともに、各サンプルに対してJASO D002-2に準ずる電波雑音評価試験を行うとともに、各サンプルにおいて電波雑音抑制効果の平均値(電雑抑制性能)を得た。その中で、300MHzの電雑抑制性能の比較を実施した。そして、後述する表1におけるサンプル17の電雑抑制性能を基準として、電雑抑制性能の改善幅に応じて、各サンプルを10段階に点数分けした。ここで、改善幅が1.0dB未満であったサンプルは、点数を「1」とし、改善幅が1.0dB以上2.0dB未満であったサンプルは、点数を「2」とし、以降においては、改善幅が1.0dB増加するごとに、点数を1点増加させた(例えば、改善幅が4.0dB以上5.0dB未満であったサンプルの点数は「5」となる)。また、改善幅が9.0dB以上となったサンプルについては、点数を「10」とした。そして、点数が5点以上となった場合には、優れた電波雑音の抑制効果を有するとして「○」の評価を下すこととし、一方で、点数が4点以下となった場合には、電波雑音の抑制効果に劣るとして「×」の評価を下すこととした。
表1に、各サンプルにおける前記両試験の試験結果を示す。尚、骨材相の個数は、上述の手法により、鏡面研磨を行った後、EPMA(電子線マイクロアナライザ)を用いて計測した。また、骨材相同士が溶着した状態である場合には、それぞれを分離することなく、1つの骨材相として骨材相の個数を求めた。さらに、抵抗体は、基本的にガラス粉末の平均粒径を300μm~400μm程度とした第1抵抗体組成物を用いて形成した。但し、抵抗体に微細部を設ける際には、ガラス粉末の平均粒径を100μm程度とした第2抵抗体組成物を0.01g用いて微細部を形成した。
表1に示すように、前記距離Aを15mm未満とした、又は、骨材相の平均個数の最大値と最小値との差が5以上となる部位が存在しないように構成した(つまり、微細部を設けなかった)サンプル(サンプル1~5,9~13,17~20,23~26,31,34,35)は、負荷寿命性能、及び、電波雑音の抑制効果のうちの少なくとも一方が不十分となってしまうことが分かった。これは、距離Aを15mm未満としたことで、抵抗体が比較的短くなってしまったこと、及び、微細部を設けなかったことで、導電経路の一部の酸化により、抵抗体の抵抗値が急速に上昇する構成となってしまったことに起因すると考えられる。
また、内径Dや距離Aを同一とした一方で、L/Aの割合のみを異なるものとしたサンプル(サンプル2,10,35)をそれぞれ比較してみると、L/Aを50%以上とすることで、電波雑音の抑制効果をより向上させることができるものの、負荷寿命性能の低下が生じてしまいやすいことが分かった。これは、L/Aを50%以上とし、抵抗体を長くするほど、抵抗体の密度がより小さなものとなりやすいためであると考えられる。
さらに、距離AやL/Aを同一とした一方で、内径Dのみを異なるものとしたサンプル(サンプル2,18,24)をそれぞれ比較してみると、内径Dが小さいほど、負荷寿命性能に劣ることが確認された。これは、内径Dが小さいほど、抵抗体組成物に圧力を伝達しにくくなり、抵抗体の密度が小さなものとなりやすいためであると考えられる。
加えて、距離Aを17mm未満としたサンプル(サンプル2,10,24)と比較して、距離Aを17mm以上としたサンプル(サンプル3,11,25)は、電波雑音の抑制効果をより向上できる一方で、負荷寿命性能の低下がより生じやすいことが分かった。これは、距離Aが大きいほど、抵抗体組成物のうち軸線方向先端側の部位に対して圧力が伝達されにくくなるためであると考えられる。
これに対して、距離Aを15mm以上とするとともに、微細部を設けたサンプル(サンプル6~8,14~16,21,22,27~30,32,33)は、電波雑音の抑制効果、及び、負荷寿命性能の双方に優れることが確認された。これは、距離Aを15mm以上としたことで、抵抗体が比較的長いものとなったこと、及び、微細部を設けたことで、骨材相同士の間における隙間の形成が抑制され、抵抗体に多数の導電経路が形成されたことによると考えられる。
さらに、微細部を1箇所設けたサンプル(サンプル15,16)と比較して、微細部を2箇所以上設けたサンプル(サンプル29,30)は、負荷寿命性能に一層優れることが確認された。これは、微細部を2箇所以上設けたことで、骨材相同士の間における隙間の形成が一層抑制されたためであると考えられる。
また、L/Aを50%以上としたり、内径Dを3.5mm以下としたり、距離Aを17mm以上としたりして、負荷寿命性能の低下が特に懸念されるサンプルにおいても、微細部を設けたサンプルは、優れた負荷寿命性能を有することが確認された。
さらに、内径Dが2.9mm以下とされ、負荷寿命性能の低下が極めて懸念されるサンプルにおいても、上述の構成とすることで、良好な負荷寿命性能を実現できることが分かった。
上記試験の結果より、負荷寿命性能、及び、電波雑音の抑制効果の双方を向上させるべく、距離Aを15mm以上とするとともに、自身における骨材相の平均個数が前記平均個数の最小値よりも5以上大きいライン群が3つ以上連続するように構成することが好ましいといえる。
また、上記構成は、L/Aが50%以上とされ、電波雑音の抑制効果の更なる向上が期待できる一方で、負荷寿命性能の低下が懸念される点火プラグにおいて、特に有意であるといえる。
さらに、上記構成は、内径Dが3.5mm以下とされ、負荷寿命性能の低下が懸念される点火プラグにおいて、特に有意であり、内径Dが2.9mm以下とされ、負荷寿命性能の低下が非常に懸念される点火プラグにおいて、極めて有意であるといえる。
併せて、上記構成は、距離Aが17mm以上とされ、電波雑音の抑制効果の一層の向上が期待できる一方で、負荷寿命性能の低下がより懸念される点火プラグにおいて、特に有意であるといえる。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記実施形態では、微細部52が2箇所以上設けられているが、微細部52を1箇所のみ設けることとしてもよい。
(b)上記実施形態において、内径Dは3.5mm以下とされているが、前記内径Dが3.5mmを超える点火プラグに対して本発明の技術思想を適用することとしてもよい。
(c)上記実施形態では、セラミックス粒子としてZrO2粒子やTiO2粒子を例示しているが、他のセラミックス粒子を用いることとしてもよい。従って、例えば、酸化アルミニウム(Al2O3)粒子等を用いることとしてもよい。
(d)上記実施形態では、主体金具3の先端部に、接地電極31が接合される場合について具体化しているが、主体金具の一部(又は、主体金具に予め溶接してある先端金具の一部)を削り出すようにして接地電極を形成する場合についても適用可能である(例えば、特開2006-236906号公報等)。
(e)上記実施形態では、工具係合部23は断面六角形状とされているが、工具係合部23の形状に関しては、このような形状に限定されるものではない。例えば、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等とされていてもよい。
1…点火プラグ、2…絶縁碍子(絶縁体)、3…主体金具、4…軸孔、5…中心電極、6…端子電極、7…抵抗体、41…骨材相、42…介在相、CL1…軸線。
Claims (6)
- 軸線方向に貫通する軸孔を有する絶縁体と、
前記軸孔の先端側に挿設された中心電極と、
前記軸孔の後端側に挿設された端子電極と、
前記軸孔内において前記中心電極及び前記端子電極間に配置され、導電性材料、並びに、二酸化ケイ素及び酸化ボロンを含有するガラスを含む抵抗体とを備える点火プラグであって、
前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離が15mm以上であり、
前記ガラスは、二酸化ケイ素を含む骨材相と、当該骨材相間に位置する介在相とを有する分相ガラスであり、
前記骨材相は、二酸化ケイ素の含有量が前記介在相における二酸化ケイ素の含有量よりも大きく、
前記介在相は、酸化ボロンの含有量が前記骨材相における酸化ボロンの含有量よりも大きく、
前記軸線を含み、前記軸線を中心とする、前記軸線と直交する方向に沿った幅が1.3mmの前記抵抗体の断面において、
前記軸線方向に沿って0.1mmの間隔で前記軸線と直交する複数のラインを引き、前記ライン上に位置する前記骨材相の1ライン当たりの個数を求め、連続する5本のラインからなるライン群のそれぞれにおいて、前記個数の平均個数を求めたとき、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が3つ以上連続することを特徴とする点火プラグ。 - 前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離に対して、前記軸線に沿った前記抵抗体の長さが50%以上であることを特徴とする請求項1に記載の点火プラグ。
- 前記軸線と直交する断面において前記軸孔内に前記抵抗体のみが存在する範囲の先端において、前記軸孔の内径が3.5mm以下であることを特徴とする請求項1又は2に記載の点火プラグ。
- 前記軸線と直交する断面において前記軸孔内に前記抵抗体のみが存在する範囲の先端において、前記軸孔の内径が2.9mm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の点火プラグ。
- 前記端子電極の先端から前記中心電極の後端までの間の前記軸線に沿った距離が17mm以上であることを特徴とする請求項1乃至4のいずれか1項に記載の点火プラグ。
- 3つ以上連続する、自身における前記平均個数が前記平均個数の最小値よりも5以上大きい前記ライン群が、自身における前記平均個数が前記平均個数の最小値と5未満だけ異なる前記ライン群を挟んで2つ以上あることを特徴とする請求項1乃至5のいずれか1項に記載の点火プラグ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/419,590 US9312664B2 (en) | 2012-08-09 | 2013-03-20 | Spark plug |
CN201380039618.2A CN104508924B (zh) | 2012-08-09 | 2013-03-20 | 火花塞 |
EP13828759.4A EP2884605B1 (en) | 2012-08-09 | 2013-03-20 | Spark plug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-176824 | 2012-08-09 | ||
JP2012176824A JP5276742B1 (ja) | 2012-08-09 | 2012-08-09 | 点火プラグ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014024345A1 true WO2014024345A1 (ja) | 2014-02-13 |
Family
ID=49179277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001886 WO2014024345A1 (ja) | 2012-08-09 | 2013-03-20 | 点火プラグ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9312664B2 (ja) |
EP (1) | EP2884605B1 (ja) |
JP (1) | JP5276742B1 (ja) |
CN (1) | CN104508924B (ja) |
WO (1) | WO2014024345A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11214618B2 (en) | 2016-06-20 | 2022-01-04 | F-Star Therapeutics Limited | LAG-3 binding members |
TW201803906A (zh) | 2016-06-20 | 2018-02-01 | F星德爾塔有限公司 | 結合物件(二) |
JP6373313B2 (ja) * | 2016-08-11 | 2018-08-15 | 日本特殊陶業株式会社 | 点火プラグ |
DE102017218032A1 (de) * | 2017-10-10 | 2019-04-11 | Robert Bosch Gmbh | Zündkerzen-Widerstandselement mit erhöhtem ZrSiO4-Phasenanteil |
EP3728316A1 (en) | 2017-12-19 | 2020-10-28 | F-Star Beta Limited | Fc binding fragments comprising a pd-l1 antigen-binding site |
GB201811408D0 (en) | 2018-07-12 | 2018-08-29 | F Star Beta Ltd | CD137 Binding Molecules |
WO2022059658A1 (ja) * | 2020-09-16 | 2022-03-24 | 日本特殊陶業株式会社 | スパークプラグ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61284903A (ja) * | 1985-06-11 | 1986-12-15 | 株式会社デンソー | 抵抗入りプラグ用抵抗体の製造方法 |
JPH09306636A (ja) * | 1996-05-13 | 1997-11-28 | Ngk Spark Plug Co Ltd | スパークプラグ |
JP2006066086A (ja) | 2004-08-24 | 2006-03-09 | Denso Corp | 内燃機関用のスパークプラグ |
JP2006236906A (ja) | 2005-02-28 | 2006-09-07 | Ngk Spark Plug Co Ltd | スパークプラグの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3705921B2 (ja) * | 1998-03-03 | 2005-10-12 | 日本特殊陶業株式会社 | スパークプラグの製造設備及びスパークプラグの製造方法 |
US8492962B2 (en) * | 2008-12-24 | 2013-07-23 | Ngk Spark Plug Co., Ltd. | Spark plug for internal combustion engine |
EP2482395A4 (en) * | 2009-09-25 | 2013-11-13 | Ngk Spark Plug Co | IGNITION CANDLE |
-
2012
- 2012-08-09 JP JP2012176824A patent/JP5276742B1/ja active Active
-
2013
- 2013-03-20 WO PCT/JP2013/001886 patent/WO2014024345A1/ja active Application Filing
- 2013-03-20 CN CN201380039618.2A patent/CN104508924B/zh active Active
- 2013-03-20 EP EP13828759.4A patent/EP2884605B1/en active Active
- 2013-03-20 US US14/419,590 patent/US9312664B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61284903A (ja) * | 1985-06-11 | 1986-12-15 | 株式会社デンソー | 抵抗入りプラグ用抵抗体の製造方法 |
JPH09306636A (ja) * | 1996-05-13 | 1997-11-28 | Ngk Spark Plug Co Ltd | スパークプラグ |
JP2006066086A (ja) | 2004-08-24 | 2006-03-09 | Denso Corp | 内燃機関用のスパークプラグ |
JP2006236906A (ja) | 2005-02-28 | 2006-09-07 | Ngk Spark Plug Co Ltd | スパークプラグの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2884605A4 (en) | 2016-04-20 |
US9312664B2 (en) | 2016-04-12 |
CN104508924A (zh) | 2015-04-08 |
JP5276742B1 (ja) | 2013-08-28 |
JP2014035902A (ja) | 2014-02-24 |
EP2884605A1 (en) | 2015-06-17 |
CN104508924B (zh) | 2016-08-24 |
EP2884605B1 (en) | 2019-03-06 |
US20150214697A1 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276742B1 (ja) | 点火プラグ | |
WO2011036871A1 (ja) | スパークプラグ | |
JP5775544B2 (ja) | 点火プラグ用絶縁体及び点火プラグ | |
JP5200106B2 (ja) | 内燃機関用スパークプラグ | |
JP5134633B2 (ja) | 内燃機関用スパークプラグ及びその製造方法 | |
JP4648476B1 (ja) | 内燃機関用スパークプラグ | |
JP5795129B2 (ja) | 点火プラグ | |
US9160144B2 (en) | Spark plug with internal resistor having Ti and Zr components | |
WO2009119544A1 (ja) | スパークプラグ用絶縁体及びその製造方法、並びに、スパークプラグ及びその製造方法 | |
JP5616858B2 (ja) | 点火プラグ | |
JP5244137B2 (ja) | スパークプラグの製造方法 | |
JP5870074B2 (ja) | 点火プラグ | |
JP5238003B2 (ja) | スパークプラグ | |
JP5325302B2 (ja) | 内燃機関用スパークプラグ | |
JP2010153393A (ja) | 内燃機関用スパークプラグ | |
JP5564070B2 (ja) | スパークプラグ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13828759 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14419590 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013828759 Country of ref document: EP |