WO2014020797A1 - Infrared radiation element - Google Patents
Infrared radiation element Download PDFInfo
- Publication number
- WO2014020797A1 WO2014020797A1 PCT/JP2013/002386 JP2013002386W WO2014020797A1 WO 2014020797 A1 WO2014020797 A1 WO 2014020797A1 JP 2013002386 W JP2013002386 W JP 2013002386W WO 2014020797 A1 WO2014020797 A1 WO 2014020797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared radiation
- layer
- radiation layer
- substrate
- infrared
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 336
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 239000010409 thin film Substances 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 claims description 28
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 276
- 239000010408 film Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 32
- 239000011241 protective layer Substances 0.000 description 23
- 229910052581 Si3N4 Inorganic materials 0.000 description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 238000005530 etching Methods 0.000 description 20
- 229910052814 silicon oxide Inorganic materials 0.000 description 20
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 239000002344 surface layer Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 229920005591 polysilicon Polymers 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- -1 for example Chemical compound 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/08—Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
Definitions
- the present invention relates to an infrared radiation element.
- an infrared radiation element manufactured using a manufacturing technology of MEMS micro-electromechanical systems
- This type of infrared radiation element can be used as an infrared source (infrared light source) such as a gas sensor or an optical analyzer.
- Document 1 discloses a radiation source having the configuration shown in FIGS.
- the radiation source includes a substrate 13, a first insulating layer 22 formed on the substrate 13, a radiation surface layer 11 formed on the first insulation layer 22, and a second surface formed on the radiation surface layer 11.
- An insulating layer 24 and a plurality of extremely thin incandescent filaments 10 formed on the second insulating layer 24 are provided.
- the radiation source is formed so as to cover each incandescent filament 10, a third insulating layer 26 that protects each incandescent filament 10, and both ends of each incandescent filament 10 through openings formed in the third insulating layer 26.
- a pair of metal pads 15 and 15 connected to each other is provided.
- the second insulating layer 24 is provided to electrically insulate the radiating surface layer 11 from the incandescent filament 10.
- the incandescent filament 10 is surrounded by other elements (first insulating layer 22, radiation surface layer 11, second insulating layer 24, and third insulating layer 26) that form a multilayer structure as a uniform flat plate. It is stated that it is.
- Reference 1 describes that the purpose of providing the first insulating layer 22 and the third insulating layer 26 is to protect the incandescent filament 10 and the radiating surface layer 11 from oxidation.
- Document 1 describes an aqueous potassium hydroxide (KOH) solution, an ethylenediamine aqueous solution to which a small amount of pyrocatechol is added, and tetramethylammonium hydroxide (TMAH) as an etching solution that can be used to form the opening 14. .
- KOH potassium hydroxide
- TMAH tetramethylammonium hydroxide
- the substrate 13 is formed of a (100) oriented silicon chip.
- the first insulating layer 22 is made of a silicon nitride layer having a thickness of 200 nm.
- the radiation surface layer 11 is made of a polysilicon film having a thickness of about 1 ⁇ m and doped with boron, phosphorus or arsenic.
- the second insulating layer 24 is made of a silicon nitride layer having a thickness of about 50 nm.
- the incandescent filament 10 is made of a tungsten layer having a thickness of about 400 nm.
- the third insulating layer 26 is made of a silicon nitride layer having a thickness of about 200 nm.
- the metal pad 15 is made of, for example, aluminum, and forms ohmic contact with the incandescent filament 10 through an opening formed in the third insulating layer 26.
- the radiation surface layer 11 has an area of 1 mm 2 .
- the thickness is 0.1-1 ⁇ m
- the width is 2-10 ⁇ m
- the interval is 20-50 ⁇ m.
- the incandescent filament 10 is heated by the current flowing through the incandescent filament 10, the incandescent filament 10 is used exclusively for heating the radiating surface layer 11, and the radiating surface layer 11 is the main heat radiating source. Behave as.
- an infrared radiation element that can radiate infrared light with higher efficiency is often desired from the viewpoint of reducing power consumption.
- the radiation source described above uses the incandescent filament 10 exclusively for heating the radiation surface layer 11, and the radiation surface layer 11 behaves as the main heat radiation source, and the second insulating layer 24 and the radiation surface layer 11. Due to the respective heat capacities, it is difficult to emit infrared rays with high efficiency.
- the present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared radiation element capable of emitting infrared radiation with higher efficiency.
- the infrared radiation element (1) of the present invention penetrates in the thickness direction of the substrate (2), the thin film portion (3) provided on the one surface (201) side of the substrate (2), and the substrate (2).
- the through-hole (2a) and the substrate (2) side have a grid-like first infrared radiation layer (4a) provided on the opposite side of the thin film portion (3), and the first infrared radiation layer (4a ) And a plurality of pads (9) electrically connected to each other, and a plurality of pads (9) disposed inside the edges (4ae) of the plurality of openings (4aa) provided in the first infrared radiation layer (4a).
- the second infrared radiation layer (4b) is provided, and each of the second infrared radiation layers (4b) has an infrared emissivity higher than that of the thin film portion (3).
- the first infrared radiation layer (4a) and the second infrared radiation layer (4b) are made of the same material and have the same thickness.
- the plurality of openings (4aa) include an opening (4aa) provided on a center part (4ad) side of the first infrared radiation layer (4a) and the first infrared radiation.
- An opening (4aa) provided on the outer peripheral portion (4ac) side of the layer (4a) is provided, and the size of the opening (4aa) provided on the central portion (4ad) side is the outer peripheral portion (4ac) side. It is preferable that it is smaller than the size of the opening (4aa).
- the size of the opening (4aa) of the first infrared radiation layer (4a) decreases as it approaches the center from the periphery.
- the first infrared radiation layer (4a) is located outside the outer peripheral portion (4ac), is spaced apart from the first infrared radiation layer (4a), and is more than the thin film portion. It is preferable to include a third infrared radiation layer (4c) having a high infrared emissivity.
- the thin film part (3) includes a diaphragm part (3D) and a support part (3S), and the first infrared radiation layer (4a) is on the diaphragm part (3D).
- the outer size of the first infrared radiation layer (4a) is smaller than the planar size of the diaphragm part (3D).
- the through hole (2a) includes a closing surface (2aa) on the one surface (201) side of the substrate (2), and extends along the edge (2c) of the closing surface (2aa).
- the third infrared radiation layer (4c) is preferably provided.
- infrared radiation element of the present invention infrared radiation can be emitted with higher efficiency.
- FIG. 1A is a schematic plan view of an infrared radiation element according to an embodiment
- FIG. 1B is a schematic cross-sectional view along AA in FIG. 1A
- FIG. 1C is a schematic cross-sectional view along BB in FIG. 1C
- 2A to 2E are main process cross-sectional views for explaining the manufacturing method of the infrared radiation element of the embodiment.
- FIG. 3 is a plan view of a conventional radiation source. 4 is a cross-sectional view taken along the line AA of the radiation source of FIG.
- the substrate 2 has a first surface 201 and a second surface 202 on the first and second sides in the first direction D1, which is the thickness direction of the substrate 2, respectively.
- the thin film portion 3 is provided on the first surface 201 of the substrate 2.
- the thin film portion 3 has a first surface 301 and a second surface 302. In the example of FIG. 1B and FIG. 1C, the 1st surface 201 of the board
- a part of the first surface 301 of the thin film portion 3 is provided so that each of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c in a lattice shape is separated at a predetermined interval.
- the first infrared radiation layer 4 a, the second infrared radiation layer 4 b, and the third infrared radiation layer 4 c are covered with the protective layer 5 on the first surface 301 side of the thin film portion 3.
- the protective layer 5 has a first surface 501 and a second surface 502. In the example of FIGS.
- the first infrared radiation layer 4 a, the second infrared radiation layer 4 b, and the third infrared radiation layer 4 c are in contact with the first surface 301 of the thin film portion 3 and the first surface of the thin film portion 3.
- the remainder of 301 is in contact with the second surface 502 of the protective layer 5.
- electrodes 7 and 7, wirings 8 and 8, and pads 9 and 9 are provided on the first surface 501 of the protective layer 5 so as to be electrically connected.
- the wirings 8 and 8 and the pads 9 and 9 are in contact with the first surface 501 of the protective layer 5.
- the protective layer 5 is provided with contact holes 5a and 5a.
- the electrodes 7 and 7 are in contact with one surface 4ab of the first infrared radiation layer 4a through contact holes 5a and 5a, respectively, and are electrically connected to the first infrared radiation layer 4a.
- the thin film portion 3 includes a silicon oxide film 31 and a silicon nitride film 32.
- the silicon oxide film 31 has a first surface 3101 and a second surface, and a silicon nitride film is formed on the first surface 3101 of the silicon oxide film 31. 32 is provided.
- the silicon nitride film 32 has a first surface and a second surface 3202. In the example of FIGS. 1B and 1C, the first surface 3101 of the silicon oxide film 31 and the second surface 3202 of the silicon nitride film 32 are in contact with each other.
- the second surface of the silicon oxide film 31 corresponds to the second surface 302 of the thin film portion 3
- the first surface of the silicon nitride film 32 corresponds to the first surface 301 of the thin film portion 3.
- the substrate 2 is provided with a through-hole 2a penetrating so as to expose a part of the second surface 302 of the thin film portion 3, and the substrate 2 is formed as a frame-shaped substrate 2.
- the through hole 2a has a closing surface 2aa and an opening surface 2ab on the first and second sides in the first direction, respectively.
- substrate 2 has the 1st edge part 2a and the 2nd edge part 2b on the 1st and 2nd side of the 2nd direction D2 which is the orthogonal direction of the 1st direction D1, respectively.
- the first surface and the second surface of the frame-shaped substrate 2 correspond to the first surface 201 and the second surface 202 of the substrate 2, respectively.
- Pads 9 and 9 are provided on the first surfaces 201 and 201 side of the first end 2a and the second end 2b, respectively.
- the pads 9, 9 are arranged along a third direction D3 that is a direction orthogonal to the second direction D2.
- the thin film portion 3 includes support portions 3S and 3S positioned on the first surfaces 201 and 201 side of the first end portion 2a and the second end portion 2b of the frame-shaped substrate 2, respectively, and an edge 2c of the closing surface 2aa. And a diaphragm portion 3D located inside.
- the diaphragm portion 3D is positioned on the first surface 201 side of the frame-shaped substrate 2 provided with the through hole 2a, and the support portions 3S and 3S are positioned on the first surface 201 of the frame-shaped substrate 2.
- each support portion 3S correspond to the first surface 301 and the second surface 302 of the thin film portion 3, respectively, and the first surface and the second surface of the diaphragm portion 3D are the thin film portion 3 respectively. This corresponds to the first surface 301 and the second surface 302.
- the third infrared radiation layers 4c and 4c are provided along the edge 2c of the blocking surface 2aa.
- Each third infrared radiation layer 4c has a first end 4ca and a second end 4cb on the first and second sides in the third direction D2, respectively.
- the first end portions 4ca and 4ca of the third infrared radiation layer are separated from each other across the position where the wiring 8 is disposed in the third direction.
- the second end portions 4cb and 4cb of the third infrared radiation layer are separated from each other across the position where the wiring 8 is disposed in the third direction D3.
- the first infrared radiation layer 4a is separated from the third infrared radiation layers 4c and 4c, and is provided on the inner side of each inner periphery of the third infrared radiation layers 4c and 4c.
- the first infrared radiation layer 4a has outer peripheral end portions 4af and 4af on the first and second sides in the second direction D2, respectively.
- the outer peripheral ends 4af and 4af of the first infrared radiation layer 4a are connected to the electrodes 7 and 7, respectively.
- the first infrared radiation layer 4a has a plurality of openings 4aa.
- each size of the opening 4aa provided on the central portion 4ad side of the first infrared radiation layer 4a is equal to that of the opening 4aa provided on the outer peripheral portion 4ac side of the first infrared radiation layer 4a. Smaller than each size.
- a second infrared ray 4b is provided inside each of the edges 4ae of the plurality of openings 4aa. Thereby, a plurality of second infrared rays 4b are arranged on the first surface 301 of the thin film portion 3 (the first surface 301 of the diaphragm portion 3D).
- the infrared radiation element 1 includes a substrate 2, a thin film portion 3 provided on the one surface (first surface) 201 side of the substrate 2, and a through hole 2a penetrating in the thickness direction (first direction D1) of the substrate 2. And a lattice-shaped first infrared radiation layer 4a provided on the first surface 301 side of the thin film portion 3 opposite to the substrate 2 side (the second surface 302 side of the thin film portion 3) in the thin film portion 3. ing.
- the infrared radiation element 1 is a surface of the substrate 2 opposite to the first infrared radiation layer 4a side (the first surface 301 side of the thin film portion 3 provided with the first infrared radiation layer 4a) in the thin film portion 3.
- a through hole 2a that exposes the (second surface 302 of the thin film portion 3) is formed. Thereby, the 2nd surface 302 of diaphragm part 3D which is a part of thin film part 3 is exposed.
- the infrared radiation element 1 emits infrared rays from the first infrared radiation layer 4a by energization to the first infrared radiation layer 4a.
- the infrared radiation element 1 is disposed away from the first infrared radiation layer 4a at the two pads 9 electrically connected to the first infrared radiation layer 4a and the opening 4aa of the first infrared radiation layer 4a.
- a second infrared radiation layer 4b having a higher infrared emissivity than the thin film portion 3.
- the infrared radiation element 1 is located on the outer peripheral portion 4ac side of the first infrared radiation layer 4a, is disposed away from the first infrared radiation layer 4a, and is a third infrared radiation layer having a higher infrared emissivity than the thin film portion 3. 4c.
- the infrared radiation element 1 includes a pair of electrodes 7 and 7 formed on the first surface 201 side of the substrate 2 so as to be in contact with the outer peripheral ends 4af and 4af of the first infrared radiation layer 4a, respectively.
- the electrode 7 is electrically connected to the above-described pad 9 through the wiring 8.
- the infrared radiation element 1 includes a first infrared radiation layer 4a and a second infrared ray on the first surface 301 side of the thin film portion 3 that is opposite to the second surface 302 of the thin film portion 3 (the substrate 2 side in the thin film portion 3).
- a protective layer 5 is provided to cover the radiation layer 4b and the third infrared radiation layer 4c.
- the protective layer 5 is formed of a material that is transparent to infrared rays emitted from the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. In FIG. 1A, illustration of the protective layer 5 is omitted.
- the first infrared radiation layer 4a generates heat by energizing the first infrared radiation layer 4a. Thereby, as for the infrared radiation element 1, the temperature of the 1st infrared radiation layer 4a rises. Then, the heat generated in the first infrared radiation layer 4a is transferred to the second infrared radiation layer 4b and the third infrared radiation layer 4c through the protective film 5. Thereby, the temperature of the second infrared radiation layer 4b and the third infrared radiation layer 4c also rises.
- the infrared radiation element 1 emits not only infrared rays from the first infrared radiation layer 4a but also infrared rays from the second infrared radiation layer 4b and the third infrared radiation layer 4c.
- the substrate 2 is formed of a single crystal silicon substrate having a (100) plane on the first surface 201, but is not limited thereto, and may be formed of a single crystal silicon substrate having a (110) plane, for example.
- the substrate 2 is not limited to a single crystal silicon substrate, but may be a polycrystalline silicon substrate or other than a silicon substrate.
- the material of the substrate 2 is preferably a material having a higher thermal conductivity and a larger heat capacity than the material of the thin film portion 3.
- the outer peripheral shape of the substrate 2 is rectangular.
- substrate 2 is not specifically limited, For example, it is preferable to set to 10 mm ⁇ (sq.) Or less (10 mm ⁇ 10 mm or less).
- substrate 2 makes the opening shape of the through-hole 2a rectangular.
- the through-hole 2a of the substrate 2 is formed in a shape in which the opening area on the other surface (second surface 202) side is larger than that on the first surface 201 side.
- the through hole 2 a of the substrate 2 is formed in a shape in which the opening area gradually increases as the distance from the thin film portion 3 increases.
- the through hole 2 a of the substrate 2 is formed by etching the substrate 2.
- the through hole 2a of the substrate 2 is formed by, for example, anisotropic etching using an alkaline solution as an etching solution. can do.
- the opening shape of the through hole 2a of the substrate 2 is not particularly limited. Therefore, the method for forming the through hole 2a of the substrate 2 is not limited to anisotropic etching using an alkaline solution as an etching solution, but employs dry etching using, for example, an inductively coupled plasma type dry etching apparatus. You can also.
- the mask layer for forming the through-hole 2 a when the mask layer for forming the through-hole 2 a is made of an inorganic material during manufacturing, the mask layer may remain on the second surface 202 side of the substrate 2.
- the mask layer for example, a laminated film of a silicon oxide film and a silicon nitride film can be employed.
- the portion of the substrate 2 that closes the through hole 2a on the first surface 201 side constitutes the diaphragm portion 3D, and the edge 2c of the closing surface 2aa of the through hole 2a on the first surface 201 side of the substrate 2
- the portion formed on the outer side forms a support portion 3S that supports the diaphragm portion 3D.
- the thin film portion 3 is formed on the silicon oxide film 31 formed on the first surface 201 side of the substrate 2 and on the first surface 3101 side of the silicon oxide film 31 (on the opposite side of the silicon oxide film 31 from the substrate 2 side).
- the silicon nitride film 32 is laminated.
- the thin film portion 3 is not limited to the laminated film of the silicon oxide film 31 and the silicon nitride film 32.
- the thin film portion 3 may have a single layer structure of the silicon oxide film 31 or the silicon nitride film 32, or may be other than SiO 2 and Si 3 N 4 .
- a single layer structure made of an electrically insulating material or a laminated structure of two or more layers may be used.
- the thin film portion 3 also has a function as an etching stopper layer when the substrate 2 is etched from the second surface 202 side of the substrate 2 to form the through hole 2a when the infrared radiation element 1 is manufactured.
- the 1st infrared radiation layer 4a, the 2nd infrared radiation layer 4b, and the 3rd infrared radiation layer 4c reduce the emissivity of infrared rays by impedance mismatch with the gas (for example, air, nitrogen gas, etc.) which the protective layer 5 contacts.
- the sheet resistance is set so as to suppress it.
- the first infrared radiation layer 4a has a lattice shape in plan view.
- the outer size of the first infrared radiation layer 4a is preferably set smaller than the planar size of the surface of the diaphragm portion 3D facing the through hole 2a in the thin film portion 3. That is, it is preferable to set the outer size of the first infrared radiation layer 4a to be smaller than the planar size of the diaphragm portion 3D.
- the planar size of the diaphragm portion 3D is not particularly limited, but is preferably set to 5 mm ⁇ or less, for example.
- the outer size of the first infrared radiation layer 4a is preferably set so that the outer size of the region excluding the contact regions where the electrodes 7 overlap each other is 3 mm ⁇ or less.
- the material of the first infrared radiation layer 4a is tantalum nitride. That is, the first infrared radiation layer 4a is made of a tantalum nitride layer.
- the material of the first infrared radiation layer 4a is not limited to tantalum nitride, for example, titanium nitride, nickel chromium, tungsten, titanium, thorium, platinum, zirconium, chromium, vanadium, rhodium, hafnium, ruthenium, boron, iridium, niobium, Molybdenum, tantalum, osmium, rhenium, nickel, holmium, cobalt, erbium, yttrium, iron, scandium, thulium, palladium, lutetium, or the like may be employed.
- the material of the first infrared radiation layer 4a conductive polysilicon may be adopted. That is, the first infrared radiation layer 4a may be composed of a conductive polysilicon layer.
- the first infrared radiation layer 4a it is preferable to employ a tantalum nitride layer or a conductive polysilicon layer from the viewpoint of chemical stability at high temperatures and ease of design of sheet resistance.
- the tantalum nitride layer can change the sheet resistance by changing its composition.
- the conductive polysilicon layer can change the sheet resistance by changing the impurity concentration and the like.
- the conductive polysilicon layer can be constituted by an n-type polysilicon layer doped with an n-type impurity at a high concentration or a p-type polysilicon layer doped with a p-type impurity at a high concentration.
- the impurity concentration is, for example, in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
- the impurity concentration is in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
- tantalum nitride is employed as the material of the first infrared radiation layer 4a, and the first infrared radiation layer 4a is heated to a desired use temperature of, for example, 500 ° C.
- the sheet resistance at which the infrared emissivity from the first infrared emitting layer 4a is maximized is 189 ⁇ / ⁇ (189 ⁇ / sq.), And the maximum emissivity is 50%. That is, if the sheet resistance of the first infrared radiation layer 4a is 189 ⁇ / ⁇ , the infrared radiation element 1 can maximize the infrared emissivity by impedance matching with air.
- the sheet resistance of the first infrared radiation layer 4a may be set in a range of 73 to 493 ⁇ / ⁇ . If the sheet resistance at which the emissivity is maximized at a desired use temperature is called a prescribed sheet resistance, the sheet resistance of the first infrared radiation layer 4a at the desired use temperature is a prescribed sheet resistance of ⁇ 10%. It is more preferable to set the range.
- the peak wavelength ⁇ of infrared rays emitted from the first infrared emitting layer 4a in the infrared emitting element 1 depends on the temperature of the first infrared emitting layer 4a.
- the absolute temperature of the first infrared radiation layer 4a is T [K] and the peak wavelength is ⁇ [ ⁇ m]
- these satisfy the relationship of ⁇ 2898 / T. That is, the relationship between the absolute temperature T of the first infrared radiation layer 4a and the peak wavelength ⁇ of the infrared radiation emitted from the first infrared radiation layer 4a satisfies the Vienna displacement law. Therefore, in the infrared radiation element 1, the first infrared radiation layer 4a constitutes a black body.
- the infrared radiation element 1 can change Joule heat generated in the first infrared radiation layer 4a by adjusting input power applied between the pair of pads 9 and 9 from an external power source (not shown), for example.
- the temperature of the infrared radiation layer 4a can be changed. Therefore, the infrared radiation element 1 can change the temperature of the first infrared radiation element 4a in accordance with the input power to the first infrared radiation layer 4a.
- the infrared radiation element 1 can change the peak wavelength ⁇ of infrared radiation emitted from the first infrared radiation layer 4a by changing the temperature of the first infrared radiation layer 4a.
- the infrared radiation element 1 can be used as a high-power infrared light source in a wide infrared wavelength range.
- the peak wavelength ⁇ of infrared radiation emitted from the first infrared radiation layer 4a is about 4 ⁇ m.
- the temperature may be about 800K.
- the first infrared radiation layer 4a forms a black body as described above.
- the infrared radiation element 1 it is estimated that the total energy E radiated per unit time in the unit area of the first infrared radiation layer 4a is approximately proportional to T 4 (that is, the Stefan-Boltzmann law is satisfied). Guessed)
- the infrared radiation element 1 can increase the amount of infrared radiation as the temperature of the first infrared radiation layer 4a is increased.
- the first infrared radiation layer 4a is formed on the surface (the first surface 301 of the thin film portion 3) opposite to the second surface 302 of the thin film portion 3 (the substrate 2 side of the thin film portion 3).
- the first infrared radiation layer 4a has a lattice shape in plan view as described above.
- the size of each opening 4aa may be the same, but it is preferable that the size of the opening 4aa decreases from the outer peripheral portion 4ac to the center portion 4ad as shown in FIG. 1A.
- the size of the opening 4aa close to the center 4ad is smaller than the opening 4aa on the outer peripheral portion 4ac side.
- the infrared radiation element 1 can achieve a uniform temperature distribution of the first infrared radiation layer 4a, and can suppress the variation of the infrared wavelength depending on the position of the first infrared radiation layer 4a.
- the second infrared radiation layer 4 b is formed on the first surface 301 of the thin film portion 3 located on the opposite side of the second surface 302 of the thin film portion 3. Therefore, the second infrared radiation layer 4b and the first infrared radiation layer 4a are formed on the same plane.
- the planar shape of the second infrared radiation layer 4b is a rectangular shape (in the illustrated example, a square shape) that is slightly smaller than the opening 4aa of the lattice-shaped first infrared radiation layer 4a.
- the infrared radiation element 1 is preferably arranged such that the second infrared radiation layer 4b is located on the inner side of each edge 4ae of all the openings 4aa in the first infrared radiation layer 4a. Has been.
- the material of the second infrared radiation layer 4b can be the same material as that of the first infrared radiation layer 4a, but the same material as the first infrared radiation layer 4a is preferably employed.
- the thickness of the second infrared radiation layer 4b is preferably the same as the thickness of the first infrared radiation layer 4a.
- the infrared radiation element 1 includes the first infrared radiation layer 4a and the second infrared radiation layer 4b formed of the same material and having the same thickness.
- the layer 4b can be formed at the same time, and the cost can be reduced.
- the second infrared radiation layer 4b preferably has a larger planar size as long as it does not contact the inner surface of the opening 4aa in the first infrared radiation layer 4a. Thereby, the temperature of the 2nd infrared radiation layer 4b becomes closer to the temperature of the 1st infrared radiation layer 4a, and it becomes possible to radiate infrared rays more efficiently.
- the third infrared radiation layer 4c is formed on the first surface 301 of the thin film portion 3 (the surface of the thin film portion 3 opposite to the substrate 2 side). Therefore, the 3rd infrared radiation layer 4c, the 2nd infrared radiation layer 4b, and the 1st infrared radiation layer 4a are formed on the same plane.
- each planar shape is C-shaped.
- the plurality of third infrared radiation layers 4c surround the first infrared radiation layer 4a with the frame F interposed therebetween, and these third infrared radiation layers
- the layer 4c may be disposed so as to be separated from the first infrared radiation layer 4a.
- the said frame F is comprised from the protective film 5, and is arrange
- the 3rd infrared radiation layer 4c is formed ranging over the diaphragm part 3D of the thin film part 3, and the support part 3S, it should just be formed on the 1st surface 301 of the diaphragm part 3D at least.
- the material of the third infrared radiation layer 4c can be the same material as that of the first infrared radiation layer 4a, but the same material as that of the first infrared radiation layer 4a is preferably employed.
- the thickness of the third infrared radiation layer 4c is preferably the same as the thickness of the first infrared radiation layer 4a.
- the infrared radiation element 1 includes the first infrared radiation layer 4a and the third infrared radiation layer 4c formed of the same material and having the same thickness.
- the layer 4c can be formed at the same time, and the cost can be reduced.
- the infrared radiation element 1 includes the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c formed of the same material and having the same thickness.
- the layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c can be formed at the same time, and the cost can be reduced.
- the protective layer 5 is composed of a silicon nitride film.
- the protective layer 5 is not limited to a silicon nitride film, and may be formed of, for example, a silicon oxide film, or may have a stacked structure of a silicon oxide film and a silicon nitride film.
- the protective layer 5 preferably has a high transmittance with respect to infrared rays of a desired wavelength or wavelength range emitted from the first infrared radiation layer 4a when the first infrared radiation layer 4a is energized, but the transmittance is 100%. Is not a requirement.
- the infrared radiation element 1 is a thin film in consideration of the stress balance of the sandwich structure composed of the thin film portion 3, the first infrared radiation layer 4a, the second infrared radiation layer 4b, the third infrared radiation layer 4c, and the protective layer 5. It is preferable to set the material and thickness of each of the portion 3 and the protective layer 5. Thereby, the infrared radiation element 1 can improve the stress balance of the above-described sandwich structure, and can further suppress the warpage and breakage of the sandwich structure, thereby further improving the mechanical strength. Can be achieved.
- the thicknesses of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c are reduced in the heat capacity of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. From the viewpoint of achieving this, the thickness is preferably 0.2 ⁇ m or less.
- the total thickness of the thickness of the thin film portion 3, the thickness of the first infrared radiation layer 4a, and the thickness of the protective layer 5 reduces the heat capacity of the laminated structure of the thin film portion 3, the first infrared radiation layer 4a, and the protective layer 5. From the viewpoint of achieving this, for example, it is preferably set in the range of about 0.1 ⁇ m to 1 ⁇ m, more preferably 0.7 ⁇ m or less (specifically, 0.1 ⁇ m to 0.7 ⁇ m).
- the infrared radiation element 1 is configured such that the thickness of the silicon oxide film 31 of the thin film portion 3 is 160 nm, the thickness of the silicon nitride film 32 of the thin film portion 3 is 160 nm, and the thickness of the protective layer 5 is 100 nm. What is necessary is just to set the thickness of the infrared radiation layer 4a suitably. These numerical values are examples and are not particularly limited.
- the pair of electrodes 7 and 7 are formed on the first surface 201 side of the substrate 2 so as to be in contact with the outer peripheral end portions 4af and 4af (left and right end portions in FIG. 1A) of the first infrared radiation layer 4a.
- Each electrode 7 is formed on one surface 4ab of the first infrared radiation layer 4a through a contact hole 5a formed in the protective layer 5, and is electrically connected to the first infrared radiation layer 4a.
- each electrode 7 is in ohmic contact with the first infrared radiation layer 4a.
- each electrode 7 is Al-Si, which is a kind of aluminum alloy.
- the material of each electrode 7 is not particularly limited, and for example, Al—Cu, Al or the like may be adopted.
- each electrode 7 should just be a material in which the part which contact
- each electrode 7 has a three-layer structure in which a first layer, a second layer, and a third layer are laminated in order from the first infrared radiation layer 4a side, and the first layer material in contact with the first infrared radiation layer 4a.
- the second layer material may be Ni
- the third layer material may be Au.
- the temperature of the first infrared radiating layer 4 a is limited by the material of each pad 9 as long as at least a portion in contact with the first infrared radiating layer 4 a is formed of a refractory metal in each pad 9. It is possible to raise without any loss.
- Each wiring 8 and each pad 9 are preferably made of the same material as each electrode 7 and set to the same layer structure and the same thickness. Thereby, the infrared radiation element 1 can form each wiring 8 and each pad 9 simultaneously with each electrode 7.
- the thickness of the pad 9 is preferably set in the range of about 0.5 to 2 ⁇ m.
- the number of pads 9 is not limited to two but may be plural.
- two pads 9 may be connected to each electrode 7.
- the number of the pads 9 is not particularly limited in the infrared radiation element 1 as long as the first infrared radiation layer 4a can be energized to cause the first infrared radiation layer 4a to generate heat.
- the infrared radiation element 1 only needs to include at least the first infrared radiation layer 4a and the second infrared radiation layer 4b as the infrared radiation layer, and may not have the third infrared radiation layer 4c.
- the substrate 2 made of a single crystal silicon substrate or the like whose first surface 201 is (100) plane is prepared (see FIG. 2A).
- the structure shown in FIG. 2B is obtained by performing the first step of forming the thin film portion 3 on the first surface 201 side of the substrate 2.
- a method for forming the silicon oxide film 31 in the thin film portion 3 for example, a thin film forming technique such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method can be adopted, and a thermal oxidation method is preferable.
- a method for forming the silicon nitride film of the thin film portion 3 a thin film forming technique such as a CVD method can be used, and an LPCVD (Low Pressure Chemical Vapor Deposition) method is preferable.
- LPCVD Low Pressure Chemical Vapor Deposition
- FIG. 2C After the first step, by performing a second step of forming the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c on the first surface 301 of the thin film portion 3, FIG. 2C The structure shown in is obtained.
- a method for forming the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c for example, a thin film formation technique such as a sputtering method, a vapor deposition method, or a CVD method, and a photolithography technique and an etching technique are used. Can be used.
- a third step for forming the protective layer 5 is performed, followed by a fourth step for forming the contact hole 5a, and then each electrode 7, each wiring 8, and each pad 9 are formed.
- the structure shown in FIG. 2D is obtained.
- a method for forming the protective layer 5 in the third step for example, a thin film forming technique such as a CVD method and a processing technique using a photolithography technique and an etching technique can be used.
- a CVD method for forming the protective layer 5 a plasma CVD method is preferable.
- a photolithography technique and an etching technique may be used in forming the contact hole 5a in the fourth step. Etching in the fourth step may be wet etching or dry etching.
- each electrode 7, each wiring 8, and each pad 9 in the fifth step for example, a thin film forming technique such as a sputtering method, a vapor deposition method and a CVD method, and a processing technique using a photolithography technique and an etching technique are used. Can be used.
- Etching in the fifth step may be wet etching or dry etching.
- the sixth step of forming the diaphragm portion 3D by forming the through hole 2a in the substrate 2 is performed, thereby obtaining the infrared radiation element 1 having the structure shown in FIG. 2E.
- a laminated film (not shown) of a silicon oxide film and a silicon nitride film is formed on the second surface 202 side of the substrate 2 as a mask layer, and the substrate 2 is formed on the second surface 202 side. It may be formed by etching.
- a silicon oxide film serving as a base of the mask layer is formed on the second surface 202 side of the substrate 2 simultaneously with the formation of the silicon oxide film 31 of the thin film portion 3, and then the thin film portion 3.
- a silicon nitride film is formed on the second surface 202 side of the substrate 2.
- the patterning of the laminated film of the silicon oxide film and the silicon nitride film that is the basis of the mask layer may be performed using a photolithography technique and an etching technique.
- the etching of the substrate 2 employs anisotropic etching using an alkaline solution, but is not limited thereto, and can be formed by etching using, for example, an inductively coupled plasma type dry etching apparatus.
- an inductively coupled plasma type dry etching apparatus it is possible to increase the accuracy of the thickness of the thin film portion 3 by using the thin film portion 3 as an etching stopper layer when forming the through hole 2a.
- the manufacturing method of the infrared radiation element 1 of this embodiment it becomes possible to increase the accuracy of the thickness of the thin film portion 3 by using the thin film portion 3 as an etching stopper layer when forming the through hole 2a. It is possible to suppress variations in mechanical strength of the thin film portion 3 and variations in heat capacity of the diaphragm portion 3D for each infrared radiation element 1.
- the infrared radiating element 1 can be manufactured by using a MEMS manufacturing technique.
- the infrared radiation element 1 of the present embodiment described above includes a substrate 2, a thin film portion 3 provided on the first surface 201 side of the substrate 2, a through hole 2a penetrating in the thickness direction of the substrate 2, and a diaphragm portion.
- a grid-like first infrared radiation layer 4a provided on the 3D first surface 301 side (the side opposite to the substrate 2 side in the thin film portion 3) is provided.
- the infrared radiation element 1 is disposed away from the first infrared radiation layer 4a at the plurality of pads 9 electrically connected to the first infrared radiation layer 4a and the opening 4aa of the first infrared radiation layer 4a.
- the infrared radiation element 1 emits infrared rays from the first infrared radiation layer 4a and the second infrared radiation layer 4b by energizing the first infrared radiation layer 4a to generate heat.
- the infrared radiation element 1 since the first infrared radiation layer 4a is formed in a lattice shape, it becomes possible to reduce the heat capacity of the first infrared radiation layer 4a, the temperature is likely to rise, Since the second infrared radiation layer 4b is disposed in the opening 4aa of the first infrared radiation layer 4a, the temperature difference between the second infrared radiation layer 4b and the first infrared radiation layer 4b can be reduced. Therefore, the infrared radiation element 1 can emit infrared rays with higher efficiency.
- the infrared radiation element 1 responds to the temperature change of the first infrared radiation layer 4a with respect to the voltage waveform applied between the pair of pads 9, 9 by reducing the heat capacity of the laminated structure on the first surface 201 side of the substrate 2. As a result, the temperature of the first infrared radiation layer 4a is likely to rise, and it becomes possible to increase the output and the response speed.
- the infrared radiation element 1 is located outside the outer peripheral portion 4ac of the first infrared radiation layer 4a, is disposed away from the first infrared radiation layer 4a, and has a third infrared emissivity higher than that of the thin film portion 3.
- An infrared radiation layer 4c is provided. Thereby, the infrared radiation element 1 can emit infrared rays with higher efficiency.
- the infrared radiation element 1 suppresses a decrease in infrared emissivity due to impedance mismatch with the gas in contact with the protective layer 5 with respect to the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c.
- the sheet resistance is set so as to. Therefore, the infrared radiation element 1 can suppress a decrease in the emissivity of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. Therefore, the infrared radiation element 1 of the present embodiment can reduce power consumption.
- the substrate 2 is formed from a single crystal silicon substrate, and the thin film portion 3 is composed of a silicon oxide film 31 and a silicon nitride film 32.
- the infrared radiation element 1 has a larger heat capacity and thermal conductivity of the substrate 2 than the thin film portion 3, and the substrate 2 has a function as a heat sink. It is possible to improve the stability of infrared radiation characteristics.
- the first infrared radiation layer 4a, the second infrared radiation layer 4b, the third infrared radiation layer 4c, the electrode 7, the wiring 8 and the pad 9 are arranged in a direction in which the pair of electrodes 7 and 7 are arranged in plan view. It is preferable that the orthogonal infrared radiation elements 1 are arranged in line symmetry with the center line as the axis of symmetry.
- the axis in the second direction passing through the central portion 4ad of the first infrared radiation layer 4a is the axis of symmetry, and the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer. It is preferable that 4c, the electrode 7, the wiring 8, and the pad 9 are arranged symmetrically with respect to the axis.
- the infrared radiation element 1 can further improve the mechanical strength, and can suppress in-plane variation of the temperature of the first infrared radiation layer 4a.
- the infrared radiation element 1 is not limited to an infrared light source (infrared light source) for a gas sensor, but is used for an infrared light source for flame detection, an infrared light source for infrared light communication, an infrared light source for spectroscopic analysis, and the like. Is possible.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
The infrared radiation element (1) of the present invention comprises: a substrate (2); a thin film section (3) that is provided to the surface (201) side of the substrate (2); a through hole (2a) that passes through the substrate (2) in the thickness direction thereof; and a first infrared radiation layer (4a) that has a grid-like form and that is provided to the side of the substrate (2) that is opposite from the side to which the thin film section (3) is provided. The infrared radiation element (1) comprises: a plurality of pads (9) that are electrically connected to the first infrared radiation layer (4a); and a second infrared radiation layer (4b) that is arranged so as to be separated from the first infrared radiation layer (4a) at the opening (4aa) of the first infrared radiation layer (4a), and that has a higher infrared radiation rate than the thin film section (3).
Description
本発明は、赤外線放射素子に関するものである。
The present invention relates to an infrared radiation element.
従来から、MEMS(micro electro mechanicalsystems)の製造技術などを利用して製造される赤外線放射素子が研究開発されている。この種の赤外線放射素子は、ガスセンサや光学分析装置などの赤外線源(赤外光源)として使用することができる。
Conventionally, an infrared radiation element manufactured using a manufacturing technology of MEMS (micro-electromechanical systems) has been researched and developed. This type of infrared radiation element can be used as an infrared source (infrared light source) such as a gas sensor or an optical analyzer.
この種の赤外線放射素子としては、例えば、日本国特許出願公開番号9-184757(以下、「文献1」という)では、図3及び図4に示す構成の放射源が開示されている。
As this type of infrared radiation element, for example, Japanese Patent Application Publication No. 9-184757 (hereinafter referred to as “Document 1”) discloses a radiation source having the configuration shown in FIGS.
この放射源は、基板13と、基板13上に形成された第1絶縁層22と、第1絶縁層22上に形成された放射表面層11と、放射表面層11上に形成された第2絶縁層24と、第2絶縁層24上に形成された極めて細い複数の白熱フィラメント10とを備えている。また、この放射源は、各白熱フィラメント10を覆うように形成され各白熱フィラメント10を保護する第3絶縁層26と、第3絶縁層26に形成された開口を通して各白熱フィラメント10の両端部に接続された一対の金属パッド15,15とを備えている。第2絶縁層24は、放射表面層11と白熱フィラメント10とを電気的に絶縁するために設けてある。また、文献1には、白熱フィラメント10が、均一平面板としての多層構造をなす他の要素(第1絶縁層22、放射表面層11、第2絶縁層24、第3絶縁層26)により囲まれている旨が記載されている。また、文献1には、第1絶縁層22及び第3絶縁層26を設ける目的は、白熱フィラメント10及び放射表面層11が酸化しないように保護することである旨が記載されている。
The radiation source includes a substrate 13, a first insulating layer 22 formed on the substrate 13, a radiation surface layer 11 formed on the first insulation layer 22, and a second surface formed on the radiation surface layer 11. An insulating layer 24 and a plurality of extremely thin incandescent filaments 10 formed on the second insulating layer 24 are provided. In addition, the radiation source is formed so as to cover each incandescent filament 10, a third insulating layer 26 that protects each incandescent filament 10, and both ends of each incandescent filament 10 through openings formed in the third insulating layer 26. A pair of metal pads 15 and 15 connected to each other is provided. The second insulating layer 24 is provided to electrically insulate the radiating surface layer 11 from the incandescent filament 10. Further, in Document 1, the incandescent filament 10 is surrounded by other elements (first insulating layer 22, radiation surface layer 11, second insulating layer 24, and third insulating layer 26) that form a multilayer structure as a uniform flat plate. It is stated that it is. Reference 1 describes that the purpose of providing the first insulating layer 22 and the third insulating layer 26 is to protect the incandescent filament 10 and the radiating surface layer 11 from oxidation.
また、基板13には、放射表面層11に対応して開口部14が形成されている。文献1には、開口部14を形成するために使用できるエッチング液として、水酸化カリウム(KOH)水溶液、少量のピロカテコールを添加したエチレンジアミン水溶液、水酸化テトラメチルアンモニウム(TMAH)が記載されている。
Further, an opening 14 is formed in the substrate 13 corresponding to the radiation surface layer 11. Document 1 describes an aqueous potassium hydroxide (KOH) solution, an ethylenediamine aqueous solution to which a small amount of pyrocatechol is added, and tetramethylammonium hydroxide (TMAH) as an etching solution that can be used to form the opening 14. .
基板13は、(100)配向のシリコンチップにより形成されている。また、第1絶縁層22は、厚さが200nmの窒化シリコン層からなる。また、放射表面層11は、厚さが約1μmで、ホウ素、リンまたは砒素がドープされたポリシリコン膜からなる。また、第2絶縁層24は、厚さが約50nmの窒化シリコン層からなる。また、白熱フィラメント10は、厚さが約400nmのタングステン層からなる。また、第3絶縁層26は、厚さが約200nmの窒化シリコン層からなる。金属パッド15は、例えば、アルミニウムから形成されており、第3絶縁層26に形成された開口を通して白熱フィラメント10とオーム性接触を形成している。
The substrate 13 is formed of a (100) oriented silicon chip. The first insulating layer 22 is made of a silicon nitride layer having a thickness of 200 nm. The radiation surface layer 11 is made of a polysilicon film having a thickness of about 1 μm and doped with boron, phosphorus or arsenic. The second insulating layer 24 is made of a silicon nitride layer having a thickness of about 50 nm. The incandescent filament 10 is made of a tungsten layer having a thickness of about 400 nm. The third insulating layer 26 is made of a silicon nitride layer having a thickness of about 200 nm. The metal pad 15 is made of, for example, aluminum, and forms ohmic contact with the incandescent filament 10 through an opening formed in the third insulating layer 26.
また、放射源は、放射表面層11が1mm2の面積を有している。白熱フィラメント10の寸法については、例えば厚さを0.1-1μm、幅を2-10μmとし、その間隔を20-50μmとしてある。
In the radiation source, the radiation surface layer 11 has an area of 1 mm 2 . Regarding the dimensions of the incandescent filament 10, for example, the thickness is 0.1-1 μm, the width is 2-10 μm, and the interval is 20-50 μm.
放射源は、白熱フィラメント10が当該白熱フィラメント10に流れる電流により加熱されるが、白熱フィラメント10を、専ら放射表面層11の加熱のために用いるものであり、放射表面層11が主熱放射源として振る舞う。
Although the incandescent filament 10 is heated by the current flowing through the incandescent filament 10, the incandescent filament 10 is used exclusively for heating the radiating surface layer 11, and the radiating surface layer 11 is the main heat radiating source. Behave as.
ところで、赤外線放射素子としては、低消費電力化などの観点から、より高効率で赤外線を放射可能なものが望まれることが多い。
By the way, an infrared radiation element that can radiate infrared light with higher efficiency is often desired from the viewpoint of reducing power consumption.
しかし、上述の放射源は、白熱フィラメント10を、専ら放射表面層11の加熱のために用い、放射表面層11が主熱放射源として振る舞うものであり、第2絶縁層24及び放射表面層11それぞれの熱容量に起因して、高効率で赤外線を放射させることが難しい。
However, the radiation source described above uses the incandescent filament 10 exclusively for heating the radiation surface layer 11, and the radiation surface layer 11 behaves as the main heat radiation source, and the second insulating layer 24 and the radiation surface layer 11. Due to the respective heat capacities, it is difficult to emit infrared rays with high efficiency.
本発明は上記事由に鑑みて為されたものであり、その目的は、より高効率で赤外線を放射させることが可能な赤外線放射素子を提供することにある。
The present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared radiation element capable of emitting infrared radiation with higher efficiency.
本発明の赤外線放射素子(1)は、基板(2)と、前記基板(2)の一表面(201)側に設けられた薄膜部(3)と、前記基板(2)の厚み方向に貫通した貫通孔(2a)と、前記基板(2)側とは前記薄膜部(3)の反対側に設けられた格子状の第1赤外線放射層(4a)と、前記第1赤外線放射層(4a)に電気的に接続された複数のパッド(9)と、前記第1赤外線放射層(4a)に設けられた複数の開口部(4aa)の縁(4ae)よりも内側にそれぞれ配置された複数の第2赤外線放射層(4b)を備え、前記第2赤外線放射層(4b)のそれぞれは前記薄膜部(3)よりも高い赤外線放射率を有する。
The infrared radiation element (1) of the present invention penetrates in the thickness direction of the substrate (2), the thin film portion (3) provided on the one surface (201) side of the substrate (2), and the substrate (2). The through-hole (2a) and the substrate (2) side have a grid-like first infrared radiation layer (4a) provided on the opposite side of the thin film portion (3), and the first infrared radiation layer (4a ) And a plurality of pads (9) electrically connected to each other, and a plurality of pads (9) disposed inside the edges (4ae) of the plurality of openings (4aa) provided in the first infrared radiation layer (4a). The second infrared radiation layer (4b) is provided, and each of the second infrared radiation layers (4b) has an infrared emissivity higher than that of the thin film portion (3).
本発明の一実施形態において、において、前記第1赤外線放射層(4a)と前記第2赤外線放射層(4b)とは、同一の材料で形成され且つ同じ厚さであることが好ましい。
In one embodiment of the present invention, it is preferable that the first infrared radiation layer (4a) and the second infrared radiation layer (4b) are made of the same material and have the same thickness.
本発明の一実施形態において、前記複数の開口部(4aa)は、前記第1赤外線放射層(4a)の中心部(4ad)側に設けられた開口部(4aa)と、前記第1赤外線放射層(4a)の外周部(4ac)側に設けられた開口部(4aa)を備え、前記中心部(4ad)側に設けられた前記開口部(4aa)のサイズは前記外周部(4ac)側の開口部(4aa)のサイズよりも小さいことが好ましい。
In one embodiment of the present invention, the plurality of openings (4aa) include an opening (4aa) provided on a center part (4ad) side of the first infrared radiation layer (4a) and the first infrared radiation. An opening (4aa) provided on the outer peripheral portion (4ac) side of the layer (4a) is provided, and the size of the opening (4aa) provided on the central portion (4ad) side is the outer peripheral portion (4ac) side. It is preferable that it is smaller than the size of the opening (4aa).
本発明の他の実施形態において、前記第1赤外線放射層(4a)は、周部から中心部に近づくにつれて前記開口部(4aa)のサイズが小さくなっていることが好ましい。
In another embodiment of the present invention, it is preferable that the size of the opening (4aa) of the first infrared radiation layer (4a) decreases as it approaches the center from the periphery.
本発明の一実施形態において、前記第1赤外線放射層(4a)の外周部(4ac)よりも外側に位置し、前記第1赤外線放射層(4a)から離れて配置され、前記薄膜部よりも高い赤外線放射率を有する第3赤外線放射層(4c)を備えることが好ましい。
In one embodiment of the present invention, the first infrared radiation layer (4a) is located outside the outer peripheral portion (4ac), is spaced apart from the first infrared radiation layer (4a), and is more than the thin film portion. It is preferable to include a third infrared radiation layer (4c) having a high infrared emissivity.
本発明の一実施形態において、前記薄膜部(3)は、ダイヤフラム部(3D)と、支持部(3S)とを備え、前記第1赤外線放射層(4a)は、前記ダイヤフラム部(3D)上に設けられ、前記第1赤外線放射層(4a)の外形サイズは、前記ダイヤフラム部(3D)の平面サイズよりも小さいことが好ましい。
In one embodiment of the present invention, the thin film part (3) includes a diaphragm part (3D) and a support part (3S), and the first infrared radiation layer (4a) is on the diaphragm part (3D). Preferably, the outer size of the first infrared radiation layer (4a) is smaller than the planar size of the diaphragm part (3D).
本発明の一実施形態において、前記貫通孔(2a)は、前記基板(2)の一表面(201)側に閉塞面(2aa)を備え、前記閉塞面(2aa)の縁(2c)に沿って、第3赤外線放射層(4c)が設けられていることが好ましい。
In one embodiment of the present invention, the through hole (2a) includes a closing surface (2aa) on the one surface (201) side of the substrate (2), and extends along the edge (2c) of the closing surface (2aa). The third infrared radiation layer (4c) is preferably provided.
本発明の赤外線放射素子においては、より高効率で赤外線を放射させることが可能となる。
In the infrared radiation element of the present invention, infrared radiation can be emitted with higher efficiency.
以下では、本実施形態の赤外線放射素子1について図1に基づいて説明する。
Hereinafter, the infrared radiation element 1 of the present embodiment will be described with reference to FIG.
本実施形態に係る赤外線放射素子1において、基板2は、基板2の厚み方向である第1方向D1の第1及び第2側に、それぞれ第1面201及び第2面202を有する。この基板2の第1面201上に薄膜部3が設けられている。薄膜部3は第1面301及び第2面302を有する。図1B及び図1Cの例では、基板2の第1面201と薄膜部3の第2面302とが接触している。薄膜部3の第1面301の一部には、格子状の第1赤外線放射層4a、第2赤外線放射層4b、及び第3赤外線放射層4cのそれぞれが所定の間隔で離間するように設けられ、第1赤外線放射層4a、第2赤外線放射層4b、及び第3赤外線放射層4cは、薄膜部3の第1面301側で保護層5に覆われている。保護層5は第1面501及び第2面502を有する。図1B及び図1Cの例では、第1赤外線放射層4a、第2赤外線放射層4b、及び第3赤外線放射層4cは薄膜部3の第1面301と接触し、薄膜部3の第1面301の残部は保護層5の第2面502と接触している。また保護層5の第1面501上に電極7、7と配線8、8とパッド9、9とが設けられ、電気的に接続されるようになっている。図1A及び図1Bの例では、配線8、8とパッド9、9とが保護層5の第1面501に接触している。また、保護層5には、コンタクトホール5a、5aが設けられている。上記電極7、7は、それぞれコンタクトホール5a、5aを通じて第1赤外線放射層4aの一表面4abと接触し、第1赤外線放射層4aと電気的に接続されるように成っている。
In the infrared radiation element 1 according to the present embodiment, the substrate 2 has a first surface 201 and a second surface 202 on the first and second sides in the first direction D1, which is the thickness direction of the substrate 2, respectively. The thin film portion 3 is provided on the first surface 201 of the substrate 2. The thin film portion 3 has a first surface 301 and a second surface 302. In the example of FIG. 1B and FIG. 1C, the 1st surface 201 of the board | substrate 2 and the 2nd surface 302 of the thin film part 3 are contacting. A part of the first surface 301 of the thin film portion 3 is provided so that each of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c in a lattice shape is separated at a predetermined interval. The first infrared radiation layer 4 a, the second infrared radiation layer 4 b, and the third infrared radiation layer 4 c are covered with the protective layer 5 on the first surface 301 side of the thin film portion 3. The protective layer 5 has a first surface 501 and a second surface 502. In the example of FIGS. 1B and 1C, the first infrared radiation layer 4 a, the second infrared radiation layer 4 b, and the third infrared radiation layer 4 c are in contact with the first surface 301 of the thin film portion 3 and the first surface of the thin film portion 3. The remainder of 301 is in contact with the second surface 502 of the protective layer 5. Further, electrodes 7 and 7, wirings 8 and 8, and pads 9 and 9 are provided on the first surface 501 of the protective layer 5 so as to be electrically connected. In the example of FIGS. 1A and 1B, the wirings 8 and 8 and the pads 9 and 9 are in contact with the first surface 501 of the protective layer 5. The protective layer 5 is provided with contact holes 5a and 5a. The electrodes 7 and 7 are in contact with one surface 4ab of the first infrared radiation layer 4a through contact holes 5a and 5a, respectively, and are electrically connected to the first infrared radiation layer 4a.
上記薄膜部3はシリコン酸化膜31とシリコン窒化膜32とから成り、シリコン酸化膜31は第1面3101及び第2面を有し、このシリコン酸化膜31の第1面3101上にシリコン窒化膜32が設けられている。シリコン窒化膜32は第1面及び第2面3202を有する。図1B及び図1Cの例では、シリコン酸化膜31の第1面3101とシリコン窒化膜32の第2面3202とは接触している。また上記シリコン酸化膜31の第2面は薄膜部3の第2面302に対応し、上記シリコン窒化膜32の第1面は薄膜部3の第1面301に対応する。
The thin film portion 3 includes a silicon oxide film 31 and a silicon nitride film 32. The silicon oxide film 31 has a first surface 3101 and a second surface, and a silicon nitride film is formed on the first surface 3101 of the silicon oxide film 31. 32 is provided. The silicon nitride film 32 has a first surface and a second surface 3202. In the example of FIGS. 1B and 1C, the first surface 3101 of the silicon oxide film 31 and the second surface 3202 of the silicon nitride film 32 are in contact with each other. The second surface of the silicon oxide film 31 corresponds to the second surface 302 of the thin film portion 3, and the first surface of the silicon nitride film 32 corresponds to the first surface 301 of the thin film portion 3.
上記基板2には薄膜部3の第2面302の一部を露出させるように貫通する貫通孔2aが設けられ、基板2は枠状基板2として形成されている。この貫通孔2aは、第1方向の第1及び第2側に、それぞれ閉塞面2aa及び開口面2abを有している。また、枠状基板2である基板2は、第1方向D1の直交方向である第2方向D2の第1及び第2側に、それぞれ第1端部2a及び第2端部2bを有している。つまり、枠状基板2の第1面及び第2面は、それぞれ基板2の第1面201及び第2面202に対応する。第1端部2a及び第2端部2bの第1面201、201側に、それぞれパッド9、9が設けられている。パッド9、9は、第2方向D2の直交方向である第3方向D3に沿って配置されている。
The substrate 2 is provided with a through-hole 2a penetrating so as to expose a part of the second surface 302 of the thin film portion 3, and the substrate 2 is formed as a frame-shaped substrate 2. The through hole 2a has a closing surface 2aa and an opening surface 2ab on the first and second sides in the first direction, respectively. Moreover, the board | substrate 2 which is the frame-shaped board | substrate 2 has the 1st edge part 2a and the 2nd edge part 2b on the 1st and 2nd side of the 2nd direction D2 which is the orthogonal direction of the 1st direction D1, respectively. Yes. That is, the first surface and the second surface of the frame-shaped substrate 2 correspond to the first surface 201 and the second surface 202 of the substrate 2, respectively. Pads 9 and 9 are provided on the first surfaces 201 and 201 side of the first end 2a and the second end 2b, respectively. The pads 9, 9 are arranged along a third direction D3 that is a direction orthogonal to the second direction D2.
上記薄膜部3は、枠状基板2が有する第1端部2a及び第2端部2bの第1面201、201側にそれぞれ位置する支持部3S、3Sと、上記閉塞面2aaの縁2cの内側に位置するダイヤフラム部3Dと、を有する。このダイヤフラム部3Dは上記貫通孔2aが設けられた枠状基板2の第1面201側に位置し、支持部3S、3Sは枠状基板2の第1面201上に位置する。各支持部3Sの第1面及び第2面は、それぞれ薄膜部3の第1面301及び第2面302に対応し、ダイヤフラム部3Dの第1面及び第2面は、それぞれ薄膜部3の第1面301及び第2面302に対応する。
The thin film portion 3 includes support portions 3S and 3S positioned on the first surfaces 201 and 201 side of the first end portion 2a and the second end portion 2b of the frame-shaped substrate 2, respectively, and an edge 2c of the closing surface 2aa. And a diaphragm portion 3D located inside. The diaphragm portion 3D is positioned on the first surface 201 side of the frame-shaped substrate 2 provided with the through hole 2a, and the support portions 3S and 3S are positioned on the first surface 201 of the frame-shaped substrate 2. The first surface and the second surface of each support portion 3S correspond to the first surface 301 and the second surface 302 of the thin film portion 3, respectively, and the first surface and the second surface of the diaphragm portion 3D are the thin film portion 3 respectively. This corresponds to the first surface 301 and the second surface 302.
図1Aの例のように、上記第3赤外線放射層4c、4cは上記閉塞面2aaの縁2cに沿って設けられている。各第3赤外線放射層4cは、第3方向D2の第1及び第2側において、それぞれ第1端部4ca及び第2端部4cbを有している。第3赤外線放射層の第1端部4ca、4caは、第3方向において、上記配線8が配置される位置を挟んで離間されている。また、第3赤外線放射層の第2端部4cb、4cbは、第3方向D3において、配線8が配置される位置を挟んで離間されている。
As in the example of FIG. 1A, the third infrared radiation layers 4c and 4c are provided along the edge 2c of the blocking surface 2aa. Each third infrared radiation layer 4c has a first end 4ca and a second end 4cb on the first and second sides in the third direction D2, respectively. The first end portions 4ca and 4ca of the third infrared radiation layer are separated from each other across the position where the wiring 8 is disposed in the third direction. The second end portions 4cb and 4cb of the third infrared radiation layer are separated from each other across the position where the wiring 8 is disposed in the third direction D3.
上記第1赤外線放射層4aは、第3赤外線放射層4c、4cと離間され、第3赤外線放射層4c、4cの各内周よりも内側に設けられている。また、第1赤外線放射層4aは、第2方向D2の第1及び第2側にそれぞれ外周端部4af,4afを有する。第1赤外線放射層4aの外周端部4af,4afはそれぞれ電極7、7と接続されている。更に、第1赤外線放射層4aは、複数の開口部4aaを有する。上記複数の開口部4aaにおいて、第1赤外線放射層4aの中心部4ad側に設けられた開口部4aaの各サイズが、第1赤外線放射層4aの外周部4ac側に設けられた開口部4aaの各サイズよりも小さい。上記複数の開口部4aaの縁4aeの内側に、それぞれ第2赤外線放4bが設けられている。これにより、薄膜部3の第1面301(ダイヤフラム部3Dの第1面301)上に複数の第2赤外線放4bが配置されている。
The first infrared radiation layer 4a is separated from the third infrared radiation layers 4c and 4c, and is provided on the inner side of each inner periphery of the third infrared radiation layers 4c and 4c. The first infrared radiation layer 4a has outer peripheral end portions 4af and 4af on the first and second sides in the second direction D2, respectively. The outer peripheral ends 4af and 4af of the first infrared radiation layer 4a are connected to the electrodes 7 and 7, respectively. Furthermore, the first infrared radiation layer 4a has a plurality of openings 4aa. In the plurality of openings 4aa, each size of the opening 4aa provided on the central portion 4ad side of the first infrared radiation layer 4a is equal to that of the opening 4aa provided on the outer peripheral portion 4ac side of the first infrared radiation layer 4a. Smaller than each size. A second infrared ray 4b is provided inside each of the edges 4ae of the plurality of openings 4aa. Thereby, a plurality of second infrared rays 4b are arranged on the first surface 301 of the thin film portion 3 (the first surface 301 of the diaphragm portion 3D).
赤外線放射素子1は、基板2と、この基板2の一表面(第1面)201側に設けられた薄膜部3と、基板2の厚み方向(第1方向D1)に貫通した貫通孔2aと、薄膜部3における基板2側(薄膜部3の第2面302側)とは反対側である薄膜部3の第1面301側に設けられた格子状の第1赤外線放射層4aとを備えている。要するに、赤外線放射素子1は、基板2に、薄膜部3における第1赤外線放射層4a側(第1赤外線放射層4aが設けられた薄膜部3の第1面301側)とは反対側の表面(薄膜部3の第2面302)を露出させる貫通孔2aが形成されている。これにより、薄膜部3の一部であるダイヤフラム部3Dの第2面302が露出される。この赤外線放射素子1は、第1赤外線放射層4aへの通電により第1赤外線放射層4aから赤外線が放射される。
The infrared radiation element 1 includes a substrate 2, a thin film portion 3 provided on the one surface (first surface) 201 side of the substrate 2, and a through hole 2a penetrating in the thickness direction (first direction D1) of the substrate 2. And a lattice-shaped first infrared radiation layer 4a provided on the first surface 301 side of the thin film portion 3 opposite to the substrate 2 side (the second surface 302 side of the thin film portion 3) in the thin film portion 3. ing. In short, the infrared radiation element 1 is a surface of the substrate 2 opposite to the first infrared radiation layer 4a side (the first surface 301 side of the thin film portion 3 provided with the first infrared radiation layer 4a) in the thin film portion 3. A through hole 2a that exposes the (second surface 302 of the thin film portion 3) is formed. Thereby, the 2nd surface 302 of diaphragm part 3D which is a part of thin film part 3 is exposed. The infrared radiation element 1 emits infrared rays from the first infrared radiation layer 4a by energization to the first infrared radiation layer 4a.
また、赤外線放射素子1は、第1赤外線放射層4aに電気的に接続された2つのパッド9と、第1赤外線放射層4aの開口部4aaにおいて第1赤外線放射層4aから離れて配置され且つ薄膜部3よりも赤外線放射率の高い第2赤外線放射層4bとを備えている。また、赤外線放射素子1は、第1赤外線放射層4aの外周部4ac側に位置し、第1赤外線放射層4aから離れて配置され、薄膜部3よりも赤外線放射率の高い第3赤外線放射層4cを備えている。
In addition, the infrared radiation element 1 is disposed away from the first infrared radiation layer 4a at the two pads 9 electrically connected to the first infrared radiation layer 4a and the opening 4aa of the first infrared radiation layer 4a. And a second infrared radiation layer 4b having a higher infrared emissivity than the thin film portion 3. The infrared radiation element 1 is located on the outer peripheral portion 4ac side of the first infrared radiation layer 4a, is disposed away from the first infrared radiation layer 4a, and is a third infrared radiation layer having a higher infrared emissivity than the thin film portion 3. 4c.
また、赤外線放射素子1は、基板2の第1面201側で第1赤外線放射層4aの外周端部4af、4afとそれぞれ接するように形成された一対の電極7,7を備えており、各電極7は配線8を介して上述のパッド9と電気的に接続されている。
The infrared radiation element 1 includes a pair of electrodes 7 and 7 formed on the first surface 201 side of the substrate 2 so as to be in contact with the outer peripheral ends 4af and 4af of the first infrared radiation layer 4a, respectively. The electrode 7 is electrically connected to the above-described pad 9 through the wiring 8.
また、赤外線放射素子1は、薄膜部3の第2面302(薄膜部3における基板2側)の反対側である薄膜部3の第1面301側で第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cを覆う保護層5を備えている。保護層5は、第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cから放射される赤外線に対して透明な材料により形成されている。なお、図1Aは、保護層5の図示を省略してある。
Further, the infrared radiation element 1 includes a first infrared radiation layer 4a and a second infrared ray on the first surface 301 side of the thin film portion 3 that is opposite to the second surface 302 of the thin film portion 3 (the substrate 2 side in the thin film portion 3). A protective layer 5 is provided to cover the radiation layer 4b and the third infrared radiation layer 4c. The protective layer 5 is formed of a material that is transparent to infrared rays emitted from the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. In FIG. 1A, illustration of the protective layer 5 is omitted.
赤外線放射素子1は、第1赤外線放射層4aへの通電により第1赤外線放射層4aが発熱する。これにより、赤外線放射素子1は、第1赤外線放射層4aの温度が上昇する。そして、第1赤外線放射層4aで生成された熱が保護膜5を介して第2赤外線放射層4b及び第3赤外線放射層4cへ伝達される。これにより、第2赤外線放射層4b及び第3赤外線放射層4cも温度が上昇する。よって、赤外線放射素子1は、第1赤外線放射層4aから赤外線が放射されるだけなく、第2赤外線放射層4b及び第3赤外線放射層4cからも赤外線が放射される。
In the infrared radiation element 1, the first infrared radiation layer 4a generates heat by energizing the first infrared radiation layer 4a. Thereby, as for the infrared radiation element 1, the temperature of the 1st infrared radiation layer 4a rises. Then, the heat generated in the first infrared radiation layer 4a is transferred to the second infrared radiation layer 4b and the third infrared radiation layer 4c through the protective film 5. Thereby, the temperature of the second infrared radiation layer 4b and the third infrared radiation layer 4c also rises. Therefore, the infrared radiation element 1 emits not only infrared rays from the first infrared radiation layer 4a but also infrared rays from the second infrared radiation layer 4b and the third infrared radiation layer 4c.
以下、赤外線放射素子1の各構成要素について詳細に説明する。
Hereinafter, each component of the infrared radiation element 1 will be described in detail.
基板2は、第1面201が(100)面の単結晶のシリコン基板により形成されているが、これに限らず、例えば、(110)面の単結晶のシリコン基板により形成してもよい。また、基板2は、単結晶のシリコン基板に限らず、多結晶のシリコン基板でもよいし、シリコン基板以外でもよい。基板2の材料は、薄膜部3の材料よりも熱伝導率が大きく且つ熱容量が大きな材料が好ましい。
The substrate 2 is formed of a single crystal silicon substrate having a (100) plane on the first surface 201, but is not limited thereto, and may be formed of a single crystal silicon substrate having a (110) plane, for example. The substrate 2 is not limited to a single crystal silicon substrate, but may be a polycrystalline silicon substrate or other than a silicon substrate. The material of the substrate 2 is preferably a material having a higher thermal conductivity and a larger heat capacity than the material of the thin film portion 3.
基板2の外周形状は、矩形状である。基板2の外形サイズは、特に限定するものではないが、例えば、10mm□(sq.)以下(10mm×10mm以下)に設定するのが好ましい。また、基板2は、貫通孔2aの開口形状を矩形状としてある。基板2の貫通孔2aは、第1面201側に比べて他表面(第2面202)側での開口面積が大きくなる形状に形成されている。ここで、基板2の貫通孔2aは、薄膜部3から離れるほど開口面積が徐々に大きくなる形状に形成されている。基板2の貫通孔2aは、基板2をエッチングすることにより形成されている。基板2として第1面201が(100)面の単結晶のシリコン基板を採用している場合、基板2の貫通孔2aは、例えば、アルカリ系溶液をエッチング液として用いた異方性エッチングにより形成することができる。基板2の貫通孔2aの開口形状は、特に限定するものではない。よって、基板2の貫通孔2aの形成方法として、アルカリ系溶液をエッチング液として用いた異方性エッチングに限らず、例えば、誘導結合プラズマ型のドライエッチング装置などを用いたドライエッチングを採用することもできる。また、赤外線放射素子1は、製造時において貫通孔2aを形成する際のマスク層が無機材料からなる場合、基板2の第2面202側に、マスク層が残っていてもよい。なお、マスク層としては、例えば、シリコン酸化膜とシリコン窒化膜との積層膜などを採用することができる。
The outer peripheral shape of the substrate 2 is rectangular. Although the external size of the board | substrate 2 is not specifically limited, For example, it is preferable to set to 10 mm □ (sq.) Or less (10 mm × 10 mm or less). Moreover, the board | substrate 2 makes the opening shape of the through-hole 2a rectangular. The through-hole 2a of the substrate 2 is formed in a shape in which the opening area on the other surface (second surface 202) side is larger than that on the first surface 201 side. Here, the through hole 2 a of the substrate 2 is formed in a shape in which the opening area gradually increases as the distance from the thin film portion 3 increases. The through hole 2 a of the substrate 2 is formed by etching the substrate 2. When a single crystal silicon substrate having a (100) plane as the first surface 201 is used as the substrate 2, the through hole 2a of the substrate 2 is formed by, for example, anisotropic etching using an alkaline solution as an etching solution. can do. The opening shape of the through hole 2a of the substrate 2 is not particularly limited. Therefore, the method for forming the through hole 2a of the substrate 2 is not limited to anisotropic etching using an alkaline solution as an etching solution, but employs dry etching using, for example, an inductively coupled plasma type dry etching apparatus. You can also. In addition, in the infrared emitting element 1, when the mask layer for forming the through-hole 2 a is made of an inorganic material during manufacturing, the mask layer may remain on the second surface 202 side of the substrate 2. As the mask layer, for example, a laminated film of a silicon oxide film and a silicon nitride film can be employed.
薄膜部3は、基板2の第1面201側で貫通孔2aを塞いでいる部分が、ダイヤフラム部3Dを構成し、基板2の第1面201側で貫通孔2aの閉塞面2aaの縁2cよりも外側に形成され部分が、ダイヤフラム部3Dを支持する支持部3Sを構成している。
In the thin film portion 3, the portion of the substrate 2 that closes the through hole 2a on the first surface 201 side constitutes the diaphragm portion 3D, and the edge 2c of the closing surface 2aa of the through hole 2a on the first surface 201 side of the substrate 2 The portion formed on the outer side forms a support portion 3S that supports the diaphragm portion 3D.
また、薄膜部3は、基板2の第1面201側に形成されたシリコン酸化膜31と、シリコン酸化膜31の第1面3101側(シリコン酸化膜31における基板2側とは反対側)に積層されたシリコン窒化膜32とからなる。薄膜部3は、シリコン酸化膜31とシリコン窒化膜32との積層膜に限らず、例えば、シリコン酸化膜31やシリコン窒化膜32の単層構造でもよいし、SiO2、Si3N4以外の電気絶縁材料からなる単層構造や、2層以上の積層構造でもよい。
The thin film portion 3 is formed on the silicon oxide film 31 formed on the first surface 201 side of the substrate 2 and on the first surface 3101 side of the silicon oxide film 31 (on the opposite side of the silicon oxide film 31 from the substrate 2 side). The silicon nitride film 32 is laminated. The thin film portion 3 is not limited to the laminated film of the silicon oxide film 31 and the silicon nitride film 32. For example, the thin film portion 3 may have a single layer structure of the silicon oxide film 31 or the silicon nitride film 32, or may be other than SiO 2 and Si 3 N 4 . A single layer structure made of an electrically insulating material or a laminated structure of two or more layers may be used.
薄膜部3は、赤外線放射素子1の製造時において基板2の第2面202側から基板2をエッチングして貫通孔2aを形成する際のエッチングストッパ層としての機能も有している。
The thin film portion 3 also has a function as an etching stopper layer when the substrate 2 is etched from the second surface 202 side of the substrate 2 to form the through hole 2a when the infrared radiation element 1 is manufactured.
第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cは、保護層5が接する気体(例えば、空気、窒素ガスなど)とのインピーダンス不整合による赤外線の放射率の低下を抑制するようにシート抵抗を設定してある。
The 1st infrared radiation layer 4a, the 2nd infrared radiation layer 4b, and the 3rd infrared radiation layer 4c reduce the emissivity of infrared rays by impedance mismatch with the gas (for example, air, nitrogen gas, etc.) which the protective layer 5 contacts. The sheet resistance is set so as to suppress it.
第1赤外線放射層4aは、平面形状を格子状としてある。第1赤外線放射層4aの外形サイズは、薄膜部3において貫通孔2aに臨むダイヤフラム部3Dの表面の平面サイズよりも小さく設定するのが好ましい。つまり、第1赤外線放射層4aの外形サイズは、上述のダイヤフラム部3Dの平面サイズよりも小さく設定するのが好ましい。ここで、ダイヤフラム部3Dの平面サイズは、特に限定するものではないが、例えば、5mm□以下に設定するのが好ましい。
The first infrared radiation layer 4a has a lattice shape in plan view. The outer size of the first infrared radiation layer 4a is preferably set smaller than the planar size of the surface of the diaphragm portion 3D facing the through hole 2a in the thin film portion 3. That is, it is preferable to set the outer size of the first infrared radiation layer 4a to be smaller than the planar size of the diaphragm portion 3D. Here, the planar size of the diaphragm portion 3D is not particularly limited, but is preferably set to 5 mm □ or less, for example.
第1赤外線放射層4aの外形サイズは、各電極7の各々が重なる各コンタクト領域を除いた領域の外形サイズが3mm□以下となるように設定するのが好ましい。
The outer size of the first infrared radiation layer 4a is preferably set so that the outer size of the region excluding the contact regions where the electrodes 7 overlap each other is 3 mm □ or less.
第1赤外線放射層4aの材料は、窒化タンタルを採用している。つまり、第1赤外線放射層4aは、窒化タンタル層からなる。第1赤外線放射層4aの材料は、窒化タンタルに限らず、例えば、窒化チタン、ニッケルクロム、タングステン、チタン、トリウム、白金、ジルコニウム、クロム、バナジウム、ロジウム、ハフニウム、ルテニウム、ボロン、イリジウム、ニオブ、モリブデン、タンタル、オスミウム、レニウム、ニッケル、ホルミウム、コバルト、エルビウム、イットリウム、鉄、スカンジウム、ツリウム、パラジウム、ルテチウムなどを採用してもよい。また、第1赤外線放射層4aの材料としては、導電性ポリシリコンを採用してもよい。つまり、第1赤外線放射層4aは、導電性ポリシリコン層により構成してもよい。第1赤外線放射層4aについて、高温で化学的に安定であり、且つ、シート抵抗の設計容易性という観点からは、窒化タンタル層もしくは導電性ポリシリコン層を採用することが好ましい。窒化タンタル層は、その組成を変えることにより、シート抵抗を変えることが可能である。導電性ポリシリコン層は、不純物濃度などを変えることにより、シート抵抗を変えることが可能である。導電性ポリシリコン層は、n形不純物が高濃度にドーピングされたn形ポリシリコン層、もしくはp形不純物が高濃度にドーピングされたp形ポリシリコン層により構成することができる。導電性ポリシリコン層をn形ポリシリコン層とし、n形不純物として例えばリンを採用する場合には、不純物濃度を例えば、1×1018cm-3~5×1020cm-3程度の範囲で適宜設定すればよい。また、導電性ポリシリコン層をp形ポリシリコン層とし、p形不純物として例えばボロンを採用する場合には、不純物濃度を1×1018cm-3~1×1020cm-3程度の範囲で適宜設定すればよい。
The material of the first infrared radiation layer 4a is tantalum nitride. That is, the first infrared radiation layer 4a is made of a tantalum nitride layer. The material of the first infrared radiation layer 4a is not limited to tantalum nitride, for example, titanium nitride, nickel chromium, tungsten, titanium, thorium, platinum, zirconium, chromium, vanadium, rhodium, hafnium, ruthenium, boron, iridium, niobium, Molybdenum, tantalum, osmium, rhenium, nickel, holmium, cobalt, erbium, yttrium, iron, scandium, thulium, palladium, lutetium, or the like may be employed. Further, as the material of the first infrared radiation layer 4a, conductive polysilicon may be adopted. That is, the first infrared radiation layer 4a may be composed of a conductive polysilicon layer. For the first infrared radiation layer 4a, it is preferable to employ a tantalum nitride layer or a conductive polysilicon layer from the viewpoint of chemical stability at high temperatures and ease of design of sheet resistance. The tantalum nitride layer can change the sheet resistance by changing its composition. The conductive polysilicon layer can change the sheet resistance by changing the impurity concentration and the like. The conductive polysilicon layer can be constituted by an n-type polysilicon layer doped with an n-type impurity at a high concentration or a p-type polysilicon layer doped with a p-type impurity at a high concentration. When the conductive polysilicon layer is an n-type polysilicon layer and phosphorus is used as the n-type impurity, the impurity concentration is, for example, in the range of about 1 × 10 18 cm −3 to 5 × 10 20 cm −3. What is necessary is just to set suitably. Also, when the conductive polysilicon layer is a p-type polysilicon layer and boron is used as the p-type impurity, the impurity concentration is in the range of about 1 × 10 18 cm −3 to 1 × 10 20 cm −3. What is necessary is just to set suitably.
上述の気体が空気であり、第1赤外線放射層4aの材料として窒化タンタルを採用し、第1赤外線放射層4aを所望の使用温度として例えば500℃に加熱して使用する場合、この使用温度で第1赤外線放射層4aからの赤外線の放射率が最大となるシート抵抗は、189Ω/□(189Ω/sq.)であり、放射率の最大値は、50%である。つまり、赤外線放射素子1は、第1赤外線放射層4aのシート抵抗を189Ω/□とすれば、空気とのインピーダンスマッチングにより、赤外線の放射率を最大とすることが可能となる。したがって、放射率の低下を抑制して例えば40%以上の放射率を確保するためには、第1赤外線放射層4aのシート抵抗を73~493Ω/□の範囲で設定すればよい。なお、所望の使用温度において放射率が最大となるシート抵抗を規定シート抵抗と呼ぶことにすれば、所望の使用温度での第1赤外線放射層4aのシート抵抗は、規定シート抵抗±10%の範囲で設定するのが、より好ましい。
When the above-mentioned gas is air, tantalum nitride is employed as the material of the first infrared radiation layer 4a, and the first infrared radiation layer 4a is heated to a desired use temperature of, for example, 500 ° C. The sheet resistance at which the infrared emissivity from the first infrared emitting layer 4a is maximized is 189 Ω / □ (189 Ω / sq.), And the maximum emissivity is 50%. That is, if the sheet resistance of the first infrared radiation layer 4a is 189 Ω / □, the infrared radiation element 1 can maximize the infrared emissivity by impedance matching with air. Therefore, in order to suppress a decrease in emissivity and ensure emissivity of, for example, 40% or more, the sheet resistance of the first infrared radiation layer 4a may be set in a range of 73 to 493 Ω / □. If the sheet resistance at which the emissivity is maximized at a desired use temperature is called a prescribed sheet resistance, the sheet resistance of the first infrared radiation layer 4a at the desired use temperature is a prescribed sheet resistance of ± 10%. It is more preferable to set the range.
赤外線放射素子1において第1赤外線放射層4aから放射される赤外線のピーク波長λは、第1赤外線放射層4aの温度に依存する。ここで、第1赤外線放射層4aの絶対温度をT〔K〕、ピーク波長をλ〔μm〕とすれば、これらは、λ=2898/Tの関係を満足している。つまり、第1赤外線放射層4aの絶対温度Tと第1赤外線放射層4aから放射される赤外線のピーク波長λとの関係は、ウィーンの変位則を満足している。したがって、赤外線放射素子1では、第1赤外線放射層4aが黒体を構成している。
The peak wavelength λ of infrared rays emitted from the first infrared emitting layer 4a in the infrared emitting element 1 depends on the temperature of the first infrared emitting layer 4a. Here, if the absolute temperature of the first infrared radiation layer 4a is T [K] and the peak wavelength is λ [μm], these satisfy the relationship of λ = 2898 / T. That is, the relationship between the absolute temperature T of the first infrared radiation layer 4a and the peak wavelength λ of the infrared radiation emitted from the first infrared radiation layer 4a satisfies the Vienna displacement law. Therefore, in the infrared radiation element 1, the first infrared radiation layer 4a constitutes a black body.
赤外線放射素子1は、例えば、図示しない外部電源から一対のパッド9,9間に与える入力電力を調整することにより、第1赤外線放射層4aに発生するジュール熱を変化させることができ、第1赤外線放射層4aの温度を変化させることができる。したがって、赤外線放射素子1は、第1赤外線放射層4aへの入力電力に応じて第1赤外線放射素子4aの温度を変化させることができる。また、赤外線放射素子1は、第1赤外線放射層4aの温度を変化させることで第1赤外線放射層4aから放射される赤外線のピーク波長λを変化させることができる。このため、赤外線放射素子1は、広範囲の赤外線波長域において高出力の赤外線光源として用いることが可能となる。例えば、赤外線放射素子1をガスセンサの赤外光源として使用する場合には、第1赤外線放射層4aから放射される赤外線のピーク波長λを4μm程度にするのが好ましく、第1赤外線放射層4aの温度を800K程度とすればよい。ここにおいて、赤外線放射素子1は、第1赤外線放射層4aが上述のように黒体を構成している。これにより、赤外線放射素子1は、第1赤外線放射層4aの単位面積が単位時間に放射する全エネルギEがT4に略比例するものと推測される(つまり、シュテファン-ボルツマンの法則を満足するものと推測される)。なお、赤外線放射素子1は、第1赤外線放射層4aの温度を高くするほど赤外線の放射量を増大させることが可能となる。
The infrared radiation element 1 can change Joule heat generated in the first infrared radiation layer 4a by adjusting input power applied between the pair of pads 9 and 9 from an external power source (not shown), for example. The temperature of the infrared radiation layer 4a can be changed. Therefore, the infrared radiation element 1 can change the temperature of the first infrared radiation element 4a in accordance with the input power to the first infrared radiation layer 4a. In addition, the infrared radiation element 1 can change the peak wavelength λ of infrared radiation emitted from the first infrared radiation layer 4a by changing the temperature of the first infrared radiation layer 4a. For this reason, the infrared radiation element 1 can be used as a high-power infrared light source in a wide infrared wavelength range. For example, when the infrared radiation element 1 is used as an infrared light source of a gas sensor, it is preferable that the peak wavelength λ of infrared radiation emitted from the first infrared radiation layer 4a is about 4 μm. The temperature may be about 800K. Here, in the infrared radiation element 1, the first infrared radiation layer 4a forms a black body as described above. Thereby, in the infrared radiation element 1, it is estimated that the total energy E radiated per unit time in the unit area of the first infrared radiation layer 4a is approximately proportional to T 4 (that is, the Stefan-Boltzmann law is satisfied). Guessed) The infrared radiation element 1 can increase the amount of infrared radiation as the temperature of the first infrared radiation layer 4a is increased.
第1赤外線放射層4aは、薄膜部3の第2面302(薄膜部3における基板2側)とは反対側の表面(薄膜部3の第1面301)上に形成されている。また、第1赤外線放射層4aは、上述のように平面形状が格子状である。第1赤外線放射層4aは、各開口部4aaのサイズが同じでもよいが、図1Aのように外周部4acから中心部4adに近づくにつれて開口部4aaのサイズが小さくなっているのが好ましい。つまり、第1赤外線放射層4aにおいて、外周部4ac側の開口部4aaに比べて、中心部4adに近い開口部4aaのサイズが小さくなっていることが好ましい。これにより、赤外線放射素子1は、第1赤外線放射層4aの温度分布の均一化を図ることが可能となり、赤外線の波長が第1赤外線放射層4aの位置によってばらつくのを抑制することが可能となる。
The first infrared radiation layer 4a is formed on the surface (the first surface 301 of the thin film portion 3) opposite to the second surface 302 of the thin film portion 3 (the substrate 2 side of the thin film portion 3). The first infrared radiation layer 4a has a lattice shape in plan view as described above. In the first infrared radiation layer 4a, the size of each opening 4aa may be the same, but it is preferable that the size of the opening 4aa decreases from the outer peripheral portion 4ac to the center portion 4ad as shown in FIG. 1A. That is, in the first infrared radiation layer 4a, it is preferable that the size of the opening 4aa close to the center 4ad is smaller than the opening 4aa on the outer peripheral portion 4ac side. Thereby, the infrared radiation element 1 can achieve a uniform temperature distribution of the first infrared radiation layer 4a, and can suppress the variation of the infrared wavelength depending on the position of the first infrared radiation layer 4a. Become.
第2赤外線放射層4bは、薄膜部3の第2面302の反対側に位置する薄膜部3の第1面301上に形成されている。よって、第2赤外線放射層4bと第1赤外線放射層4aとは、同一平面上に形成されている。
The second infrared radiation layer 4 b is formed on the first surface 301 of the thin film portion 3 located on the opposite side of the second surface 302 of the thin film portion 3. Therefore, the second infrared radiation layer 4b and the first infrared radiation layer 4a are formed on the same plane.
第2赤外線放射層4bの平面形状は、格子状の第1赤外線放射層4aの開口部4aaよりもやや小さな矩形状(図示例では、正方形状)としてある。赤外線放射素子1は、より高効率で赤外線を放射させるという観点から、好ましくは、第2赤外線放射層4bが、第1赤外線放射層4aにおける全ての開口部4aaそれぞれの縁4aeよりも内側に配置されている。
The planar shape of the second infrared radiation layer 4b is a rectangular shape (in the illustrated example, a square shape) that is slightly smaller than the opening 4aa of the lattice-shaped first infrared radiation layer 4a. From the viewpoint of radiating infrared rays with higher efficiency, the infrared radiation element 1 is preferably arranged such that the second infrared radiation layer 4b is located on the inner side of each edge 4ae of all the openings 4aa in the first infrared radiation layer 4a. Has been.
第2赤外線放射層4bの材料は、第1赤外線放射層4aと同様の材料を採用することができるが、第1赤外線放射層4aと同じ材料を採用することが好ましい。また、第2赤外線放射層4bの厚さは、第1赤外線放射層4aの厚さと同じであることが好ましい。赤外線放射素子1は、第1赤外線放射層4aと第2赤外線放射層4bとが、同一の材料で形成され且つ同じ厚さであることにより、製造時に第1赤外線放射層4aと第2赤外線放射層4bとを同時に形成することが可能となり、低コスト化を図ることが可能となる。
The material of the second infrared radiation layer 4b can be the same material as that of the first infrared radiation layer 4a, but the same material as the first infrared radiation layer 4a is preferably employed. The thickness of the second infrared radiation layer 4b is preferably the same as the thickness of the first infrared radiation layer 4a. The infrared radiation element 1 includes the first infrared radiation layer 4a and the second infrared radiation layer 4b formed of the same material and having the same thickness. The layer 4b can be formed at the same time, and the cost can be reduced.
第2赤外線放射層4bは、第1赤外線放射層4aにおける開口部4aaの内側面に接しない範囲でより大きな平面サイズであるのが好ましい。これにより、第2赤外線放射層4bの温度が第1赤外線放射層4aの温度により近くなり、より効率的に赤外線を放射させることが可能となる。
The second infrared radiation layer 4b preferably has a larger planar size as long as it does not contact the inner surface of the opening 4aa in the first infrared radiation layer 4a. Thereby, the temperature of the 2nd infrared radiation layer 4b becomes closer to the temperature of the 1st infrared radiation layer 4a, and it becomes possible to radiate infrared rays more efficiently.
第3赤外線放射層4cは、薄膜部3の第1面301(薄膜部3における基板2側とは反対側の表面)上に形成されている。よって、第3赤外線放射層4cと第2赤外線放射層4bと第1赤外線放射層4aとは、同一平面上に形成されている。
The third infrared radiation layer 4c is formed on the first surface 301 of the thin film portion 3 (the surface of the thin film portion 3 opposite to the substrate 2 side). Therefore, the 3rd infrared radiation layer 4c, the 2nd infrared radiation layer 4b, and the 1st infrared radiation layer 4a are formed on the same plane.
第3赤外線放射層4cは、図1A乃至1Cの例では、2つ設けられており、各々の平面形状をC字状としてある。しかし、これに限定されることなく、本実施形態の赤外線放射素子1では、複数の第3赤外線放射層4cが、枠Fを挟んで第1赤外線放射層4aを囲み、これらの第3赤外線放射層4cが第1赤外線放射層4aと離間するように配置されているとよい。ここで、上記枠Fは、保護膜5から構成され、第1赤外線放射層4aの外形状に沿ってダイヤフラム部3Dの第1面301上に配置されている。また、第3赤外線放射層4cは、薄膜部3のダイヤフラム部3Dと支持部3Sとに跨って形成されているが、少なくともダイヤフラム部3Dの第1面301上に形成されていればよい。
In the example of FIGS. 1A to 1C, two third infrared radiation layers 4c are provided, and each planar shape is C-shaped. However, without being limited thereto, in the infrared radiation element 1 of the present embodiment, the plurality of third infrared radiation layers 4c surround the first infrared radiation layer 4a with the frame F interposed therebetween, and these third infrared radiation layers The layer 4c may be disposed so as to be separated from the first infrared radiation layer 4a. Here, the said frame F is comprised from the protective film 5, and is arrange | positioned on the 1st surface 301 of diaphragm part 3D along the outer shape of the 1st infrared radiation layer 4a. Moreover, although the 3rd infrared radiation layer 4c is formed ranging over the diaphragm part 3D of the thin film part 3, and the support part 3S, it should just be formed on the 1st surface 301 of the diaphragm part 3D at least.
第3赤外線放射層4cの材料は、第1赤外線放射層4aと同様の材料を採用することができるが、第1赤外線放射層4aと同じ材料を採用することが好ましい。また、第3赤外線放射層4cの厚さは、第1赤外線放射層4aの厚さと同じであることが好ましい。
The material of the third infrared radiation layer 4c can be the same material as that of the first infrared radiation layer 4a, but the same material as that of the first infrared radiation layer 4a is preferably employed. The thickness of the third infrared radiation layer 4c is preferably the same as the thickness of the first infrared radiation layer 4a.
赤外線放射素子1は、第1赤外線放射層4aと第3赤外線放射層4cとが、同一の材料で形成され且つ同じ厚さであることにより、製造時に第1赤外線放射層4aと第3赤外線放射層4cとを同時に形成することが可能となり、低コスト化を図ることが可能となる。
The infrared radiation element 1 includes the first infrared radiation layer 4a and the third infrared radiation layer 4c formed of the same material and having the same thickness. The layer 4c can be formed at the same time, and the cost can be reduced.
赤外線放射素子1は、第1赤外線放射層4aと第2赤外線放射層4bと第3赤外線放射層4cとが、同一の材料で形成され且つ同じ厚さであることにより、製造時に第1赤外線放射層4aと第2赤外線放射層4bと第3赤外線放射層4cとを同時に形成することが可能となり、低コスト化を図ることが可能となる。
The infrared radiation element 1 includes the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c formed of the same material and having the same thickness. The layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c can be formed at the same time, and the cost can be reduced.
保護層5は、シリコン窒化膜により構成してある。保護層5は、シリコン窒化膜に限らず、例えば、シリコン酸化膜により構成してもよいし、シリコン酸化膜とシリコン窒化膜との積層構造を有していてもよい。保護層5は、第1赤外線放射層4aへの通電時に第1赤外線放射層4aから放射される所望の波長ないし波長域の赤外線に対する透過率が高いほうが好ましいが、透過率が100%であることを必須とするものではない。
The protective layer 5 is composed of a silicon nitride film. The protective layer 5 is not limited to a silicon nitride film, and may be formed of, for example, a silicon oxide film, or may have a stacked structure of a silicon oxide film and a silicon nitride film. The protective layer 5 preferably has a high transmittance with respect to infrared rays of a desired wavelength or wavelength range emitted from the first infrared radiation layer 4a when the first infrared radiation layer 4a is energized, but the transmittance is 100%. Is not a requirement.
赤外線放射素子1は、薄膜部3と第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cと保護層5とで構成されるサンドイッチ構造の応力バランスを考慮して、薄膜部3及び保護層5それぞれの材料や厚さなどを設定することが好ましい。これにより、赤外線放射素子1は、上述のサンドイッチ構造の応力バランスを向上させることが可能となり、このサンドイッチ構造の反りや破損を、より抑制することが可能となって機械的強度のより一層の向上を図ることが可能となる。
The infrared radiation element 1 is a thin film in consideration of the stress balance of the sandwich structure composed of the thin film portion 3, the first infrared radiation layer 4a, the second infrared radiation layer 4b, the third infrared radiation layer 4c, and the protective layer 5. It is preferable to set the material and thickness of each of the portion 3 and the protective layer 5. Thereby, the infrared radiation element 1 can improve the stress balance of the above-described sandwich structure, and can further suppress the warpage and breakage of the sandwich structure, thereby further improving the mechanical strength. Can be achieved.
第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cの厚さは、第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cの低熱容量化を図るという観点から0.2μm以下とするのが好ましい。
The thicknesses of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c are reduced in the heat capacity of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. From the viewpoint of achieving this, the thickness is preferably 0.2 μm or less.
薄膜部3の厚さと第1赤外線放射層4aの厚さと保護層5の厚さとの合計厚さは、薄膜部3と第1赤外線放射層4aと保護層5との積層構造の低熱容量化を図るという観点から、例えば、0.1μm~1μm程度の範囲で設定することが好ましく、0.7μm以下(具体的には、0.1μm~0.7μm)とするのがより好ましい。なお、赤外線放射素子1は、例えば、薄膜部3のシリコン酸化膜31の厚さを160nm、薄膜部3のシリコン窒化膜32の厚さを160nm、保護層5の厚さを100nmとして、第1赤外線放射層4aの厚さを適宜設定すればよい。これらの数値は、一例であり、特に限定するものではない。
The total thickness of the thickness of the thin film portion 3, the thickness of the first infrared radiation layer 4a, and the thickness of the protective layer 5 reduces the heat capacity of the laminated structure of the thin film portion 3, the first infrared radiation layer 4a, and the protective layer 5. From the viewpoint of achieving this, for example, it is preferably set in the range of about 0.1 μm to 1 μm, more preferably 0.7 μm or less (specifically, 0.1 μm to 0.7 μm). For example, the infrared radiation element 1 is configured such that the thickness of the silicon oxide film 31 of the thin film portion 3 is 160 nm, the thickness of the silicon nitride film 32 of the thin film portion 3 is 160 nm, and the thickness of the protective layer 5 is 100 nm. What is necessary is just to set the thickness of the infrared radiation layer 4a suitably. These numerical values are examples and are not particularly limited.
一対の電極7,7は、基板2の第1面201側において、第1赤外線放射層4aの外周端部4af、4af(図1Aにおける左右両端部)とそれぞれ接する形で形成されている。各電極7は、保護層5に形成されたコンタクトホール5aを通して第1赤外線放射層4aの一表面4ab上に形成され、第1赤外線放射層4aと電気的に接続されている。ここで、各電極7は、第1赤外線放射層4aとオーミック接触をなしている。
The pair of electrodes 7 and 7 are formed on the first surface 201 side of the substrate 2 so as to be in contact with the outer peripheral end portions 4af and 4af (left and right end portions in FIG. 1A) of the first infrared radiation layer 4a. Each electrode 7 is formed on one surface 4ab of the first infrared radiation layer 4a through a contact hole 5a formed in the protective layer 5, and is electrically connected to the first infrared radiation layer 4a. Here, each electrode 7 is in ohmic contact with the first infrared radiation layer 4a.
各電極7の材料としては、アルミニウム合金の一種であるAl-Siを採用している。各電極7の材料は、特に限定するものではなく、例えば、Al-Cu、Alなどを採用してもよい。また、各電極7は、少なくとも、第1赤外線放射層4aと接する部分が第1赤外線放射層4aとオーミック接触が可能な材料であればよく、単層構造に限らず、多層構造でもよい。例えば、各電極7は、第1赤外線放射層4a側から順に、第1層、第2層、第3層が積層された3層構造として、第1赤外線放射層4aに接する第1層の材料を高融点金属(例えば、Crなど)とし、第2層の材料をNiとし、第3層の材料をAuとしてもよい。赤外線放射素子1は、各パッド9において少なくとも第1赤外線放射層4aに接する部位が高融点金属により形成されていれば、第1赤外線放射層4aの温度を各パッド9の材料に制約されることなく上昇させることが可能となる。
The material of each electrode 7 is Al-Si, which is a kind of aluminum alloy. The material of each electrode 7 is not particularly limited, and for example, Al—Cu, Al or the like may be adopted. Moreover, each electrode 7 should just be a material in which the part which contact | connects the 1st infrared radiation layer 4a at least can make ohmic contact with the 1st infrared radiation layer 4a, and not only a single layer structure but a multilayer structure may be sufficient as it. For example, each electrode 7 has a three-layer structure in which a first layer, a second layer, and a third layer are laminated in order from the first infrared radiation layer 4a side, and the first layer material in contact with the first infrared radiation layer 4a. May be a refractory metal (such as Cr), the second layer material may be Ni, and the third layer material may be Au. In the infrared radiating element 1, the temperature of the first infrared radiating layer 4 a is limited by the material of each pad 9 as long as at least a portion in contact with the first infrared radiating layer 4 a is formed of a refractory metal in each pad 9. It is possible to raise without any loss.
各配線8及び各パッド9は、各電極7と同じ材料により形成され、同じ層構造、同じ厚さに設定するのが好ましい。これにより、赤外線放射素子1は、各配線8及び各パッド9を各電極7と同時に形成することが可能となる。パッド9の厚さは、0.5~2μm程度の範囲で設定することが好ましい。
Each wiring 8 and each pad 9 are preferably made of the same material as each electrode 7 and set to the same layer structure and the same thickness. Thereby, the infrared radiation element 1 can form each wiring 8 and each pad 9 simultaneously with each electrode 7. The thickness of the pad 9 is preferably set in the range of about 0.5 to 2 μm.
パッド9の数は、2つに限らず、複数であればよい。例えば、各電極7の各々に対して、パッド9を2つずつ接続してもよい。要するに、赤外線放射素子1は、第1赤外線放射層4aへ通電して第1赤外線放射層4aを発熱させることができれば、パッド9の数を特に限定するものではない。
The number of pads 9 is not limited to two but may be plural. For example, two pads 9 may be connected to each electrode 7. In short, the number of the pads 9 is not particularly limited in the infrared radiation element 1 as long as the first infrared radiation layer 4a can be energized to cause the first infrared radiation layer 4a to generate heat.
また、赤外線放射素子1は、赤外線放射層として、少なくとも第1赤外線放射層4aと第2赤外線放射層4bとを備えていればよく、第3赤外線放射層4cを備えていない構成でもよい。
Further, the infrared radiation element 1 only needs to include at least the first infrared radiation layer 4a and the second infrared radiation layer 4b as the infrared radiation layer, and may not have the third infrared radiation layer 4c.
以下では、赤外線放射素子1の製造方法について図2に基づいて説明する。
Below, the manufacturing method of the infrared radiation element 1 is demonstrated based on FIG.
赤外線放射素子1を製造するにあたっては、まず、基板2の第1面201が(100)面の単結晶のシリコン基板などからなる基板2を準備する(図2A参照)。
In manufacturing the infrared radiation element 1, first, the substrate 2 made of a single crystal silicon substrate or the like whose first surface 201 is (100) plane is prepared (see FIG. 2A).
基板2を準備した後には、基板2の第1面201側に薄膜部3を形成する第1工程を行うことによって、図2Bに示す構造を得る。薄膜部3のシリコン酸化膜31の形成方法は、例えば、熱酸化法やCVD(Chemical Vapor Deposition)法などの薄膜形成技術を採用することができ、熱酸化法が好ましい。また、薄膜部3のシリコン窒化膜の形成方法は、CVD法などの薄膜形成技術を利用することができ、LPCVD(Low Pressure Chemical Vapor Deposition)法が好ましい。
After the substrate 2 is prepared, the structure shown in FIG. 2B is obtained by performing the first step of forming the thin film portion 3 on the first surface 201 side of the substrate 2. As a method for forming the silicon oxide film 31 in the thin film portion 3, for example, a thin film forming technique such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method can be adopted, and a thermal oxidation method is preferable. In addition, as a method for forming the silicon nitride film of the thin film portion 3, a thin film forming technique such as a CVD method can be used, and an LPCVD (Low Pressure Chemical Vapor Deposition) method is preferable.
第1工程の後には、薄膜部3の第1面301上に第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cを形成する第2工程を行うことによって、図2Cに示す構造を得る。第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cの形成方法は、例えば、スパッタ法や蒸着法やCVD法などの薄膜形成技術と、フォトリソグラフィ技術及びエッチング技術を利用した加工技術とを利用することができる。
After the first step, by performing a second step of forming the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c on the first surface 301 of the thin film portion 3, FIG. 2C The structure shown in is obtained. As a method for forming the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c, for example, a thin film formation technique such as a sputtering method, a vapor deposition method, or a CVD method, and a photolithography technique and an etching technique are used. Can be used.
第2工程の後には、保護層5を形成する第3工程を行い、続いて、コンタクトホール5aを形成する第4工程を行い、その後、各電極7、各配線8及び各パッド9を形成する第5工程を行うことによって、図2Dに示す構造を得る。第3工程における保護層5の形成方法は、例えば、CVD法などの薄膜形成技術と、フォトリソグラフィ技術及びエッチング技術を利用した加工技術とを利用することができる。保護層5を形成する際のCVD法としては、プラズマCVD法が好ましい。第4工程におけるコンタクトホール5aの形成にあたっては、フォトリソグラフィ技術及びエッチング技術を利用すればよい。第4工程でのエッチングは、ウェットエッチングでもよいし、ドライエッチングでもよい。第5工程における各電極7、各配線8及び各パッド9の形成にあたっては、例えば、スパッタ法、蒸着法及びCVD法などの薄膜形成技術と、フォトリソグラフィ技術及びエッチング技術を利用した加工技術とを利用することができる。第5工程でのエッチングは、ウェットエッチングでもよいし、ドライエッチングでもよい。
After the second step, a third step for forming the protective layer 5 is performed, followed by a fourth step for forming the contact hole 5a, and then each electrode 7, each wiring 8, and each pad 9 are formed. By performing the fifth step, the structure shown in FIG. 2D is obtained. As a method for forming the protective layer 5 in the third step, for example, a thin film forming technique such as a CVD method and a processing technique using a photolithography technique and an etching technique can be used. As a CVD method for forming the protective layer 5, a plasma CVD method is preferable. In forming the contact hole 5a in the fourth step, a photolithography technique and an etching technique may be used. Etching in the fourth step may be wet etching or dry etching. In forming each electrode 7, each wiring 8, and each pad 9 in the fifth step, for example, a thin film forming technique such as a sputtering method, a vapor deposition method and a CVD method, and a processing technique using a photolithography technique and an etching technique are used. Can be used. Etching in the fifth step may be wet etching or dry etching.
第5工程の後には、基板2に貫通孔2aを形成することでダイヤフラム部3Dを形成する第6工程を行うことによって、図2Eに示す構造の赤外線放射素子1を得る。貫通孔2aの形成にあたっては、例えば、基板2の第2面202側にシリコン酸化膜とシリコン窒化膜との積層膜(図示せず)をマスク層として形成し、基板2を第2面202側からエッチングすることにより形成すればよい。マスク層を形成するにあたっては、例えば、まず、薄膜部3のシリコン酸化膜31の形成と同時に基板2の第2面202側にマスク層の基礎となるシリコン酸化膜を形成し、その後薄膜部3のシリコン窒化膜32の形成と同時に基板2の第2面202側にシリコン窒化膜を形成する。マスク層の基礎となるシリコン酸化膜とシリコン窒化膜との積層膜のパターニングは、フォトリソグラフィ技術およびエッチング技術を利用すればよい。基板2のエッチングは、アルカリ系溶液を用いた異方性エッチングを採用しているが、これに限らず、例えば、誘導結合プラズマ型のドライエッチング装置を用いたエッチングにより形成することもできる。ここで、本実施形態の赤外線放射素子1の製造方法では、貫通孔2aの形成時に、薄膜部3をエッチングストッパ層として利用することにより、薄膜部3の厚さの精度を高めることが可能となるとともに、ダイヤフラム部3Dの第2面302(薄膜部3における貫通孔2a側)に基板2の一部や残渣が残るのを防止することが可能となる。また、本実施形態の赤外線放射素子1の製造方法では、貫通孔2aの形成時に、薄膜部3をエッチングストッパ層として利用することにより、薄膜部3の厚さの精度を高めることが可能となり、赤外線放射素子1ごとの、薄膜部3の機械的強度のばらつきや、ダイヤフラム部3Dの熱容量のばらつきを抑制することが可能となる。
After the fifth step, the sixth step of forming the diaphragm portion 3D by forming the through hole 2a in the substrate 2 is performed, thereby obtaining the infrared radiation element 1 having the structure shown in FIG. 2E. In forming the through hole 2a, for example, a laminated film (not shown) of a silicon oxide film and a silicon nitride film is formed on the second surface 202 side of the substrate 2 as a mask layer, and the substrate 2 is formed on the second surface 202 side. It may be formed by etching. In forming the mask layer, for example, first, a silicon oxide film serving as a base of the mask layer is formed on the second surface 202 side of the substrate 2 simultaneously with the formation of the silicon oxide film 31 of the thin film portion 3, and then the thin film portion 3. Simultaneously with the formation of the silicon nitride film 32, a silicon nitride film is formed on the second surface 202 side of the substrate 2. The patterning of the laminated film of the silicon oxide film and the silicon nitride film that is the basis of the mask layer may be performed using a photolithography technique and an etching technique. The etching of the substrate 2 employs anisotropic etching using an alkaline solution, but is not limited thereto, and can be formed by etching using, for example, an inductively coupled plasma type dry etching apparatus. Here, in the manufacturing method of the infrared radiation element 1 of the present embodiment, it is possible to increase the accuracy of the thickness of the thin film portion 3 by using the thin film portion 3 as an etching stopper layer when forming the through hole 2a. At the same time, it is possible to prevent a part of the substrate 2 and the residue from remaining on the second surface 302 (the through hole 2a side in the thin film portion 3) of the diaphragm portion 3D. Moreover, in the manufacturing method of the infrared radiation element 1 of this embodiment, it becomes possible to increase the accuracy of the thickness of the thin film portion 3 by using the thin film portion 3 as an etching stopper layer when forming the through hole 2a. It is possible to suppress variations in mechanical strength of the thin film portion 3 and variations in heat capacity of the diaphragm portion 3D for each infrared radiation element 1.
上述の赤外線放射素子1の製造にあたっては、貫通孔2aの形成が終了するまでのプロセスを、ウェハレベルで行い、貫通孔2aを形成した後、個々の赤外線放射素子1に分離すればよい。つまり、赤外線放射素子1の製造にあたっては、例えば、基板2の基礎となるシリコンウェハを準備して、このシリコンウェハに複数の赤外線検出素子1を上述の製造方法に従って形成し、その後、個々の赤外線検出素子1に分離すればよい。
In manufacturing the infrared radiation element 1 described above, the process until the formation of the through hole 2a is completed at the wafer level, and after forming the through hole 2a, the individual infrared radiation elements 1 may be separated. That is, in manufacturing the infrared radiation element 1, for example, a silicon wafer as a base of the substrate 2 is prepared, and a plurality of infrared detection elements 1 are formed on the silicon wafer according to the above-described manufacturing method. What is necessary is just to isolate | separate to the detection element 1. FIG.
上述の赤外線放射素子1の製造方法から分かるように、赤外線放射素子1は、MEMSの製造技術を利用して製造することができる。
As can be seen from the method for manufacturing the infrared radiating element 1 described above, the infrared radiating element 1 can be manufactured by using a MEMS manufacturing technique.
以上説明した本実施形態の赤外線放射素子1は、基板2と、この基板2の第1面201側に設けられた薄膜部3と、基板2の厚み方向に貫通した貫通孔2aと、ダイヤフラム部3Dの第1面301側(薄膜部3における基板2側とは反対側)に設けられた格子状の第1赤外線放射層4aとを備えている。そして、赤外線放射素子1は、第1赤外線放射層4aに電気的に接続された複数のパッド9と、第1赤外線放射層4aの開口部4aaにおいて第1赤外線放射層4aから離れて配置され且つ薄膜部3よりも赤外線放射率の高い第2赤外線放射層4bとを備えている。これにより、赤外線放射素子1は、第1赤外線放射層4aに通電して発熱することで第1赤外線放射層4a及び第2赤外線放射層4bから赤外線が放射される。ここで、赤外線放射素子1は、第1赤外線放射層4aが格子状に形成されているので、第1赤外線放射層4aの熱容量を低減することが可能となり、温度が上昇しやすくなり、しかも、第2赤外線放射層4bが第1赤外線放射層4aの開口部4aaに配置されているので、第2赤外線放射層4bと第1赤外線放射層4bとの温度差を低減することが可能となる。よって、赤外線放射素子1は、より高効率で赤外線を放射させることが可能となる。なお、赤外線放射素子1は、基板2の第1面201側の積層構造の熱容量を低減することにより、一対のパッド9,9間へ与える電圧波形に対する第1赤外線放射層4aの温度変化の応答を速くすることが可能となって第1赤外線放射層4aの温度が上昇しやすくなり、高出力化および応答速度の高速化を図ることが可能となる。
The infrared radiation element 1 of the present embodiment described above includes a substrate 2, a thin film portion 3 provided on the first surface 201 side of the substrate 2, a through hole 2a penetrating in the thickness direction of the substrate 2, and a diaphragm portion. A grid-like first infrared radiation layer 4a provided on the 3D first surface 301 side (the side opposite to the substrate 2 side in the thin film portion 3) is provided. The infrared radiation element 1 is disposed away from the first infrared radiation layer 4a at the plurality of pads 9 electrically connected to the first infrared radiation layer 4a and the opening 4aa of the first infrared radiation layer 4a. And a second infrared radiation layer 4b having a higher infrared emissivity than the thin film portion 3. Thereby, the infrared radiation element 1 emits infrared rays from the first infrared radiation layer 4a and the second infrared radiation layer 4b by energizing the first infrared radiation layer 4a to generate heat. Here, in the infrared radiation element 1, since the first infrared radiation layer 4a is formed in a lattice shape, it becomes possible to reduce the heat capacity of the first infrared radiation layer 4a, the temperature is likely to rise, Since the second infrared radiation layer 4b is disposed in the opening 4aa of the first infrared radiation layer 4a, the temperature difference between the second infrared radiation layer 4b and the first infrared radiation layer 4b can be reduced. Therefore, the infrared radiation element 1 can emit infrared rays with higher efficiency. In addition, the infrared radiation element 1 responds to the temperature change of the first infrared radiation layer 4a with respect to the voltage waveform applied between the pair of pads 9, 9 by reducing the heat capacity of the laminated structure on the first surface 201 side of the substrate 2. As a result, the temperature of the first infrared radiation layer 4a is likely to rise, and it becomes possible to increase the output and the response speed.
また、赤外線放射素子1は、第1赤外線放射層4aの外周部4acよりも外側に位置し、第1赤外線放射層4aから離れて配置され、薄膜部3よりも高い赤外線放射率を有する第3赤外線放射層4cを備えている。これにより、赤外線放射素子1は、より高効率で赤外線を放射させることが可能となる。
Further, the infrared radiation element 1 is located outside the outer peripheral portion 4ac of the first infrared radiation layer 4a, is disposed away from the first infrared radiation layer 4a, and has a third infrared emissivity higher than that of the thin film portion 3. An infrared radiation layer 4c is provided. Thereby, the infrared radiation element 1 can emit infrared rays with higher efficiency.
また、赤外線放射素子1は、第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cに関し、保護層5が接する気体とのインピーダンス不整合による赤外線の放射率の低下を抑制するようにシート抵抗を設定してある。しかして、赤外線放射素子1は、第1赤外線放射層4a、第2赤外線放射層4b及び第3赤外線放射層4cの放射率の低下を抑制することが可能となる。よって、本実施形態の赤外線放射素子1では、低消費電力化が可能となる。
In addition, the infrared radiation element 1 suppresses a decrease in infrared emissivity due to impedance mismatch with the gas in contact with the protective layer 5 with respect to the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. The sheet resistance is set so as to. Therefore, the infrared radiation element 1 can suppress a decrease in the emissivity of the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer 4c. Therefore, the infrared radiation element 1 of the present embodiment can reduce power consumption.
また、赤外線放射素子1は、基板2を単結晶のシリコン基板から形成し、薄膜部3をシリコン酸化膜31とシリコン窒化膜32とで構成してある。これにより、赤外線放射素子1は、薄膜部3に比べて基板2の熱容量および熱伝導率それぞれが大きく、基板2がヒートシンクとしての機能を有するので、小型化、入力電力に対する応答速度の高速化、赤外線の放射特性の安定性の向上を図ることが可能となる。
Further, in the infrared radiation element 1, the substrate 2 is formed from a single crystal silicon substrate, and the thin film portion 3 is composed of a silicon oxide film 31 and a silicon nitride film 32. As a result, the infrared radiation element 1 has a larger heat capacity and thermal conductivity of the substrate 2 than the thin film portion 3, and the substrate 2 has a function as a heat sink. It is possible to improve the stability of infrared radiation characteristics.
赤外線放射素子1は、第1赤外線放射層4a、第2赤外線放射層4b、第3赤外線放射層4c、電極7、配線8及びパッド9が、平面視において一対の電極7,7の並ぶ方向に直交する赤外線放射素子1の中心線を対称軸として線対称に配置されていることが好ましい。
In the infrared radiation element 1, the first infrared radiation layer 4a, the second infrared radiation layer 4b, the third infrared radiation layer 4c, the electrode 7, the wiring 8 and the pad 9 are arranged in a direction in which the pair of electrodes 7 and 7 are arranged in plan view. It is preferable that the orthogonal infrared radiation elements 1 are arranged in line symmetry with the center line as the axis of symmetry.
言い換えると、赤外線放射素子1において、第1赤外線放射層4aの中心部4adを通る第2方向の軸線が対称軸となり、第1赤外線放射層4a、第2赤外線放射層4b、第3赤外線放射層4c、電極7、配線8及びパッド9が、上記軸線に対して線対称に配置されていることが好ましい。
In other words, in the infrared radiation element 1, the axis in the second direction passing through the central portion 4ad of the first infrared radiation layer 4a is the axis of symmetry, and the first infrared radiation layer 4a, the second infrared radiation layer 4b, and the third infrared radiation layer. It is preferable that 4c, the electrode 7, the wiring 8, and the pad 9 are arranged symmetrically with respect to the axis.
これにより、赤外線放射素子1は、機械的強度のより一層の向上を図ることが可能となるとともに、第1赤外線放射層4aの温度の面内ばらつきを抑制することが可能なる。
Thereby, the infrared radiation element 1 can further improve the mechanical strength, and can suppress in-plane variation of the temperature of the first infrared radiation layer 4a.
赤外線放射素子1は、ガスセンサ用の赤外光源(赤外線光源)に限らず、例えば、炎検知用の赤外光源、赤外光通信用の赤外光源、分光分析用の赤外光源などに使用することが可能である。
The infrared radiation element 1 is not limited to an infrared light source (infrared light source) for a gas sensor, but is used for an infrared light source for flame detection, an infrared light source for infrared light communication, an infrared light source for spectroscopic analysis, and the like. Is possible.
Claims (4)
- 基板と、前記基板の一表面側に設けられた薄膜部と、前記基板の厚み方向に貫通した貫通孔と、前記薄膜部における前記基板側とは反対側に設けられた格子状の第1赤外線放射層と、前記第1赤外線放射層に電気的に接続された複数のパッドと、前記第1赤外線放射層の開口部において前記第1赤外線放射層から離れて配置され且つ前記薄膜部よりも赤外線放射率の高い第2赤外線放射層とを備えることを特徴とする赤外線放射素子。 A substrate, a thin film portion provided on one surface side of the substrate, a through-hole penetrating in the thickness direction of the substrate, and a lattice-shaped first infrared ray provided on the opposite side of the thin film portion from the substrate side A radiation layer; a plurality of pads electrically connected to the first infrared radiation layer; and an opening of the first infrared radiation layer that is spaced apart from the first infrared radiation layer and is more infrared than the thin film portion. An infrared radiation element comprising: a second infrared radiation layer having a high emissivity.
- 前記第1赤外線放射層と前記第2赤外線放射層とは、同一の材料で形成され且つ同じ厚さであることを特徴とする請求項1に記載の赤外線放射素子。 The infrared radiation element according to claim 1, wherein the first infrared radiation layer and the second infrared radiation layer are formed of the same material and have the same thickness.
- 前記第1赤外線放射層は、周部から中心部に近づくにつれて前記開口部のサイズが小さくなっていることを特徴とする請求項1又は2に記載の赤外線放射素子。 3. The infrared radiation element according to claim 1, wherein the first infrared radiation layer has a size of the opening that decreases from a peripheral portion toward a central portion.
- 前記第1赤外線放射層の外側で前記第1赤外線放射層から離れて配置され前記薄膜部よりも赤外線放射率の高い第3赤外線放射層を備えることを特徴とする請求項1乃至3のいずれか1項に記載の赤外線放射素子。 4. The apparatus according to claim 1, further comprising a third infrared radiation layer that is disposed outside the first infrared radiation layer and spaced apart from the first infrared radiation layer and has a higher infrared emissivity than the thin film portion. The infrared radiation element according to item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-172089 | 2012-08-02 | ||
JP2012172089A JP2014032078A (en) | 2012-08-02 | 2012-08-02 | Infrared radiation element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014020797A1 true WO2014020797A1 (en) | 2014-02-06 |
Family
ID=50027515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/002386 WO2014020797A1 (en) | 2012-08-02 | 2013-04-08 | Infrared radiation element |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014032078A (en) |
TW (1) | TW201407659A (en) |
WO (1) | WO2014020797A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019063814A1 (en) * | 2017-09-28 | 2019-04-04 | Sensirion Ag | Infrared device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09184757A (en) * | 1995-11-24 | 1997-07-15 | Vaisala Oy | Electrically modulable thermal radiation source |
JP2006071601A (en) * | 2004-09-06 | 2006-03-16 | Denso Corp | Infrared sensor, infrared type gas detector, and infrared ray source |
JP2006234424A (en) * | 2005-02-22 | 2006-09-07 | Matsushita Electric Works Ltd | Infrared radiation element, and gas sensor using it |
JP2010145296A (en) * | 2008-12-19 | 2010-07-01 | Panasonic Electric Works Co Ltd | Infrared radiation element and method of manufacturing the same |
-
2012
- 2012-08-02 JP JP2012172089A patent/JP2014032078A/en active Pending
-
2013
- 2013-04-08 WO PCT/JP2013/002386 patent/WO2014020797A1/en active Application Filing
- 2013-04-09 TW TW102112559A patent/TW201407659A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09184757A (en) * | 1995-11-24 | 1997-07-15 | Vaisala Oy | Electrically modulable thermal radiation source |
JP2006071601A (en) * | 2004-09-06 | 2006-03-16 | Denso Corp | Infrared sensor, infrared type gas detector, and infrared ray source |
JP2006234424A (en) * | 2005-02-22 | 2006-09-07 | Matsushita Electric Works Ltd | Infrared radiation element, and gas sensor using it |
JP2010145296A (en) * | 2008-12-19 | 2010-07-01 | Panasonic Electric Works Co Ltd | Infrared radiation element and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019063814A1 (en) * | 2017-09-28 | 2019-04-04 | Sensirion Ag | Infrared device |
CN111373230A (en) * | 2017-09-28 | 2020-07-03 | 盛思锐股份公司 | Infrared device |
US11209353B2 (en) | 2017-09-28 | 2021-12-28 | Sensirion Ag | Infrared device |
Also Published As
Publication number | Publication date |
---|---|
TW201407659A (en) | 2014-02-16 |
JP2014032078A (en) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5895205B2 (en) | Infrared radiation element | |
US10591715B2 (en) | Fabry-Perot interference filter | |
JP6211833B2 (en) | Fabry-Perot interference filter | |
JP6467173B2 (en) | Contact combustion type gas sensor | |
JP5609919B2 (en) | Micro heater element | |
TWI470670B (en) | Infrared source | |
CN203616277U (en) | Semiconductor gas sensor | |
WO2013183203A1 (en) | Infrared radiation element | |
WO2014020797A1 (en) | Infrared radiation element | |
WO2015045343A1 (en) | Infrared radiation element and production method for same | |
JP2013124979A (en) | Infrared radiation element | |
JP5672742B2 (en) | Infrared temperature sensor | |
TWI492417B (en) | Infrared emission device and method of producing the same | |
WO2013171941A1 (en) | Infrared ray radiating element | |
JP2015173028A (en) | infrared radiation element | |
JP2023184338A (en) | gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13824879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13824879 Country of ref document: EP Kind code of ref document: A1 |