Nothing Special   »   [go: up one dir, main page]

WO2014015711A1 - 收发信机和干扰对消方法 - Google Patents

收发信机和干扰对消方法 Download PDF

Info

Publication number
WO2014015711A1
WO2014015711A1 PCT/CN2013/076652 CN2013076652W WO2014015711A1 WO 2014015711 A1 WO2014015711 A1 WO 2014015711A1 CN 2013076652 W CN2013076652 W CN 2013076652W WO 2014015711 A1 WO2014015711 A1 WO 2014015711A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transceiver
cancellation
path
duplexer
Prior art date
Application number
PCT/CN2013/076652
Other languages
English (en)
French (fr)
Inventor
毛孟达
叶四清
殷潜
蒲涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13823477.8A priority Critical patent/EP2874319B1/en
Publication of WO2014015711A1 publication Critical patent/WO2014015711A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a transceiver and an interference cancellation method.
  • a base station is an infrastructure device in a wireless network device.
  • the base station device generally includes three parts: a base station control unit, a receiving device, and a transmitting device.
  • the receiving device and the transmitting device are collectively referred to as a transceiver.
  • the basic composition of the frequency division duplex transceiver is different for the existing transmission and reception frequencies.
  • the transmitting device generally includes a transmitter digital processing unit, a digital to analog converter (DAC), a frequency converter, a filter, and a power amplifier (PA).
  • the receiving device generally includes a receiver digital processing unit, an analog to digital converter (ADC), a frequency converter, a filter, and a low noise amplifier (LNA) unit.
  • ADC analog to digital converter
  • LNA low noise amplifier
  • the transmitted signal (the schematic diagram in the figure is a rectangular signal in the transmission path) generates a transmission intermodulation signal due to the nonlinear problem of the transmission path (the schematic diagram in the figure is a triangular signal on both sides of the transmission signal), the emission
  • the intermodulation signal is transmitted to the receiving path through the coupling of the duplexer; and the transmitting intermodulation model falls on the receiving signal (illustrated in the figure, the receiving signal has a receiving signal on the left side of the transmitting signal, and is represented by a rectangular signal of a lower amplitude
  • the signal is received, and the position of the received signal is mixed with the transmitting intermodulation signal indicated by the triangular figure).
  • the transmit filter of the duplexer is required to filter the transmit intermodulation signal, thereby realizing the suppression of the transmit intermodulation signal.
  • the suppression of the duplexer's transmit filter (shown as the TX filter above the duplexer in Figure 2) affects the size and weight of the duplexer, affecting the entire base station.
  • a technical problem to be solved by embodiments of the present invention is to provide a transceiver and an interference cancellation method.
  • the interference cancellation can be adaptively implemented through the cancellation path, that is, the path formed by the injection signal path and the cancellation module, and the miniaturization of the base station device can be realized while reducing the interference.
  • an embodiment of the present invention provides a transceiver, a transceiver digital processing unit, a transmission path, a receiving path, an injection path, a duplexer, and a cancellation module.
  • the transceiver digital processing unit is configured to generate a transmit signal, an injection signal, and a control signal, and obtain a received signal, where the control signal adjusts a transmission parameter of the cancellation module according to the received signal,
  • the transmitting path is configured to output a transmission signal generated by the transceiver digital processing unit to the duplexer;
  • the receiving path is configured to input a received signal from the duplexer to the transceiver digital processing unit;
  • the injection path is configured to output an injection signal generated by the transceiver digital processing unit to the cancellation module and the duplexer;
  • the cancellation module is configured to perform cancellation processing on the signal outputted by the transmission path to the duplexer and the signal output by the injection path according to the control signal, and obtain the cancellation signal, and the pair The cancellation signal is input to the receiving path.
  • an embodiment of the present invention further provides an interference cancellation method, which is used in a transceiver, and includes:
  • the transceiver digital processing unit of the transceiver generates a transmission signal, and the transmission signal is output to a duplexer of the transceiver via a transmission path of the transceiver;
  • the transceiver digital processing unit generates an injection signal, and the injection signal is output to the duplexer via an injection path of the transceiver;
  • the transceiver digital processing unit receives a received signal from the duplexer through a receive path of the transceiver;
  • the transceiver digital processing unit generates a control signal
  • a cancellation module is added to the original transceiver, and the cancellation module is located between the transmission path and the reception path, and cancels the cancellation module according to the injection signal received through the reception path.
  • the effect is automatically adjusted. It not only realizes the adaptive cancellation of the interference of the transmitted intermodulation signal, but also increases the volume of the duplexer, and does not significantly increase the volume and weight of the entire transceiver.
  • 1 is a schematic structural diagram of a conventional transceiver
  • FIG. 2 is a schematic diagram showing generation of intermodulation interference in a conventional transceiver
  • FIG. 3 is a schematic structural diagram of a transceiver in an embodiment of the present invention.
  • 4a is a schematic diagram showing the relationship between the polar coordinate vector of B/A and the circle with (1, 0.) as the center and 1 as the radius before performing the amplitude and phase adjustment in the embodiment of the present invention
  • 4b is a schematic diagram showing another specific relationship between the polar coordinate vector of B/A and the circle with (1, 0.) as the center and 1 as the radius before performing the amplitude and phase adjustment in the embodiment of the present invention
  • Figure 5a is a schematic diagram of adjusting the polar coordinate vector of B/A to a circle centered at (1, 0.) and having a radius of 1 in the case of Fig. 4a;
  • Figure 5b is a schematic diagram of adjusting the polar coordinate vector of B/A to a circle centered at (1, 0.) and having a radius of 1 in the case of Fig. 4b;
  • Figure 6a is a schematic diagram of adjusting the polar coordinate vector of B/A to approach the origin of the polar coordinate in the case of Figure 6a
  • Figure 6b is a schematic diagram of adjusting the polar coordinate vector of B/A to approach the origin of the polar coordinate in the case of Figure 6b;
  • FIG. 7 is a schematic flow chart of an interference cancellation method in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a transceiver in another embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of an interference cancellation method in another embodiment of the present invention.
  • the interference cancellation of the transmission intermodulation signal is realized by the cancellation module, and it is considered that in the actual system application, the duplexer will continuously change with the change of the ambient temperature. Therefore, in the solution of the present invention, the interference cancellation modeling and the cancellation effect judgment of the system are performed by injecting signals, so as to implement adaptive interference cancellation of the cancellation module.
  • FIG. 3 it is a schematic diagram of a specific composition of the transceiver in the embodiment of the present invention. It includes a transceiver digital processing unit 1, a transmit path 2, a receive path 5, an injection path 6, a duplexer 3, and a cancellation module 7. Of course, the transceiver can also include an antenna connected to the duplexer 3.
  • the transceiver digital processing unit 1 is configured to generate a transmit signal, an injection signal, and a control signal, and obtain a received signal, where the control signal adjusts a transmission parameter of the cancellation module 7 according to the received signal.
  • the frequency band of the injected signal includes a frequency band of the received signal, and the injected signal may specifically be a multi-tone signal or a random signal.
  • the transmitting path 2 is configured to output a transmission signal generated by the transceiver digital processing unit 1 to the duplexer 3.
  • the receiving path 5 is for inputting a received signal from the duplexer 3 to the transceiver digital processing unit 1.
  • the injection path 6 is for outputting an injection signal generated by the transceiver digital processing unit 1 to the cancellation module 7 and the duplexer 3.
  • the cancellation module 7 is configured to output the transmission path 2 to the duplex according to the control signal
  • the signal of the device 3 and the signal output from the injection path 6 are subjected to cancellation processing to obtain a cancellation signal, and the cancellation signal is input to the reception path 5.
  • the above adjustment is performed when the transceiver is in normal operation. Therefore, the intermodulation interference is also included in the signals input to the duplexer 3 and the cancellation module 7, and will not be described one by one.
  • the cancellation module 7 includes a filter and an amplitude modulation phase modulator, and the filter is configured to filter the signal of the input cancellation module 7 to obtain a signal in the transmission intermodulation interference frequency band; the amplitude modulation phase modulator is used according to the The control signal is subjected to cancellation processing on the filter-filtered signal to obtain a cancellation signal, such that the cancellation signal and the transmission intermodulation interference are coupled to the receiving path 5 through the duplexer 3.
  • the signals have the same phase but opposite amplitudes.
  • the transceiver may further include a switch submodule, configured to access the cancellation module 7 to the transmitting path 2 and receive according to the control of the transceiver digital processing unit 1 Between the passages 5, or disconnected between the transmission passage 2 and the receiving passage 5.
  • the switch sub-module may be a switch located on the side where the cancellation module 7 is connected to the transmission path 2, or may be a switch located on the side where the cancellation module 7 is connected to the reception path 5.
  • the cancellation module 7 in the embodiment of the present invention may be an analog cancellation module or a digital cancellation module.
  • the filter in the canceling module 7 can be combined with a relatively simple filter, as long as the signal in a certain frequency band can be filtered, and it is not necessary to consider whether the signal in other frequency bands is The effect of retention; in general, adding such a filter can significantly increase the weight and size of the transceiver.
  • the transceiver digital processing unit 1 may further include a control signal generating module, configured to generate the control signal according to the signal output by the receiving path 5 after the cancellation module 7 is turned on, and according to the The signal output from the receive path 5 adaptively adjusts the control signal.
  • a control signal generating module configured to generate the control signal according to the signal output by the receiving path 5 after the cancellation module 7 is turned on, and according to the The signal output from the receive path 5 adaptively adjusts the control signal.
  • the amplitude modulation phase modulator included in the cancellation module 7 can be adaptively adjusted to achieve adaptive adjustment of the cancellation signal output by the cancellation module 7.
  • the amplitude modulation phase modulator can be configured to perform cancellation processing on the signal input to the cancellation module 7 according to the control of the control signal to obtain a cancellation signal.
  • the control signal generating module is configured to generate an amplitude modulation signal and a phase modulation signal. Therefore, the control signal includes an amplitude modulation signal and a phase modulation signal, so that the amplitude and phase of the output cancellation signal can be separately adjusted during specific adjustment.
  • the amplitude modulation signal is used to adjust the amplitude of the amplitude modulation phase modulator when the phase adjustment of the amplitude modulation phase modulator is fixed, so that the polar coordinate vector of B/A is located at a center and a radius of (1, 0.) On the circle of 1;
  • the phase modulation signal is used to adjust the phase of the amplitude modulation phase modulator when the amplitude adjustment of the amplitude modulation phase modulator is fixed after performing the above adjustment on the amplitude of the amplitude modulation phase modulator, so that B/A
  • the polar coordinate vector approaches the polar coordinate origin;
  • the transfer function h ⁇ t) of the injection path 2 after the injection of the injection signal indicates the transfer function of the receiving path 5;
  • jt) represents the suppression function of the duplexer 3 for the emission intermodulation;
  • ⁇ (0 represents the transfer function of the cancellation module 7.
  • the transmission filter function of the duplexer 3 can be adjusted according to the temperature change of the duplexer 3, etc., and the cancellation module 7 can be adaptively adjusted to achieve better transmission.
  • the cancellation of intermodulation interference It can be understood from the calculation formulas of A and B that A/B has the following results:
  • the amplitude can be adjusted such that 1
  • 0, that is, the polar coordinate vector of B/A is located at (1, 0. ) is the center of the circle, with a radius of 1, as shown in Figures 4a and 4b, indicating the position of B/A in polar coordinates before adjustment, as shown in Figures 5a and 5b, after amplitude adjustment, B/A is in polar coordinates The location in .
  • the switch of the cancellation module can be The submodule assists in the adjustment. First, disconnect the cancellation module, inject the injection signal to obtain the signal A, and then inject the same multi-tone signal to obtain the signal B after the cancellation module is connected, and obtain the B/A, and adjust the pass according to the signal condition in the polar coordinate system.
  • the amplitude adjustment device of the module performs amplitude adjustment; then, the phase adjustment device of the cancellation module performs phase adjustment.
  • the cancellation module can be normally turned off (ie, with the transmitting path). Or the receiving path is disconnected), open when needed.
  • the adjustment can be performed periodically or periodically. That is, the transceiver digital processing unit 1 is further configured to periodically pass the control signal to the cancellation module 7 when the cancellation module 7 is connected between the transmission path 2 and the receiving path 5. Adjustments are made to produce a cancellation signal.
  • the effect of interference cancellation can be adaptively detected, and further, the adjustment direction of the interference cancellation module can be determined by detecting the amplitude and phase characteristics of the received signal.
  • the interference cancellation method in the embodiment of the present invention is used in a transceiver, and the method includes the following steps:
  • the transceiver digital processing unit of the transceiver generates a transmit signal, and the transmit signal is output to a duplexer of the transceiver via a transmit path of the transceiver.
  • the transceiver digital processing unit generates an injection signal, and the injection signal is output to the duplexer via an injection path of the transceiver.
  • the injected signal frequency band includes a frequency band of the received signal, for example, the injected signal includes a multi-tone signal.
  • the transceiver digital processing unit receives a received signal from the duplexer through a receive path of the transceiver.
  • the signal includes transmission intermodulation interference coupled by the parallel cancellation module and the duplexer, also includes a normal received signal, and includes an injection signal coupled by the parallel cancellation module and the duplexer; Subsequent adjustments to the cancellation module cause the coupled transmit intermodulation interference and injected signals to approach zero.
  • the transceiver digital processing unit generates a control signal.
  • the method may include: when the cancellation module is connected between the transmitting path and the receiving path, generating the control signal according to a signal output by the receiving path, and adaptively according to a signal size output by the receiving path Adjusting the control signal.
  • the method may include: filtering a signal of the input cancellation module to obtain a signal in a transmission intermodulation interference frequency band; performing cancellation processing on the filtered signal according to the control of the control signal, obtaining a cancellation signal, so that the pair The cancellation signal and the transmission intermodulation interfere with the signal coupled to the receive path by the duplexer as an opposite signal.
  • a control signal including an amplitude modulation signal and a phase modulation signal may be generated, and amplitude and phase adjustments are respectively performed on the cancellation module.
  • the cancellation module includes an amplitude modulation phase modulator;
  • the amplitude modulation signal is used to adjust the amplitude of the amplitude modulation phase modulator when the phase adjustment of the amplitude modulation phase modulator is fixed, so that the polar coordinate vector of B/A is located at a center of (1, 0.) 1 is the circle of the radius;
  • the phase modulation signal is used to adjust the phase of the amplitude modulation phase modulator when the amplitude adjustment of the amplitude modulation phase modulator is fixed after performing the above adjustment on the amplitude of the amplitude modulation phase modulator, so that B/A
  • the polar coordinate vector approaches the polar coordinate origin;
  • hjt represents a transfer function of the receive path
  • jt represents a suppression function of the duplexer to transmit intermodulation
  • a cancellation module Transfer function represents a transfer function of the injection path after injecting the injection signal.
  • the above method may further include: continuously generating the multi-tone signal generation and outputting the same to the duplexer through an injection path of the transceiver;
  • the injected multi-tone signal When the injected multi-tone signal is accumulated and the signal strength is stronger than the received signal, generating a control signal according to the signal received by the transceiver digital processing unit through the receiving path; when the injected multi-tone signal is long Increasing the intensity of the generated multi-tone signal when the signal strength is still less than the received signal after time accumulation, and generating a control signal according to the signal received by the transceiver digital processing unit through the receiving path;
  • the multi-tone signal cannot be accumulated as a large signal due to the cancellation effect, that is, even if the multi-tone signal is continuously generated and Injecting it into the output end of the transceiver of the transceiver; but the signal strength of the injected multi-tone signal is still less than the received signal received by the transceiver after being accumulated for a long time; Describe the intensity of the multi-tone signal, and then automatically adjust the cancellation process according to the signal after the receiving path, so as to realize the interference of the intermodulation interference generated by the cancellation channel by the cancellation signal generated by the cancellation process Eliminate. This also increases the accuracy of the cancellation and achieves better cancellation.
  • FIG. 8 is a schematic diagram of another specific composition of the transceiver in the embodiment of the present invention.
  • the cancellation module includes: switching elements, filters, and amplitude modulation phase modulators.
  • the amplitude modulation phase modulator performs amplitude and phase adjustment based on signals from the transceiver digital processing unit, and the switching elements can also be controlled based on signals from the transceiver digital processing unit (control lines are not shown).
  • the signal injection module can include: a DAC, a frequency converter, and an amplifier.
  • the signal injection path transmits an injection signal, which is injected into the input end of the power amplifier in the transmission path, that is, an injection signal is injected at the output end of the transmission path, that is, the output end of the power amplifier port, for example, the injection signal can be periodically injected
  • the frequency band includes signals of a frequency band in which a signal is received, such as a multi-tone signal (which may be an OFDM signal or the like) and a random signal (described in the following description, taking a multi-tone signal as an example), and is collected at the output of the receiving path. Multi-tone signal after passing through the duplexer and receiving path.
  • the amplitude and phase characteristics of the cancellation module are adjusted to ensure that the amplitude and power of the multi-tone signal collected by the clamp are minimized.
  • the specific adjustment steps can be referred to Figure 9, which includes the following processes:
  • the cancellation channel is in a closed state, that is, the cancellation module is not connected between the transmission path and the reception path.
  • a multi-tone signal including a frequency band of the received signal by a transmitter in the digital processing unit of the transceiver, and accumulate for a long time. After the signal is accumulated for a period of time, the receiver of the digital processing unit of the transceiver obtains the gain and phase characteristics of the injected multi-tone signal in the entire path, and the signal is set to A. among them, ).
  • the multi-tone signal can be accumulated by the filling, that is, the same multi-tone signal is continuously injected, and the multi-tone signal is greatly enhanced due to the correlation of the multi-tone signal; Since the received signal received at different times does not have such a correlation, the received signal does not significantly increase the signal strength with such long accumulation; thus, the signal strength of the multi-tone signal can be made larger after being accumulated. Receiving the signal, and then repeating step 204 206, continuously adjusting the cancellation module to obtain a better cancellation effect.
  • the cancellation module Due to the existence of the cancellation module, after performing step 207, the same multi-tone signal that is continuously injected for a long time may not be accumulated, so when it is found that the multi-tone signal is accumulated for a long time and is still less than a certain value, then After the intensity of the injected multi-tone signal can be increased, the cancellation module is adjusted according to the above procedure to increase the accuracy of the interference cancellation.
  • the sensitivity of the system is generally degraded when the transmitting remote intermodulation hits the corresponding receiving band, so the cancellation channel can be turned off normally and turned on when needed.
  • the signal injection channel in the embodiment of the present invention may be provided by a multi-channel correction channel.
  • the receiver's multi-tone signal may also be directly transmitted by the transmitter.
  • a means for adaptively adjusting the cancellation module by the injection signal is added to the original transceiver, and the cancellation module is between the transmission path and the reception path, according to the received through the receiving path.
  • the signal is injected to automatically adjust the cancellation effect of the cancellation module. It not only achieves adaptive cancellation of transmit intermodulation signal interference, but also increases the size of the duplexer, and does not significantly increase the size and weight of the entire transceiver.
  • the machine can be read into a storage medium, and when executed, the program can include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例公开了一种收发信机和干扰对消方法,该收发信机包括收发信机数字处理单元、发射通路、接收通路、注入通路、双工器和对消模块,所述收发信机数字处理单元,用于产生发射信号、注入信号和控制信号,并获得接收信号;所述注入通路,用于将所述收发信机数字处理单元产生的注入信号输出到所述对消模块和所述双工器;所述对消模块,用于根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注入通路输出的信号进行对消处理后获得对消信号,并将所述对消信号输入到所述接收通路。采用本发明,可以通过对消模块自适应的实现干扰对消,在降低干扰的情况下实现基站设备的小型化。

Description

收发信机和干 4尤对消方法 本申请要求于 2012 年 7 月 25 日提交中国专利局、 申请号为 201210259674.4、 发明名称为"一种收发信机和干扰对消方法"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通讯领域, 尤其涉及一种收发信机和干扰对消方法。
背景技术
基站是无线网络设备中的基础设备。 基站设备一般包括基站控制单元、 接 收设备和发射设备三个部分, 接收设备和发射设备统称为收发信机。 如图 1所 示, 为现有的收发频率不同, 频分双工的收发信机的基本组成示意图。
其中, 发射设备一般包括发射机数字处理单元, 数模转换器(Digital to Analog Converter , DAC ), 变频器, 滤波器和功率放大器( Power Amplifier, PA )等单元。 接收设备一般包括接收机数字处理单元, 模数转换器(Analog to Digital Converter, ADC ), 变频器, 滤波器和低噪放大器( Low Noise Amplifier, LNA )等单元。
当发射信号为两个或两个以上的频率时, 由于发射系统存在着非线性, 输 出信号会出现其他的频率成分, 并且如果这个频率成分正好落在接收信号的频 率, 干扰就会直接叠加到信号上面, 现在一般会在双工器中通过发射滤波器和 接收滤波器对干扰进行抑制。 但是, 假如双工器的抑制度不够时, 就会对接收 机造成干扰, 如图 2所示。 在图 2的示意中, 发射信号 (图中示意图为发射通 路中的矩形信号) 由于发射通路的非线性问题产生了发射互调信号 (图中示意 图为发射信号两侧的三角形信号 ), 该发射互调信号通过双工器的耦合会传输到 接收通路上; 并且该发射互调型号落在了接收信号上(图中示意, 发射信号的 左侧具有接收信号, 用较低幅度的矩形信号表示接收信号, 在接收信号的位置 夹杂了三角形图形示意的发射互调信号)。 从这个示意图可以看出, 当发射互调 信号与接收信号叠加时, 需要双工器的发射滤波器对发射互调信号进行滤波, 进而实现对发射互调信号的抑制。
但是, 双工器的发射滤波器(如图 2中显示为双工器上方的 TX滤波器)的 抑制度会影响双工器的大小和重量, 从而影响到整个基站。
发明内容
本发明实施例所要解决的技术问题在于, 提供一种收发信机和干扰对消方 法。 可以通过对消通路, 即注入信号通路和对消模块组成的通路, 自适应的实 现干扰对消, 在降低干扰的情况下实现基站设备的小型化。
为此, 一方面, 本发明实施例提供了一种收发信机, 收发信机数字处理单 元、 发射通路、 接收通路、 注入通路、 双工器和对消模块,
所述收发信机数字处理单元, 用于产生发射信号、 注入信号和控制信号, 并获得接收信号, 所述控制信号根据所述接收信号调节所述对消模块的传输参 数,
所述发射通路, 用于将所述收发信机数字处理单元产生的发射信号输出到 所述双工器;
所述接收通路, 用于向所述收发信机数字处理单元输入来自所述双工器的 接收信号;
所述注入通路, 用于将所述收发信机数字处理单元产生的注入信号输出到 所述对消模块和所述双工器;
所述对消模块, 用于根据所述控制信号将所述发射通路输出到所述双工器 的信号和所述注入通路输出的信号进行对消处理后获得对消信号, 并将所述对 消信号输入到所述接收通路。
另一方面, 本发明实施例还提供了一种干扰对消方法, 用于收发信机中, 包括:
所述收发信机的收发信机数字处理单元产生发射信号, 所述发射信号经所 述收发信机的发射通路输出到所述收发信机的双工器;
所述收发信机数字处理单元产生注入信号, 所述注入信号经所述收发信机 的注入通路输出到所述双工器; 所述收发信机数字处理单元通过所述收发信机的接收通路接收来自所述双 工器的接收信号;
所述收发信机数字处理单元产生控制信号;
根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注入通 路输出的信号进行对消处理, 获得对消信号, 并将所述对消信号输入到所述接 收通路。
在本发明实施例中, 在原有的收发信机中增加了对消模块, 该对消模块处 于发射通路与接收通路之间, 根据通过接收通路接收到的注入信号来对对消模 块的对消效果进行自动调节。 既实现了发射互调信号干扰的自适应对消, 又不 会增加双工器的体积, 也不会显著的增加整个收发信机的体积和重量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有的收发信机的结构示意图;
图 2是现有的收发信机中发射互调干扰的产生示意图;
图 3是本发明一个实施例中的收发信机的结构示意图;
图 4a是本发明实施例中在进行幅相调节之前 B/A的极坐标向量与以 (1 , 0 。 )为圓心, 1为半径的圓的关系一个具体情况示意图;
图 4b是本发明实施例中在进行幅相调节之前 B/A的极坐标向量与以 (1 , 0 。 )为圓心, 1为半径的圓的关系另一个具体情况示意图;
图 5a是在图 4a的情况下, 将 B/A的极坐标向量调节到位于以 (1 , 0。 ) 为圓心, 以 1为半径的圓上的示意图;
图 5b是在图 4b的情况下, 将 B/A的极坐标向量调节到位于以 (1 , 0。 ) 为圓心, 以 1为半径的圓上的示意图;
图 6a是在图 6a的情况下, 将 B/A的极坐标向量调节到趋近于极坐标原点 的示意图; 图 6b是在图 6b的情况下, 将 B/A的极坐标向量调节到趋近于极坐标原点 的示意图;
图 7是本发明一个实施例中的干扰对消方法的流程示意图;
图 8是本发明另一实施例中的收发信机的结构示意图;
图 9是本发明另一实施例中的干扰对消方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在本发明的技术方案中, 通过对消模块来实现发射互调信号的干扰对消, 同时考虑到在实际的系统应用中, 双工器会随周围环境温度的变化而不断的变 化的。 因而, 在本发明方案中通过注入信号进行干扰抵消建模及系统的抵消效 果判断, 以便实现对消模块的自适应干扰对消。
如图 3所示, 则为本发明实施例中的收发信机的一个具体组成示意图。 其 包括收发信机数字处理单元 1、 发射通路 2、 接收通路 5、 注入通路 6、 双工器 3 和对消模块 7。 当然, 收发信机中还可包括与双工器 3连接的天线 4.
其中, 所述收发信机数字处理单元 1 , 用于产生发射信号、 注入信号和控 制信号, 并获得接收信号, 所述控制信号根据所述接收信号调节所述对消模块 7 的传输参数。 该注入信号的频段包括所述接收信号的频段, 该注入信号具体可 以是多音信号或随机信号。
所述发射通路 2, 用于将所述收发信机数字处理单元 1产生的发射信号输出 到所述双工器 3。
所述接收通路 5, 用于向所述收发信机数字处理单元 1输入来自所述双工器 3的接收信号。
所述注入通路 6, 用于将所述收发信机数字处理单元 1产生的注入信号输出 到所述对消模块 7和所述双工器 3。
所述对消模块 7, 用于根据所述控制信号将所述发射通路 2输出到所述双工 器 3的信号和所述注入通路 6输出的信号进行对消处理后获得对消信号, 并将 所述对消信号输入到所述接收通路 5。
当然, 上述调节是在收发信机正常工作时进行的, 因此, 在输入到双工器 3 和对消模块 7的信号中还包括发射互调干扰, 后续不再一一描述。
其中, 对消模块 7包括滤波器和调幅调相器, 所述滤波器用于对输入对消 模块 7的信号进行滤波, 获得发射互调干扰频段内的信号; 所述调幅调相器用 于根据所述控制信号的控制对所述滤波器滤波后的信号进行对消处理, 获得对 消信号 , 使得所述对消信号与所述发射互调干扰通过双工器 3耦合到所述接收 通路 5的信号相位相同但幅度相反。
进一步的, 所述收发信机还可包括开关子模块, 该开关子模块, 用于根据 所述收发信机数字处理单元 1的控制将所述对消模块 7接入所述发射通路 2和 接收通路 5之间, 或从所述发射通路 2和接收通路 5之间断开。 该开关子模块 可以是位于对消模块 7与发射通路 2连接侧的开关, 也可以是位于对消模块 7 与接收通路 5连接侧的开关。 本发明实施例中的对消模块 7可以是模拟对消模 块, 也可以是数字对消模块。
在本实施例中, 虽然对消模块 6中具有滤波器, 即在收发信机中增加了滤 波器, 但是这种滤波器不需要像双工器 3中的发射滤波器那样在对干扰信号进 行抑制的同时还要保证不要损耗发射信号, 因此对消模块 7中滤波器可以釆用 较为简单的滤波器组合而成, 只要可以过滤获得一定频段内信号就可以, 不需 要考虑对其他频段信号是否保留的影响; 总的来说, 增加这样的滤波器并会显 著的增加收发信机的重量和规模。
进一步的, 收发信机数字处理单元 1还可包括控制信号产生模块, 用于在 接通所述对消模块 7后, 根据所述接收通路 5输出的信号产生所述控制信号, 并根据所述接收通路 5输出的信号大小自适应的调节所述控制信号。
其中, 在对对消模块 7进行自适应调节时, 可对对消模块 7中包括的调幅 调相器进行自适应调节, 以实现对对消模块 7输出的对消信号的自适应调节。 该调幅调相器可用于根据所述控制信号的控制对输入所述对消模块 7的信号进 行对消处理, 获得对消信号。 进一步的, 所述控制信号产生模块用于产生调幅 信号和调相信号。 因此, 所述控制信号包括调幅信号和调相信号, 从而, 在具 体调节时, 可对输出的对消信号的幅度和相位分别进行调节。 所述调幅信号用于在所述调幅调相器的相位调节固定时对所述调幅调相器 的幅度进行调节, 使得 B/A的极坐标向量位于以 (1 , 0。 )为圓心且半径为 1 的圓上;
所述调相信号用于在对所述调幅调相器的幅度进行上述调节后, 在所述调 幅调相器的幅度调节固定时对所述调幅调相器的相位进行调节, 使得 B/A的极 坐标向量趋近于极坐标原点;
其中,
Figure imgf000007_0001
B = K_m]ect (t) * (t) * (hdup (t) + hcanceller (t))
其中, 表示在注入所述注入信号后所述注入通路 2的传递函数 h^t) 表示所述接收通路 5的传递函数; jt)表示所述双工器 3对发射互调的抑制函 数; „^(0表示所述对消模块 7的传递函数。
在此描述通过上述调节可以实现根据双工器 3的温度变化等原因造成双工 器 3的发射滤波器传递函数变化后, 可以自适应的对对消模块 7进行调节, 实 现较好的对发射互调干扰的对消。 通过 A、 B的计算公式可以理解, A/B具有以 下结果:
B = K njec ) * K (0 * (hdup( + anaelleX ) = uP ( + U 务 、U = Q,则表明通过对消模块 7 (传递函数)耦合到接收通路 5上的信号, 和发射互调信号通过双工器 3耦合到接收通路 5上的信号为相反的 信号。 这样, 对于发射互调信号, 通过双工器 3耦合到接收通路 5后可以被通 过对消模块 7耦合到接收通路 5的信号所抵消掉, 即可实现较好的干扰抑制。
具体的, 在收发信机数字处理单元 1产生的控制信号调节对消模块 7时, 可以先调节幅度, 使得 1| = 0 , 即是使得 B/A的极坐标向量位于以(1, 0。 ) 为圓心, 以 1为半径的圓上, 如图 4a和 4b, 表示调节之前 B/A在极坐标中的位 置, 图 5a和 5b所示, 则经过幅度调节之后, B/A在极坐标中的位置。
接下来, 则固定幅度, 进一步调节相位, 使得 S/ -1指向极坐标的原点, 则 此时 B/A=0, 即 B=0。 如图 6a和 6b所示。 其中, 图 4〜图 6中 ab两种情况分别 代表, 幅度由小到大或由大到小的调节情况; 图 5和图 6中的虚线表示调节的 方向。
根据上述原理进行对消模块的自适应调节时, 则可以通过对消模块的开关 子模块协助调节。 先断开对消模块, 注入注入信号获得信号 A, 再在对消模块 接入后注入同样的多音信号获得信号 B, 得到 B/A, 根据其在极坐标系中的信号 情况调节通过消模块的幅度调节装置进行幅度调节; 然后, 再通过对消模块的 相位调节装置进行相位调节。
当然, 在不同具体情况中, 如在多载波系统中, 一般当发射远端互调击中 相应的接收频段时才会恶化系统的灵敏度, 所以对消模块平时可处于关闭状态 (即与发射通路或接收通路断开), 在需要的时候打开。
进一步的, 在对对消模块 7进行自适应调节时, 可以定时或者是周期性的 进行调节。 即所述收发信机数字处理单元 1还用于在所述对消模块 7接入所述 发射通路 2和接收通路 5之间时, 周期性的通过所述控制信号对所述对消模块 7 进行调节产生对消信号。
通过上述描述可知, 在本发明实施例中, 可以自适应检测干扰对消的效果, 更进一步的可以通过检测接收到的信号的幅度和相位特性判断干扰对消模块的 调节方向。
如图 7所示, 为本发明实施例中的干扰对消方法, 用于收发信机中, 该方 法包括如下步骤:
101、 所述收发信机的收发信机数字处理单元产生发射信号, 所述发射信号 经所述收发信机的发射通路输出到所述收发信机的双工器。
102、 所述收发信机数字处理单元产生注入信号, 所述注入信号经所述收发 信机的注入通路输出到所述双工器。 所述注入信号频段包括接收信号的频段, 如, 该注入信号包括多音信号。
103、 所述收发信机数字处理单元通过所述收发信机的接收通路接收来自所 述双工器的接收信号。 应当理解, 该信号包括通过并列的对消模块和双工器耦 合的发射互调干扰、 也包括正常的接收信号、 还包括通过并列的对消模块和双 工器耦合的注入信号; 当然, 通过后续对对消模块的调节, 使得耦合的发射互 调干扰和注入信号都趋近于零。
104、 所述收发信机数字处理单元产生控制信号。 具体可包括: 当所述对消 模块接入所述发射通路和接收通路之间时, 根据所述接收通路输出的信号产生 所述控制信号, 并根据所述接收通路输出的信号大小自适应的调节所述控制信 号。 105、 根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注 入通路输出的信号进行对消处理, 获得对消信号, 并将所述对消信号输入到所 述接收通路。 具体可以包括: 对输入对消模块的信号进行滤波, 获得发射互调 干扰频段内的信号; 根据所述控制信号的控制对滤波后的信号进行对消处理, 获得对消信号, 使得所述对消信号与所述发射互调干扰通过所述双工器耦合到 所述接收通路的信号为相反的信号。
其中, 在步骤 104中可以产生包括调幅信号和调相信号在内的控制信号, 分别对对消模块进行幅相调节。 所述对消模块包括调幅调相器;
所述调幅信号用于在所述调幅调相器的相位调节固定时对所述调幅调相器 的幅度进行调节, 使得 B/A的极坐标向量位于以 (1 , 0。 )为圓心, 以 1为半 径的圓上;
所述调相信号用于在对所述调幅调相器的幅度进行上述调节后, 在所述调 幅调相器的幅度调节固定时对所述调幅调相器的相位进行调节, 使得 B/A的极 坐标向量趋近于极坐标原点;
其中,
Figure imgf000009_0001
B = K_m]ect (t) * (t) * (hdup (t) + hcanceller (t))
其中, 表示在注入所述注入信号后所述注入通路的传递函数; hjt 表示所述接收通路的传递函数; jt)表示所述双工器对发射互调的抑制函数; 表示所述对消模块的传递函数。
同时为了获得更好的效果, 上述方法还可以包括: 持续产生所述多音信号 产生并将其经所述收发信机的注入通路输出到所述双工器;
当所述注入的多音信号累加后信号强度强于所述接收信号时, 根据所述收 发信机数字处理单元通过所述接收通路接收的信号产生控制信号; 当所述注入 的多音信号长时间累加后信号强度仍小于所述接收信号时, 提高产生的所述多 音信号的强度, 再根据所述收发信机数字处理单元通过所述接收通路接收的信 号产生控制信号;
根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注入通 路输出的信号进行对消处理, 获得对消信号。
即在上述过程中, 若正常产生对消信号, 且双工器正常工作时, 由于对消 的作用, 多音信号无法累加为大信号, 即, 即使持续产生所述多音信号产生并 将其注入到所述收发信机的发射通路输出端; 但是所述注入的多音信号长时间 累加后信号强度仍小于所述收发信机接收的接收信号; 则此时, 可以提高产生 的所述多音信号的强度, 再根据经过所述接收通路后的信号自动调节所述对消 处理过程, 以便通过对消处理产生的对消信号实现对所述发射通路产生的发射 互调干扰的对消。 这样也可以增加对消的精度, 获得更好的对消效果。
以下结合具体实施例, 进一步描述本发明中的干扰对消过程。 如图 8所示, 为本发明实施例中的收发信机的另一具体组成示意图。 在本例中, 对消模块包 括: 开关元件、 滤波器和调幅调相器。 调幅调相器根据来自收发信机数字处理 单元的信号进行幅相调节, 开关元件也可以根据来自收发信机数字处理单元的 信号进行控制 (图中未示控制线路)。 信号注入模块则可包括: DAC、 变频器和 放大器。
信号注入通路传输注入信号, 将该信号注入到发射通路中的功放器的输入 端, 即在发射通路的输出端, 即功放口输出端注入注入信号, 如该注入信号可 为周期性注入的其频段包括接收信号的频段的信号, 如多音信号 (具体可以是 OFDM信号等)和随机信号等(在以下描述中以多音信号为例, 进行描述), 并 在接收通路的输出端釆集经过双工器及接收通路后的多音信号。 对对消模块的 幅相特性进行调节, 最终保证釆集到的多音信号幅度和功率最小。 具体调节步 骤可参考图 9, 其包括如下流程:
201、 系统开始运行时, 对消通道处于关闭状态, 即对消模块未接入发射通 路和接收通路之间。
202、 通过收发信机数字处理单元中的发射机灌入一个包括接收信号频段的 多音信号, 并长时间累加。 信号经过一段时间的相关累加后, 在收发信机数字 处理单元的接收机得到灌入的多音信号在整个通路中的增益及相位特性, 设该 信号为 A。 其中,
Figure imgf000010_0001
)。
203、 打开对消通道(即将对消模块接入发射通路的输出端, 接收通路的输 入端), 随意设置其中的幅度和相位值, 同样求出灌入多音信号的经过整个通路 的增益和相位特性, 设为 Β, 其中 S = (0* (0 WW + ^^)) )。 A、 B 的计算式中各符号代表参考前述实施例。
204、 将 B的值与 A相除, 得到 B/A的幅度和相位两部分。 如前述的图 4a 和图 4b所示。 205、 固定对消通道的相位调节, 调整对消通道幅度调节, 使最终获得 B满 足如下的关系: B/A位于以 (1 , 0° ) 为圓心, 以 1为半径的边上, 如图 5a和 图 5b所示, 这样保证了对消通道的幅度响应 (衰减)和双工器的幅度相应一致
(衰减)。
206、 固定对消通道幅度调节, 调整对消通道相位调节, 使最终获得的 B满 足如下关系: B/A趋近于极坐标的原点, 如图 6a和 6b所示, 这样保证了对消通 道的相位响应和双工器的相位响应相反; 即, 使得对消通道输出的信号和双工 器从发射通路耦合到接收通路的信号为相反的信号
207、 为提高整个通路的对消能力, 可以通过灌入的多音信号累加, 即持续 的注入相同的多音信号, 由于多音信号的相关性, 使得多音信号得到较大的增 强; 而由于不同时间接收的接收信号并无这种相关性, 使得接收信号不会随着 这种长时间的累加而显著的增大信号强度; 这样, 就可以使多音信号的信号强 度经过累加后大于接收信号, 然后再重复执行步骤 204 206, 不断调整对消模 块, 获得更好的对消效果。
208、 由于对消模块的存在, 在执行步骤 207后, 当长时间持续的注入的相 同的多音信号时也可能无法累加起来, 因而当发现多音信号长时间累加仍小于 一定值时, 则可以提高注入的多音信号的强度后, 再按上述流程对对消模块进 行调整, 以便增加干扰对消的精度。
在多载波系统中, 一般当发射远端互调击中相应的接收频段时才会恶化系 统的灵敏度, 所以对消通道平时可处于关闭状态, 在需要的时候打开。 本发明 实施例中的信号注入通道可以由多通道校正通道提供, 在发射机带宽足够宽的 情况下, 也可以由发射机直接发射接收机的多音信号。 当对消通道失效, 发现 灌入多音信号没有产生对消效果, 关闭对消模块。
在本发明实施例中, 在原有的收发信机中增加了通过注入信号对对消模块 进行自适应调节的手段, 该对消模块处于发射通路与接收通路之间, 根据通过 接收通路接收到的注入信号来对对消模块的对消效果进行自动调节。 既实现了 发射互调信号干扰的自适应对消, 又不会增加双工器的体积, 也不会显著的增 加整个收发信机的体积和重量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权利要求书
1、 一种收发信机, 其特征在于, 包括: 收发信机数字处理单元、 发射通路、 接收通路、 注入通路、 双工器和对消模块,
所述收发信机数字处理单元, 用于产生发射信号、 注入信号和控制信号, 并获得接收信号, 所述控制信号根据所述接收信号调节所述对消模块的传输参 数;
所述发射通路, 用于将所述收发信机数字处理单元产生的发射信号输出到 所述双工器;
所述接收通路, 用于向所述收发信机数字处理单元输入来自所述双工器的 接收信号;
所述注入通路, 用于将所述收发信机数字处理单元产生的注入信号输出到 所述对消模块和所述双工器;
所述对消模块, 用于根据所述控制信号将所述发射通路输出到所述双工器 的信号和所述注入通路输出的信号进行对消处理后获得对消信号, 并将所述对 消信号输入到所述接收通路。
2、 如权利要求 1所述的收发信机, 其特征在于, 所述收发信机数字处理单 元产生的所述注入信号的频段包括所述接收信号的频段。
3、 如权利要求 2所述的收发信机, 其特征在于, 所述对消模块包括滤波器 和调幅调相器,
所述滤波器用于对输入对消模块的信号进行滤波, 获得发射互调干扰频段 内的信号;
所述调幅调相器用于根据所述控制信号的控制对所述滤波器滤波后的信号 进行对消处理, 获得对消信号, 使得所述对消信号与所述发射互调干扰通过所 述双工器耦合到所述接收通路的信号为相反的信号。
4、 如权利要求 3所述的收发信机, 其特征在于, 所述对消模块包括开关子 模块, 用于根据所述收发信机数字处理单元的控制将所述对消模块接入所述发 射通路和接收通路之间, 或从所述发射通路和接收通路之间断开。
5、 如权利要求 4所述的收发信机, 其特征在于, 所述收发信机数字处理单 元包括控制信号产生模块, 用于所述对消模块接入所述发射通路和接收通路之 间时, 根据所述接收通路输出信号产生所述控制信号, 并根据所述接收通路输 出的信号大小自适应的调节所述控制信号。
6、 如权利要求 5所述的收发信机, 其特征在于, 所述控制信号包括调幅信 号和调相信号, 所述控制信号产生模块用于产生调幅信号和调相信号,
所述调幅信号用于在所述调幅调相器的相位调节固定时对所述调幅调相器 的幅度进行调节, 使得 B/A的极坐标向量位于以 (1 , 0。 )为圓心, 以 1为半 径的圓上;
所述调相信号用于在对所述调幅调相器的幅度进行上述调节后, 在所述调 幅调相器的幅度调节固定时对所述调幅调相器的相位进行调节, 使得 B/A的极 坐标向量趋近于极坐标原点;
其中,
Figure imgf000014_0001
B = K_m]ect (t) * (t) * (hdup (t) + hcanceller (t))
其中, 表示在注入所述注入信号后所述注入通路的传递函数; hjt 表示所述接收通路的传递函数; jt)表示所述双工器对发射互调的抑制函数; 表示所述对消模块的传递函数。
7、 如权利要求 6所述的收发信机, 其特征在于, 所述收发信机数字处理单 元还用于在所述对消模块接入所述发射通路和接收通路之间时, 周期性的通过 所述控制信号对所述对消模块进行调节产生对消信号。
8、 如权利要求 1至 7中任一项所述的收发信机, 其特征在于, 所述注入信 号包括多音信号或随机信号。
9、 一种干扰对消方法, 用于收发信机中, 其特征在于, 所述方法包括: 所述收发信机的收发信机数字处理单元产生发射信号, 所述发射信号经所 述收发信机的发射通路输出到所述收发信机的双工器;
所述收发信机数字处理单元产生注入信号, 所述注入信号经所述收发信机 的注入通路输出到所述双工器;
所述收发信机数字处理单元通过所述收发信机的接收通路接收来自所述双 工器的接收信号;
所述收发信机数字处理单元产生控制信号;
根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注入通 路输出的信号进行对消处理, 获得对消信号, 并将所述对消信号输入到所述接 收通路。
10、 如权利要求 9所述的方法, 其特征在于, 所述根据所述控制信号将所 述发射通路输出到所述双工器的信号和所述注入通路输出的信号进行对消处 理, 获得对消信号包括:
对输入对消模块的信号进行滤波, 获得发射互调干扰频段内的信号; 根据所述控制信号的控制对滤波后的信号进行对消处理, 获得对消信号, 使得所述对消信号与所述发射互调干扰通过所述双工器耦合到所述接收通路的 信号为相反的信号。
11、 如权利要求 10所述的方法, 其特征在于, 所述收发信机数字处理单元 产生控制信号包括:
当所述对消模块接入所述发射通路和接收通路之间时, 根据所述接收通路 输出的信号产生所述控制信号, 并根据所述接收通路输出的信号大小自适应的 调节所述控制信号。
12、 如权利要求 11所述的方法, 其特征在于, 所述控制信号包括调幅信号 和调相信号, 所述对消模块包括调幅调相器;
所述调幅信号用于在所述调幅调相器的相位调节固定时对所述调幅调相器 的幅度进行调节, 使得 B/A的极坐标向量位于以 (1 , 0。 )为圓心, 以 1为半 径的圓上;
所述调相信号用于在对所述调幅调相器的幅度进行上述调节后, 在所述调 幅调相器的幅度调节固定时对所述调幅调相器的相位进行调节, 使得 B/A的极 坐标向量趋近于极坐标原点;
其中,
Figure imgf000015_0001
B = K_m]ect (t) * (t) * (hdup (t) + hcanceller (t))
其中, 表示在注入所述注入信号后所述注入通路的传递函数; hjt 表示所述接收通路的传递函数; jt)表示所述双工器对发射互调的抑制函数; 表示所述对消模块的传递函数。
13、 如权利要求 9至 12中任一项所述的方法, 其特征在于, 所述注入信号 为多音信号, 所述方法还包括:
持续产生所述多音信号产生并将其经所述收发信机的注入通路输出到所述 双工器;
当所述注入的多音信号累加后信号强度强于所述接收信号时, 根据所述收 发信机数字处理单元通过所述接收通路接收的信号产生控制信号; 当所述注入 的多音信号长时间累加后信号强度仍小于所述接收信号时, 提高产生的所述多 音信号的强度, 再根据所述收发信机数字处理单元通过所述接收通路接收的信 号产生控制信号;
根据所述控制信号将所述发射通路输出到所述双工器的信号和所述注入通 路输出的信号进行对消处理, 获得对消信号。
PCT/CN2013/076652 2012-07-25 2013-06-03 收发信机和干扰对消方法 WO2014015711A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13823477.8A EP2874319B1 (en) 2012-07-25 2013-06-03 Transceiver and interference cancellation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210259674.4 2012-07-25
CN201210259674.4A CN102811069B (zh) 2012-07-25 2012-07-25 一种收发信机和干扰对消方法

Publications (1)

Publication Number Publication Date
WO2014015711A1 true WO2014015711A1 (zh) 2014-01-30

Family

ID=47234666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076652 WO2014015711A1 (zh) 2012-07-25 2013-06-03 收发信机和干扰对消方法

Country Status (3)

Country Link
EP (1) EP2874319B1 (zh)
CN (1) CN102811069B (zh)
WO (1) WO2014015711A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811069B (zh) * 2012-07-25 2014-10-08 华为技术有限公司 一种收发信机和干扰对消方法
CN103458424B (zh) * 2013-07-22 2016-04-27 北京邮电大学 基于功率检测及环路延迟计算的自干扰消除方法
EP3076558B1 (en) * 2013-12-17 2019-05-08 Huawei Technologies Co., Ltd. Method and device for reducing intermodulation interference
WO2015100665A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 降低干扰的方法、基带处理单元及基站
CN104811213B (zh) * 2014-01-28 2018-03-09 华为技术有限公司 自干扰信号消除设备及方法
US20160380668A1 (en) * 2015-06-26 2016-12-29 Fujitsu Limited Communication device and receiving method
CN105119629B (zh) * 2015-07-10 2018-04-06 惠州Tcl移动通信有限公司 同时同频全双工终端和系统
CN105099495B (zh) * 2015-08-06 2018-05-08 惠州Tcl移动通信有限公司 一种收发共用天线的同时同频全双工终端及其通信方法
CN109104214B (zh) * 2018-07-25 2020-07-28 维沃移动通信有限公司 一种信号处理装置、电子设备及信号处理的方法
WO2020051798A1 (zh) * 2018-09-12 2020-03-19 华为技术有限公司 辐射杂散信号的对消方法和装置
CN209001952U (zh) * 2018-09-27 2019-06-18 香港梵行科技有限公司 一种自适应抵消无源互调信号的装置
CN117459957A (zh) * 2022-07-18 2024-01-26 中兴通讯股份有限公司 基站下行干扰检测方法、电路、控制单元及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114840A (zh) * 2007-08-30 2008-01-30 中兴通讯股份有限公司 一种提高移动终端收发隔离度的方法及装置
US7756480B2 (en) * 2007-02-16 2010-07-13 Samsung Electronics Co., Ltd. System and method for transmitter leak-over cancellation
JP2011082854A (ja) * 2009-10-08 2011-04-21 Sharp Corp 無線中継装置
CN102571655A (zh) * 2012-01-21 2012-07-11 华为技术有限公司 一种干扰对消的方法、装置和一种滤波器
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672447B1 (en) * 2000-06-01 2010-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency domain echo canceller
US7058368B2 (en) * 2002-06-27 2006-06-06 Nortel Networks Limited Adaptive feedforward noise cancellation circuit
EP1687929B1 (en) * 2003-11-17 2010-11-10 Quellan, Inc. Method and system for antenna interference cancellation
CN101076951B (zh) * 2004-11-15 2016-01-20 高通股份有限公司 用于抑制发射泄漏信号的自适应滤波器、无线装置、设备及方法
CN100488306C (zh) * 2006-03-01 2009-05-13 中兴通讯股份有限公司 一种抑制无线系统间干扰的装置和方法
CN101420246B (zh) * 2008-11-21 2013-09-11 华为技术有限公司 一种收发信机抵消发射干扰的方法、设备及收发信机
CN101795251B (zh) * 2010-01-20 2012-11-21 华为技术有限公司 一种反馈信号生成装置及方法
US8320868B2 (en) * 2010-02-11 2012-11-27 Mediatek Singapore Pte. Ltd. Integrated circuits, communication units and methods of cancellation of intermodulation distortion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756480B2 (en) * 2007-02-16 2010-07-13 Samsung Electronics Co., Ltd. System and method for transmitter leak-over cancellation
CN101114840A (zh) * 2007-08-30 2008-01-30 中兴通讯股份有限公司 一种提高移动终端收发隔离度的方法及装置
JP2011082854A (ja) * 2009-10-08 2011-04-21 Sharp Corp 無線中継装置
CN102571655A (zh) * 2012-01-21 2012-07-11 华为技术有限公司 一种干扰对消的方法、装置和一种滤波器
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法

Also Published As

Publication number Publication date
EP2874319B1 (en) 2018-05-09
EP2874319A1 (en) 2015-05-20
EP2874319A4 (en) 2015-07-29
CN102811069B (zh) 2014-10-08
CN102811069A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2014015711A1 (zh) 收发信机和干扰对消方法
KR102081620B1 (ko) 트랜시버 및 트랜시버의 자체-간섭을 감소시키기 위한 방법
Anttila et al. Modeling and efficient cancellation of nonlinear self-interference in MIMO full-duplex transceivers
EP3210307B1 (en) Full duplex radio with tx leakage cancellation
US10511345B2 (en) Downstream interference suppression in full-duplex communications
JP6490837B2 (ja) 信号分離制御装置及びハイブリッド結合部の制御方法
US20150055568A1 (en) Self-Interference Cancellation
CN111865353A (zh) 降低接收机退敏性的rf前端
WO2013008117A1 (en) Electronic duplexer
WO2018004968A1 (en) Methods and transceivers for reducing a distortion component within a baseband receive signal
Gheidi et al. Digital cancellation technique to mitigate receiver desensitization in cellular handsets operating in carrier aggregation mode with multiple uplinks and multiple downlinks
WO2013078680A1 (zh) 消除邻道干扰的方法、调制解调器及系统
Sakai et al. Adaptive cancellation of self-interference in full-duplex wireless with transmitter IQ imbalance
Kiayani et al. Active RF cancellation of nonlinear TX leakage in FDD transceivers
WO2013176590A1 (en) Method, base station and apparatus in a base station for reducing intermodulation distortion
JP6011251B2 (ja) 無線通信装置及び無線通信方法
Kiayani et al. DSP-based suppression of spurious emissions at RX band in carrier aggregation FDD transceivers
Huo et al. Adjacent channel interference suppression to enhance spectrum sharing for co-located devices
TWI577141B (zh) 接收機之準確減敏估計
JP6033667B2 (ja) アンテナ特性チューニングシステム
US8761304B2 (en) Apparatus and method for processing digital transmission/reception signals to correct in-band gain flatness
Korpi et al. Asymmetric full-duplex with contiguous downlink carrier aggregation
Syrjala et al. Is sampling jitter a problem in full-duplex radio transceivers or not?
CN112398507B (zh) 一种噪声信号处理装置和处理方法
WO2016062576A2 (en) Full duplex radio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013823477

Country of ref document: EP