Nothing Special   »   [go: up one dir, main page]

WO2014097860A1 - Cu-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING SAME - Google Patents

Cu-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING SAME Download PDF

Info

Publication number
WO2014097860A1
WO2014097860A1 PCT/JP2013/082186 JP2013082186W WO2014097860A1 WO 2014097860 A1 WO2014097860 A1 WO 2014097860A1 JP 2013082186 W JP2013082186 W JP 2013082186W WO 2014097860 A1 WO2014097860 A1 WO 2014097860A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
group
recording medium
alloy
thermal conductivity
Prior art date
Application number
PCT/JP2013/082186
Other languages
French (fr)
Japanese (ja)
Inventor
慶明 松原
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2014097860A1 publication Critical patent/WO2014097860A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a Cu-based alloy and a sputtering target material used for a heat sink layer in a heat-assisted magnetic recording medium, and a perpendicular magnetic recording medium using the same.
  • the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. . Further, a method of assisting recording by applying heat by applying a perpendicular magnetic recording method has been studied.
  • the heat-assisted recording method is a recording method that combines magnetic recording technology and optical recording technology.
  • the recording magnetic part is held by the heat of laser light irradiation on a high holding force medium that cannot be recorded by ordinary magnetic recording. After recording with the force lowered locally, it is cooled to room temperature and stored with a larger holding force.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-210426
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-150783
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-210426
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-150783
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-210426
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-150783
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-150783
  • These documents include a heat sink layer containing Cu, Ag, Au, W, Si, or Mo as a thermal diffusion control film (Patent Document 1) and a heat sink layer containing Nb, Bi, or Cu using Ag as a parent phase (Patent Document). 2) is disclosed.
  • the use of these materials has the following problems. That is, when Cu, Ag, or Au is used as the parent phase, the thermal conductivity is sufficiently high, but the hardness of the thin film is low. On the other hand, when W, Si, or Mo is used as the parent phase, the thin film has high hardness but low thermal conductivity.
  • the heat sink film is a relatively thick film in the film structure of the magnetic recording medium, and the hardness of the heat sink film determines the hardness of the entire film structure. For this reason, the heat sink layer needs to have high hardness in order to ensure the impact resistance of the media.
  • the present inventors have recently increased the strength while maintaining the heat conductivity of the heat sink layer.
  • the Cu-type alloy which can be raised was discovered.
  • an object of the present invention is to provide a Cu-based magnetic recording alloy having both high thermal conductivity and high hardness, and thereby it is possible to provide a sputtering target suitable for manufacturing a heat-assisted magnetic recording medium (especially a heat sink layer). It is to do.
  • a heat-assisted magnetic recording medium especially a heat sink layer.
  • At% (A) 1 to 23.4% of one or more selected from the group consisting of Cr, Mo and W, (B) 0 to 5% of one or more selected from the group consisting of Al, Si, Zn, Mn and Ni, (C) 1 to 2% of one or more selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy
  • a Cu-based magnetic recording alloy that contains the remainder Cu and inevitable impurities.
  • a sputtering target material comprising an alloy according to the above aspect of the present invention.
  • a perpendicular magnetic recording medium including a heat sink layer made of an alloy according to the above aspect of the present invention.
  • the Cu-based magnetic recording alloy of the present invention is at%, (A) 1 to 23.4% of one or more selected from the group consisting of Cr, Mo and W, and (B) Al, Si. , Zn, Mn, and Ni selected from the group consisting of 0 to 5%, or selected from the group consisting of (C) Y, La, Ce, Nb, Sm, Gd, Tb, and Dy 1 type or 2 types or more containing 0 to 1%, consisting of remaining Cu and inevitable impurities (comprising), typically 1 type or 2 types or more selected from the group (A) 23.4%, one or more selected from the group (B) is 0 to 5%, one or more selected from the group (C) is 0 to 1%, the remaining Cu and It consists essentially of inevitable impurities (consisting essentially of) or consists only of (consisting of).
  • the alloy of the present invention contains, as an optional component, 1 to 23.4%, preferably 5 to 23.%, of one or more selected from the group consisting of Cr, Mo and W (hereinafter referred to as group A element). It contains 4%, more preferably 5 to 17.5%.
  • group A element Cr, Mo and W
  • the Group 6 elements Cr, Mo and W are hardly dissolved in Cu and do not produce a compound. Therefore, in the thin film, pure Cr, pure Mo and / or pure are finely contained in the pure Cu matrix. A structure in which W is deposited is obtained.
  • the addition amount is less than 1%, the effect of improving the hardness is not observed.
  • the addition amount exceeds 23.4% the volume of the precipitated phase is large and the thermal conductivity is greatly reduced.
  • the content is preferably 5 to 23.4%.
  • the alloy of the present invention may contain, as an optional component, less than 5% of one or more selected from the group consisting of Al, Si, Zn, Mn and Ni (hereinafter referred to as B group element),
  • B group element one or more selected from the group consisting of Al, Si, Zn, Mn and Ni
  • the content is preferably 0.2 to 5%, more preferably 0.2 to 3.5%, and still more preferably 0.2 to 3.0%.
  • the group B element dissolves in Cu and increases the hardness of the Cu matrix, while the rate of decrease in thermal conductivity is greater than that of the Cr, Mo, and W elements described above. Therefore, the preferable addition amount is set in the range of 0.2 to 5%. When the addition amount exceeds 5%, the thermal conductivity is greatly lowered, and the characteristics required for the heat sink layer cannot be obtained. Therefore, an addition amount of 3.5% or less is preferable as a range in which the balance between hardness and thermal conductivity is good.
  • the alloy of the present invention contains, as an optional component, less than 1% of one or more selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy (hereinafter referred to as C group element) It may be contained in an amount of preferably 0.1 to 1%, more preferably 0.1 to 0.5%.
  • the group C element is an element that does not dissolve in Cu but forms a compound with Cu, and when added, has an effect of refining the structure, thereby improving the hardness of the film.
  • the conductivity decreases. Therefore, the preferable addition amount is set in the range of 0.1 to 1%. When the addition amount exceeds 1%, the thermal conductivity is greatly reduced, and the characteristics required for the heat sink layer cannot be obtained.
  • a seed layer in a perpendicular magnetic recording medium is obtained by sputtering a sputtering target material having the same component as that of the seed layer and forming a film on a glass substrate or the like.
  • the thin film formed by sputtering is rapidly cooled.
  • a quenched ribbon manufactured by a single roll type quenching apparatus is used as a test material in the present invention. This is a simple evaluation of the effects of various properties due to the components of the ribbon actually formed by sputtering using the liquid quenching ribbon.
  • Preparation conditions of quenching ribbons 20 g of raw materials weighed for each component shown in Tables 1 and 2 were depressurized with a water-cooled copper mold having a diameter of about 40 mm and arc-melted in Ar to form a quenching ribbon melting base material. .
  • This molten base material is set in a quartz tube with a diameter of 15 mm by a single roll method, the inner diameter of the tap nozzle is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, and the rotational speed of the copper roll (diameter 300 mm) is set.
  • the hot water was discharged at 3000 rpm and the gap between the copper roll and the hot water nozzle at 0.3 mm.
  • the hot water temperature was the temperature immediately after each molten base material was melted.
  • the quenched ribbon thus produced was used as a test material and evaluated according to the following items.
  • Thermal conductivity of quenched ribbon The thermal conductivity was evaluated by calculating the specific resistance obtained by measuring the quenched ribbon by the four-terminal method. About thermal conductivity, comparative example No. shown in Table 1 is shown. When the value of 1 pure Cu is 1, the evaluation is less than 0.5 as x, 0.5 to less than 0.6 as ⁇ , 0.6 to less than 0.8 as ⁇ , and 0.8 or more as ⁇ . did. These results are shown in Tables 1 and 2.
  • Comparative Example No. No. 26 is inferior in thermal conductivity due to the high content of Al of the (B) group element.
  • Comparative Example No. No. 68 is inferior in thermal conductivity because of the high Y content of the (C) group element. Since comparative example No69 has higher content of Y of (C) group element, thermal conductivity is bad. Since comparative example No70 has high content of Nd of (C) group element, thermal conductivity is bad.
  • a Cu-based magnetic recording alloy and a sputtering target material that have both particularly high thermal conductivity and high strength, improve the hardness of the heat sink layer, and are excellent in impact resistance.
  • a perpendicular magnetic recording medium using the same can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

Provided is a Cu-based alloy for magnetic recording, which contains, in at%, (A) 1-23.4% of one or more elements selected from the group consisting of Cr, Mo and W, (B) 0-5% of one or more elements selected from the group consisting of Al, Si, Zn, Mn and Ni, and (C) 0-1% of one or more elements selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy, with the balance made up of Cu and unavoidable impurities. The alloy of the present invention has a high thermal conductivity and a high hardness at the same time, and is thus capable of providing a sputtering target that is suitable for the production of a thermally assisted magnetic recording medium and of providing a thermally assisted magnetic recording medium having a high impact resistance.

Description

Cu系磁気記録用合金及びスパッタリングターゲット材並びにそれを使用した垂直磁気記録媒体Cu-based magnetic recording alloy, sputtering target material, and perpendicular magnetic recording medium using the same
 本発明は、熱アシスト方式による磁気記録媒体の中のヒートシンク層に用いるCu系合金及びスパッタリングターゲット材並びにそれを使用した垂直磁気記録媒体に関するものである。 The present invention relates to a Cu-based alloy and a sputtering target material used for a heat sink layer in a heat-assisted magnetic recording medium, and a perpendicular magnetic recording medium using the same.
 近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。実際、従来普及していた面内磁気記録媒体より更に高記録密度が実現可能な垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。更に、垂直磁気記録方式を応用し、熱により記録をアシストする方法も検討されている。 In recent years, the progress of perpendicular magnetic recording has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of the drive. Actually, a perpendicular magnetic recording system capable of realizing a higher recording density than the in-plane magnetic recording medium that has been widely used has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. . Further, a method of assisting recording by applying heat by applying a perpendicular magnetic recording method has been studied.
 磁気記録媒体の記録密度上昇に伴って1ビット当たりの磁気記録媒体の体積は減少する。このため、熱擾乱により記録減磁の問題が顕在化し、より結晶磁気異方性定数(Ku)の高い磁気記録膜(CoPt,FePtなど)が必要とされる。その一方、これら高結晶磁気異方性の材料は、現状の記録ヘッドの記録可能な磁界で記録できない。よって、熱アシスト記録方式では、記録材料の磁性が温度と共に減少することを利用して、記録時のみ対象領域をレーザー光または近接場光を用いて加熱し、磁気記録を可能としている。 As the recording density of the magnetic recording medium increases, the volume of the magnetic recording medium per bit decreases. For this reason, the problem of recording demagnetization becomes obvious due to thermal disturbance, and a magnetic recording film (CoPt, FePt, etc.) having a higher magnetocrystalline anisotropy constant (Ku) is required. On the other hand, these high crystal magnetic anisotropy materials cannot be recorded with a recordable magnetic field of a current recording head. Therefore, in the heat-assisted recording method, by utilizing the fact that the magnetism of the recording material decreases with temperature, the target area is heated only with recording using laser light or near-field light, thereby enabling magnetic recording.
 熱アシスト記録方式は、磁気記録技術と光記録技術を融合した記録方式であり、通常の磁気記録では記録できないような高保持力媒体に対して、レーザー光の照射による熱で記録磁気部分の保持力を局所的に下げて記録した後、室温まで冷却して保持力を大きくして保存するというものである。 The heat-assisted recording method is a recording method that combines magnetic recording technology and optical recording technology. The recording magnetic part is held by the heat of laser light irradiation on a high holding force medium that cannot be recorded by ordinary magnetic recording. After recording with the force lowered locally, it is cooled to room temperature and stored with a larger holding force.
 熱アシスト記録方式では、記録時における加熱後は速やかに冷却されることが望ましい。このため、熱拡散を促進するために、下地層と記録膜との間に、高い熱伝導率を有するヒートシンク膜が必要となる。このような熱アシスト記録方式の磁気記録媒体を開示する文献として、例えば、特開2008-210426号公報(特許文献1)及び特開2011-150783号公報(特許文献2)が挙げられる。これらの文献には、熱拡散制御膜として、Cu,Ag,Au,W,Si又はMoを含むヒートシンク層(特許文献1)やAgを母相としてNb,Bi又はCuを含むヒートシンク層(特許文献2)が開示されている。 In the heat-assisted recording method, it is desirable to cool immediately after heating during recording. For this reason, in order to promote thermal diffusion, a heat sink film having high thermal conductivity is required between the underlayer and the recording film. Documents disclosing such a heat-assisted recording type magnetic recording medium include, for example, Japanese Patent Application Laid-Open No. 2008-210426 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-150783 (Patent Document 2). These documents include a heat sink layer containing Cu, Ag, Au, W, Si, or Mo as a thermal diffusion control film (Patent Document 1) and a heat sink layer containing Nb, Bi, or Cu using Ag as a parent phase (Patent Document). 2) is disclosed.
特開2008-210426号公報JP 2008-210426 A 特開2011-150783号公報JP 2011-150783 A
 しかしながら、これらの材料を用いる場合には以下の問題がある。すなわち、Cu,Ag又はAuを母相とする場合においては、熱伝導率は十分に高いが、薄膜の硬さが低い。一方、W,Si又はMoを母相とする場合は、薄膜の硬さは高いが、熱伝導率が低い。ヒートシンク膜は、磁気記録メディアの膜構成の中で比較的厚い膜であり、このヒートシンク膜の硬さは膜構成全体の硬さを左右する。このため、メディアの耐衝撃性を確保するためにヒートシンク層の硬さは高い必要がある。 However, the use of these materials has the following problems. That is, when Cu, Ag, or Au is used as the parent phase, the thermal conductivity is sufficiently high, but the hardness of the thin film is low. On the other hand, when W, Si, or Mo is used as the parent phase, the thin film has high hardness but low thermal conductivity. The heat sink film is a relatively thick film in the film structure of the magnetic recording medium, and the hardness of the heat sink film determines the hardness of the entire film structure. For this reason, the heat sink layer needs to have high hardness in order to ensure the impact resistance of the media.
 かかる課題に対して、本発明者らは、今般、ヒートシンク層の熱伝導率を保ちつつ硬さが高い垂直磁気記録媒体を提供することを目的に、ヒートシンク層の熱伝導率を保ちつつ強度を上げることができるCu系合金を見出した。 In order to provide a perpendicular magnetic recording medium having high hardness while maintaining the heat conductivity of the heat sink layer, the present inventors have recently increased the strength while maintaining the heat conductivity of the heat sink layer. The Cu-type alloy which can be raised was discovered.
 したがって、本発明の目的は、高い熱伝導度と高硬度を併せ持つCu系磁気記録用合金を提供し、それにより熱アシスト磁気記録媒体(特にヒートシンク層)の製造に好適なスパッタリングターゲットの提供を可能とすることである。ヒートシンク層の硬さを上げることで、耐衝撃性の高い熱アシスト磁気記録媒体を提供することができる。このように、本用途のヒートシンク層本来の熱伝導性を保ちつつ硬さを高める技術思想は従来には無かったものであり、この考え方は本発明における最も特徴的な技術思想である。 Therefore, an object of the present invention is to provide a Cu-based magnetic recording alloy having both high thermal conductivity and high hardness, and thereby it is possible to provide a sputtering target suitable for manufacturing a heat-assisted magnetic recording medium (especially a heat sink layer). It is to do. By increasing the hardness of the heat sink layer, it is possible to provide a heat-assisted magnetic recording medium with high impact resistance. Thus, there has never been a technical idea to increase the hardness while maintaining the original heat conductivity of the heat sink layer for this application, and this idea is the most characteristic technical idea in the present invention.
 本発明の一態様によれば、at%で、
(A)Cr,Mo及びWからなる群から選択される1種または2種以上を1~23.4%、
(B)Al,Si,Zn,Mn及びNiからなる群から選択される1種または2種以上を0~5%、
(C)Y,La,Ce,Nb,Sm,Gd,Tb及びDyからなる群から選択される1種または2種以上を0~1%
を含有し、残部Cu及び不可避的不純物からなる、Cu系磁気記録用合金が提供される。
According to one aspect of the invention, at%,
(A) 1 to 23.4% of one or more selected from the group consisting of Cr, Mo and W,
(B) 0 to 5% of one or more selected from the group consisting of Al, Si, Zn, Mn and Ni,
(C) 1 to 2% of one or more selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy
There is provided a Cu-based magnetic recording alloy that contains the remainder Cu and inevitable impurities.
 本発明の他の一態様によれば、本発明の上記態様による合金からなるスパッタリングターゲット材が提供される。 According to another aspect of the present invention, there is provided a sputtering target material comprising an alloy according to the above aspect of the present invention.
 本発明の他の一態様によれば、本発明の上記態様による合金からなるヒートシンク層を備えた、垂直磁気記録媒体が提供される。 According to another aspect of the present invention, there is provided a perpendicular magnetic recording medium including a heat sink layer made of an alloy according to the above aspect of the present invention.
 本発明のCu系磁気記録用合金について以下に具体的に説明する。なお、特段の明示がないかぎり含有量(%)はat%を意味するものとする。 The Cu-based magnetic recording alloy of the present invention will be specifically described below. Unless otherwise specified, content (%) means at%.
 本発明のCu系磁気記録用合金は、at%で、(A)Cr,Mo及びWからなる群から選択される1種または2種以上を1~23.4%、(B)Al,Si,Zn,Mn及びNiからなる群から選択される1種または2種以上を0~5%、(C)Y,La,Ce,Nb,Sm,Gd,Tb及びDyからなる群から選択される1種または2種以上を0~1%を含有し、残部Cu及び不可避的不純物からなり(comprising)、典型的には、(A)の群から選択される1種または2種以上を1~23.4%、(B)の群から選択される1種または2種以上を0~5%、(C)の群から選択される1種または2種以上を0~1%、残部Cu及び不可避的不純物のみから実質的になる(consisting essentially of)又はのみからなる(consisting of)。 The Cu-based magnetic recording alloy of the present invention is at%, (A) 1 to 23.4% of one or more selected from the group consisting of Cr, Mo and W, and (B) Al, Si. , Zn, Mn, and Ni selected from the group consisting of 0 to 5%, or selected from the group consisting of (C) Y, La, Ce, Nb, Sm, Gd, Tb, and Dy 1 type or 2 types or more containing 0 to 1%, consisting of remaining Cu and inevitable impurities (comprising), typically 1 type or 2 types or more selected from the group (A) 23.4%, one or more selected from the group (B) is 0 to 5%, one or more selected from the group (C) is 0 to 1%, the remaining Cu and It consists essentially of inevitable impurities (consisting essentially of) or consists only of (consisting of).
 本発明の合金は、任意成分として、Cr,Mo及びWからなる群(以下、A群元素という)から選択される1種または2種以上を1~23.4%、好ましくは5~23.4%、さらに好ましくは5~17.5%含有する。第6族元素であるCr,Mo及びWは、Cuに対して殆ど固溶せず、また、化合物を生成しないため、薄膜では純Cu母相中に微細に純Cr、純Mo及び/又は純Wが析出した組織となる。その結果、純Cuの良好な熱伝導度を保ちつつ、析出強化によって硬さを高めることができる。しかし、1%未満の添加量では硬さの向上効果が見られない。また、23.4%を超える添加量では析出相の体積が大きく熱伝導度が大きく減少する。硬さ向上効果をより高めるためには5~23.4%とするのが望ましい。 The alloy of the present invention contains, as an optional component, 1 to 23.4%, preferably 5 to 23.%, of one or more selected from the group consisting of Cr, Mo and W (hereinafter referred to as group A element). It contains 4%, more preferably 5 to 17.5%. The Group 6 elements Cr, Mo and W are hardly dissolved in Cu and do not produce a compound. Therefore, in the thin film, pure Cr, pure Mo and / or pure are finely contained in the pure Cu matrix. A structure in which W is deposited is obtained. As a result, it is possible to increase the hardness by precipitation strengthening while maintaining good thermal conductivity of pure Cu. However, when the addition amount is less than 1%, the effect of improving the hardness is not observed. Moreover, when the addition amount exceeds 23.4%, the volume of the precipitated phase is large and the thermal conductivity is greatly reduced. In order to further increase the effect of improving the hardness, the content is preferably 5 to 23.4%.
 本発明の合金は、任意成分として、Al,Si,Zn,Mn及びNiからなる群(以下、B群元素という)から選択される1種または2種以上を5%未満含有してもよく、好ましくは0.2~5%、より好ましくは0.2~3.5%、さらに好ましくは0.2~3.0%含有する。B群元素は、Cuに固溶し、Cu母相の硬さを高める一方、熱伝導度の低下率は、上述したCr,Mo及びW元素よりも大きい。よって、好ましい添加量を0.2~5%の範囲とした。5%を超える添加量では、熱伝導度の低下が大きく、ヒートシンク層として必要な特性が得られない。したがって、硬さと熱伝導度のバランスがよい範囲として、3.5%以下の添加量が好ましい。 The alloy of the present invention may contain, as an optional component, less than 5% of one or more selected from the group consisting of Al, Si, Zn, Mn and Ni (hereinafter referred to as B group element), The content is preferably 0.2 to 5%, more preferably 0.2 to 3.5%, and still more preferably 0.2 to 3.0%. The group B element dissolves in Cu and increases the hardness of the Cu matrix, while the rate of decrease in thermal conductivity is greater than that of the Cr, Mo, and W elements described above. Therefore, the preferable addition amount is set in the range of 0.2 to 5%. When the addition amount exceeds 5%, the thermal conductivity is greatly lowered, and the characteristics required for the heat sink layer cannot be obtained. Therefore, an addition amount of 3.5% or less is preferable as a range in which the balance between hardness and thermal conductivity is good.
 本発明の合金は、任意成分として、Y,La,Ce,Nb,Sm,Gd,Tb及びDyからなる群(以下、C群元素)から選択される1種または2種以上を1%未満含有してもよく、好ましくは0.1~1%、より好ましくは0.1~0.5%含有する。C群元素は、Cuに固溶せず、Cuと化合物を作る元素で、添加することで組織の微細化効果があり、それによって、膜の硬さを向上させることができるが、逆に熱伝導度は低下する。よって、好ましい添加量を0.1~1%の範囲とした。1%を超える添加量では熱伝導度の低下が大きく、ヒートシンク層として必要な特性が得られない。 The alloy of the present invention contains, as an optional component, less than 1% of one or more selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy (hereinafter referred to as C group element) It may be contained in an amount of preferably 0.1 to 1%, more preferably 0.1 to 0.5%. The group C element is an element that does not dissolve in Cu but forms a compound with Cu, and when added, has an effect of refining the structure, thereby improving the hardness of the film. The conductivity decreases. Therefore, the preferable addition amount is set in the range of 0.1 to 1%. When the addition amount exceeds 1%, the thermal conductivity is greatly reduced, and the characteristics required for the heat sink layer cannot be obtained.
 以下、本発明について実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
 通常、垂直磁気記録媒体におけるシード層はその成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜して得られる。ここで、スパッタにより成膜された薄膜は急冷されている。これに対し、本発明での供試材としては、単ロール式の急冷装置にて作製した急冷薄帯を用いる。これは実際にスパッタにより成膜された薄帯の成分による諸特性の影響を、簡易的に液体急冷薄帯により評価したものである。 Usually, a seed layer in a perpendicular magnetic recording medium is obtained by sputtering a sputtering target material having the same component as that of the seed layer and forming a film on a glass substrate or the like. Here, the thin film formed by sputtering is rapidly cooled. On the other hand, as a test material in the present invention, a quenched ribbon manufactured by a single roll type quenching apparatus is used. This is a simple evaluation of the effects of various properties due to the components of the ribbon actually formed by sputtering using the liquid quenching ribbon.
 急冷薄帯の作製条件
 表1及び表2に示す各成分に秤量した原料20gを径40mm程度の水冷銅鋳型にて減圧して、Ar中でアーク溶解し、急冷薄帯の溶解母材とした。単ロール方式で径15mmの石英管中にて、この溶解母材をセットし、出湯ノズルの内径を1mmとし、雰囲気気圧を61kPa、噴霧差圧を69kPa、銅ロール(径300mm)の回転数を3000rpm、銅ロールと出湯ノズルのギャップを0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後の温度とした。このようにして、作製した急冷薄帯を供試材とし、以下の項目で評価した。
Preparation conditions of quenching ribbons 20 g of raw materials weighed for each component shown in Tables 1 and 2 were depressurized with a water-cooled copper mold having a diameter of about 40 mm and arc-melted in Ar to form a quenching ribbon melting base material. . This molten base material is set in a quartz tube with a diameter of 15 mm by a single roll method, the inner diameter of the tap nozzle is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, and the rotational speed of the copper roll (diameter 300 mm) is set. The hot water was discharged at 3000 rpm and the gap between the copper roll and the hot water nozzle at 0.3 mm. The hot water temperature was the temperature immediately after each molten base material was melted. The quenched ribbon thus produced was used as a test material and evaluated according to the following items.
 急冷薄帯の熱伝導度
 熱伝導度は急冷薄帯を4端子法により測定し求めた固有抵抗を算出することで評価した。熱伝導度については、表1に示す比較例No.1の純Cuの値を1とした場合に、0.5未満を×、0.5~0.6未満を△、0.6~0.8未満を○、0.8以上を◎と評価した。これらの結果を表1及び2に示す。
Thermal conductivity of quenched ribbon The thermal conductivity was evaluated by calculating the specific resistance obtained by measuring the quenched ribbon by the four-terminal method. About thermal conductivity, comparative example No. shown in Table 1 is shown. When the value of 1 pure Cu is 1, the evaluation is less than 0.5 as x, 0.5 to less than 0.6 as Δ, 0.6 to less than 0.8 as ○, and 0.8 or more as ◎. did. These results are shown in Tables 1 and 2.
 急冷薄帯の硬さ
 急冷薄帯を縦に樹脂埋め研磨し、ビッカース硬度計にて測定した。測定荷重は25gで、n=10平均で評価した。表1に示す比較例No.1の純Cuの値を1とした場合に、1.0以下を×、1.0超え~1.5を△、1.5超え~2.5を○、2.5超を◎と評価した。これらの結果を表1及び2に合わせて示す。
Hardness of quenching ribbon The quenching ribbon was vertically filled with resin and polished, and measured with a Vickers hardness meter. The measurement load was 25 g and n = 10 average was evaluated. Comparative Example No. 1 shown in Table 1 When the value of pure Cu of 1 is 1, 1.0 or less is evaluated as x, 1.0 to 1.5 is evaluated as Δ, 1.5 to 2.5 is evaluated as ○, and 2.5 is evaluated as ◎. did. These results are shown in Tables 1 and 2 together.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、No.2~6、8~11、13~21、23~25及び27~67は本発明例であり、No.1、7、12、22、26及び68~70は比較例である。
Figure JPOXMLDOC01-appb-T000002
As shown in Tables 1 and 2, no. Nos. 2 to 6, 8 to 11, 13 to 21, 23 to 25, and 27 to 67 are examples of the present invention. 1, 7, 12, 22, 26 and 68 to 70 are comparative examples.
 比較例No.1は、Cu単独であるために硬さが劣る。比較例No.7は、(A)群元素のCr含有量が高いために熱伝導度が劣る。比較例No.12は、(A)群元素のMo含有量が高いために熱伝導度が劣る。比較例No.22は、(A)群元素のCr、Mo、Wの合計含有量が高いために熱伝導度が劣る。 Comparative Example No. Since 1 is Cu alone, the hardness is inferior. Comparative Example No. No. 7 is inferior in thermal conductivity because the Cr content of the (A) group element is high. Comparative Example No. No. 12 is inferior in thermal conductivity because the Mo content of the (A) group element is high. Comparative Example No. No. 22 is inferior in thermal conductivity because the total content of Cr, Mo, W of group (A) elements is high.
 比較例No.26は、(B)群元素のAlの含有量が高いために熱伝導度が劣る。比較例No.68は、(C)群元素のYの含有量が高いために熱伝導度が劣る。比較例No69は、(C)群元素のYの含有量がより高いために熱伝導度が悪い。比較例No70は、(C)群元素のNdの含有量が高いために熱伝導度が悪い。 Comparative Example No. No. 26 is inferior in thermal conductivity due to the high content of Al of the (B) group element. Comparative Example No. No. 68 is inferior in thermal conductivity because of the high Y content of the (C) group element. Since comparative example No69 has higher content of Y of (C) group element, thermal conductivity is bad. Since comparative example No70 has high content of Nd of (C) group element, thermal conductivity is bad.
 これに対して、本発明であるNo.2~6、8~11、13~21、23~25及び27~67は、いずれも本発明の条件を満たしていることから、高い熱伝導度を得ることが可能となり、かつ硬度を高め耐衝撃性に優れた合金を提供することができる。ただし、本発明であるNo.2の場合は、(A)群元素のCr含有量が低いが故に硬度がやや劣るが耐衝撃性には問題がない。 On the other hand, No. which is the present invention. Since 2 to 6, 8 to 11, 13 to 21, 23 to 25, and 27 to 67 all satisfy the conditions of the present invention, it is possible to obtain high thermal conductivity and increase hardness and resistance. An alloy having excellent impact properties can be provided. However, no. In the case of 2, since the Cr content of the group (A) element is low, the hardness is slightly inferior, but there is no problem in impact resistance.
 以上述べたように、本発明によれば、特に高い熱伝導度と高強度を併せ持ち、ヒートシンク層の硬さを向上させ、かつ耐衝撃性に優れたCu系磁気記録用合金及びスパッタリングターゲット材並びにそれを使用した垂直磁気記録媒体を得ることが可能となる。 As described above, according to the present invention, a Cu-based magnetic recording alloy and a sputtering target material that have both particularly high thermal conductivity and high strength, improve the hardness of the heat sink layer, and are excellent in impact resistance. A perpendicular magnetic recording medium using the same can be obtained.

Claims (10)

  1.  at%で、
    (A)Cr,Mo及びWからなる群から選択される1種または2種以上を1~23.4%、
    (B)Al,Si,Zn,Mn及びNiからなる群から選択される1種または2種以上を0~5%、
    (C)Y,La,Ce,Nb,Sm,Gd,Tb及びDyからなる群から選択される1種または2種以上を0~1%
    を含有し、残部Cu及び不可避的不純物からなる、Cu系磁気記録用合金。
    at%
    (A) 1 to 23.4% of one or more selected from the group consisting of Cr, Mo and W,
    (B) 0 to 5% of one or more selected from the group consisting of Al, Si, Zn, Mn and Ni,
    (C) 1 to 2% of one or more selected from the group consisting of Y, La, Ce, Nb, Sm, Gd, Tb and Dy
    Cu-based magnetic recording alloy comprising the balance Cu and inevitable impurities.
  2.  前記(A)の群から選択される1種または2種以上を1~23.4%、前記(B)の群から選択される1種または2種以上を0~5%、前記(C)の群から選択される1種または2種以上を0~1%、残部Cu及び不可避的不純物のみから実質的になる、請求項1に記載の合金。 1 to 23.4% of one or more selected from the group (A), 0 to 5% of one or more selected from the group (B), (C) The alloy according to claim 1, consisting essentially of 0 to 1% of one or more selected from the group consisting of the balance Cu and unavoidable impurities.
  3.  前記(A)の群から選択される1種または2種以上を5~23.4%含有する、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, containing 5 to 23.4% of one or more selected from the group (A).
  4.  前記(B)の群から選択される1種または2種以上を0.2~5%含有する、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, containing 0.2 to 5% of one or more selected from the group (B).
  5.  前記(B)の群から選択される1種または2種以上を0.2~3.5%含有する、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, containing 0.2 to 3.5% of one or more selected from the group (B).
  6.  前記(C)の群から選択される1種または2種以上を0.1~1%含有する、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, containing 0.1 to 1% of one or more selected from the group (C).
  7.  前記(C)の群から選択される1種または2種以上を0.1~0.5%含有する、請求項1又は2に記載の合金。 The alloy according to claim 1 or 2, containing 0.1 to 0.5% of one or more selected from the group (C).
  8.  前記(B)の群から選択される1種または2種以上を0.2~5%含有し、かつ、前記(C)の群から選択される1種または2種以上を0.1~1%含有する、請求項1又は2に記載の合金。 0.2 to 5% of one or more selected from the group (B) is contained in an amount of 0.2 to 5%, and one or more selected from the group (C) is 0.1 to 1 The alloy according to claim 1 or 2, wherein the alloy is contained in%.
  9.  請求項1~8のいずれか一項に記載の合金からなるスパッタリングターゲット材。 A sputtering target material comprising the alloy according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の合金からなるヒートシンク層を備えた、垂直磁気記録媒体。
     
    A perpendicular magnetic recording medium comprising a heat sink layer made of the alloy according to any one of claims 1 to 8.
PCT/JP2013/082186 2012-12-19 2013-11-29 Cu-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING SAME WO2014097860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276421 2012-12-19
JP2012276421A JP6026261B2 (en) 2012-12-19 2012-12-19 Cu-based magnetic recording alloy, sputtering target material, and perpendicular magnetic recording medium using the same

Publications (1)

Publication Number Publication Date
WO2014097860A1 true WO2014097860A1 (en) 2014-06-26

Family

ID=50978198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082186 WO2014097860A1 (en) 2012-12-19 2013-11-29 Cu-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING SAME

Country Status (3)

Country Link
JP (1) JP6026261B2 (en)
TW (1) TWI586820B (en)
WO (1) WO2014097860A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962775A (en) * 2015-06-30 2015-10-07 安庆市灵宝机械有限责任公司 Alloy for tool bit of cutting tooth
JP6823799B2 (en) * 2015-10-01 2021-02-03 日立金属株式会社 Laminated wiring film for electronic components and sputtering target material for coating layer formation
JP6589569B2 (en) * 2015-11-04 2019-10-16 三菱マテリアル株式会社 Cu alloy sputtering target and Cu alloy film
JP7165341B2 (en) * 2019-12-17 2022-11-04 Ube株式会社 Graphite-copper composite material, heat sink member using the same, and method for producing graphite-copper composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109720A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device using this
JP2012069230A (en) * 2010-08-26 2012-04-05 Showa Denko Kk Perpendicular magnetic recording medium and magnetic recording and reproducing unit
JP2012221544A (en) * 2011-04-14 2012-11-12 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording/reproducing device
JP2013149316A (en) * 2012-01-19 2013-08-01 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording and reproducing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038873B2 (en) * 2003-03-20 2006-05-02 Hitachi Maxell, Ltd. Magnetic recording medium having a specific relation of coercive force HC and residual magnetization MR in perpendicular direction to substrate surface
JP5105332B2 (en) * 2008-08-11 2012-12-26 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109720A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device using this
JP2012069230A (en) * 2010-08-26 2012-04-05 Showa Denko Kk Perpendicular magnetic recording medium and magnetic recording and reproducing unit
JP2012221544A (en) * 2011-04-14 2012-11-12 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording/reproducing device
JP2013149316A (en) * 2012-01-19 2013-08-01 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP6026261B2 (en) 2016-11-16
TWI586820B (en) 2017-06-11
TW201430148A (en) 2014-08-01
JP2014118621A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6116928B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
WO2014097860A1 (en) Cu-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING SAME
TWI558831B (en) An alloy and a sputtering target for a soft magnetic film layer of a vertical magnetic recording medium
JP6210503B2 (en) Soft magnetic alloy for magnetic recording and sputtering target material
JP2012108997A (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP2011099166A (en) Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, SOFT MAGNETIC FILM, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5425530B2 (en) CoFeNi alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI604078B (en) Perpendicular magnetic recording medium, soft magnetic film layer alloy, sputtering target, and perpendicular magnetic recording medium having a soft magnetic film layer
JP5031443B2 (en) Alloy for soft magnetic film layer in perpendicular magnetic recording media
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI683010B (en) Non-magnetic and amorphous alloy, sputtering target material and magnetic recording medium using the alloy
US20130209310A1 (en) Thermal diffusion control film for use in magnetic recording medium, for heat-assisted magnetic recording, magnetic recording medium, and sputtering target
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866272

Country of ref document: EP

Kind code of ref document: A1