Nothing Special   »   [go: up one dir, main page]

WO2014097516A1 - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
WO2014097516A1
WO2014097516A1 PCT/JP2013/005563 JP2013005563W WO2014097516A1 WO 2014097516 A1 WO2014097516 A1 WO 2014097516A1 JP 2013005563 W JP2013005563 W JP 2013005563W WO 2014097516 A1 WO2014097516 A1 WO 2014097516A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
plate
connection
lead
plates
Prior art date
Application number
PCT/JP2013/005563
Other languages
French (fr)
Japanese (ja)
Inventor
下田 一彦
中嶋 孝
小島 優
亮太 菊池
健治 泉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380005965.3A priority Critical patent/CN104067414B/en
Priority to JP2013552756A priority patent/JP5504383B1/en
Publication of WO2014097516A1 publication Critical patent/WO2014097516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery used in an idling stop vehicle.
  • the idling stop vehicle can improve fuel efficiency by stopping the engine while it is stopped.
  • the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop
  • the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability capable of being charged more in a short time in order to solve the shortage of charging.
  • the idling stop vehicle frequently repeats on / off of the engine, the next discharge is performed immediately before the lead sulfate generated by the discharge is restored to lead dioxide and lead by charging. Therefore, the life of the lead storage battery is likely to decrease. For this reason, lead storage batteries are also required to have high durability in order to eliminate the decrease in life.
  • a member called a connecting body that connects the electrode plate groups between the cell chambers and a pole column that is an intermediary member with the external terminal are subjected to great stress due to vehicle vibration. Therefore, it is conceivable to use antimony-containing lead having high strength for these members. However, when antimony is contained, the corrosion resistance against charge / discharge reaction is poor.
  • the number of times of switching from charging to discharging and discharging and charging and the amount of charge / discharge electricity are greatly increased, so not only the electrode plate due to the charging / discharging reaction, A portion called a so-called ear of the electrode plate that connects the electrode plate and the connecting body / pole column also easily corrodes.
  • Patent Document 1 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.
  • Patent Document 2 describes a lead storage battery in which a lead alloy layer containing antimony is provided on the surface of a negative electrode lattice not containing antimony.
  • the lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.
  • Patent Document 3 discloses that a negative electrode lattice not containing antimony is filled with a negative electrode active material to which antimony is added, and the mass ratio of the negative electrode active material to the positive electrode active material is in the range of 0.7 to 1.3.
  • a lead acid battery is described.
  • Antimony added to the negative electrode active material has an effect of lowering the hydrogen overvoltage of the negative electrode, whereby the charge acceptability of the negative electrode active material can be improved.
  • the mass ratio of the negative electrode active material to the positive electrode active material in the range of 0.7 to 1.3, when the lead storage battery is overdischarged, antimony is eluted from the negative electrode active material into the electrolytic solution, Precipitation on the negative electrode ear can be suppressed, and thereby corrosion of the negative electrode ear can be suppressed.
  • the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.
  • SOC state of charge
  • FIG. 1 is a graph schematically showing a state of charge (SOC) when a lead-acid battery is repeatedly discharged and charged in an idling stop vehicle.
  • SOC state of charge
  • the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, even if the idling stop car is run for a long time as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.
  • the lead-acid battery is not highly charge-acceptable, as shown by the line graph B in FIG. .
  • the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.
  • the present invention has been made in view of such a problem, and its main purpose is sufficient charge acceptance and durability (life characteristics, connection body) that can be applied to an idling stop vehicle used in the “choi riding” mode. ⁇ To provide a lead-acid battery that has both the anti-vibration characteristics of the poles).
  • a lead storage battery is a lead comprising a plurality of electrode plate groups in which a plurality of positive electrode plates and negative electrode plates are laminated via separators, and a plurality of cell chambers for accommodating each of the electrode plate groups together with an electrolytic solution.
  • electrode plates of the same polarity in the electrode plate group are connected to each other by electrode plate connection plates, and the plurality of cell chambers are arranged adjacent to each other and are accommodated between the adjacent cell chambers.
  • the electrode plate groups are connected in series by a connection body connected to the electrode plate connection plate, and the electrode plates connected to the electrode plate group housed in the cell chamber located at the end.
  • the electrode plate connection plate that is not connected to the connection body is connected to a pole column connected to an external terminal, and the electrode plate connection plate, the connection body, and the pole column do not contain antimony. It consists of a lead alloy containing tin, and the tin content is Wherein said that towards the at least one connection member and the electrode post is larger than the electrode plate connecting plate.
  • the content ratio of tin in the electrode plate connection plate is 1.5% by mass or more and 3.5% by mass or less, and the content ratio of tin in at least one of the connection body and the pole column is It is 3 mass% or more and 10 mass% or less.
  • connection body is integrally connected to the electrode plate connection plate in a stacking direction of the electrode plates and on a line extending from the electrode plate connection plate.
  • the proportion of tin contained in the pole column is larger in the upper part connected to the external terminal than in the lower part connected to the electrode plate connection plate. It is preferable that the tin content of the polar column gradually increases from the lower part to the upper part.
  • W / L is: It is in the range of 0.50 or more and 0.80 or less.
  • a lead storage battery having sufficient charge acceptance and durability (life characteristics, connection body / vibration resistance characteristics of a pole pole) that can be applied to an idling stop vehicle used in the “choi riding” mode. Can be provided.
  • FIG. 1 is an overview diagram schematically showing a configuration of a lead storage battery in an embodiment of the present invention. It is sectional drawing which showed the structure of the electrode group accommodated in the cell chamber. It is a typical perspective view which shows the shape of a connection component. It is a typical perspective view which shows the shape of another connection component. It is a typical perspective view which shows the shape of another connection component.
  • FIG. 2 is an overview diagram schematically showing the configuration of the lead storage battery 1 in one embodiment of the present invention.
  • the lead storage battery 1 has an electrode plate group 5 in which a plurality of positive electrode plates 2 and negative electrode plates 3 are laminated via a separator 4, and the electrode plate group 5 is a cell together with an electrolyte. It is accommodated in the chamber 6.
  • the positive electrode plate 2 includes a positive electrode lattice (not shown) and a positive electrode active material (not shown) filled in the positive electrode lattice, and the negative electrode plate 3 fills the negative electrode lattice (not shown) and the negative electrode lattice.
  • the positive electrode lattice and the negative electrode lattice in this embodiment are both made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Ca—Sn alloy.
  • Sb lead alloy containing no antimony
  • the fact that it does not contain antimony means that antimony is not added as an alloy component.
  • the raw material contains a small amount of antimony as an impurity and it takes a large cost to remove this antimony, it means that no antimony is contained. That is, when antimony is an unavoidable impurity, the present invention does not contain antimony.
  • the plurality of positive electrode plates 2 are connected in parallel to each other by the positive electrode straps (electrode plate connection plates) 7 at the ears 9 of the positive electrode lattice.
  • the plurality of negative electrode plates 3 are connected in parallel to each other by negative electrode straps (electrode plate connection plates) 8 at the ends 10 of the negative electrode lattice.
  • the plurality of electrode plate groups 5 accommodated in each cell chamber 6 are connected in series by a connection body 11.
  • the connection body 11 is electrically connected to the positive strap 7 or the negative strap 8.
  • Each of the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends is not connected to the electrode plate group 5 of the adjacent cell chamber 6 and is connected to an external terminal. That is, the pole columns are welded to the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends, and the respective pole columns are welded to the positive terminal 12 and the negative terminal 13 disposed on the lid 14, respectively. ing.
  • connection plate positive electrode strap 7, negative electrode strap 8
  • connection body 11 connection body 11
  • electrode column is formed of a Pb—Sn alloy containing no antimony.
  • connection parts of this embodiment are shown in FIGS.
  • the electrode plate connection plate 50 and the connection body 51 are supplied as separate members, and are connected together with the ears 60 by welding as shown in FIG. 4B.
  • the pole column 53 and the electrode plate connecting plate 50 are supplied as separate members as shown in FIG. 5A, and are connected together with the ears 60 as shown in FIG. 5B by welding.
  • the connection body 51 is connected to the electrode plate connection plate 50 via the connection interposition member 52
  • the pole column 53 is also connected to the electrode plate connection plate 50 via the connection interposition member 54.
  • connection body 51 and the pole column 53 hang from the connection body 51 and the pole column 53, and the connection body 51 is fixed to each other, or the pole column 53 and the external terminal are fixed. .
  • the stress is most applied in the vicinity of these fixed portions. Therefore, if all the connection parts are made of the same material and have the same strength, the connection body 51 and the pole column 53 are first damaged.
  • a Pb—Sb alloy having high strength as a constituent material.
  • antimony when antimony is included, Since the corrosiveness with respect to the electrolytic solution is inferior, it is considered to use an alloy containing Sn.
  • charging / discharging is performed in the “choi riding” mode in an idling stop vehicle application, charging is insufficient and a discharge product is formed even in the ear portion, so further measures are required.
  • connection body 51 and the pole column 53 have a larger Sn content than the electrode plate connection plate 50, and the electrode plate connection plate 50 contains Sn in an amount of 1.5 mass% to 3.5 mass%. It is more preferable that at least one of the connection body 51 and the pole column 53 contains Sn in an amount of 3% by mass to 10% by mass.
  • the stress applied to the tip (upper part) connected to the external terminal is larger than that of the lower part connected to the electrode plate connection plate 50, so the Sn content in the upper part is increased. Is more preferable.
  • connection body and the pole column may be manufactured by a method in which a member having a high Sn content is prepared in advance and put in a mold, or the connection body and the pole column are injected with a molten material having a high Sn content.
  • a method for manufacturing may be used.
  • connection body 55 When the connection part is produced by casting, as shown in FIG. 6, the connection body 55 can be positioned on a line in which the electrode plate connection plate 50 extends (in the stacking direction of the electrode plates).
  • a connection part is produced by welding, it is very difficult to position the connection body 51 on a line on which the electrode plate connection plate 50 extends in order to ensure the connection between the ear portion 60 and the electrode plate connection plate 50.
  • the connection component shown in FIG. 4 the current flows more linearly in the connection component of FIG. Therefore, even if it is applied to an idling stop vehicle that is improved in charge acceptance and used in the “choy ride” mode, the operation of the fail-safe mechanism can be more effectively suppressed.
  • the COS is heavier than the connection part produced by welding.
  • W / L is preferably in the range of 0.50 to 0.80.
  • the value of W / L is an index of the size of the gap between the positive electrode plate 2 and the negative electrode plate 3, in other words, the amount of wraparound of the electrolyte, and the value of W / L is 0.50 to 0.80. If it is within the range, the charge acceptability of the lead storage battery 1 is further improved, and the operation of the fail-safe mechanism can be more effectively suppressed even when applied to an idling stop vehicle used in the “choy ride” mode.
  • a surface layer (not shown) made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice.
  • the lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 1 can be improved.
  • the surface layer is preferably made of a Pb—Sb alloy having an antimony content of 1.0 to 5.0 mass%.
  • the electrolytic solution contains 0.01 to 0.45 mol / L, more preferably 0.03 to 0.28 mol / L of sodium ions.
  • the sodium ions in the electrolyte have the effect of improving the overdischarge recovery, which further improves the charge acceptance of the lead storage battery 1 and is applied to an idling stop vehicle used in the “choi ride” mode.
  • the operation of the fail-safe mechanism can be more effectively suppressed.
  • the negative electrode plate 3 is disposed on both sides of the electrode plate group 5, and the negative electrode plate 3 is accommodated in a bag-like separator 4, It is preferable that a plurality of ribs 15 forming a certain gap be provided between the negative electrode plate 3 and the separator 4. As a result, the electrolyte solution can also flow into the negative electrode plates 3 arranged on both sides of the electrode plate group 5, so that the charge acceptance of the lead storage battery 1 is further improved, and the idling stop used in the “choi riding” mode. Even when applied to a vehicle, the operation of the fail-safe mechanism can be more effectively suppressed.
  • the separator 4 that accommodates the negative electrode plate 3 disposed at least on both sides of the electrode plate group 5 is provided with a plurality of ribs 15, the above-described effects can be exhibited. Of course, all the negative electrode plates 3 are accommodated.
  • the separator 4 may be provided with a plurality of ribs 15. When the lead storage battery 1 has only one cell chamber 6, the battery case of the lead storage battery 1 may also serve as the cell chamber 6.
  • the mass ratio M N / M P of both 0.70 and 1. It is preferably set in the range of 10, more preferably in the range of 0.80 to 1.0.
  • the mass ratio M N / M P of the negative electrode active material for the positive electrode active material is in this range, while maintaining the life characteristics, improved charge acceptance of the lead storage battery 1, the idling stop to be used in the "Choi ride" mode This is because even when applied to a car, the operation of the fail-safe mechanism can be further suppressed.
  • the positive electrode active material density is preferably 3.6 to 4.8 g / ml. This is because the charge acceptability of the lead storage battery 1 is improved while maintaining the life characteristics, and the operation of the fail-safe mechanism can be further suppressed even when applied to an idling stop vehicle used in the “choy ride” mode. .
  • the lead acid battery 1 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301.
  • Each cell chamber 6 accommodates seven positive electrode plates 2 and eight negative electrode plates 3, and the negative electrode plate 3 is accommodated in a bag-like polyethylene separator 4.
  • Table 1 shows the configurations and battery characteristics of the batteries 1 to 16 according to the examples and the batteries A and B according to the comparative example.
  • the positive electrode plate 2 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a lead alloy containing calcium and tin.
  • the negative electrode plate 3 is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to create a paste, and filling this into an expanded lattice made of a lead alloy containing calcium and tin. Made.
  • the negative electrode lattice is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of Pb-3 mass% Sb foil.
  • the positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided.
  • the positive electrode plates 2 and the negative electrode plates 3 are alternately stacked via the separators 4, and the seven positive electrode plates 2 and the eight negative electrode plates 3 are separated.
  • the electrode plate group 5 laminated through 4 was produced.
  • the positive electrode active material density was 4.2 g / ml.
  • the electrode plate group 5 was accommodated in each of the six cell chambers 6, and lead storage batteries according to Examples and Comparative Examples in which six cells (electrode plate group 5) were connected in series by connecting parts were produced.
  • the test of the life characteristics was performed under the conditions shown below, almost compliant with the battery industry association standard (SBA S 0101).
  • the ambient temperature was 25 ° C. ⁇ 2 ° C.
  • the battery After charging and discharging (D), (B), and (C) 18 times, the battery is discharged at a discharge current of 20 mA for 83.5 hours.
  • SOC state of charge
  • the vibration resistance was evaluated by the following method.
  • the basic evaluation method conformed to the vibration resistance described in Japanese Industrial Standard JIS D5301. However, since this method can only determine whether the standard is good or bad, the vibration time is fixed at 2 hours in the standard, but the vibration time is arbitrary.
  • the standard is that the discharge current is discharged at a 5-hour rate current, but it was changed to a 20-hour rate current assuming that the vibration time becomes longer.
  • the vibration test was performed under such conditions, the behavior of the discharge current was observed sequentially, and the time when the abnormality appeared in the current behavior was regarded as the vibration resistance of the corresponding battery. That is, the longer the vibration time, the higher the vibration resistance.
  • At least one of the pole column and the connecting body has a life characteristic of 35,000 times or more in the batteries 1 to 8 having a Sn content larger than that of the electrode plate, and the “choy ride” mode characteristic. It can also be seen that the SOC is 75% or more and the vibration resistance is 800 minutes or more. Lead-acid batteries that satisfy these values can maintain sufficient vibration resistance even when the idling stop vehicle is used in the “choi ride” mode, and have excellent life characteristics, and can operate the fail-safe mechanism. Can be suppressed.
  • the battery 3 in which the Sn content of the electrode plate connecting plate is 2.0% by mass, and both the pole column and the connected body have the Sn content in the range of 5.0% by mass to 8.0% by mass.
  • ⁇ 5 has a lifespan of 35,000 times or more, “choy ride” mode characteristics, SOC is 75% or more, and vibration resistance is more than 1200 minutes, and all three are excellent, and idling stop in “choy ride” mode When using a car, it has suitable performance.
  • the Sn content of the electrode plate connecting plate is 2.0% by mass, and both the pole column and the connected body have the Sn content of 3.0% by mass or 10.0% by mass.
  • the vibration resistance is slightly inferior to those of the batteries 3 to 5, it has a practically sufficient performance.
  • the vibration resistance Sex is as low as 300 minutes. This is thought to be because the strength is low in the pole column and connection body, where stress is relatively large, because it has the same Sn content as the electrode plate connection plate.
  • the battery B in which 3.8% by mass of Sb is contained in all of the electrode plate connecting plate, the pole column, and the connected body has excellent vibration resistance of 1200 minutes or more, but has a life characteristic of 18,000 times. And inferior. This is because Sb is contained in the connecting part, so that the strength of the part is improved and the vibration resistance is improved, but the life of the connecting part is shortened due to corrosion by the charge / discharge reaction. it is conceivable that.
  • the battery 7 has a Sn content of 2.0 mass%, which is the same as that of the electrode plate connection plate, and an Sn content of 6.0 mass% in the polar column.
  • the battery 7 has excellent life characteristics, “choi riding” mode characteristics and life characteristics, but has a vibration resistance of 900 minutes, which is practically sufficient but slightly lower.
  • the battery 8 has the same Sn content as the electrode plate connecting plate and the Sn content of 2.0% by mass and the connected body has the Sn content of 6.0% by mass.
  • the vibration resistance is 800 minutes and there is no practical problem, but it is lower than the battery 7. This is probably because the stress applied to the pole column is larger when the connecting body and the pole column are compared, and therefore the vibration resistance is improved by increasing the Sn content in the pole column.
  • the battery 9 of the example is used as a base to produce a connecting part by casting, and the battery 9 having the shape of FIG. 6 and the battery 2 of the example are used as a base to produce a connecting part by casting, and the shape of FIG. Then, a battery 10 having a Sn content at the tip (upper part) of the pole column (upper part) as high as 6.0% by mass was fabricated and evaluated.
  • Both the batteries 9 and 10 have greatly improved “choi riding” mode characteristics compared to the batteries 2 and 4. This is thought to be because the batteries 9 and 10 have a shape of connecting parts with less current detour compared to the batteries 2 and 4 that are bent until the current flow path reaches the connecting body from the electrode plate connecting plate. .
  • the battery 10 has improved vibration resistance compared to the battery 2 because the upper Sn content, which is considered to have the highest stress in the pole column, is larger than that in the pole column lower part. Conceivable.
  • FIG. 3 is a cross-sectional view of the cell chamber 6, where L is the distance between the inner walls in the stacking direction of the electrode plate group accommodated in the cell chamber 6, and the thickness W 1 of the positive electrode plate 2 and the negative electrode plate 3
  • the thickness W2 is the total thickness (W1 ⁇ 7 + W2 ⁇ 8) of the positive electrode plate 2 and the negative electrode plate 3.
  • the life characteristic is 35,000 times or more and the SOC indicating the “choi riding” mode characteristic is 70. It can be seen that the vibration resistance is excellent at 1200 minutes or more.
  • a lead storage battery satisfying these values can suppress the operation of the fail-safe mechanism while maintaining sufficient life characteristics and vibration resistance even when the idling stop vehicle is used in the “choy ride” mode.
  • the batteries 4, 13 and 14 having a W / L in the range of 0.60 to 0.70 have a life characteristic of 35,000 times or more, a vibration resistance of 1200 minutes or more, and a “choy ride” mode characteristic.
  • the SOC is 75% or more, all three are excellent, and when the idling stop vehicle is used in the “choi ride” mode, it has a suitable performance.
  • the life characteristic is 36,000 times and the vibration resistance is 1200 minutes or more, but the “choy ride” mode characteristic is 66% SOC. I'm low. This is thought to be due to the lack of active material, which reduced charge acceptance.
  • the battery 16 with W / L of 0.85 also has a life characteristic of 36,000 times and a vibration resistance of 1200 minutes or more.
  • the “choy ride” mode characteristic has a low SOC of 66%. It has become. This is presumably because the electrolyte solution could not move sufficiently and the charge acceptance was reduced.
  • tin sulfate may be added to the positive electrode. It is preferable to add tin sulfate to the positive electrode because the discharge capacity is improved.
  • a Pb-Sn alloy with a high Sn content is put in advance in the mold part corresponding to the upper part of the pole column, and the temperature conditions are adjusted so that the upper part of the pole column is moved to the lower part.
  • the Sn content may be gradually lowered.
  • the present invention is useful for a lead storage battery used in an idling stop vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A lead storage battery provided with a plurality of polar plate groups in which a plurality of positive plates and negative plates are stacked together interposed by separators, and a plurality of cell chambers accommodating the polar plate group together with an electrolyte, wherein the polar plates having the same polarity in the polar plate group are connected together through a polar plate-connecting plate, the multiple cell chambers are adjacently arrayed, and the polar plate groups accommodated in adjacent cell chambers are connected together in series through a connection body connected to the polar plate-connecting plate. Among the polar plate-connecting plates connected to the polar plate groups accommodated in the cell chambers located at the edges, one polar plate-connecting plate is connected to a polar column connected with an external terminal. The polar plate-connecting plate, the connection body and the polar column comprise a lead alloy not containing Sb but containing Sn. The connection body and/or the polar column has a greater content ratio of Sn than the polar plate-connecting plate.

Description

鉛蓄電池Lead acid battery
 本発明は、アイドリングストップ車に使用される鉛蓄電池に関する。 The present invention relates to a lead storage battery used in an idling stop vehicle.
 アイドリングストップ車は、停車中にエンジンを停止することで燃費を向上させることができる。しかしながら、鉛蓄電池は、アイドリングストップ中に、エアコンやファンなどの全ての電力を供給するため、鉛蓄電池は充電不足になりやすい。そのため、鉛蓄電池は充電不足を解消するために、短時間でより多くの充電ができる高い充電受入性が要求される。また、アイドリングストップ車は頻繁にエンジンのオン・オフを繰り返すため、放電によって生成された硫酸鉛を、充電によって二酸化鉛と鉛とに回復する間もなく、次の放電が行われてしまう。従って、鉛蓄電池の寿命が低下しやすくなる。そのため、鉛蓄電池は寿命の低下を解消するために高い耐久性も併せ要求される。 The idling stop vehicle can improve fuel efficiency by stopping the engine while it is stopped. However, since the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop, the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability capable of being charged more in a short time in order to solve the shortage of charging. Further, since the idling stop vehicle frequently repeats on / off of the engine, the next discharge is performed immediately before the lead sulfate generated by the discharge is restored to lead dioxide and lead by charging. Therefore, the life of the lead storage battery is likely to decrease. For this reason, lead storage batteries are also required to have high durability in order to eliminate the decrease in life.
 また、セル室間の極板群同士を接続する接続体と呼ばれる部材や外部端子との仲介部材である極柱は、車両の振動によって大きな応力を受ける。そのため、強度が大きいアンチモン含有鉛をこれらの部材に使用することが考えられる。けれどもアンチモンが含有されていると充放電反応に対する耐腐食性が劣る。特にアイドリングストップ車両では、アイドリングストップ機能がない車両に比べて、充電から放電及び放電から充電に切り替わる回数及び充放電電気量が大幅に増加しているため、充放電反応によって極板だけではなく、極板と接続体・極柱とを接続するいわゆる極板の耳と呼ばれる部分も腐食しやすくなる。 Also, a member called a connecting body that connects the electrode plate groups between the cell chambers and a pole column that is an intermediary member with the external terminal are subjected to great stress due to vehicle vibration. Therefore, it is conceivable to use antimony-containing lead having high strength for these members. However, when antimony is contained, the corrosion resistance against charge / discharge reaction is poor. Especially in the idling stop vehicle, compared with the vehicle without the idling stop function, the number of times of switching from charging to discharging and discharging and charging and the amount of charge / discharge electricity are greatly increased, so not only the electrode plate due to the charging / discharging reaction, A portion called a so-called ear of the electrode plate that connects the electrode plate and the connecting body / pole column also easily corrodes.
 鉛蓄電池の充電受入性を向上させるために、特許文献1には、電解液にアルミニウムイオンを含有させた鉛蓄電池が記載されている。アルミニウムイオンは、放電時に、正極及び負極に生成される硫酸鉛の結晶の粗大化を抑制する効果を有し、これにより、鉛蓄電池の充電受入性能を向上させることができる。 In order to improve the charge acceptability of a lead storage battery, Patent Document 1 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.
 鉛蓄電池の耐久性を向上させるために、特許文献2には、アンチモンを含まない負極格子の表面に、アンチモンを含む鉛合金層を設けた鉛蓄電池が記載されている。アンチモンを含む鉛合金層は、負極板を効率的に充電回復させる効果を有し、これにより、鉛蓄電池の耐久性を向上させることができる。 In order to improve the durability of the lead storage battery, Patent Document 2 describes a lead storage battery in which a lead alloy layer containing antimony is provided on the surface of a negative electrode lattice not containing antimony. The lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.
 また、特許文献3には、アンチモンを含まない負極格子に、アンチモンを添加した負極活物質を充填し、かつ、正極活物質に対する負極活物質の質量比を、0.7~1.3の範囲にした鉛蓄電池が記載されている。負極活物質に添加されたアンチモンは、負極の水素過電圧を低下させる効果を有し、これにより、負極活物質の充電受入性を向上させることができる。さらに、正極活物質に対する負極活物質の質量比を、0.7~1.3の範囲にすることにより、鉛蓄電池が過放電されたときに、負極活物質からアンチモンが電解液に溶出し、負極耳に析出するのを抑制でき、これにより、負極耳の腐食を抑制することができる。 Patent Document 3 discloses that a negative electrode lattice not containing antimony is filled with a negative electrode active material to which antimony is added, and the mass ratio of the negative electrode active material to the positive electrode active material is in the range of 0.7 to 1.3. A lead acid battery is described. Antimony added to the negative electrode active material has an effect of lowering the hydrogen overvoltage of the negative electrode, whereby the charge acceptability of the negative electrode active material can be improved. Furthermore, by setting the mass ratio of the negative electrode active material to the positive electrode active material in the range of 0.7 to 1.3, when the lead storage battery is overdischarged, antimony is eluted from the negative electrode active material into the electrolytic solution, Precipitation on the negative electrode ear can be suppressed, and thereby corrosion of the negative electrode ear can be suppressed.
特開2006-4636号公報JP 2006-4636 A 特開2006-156371号公報JP 2006-156371 A 特開2006-114417号公報JP 2006-114417 A 国際公開WO2012/120768公報International Publication WO2012 / 120768
 アイドリングストップ車に使用される鉛蓄電池は、充電不足になりやすい。そのため、鉛蓄電池の過放電を防止する目的で、アイドリングストップ車には、充電状態(SOC)が所定値(例えば60%)以下になると鉛蓄電池を放電させないフェールセーフ機構が設けられている場合がある。 鉛 Lead-acid batteries used in idling stop vehicles tend to be undercharged. Therefore, for the purpose of preventing overdischarge of the lead storage battery, the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.
 図1は、アイドリングストップ車において、鉛蓄電池の放電と充電を繰り返したときの充電状態(SOC)を模式的に示したグラフである。図1に示した折れ線グラフは、車が停止中に鉛蓄電池が放電されて、SOCが低下し、再び、車が走行して鉛蓄電池が充電されて、SOCが回復され、これが繰り返されるパターンを示したものである。 FIG. 1 is a graph schematically showing a state of charge (SOC) when a lead-acid battery is repeatedly discharged and charged in an idling stop vehicle. The line graph shown in FIG. 1 shows a pattern in which the lead storage battery is discharged while the vehicle is stopped, the SOC decreases, the vehicle travels again, the lead storage battery is charged, the SOC is recovered, and this is repeated. It is shown.
 鉛蓄電池の充電受入性が高ければ、車の走行中に、鉛蓄電池はSOCが約100%まで回復するため、図1中の折れ線グラフAに示すように、アイドリングストップ車を長く走行させても、鉛蓄電池の充放電を繰り返すことができる。 If the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, even if the idling stop car is run for a long time as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.
 しかしながら、鉛蓄電池の充電受入性が高くないと、図1中の折れ線グラフBに示すように、走行中に充電が十分にできない状態が頻発する。。SOCが100%まで回復しない状態で、車が停止すると、放電によるSOCの低下が大きくなる。このような充放電が繰り返されると、SOCが徐々に下がり続けることになる。この場合、アイドリングストップ車にフェールセーフ機構が設けられていると、SOCが所定値(例えば60%)以下になった時点で、フェールセーフ機構が働き、放電がストップする事態が生じる。 However, if the lead-acid battery is not highly charge-acceptable, as shown by the line graph B in FIG. . When the vehicle is stopped in a state where the SOC does not recover to 100%, the decrease in the SOC due to the discharge becomes large. When such charging / discharging is repeated, the SOC gradually decreases. In this case, when the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.
 特に、1回の走行距離が短い乗車を繰り返し行う場合(以下、このような乗車方法を「チョイ乗り」という)、走行中の充電が十分にできず、SOCが100%まで回復しないため、フェールセーフ機構が頻繁に作動する事態を招く。さらに、平日には車の運転をしないで週末にのみ「チョイ乗り」をするような場合には、平日に停車している際の自己放電や暗電流によるSOCの低下がさらに進むため、フェールセーフ機構が作動する事態がより顕著になる。しかしながら、従来、このような「チョイ乗り」モードで且つ低頻度で使用するアイドリングストップ車にも適用しうる、十分な充電受入性、及び耐久性(寿命特性、接続体・極柱の耐振動特性)を併せ持った鉛蓄電池はなかった。 In particular, when a ride with a short mileage is repeatedly performed (hereinafter, such a ride method is referred to as “choy ride”), charging during running cannot be sufficiently performed and the SOC does not recover to 100%. The safe mechanism is frequently operated. In addition, when driving on weekends without driving on weekdays, the SOC decreases due to self-discharge and dark current when stopping on weekdays. The situation where the mechanism operates becomes more prominent. However, sufficient charge acceptance and durability that can be applied to idling stop vehicles that are conventionally used in such “choy riding” mode and at low frequency (life characteristics, vibration resistance characteristics of connectors and poles) ) Was not included in the lead storage battery.
 本発明は、かかる課題に鑑みなされたもので、その主な目的は、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性、及び耐久性(寿命特性、接続体・極柱の耐振動特性)を併せ持った鉛蓄電池を提供することにある。 The present invention has been made in view of such a problem, and its main purpose is sufficient charge acceptance and durability (life characteristics, connection body) that can be applied to an idling stop vehicle used in the “choi riding” mode.・ To provide a lead-acid battery that has both the anti-vibration characteristics of the poles).
 本発明に係る鉛蓄電池は、複数の正極板及び負極板がセパレータを介して積層された極板群を複数と、各前記極板群を電解液と共に収容するセル室を複数とを備えた鉛蓄電池であって、前記極板群における同じ極性の極板同士はそれぞれ極板接続板により接続されており、複数の前記セル室は隣接して並んでおり、隣り合う前記セル室間に収容された前記極板群同士は、前記極板接続板に接続されている接続体によって直列に接続されており、端に位置する前記セル室に収容された前記極板群に接続された前記極板接続板のうち、前記接続体に未接続である極板接続板は外部端子と接続する極柱に接続されており、前記極板接続板、前記接続体および前記極柱はアンチモンを含有せず、錫を含有した鉛合金からなっており、錫の含有割合は、前記極板接続板よりも前記接続体および前記極柱の少なくとも一方の方が大きいことを特徴とする。 A lead storage battery according to the present invention is a lead comprising a plurality of electrode plate groups in which a plurality of positive electrode plates and negative electrode plates are laminated via separators, and a plurality of cell chambers for accommodating each of the electrode plate groups together with an electrolytic solution. In the storage battery, electrode plates of the same polarity in the electrode plate group are connected to each other by electrode plate connection plates, and the plurality of cell chambers are arranged adjacent to each other and are accommodated between the adjacent cell chambers. The electrode plate groups are connected in series by a connection body connected to the electrode plate connection plate, and the electrode plates connected to the electrode plate group housed in the cell chamber located at the end. Of the connection plates, the electrode plate connection plate that is not connected to the connection body is connected to a pole column connected to an external terminal, and the electrode plate connection plate, the connection body, and the pole column do not contain antimony. It consists of a lead alloy containing tin, and the tin content is Wherein said that towards the at least one connection member and the electrode post is larger than the electrode plate connecting plate.
 ある好適な実施形態において、前記極板接続板の錫の含有割合は、1.5質量%以上3.5質量%以下であり、前記接続体および前記極柱の少なくとも一方の錫の含有割合は、3質量%以上10質量%以下である。 In a preferable embodiment, the content ratio of tin in the electrode plate connection plate is 1.5% by mass or more and 3.5% by mass or less, and the content ratio of tin in at least one of the connection body and the pole column is It is 3 mass% or more and 10 mass% or less.
 ある好適な実施形態において、前記接続体は、前記極板の積層方向であって前記極板接続板が伸びている線上において前記極板接続板に一体的に接続されている。 In a preferred embodiment, the connection body is integrally connected to the electrode plate connection plate in a stacking direction of the electrode plates and on a line extending from the electrode plate connection plate.
 ある好的な実施形態において、前記極柱の錫含有割合は、前記外部端子と接続する上部の方が前記極板接続板と接続する下部よりも大きい。前記極柱の錫含有割合は、前記下部から前記上部へ次第に大きくなっていることが好ましい。 In a preferred embodiment, the proportion of tin contained in the pole column is larger in the upper part connected to the external terminal than in the lower part connected to the electrode plate connection plate. It is preferable that the tin content of the polar column gradually increases from the lower part to the upper part.
 ある好適な実施形態において、極板群の積層方向におけるセル室の内側の距離をL、一つの極板群における複数の正極板及び負極板の総厚みをWとしたとき、W/Lは、0.50以上0.80以下の範囲にある。 In a preferred embodiment, when the distance inside the cell chamber in the stacking direction of the electrode plate group is L, and the total thickness of the plurality of positive electrode plates and negative electrode plates in one electrode plate group is W, W / L is: It is in the range of 0.50 or more and 0.80 or less.
 本発明によれば、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性、及び耐久性(寿命特性、接続体・極柱の耐振動特性)を併せ持った鉛蓄電池を提供することができる。 According to the present invention, a lead storage battery having sufficient charge acceptance and durability (life characteristics, connection body / vibration resistance characteristics of a pole pole) that can be applied to an idling stop vehicle used in the “choi riding” mode. Can be provided.
アイドリングストップ車における鉛蓄電池の放電と充電とを繰り返したときの充電状態(SOC)を模式的に示したグラフである。It is the graph which showed typically a charge condition (SOC) when discharging and charge of a lead acid battery in an idling stop car are repeated. 本発明の一実施形態における鉛蓄電池の構成を模式的に示した概観図である。1 is an overview diagram schematically showing a configuration of a lead storage battery in an embodiment of the present invention. セル室に収容された極板群の構成を示した断面図である。It is sectional drawing which showed the structure of the electrode group accommodated in the cell chamber. 接続部品の形状を示す模式的な斜視図である。It is a typical perspective view which shows the shape of a connection component. 別の接続部品の形状を示す模式的な斜視図である。It is a typical perspective view which shows the shape of another connection component. 他の接続部品の形状を示す模式的な斜視図である。It is a typical perspective view which shows the shape of another connection component.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible.
 図2は、本発明の一実施形態における鉛蓄電池1の構成を模式的に示した概観図である。 FIG. 2 is an overview diagram schematically showing the configuration of the lead storage battery 1 in one embodiment of the present invention.
 図2に示すように、鉛蓄電池1は、複数の正極板2及び負極板3がセパレータ4を介して積層された極板群5を有しており、この極板群5が電解液と共にセル室6に収容されている。 As shown in FIG. 2, the lead storage battery 1 has an electrode plate group 5 in which a plurality of positive electrode plates 2 and negative electrode plates 3 are laminated via a separator 4, and the electrode plate group 5 is a cell together with an electrolyte. It is accommodated in the chamber 6.
 ここで、正極板2は、正極格子(不図示)と、正極格子に充填された正極活物質(不図示)とを備え、負極板3は、負極格子(不図示)と、負極格子に充填された負極活物質(不図示)とを備えている。なお、本実施形態における正極格子及び負極格子は、共に、アンチモン(Sb)を含有しない鉛または鉛合金からなり、例えば、Pb-Ca合金、Pb-Sn合金、Pb-Ca-Sn合金からなる。アンチモンを含有しない、というのは、合金成分としてアンチモンを加えることをしないことを意味する。不純物として原料に微量のアンチモンが含まれていて、このアンチモンを取り除くために大きなコストがかかる場合はアンチモンを含有しないことを意味している。すなわち、アンチモンが不可避不純物である場合は、本願発明ではアンチモンを含有しないということになる。 Here, the positive electrode plate 2 includes a positive electrode lattice (not shown) and a positive electrode active material (not shown) filled in the positive electrode lattice, and the negative electrode plate 3 fills the negative electrode lattice (not shown) and the negative electrode lattice. A negative electrode active material (not shown). The positive electrode lattice and the negative electrode lattice in this embodiment are both made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Ca—Sn alloy. The fact that it does not contain antimony means that antimony is not added as an alloy component. If the raw material contains a small amount of antimony as an impurity and it takes a large cost to remove this antimony, it means that no antimony is contained. That is, when antimony is an unavoidable impurity, the present invention does not contain antimony.
 複数の正極板2は、正極格子の耳部9同士が正極ストラップ(極板接続板)7によって、互いに並列接続されている。複数の負極板3は、負極格子の耳部10同士が負極ストラップ(極板接続板)8によって、互いに並列接続されている。さらに、各セル室6内に収容された複数の極板群5同士は、接続体11によって直列接続されている。接続体11は正極ストラップ7あるいは負極ストラップ8に電気的に接続している。両端のセル室6における正極ストラップ7及び負極ストラップ8の一つずつは隣りのセル室6の極板群5とは接続されず、外部端子とつながることになる。つまり両端のセル室6における正極ストラップ7及び負極ストラップ8には、それぞれ極柱が溶接されており、各極柱は、蓋14に配設された正極端子12及び負極端子13に、それぞれ溶接されている。 The plurality of positive electrode plates 2 are connected in parallel to each other by the positive electrode straps (electrode plate connection plates) 7 at the ears 9 of the positive electrode lattice. The plurality of negative electrode plates 3 are connected in parallel to each other by negative electrode straps (electrode plate connection plates) 8 at the ends 10 of the negative electrode lattice. Further, the plurality of electrode plate groups 5 accommodated in each cell chamber 6 are connected in series by a connection body 11. The connection body 11 is electrically connected to the positive strap 7 or the negative strap 8. Each of the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends is not connected to the electrode plate group 5 of the adjacent cell chamber 6 and is connected to an external terminal. That is, the pole columns are welded to the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends, and the respective pole columns are welded to the positive terminal 12 and the negative terminal 13 disposed on the lid 14, respectively. ing.
 本実施形態では、極板接続板(正極ストラップ7,負極ストラップ8)、接続体11および極柱は、アンチモンを含有しないPb-Sn合金により形成されている。これら極板接続板、接続体および極柱を併せて接続部品と呼ぶことにする。 In this embodiment, the electrode plate connection plate (positive electrode strap 7, negative electrode strap 8), connection body 11, and electrode column are formed of a Pb—Sn alloy containing no antimony. These electrode plate connection plate, connection body and pole column are collectively referred to as connection parts.
 本実施形態の接続部品を図4,5に示す。図4(a)のように、極板接続板50と接続体51とは別々の部材として供給され、溶接によって図4(b)のように耳部60と一緒に接続される。また、図5(a)のように極柱53と極板接続板50とは別々の部材として供給され、溶接によって図5(b)のように耳部60と一緒に接続される。なお本実施形態では、接続体51は接続介在部材52を介して極板接続板50に接続され、極柱53も接続介在部材54を介して極板接続板50に接続される。 The connection parts of this embodiment are shown in FIGS. As shown in FIG. 4A, the electrode plate connection plate 50 and the connection body 51 are supplied as separate members, and are connected together with the ears 60 by welding as shown in FIG. 4B. Further, the pole column 53 and the electrode plate connecting plate 50 are supplied as separate members as shown in FIG. 5A, and are connected together with the ears 60 as shown in FIG. 5B by welding. In the present embodiment, the connection body 51 is connected to the electrode plate connection plate 50 via the connection interposition member 52, and the pole column 53 is also connected to the electrode plate connection plate 50 via the connection interposition member 54.
 ここで接続体51や極柱53には複数枚の正極板2または負極板3がぶら下がっており、かつ接続体51同士での固定、あるいは極柱53と外部端子との固定が行われている。鉛蓄電池に振動がかかったときには、これらの固定部分の近辺に最も応力がかかる。従って接続部品すべてが同じ材料から構成されて同じ強度であると、最初に接続体51や極柱53が破損してしまう。このような振動に耐えるようにするために、構成材料として強度が高いPb-Sb合金を用いるのが効果的であるが、特許文献4に記載されているように、アンチモンが含まれていると、電解液に対する腐食性が劣るため、Snを含む合金を用いることが考えられる。特にアイドリングストップ車両用途で「チョイ乗り」モードで充放電が行われると、充電不足になって放電生成物が耳部にまで形成されるため、さらなる対策が必要になる。 Here, a plurality of positive plates 2 or negative plates 3 hang from the connection body 51 and the pole column 53, and the connection body 51 is fixed to each other, or the pole column 53 and the external terminal are fixed. . When the lead storage battery is vibrated, the stress is most applied in the vicinity of these fixed portions. Therefore, if all the connection parts are made of the same material and have the same strength, the connection body 51 and the pole column 53 are first damaged. In order to withstand such vibration, it is effective to use a Pb—Sb alloy having high strength as a constituent material. However, as described in Patent Document 4, when antimony is included, Since the corrosiveness with respect to the electrolytic solution is inferior, it is considered to use an alloy containing Sn. In particular, when charging / discharging is performed in the “choi riding” mode in an idling stop vehicle application, charging is insufficient and a discharge product is formed even in the ear portion, so further measures are required.
 けれども、単にSnを含有する鉛合金を用いるのでは、コスト面および「チョイ乗り」モードに影響を与えてしまう。そこで本願発明者らはこれまで検討が行われていなかった、「チョイ乗り」モードにおける接続部品の原材料構成について検討を行った結果、接続部品にはアンチモンを含有しないPb-Sn合金を用い、且つ極板接続板50よりも接続体51及び極柱53のうち少なくとも一方の方がSnの含有量が大きいものとすることとした。極板接続板50にもSnを含有させるのは、極板接続板50にも振動によって応力がかかるからであり、応力の大きさや充放電のモード・回数に応じて上述の構成とすることとした。 However, simply using a lead alloy containing Sn will affect the cost and the “choy ride” mode. Therefore, as a result of examining the raw material composition of the connecting part in the “choi riding” mode, which has not been studied so far, the present inventors used a Pb—Sn alloy containing no antimony for the connecting part, and At least one of the connection body 51 and the pole column 53 has a higher Sn content than the electrode plate connection plate 50. The reason why Sn is also contained in the electrode plate connecting plate 50 is that stress is also applied to the electrode plate connecting plate 50 due to vibration, and the above-described configuration is adopted according to the magnitude of stress and the charge / discharge mode / number of times. did.
 極板接続板50よりも接続体51及び極柱53の方がSnの含有量が大きく、極板接続板50にはSnが1.5質量%以上3.5質量%以下含まれており、接続体51および極柱53の少なくとも一方にはSnが3質量%以上10質量%以下含まれていることがより好ましい。 The connection body 51 and the pole column 53 have a larger Sn content than the electrode plate connection plate 50, and the electrode plate connection plate 50 contains Sn in an amount of 1.5 mass% to 3.5 mass%. It is more preferable that at least one of the connection body 51 and the pole column 53 contains Sn in an amount of 3% by mass to 10% by mass.
 また、極柱53に関しては、外部端子と接続される先端(上部)の方が極板接続板50に接続される下部よりもかかる応力が大きくなるため、上部の方のSnの含有率を大きくした方がより好ましい。 In addition, regarding the pole column 53, the stress applied to the tip (upper part) connected to the external terminal is larger than that of the lower part connected to the electrode plate connection plate 50, so the Sn content in the upper part is increased. Is more preferable.
 また、本実施形態において、接続部品を溶接によって耳部及び互いに接続するのではなく、鋳造によって耳部との接続を含めて作製する方法(COS:Cast on Strap)をより好適な実施例として採用をした。この場合、接続体や極柱はSn含有率の高い部材をあらかじめ作製して型に入れておく方法で作製してもよいし、接続体や極柱はSn含有率の高い溶融原料を注入して作製する方法を用いてもよい。 Further, in this embodiment, a method (COS: Cast on Strap) in which the connection parts are not connected to each other by welding but connected to the ears by casting is adopted as a more preferable example. Did. In this case, the connection body and the pole column may be manufactured by a method in which a member having a high Sn content is prepared in advance and put in a mold, or the connection body and the pole column are injected with a molten material having a high Sn content. Alternatively, a method for manufacturing may be used.
 鋳造により接続部品を作製すると、図6に示すように、極板接続板50が伸びる(極板の積層方向)線上に接続体55を位置させることができる。溶接により接続部品を作製すると、耳部60と極板接続板50との接続を確実にするために接続体51は極板接続板50が伸びる線上に位置させることが非常に困難である。このため、図4に示す接続部品ではセル室間において電流の流れに迂回路ができるのに比べて、図6の接続部品では電流がより直線的に流れる。従って、充電受入性が向上して「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。ただ、COSの方が溶接により接続部品を作製するよりも接続部品が重くなる。 When the connection part is produced by casting, as shown in FIG. 6, the connection body 55 can be positioned on a line in which the electrode plate connection plate 50 extends (in the stacking direction of the electrode plates). When a connection part is produced by welding, it is very difficult to position the connection body 51 on a line on which the electrode plate connection plate 50 extends in order to ensure the connection between the ear portion 60 and the electrode plate connection plate 50. For this reason, in the connection component shown in FIG. 4, the current flows more linearly in the connection component of FIG. Therefore, even if it is applied to an idling stop vehicle that is improved in charge acceptance and used in the “choy ride” mode, the operation of the fail-safe mechanism can be more effectively suppressed. However, the COS is heavier than the connection part produced by welding.
 本実施形態において、極板群5の積層方向におけるセル室6の内壁間の距離をL、当該セル室6内に収納された複数の正極板2及び負極板3の総厚みをWとしたとき、W/Lは、0.50~0.80の範囲にあることが好ましい。W/Lの値は、正極板2と負極板3との間の隙間の大きさ、換言すれば、電解液の回り込み量の指標となり、W/Lの値が0.50~0.80の範囲にあると、鉛蓄電池1の充電受入性がさらに向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。 In this embodiment, when the distance between the inner walls of the cell chamber 6 in the stacking direction of the electrode plate group 5 is L, and the total thickness of the plurality of positive plates 2 and negative plates 3 housed in the cell chamber 6 is W. , W / L is preferably in the range of 0.50 to 0.80. The value of W / L is an index of the size of the gap between the positive electrode plate 2 and the negative electrode plate 3, in other words, the amount of wraparound of the electrolyte, and the value of W / L is 0.50 to 0.80. If it is within the range, the charge acceptability of the lead storage battery 1 is further improved, and the operation of the fail-safe mechanism can be more effectively suppressed even when applied to an idling stop vehicle used in the “choy ride” mode.
 本実施形態において、負極格子の表面には、アンチモンを含有する鉛合金からなる表面層(不図示)が形成されている。アンチモンを含む鉛合金は、水素過電圧を下げる効果を有し、これにより、鉛蓄電池1の充電受入性を向上させることができる。なお、表面層は、アンチモンの含有量が、1.0~5.0質量%のPb-Sb系合金からなることが好ましい。 In this embodiment, a surface layer (not shown) made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice. The lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 1 can be improved. The surface layer is preferably made of a Pb—Sb alloy having an antimony content of 1.0 to 5.0 mass%.
 また、本実施形態において、電解液は、0.01~0.45mol/L、より好ましくは0.03~0.28mol/Lのナトリウムイオンを含有している。電解液中のナトリムイオンは、過放電回復性を向上させる効果を有し、これにより、鉛蓄電池1の充電受入性がさらに向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。 In the present embodiment, the electrolytic solution contains 0.01 to 0.45 mol / L, more preferably 0.03 to 0.28 mol / L of sodium ions. The sodium ions in the electrolyte have the effect of improving the overdischarge recovery, which further improves the charge acceptance of the lead storage battery 1 and is applied to an idling stop vehicle used in the “choi ride” mode. However, the operation of the fail-safe mechanism can be more effectively suppressed.
 また、本実施形態において、負極板3は、極板群5の両側に配置されており、かつ、負極板3は、袋状のセパレータ4に収容されており、セパレータ4の袋の内側には、負極板3とセパレータ4との間に一定の隙間を形成する複数のリブ15が設けられていることが好ましい。これにより、極板群5の両側に配置された負極板3にも、電解液が回り込むことができるため、鉛蓄電池1の充電受入性がさらに向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。 In the present embodiment, the negative electrode plate 3 is disposed on both sides of the electrode plate group 5, and the negative electrode plate 3 is accommodated in a bag-like separator 4, It is preferable that a plurality of ribs 15 forming a certain gap be provided between the negative electrode plate 3 and the separator 4. As a result, the electrolyte solution can also flow into the negative electrode plates 3 arranged on both sides of the electrode plate group 5, so that the charge acceptance of the lead storage battery 1 is further improved, and the idling stop used in the “choi riding” mode. Even when applied to a vehicle, the operation of the fail-safe mechanism can be more effectively suppressed.
 なお、少なくとも極板群5の両側に配置された負極板3を収容するセパレータ4に複数のリブ15が設けられていれば、上記効果を発揮しうるが、勿論、全ての負極板3を収容するセパレータ4に、複数のリブ15を設けておいても構わない。また、鉛蓄電池1が1つのセル室6しか有さない場合には、鉛蓄電池1の電槽が当該セル室6を兼ねていてもよい。 In addition, if the separator 4 that accommodates the negative electrode plate 3 disposed at least on both sides of the electrode plate group 5 is provided with a plurality of ribs 15, the above-described effects can be exhibited. Of course, all the negative electrode plates 3 are accommodated. The separator 4 may be provided with a plurality of ribs 15. When the lead storage battery 1 has only one cell chamber 6, the battery case of the lead storage battery 1 may also serve as the cell chamber 6.
 さらに、本実施形態において、セル室6当たりの正極活物質の質量をM、負極活物質の質量をMとしたとき、両者の質量比M/Mは、0.70~1.10の範囲に設定されていることが好ましく、0.80~1.0の範囲に設定されていることがより好ましい。正極活物質に対する負極活物質の質量比M/Mがこの範囲にあると、寿命特性を維持しつつ、鉛蓄電池1の充電受入性が向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより抑制することができるからである。 Further, in the present embodiment, when the mass of the positive electrode active material per cell chamber 6 and M P, the mass of the negative electrode active material and M N, the mass ratio M N / M P of both 0.70 and 1. It is preferably set in the range of 10, more preferably in the range of 0.80 to 1.0. When the mass ratio M N / M P of the negative electrode active material for the positive electrode active material is in this range, while maintaining the life characteristics, improved charge acceptance of the lead storage battery 1, the idling stop to be used in the "Choi ride" mode This is because even when applied to a car, the operation of the fail-safe mechanism can be further suppressed.
 また、正極活物質密度が3.6~4.8g/mlであると好ましい。寿命特性を維持しつつ、鉛蓄電池1の充電受入性が向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより抑制することができるからである。 The positive electrode active material density is preferably 3.6 to 4.8 g / ml. This is because the charge acceptability of the lead storage battery 1 is improved while maintaining the life characteristics, and the operation of the fail-safe mechanism can be further suppressed even when applied to an idling stop vehicle used in the “choy ride” mode. .
 以下、本発明の実施例を挙げて、本発明の構成及び効果をさらに説明する。なお、本発明は、これら実施例に限定されるものではない。 Hereinafter, the configuration and effects of the present invention will be further described with reference to examples of the present invention. The present invention is not limited to these examples.
(1)鉛蓄電池の作製
 本実施例で作製した鉛蓄電池1は、JISD5301に規定するD23Lタイプの大きさの液式鉛蓄電池である。各セル室6には、7枚の正極板2と8枚の負極板3とが収容され、負極板3は、袋状のポリエチレン製のセパレータ4に収容されている。セパレータ4の袋の内面には、負極板3との間に一定の隙間を形成する複数のリブ15が設けられている。
(1) Production of lead acid battery The lead acid battery 1 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301. Each cell chamber 6 accommodates seven positive electrode plates 2 and eight negative electrode plates 3, and the negative electrode plate 3 is accommodated in a bag-like polyethylene separator 4. On the inner surface of the bag of the separator 4, a plurality of ribs 15 that form a certain gap with the negative electrode plate 3 are provided.
 実施例に係る電池1~16および比較例に係る電池A、Bの構成と電池の特性について表1に示す。 Table 1 shows the configurations and battery characteristics of the batteries 1 to 16 according to the examples and the batteries A and B according to the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した構成以外の、各電池に共通する構成については、以下に説明する。 The configuration common to each battery other than the configuration shown in Table 1 will be described below.
 正極板2は、酸化鉛粉を硫酸と精製水とで混練してペーストを作成し、これをカルシウムと錫を含む鉛合金からなるエキスパンド格子に充填して作製した。 The positive electrode plate 2 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a lead alloy containing calcium and tin.
 負極板3は、酸化鉛粉に対し、有機添加剤等を添加して、硫酸と精製水とで混練してペーストを作成し、これをカルシウムと錫を含む鉛合金からなるエキスパンド格子に充填して作製した。 The negative electrode plate 3 is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to create a paste, and filling this into an expanded lattice made of a lead alloy containing calcium and tin. Made.
 負極格子は、Pb-1.2Sn-0.1Caのエキスパンド格子からなり、表面層は、Pb-3質量%Sb箔からなる。 The negative electrode lattice is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of Pb-3 mass% Sb foil.
 正極格子は、Pb-1.6Sn-0.1Caのエキスパンド格子からなり、表面層は設けていない。 The positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided.
 作製した正極板2及び負極板3を熟成乾燥させた後、正極板2と負極板3とをセパレータ4を介して交互に重ね、7枚の正極板2と8枚の負極板3とがセパレータ4を介して積層された極板群5を作製した。このとき正極活物質密度は4.2g/mlであった。この極板群5を、6つのセル室6にそれぞれ収容し、6つのセル(極板群5)を接続部品によって直列接続した実施例及び比較例に係る鉛蓄電池を作製した。 After the produced positive electrode plate 2 and negative electrode plate 3 are aged and dried, the positive electrode plates 2 and the negative electrode plates 3 are alternately stacked via the separators 4, and the seven positive electrode plates 2 and the eight negative electrode plates 3 are separated. The electrode plate group 5 laminated through 4 was produced. At this time, the positive electrode active material density was 4.2 g / ml. The electrode plate group 5 was accommodated in each of the six cell chambers 6, and lead storage batteries according to Examples and Comparative Examples in which six cells (electrode plate group 5) were connected in series by connecting parts were produced.
 この鉛蓄電池に、密度が1.28g/cm3の希硫酸からなる電解液を入れ、電槽化成を行って、12V48Ahの鉛蓄電池を得た。 An electrolytic solution made of dilute sulfuric acid having a density of 1.28 g / cm 3 was put into this lead storage battery, and a battery case was formed to obtain a 12V48Ah lead storage battery.
(2)鉛蓄電池の特性評価
 (2-1)寿命特性の評価
 作製した鉛蓄電池に対して、以下に説明するような、アイドリングストップを想定した充放電を繰り返して、鉛蓄電池の寿命特性の評価を行った。
(2) Characteristic evaluation of lead storage battery (2-1) Evaluation of life characteristics Evaluation of life characteristics of lead storage batteries by repeatedly charging and discharging the prepared lead storage battery assuming idling stop as described below. Went.
 寿命特性の試験は、電池工業会規格(SBA S 0101)にほぼ準拠した、下記に示す条件で行った。なお、環境温度は、25℃±2℃で行った。 The test of the life characteristics was performed under the conditions shown below, almost compliant with the battery industry association standard (SBA S 0101). The ambient temperature was 25 ° C. ± 2 ° C.
 (A)放電電流45Aで、59秒間放電した後、300Aで、1秒放電する。 (A) After discharging at a discharge current of 45A for 59 seconds, discharge at 300A for 1 second.
 (B)その後、14.2Vの充電電圧(制限電流100A)で、60秒間充電する。 (B) Thereafter, the battery is charged for 60 seconds at a charge voltage of 14.2 V (limit current 100 A).
 (C)(A)、(B)の充放電を1サイクルとして、3600サイクル毎に48時間放置した後、再びサイクルを開始する。 (C) Charge / discharge of (A) and (B) is set as one cycle, and after leaving for 48 hours every 3600 cycles, the cycle is started again.
 上記のサイクルを繰り返し、放電電圧が7.2V未満になったときのサイクル数を、寿命特性とした。なお、上記試験において、補水は、30000サイクルまで行わなかった。 The above cycle was repeated and the number of cycles when the discharge voltage was less than 7.2 V was defined as the life characteristic. In the above test, water replenishment was not performed until 30000 cycles.
 (2-2)「チョイ乗り」モードの特性評価
 作製した鉛蓄電池1に対して、以下に説明するような、「チョイ乗り」モードを想定した充放電を繰り返して、鉛蓄電池の「チョイ乗り」モードの特性評価を行った。なお、環境温度は、25℃±2℃で行った。
(2-2) Characteristic Evaluation of “Choide Ride” Mode For the produced lead storage battery 1, charge / discharge assuming the “Choide Ride” mode as described below is repeated, and the “choi ride” of the lead storage battery is repeated. The mode characteristics were evaluated. The ambient temperature was 25 ° C. ± 2 ° C.
 (A)9.6Aにて2.5時間放電し24時間放置する。 (A) Discharge at 9.6 A for 2.5 hours and leave for 24 hours.
 (B)次に、放電電流20Aで、40秒間放電する。 (B) Next, the battery is discharged at a discharge current of 20 A for 40 seconds.
 (C)次に、14.2Vの充電電圧(制限電流50A)で、60秒間充電する。 (C) Next, the battery is charged for 60 seconds with a charge voltage of 14.2 V (limit current 50 A).
 (D)(B)、(C)の充放電を18回繰り返した後、放電電流20mAで、 83.5時間放電する。 After charging and discharging (D), (B), and (C) 18 times, the battery is discharged at a discharge current of 20 mA for 83.5 hours.
 (E)(B)~(D)の充放電を1サイクルとして、20サイクル繰り返す。 (E) Charge / discharge of (B) to (D) is one cycle, and 20 cycles are repeated.
 上記の20サイクル後の鉛蓄電池の充電状態(SOC)を測定して、この値を、「チョイ乗り」モードの特性とした。 The state of charge (SOC) of the lead storage battery after the above 20 cycles was measured, and this value was taken as the “choy ride” mode characteristic.
 (2-3)耐振動性
 耐振動性については、以下の方法により評価をおこなった。基本的な評価方法は、日本工業規格JIS D5301に記載の耐振動性に準じた。しかしながら本方法では規格に対しての良否の判定しか出来ないため、規格では振動時間を2時間で固定しているが、振動時間を任意とした。また放電電流についても規格では5時間率電流で放電することとなっているが、振動時間が長くなることを想定し20時間率電流に変更した。このような条件にて振動試験を実施し、放電電流の挙動を逐次観察し、電流挙動に異常が現れた時間を該当電池の耐振動性とした。即ち振動時間が長いほど、耐振性は高いこととなる。
(2-3) Vibration resistance The vibration resistance was evaluated by the following method. The basic evaluation method conformed to the vibration resistance described in Japanese Industrial Standard JIS D5301. However, since this method can only determine whether the standard is good or bad, the vibration time is fixed at 2 hours in the standard, but the vibration time is arbitrary. In addition, the standard is that the discharge current is discharged at a 5-hour rate current, but it was changed to a 20-hour rate current assuming that the vibration time becomes longer. The vibration test was performed under such conditions, the behavior of the discharge current was observed sequentially, and the time when the abnormality appeared in the current behavior was regarded as the vibration resistance of the corresponding battery. That is, the longer the vibration time, the higher the vibration resistance.
 (極柱及び接続体のSn含有量)
 電池1~8、電池A,Bでは、極柱及び接続体のSn含有量をパラメータとして変えていき、その他の条件は同じにして電池特性を比較した。
(Sn content of pole pole and connector)
In the batteries 1 to 8 and the batteries A and B, the Sn contents of the pole column and the connection body were changed as parameters, and the other conditions were the same, and the battery characteristics were compared.
 表1に示すように、極柱及び接続体のうちの少なくとも一方が極板接続板よりもSn含有率が大きい電池1~8では寿命特性が35,000回以上で、「チョイ乗り」モード特性も、SOCが75%以上であり、耐振動性は800分以上であることが分かる。これらの値を満たす鉛蓄電池は、アイドリングストップ車を「チョイ乗り」モードで使用しても、十分な耐振動性を維持できて、且つ優れた寿命特性を得られて、フェールセーフ機構の作動を抑制することができる。特に、極板接続板のSn含有量が2.0質量%であって、極柱及び接続体の両方が、Sn含有量が5.0質量%以上8.0質量%以下の範囲の電池3~5は、寿命特性が35,000回以上で、「チョイ乗り」モード特性も、SOCが75%以上で、耐振動性も1200分以上と3つ共に優れ、「チョイ乗り」モードでアイドリングストップ車を使用する場合に、好適な性能を有する。 As shown in Table 1, at least one of the pole column and the connecting body has a life characteristic of 35,000 times or more in the batteries 1 to 8 having a Sn content larger than that of the electrode plate, and the “choy ride” mode characteristic. It can also be seen that the SOC is 75% or more and the vibration resistance is 800 minutes or more. Lead-acid batteries that satisfy these values can maintain sufficient vibration resistance even when the idling stop vehicle is used in the “choi ride” mode, and have excellent life characteristics, and can operate the fail-safe mechanism. Can be suppressed. In particular, the battery 3 in which the Sn content of the electrode plate connecting plate is 2.0% by mass, and both the pole column and the connected body have the Sn content in the range of 5.0% by mass to 8.0% by mass. ~ 5 has a lifespan of 35,000 times or more, “choy ride” mode characteristics, SOC is 75% or more, and vibration resistance is more than 1200 minutes, and all three are excellent, and idling stop in “choy ride” mode When using a car, it has suitable performance.
 また、極板接続板のSn含有量が2.0質量%であって極柱及び接続体の両方が、Sn含有量が3.0質量%または10.0質量%の電池2,6は、電池3~5に比べると耐振動性がやや劣るが、実用上十二分な性能を有している。 Moreover, the Sn content of the electrode plate connecting plate is 2.0% by mass, and both the pole column and the connected body have the Sn content of 3.0% by mass or 10.0% by mass. Although the vibration resistance is slightly inferior to those of the batteries 3 to 5, it has a practically sufficient performance.
 これに対して、極板接続板、極柱及び接続体のすべてが2.0質量%のSn含有量である電池Aでは、「チョイ乗り」モード特性、寿命特性は優れているが、耐振動性が300分と低くなっている。これは、応力が相対的に大きくかかる極柱及び接続体において、極板接続板と同じSnの含有率であるので、強度が低いためと考えられる。 On the other hand, in the battery A in which all of the electrode plate connection plate, the pole column, and the connection body have an Sn content of 2.0 mass%, the “choy ride” mode characteristics and the life characteristics are excellent, but the vibration resistance Sex is as low as 300 minutes. This is thought to be because the strength is low in the pole column and connection body, where stress is relatively large, because it has the same Sn content as the electrode plate connection plate.
 また、極板接続板、極柱及び接続体のすべてにSbが3.8質量%含有されている電池Bでは、耐振動性は1200分以上と優れているが、寿命特性が18 、000回と劣っている。これは、接続部品にSbが含有されているので部品の強度が向上して耐振動性が良くなったのであるが、接続部品が充放電反応によって腐食してしまって寿命が短くなってしまったためと考えられる。 In addition, the battery B in which 3.8% by mass of Sb is contained in all of the electrode plate connecting plate, the pole column, and the connected body has excellent vibration resistance of 1200 minutes or more, but has a life characteristic of 18,000 times. And inferior. This is because Sb is contained in the connecting part, so that the strength of the part is improved and the vibration resistance is improved, but the life of the connecting part is shortened due to corrosion by the charge / discharge reaction. it is conceivable that.
 また、電池7は接続体が極板接続板と同じSn含有量2.0質量%であって極柱が6.0質量%のSn含有率である。電池7は、寿命特性及び「チョイ乗り」モード特性と寿命特性は優れているが、耐振動性が900分と実用上十分ではあるがやや低めである。逆に電池8は、極柱が極板接続板と同じSn含有量2.0質量%であって接続体が6.0質量%のSn含有率であり、寿命特性及び「チョイ乗り」モード特性と寿命特性は優れているが、耐振動性が800分と実用上問題はないが電池7よりもさらに低めである。これは接続体と極柱とを比較すると、極柱の方がかかる応力が大きいため、極柱の方のSn含有率を大きくした方が耐振動性が向上するからであると考えられる。 In addition, the battery 7 has a Sn content of 2.0 mass%, which is the same as that of the electrode plate connection plate, and an Sn content of 6.0 mass% in the polar column. The battery 7 has excellent life characteristics, “choi riding” mode characteristics and life characteristics, but has a vibration resistance of 900 minutes, which is practically sufficient but slightly lower. On the other hand, the battery 8 has the same Sn content as the electrode plate connecting plate and the Sn content of 2.0% by mass and the connected body has the Sn content of 6.0% by mass. Although the life characteristics are excellent, the vibration resistance is 800 minutes and there is no practical problem, but it is lower than the battery 7. This is probably because the stress applied to the pole column is larger when the connecting body and the pole column are compared, and therefore the vibration resistance is improved by increasing the Sn content in the pole column.
 (接続部品形態)
 実施例の電池4をベースにして、接続部品を鋳造によって作製し、図6の形状とした電池9と、実施例の電池2をベースにして接続部品を鋳造によって作製し、図6の形状とした上で極柱の先端(上部)のSn含有率を6.0質量%と高くした電池10とを作製して評価した。
(Connecting parts form)
The battery 9 of the example is used as a base to produce a connecting part by casting, and the battery 9 having the shape of FIG. 6 and the battery 2 of the example are used as a base to produce a connecting part by casting, and the shape of FIG. Then, a battery 10 having a Sn content at the tip (upper part) of the pole column (upper part) as high as 6.0% by mass was fabricated and evaluated.
 電池9,10ともに、電池2,4に比較して「チョイ乗り」モード特性が大きく向上している。これは、電流流路が極板接続板から接続体に到達するまでに屈曲している電池2,4に比べ、電池9,10では電流の迂回が少ない接続部品の形状となったためと考えられる。また、電池2に比べて電池10は耐振動性が向上しているが、これは極柱においてかかる応力が最も大きいと考えられる上部のSn含有率を極柱下部よりも大きくしているからと考えられる。 Both the batteries 9 and 10 have greatly improved “choi riding” mode characteristics compared to the batteries 2 and 4. This is thought to be because the batteries 9 and 10 have a shape of connecting parts with less current detour compared to the batteries 2 and 4 that are bent until the current flow path reaches the connecting body from the electrode plate connecting plate. . In addition, the battery 10 has improved vibration resistance compared to the battery 2 because the upper Sn content, which is considered to have the highest stress in the pole column, is larger than that in the pole column lower part. Conceivable.
 (セル室幅と極板総厚みとの比率)
 実施例の電池4をベースにして、極板群の積層方向におけるセル室の内側の距離をL、複数の正極板及び負極板の総厚みをWとしたとき、W/Lを、0.45~0.85の範囲に変えた電池11~16を作製し、各電池の寿命特性、「チョイ乗り」モードの特性及び耐振動性を評価した。
(Ratio between cell chamber width and total electrode plate thickness)
Based on the battery 4 of the example, when the distance inside the cell chamber in the stacking direction of the electrode plate group is L, and the total thickness of the plurality of positive and negative electrode plates is W, W / L is 0.45. Batteries 11 to 16 were prepared in the range of ˜0.85, and the life characteristics, “choy ride” mode characteristics and vibration resistance of each battery were evaluated.
 図3は、セル室6の断面図を示したもので、セル室6内に収容された極板群の積層方向における内壁間の距離をLとし、正極板2の厚みW1、負極板3の厚みW2として、正極板2及び負極板3の総厚み(W1×7+W2×8)をWとしている。 FIG. 3 is a cross-sectional view of the cell chamber 6, where L is the distance between the inner walls in the stacking direction of the electrode plate group accommodated in the cell chamber 6, and the thickness W 1 of the positive electrode plate 2 and the negative electrode plate 3 The thickness W2 is the total thickness (W1 × 7 + W2 × 8) of the positive electrode plate 2 and the negative electrode plate 3.
 表1に示すように、W/Lが0.50~0.80の範囲の電池4,12~15では、寿命特性が35,000回以上で、「チョイ乗り」モード特性を示すSOCが70%以上であり、耐振動性も1200分以上と優れていることが分かる。これらの値を満たす鉛蓄電池は、アイドリングストップ車を「チョイ乗り」モードで使用しても、十分な寿命特性及び耐振動性を維持しつつ、フェールセーフ機構の作動を抑制することができる。特に、W/Lが0.60~0.70の範囲の電池4,13,14は、寿命特性が35,000回以上、耐振動性も1200分以上で、「チョイ乗り」モード特性も、SOCが75%以上で、3つともに優れ、「チョイ乗り」モードでアイドリングストップ車を使用する場合に、好適な性能を有する。 As shown in Table 1, in the batteries 4 and 12 to 15 having W / L in the range of 0.50 to 0.80, the life characteristic is 35,000 times or more and the SOC indicating the “choi riding” mode characteristic is 70. It can be seen that the vibration resistance is excellent at 1200 minutes or more. A lead storage battery satisfying these values can suppress the operation of the fail-safe mechanism while maintaining sufficient life characteristics and vibration resistance even when the idling stop vehicle is used in the “choy ride” mode. In particular, the batteries 4, 13 and 14 having a W / L in the range of 0.60 to 0.70 have a life characteristic of 35,000 times or more, a vibration resistance of 1200 minutes or more, and a “choy ride” mode characteristic. The SOC is 75% or more, all three are excellent, and when the idling stop vehicle is used in the “choi ride” mode, it has a suitable performance.
 これに対して、W/Lが0.45である電池11では、寿命特性は36,000回、耐振動性は1200分以上であるが、「チョイ乗り」モード特性は、SOCが66%と低目になっている。これは、活物質が不足しているため、充電受入性が低下したためと考えられる。 On the other hand, in the battery 11 with W / L of 0.45, the life characteristic is 36,000 times and the vibration resistance is 1200 minutes or more, but the “choy ride” mode characteristic is 66% SOC. I'm low. This is thought to be due to the lack of active material, which reduced charge acceptance.
 また、W/Lが0.85である電池16でも、寿命特性は36,000回、耐振動性は1200分以上であるが、「チョイ乗り」モード特性は、SOCが66%と低目になっている。これは、電解液が十分に移動できず、充電受入性が低下したためと考えられる。 The battery 16 with W / L of 0.85 also has a life characteristic of 36,000 times and a vibration resistance of 1200 minutes or more. However, the “choy ride” mode characteristic has a low SOC of 66%. It has become. This is presumably because the electrolyte solution could not move sufficiently and the charge acceptance was reduced.
 以上の結果から、W/Lを、0.50~0.80、より好ましくは0.60~0.70にすることによって、充電受入性がさらに向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。 From the above results, by setting W / L to 0.50 to 0.80, more preferably 0.60 to 0.70, the charge acceptability is further improved and the idling used in the “choi riding” mode. Even when applied to a stop vehicle, the operation of the fail-safe mechanism can be more effectively suppressed.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.
 例えば、正極に硫酸錫を添加してもよい。正極に硫酸錫を添加すると放電容量が向上するので好ましい。 For example, tin sulfate may be added to the positive electrode. It is preferable to add tin sulfate to the positive electrode because the discharge capacity is improved.
 接続部品を鋳造により作製する場合、極柱の上部に相当する金型部分にあらかじめSn含有率が大きいPb-Sn合金を入れておき、温度条件などを調節することで、極柱上部から下部へSn含有率が徐々に低くなるようにしてもよい。 When connecting parts are made by casting, a Pb-Sn alloy with a high Sn content is put in advance in the mold part corresponding to the upper part of the pole column, and the temperature conditions are adjusted so that the upper part of the pole column is moved to the lower part. The Sn content may be gradually lowered.
 本発明は、アイドリングストップ車に使用される鉛蓄電池に有用である。 The present invention is useful for a lead storage battery used in an idling stop vehicle.
 1     鉛蓄電池
 2     正極板
 3     負極板
 4     セパレータ
 5     極板群
 6     セル室
 7     正極ストラップ
 8     負極ストラップ
 9、10  耳部
 11    接続体
 12    正極端子
 13    負極端子
 14    蓋
 15    リブ
 50    極板接続板
 51    接続体
 53    極柱
 55    接続体
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Electrode plate group 6 Cell chamber 7 Positive electrode strap 8 Negative electrode strap 9, 10 Ear part 11 Connection body 12 Positive electrode terminal 13 Negative electrode terminal 14 Lid 15 Rib 50 Electrode plate connection plate 51 Connection object 53 poles 55 connectors

Claims (7)

  1.  複数の正極板及び負極板がセパレータを介して積層された極板群を複数と、
     各前記極板群を電解液と共に収容するセル室を複数と
     を備えた鉛蓄電池であって、
     前記極板群における同じ極性の極板同士はそれぞれ極板接続板により接続されており、
     複数の前記セル室は隣接して並んでおり、
     隣り合う前記セル室間に収容された前記極板群同士は、前記極板接続板に接続されている接続体によって直列に接続されており、
     端に位置する前記セル室に収容された前記極板群に接続された前記極板接続板のうち、前記接続体に未接続である極板接続板は外部端子と接続する極柱に接続されており、
     前記極板接続板、前記接続体および前記極柱はアンチモンを含有せず、錫を含有した鉛合金からなっており、
     錫の含有割合は、前記極板接続板よりも前記接続体および前記極柱の少なくとも一方の方が大きい、鉛蓄電池。
    A plurality of electrode plate groups in which a plurality of positive electrode plates and negative electrode plates are laminated via separators,
    A lead storage battery comprising a plurality of cell chambers for accommodating each of the electrode plate groups together with an electrolyte,
    The plates of the same polarity in the electrode plate group are connected to each other by a plate connection plate,
    A plurality of the cell chambers are arranged adjacent to each other,
    The electrode plate groups accommodated between the adjacent cell chambers are connected in series by a connection body connected to the electrode plate connection plate,
    Of the electrode plate connection plates connected to the electrode plate group housed in the cell chamber located at the end, the electrode plate connection plate not connected to the connector is connected to an electrode column connected to an external terminal. And
    The electrode plate connection plate, the connection body and the pole column do not contain antimony and are made of a lead alloy containing tin,
    The content rate of tin is a lead acid battery in which at least one of the connection body and the pole column is larger than the electrode plate connection plate.
  2.  前記極板接続板の錫の含有割合は、1.5質量%以上3.5質量%以下であり、
     前記接続体および前記極柱の少なくとも一方の錫の含有割合は、3質量%以上10質量%以下である、請求項1に記載の鉛蓄電池。
    The tin content in the electrode plate connection plate is 1.5% by mass or more and 3.5% by mass or less,
    The lead acid battery according to claim 1, wherein a content ratio of tin of at least one of the connection body and the pole column is 3% by mass or more and 10% by mass or less.
  3.  前記接続体は、前記極板の積層方向であって前記極板接続板が伸びている線上において前記極板接続板に一体的に接続されている、請求項1または2に記載の鉛蓄電池。 The lead-acid battery according to claim 1 or 2, wherein the connection body is integrally connected to the electrode plate connection plate on a line in which the electrode plate connection plate extends in the stacking direction of the electrode plates.
  4.  前記極柱の錫含有割合は、前記外部端子と接続する上部の方が前記極板接続板と接続する下部よりも大きい、請求項1から3のいずれか一つに記載の鉛蓄電池。 The lead storage battery according to any one of claims 1 to 3, wherein a tin content ratio of the pole column is larger in an upper part connected to the external terminal than in a lower part connected to the electrode plate connection plate.
  5.  前記極柱の錫含有割合は、前記下部から前記上部へ次第に大きくなっている、請求項4に記載の鉛蓄電池。 The lead acid battery according to claim 4, wherein a tin content ratio of the polar column is gradually increased from the lower part to the upper part.
  6.  前記極板群の積層方向における前記セル室の内側の距離をL、一つの前記極板群における前記複数の正極板及び負極板の総厚みをWとしたとき、W/Lは、0.50以上0.80以下の範囲にある、請求項1から5のいずれか一つに記載の鉛蓄電池。 When the distance inside the cell chamber in the stacking direction of the electrode plate group is L, and the total thickness of the plurality of positive and negative electrode plates in one electrode plate group is W, W / L is 0.50. The lead acid battery according to any one of claims 1 to 5, which is in the range of 0.80 or less.
  7.  W/Lは、0.60以上0.70以下の範囲にある、請求項6に記載の鉛蓄電池。 W / L is a lead acid battery of Claim 6 which exists in the range of 0.60 or more and 0.70 or less.
PCT/JP2013/005563 2012-12-21 2013-09-20 Lead storage battery WO2014097516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380005965.3A CN104067414B (en) 2012-12-21 2013-09-20 Lead battery
JP2013552756A JP5504383B1 (en) 2012-12-21 2013-09-20 Lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012279609 2012-12-21
JP2012-279609 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097516A1 true WO2014097516A1 (en) 2014-06-26

Family

ID=50977886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005563 WO2014097516A1 (en) 2012-12-21 2013-09-20 Lead storage battery

Country Status (2)

Country Link
CN (1) CN104067414B (en)
WO (1) WO2014097516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680979A4 (en) * 2017-10-31 2021-06-16 GS Yuasa International Ltd. Lead storage battery for start-stop system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098665A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead acid storage battery
CN107482157A (en) * 2017-09-19 2017-12-15 上海汽车集团股份有限公司 Vibration resistance type battery and manufacture method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513065A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2002093457A (en) * 2000-07-12 2002-03-29 Japan Storage Battery Co Ltd Lead-acid battery
JP2005228685A (en) * 2004-02-16 2005-08-25 Japan Storage Battery Co Ltd Lead-acid storage battery
JP2006140033A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006318658A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008262771A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Lead storage battery
JP2013191351A (en) * 2012-03-13 2013-09-26 Panasonic Corp Lead acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294142A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Lead storage battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513065A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2002093457A (en) * 2000-07-12 2002-03-29 Japan Storage Battery Co Ltd Lead-acid battery
JP2005228685A (en) * 2004-02-16 2005-08-25 Japan Storage Battery Co Ltd Lead-acid storage battery
JP2006140033A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006318658A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008262771A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Lead storage battery
JP2013191351A (en) * 2012-03-13 2013-09-26 Panasonic Corp Lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680979A4 (en) * 2017-10-31 2021-06-16 GS Yuasa International Ltd. Lead storage battery for start-stop system

Also Published As

Publication number Publication date
CN104067414B (en) 2016-07-06
CN104067414A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5596241B1 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP6043734B2 (en) Lead acid battery
JP2010170939A (en) Lead storage battery
WO2014097516A1 (en) Lead storage battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP6398111B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP5531746B2 (en) Lead acid battery
EP2381524B1 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP5504383B1 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
JP6255696B2 (en) Lead acid battery
JP2013191351A (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2005294142A (en) Lead storage battery
JP5754607B2 (en) Lead acid battery
JP4802903B2 (en) Lead acid battery
JP6006429B2 (en) Lead acid battery
JP2009266788A (en) Lead storage battery
JP2006179378A (en) Backup sealed lead-acid battery for automobile

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552756

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865901

Country of ref document: EP

Kind code of ref document: A1