Nothing Special   »   [go: up one dir, main page]

WO2014092314A1 - 봉지용 조성물 및 이를 포함하는 봉지화된 장치 - Google Patents

봉지용 조성물 및 이를 포함하는 봉지화된 장치 Download PDF

Info

Publication number
WO2014092314A1
WO2014092314A1 PCT/KR2013/008778 KR2013008778W WO2014092314A1 WO 2014092314 A1 WO2014092314 A1 WO 2014092314A1 KR 2013008778 W KR2013008778 W KR 2013008778W WO 2014092314 A1 WO2014092314 A1 WO 2014092314A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
formula
group
composition
Prior art date
Application number
PCT/KR2013/008778
Other languages
English (en)
French (fr)
Inventor
하경진
권지혜
오세일
이연수
이창민
최승집
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014092314A1 publication Critical patent/WO2014092314A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to a composition for encapsulation and an encapsulated device comprising the same.
  • Organic optoelectronic devices such as organic light emitting diodes, devices comprising photovoltaic cells and display devices such as organic thin film transistors must be encapsulated to protect their sensitive components from gases and / or moisture such as oxygen in the atmosphere. Without proper protection, the quality of the display device may be degraded. In addition, deterioration of the quality of the display device may appear due to the occurrence of mainly dark non-radioactive spots. In particular, the organic light emitting diode display device may be degraded due to water vapor penetrating into the organic light emitting diode, and may degrade the quality of the cathode (or anode) / organic membrane interface.
  • Another object of the present invention is to provide a composition for encapsulation that can implement a barrier layer having low shrinkage and storage modulus after curing, high hardness, low chlorine ion content, high surface energy, and low outgas generation.
  • Still another object of the present invention is to provide a composition for encapsulation, which has high adhesion to the inorganic barrier layer and can enhance the complementary effect of the inorganic barrier layer.
  • Still another object of the present invention is to provide an encapsulated device comprising the composition for encapsulation.
  • composition for encapsulation of the present invention includes a photocurable mixture and an initiator, and the photocurable mixture may include about 40 to 100% by weight of the di (meth) acrylate monomer or the oligomer thereof of Formula 1 in the photocurable mixture.
  • the photocurable mixture may include about 40 to 100% by weight of the di (meth) acrylate monomer or the oligomer thereof of Formula 1 in the photocurable mixture.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , Z 1 , Z 2 are as defined in the following detailed description).
  • the encapsulation composition of the present invention has a shrinkage after curing of about 10% or less, a storage modulus after curing of about 200 MPa-2000 MPa, a hardness of about 50 MPa-100 MPa after curing, and a chlorine ion content of about 10 ppm or less after curing, and curing
  • the surface energy is about 30 mN / m or more, and may include the di (meth) acrylate monomer or an oligomer thereof.
  • An encapsulated device of the invention comprises a device member; And a barrier stack formed on the device member, the barrier stack including an inorganic barrier layer and an organic barrier layer, wherein the organic barrier layer may be formed of the encapsulation composition.
  • the present invention can form a barrier layer for encapsulation of an environmentally sensitive display device, can form a barrier layer with low permeability of oxygen and / or water vapor and / or moisture and / or chemicals,
  • the present invention provides a composition for encapsulation and an encapsulated device including the same, which can implement a barrier layer having high adhesion to the inorganic barrier layer and having a complementary effect with an inorganic barrier layer.
  • FIG. 1 is a cross-sectional view of an encapsulated device of one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an encapsulated device of another embodiment of the present invention.
  • composition for encapsulation of an embodiment of the present invention comprises a photocurable mixture and an initiator, wherein the photocurable mixture comprises about 40 to 100% by weight of a di (meth) acrylate monomer or an oligomer thereof of Formula 1 Can include:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently of each other hydrogen, halogen, hydroxy group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted.
  • Z 1 and Z 2 are each independently the following Chemical Formula 2a or Chemical Formula 2b.
  • R 30 is hydrogen or a methyl group
  • Y is a substituted or unsubstituted C 1-20 alkylene group, a substituted or unsubstituted C 6-20 arylene group, A substituted or unsubstituted arylalkylene group having 7 to 21 carbon atoms, or a substituted or unsubstituted alkyleneoxy group having 1 to 20 carbon atoms, n is an integer of 1 to 20).
  • the di (meth) acrylate monomer is a silicon-free non-silicone photocurable monomer, which lowers the cure shrinkage rate of the encapsulation composition, increases surface energy after curing of the encapsulation composition, and increases adhesion to the inorganic barrier layer. After curing, the hardness and storage modulus can be lowered to increase the encapsulation efficiency of the barrier stack.
  • R 1 is a substituted or unsubstituted cycloalkyl group having 3-10 carbon atoms or a substituted or unsubstituted aryl group having 6-20 carbon atoms
  • R 2 , R 3 , R 4 , R 5 , R 6 are Independently of each other, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • Y may be a linear or branched alkylene group having 1 to 5 carbon atoms.
  • the di (meth) acrylate monomer or oligomer thereof may have a weight average molecular weight of about 50-1000 g / mol, for example, about 300-600 g / mol, and in the above range, the deposition characteristics may have an excellent effect.
  • the di (meth) acrylate monomer or oligomer thereof may be included in about 40 to 100% by weight, such as 100% by weight or about 50 to 99.99% by weight or about 40 to 80% by weight, based on solids in the photocurable mixture, Within this range, it is possible to lower the curing shrinkage rate, increase the adhesion to the inorganic barrier layer after curing, and lower the hardness and storage modulus.
  • Di (meth) acrylate monomers or oligomers thereof can be synthesized by conventional methods known to those skilled in the art.
  • the initiator may include, without limitation, conventional photopolymerization initiators capable of carrying out the photocurable reaction.
  • the photopolymerization initiator may include phosphorus, acetophenone, triazine, benzophenone, thioxanthone, benzoin, oxime or mixtures thereof.
  • phosphorus or acetophenone series can be used.
  • the acetophenone system is 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-mor Polynophenyl) -1-butanone, or a mixture thereof, and the phosphorus system may be trimethyl benzoyldiphenyl phosphine oxide, or a mixture thereof.
  • the initiator may be included in more than about 0 to 2 parts by weight, for example about 0.01 to 2 parts by weight, for example about 1 to 2 parts by weight, based on 100 parts by weight of the photocurable mixture, based on the solid content of the encapsulation composition. Photopolymerization can sufficiently occur in the range, the transmittance can be prevented from being lowered due to the remaining unreacted initiator, and the amount of outgas generated can be reduced.
  • the composition for encapsulation of another embodiment of the present invention includes a photocurable mixture and an initiator, and the photocurable mixture includes about 50 to 99.99% by weight of the di (meth) acrylate monomer or its oligomer of Formula 1 in the photocurable mixture.
  • a silicone (meth) acrylate monomer or oligomer thereof having at least one of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group, or a substituted or unsubstituted alkoxy group.
  • It may further comprise one or more of a silicone (meth) acrylate monomer or an oligomer thereof. It is substantially the same as the encapsulation composition of an embodiment of the present invention except that it further comprises a silicone (meth) acrylate monomer or an oligomer thereof.
  • a silicone (meth) acrylate monomer or its oligomer is demonstrated in detail.
  • the silicone (meth) acrylate monomer or oligomer thereof having at least one of a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted arylalkyl group may be represented by the following Formula 3:
  • R 11 , R 12 , and R 13 are each independently hydrogen, halogen, hydroxy group, substituted or unsubstituted C1-10 alkyl group, substituted or unsubstituted C3-10 cycloalkyl group, A substituted or unsubstituted aryl group having 6-20 carbon atoms, or a substituted or unsubstituted arylalkyl group having 7-21 carbon atoms, at least one of R 11 , R 12 , and R 13 has 3-10 unsubstituted or substituted carbon atoms Is a cycloalkyl group, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted arylalkyl group having 7 to 21 carbon atoms, Z 1 is as defined above.
  • Silicone (meth) acrylate monomers or oligomers thereof may be included in the composition for encapsulation to lower the curing shrinkage rate and storage modulus and to implement a good adhesion effect with the inorganic layer.
  • R 11 is a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted arylalkyl group having 7 to 21 carbon atoms
  • R 12 , R 13 may be an independently substituted or unsubstituted alkyl group having 1-5 carbon atoms.
  • the silicone (meth) acrylate monomer or oligomer thereof may have a weight average molecular weight of about 50-1000 g / mol, for example, about 50-500 g / mol, and in the above range, may have an effect of improving adhesion.
  • Silicone (meth) acrylate monomers or oligomers thereof may be included in about 0.01-50% by weight or about 10-50% by weight in the photocuring mixture on a solids basis, in the above range, may have an effect of improving adhesion.
  • the silicone (meth) acrylate monomer having a substituted or unsubstituted alkoxy group may be represented by the following general formula (4):
  • R 21 , R 22 , and R 23 are independently of each other hydrogen, halogen, hydroxy group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms. And at least one of R 21 , R 22 , and R 23 is a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and Z 1 is as defined above.
  • the silicone (meth) acrylate monomers or oligomers thereof may be included in the encapsulation composition to lower the curing shrinkage rate and storage modulus and to implement a good adhesion effect with the inorganic layer.
  • R 21 , R 22 , and R 23 are independently substituted or unsubstituted alkoxy groups having 1 to 5 carbon atoms, and the silicone (meth) acrylate monomer may be a trialkoxy silicone (meth) acrylate monomer. have.
  • the silicone (meth) acrylate monomer or oligomer thereof may have a weight average molecular weight of about 50-500 g / mol, for example about 100-300 g / mol. In the above range, there may be an excellent adhesion effect with the inorganic barrier layer.
  • the silicone (meth) acrylate monomer or oligomer thereof may be included in about 0.01-50% or about 10-50% by weight of the photocurable mixture. In the above range, there may be an effect of improving the adhesion.
  • Silicone (meth) acrylate monomers or oligomers thereof may be synthesized or purchased as a commodity by conventional methods known to those skilled in the art.
  • the photocurable mixture may comprise 100% by weight of a di (meth) acrylate monomer or oligomer thereof. In another embodiment, the photocurable mixture may comprise about 50-99.99% by weight of the di (meth) acrylate monomer or oligomer thereof, and about 0.01-50% by weight of the monomer of Formula 3 or oligomer thereof. In another embodiment, the photocurable mixture may comprise about 50-99.99% by weight of the di (meth) acrylate monomer or oligomer thereof and about 0.01-50% by weight of the monomer or oligomer of Formula 4.
  • the photocurable mixture comprises about 40-80% by weight of a di (meth) acrylate monomer or oligomer thereof, about 10-50% by weight of the monomer of Formula 3 or an oligomer thereof, and about about monomer of the monomer of Formula 4 or an oligomer thereof It may comprise 10-50% by weight.
  • the composition for encapsulation of another embodiment of the present invention may further include a photocurable monomer having one or more photocurable functional groups (eg, vinyl groups or (meth) acrylate groups).
  • the photocurable monomer may be a (meth) acrylate or di (meth) acrylate of a straight chain, branched or cyclic saturated hydrocarbon.
  • the photocuring monomer may be at least one of saturated C 5-20 polyalcohol di (meth) acrylate, more specifically dodecanediol di (meth) acrylate and nonanediol di (meth) acrylate.
  • the photocurable monomer may be included in less than about 40% by weight of the photocurable mixture. In the above range, it can implement the physical properties of the composition for encapsulation to be described below. For example, about 0-20% by weight of the photocurable mixture, for example about 0.0001-20% by weight.
  • the composition for sealing can be formed by mixing a photocurable mixture and an initiator. Preferably, it can be formed in a solventless type.
  • the composition for encapsulation of another embodiment of the present invention may further include an antioxidant (heat stabilizer).
  • Antioxidants can improve the thermal stability of the encapsulation layer.
  • the antioxidant may include, but is not limited to, one or more selected from the group consisting of phenolic, quinone, amine and phosphite based.
  • the antioxidant may be tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane or tris (2,4-di-tert-butylphenyl) phosphite It may contain the above.
  • the antioxidant may be included in an amount of about 0.01-3 parts by weight, preferably about 0.01-1 part by weight, based on 100 parts by weight of the photocurable mixture. In the above range, it is possible to prevent the aging of the film after curing, and exhibit excellent thermal stability.
  • the encapsulation composition may comprise about 95-99% by weight of the photocurable mixture and about 1-5% by weight of the initiator and antioxidant on a solids basis. In the above range, excellent thin film encapsulation is possible, and photocuring efficiency may be good. Preferably, about 97-99% by weight of the photocurable mixture and about 1-3% by weight of the sum of the initiator and the antioxidant may be included.
  • the encapsulation composition may comprise about 90-99 weight percent of di (meth) acrylate monomer or oligomer thereof, about 0.01-5 weight percent of initiator, and about 0.01-5 weight percent of antioxidant on a solids basis have.
  • the encapsulation composition comprises about 45-80% by weight of the di (meth) acrylate monomer or oligomer thereof, about 15-50% by weight of the monomer of Formula 3 or oligomer, about 0.01-5% by weight of the initiator, based on solids , And about 0.01-5% by weight antioxidant.
  • the encapsulation composition comprises about 45-80% by weight of the di (meth) acrylate monomer or oligomer thereof, about 15-50% by weight of the monomer of Formula 4 or oligomer thereof, and about 0.01-5% of the initiator by solid content %, And about 0.01-5% by weight antioxidant.
  • the encapsulation composition comprises about 35-80% by weight of the di (meth) acrylate monomer or oligomer thereof, about 5-30% by weight of the monomer of Formula 3 or oligomer thereof, monomers of Formula 4 or About 5-30% oligomer, about 0.01-5% initiator, and about 0.01-5% antioxidant.
  • the encapsulation composition may have a curing shrinkage of about 10% or less. In the above range, by minimizing the stress generated during photocuring, it is possible to suppress the pin-hole generation by minimizing the stress on the inorganic barrier layer deposited when forming the barrier stack. If the shrinkage rate after curing is greater than about 10%, the smoothing property is poor due to the shrinkage of the organic layer formed of the photocured encapsulating composition, which causes defects to occur during the deposition of the inorganic barrier layer, thereby resulting in moisture permeability (WVTR, water).
  • WVTR moisture permeability
  • the vapor transmission rate may be poor, and the display member (eg, the organic light emitting diode) may not emit light due to the infiltrated oxygen and / or moisture, thereby increasing the possibility of dark spots.
  • the cure shrinkage may be about 0.01-10%, for example about 3.0-6.5%. Hardening shrinkage can be measured with reference to the following experimental example.
  • the composition for encapsulation may have a storage modulus of about 200 MPa-2,000 MPa after curing.
  • a storage modulus of about 200 MPa-2,000 MPa after curing.
  • 200 MPa-1,150 MPa for example, about 600 MPa-1,150 MPa.
  • storage modulus can be measured with reference to the following experimental examples.
  • the composition for encapsulation may have a hardness after curing of about 100 MPa or less, for example about 50 MPa-100 MPa, for example 60 MPa-95 MPa.
  • the deposition of the inorganic barrier layer can be facilitated to facilitate the formation of the barrier stack.
  • adhesion characteristics may not be smooth when the inorganic barrier layer is deposited, and thus the smooth inorganic barrier layer may be poorly formed.
  • the hardness is less than 50MPa, the inorganic material for forming the inorganic layer penetrates into the composition for encapsulation of the organic barrier layer, thereby hindering the formation of a smooth inorganic barrier layer, which may result in poor sealing properties. Hardness can be measured with reference to the following experimental example.
  • the composition for encapsulation may have a chlorine ion content of about 10 ppm or less. Chlorine ions are generated during the preparation of the monomer or oligomer thereof included in the composition for encapsulation, and are difficult to remove even after several purification.
  • the encapsulation composition of the present invention has a chlorine ion content of 10 ppm or less, thereby preventing corrosion of electrodes of a display device (for example, an organic light emitting device), thereby suppressing dark spots easily generated from poor reliability. If the chlorine ion content is more than 10 ppm, corrosion of the cathode material of the display device can easily occur.
  • the chlorine ion content may be about 0-10 ppm, for example about 0-5 ppm, for example about 0 ppm. Chlorine ion content can be measured with reference to the following experimental example.
  • the sealing composition may have a surface energy of about 30 mN / m or more after curing. In the above range, it is possible to increase the adhesion with the inorganic barrier layer deposited on the organic barrier layer when the barrier stack is formed. For example, about 30-50 mN / m, for example about 30-42 mN / m. Surface energy can be measured with reference to the following experimental example.
  • the sealing composition may have a transmittance of about 95% or more after curing. Within this range, the visibility of the display device can be improved when the display device is encapsulated.
  • the transmittance is the value measured at wavelength 480nm-680nm, for example, wavelength 550nm. Preferably, it may be about 95-100%.
  • the transmittance can be measured with reference to the following experimental example, but is not limited thereto.
  • the composition for encapsulation may be about 200 ppm or less after generation of outgas after curing.
  • the outgas may be derived from an initiator or photocurable resin included in the composition for encapsulation.
  • the life of the display device can be extended.
  • about 10-200 ppm for example about 100-200 ppm, for example about 100-185 ppm.
  • Outgassing after curing can be measured with reference to the following experimental example.
  • the composition for encapsulation may have a curing rate of about 95% or more.
  • the hardening shrinkage stress after curing is implemented to implement a layer that does not generate a shift can be used for the sealing of the display device.
  • Curing rate can be measured with reference to the following experimental example.
  • the composition for encapsulation may have a moisture permeability (WVTR) of about 10 ⁇ 6 g / m 2 ⁇ day or less, for example about 10 ⁇ 8 to 10 ⁇ 6 g / m 2 ⁇ day, in the thickness direction after curing.
  • WVTR moisture permeability
  • Moisture permeability can be measured with reference to the following experimental example.
  • device members in particular display device members
  • gases or liquids in the surrounding environment such as oxygen and / or moisture in the atmosphere and / or water vapor and chemicals used in processing electronics.
  • the device element in particular the display device, needs to be encapsulated or encapsulated.
  • Such devices include organic light emitting devices, lighting devices, flexible organic light emitting device displays, metal sensor pads, microdisk lasers, electrochromic devices, photochromic devices, microelectromechanical systems, solar cells, integrated circuits, charge coupling Devices, light emitting polymers, light emitting diodes, and the like, but is not limited thereto.
  • composition for encapsulation of the present invention satisfies at least one of the above-mentioned post-curing shrinkage, storage modulus, hardness, chlorine ion content, surface energy, transmittance, outgas generation amount, and curing rate, thereby encapsulating or encapsulating the member for the device.
  • the organic barrier layer used can be formed.
  • the organic barrier layer of the present invention may be formed of the encapsulation composition of the embodiments of the present invention.
  • the organic barrier layer can be formed by photocuring the composition for sealing.
  • the encapsulation composition can be coated to a thickness of about 0.1 ⁇ m-20 ⁇ m and cured by irradiation at about 10-500 mW / cm 2 for about 1-50 seconds.
  • the organic barrier layer has the physical properties of the composition for encapsulation after curing described above. Therefore, the barrier stack may be formed together with the inorganic barrier layer to be described below, and may be used for encapsulation of the display device.
  • a barrier stack which is another aspect of the present invention, may include the organic barrier layer and the inorganic barrier layer.
  • the inorganic barrier layer may be formed of an inorganic layer different from the organic barrier layer, thereby supplementing the effect of the organic barrier layer.
  • the inorganic barrier layer is not particularly limited, but may be a metal, a nonmetal, an oxide thereof, a nitride thereof, a carbide thereof, an oxygen nitride thereof, an oxygen boride compound thereof, or a mixture thereof.
  • the metal or nonmetal may be silicon (Si), selenium (Se), zinc (Zn), antimony (Sb), aluminum (Al), transition metal, lanthanide metal, indium (In), germanium (Ge), tin (Sn). ), Bismuth (Bi), or a combination thereof, but is not limited thereto.
  • SiOx, SiNx, SiOxNy, ZnSe, ZnO, Sb 2 O 3 , Al 2 O 3 , In 2 O 3 , SnO 2, etc. (wherein x is 1 to 5 and y is 1-). 5).
  • the inorganic barrier layer and the organic barrier layer may be deposited in a vacuum process, such as sputtering, chemical vapor deposition, plasma chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma vapor deposition, and combinations thereof.
  • the organic barrier layer secures the above-described physical properties. As a result, when the organic barrier layer is deposited alternately with the inorganic barrier layer, it is possible to secure the smoothing characteristics of the inorganic barrier layer. In addition, the organic barrier layer can prevent the defect of the inorganic barrier layer from propagating to another inorganic barrier layer.
  • the barrier stack includes the organic barrier layer and the inorganic barrier layer, but the number of barrier stacks is not limited.
  • the combination of barrier stacks may vary depending on the level of permeation resistance to oxygen and / or moisture and / or water vapor and / or chemicals.
  • the organic barrier layer and the inorganic barrier layer may be deposited alternately. This is because of the effect on the barrier layer of the organic barrier layer produced due to the physical properties of the composition for encapsulation described above. As a result, the effects on the display device generated from the organic barrier layer and the inorganic barrier layer can be supplemented or enhanced.
  • the organic barrier layer and the inorganic barrier layer can be deposited alternately in a plurality of times, more preferably the inorganic barrier layer-organic barrier layer-inorganic barrier layer-organic barrier layer-inorganic barrier layer-organic barrier layer-inorganic barrier layer-inorganic It may be formed of a seven-layer structure of the barrier layer.
  • the thickness of the barrier stack is not limited, but may be about 1.5 ⁇ m-5 ⁇ m.
  • the thickness of one organic barrier layer may be about 0.1 ⁇ m-20 ⁇ m, preferably 1 ⁇ m-10 ⁇ m, and the thickness of one inorganic barrier layer may be about 5 nm-500 nm, preferably about 5 nm-200 nm. .
  • the barrier stack is a thin film encapsulant and may have a thickness of about 5 ⁇ m or less, preferably about 1.5 ⁇ m-5 ⁇ m.
  • Another aspect of the invention is an encapsulated device comprising a member for a device; And a barrier stack formed over the device member, the barrier stack comprising an inorganic barrier layer and an organic barrier layer, wherein the organic barrier layer may be formed of the composition.
  • the encapsulated device 100 includes a substrate 10; A device member 20 formed on the substrate 10; And a barrier stack 30 formed on top of the device member 20 and composed of an inorganic barrier layer 31 and an organic barrier layer 32, wherein the device member 20 includes an inorganic barrier layer 31.
  • the encapsulated device 200 includes a substrate 10; A device member 20 formed on the substrate 10; And a barrier stack 30 formed on top of the device member 20 and composed of an inorganic barrier layer 31 and an organic barrier layer 32, wherein the device member 20 includes an inorganic barrier layer 31.
  • the inorganic barrier layer 31 may encapsulate the internal space 40 in which the device member 20 is accommodated.
  • the contents for the device member, the organic barrier layer, the inorganic barrier layer, and the barrier stack are as described above.
  • the organic barrier layer may have a storage modulus of about 200 MPa-2000 MPa, a hardness of about 50 MPa-100 MPa, and a surface energy of about 30 mN / m or more.
  • the organic barrier layer may include a cured product of the encapsulation composition.
  • the substrate is not particularly limited as long as it is a substrate on which device members can be laminated.
  • it may be made of a material such as transparent glass, plastic sheet, silicon or metal substrate.
  • the encapsulated device can be manufactured by conventional methods.
  • a device member is deposited on the substrate and an inorganic barrier layer is deposited.
  • the composition for sealing can be apply
  • the process of forming the inorganic barrier layer and the organic barrier layer can be repeated (preferably up to about 10 times in total, more preferably up to 7 times in total, 2-10 times, 2-7 times).
  • the method of encapsulating the device may comprise the following steps:
  • the substrate, the device member, the inorganic barrier layer, the organic barrier layer, and the barrier stack are as described above.
  • the device member is positioned or laminated to the substrate adjacent to the device. This can be carried out in the same manner as the inorganic barrier layer and organic barrier layer deposition method, but is not limited thereto.
  • the inorganic barrier layer and the organic barrier layer may be deposited in a vacuum process, such as sputtering, chemical vapor deposition, plasma chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma vapor deposition, and combinations thereof.
  • D di (meth) acrylate of straight chain saturated hydrocarbon: (D1) dodecanediol diacrylate (DDA), (D2) nonanediol diacrylate (NDA)
  • the components (A), (B), (C) and (D) described above are mixed in the contents (unit: parts by weight) described in Tables 1 and 2 below, and mixed for 3 hours using a shaker to form a composition for encapsulation Was prepared.
  • Hardening shrinkage (%): The hardening shrinkage was calculated by measuring the specific gravity of the liquid composition before photocuring and the specific gravity of the solid after curing with DME-220E (Shinko, Japan). The composition was coated with a thickness of 10 ⁇ m ⁇ 2 ⁇ m, followed by UV curing (100 mW / cm 2 X 10 seconds) to prepare a film (thickness: 8 to 12 ⁇ m, width 1.5 to 2.5 cm, length 1.5 to 2.5 cm). The cure shrinkage rate can be calculated according to the following formula (1).
  • Cure Shrinkage (%) [(Solid specific gravity after curing-specific gravity of liquid composition before curing)] / Specific gravity of liquid composition before curing x 100
  • Storage modulus MPa: After coating the composition on a clean glass substrate, the amount of light was irradiated at 2000 mJ / cm 2 to cure around 500 ⁇ m in thickness and 25 mm in diameter to make a film.
  • ARES model name ARES-G2 (TAinstrument)
  • the frequency was measured at a rate of 10 ° C./min from 25 ° C. to 100 ° C. under a condition of 1 rad / s and a strain of 0.01%, and at 25 ° C. Measure the value of.
  • Hysitron TI750 by Hysitron
  • Chlorine ion content (ppm): A certain amount (1 ⁇ 50mg) of the composition for encapsulation is weighed and transferred to a boat, and then mounted on an autosampler. Analyze after confirming the conditions in the automatic combustion device such as Absorption Solvent and Rinse.
  • the combustion apparatus used was AQF-2100H (Mitsubishi Chemical Co.), and the ion chromatography used IC-5000S (DIONEX).
  • Out gas generation amount (ppm): After coating the composition to a thickness of 10 ⁇ m ⁇ 2 ⁇ m on the cleaned glass substrate and UV curing (100mW / cm 2 X 10 seconds) to prepare a film (thickness: 9 ⁇ m ⁇ 2 ⁇ m) It was. The outgas was collected by Pyrolyzer GC-MS and measured.
  • the photocurable composition was sprayed onto the glass substrate and irradiated with 100 mW / cm 2 for 10 seconds to UV cured to obtain an organic barrier layer specimen of 20 cm x 20 cm x 3 ⁇ m (width x length x thickness).
  • a GC / MS instrument Perkin Elmer Clarus 600
  • the split ratio is 20: 1, and the temperature condition is maintained at 40 ° C.
  • the composition is coated on and around 10 ⁇ m ⁇ 2 ⁇ m on a glass substrate and UV cured at 100 mW / cm 2 for 10 seconds to obtain a 20 cm x 20 cm x 3 ⁇ m (width x length x thickness) specimen.
  • Curing Rate (%)
  • A is the ratio of the intensity of the absorption peak in the vicinity of 1635 cm ⁇ 1 to the intensity of the absorption peak in the vicinity of 1720 cm ⁇ 1 for the cured film
  • B is the ratio of the intensity of the absorption peak at around 1635 cm ⁇ 1 to the intensity of the absorption peak at around 1720 cm ⁇ 1 for the composition
  • Transmittance The composition was coated on the cleaned glass substrate to a thickness of about 10 ⁇ m ⁇ 2 ⁇ m and then UV cured (100 mW / cm 2 ⁇ 10 sec) to prepare a film (thickness: 9 ⁇ m ⁇ 2 ⁇ m). Visible light transmittance in the wavelength range of 550 nm was measured with a Lambda 950 (Perkin elmer) instrument for the prepared film.
  • Moisture permeability After coating the composition on the glass substrate with a spray thickness of 5 ⁇ m, UV cured (100J / cm 2 ) for 10 seconds to cure the cured specimen (organic barrier layer, thickness 5 ⁇ m) moisture permeability meter PERMATRAN-W 3 It was measured under 37.8 degreeC, 100% RH (relative humidity) and 24 hours conditions with / 33 (made by MOCON).
  • the composition for encapsulation of the present invention has the effect of the above-mentioned curing shrinkage, modulus, hardness, surface energy, chlorine ion, curing rate, transmittance, moisture permeability after curing.
  • the barrier stack on which the barrier layer is deposited can be used as the barrier stack of the display device.
  • the present invention can form a barrier layer for encapsulation of an environmentally sensitive display device, can form a barrier layer with low permeability of oxygen and / or water vapor and / or moisture and / or chemicals, and an inorganic barrier.
  • a composition for encapsulation and an encapsulated device including the same which can implement a barrier layer having high adhesion to the layer and having a complementary effect with the inorganic barrier layer.
  • the sealing composition of Comparative Example 7-8 containing only DDA and NDA did not implement one or more of the effects of the sealing composition of the present invention described above.
  • the composition of Comparative Example 1-8 which does not include the monomer or oligomer of the present invention or contains 40% by weight or more of DDA and NDA, does not implement one or more of the effects of the encapsulation composition of the present invention. I could't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 광경화성 혼합물 및 개시제를 포함하고, 상기 광경화성 혼합물은 화학식 1의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 상기 광경화성 혼합물 중 약 40 내지 100중량%로 포함하는 봉지용 조성물 및 이를 포함하는 봉지화된 장치에 관한 것이다.

Description

봉지용 조성물 및 이를 포함하는 봉지화된 장치
본 발명은 봉지용 조성물 및 이를 포함하는 봉지화된 장치에 관한 것이다.
유기발광다이오드와 같은 유기 광전자 장치, 광전지를 포함하는 장치 및 유기 박막 트랜지스터 등의 디스플레이 장치는 대기 중의 산소와 같은 기체 및/또는 수분으로부터 그들의 민감한 부품을 보호하기 위하여 봉지되어야 한다. 적절한 보호가 이루어지지 않는다면, 디스플레이 장치의 질이 저하될 수 있다. 또한, 주로 검은 비방사성의 점(dark spot)이 생김으로써 디스플레이 장치의 질의 저하가 나타날 수 있다. 특히 유기발광다이오드 디스플레이 장치는 유기발광다이오드로 침투하는 수증기로 인해 질이 저하되고, 음극(또는 양극)/유기막 계면부의 질을 저하시킬 수 있다.
본 발명의 목적은 환경에 민감한 장치용 부재의 봉지를 위한 장벽층을 형성할 수 있는 봉지용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 경화 후 수축율과 저장 모듈러스가 낮고, 경도가 높고, 염소 이온 함량이 낮고, 표면 에너지가 높고, 아웃 가스 발생량이 낮은 장벽층을 구현할 수 있는 봉지용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 무기장벽층에 대한 부착력이 높고 무기장벽층과 상호 보완성의 효과를 높일 수 있는 봉지용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 산소 및/또는 수증기 및/또는 수분 및/또는 화학 물질의 투과도가 낮은 장벽층을 형성할 수 있는 봉지용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 봉지용 조성물을 포함하는 봉지화된 장치를 제공하는 것이다.
본 발명의 봉지용 조성물은 광경화성 혼합물 및 개시제를 포함하고, 상기 광경화성 혼합물은 하기 화학식 1의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 상기 광경화성 혼합물 중 약 40 내지 100중량%로 포함할 수 있다:
<화학식 1>
Figure PCTKR2013008778-appb-I000001
(상기 화학식 1에서, R1,R2,R3,R4,R5,R6,Z1,Z2는 하기 상세한 설명에서 정의한 바와 같다).
본 발명의 봉지용 조성물은 경화 후 수축율이 약 10% 이하이고, 경화 후 저장 모듈러스가 약 200MPa-2000MPa이고, 경화 후 경도가 약 50MPa-100MPa이고,경화 후 염소 이온 함량이 약 10ppm 이하이고, 경화 후 표면 에너지가 약 30mN/m 이상이고, 상기 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 포함할 수 있다.
본 발명의 봉지화된 장치는 장치용 부재; 및 상기 장치용 부재 위에 형성되고, 무기 장벽층과 유기 장벽층을 포함하는 장벽 스택(barrier stack)을 포함하고, 상기 유기 장벽층은 상기 봉지용 조성물로 형성될 수 있다.
본 발명은 환경에 민감한 디스플레이 장치의 봉지를 위한 장벽층을 형성할 수 있고, 산소 및/또는 수증기 및/또는 수분 및/또는 화학 물질의 투과도가 낮은 장벽층을 형성할 수 있고, 무기 장벽층에 대한 부착력이 높고 무기 장벽층과 상호 보완 효과를 갖는 장벽층을 구현할 수 있는, 봉지용 조성물 및 이를 포함하는 봉지화된 장치를 제공하였다.
도 1은 본 발명 일 실시예의 봉지화된 장치의 단면도이다.
도 2는 본 발명 다른 실시예의 봉지화된 장치의 단면도이다.
첨부한 도면을 참고하여 실시예에 의해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것이고 보는 시각에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "치환 또는 비치환된"에서 "치환"은 본 발명의 관능기 중 하나 이상의 수소 원자가 할로겐(F, Cl, Br 또는 I), 히드록시기, 니트로기, 시아노기, 이미노기(=NH, =NR, R은 탄소수 1-10의 알킬기이다), 아미노기(-NH2, -NH(R'), -N(R")(R"'), R',R",R"'은 각각 독립적으로 탄소수 1-10의 알킬기이다), 탄소수 1-20의 알킬기, 탄소수 6-20의 아릴기, 탄소수 3-10의 시클로알킬기, 탄소수 3-20의 헤테로아릴기, 탄소수 2-30의 헤테로시클로알킬기, 탄소수 7-21의 아릴알킬기로 치환되는 것을 의미하고, '시클로알킬기'는 탄소수 3-10의 지방족 고리형 탄화수소, 바람직하게는 탄소수 5-10의 지방족 고리형 탄화수소, 더 바람직하게는 탄소수 5-6의 지방족 고리형 탄화수소, 가장 바람직하게는 시클로헥실기를 의미하고, '아릴기'는 탄소수 6-20의 방향족기, 바람직하게는 탄소수 6-10의 방향족기, 가장 바람직하게는 페닐기를 의미하고, '아릴알킬기'는 탄소수 7-21의 아릴기 포함 알킬기, 바람직하게는 탄소수 7-11의 아릴기 포함 알킬기, 더 바람직하게는 벤질기를 의미하고, '알콕시기'는 산소 포함 탄소수 1-10의 탄화수소기, 바람직하게는 탄소수 1-5의 산소 포함 탄화수소기, 더 바람직하게는 메톡시기 또는 에톡시기를 의미하고, '올리고머'는 해당 모노머로 중합된 중합체를 의미할 수 있고 이때 중합은 당업자에게 통상적으로 알려진 중합(예:용액중합, 현탁중합, 계면중합 등)을 의미하고, '*'는 원소간 연결 부위를 의미하고, '(메트)아크릴레이트'는 아크릴레이트 및/또는 메타아크릴레이트를 의미한다.
이하, 본 발명 일 실시예의 봉지용 조성물을 보다 상세하게 설명한다.
본 발명 일 실시예의 봉지용 조성물은 광경화성 혼합물 및 개시제를 포함하고, 상기 광경화성 혼합물은 하기 화학식 1의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 상기 광경화성 혼합물 중 약 40 내지 100중량%로 포함할 수 있다:
<화학식 1>
Figure PCTKR2013008778-appb-I000002
(상기 화학식 1에서, R1,R2,R3,R4,R5, 및 R6은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-20의 알킬기, 치환 또는 비치환된 탄소수 1-10의 알콕시기, 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, R1,R2,R3,R4,R5, 및 R6 중 하나 이상은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고,
Z1,Z2는 서로 독립적으로 하기 화학식 2a 또는 화학식 2b이다.
<화학식 2a>
Figure PCTKR2013008778-appb-I000003
<화학식 2b>
Figure PCTKR2013008778-appb-I000004
(상기 화학식 2a와 2b에서, *는 연결 부위이고, R30은 수소 또는 메틸기이고, Y는 치환 또는 비치환된 탄소수 1-20의 알킬렌기, 치환 또는 비치환된 탄소수 6-20의 아릴렌기, 치환 또는 비치환된 탄소수 7-21의 아릴알킬렌기, 또는 치환 또는 비치환된 탄소수 1-20의 알킬렌옥시기이고, n은 1 내지 20의 정수이다).
디(메트)아크릴레이트 모노머는 실리콘(silicon)이 없는 비-실리콘계 광경화성 모노머로서, 봉지용 조성물의 경화 수축율을 낮추고, 봉지용 조성물의 경화 후 표면 에너지를 높여 무기 장벽층에 대한 부착력을 높이고, 경화 후 경도와 저장 모듈러스를 낮추어, 장벽 스택의 봉지 효율을 높일 수 있다.
일 예를 들어, R1은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기 또는 치환 또는 비치환된 탄소수 6-20의 아릴기이고, R2,R3,R4,R5,R6은 서로 독립적으로 치환 또는 비치환된 탄소수 1-5의 알킬기일 수 있고, Y는 선형 또는 분지형의 탄소수 1-5의 알킬렌기일 수 있다.
디(메트)아크릴레이트 모노머 또는 그의 올리고머는 중량평균분자량이 약 50-1000g/mol, 예를 들면 약 300-600g/mol이 될 수 있고, 상기 범위에서, 증착 특성이 우수한 효과를 가질 수 있다.
디(메트)아크릴레이트 모노머 또는 그의 올리고머는 광경화성 혼합물 중 고형분 기준으로 약 40 내지 100중량%, 예를 들면 100중량% 또는 약 50 내지 99.99중량% 또는 약 40 내지 80중량%로 포함될 수 있고, 상기 범위에서, 경화수축률을 낮추고, 경화 후 무기장벽층에 대한 부착력을 높이고, 경도와 저장 모듈러스를 낮출 수 있다.
디(메트)아크릴레이트 모노머 또는 그의 올리고머는 당업자에게 알려진 통상의 방법으로 합성할 수 있다.
개시제는 광경화성 반응을 수행할 수 있는 통상의 광중합 개시제를 제한없이 포함할 수 있다. 예를 들면, 광중합 개시제는 인계, 아세토페논계, 트리아진계, 벤조페논계, 티오크산톤계, 벤조인계, 옥심계 또는 이들의 혼합물을 포함할 수 있다. 바람직하게는, 인계 또는 아세토페논계를 사용할 수 있다. 구체적으로, 아세토페논계는 2-메틸-1-[4-(메틸티오)페닐]-2-모르폴리노-프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐)-1-부탄온, 또는 이들의 혼합물이 될 수 있고, 인계는 트리메틸 벤조일디페닐 포스핀 옥시드, 또는 이들의 혼합물이 될 수 있다.
개시제는 봉지용 조성물 중 고형분 기준으로 광경화성 혼합물 100중량부에 대해 약 0 초과 내지 2중량부 이하, 예를 들면 약 0.01 내지 2중량부, 예를 들면 약 1 내지 2중량부로 포함될 수 있고, 상기 범위에서 광중합이 충분히 일어날 수 있고, 남은 미반응 개시제로 인해 투과율이 저하되는 것을 막을 수 있고, 아웃 가스 발생량을 줄일 수 있다.
본 발명 다른 실시예의 봉지용 조성물은 광경화성 혼합물 및 개시제를 포함하고, 상기 광경화성 혼합물은 화학식 1의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 상기 광경화성 혼합물 중 약 50 내지 99.99중량%로 포함하고, 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 아릴알킬기 중 하나 이상을 갖는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머, 치환 또는 비치환된 알콕시기를 갖는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 중 하나 이상을 더 포함할 수 있다. 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머를 더 포함하는 것을 제외하고는 본 발명 일 실시예의 봉지용 조성물과 실질적으로 동일하다. 이하, 실리콘 (메타)아크릴레이트 모노머 또는 그의 올리고머에 대해 보다 상세히 설명한다.
치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 아릴알킬기 중 하나 이상을 갖는 실리콘 (메타)아크릴레이트 모노머 또는 그의 올리고머는 하기 화학식 3으로 표시될 수 있다:
<화학식 3>
Figure PCTKR2013008778-appb-I000005
(상기 화학식 3에서, R11,R12, 및 R13은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-10의 알킬기, 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, R11,R12, 및 R13 중 하나 이상은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, Z1은 상기에서 정의한 바와 같다).
실리콘 (메타)아크릴레이트 모노머 또는 그의 올리고머는 봉지용 조성물에 포함되어, 경화 수축율과 저장 모듈러스를 낮추고, 무기층과의 양호한 부착력 효과를 구현할 수 있다.
구체적으로, R11은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 또는 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, R12,R13은 서로 독립적으로 치환 또는 비치환된 탄소수 1-5의 알킬기일 수 있다.
실리콘 (메타)아크릴레이트 모노머 또는 그의 올리고머는 중량평균분자량이 약 50-1000g/mol, 예를 들면 약 50-500g/mol이 될 수 있고,상기 범위에서, 부착력 개선 효과가 있을 수 있다.
실리콘 (메타)아크릴레이트 모노머 또는 그의 올리고머는 고형분 기준으로 광경화 혼합물 중 약 0.01-50중량% 또는 약 10-50중량%로 포함될 수 있고, 상기 범위에서, 부착력 개선 효과가 있을 수 있다.
치환 또는 비치환된 알콕시기를 갖는 실리콘 (메타)아크릴레이트 모노머는 하기 화학식 4로 표시될 수 있다:
<화학식 4>
Figure PCTKR2013008778-appb-I000006
(상기 화학식 4에서, R21,R22, 및 R23은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-10의 알킬기, 또는 치환 또는 비치환된 탄소수 1-10의 알콕시기이고, R21,R22, 및 R23 중 하나 이상은 치환 또는 비치환된 탄소수 1-10의 알콕시기이고, Z1은 상기에서 정의한 바와 같다).
실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머는 봉지용 조성물에 포함되어, 경화 수축율과 저장 모듈러스를 낮추고, 무기층과의 양호한 부착력 효과를 구현할 수 있다.
예를 들면, R21,R22,R23은 서로 독립적으로 치환 또는 비치환된 탄소수 1-5의 알콕시기로서, 실리콘 (메트)아크릴레이트 모노머는 트리알콕시 실리콘 (메트)아크릴레이트 모노머가 될 수 있다.
실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머는 중량평균분자량이 약 50-500g/mol, 예를 들면 약 100-300g/mol이 될 수 있다. 상기 범위에서, 무기 장벽층과의 우수한 부착 효과가 있을 수 있다.
실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머는 광경화성 혼합물 중 약 0.01-50중량% 또는 약 10-50중량%로 포함될 수 있다. 상기 범위에서, 부착력 개선 효과가 있을 수 있다.
실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머는 당업자에게 알려진 통상의 방법으로 합성하거나 상품으로 구매할 수 있다.
일 구체예에서, 광경화성 혼합물은 디(메타)아크릴레이트 모노머 또는 그의 올리고머 100중량%를 포함할 수 있다. 다른 구체예에서, 광경화성 혼합물은 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 50-99.99중량%, 및 화학식 3의 모노머 또는 그의 올리고머 약 0.01-50중량%를 포함할 수 있다. 또 다른 구체예에서, 광경화성 혼합물은 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 50-99.99중량% 및 화학식 4의 모노머 또는 올리고머 약 0.01-50중량%를 포함할 수 있다. 또 다른 구체예에서, 광경화성 혼합물은 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 40-80중량%, 화학식 3의 모노머 또는 그의 올리고머 약 10-50중량%, 및 화학식 4의 모노머 또는 그의 올리고머 약 10-50중량%를 포함할 수 있다.
본 발명 또 다른 실시예의 봉지용 조성물은 하나 이상의 광경화 관능기(예: 비닐기 또는 (메트)아크릴레이트기)를 갖는 광경화성 모노머를 더 포함할 수 있다. 예를 들면, 상기 광경화 모노머는 직쇄형, 분지형 또는 사이클형의 포화된 탄화수소의 (메타)아크릴레이트 또는 디(메타)아크릴레이트일 수 있다. 구체적으로, 상기 광경화 모노머는 포화된 탄소수 5-20 다가알코올의 디(메타)아크릴레이트, 더 구체적으로 도데칸디올 디(메타)아크릴레이트, 노난디올 디(메타)아크릴레이트 중 하나 이상이 될 수 있다. 상기 광경화 모노머는 광경화성 혼합물 중 약 40중량% 미만으로 포함될 수 있다. 상기 범위에서, 하기에서 상술할 봉지용 조성물의 물성을 구현할 수 있다. 예를 들면 광경화성 혼합물 중 약 0-20중량%, 예를 들면 약 0.0001-20중량%로 포함될 수 있다.
봉지용 조성물은 광경화성 혼합물과 개시제를 혼합하여 형성할 수 있다. 바람직하게는, 무용제 타입으로 형성할 수 있다.
본 발명 또 다른 실시예의 봉지용 조성물은 산화 방지제(열안정제)를 더 포함할 수 있다. 산화 방지제는 봉지층의 열적 안정성을 향상시킬 수 있다. 산화 방지제는 페놀계, 퀴논계, 아민계 및 포스파이트계로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있지만, 이들에 제한되는 것은 아니다. 예를 들면, 산화 방지제는 테트라키스[메틸렌(3,5-디-t-부틸-4-히드록시히드로신나메이트)]메탄, 트리스(2,4-디-터트-부틸페닐)포스파이트 중 하나 이상을 포함할 수 있다.
산화 방지제는 광경화성 혼합물 100중량부에 대해 약 0.01-3중량부, 바람직하게는 약 0.01-1중량부로 포함될 수 있다. 상기 범위에서, 경화 후 필름의 경시를 방지하며, 우수한 열 안정성을 나타낼 수 있다.
일 구체예에서, 봉지용 조성물은 고형분 기준으로 광경화성 혼합물 약 95-99중량% 및 개시제와 산화방지제의 합 약 1-5중량%를 포함할 수 있다. 상기 범위에서, 우수한 박막봉지화가 가능하며, 광경화 효율이 양호한 효과가 있을 수 있다. 바람직하게는, 광경화성 혼합물 약 97-99중량%, 개시제와 산화방지제의 합 약 1-3중량%를 포함할 수 있다.
일 구체예에서, 봉지용 조성물은 고형분 기준으로 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 90-99중량%, 개시제 약 0.01-5중량%, 및 산화방지제 약 0.01-5중량%를 포함할 수 있다.
다른 구체예에서, 봉지용 조성물은 고형분 기준으로 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 45-80중량%, 화학식 3의 모노머 또는 그의 올리고머 약 15-50중량%, 개시제 약 0.01-5중량%, 및 산화방지제 약 0.01-5중량%를 포함할 수 있다.
또 다른 구체예에서, 봉지용 조성물은 고형분 기준으로 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 45-80중량%, 화학식 4의 모노머 또는 그의 올리고머 약 15-50중량%, 개시제 약 0.01-5중량%, 및 산화방지제 약 0.01-5중량%를 포함할 수 있다.
또 다른 구체예에서, 봉지용 조성물은 고형분 기준으로 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 35-80중량%, 화학식 3의 모노머 또는 그의 올리고머 약 5-30중량%, 화학식 4의 모노머 또는 그의 올리고머 약 5-30중량%, 개시제 약 0.01-5중량%, 및 산화방지제 약 0.01-5중량%를 포함할 수 있다.
봉지용 조성물은 경화 수축율이 약 10% 이하가 될 수 있다. 상기 범위에서, 광경화시 발생되는 응력을 최소화함으로써, 장벽 스택 형성시 증착된 무기 장벽층에 대한 응력을 최소화함으로써 핀-홀(pin-hole) 발생을 억제할 수 있다. 경화 후 수축율이 약 10% 초과인 경우, 광경화된 봉지용 조성물로 형성된 유기층의 수축으로 평활화 특성이 불량해지고, 이로 인해 무기 장벽층 증착시 defect 발생이 쉽게 발생되어 이로 인해 수분 투과도(WVTR, water vapor transmission rate)이 불량하게 되고, 침투된 산소 및/또는 수분에 의해 디스플레이 부재(예:유기발광소자)가 발광되지 않아 dark spot이 발생 가능성이 높아질 수 있다. 예를 들면, 경화 수축율은 약 0.01-10%, 예를 들면 약 3.0-6.5%가 될 수 있다. 경화 수축율은 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화 후 저장 모듈러스가 약 200MPa-2,000MPa가 될 수 있다. 상기 범위에서, 광경화시 발생되는 응력을 최소화함으로써, 장벽 스택 형성시 증착된 무기 장벽층에 대한 응력을 최소화함으로써 핀홀 발생을 억제할 수 있다. 예를 들면 약 200MPa-1,150MPa, 예를 들면 약 600MPa-1,150MPa가 될 수 있다. 경화 후 저장 모듈러스는 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화 후 경도(hardness)가 약 100MPa 이하, 예를 들면 약 50MPa-100MPa, 예를 들면 60MPa-95MPa가 될 수 있다. 상기 범위에서, 무기 장벽층의 증착을 원활하게 하여 장벽 스택 형성을 원활하게 할 수 있다. 경도가 100MPa 초과인 경우, 무기 장벽층 증착시 부착 특성이 원활하지 않아 평활한 무기 장벽층 형성이 불량해질 수 있다. 경도가 50MPa 미만인 경우, 무기층 형성용 무기물이 유기 장벽층용 봉지용 조성물 내부로 침투되어 원활한 무기 장벽층 형성에 방해를 주게 되고, 이로 인해 봉지 특성이 불량해지는 문제점이 있을 수 있다. 경도는 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 염소 이온 함량이 약 10ppm 이하가 될 수 있다. 염소 이온은 봉지용 조성물 형성에 포함되는 모노머 또는 그의 올리고머의 제조 과정에서 발생되는 것으로, 수 회의 정제를 거치더라도 제거가 쉽지 않다. 본 발명의 봉지용 조성물은 염소 이온 함량이 10ppm 이하로서, 디스플레이장치(예:유기발광소자)의 전극의 부식을 막아 신뢰성 불량에서 쉽게 발생되는 dark spot 발생을 억제할 수 있다. 염소 이온 함량이 10ppm 초과인 경우, 디스플레이장치의 cathode 재료의 부식이 쉽게 발생할 수 있다. 예를 들면, 염소 이온 함량은 약 0-10ppm, 예를 들면 약 0-5ppm, 예를 들면 약 0ppm이 될 수 있다. 염소 이온 함량은 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화 후 표면 에너지가 약 30mN/m 이상이 될 수 있다. 상기 범위에서, 장벽 스택 형성시 유기 장벽층의 상 하로 증착되는 무기 장벽층과의 부착력을 높일 수 있다. 예를 들면 약 30-50mN/m, 예를 들면 약 30-42mN/m가 될 수 있다. 표면 에너지는 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화 후 투과율이 약 95% 이상이 될 수 있다. 상기 범위에서, 디스플레이장치를 캡슐화하였을 때 디스플레이장치의 시인성을 높일 수 있다. 투과율은 파장 480nm-680nm, 예를 들면 파장 550nm에서 측정된 값이다. 바람직하게는, 약 95-100%가 될 수 있다. 투과율은 하기 실험예를 참고하여 측정할 수 있지만, 이에 제한되지 않는다.
봉지용 조성물은 경화 후 아웃가스 발생량이 약 200ppm 이하가 될 수 있다. 아웃가스는 봉지용 조성물에 포함되는 개시제, 또는 광경화 수지로부터 유래될 수 있다. 상기 범위에서, 디스플레이장치에 적용 시 영향이 미미하고, 디스플레이장치의 수명을 길게 할 수 있다. 예를 들면 약 10-200ppm, 예를 들면 약 100-200ppm, 예를 들면 약 100-185ppm이 될 수 있다. 경화 후 아웃가스 발생량은 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화율이 약 95% 이상이 될 수 있다. 상기 범위에서, 경화 후 경화 수축 응력이 낮아 쉬프트가 발생되지 않은 층을 구현하여 디스플레이장치의 봉지 용도로 사용할 수 있다. 예를 들면 약 95-100%가 될 수 있다. 경화율은 하기 실험예를 참고하여 측정할 수 있다.
봉지용 조성물은 경화 후 두께 방향에 대해 수분 투과도(WVTR)가 약 10-6g/m2ㆍday 이하, 예를 들면 약 10-8~10-6g/m2ㆍday가 될 수 있다. 수분 투과도는 하기 실험예를 참고하여 측정할 수 있다.
한편, 장치용 부재 특히 디스플레이 장치용 부재는 주변 환경의 기체 또는 액체, 예를 들면 대기 중의 산소 및/또는 수분 및/또는 수증기와 전자제품으로 가공시 사용된 화학물질의 투과에 의해 분해되거나 불량이 될 수 있다. 이를 위해 장치용 부재 특히 디스플레이 장치는 봉지 또는 캡슐화될 필요가 있다.
이러한 장치용 부재는 유기발광소자, 조명 장치, 플렉시블(flexible) 유기발광소자 디스플레이, 금속 센서 패드, 마이크로디스크 레이저, 전기변색 장치, 광변색장치, 마이크로전자기계 시스템, 태양전지, 집적 회로, 전하 결합 장치, 발광 중합체, 발광 다이오드 등이 될 수 있지만, 이에 제한되지 않는다.
본 발명의 봉지용 조성물은 상술한 경화후 수축율, 저장 모듈러스, 경도, 염소이온 함량, 표면에너지, 투과율, 아웃가스발생량, 경화율 중 하나 이상을 만족함으로써, 상기 장치용 부재의 봉지 또는 캡슐화 용도로 사용되는 유기 장벽층을 형성할 수 있다.
본 발명의 유기 장벽층은 본 발명 실시예들의 봉지용 조성물로 형성될 수 있다.
유기 장벽층은 봉지용 조성물을 광 경화시켜 형성할 수 있다. 제한되지 않지만, 봉지용 조성물을 약 0.1㎛-20㎛ 두께로 코팅하고, 약 10-500mW/cm2에서 약 1-50초동안 조사하여 경화시킬 수 있다.
유기 장벽층은 상술한 경화 후 봉지용 조성물의 물성을 갖는다. 따라서, 하기에서 상술될 무기 장벽층과 함께 장벽 스택을 형성하여 디스플레이장치의 봉지 용도로 사용될 수 있다.
본 발명의 또 다른 관점인 장벽 스택은 상기 유기 장벽층과 무기 장벽층을 포함할 수 있다.
무기 장벽층은 상기 유기 장벽층과 상이한 무기층으로 형성하여, 유기 장벽층의 효과를 보완할 수 있다.
무기 장벽층은 특별히 제한되지 않지만, 금속, 비금속, 이들의 산화물, 이들의 질화물, 이들의 탄화물, 이들의 산소질화물, 이들의 산소붕소화물, 또는 이들의 혼합물이 될 수 있다. 상기 금속 또는 비금속은 실리콘(Si), 셀레늄(Se), 아연(Zn), 안티몬(Sb), 알루미늄(Al), 전이 금속, 란탄족 금속, 인듐(In), 게르마늄(Ge), 주석(Sn), 비스무트(Bi) 또는 이들의 조합 등이 될 수 있지만, 이에 제한되지 않는다. 구체적으로, SiOx, SiNx, SiOxNy, ZnSe, ZnO, Sb2O3, Al2O3, In2O3, SnO2 등이 될 수 있다(상기에서, x는 1~5이고, y는 1-5이다).
무기 장벽층과 유기 장벽층은 진공 공정, 예를 들면 스퍼터링, 화학기상증착, 플라즈마화학기상증착, 증발, 승화, 전자사이클로트론공명-플라즈마증기증착 및 이의 조합으로 증착될 수 있다.
유기 장벽층은 상술한 물성을 확보한다. 그 결과, 유기 장벽층은 무기 장벽층과 교대로 증착시, 무기 장벽층의 평활화 특성을 확보할 수 있다. 또한, 유기 장벽층은 무기 장벽층의 결함이 또 다른 무기 장벽층으로 전파되는 것을 막을 수 있다.
장벽 스택은 상기 유기 장벽층과 무기 장벽층을 포함하되, 장벽 스택의 수는 제한되지 않는다. 장벽 스택의 조합의 산소 및/또는 수분 및/또는 수증기 및/또는 화학 물질에 대한 투과 저항성의 수준에 따라 변경할 수 있다.
장벽 스택에서 유기 장벽층과 무기 장벽층은 교대로 증착될 수 있다. 이는 상술한 봉지용 조성물이 갖는 물성으로 인해 생성된 유기 장벽층의 장벽층에 대한 효과 때문이다. 이로 인해, 유기 장벽층과 무기 장벽층으로부터 발생하는 디스플레이장치에 대한 효과를 보완 또는 강화할 수 있다.
도 1은 장벽 스택(30)에서 유기 장벽층(32)과 무기 장벽층(31)이 증착된 구조를 나타낸 것이다. 바람직하게는, 유기 장벽층과 무기 장벽층은 복수회로 교대로 증착될 수 있고, 더 바람직하게는 무기 장벽층-유기 장벽층-무기 장벽층-유기 장벽층-무기 장벽층-유기 장벽층-무기 장벽층의 7층 구조로 형성될 수 있다.
장벽 스택의 두께는 제한되지 않지만, 약 1.5㎛-5㎛가 될 수 있다.
장벽 스택에서, 유기 장벽층 하나의 두께는 약 0.1㎛-20㎛, 바람직하게는 1㎛-10㎛, 무기 장벽층 하나의 두께는 약 5nm-500nm, 바람직하게는 약 5nm-200nm가 될 수 있다.
장벽 스택은 박막 봉지제로서, 두께는 약 5㎛ 이하, 바람직하게는 약 1.5㎛-5㎛가 될 수 있다.
본 발명의 또 다른 관점인 봉지화된 장치는 장치용 부재; 및 상기 장치용 부재 위에 형성되고, 무기 장벽층과 유기 장벽층을 포함하는 장벽 스택을 포함하고, 상기 유기 장벽층은 상기 조성물로 형성될 수 있다.
도 1은 본 발명 일 실시예의 봉지화된 장치의 단면도이다. 도 1을 참조하면, 봉지화된 장치(100)는 기판(10); 기판(10)의 상부에 형성된 장치용 부재(20); 및 장치용 부재(20)의 상부에 형성되고 무기 장벽층(31)과 유기 장벽층(32)으로 구성되는 장벽 스택(30)을 포함하고, 장치용 부재(20)는 무기 장벽층(31)과 접촉할 수 있다.
도 2는 본 발명 다른 실시예의 봉지화된 장치의 단면도이다. 도 2를 참조하면, 봉지화된 장치(200)는 기판(10); 기판(10)의 상부에 형성된 장치용 부재(20); 및 장치용 부재(20)의 상부에 형성되고 무기 장벽층(31)과 유기 장벽층(32)으로 구성되는 장벽 스택(30)을 포함하고, 장치용 부재(20)는 무기 장벽층(31)과 접촉하지 않으며, 무기 장벽층(31)은 장치용 부재(20)가 수용된 내부 공간(40)을 봉지할 수 있다.
장치용 부재, 유기 장벽층, 무기 장벽층, 장벽 스택에 대한 내용은 상기에서 상술한 바와 같다.
유기 장벽층은 저장 모듈러스가 약 200MPa-2000MPa이고, 경도가 약 50MPa-100MPa이고, 표면 에너지가 약 30mN/m 이상이 될 수 있다.
유기 장벽층은 상기 봉지용 조성물의 경화물을 포함할 수 있다.
기판은 장치용 부재가 적층될 수 있는 기판이라면 특별히 제한되지 않는다. 예를 들면, 투명 유리, 플라스틱 시트, 실리콘 또는 금속 기판 등과 같은 물질로 이루어질 수 있다.
봉지화된 장치는 통상의 방법으로 제조될 수 있다. 기판 위에 장치용 부재를 증착하고 무기 장벽층을 증착한다. 봉지용 조성물을 스핀 도포, 슬릿 도포 등의 방법을 사용하여 도포하고 광을 조사하여 유기 장벽층을 형성할 수 있다. 무기 장벽층과 유기 장벽층의 형성 과정은 반복될 수 있다(바람직하게는 전체 약 10회 이하, 더 바람직하게는 전체 7회 이하, 2-10회, 2-7회).
본 발명의 또 다른 관점인 장치의 봉지 방법은 하기의 단계를 포함할 수 있다:
기판에 하나 이상의 장치용 부재를 인접하도록 위치시키거나 적층하는 단계; 및
하나 이상의 무기 장벽층과 유기 장벽층을 포함하고, 상기 장치용 부재에 인접하는 하나 이상의 장벽층을 증착시키는 단계.
기판, 장치용 부재, 무기 장벽층, 유기 장벽층, 장벽 스택에 대한 상세 내용은 상기에서 상술한 바와 같다.
기판에 장치용 부재를 인접하도록 위치시키거나 적층한다. 이는 하기 무기 장벽층과 유기 장벽층 증착 방법과 동일한 방법으로 수행될 수 있지만, 이에 제한되지 않는다.
무기 장벽층과 유기 장벽층은 진공 공정, 예를 들면 스퍼터링, 화학기상증착, 플라즈마화학기상증착, 증발, 승화, 전자사이클로트론공명-플라즈마증기증착 및 이의 조합으로 증착될 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
하기 실시예와 비교예에서 사용한 성분의 구체적인 사양은 다음과 같다.
(A)광경화 혼합물
(A1)하기 화학식 1a의 모노머
<화학식 1a>(SM-1100, 에스엠에스코리아(韓))
Figure PCTKR2013008778-appb-I000007
(A2)하기 화학식 3a의 모노머
<화학식 3a>(3-SPA, 제일모직)
Figure PCTKR2013008778-appb-I000008
4구 플라스크에 N2 분위기 하에, 클로로 포름 500g과 3-(chlorodimethylsilyl)propyl acrylate 1mol(206,74g)와 Benzene 1mol(72g)을 상온에서 촉매 Triethylamine 300ppm 사용하여 4시간 합성 후, 정제하여 순도 80% 이상의 모노머(3-SPA)를 합성하였다.
(A3)하기 화학식 4a의 모노머
<화학식 4a>(KBM-503, shinetsu silicone(日))
Figure PCTKR2013008778-appb-I000009
(B)개시제: (B1)디페닐 (2,4,6-트리메틸벤조일)포스핀옥시드, (B2)2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐)-1-부타논(Irgacure 369)
(C)산화방지제: 펜타에리트리톨 테트라키스(3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트
(D)직쇄형 포화된 탄화수소의 디(메타)아크릴레이트:(D1)도데칸디올 디아크릴레이트(DDA), (D2)노난디올 디아크릴레이트(NDA)
실시예 1 내지 9와 비교예 1 내지 8
상술한 성분 (A), (B), (C) 및 (D)를 하기 표 1과 표 2에 기재된 함량(단위:중량부)으로 혼합하고, 쉐이커를 이용하여 3시간 동안 혼합하여 봉지용 조성물을 제조하였다.
표 1
실시예
1 2 3 4 5 6 7 8 9
(A) (A1) 100 50 50 80 80 80 40 100 40
(A2) - 50 - 10 20 - 30 - 30
(A3) - - 50 10 - 20 30 - 30
(D) (D1) - - - - - - - - -
(D2) - - - - - - - - -
(B) (B1) 1 1 1 1 1 1 1 1 1
(B2) - - - - - - - 1 1
(C) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
표 2
비교예
1 2 3 4 5 6 7 8
(A) (A1) 39 39 - - - - - -
(A2) - - 60 60 - - - -
(A3) - - - - 60 60 - -
(D) (D1) 61 - 40 - 40 - 100 -
(D2) - 61 - 40 - 40 - 100
(B) (B1) 1 1 1 1 1 1 1 1
(B2) - - - - - - - -
(C) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
실시예와 비교예에서 제조한 봉지용 조성물에 대해 하기의 물성을 평가하고 그 결과를 하기 표 4-5에 나타내었다.
물성 평가 방법
1.경화 수축율(%):디지털 고체비중계 DME-220E(Shinko사, 일본)로 광 경화전 액체 조성물의 비중, 경화 후 고체의 비중을 측정하여 경화 수축율을 계산하였다. 조성물을 두께 10㎛±2㎛로 코팅 후 UV 경화(100mW/cm2 X 10초)시켜 필름(두께: 8 ~ 12㎛, 가로 1.5 ~ 2.5cm, 세로 1.5 ~ 2.5cm)을 제조하여 수행하였다. 경화 수축율은 하기 식 1에 따라 계산할 수 있다.
<식 1>
경화 수축율(%)=[(경화후 고체 비중 - 경화전 액체 조성물의 비중)]/경화전 액체 조성물의 비중 x 100
2.저장 모듈러스(MPa):세정한 유리 기판 위에 조성물을 코팅 후 광량을 2000mJ/cm2으로 조사하여 두께 500㎛ 내외, 직경 25mm로 경화하여 필름으로 만들었다. 모델명 ARES-G2(TAinstrument 사)인 ARES로 프리퀀시를 1rad/s, 0.01%의 변형율(strain)의 조건에서 온도를 25℃에서 100℃까지 10℃/분의 속도로 승온하면서 측정하고, 25℃에서의 값을 측정한다.
3.경도(Hardness)(MPa):세정한 유리 기판 위에 조성물을 두께 10㎛±2㎛ 내외로 코팅 후 UV경화(100mW/㎠ x 10초)시켜 필름(두께:1 ~ 3㎛)을 제조하였다. 제조된 필름의 경도는 nanointender(Hysitron사의 Hysitron TI750)를 이용하여 측정하였다. 필름의 상부에서 100nm 높이에서 5초간 하중을 주어 최대 하중이 250μN을 되도록 한 후 2초간 유지 후 5초동안 하중을 낮추며 측정하였다.
4.염소 이온 함량(ppm): 봉지용 조성물을 일정량(1~50mg) 칭량하여 boat에 옮겨 담은 후 Autosampler에 장착한다. Absorption Solvent와 Rinse 등 자동 연소 장치 내 조건을 확인 후 분석을 실시한다. 사용된 연소장치는 AQF-2100H(Mitsubishi Chemical Co.)를 사용하였으며, 이온 크로마토그래피는 IC-5000S(DIONEX)를 사용하였다.
5.표면 에너지(mN/m):세정한 유리 기판 위에 조성물을 10㎛±2㎛ 내외로 코팅 후 UV경화(100mW/cm2 x 10초)시켜 필름(두께: 9㎛±2㎛)을 제조하였다. 25℃에서 필름 위에 증류수를 떨어뜨려 이때의 증류수와 필름간의 접촉각을 측정하여, 표면에너지를 계산하였다. 사용한 설비는 SEO 300A model SEO Co.을 이용하였다.
6.아웃 가스 발생량(ppm): 조성물을 세정한 유리 기판 위에 두께 10㎛±2㎛ 내외로 코팅 후 UV경화(100mW/cm2 X 10초)시켜 필름(두께:9㎛±2㎛)을 제조하였다. Pyrolyzer GC-MS로 아웃 가스를 포집하여 측정하였다.
구체적으로, 유리 기판 위에 광경화 조성물을 스프레이로 도포하고 100mW/cm2으로 10초동안 조사하여 UV 경화시켜, 20cm x 20cm x 3㎛(가로 x 세로 x 두께)의 유기 장벽층 시편을 얻는다. 시편에 대하여, GC/MS 기기(Perkin Elmer Clarus 600)을 이용한다. GC/MS는 칼럼으로 DB-5MS 칼럼(길이:30m, 지름:0.25mm, 고정상 두께:0.25㎛)을 사용하고, 이동상으로 헬륨 가스(플로우 레이트:1.0mL/min, average velocity = 32cm/s)를 이용하고, split ratio는 20:1, 온도 조건은 40℃에서 3분 유지하고, 그 다음에 10℃/분의 속도로 승온한 후 320℃에서 6분 유지한다. 아웃 가스는 glass size 20 cm x 20cm, 포집 용기는 Tedlar bag, 포집 온도는 90℃, 포집 시간은 30분, N2 퍼지(purge) 유량은 300mL/분, 흡착제는 Tenax GR(5% 페닐메틸폴리실록산)을 이용하여 포집한다. 표준 용액으로 n-헥산 중 톨루엔 용액 150ppm, 400ppm, 800ppm으로 검량선을 작성하고 R2값을 0.9987로 얻는다. 이상의 조건을 요약하면 하기 표 3과 같다.
표 3
구분 세부사항
포집조건 Glass size : 20cm X 20cm
포집 용기 : Tedlar bag
포집 온도 : 90 ℃
포집 시간 : 30 min
N2 purge 유량 : 300 mL/min
흡착제 : Tenax GR(5% phenylmethylpolysiloxane )
검량선 작성 조건 표준용액 : Toluene in n-Hexane
농도 범위(reference) : 150 ppm, 400 ppm, 800 ppm
R2 : 0.9987
GC/MS 조건 Column DB-5MS→30m x 0.25㎜ x 0.25㎛(5% phenylmethylpolysiloxane)
이동상 He
Flow 1.0 mL/min (Average velocity = 32 ㎝/s)
Split Split ratio = 20:1
method 40 ℃(3 min) → 10 ℃/min → 320 ℃(6 min)
7.경화율(%):조성물에 대하여 FT-IR(NICOLET 4700, Thermo사)을 사용하여 1635cm-1 부근(C=C), 1720cm-1 부근(C=O)에서의 흡수 피크의 강도를 측정한다. 유리 기판 위에 조성물을 10㎛±2㎛ 내외로 코팅하고 100mW/cm2으로 10초 동안 UV 경화시켜, 20cm x 20cm x 3㎛(가로 x 세로 x 두께)의 시편을 얻는다. 경화된 필름을 분취하고, FT-IR(NICOLET 4700, Thermo사)를 이용하여 1635cm-1 부근(C=C), 1720cm-1 부근(C=O)에서의 흡수 피크의 강도를 측정한다. 경화율은 하기 식 2에 따라 계산한다.
<식 2>
경화율(%)= |1-(A/B)| x 100
(상기에서, A는 경화된 필름에 대해 1720cm-1 부근에서의 흡수 피크의 강도에 대한 1635cm-1 부근에서의 흡수 피크의 강도의 비이고,
B는 조성물에 대해 1720cm-1 부근에서의 흡수 피크의 강도에 대한 1635cm-1 부근에서의 흡수 피크의 강도의 비이다)
8.투과율: 세정한 유리 기판 위에 조성물을 두께 10㎛±2㎛ 내외로 코팅 후 UV경화(100mW/cm2 x 10초)시켜 필름(두께: 9㎛±2㎛)을 제조하였다. 제조된 필름에 대해 Lambda 950(Perkin elmer사) 기기로 파장 550nm 영역에서의 가시광선 투과율을 측정하였다.
9.수분 투과도:유리 기판 위에 조성물을 스프레이로 두께 5㎛ 도포한 후, UV경화(100J/cm2)를 10초간 시켜 경화된 시편(유기 장벽층, 두께 5㎛)을 투습도 측정기 PERMATRAN-W 3/33(MOCON사제)로 37.8℃, 100% RH(상대습도), 24시간 조건 하에서 측정하였다.
표 4
실시예
1 2 3 4 5 6 7 8 9
경화 수축율(%) 6.1 3.8 4.5 5.3 4.9 5.1 4.8 6.3 5.1
저장 모듈러스(MPa) 810 620 1140 790 760 880 810 850 910
경도(MPa) 72 63 94 71 68 72 68 71 77
염소이온 함량(ppm) 0 0 0 0 0 0 0 0 0
표면에너지(mN/m) 33 30 42 34 31 37 36 32 35
아웃 가스 발생량(ppm) 101 125 132 108 107 113 128 123 185
경화율(%) 97.2 96.1 95.4 97.2 97.3 96.8 95.3 98.8 96.4
투과율(%) 96.1 96.2 95.8 95.1 95.6 95.4 95.2 95.5 95.3
수분투과도(g/m2ㆍday) 10-6 10-6 10-7 10-6 10-6 10-7 10-7 10-6 10-7
표 5
비교예
1 2 3 4 5 6 7 8
경화 수축율(%) 16.1 14.2 15.3 14.1 15.7 14.5 21.3 23.4
저장 모듈러스(MPa) 3320 3640 2320 2510 2660 2830 4370 5150
경도(MPa) 305 321 249 261 258 295 383 437
염소이온함량 (ppm) 72 77 48 51 48 51 122 131
표면에너지(mN/m) 28 30 25 26 40 41 25 27
아웃 가스 발생량(ppm) 97 96 138 136 142 134 95 92
경화율(%) 90.5 88.3 90.3 89.1 89.8 88.5 85.2 81.8
투과율(%) 95.1 95.2 95.3 95.7 95.2 95.4 95.2 95.5
수분투과도(g/m2ㆍday) 10-5 10-5 10-5 10-5 10-7 10-7 10-5 10-5
상기 표 4에서 나타난 바와 같이, 본 발명의 봉지용 조성물은 경화 후 상술한 경화 수축율, 모듈러스, 경도, 표면 에너지, 염소 이온, 경화율, 투과율,수분 투과도의 효과를 갖는다. 그 결과, 장벽층이 증착된 장벽 스택은 디스플레이장치의 장벽 스택으로 사용될 수 있다. 따라서, 본 발명은 환경에 민감한 디스플레이 장치의 봉지를 위한 장벽층을 형성할 수 있고, 산소 및/또는 수증기 및/또는 수분 및/또는 화학 물질의 투과도가 낮은 장벽층을 형성할 수 있고, 무기 장벽층에 대한 부착력이 높고 무기 장벽층과 상호 보완 효과를 갖는 장벽층을 구현할 수 있는, 봉지용 조성물 및 이를 포함하는 봉지화된 장치를 제공하였다.
반면에, 표 5에서 나타난 바와 같이, DDA와 NDA 만을 포함하는 비교예 7-8의 봉지용 조성물은 상술한 본 발명의 봉지용 조성물의 효과 중 하나 이상을 구현하지 못하였다. 또한, 본 발명의 모노머 또는 올리고머를 포함하지 않거나, 포함하더라도 DDA와 NDA가 40중량% 이상을 포함하는 비교예 1-8의 조성물은 상술한 본 발명의 봉지용 조성물의 효과 중 하나 이상을 구현하지 못하였다.
본 발명은 상기 실시예 및 도면에 의해 한정되는 것이 아니라 서로 다른 다양한 형태가 될 수 있고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 것이다. 그러므로, 이상에서 기술한 실시예와 도면은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (19)

  1. 광경화성 혼합물 및 개시제를 포함하고,
    상기 광경화성 혼합물은 하기 화학식 1의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 상기 광경화성 혼합물 중 약 40 내지 100중량%로 포함하는 봉지용 조성물:
    <화학식 1>
    Figure PCTKR2013008778-appb-I000010
    (상기 화학식 1에서, R1,R2,R3,R4,R5, 및 R6은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-20의 알킬기, 치환 또는 비치환된 탄소수 1-10의 알콕시기, 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, R1,R2,R3,R4,R5, 및 R6 중 하나 이상은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고,
    Z1,Z2는 서로 독립적으로 하기 화학식 2a 또는 화학식 2b이다.
    <화학식 2a>
    Figure PCTKR2013008778-appb-I000011
    <화학식 2b>
    Figure PCTKR2013008778-appb-I000012
    (상기 화학식 2a와 2b에서, *는 연결 부위이고,
    R30은 수소 또는 메틸기이고,
    Y는 치환 또는 비치환된 탄소수 1-20의 알킬렌기, 치환 또는 비치환된 탄소수 6-20의 아릴렌기, 치환 또는 비치환된 탄소수 7-21의 아릴알킬렌기, 또는 치환 또는 비치환된 탄소수 1-20의 알킬렌옥시기이고,
    n은 1 내지 20의 정수이다).
  2. 제1항에 있어서, 상기 R1은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기 또는 치환 또는 비치환된 탄소수 6-20의 아릴기이고, 상기 R2,R3,R4,R5, 및 R6은 치환 또는 비치환된 탄소수 1-5의 알킬기인 봉지용 조성물.
  3. 제1항에 있어서, 상기 광경화성 화합물은 하기 화학식 3으로 표시되는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머, 하기 화학식 4로 표시되는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 중 하나 이상을 더 포함하는 봉지용 조성물:
    <화학식 3>
    Figure PCTKR2013008778-appb-I000013
    (상기 화학식 3에서, R11,R12, 및 R13은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-10의 알킬기, 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고, R11,R12,R13 중 하나 이상은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기, 치환 또는 비치환된 탄소수 6-20의 아릴기, 또는 치환 또는 비치환된 치환 또는 비치환된 탄소수 7-21의 아릴알킬기이고,
    Z1은 하기 화학식 2a 또는 화학식 2b이다.
    <화학식 2a>
    Figure PCTKR2013008778-appb-I000014
    <화학식 2b>
    Figure PCTKR2013008778-appb-I000015
    (상기 화학식 2a와 2b에서, *는 연결 부위이고,
    R30은 수소 또는 메틸기이고,
    Y는 치환 또는 비치환된 탄소수 1-20의 알킬렌기, 치환 또는 비치환된 탄소수 6-20의 아릴렌기, 치환 또는 비치환된 탄소수 7-21의 아릴알킬렌기, 또는 치환 또는 비치환된 탄소수 1-20의 알킬렌옥시기이고,
    n은 1 내지 20의 정수이다),
    <화학식 4>
    Figure PCTKR2013008778-appb-I000016
    (상기 화학식 4에서, R21,R22, 및 R23은 서로 독립적으로 수소, 할로겐, 히드록시기, 치환 또는 비치환된 탄소수 1-10의 알킬기, 치환 또는 비치환된 탄소수 1-10의 알콕시기이고, R21,R22,R23 중 하나 이상은 치환 또는 비치환된 탄소수 1-10의 알콕시기이고,
    Z1은 상기에서 정의한 바와 같다).
  4. 제3항에 있어서, 상기 R11은 치환 또는 비치환된 탄소수 3-10의 시클로알킬기 또는 치환 또는 비치환된 탄소수 6-20의 아릴기이고, 상기 R12,R13은 서로 독립적으로 치환 또는 비치환된 탄소수 1-5의 알킬기인 봉지용 조성물.
  5. 제3항에 있어서, 상기 광경화성 혼합물은 상기 디(메트)아크릴레이트 모노머 또는 그의 올리고머 약 50-99.99중량% 및 상기 화학식 3의 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 약 0.01-50중량%를 포함하는 봉지용 조성물.
  6. 제3항에 있어서, 상기 R21,R22 및 R23은 서로 독립적으로 치환 또는 비치환된 탄소수 1-5의 알콕시기인 봉지용 조성물.
  7. 제3항에 있어서, 상기 광경화성 혼합물은 상기 디(메타)아크릴레이트 모노머 또는 그의 올리고머 약 50-99.99중량% 및 상기 화학식 4의 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 약 0.01-50중량%를 포함하는 봉지용 조성물.
  8. 제3항에 있어서, 상기 광경화성 혼합물은 상기 디(메트)아크릴레이트 모노머 또는 그의 올리고머 약 40-80중량%, 상기 화학식 3의 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 약 10-50중량%, 및 상기 화학식 4의 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 약 10-50중량%를 포함하는 봉지용 조성물.
  9. 제1항에 있어서, 상기 디(메트)아크릴레이트 모노머는 하기 화학식 1a로 표시되는 봉지용 조성물:
    <화학식 1a>
    Figure PCTKR2013008778-appb-I000017
    .
  10. 제3항에 있어서, 상기 화학식 3의 모노머는 하기 화학식 3a로 표시되고, 상기 화학식 4의 모노머는 하기 화학식 4a로 표시되는 봉지용 조성물:
    <화학식 3a>
    Figure PCTKR2013008778-appb-I000018
    <화학식 4a>
    Figure PCTKR2013008778-appb-I000019
    .
  11. 제1항에 있어서, 상기 개시제는 상기 광경화성 혼합물 100중량부에 대해 0 초과 내지 약 2중량부 이하로 포함되는 봉지용 조성물.
  12. 제1항 또는 제3항에 있어서, 상기 봉지용 조성물은 산화 방지제를 더 포함하는 봉지용 조성물.
  13. 제12항에 있어서, 상기 봉지용 조성물은 상기 광경화성 혼합물 약 95-99중량% 및 상기 개시제와 산화방지제의 합 약 1-5중량%를 포함하는 봉지용 조성물.
  14. 경화 후 수축율이 약 10% 이하이고,
    경화 후 저장 모듈러스가 약 200MPa-2000MPa이고,
    경화 후 경도가 약 50MPa-100MPa이고,
    경화 후 염소 이온 함량이 약 10ppm 이하이고,
    경화 후 표면 에너지가 약 30mN/m 이상이고,
    제1항의 디(메트)아크릴레이트 모노머 또는 그의 올리고머를 포함하는 봉지용 조성물.
  15. 제14항에 있어서, 상기 광경화성 화합물은 제3항의 화학식 3으로 표시되는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머, 제3항의 화학식 4로 표시되는 실리콘 (메트)아크릴레이트 모노머 또는 그의 올리고머 중 하나 이상을 더 포함하는 봉지용 조성물.
  16. 제15항에 있어서, 상기 조성물은 산화 방지제를 더 포함하는 봉지용 조성물.
  17. 장치용 부재;및
    상기 장치용 부재 위에 형성되고, 무기 장벽층과 유기 장벽층을 포함하는 장벽 스택(barrier stack)을 포함하고,
    상기 유기 장벽층은 제1항 또는 제15항의 봉지용 조성물로 형성되는 봉지화된 장치.
  18. 제19항에 있어서, 상기 무기 장벽층은 금속, 비금속, 이들의 산화물, 이들의 질화물, 이들의 탄화물, 이들의 산소질화물, 이들의 산소붕소화물, 또는 이들의 혼합물이고, 상기 금속 또는 비금속은 실리콘(Si), 셀레늄(Se), 아연(Zn), 안티몬(Sb), 알루미늄(Al), 전이 금속, 란탄족 금속, 인듐(In), 게르마늄(Ge), 주석(Sn), 비스무트(Bi) 중 하나 이상인 봉지화된 장치.
  19. 제17항에 있어서, 상기 장치용 부재는 플렉시블(flexible) 유기발광소자, 유기발광소자, 조명 장치, 금속 센서 패드, 마이크로디스크 레이저, 전기변색 장치, 광변색장치, 마이크로전자기계 시스템, 태양전지, 집적 회로, 전하 결합 장치, 발광 중합체 또는 발광 다이오드를 포함하는 봉지화된 장치.
PCT/KR2013/008778 2012-12-12 2013-10-01 봉지용 조성물 및 이를 포함하는 봉지화된 장치 WO2014092314A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120144906A KR101616159B1 (ko) 2012-12-12 2012-12-12 봉지용 조성물, 이를 포함하는 장벽층, 이를 포함하는 장벽 스택, 이를 포함하는 봉지화된 장치, 및 이를 이용하는 장치의 봉지 방법
KR10-2012-0144906 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014092314A1 true WO2014092314A1 (ko) 2014-06-19

Family

ID=50934566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008778 WO2014092314A1 (ko) 2012-12-12 2013-10-01 봉지용 조성물 및 이를 포함하는 봉지화된 장치

Country Status (2)

Country Link
KR (1) KR101616159B1 (ko)
WO (1) WO2014092314A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072146A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 접착제 조성물 및 이를 이용하여 형성된 접착제층을 포함하는 편광판
KR20210152327A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 필름
KR20210152328A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 조성물
KR20210152330A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 필름
KR20220022876A (ko) 2020-08-19 2022-02-28 주식회사 엘지화학 열경화성 수지 조성물, 및 이를 이용한 봉지 필름

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068415A1 (ko) * 2014-10-28 2016-05-06 삼성에스디아이 주식회사 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
KR102008177B1 (ko) * 2016-05-24 2019-08-07 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
WO2023032372A1 (ja) * 2021-08-30 2023-03-09 コニカミノルタ株式会社 電子デバイス封止用組成物、電子デバイス封止膜形成方法及び電子デバイス封止膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126211A (ja) * 2002-10-02 2004-04-22 Mitsui Chemicals Inc 液晶封止用樹脂組成物および液晶表示パネルの製造方法
KR20080091368A (ko) * 2006-01-17 2008-10-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광경화성 흡습성 조성물 및 유기 전계발광 소자
KR20110001884A (ko) * 2009-06-29 2011-01-06 주식회사 동진쎄미켐 광소자 봉지용 광경화성 수지 조성물
KR20110020130A (ko) * 2009-08-21 2011-03-02 코오롱인더스트리 주식회사 봉지재용 조성물, 경화물 및 유기발광소자
KR20110030014A (ko) * 2009-09-17 2011-03-23 주식회사 동진쎄미켐 발광다이오드의 밀봉 방법 및 이에 의해 밀봉된 발광다이오드

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126221A (ja) 2002-10-02 2004-04-22 Sharp Corp トナー補給制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126211A (ja) * 2002-10-02 2004-04-22 Mitsui Chemicals Inc 液晶封止用樹脂組成物および液晶表示パネルの製造方法
KR20080091368A (ko) * 2006-01-17 2008-10-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광경화성 흡습성 조성물 및 유기 전계발광 소자
KR20110001884A (ko) * 2009-06-29 2011-01-06 주식회사 동진쎄미켐 광소자 봉지용 광경화성 수지 조성물
KR20110020130A (ko) * 2009-08-21 2011-03-02 코오롱인더스트리 주식회사 봉지재용 조성물, 경화물 및 유기발광소자
KR20110030014A (ko) * 2009-09-17 2011-03-23 주식회사 동진쎄미켐 발광다이오드의 밀봉 방법 및 이에 의해 밀봉된 발광다이오드

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072146A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 접착제 조성물 및 이를 이용하여 형성된 접착제층을 포함하는 편광판
KR102201543B1 (ko) 2017-12-15 2021-01-11 주식회사 엘지화학 접착제 조성물 및 이를 이용하여 형성된 접착제층을 포함하는 편광판
KR20210152327A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 필름
KR20210152328A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 조성물
KR20210152330A (ko) 2020-06-08 2021-12-15 주식회사 엘지화학 봉지 필름
KR20220022876A (ko) 2020-08-19 2022-02-28 주식회사 엘지화학 열경화성 수지 조성물, 및 이를 이용한 봉지 필름

Also Published As

Publication number Publication date
KR101616159B1 (ko) 2016-04-27
KR20140076423A (ko) 2014-06-20

Similar Documents

Publication Publication Date Title
WO2014092314A1 (ko) 봉지용 조성물 및 이를 포함하는 봉지화된 장치
WO2014109455A1 (ko) 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
KR101534334B1 (ko) 광경화 조성물 및 상기 조성물로 형성된 보호층을 포함하는 장치
TWI593736B (zh) 用於封裝顯示器的組成物以及含有其的顯示器 裝置
KR101402355B1 (ko) 유기 전자 소자 및 이의 제조방법
WO2014104522A1 (ko) 봉지용 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2014148717A1 (ko) 광경화 조성물 및 이를 포함하는 봉지화된 장치
WO2013187577A1 (ko) 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2019017630A1 (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
WO2017069392A2 (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
KR101758570B1 (ko) 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2011090365A2 (ko) 광전지용 시트
WO2014133287A1 (ko) 광학소자 봉지용 수지 조성물
WO2011081325A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
WO2011090366A2 (ko) 광전지 모듈
WO2012173461A2 (ko) 광전지용 시트
WO2011090363A2 (ko) 광전지 모듈
WO2014007470A1 (ko) 광경화 조성물 및 상기 조성물로 형성된 보호층을 포함하는 광학 부재
WO2014092270A1 (ko) 광경화 조성물 및 상기 조성물로 형성된 장벽층을 포함하는 장치
WO2014092267A1 (ko) 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2018062807A1 (ko) 유기 전자 소자 봉지재용 조성물 및 이를 이용하여 형성된 봉지재
WO2015060512A1 (ko) 유기발광소자 봉지용 조성물 및 이를 사용하여 제조된 유기발광소자 표시장치
KR101696965B1 (ko) 광경화 조성물 및 이를 포함하는 봉지화된 장치
WO2011081326A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
WO2012173459A2 (ko) 고굴절 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863370

Country of ref document: EP

Kind code of ref document: A1