Nothing Special   »   [go: up one dir, main page]

WO2014073569A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2014073569A1
WO2014073569A1 PCT/JP2013/080015 JP2013080015W WO2014073569A1 WO 2014073569 A1 WO2014073569 A1 WO 2014073569A1 JP 2013080015 W JP2013080015 W JP 2013080015W WO 2014073569 A1 WO2014073569 A1 WO 2014073569A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
load
target soc
power storage
power
Prior art date
Application number
PCT/JP2013/080015
Other languages
English (en)
French (fr)
Inventor
金子 悟
伊君 高志
徳孝 伊藤
秀一 森木
竹内 健
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP13853611.5A priority Critical patent/EP2918435B1/en
Priority to KR1020157011159A priority patent/KR101638757B1/ko
Priority to US14/440,897 priority patent/US9598838B2/en
Priority to CN201380058131.9A priority patent/CN104768785B/zh
Publication of WO2014073569A1 publication Critical patent/WO2014073569A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a work vehicle provided with an engine and an electric motor as a power source.
  • a wheel loader is an example of a working vehicle expected to have a fuel consumption reduction effect when hybridizing.
  • a torque converter torque converter
  • T / M transmission
  • sand, etc. is generated at a bucket portion of a working device attached to the front of the vehicle Work vehicle that digs and transports
  • the traveling drive portion of such a wheel loader is motorized, it is possible to improve the power transmission efficiency in the torque converter and the transmission portion to the power transmission efficiency by electricity.
  • the traveling operation of starting and stopping is repeated frequently during work, when the traveling drive portion is motorized, recovery of regenerative electric power at the time of braking can be expected from the motor for traveling.
  • a motor generator (motor generator) mechanically connected to an engine, a first inverter for controlling the motor generator, and an output of a traveling unit
  • a traction motor mechanically connected to a shaft (propeller shaft), a second inverter for controlling the traction motor, and a storage device electrically connected to the first and second inverters via a DCDC converter
  • the motor generator is mainly driven by the engine to generate electricity while controlling the system voltage (DC bus voltage between each inverter) to a predetermined value by the storage device and the DCDC converter.
  • the generated electric power generates torque from the driving motor to drive the vehicle.
  • the storage device in the system is not only a power source for keeping the system voltage at a predetermined value as described above, but also an assist power source when engine power is insufficient and a power absorption source during regenerative braking of a traveling motor.
  • a power storage device with a relatively large capacity is used.
  • a motor generator control unit for controlling a motor generator driven by an engine, a first storage battery electrically connected and a second storage battery
  • a charge / discharge control unit for controlling charge / discharge with the storage battery, a motor electrically connected to the second storage capacitor, and a storage target value of at least one of the first storage capacitor and the second storage capacitor
  • the hybrid vehicle continuously performs a relatively large load operation just by reducing the charge target value at the time of motor regeneration as in this technique, it is possible to secure the assist power necessary to continue the operation. It can be difficult.
  • the battery electric storage device
  • the electric capacity is smaller than that of the secondary battery, so when the heavy load operation continues, the assist power is insufficient and the power is limited.
  • the power storage device is a secondary battery, it may be necessary to limit the discharge power if the state of charge (hereinafter sometimes referred to as SOC) is at a low level. Is considered.
  • an object of the present invention is to provide a work vehicle capable of continuing work without power-down even when heavy load work is continuously performed in a hybrid work vehicle in which the drive unit is motorized. .
  • the present invention is driven by a motor generator driven by an engine, a hydraulic pump driven by at least one of the motor generator and the engine, and pressure oil from the hydraulic pump Working equipment, a traveling motor for driving wheels, a storage device connected to the motor generator and the traveling motor, and charged based on a target SOC, the hydraulic pump and the traveling motor
  • the control device is provided to change the target SOC of the power storage device based on the total required power.
  • FIG. 1 is a block diagram of a hybrid control device according to an embodiment of the present invention.
  • FIG. 6 is another configuration diagram of the hybrid control device according to the embodiment of the present invention. The flowchart of the process performed by the load condition determination part which concerns on embodiment of this invention, and a target SOC determination part.
  • FIG. 6 is a diagram showing still another configuration of the hybrid control device according to the embodiment of the present invention.
  • 5 is another flowchart of processing executed by the load state determination unit and the target SOC determination unit according to the embodiment of the present invention.
  • FIG. 1 is a system configuration diagram of a hybrid wheel loader according to an embodiment of the present invention.
  • the wheel loader shown in this figure is constituted by a series hybrid system, and is a motor generator (motor / generator (M / G)) mechanically connected to the diesel engine 1 and the engine 1 and driven by the engine 1.
  • M / G motor generator
  • a drive motor 60 having the drive body 60, a drive motor 9 mounted on the propeller shaft 8 of the drive body 60 and driving the four wheels 61, an inverter device 10 for controlling the drive motor 9, and an inverter 7 via a DCDC converter 12;
  • Power storage device 11 electrically connected to 10 (motor generator 6, travel motor 9) and delivering DC power between inverters 7, 10, and an operation for driving hydraulic actuators 51, 52, 53
  • the control device 200 is provided with an operation device (a control lever 56 and a steering wheel (not shown)) that outputs a signal according to an
  • the bucket cylinder 51 and the lift cylinder 52 are driven based on the operation signal (hydraulic signal) output according to the operation amount of the operation lever 56 installed in the cab.
  • the lift cylinder 52 is attached to a lift arm rotatably fixed to the front of the vehicle body, extends and retracts based on an operation signal from the operation lever 56, and pivots the lift arm up and down.
  • the bucket cylinder 51 is attached to a bucket rotatably fixed to the tip of the lift arm, and expands and contracts based on an operation signal from the operation lever 56 to rotate the bucket up and down.
  • the steering cylinder 53 is driven based on an operation signal (hydraulic signal) output according to the amount of steering of a steering wheel (not shown) installed in the cab.
  • the steering cylinder 53 is connected to each wheel 61, and expands and contracts based on an operation signal from the steering wheel to change the steering angle of the wheel 61.
  • the wheel loader of FIG. 1 is provided with a forward / backward changeover switch (back-and-forth travel changeover device) 63, a work mode changeover switch (work mode changeover device) 64, and a charge mode changeover switch (charge mode changeover device) 65. .
  • the forward / reverse switching switch 63 is a switch (F / R switch) for switching the traveling direction of the work vehicle to either forward or reverse, and the switching position of the switch 63 is hybrid control as a forward / backward signal (switch signal) It is output to the device 20.
  • the work mode switching switch 64 is a switch (P / E switch) for switching the work mode relating to the work vehicle between the power mode (P mode) that emphasizes work volume and the economy mode (E mode) that emphasizes efficiency
  • the switch position of the switch 64 is output to the hybrid controller 20 as a work mode signal (switch signal).
  • the combination of the maximum engine speed and the maximum hydraulic pump capacity is previously determined in each operation mode, and in the present embodiment, the P mode is set to allow relatively high rotational speed and large capacity. . That is, the maximum value of the total output of the hydraulic pump 4 and the traveling motor 9 changes in accordance with the switching position of the work mode switching switch 64, and the maximum value of the total output in the P mode is higher than that in the E mode. Becomes higher.
  • Charging mode switching switch 65 is a charging mode relating to the working vehicle in one of a mode (charging priority mode) in which charging of power storage device 11 is prioritized over work amount (charging priority mode) and a mode in which charging of power storage device 11 is not prioritized (normal mode).
  • the switch position of the switch 65 is output to the hybrid control device 20 as a charge mode signal (switch signal).
  • the difference between the two charging modes is that in the charging priority mode, the target SOC may be set relatively larger than in the normal mode.
  • the target SOC is set larger at the time of the "medium load” operation (described later) than at the time of the normal mode selection.
  • the charging priority mode is selected by the operator, for example, there is a case where an operation (high load operation) of positively utilizing the power of the power storage device 11 may be performed.
  • the type of the power storage device 11 is not particularly limited, and, for example, a large capacity electric double layer capacitor, or a secondary battery such as a lithium ion battery, a nickel hydrogen battery, or a lead battery can be used.
  • a lithium ion battery is used as power storage device 11.
  • Power storage device 11 in the present embodiment performs buck-boost control of the battery voltage by DCDC converter 12, and transfers DC power with inverters 7 and 10 (that is, motor generator 6 and traveling motor 9). ing.
  • the voltage of power storage device 11 corresponds to the system voltage of the hybrid system.
  • the DCDC converter 12 may be omitted, in which case the DC bus 13 and the storage device 11 may be directly connected.
  • the hydraulic pump 4 appropriately supplies the hydraulic pressure to the working device 50 for excavating soil and the like, thereby performing the task according to the purpose.
  • the traveling operation of the traveling body 60 is performed by using the electric power generated by the motor generator 6 mainly by the power of the engine 1 to drive the traveling motor 9.
  • the storage device 11 absorbs the regenerative electric power generated by the traveling motor 9 at the time of braking the vehicle, or supplies stored electric power to the motor generator 6 or the traveling motor 9 to perform output assist for the engine 1 Contributes to reducing the consumption energy of the vehicle.
  • FIG. 2 is a view showing a typical configuration example of a conventional wheel loader.
  • the same reference numerals are given to the same parts as those in the previous drawings, and the description thereof will be omitted (the same applies to the subsequent drawings).
  • the conventional wheel loader shown in this figure is provided with a traveling body 60 and a working device 50 (lift / bucket part) as main drive parts, and via a torque converter (torque converter) 2 and a transmission (T / M) 3
  • the motive power of the engine 1 is transmitted to the wheels 61 for traveling, and the work apparatus 50 driven by the hydraulic pump 4 excavates and transports earth and sand and the like.
  • the power transmission efficiency of the torque converter is lower than the power transmission efficiency by electricity, when the traveling drive portion of the wheel loader shown in FIG. 2 is motorized (including the parallel hybrid configuration), the power transmission efficiency from the engine 1 is improved. Is possible. Furthermore, since the traveling operation of starting and stopping is repeated frequently in the wheel loader under work, recovery of regenerative electric power at the time of braking can be expected from the traveling motor 9 when the traveling drive portion is motorized as described above become. As described above, when a part of the drive device of the wheel loader is motorized and hybridized, the fuel consumption can be reduced.
  • FIG. 3 is a block diagram of the control device 200 mounted on the wheel loader according to the embodiment of the present invention.
  • the control device 200 is a hybrid control that is a controller that controls the energy flow and the power flow of the entire hybrid system shown in FIG.
  • a converter control device 24 that controls the DCDC converter 12 and a storage control device 25 that detects and manages the state of charge (SOC) of the storage device 11 and the presence or absence of an abnormality are mounted.
  • the storage control device 25 is often used mainly for detecting the state of the storage device 11 such as voltage.
  • Each control device 20, 21, 22, 23, 24, 25 has a hardware configuration including an arithmetic processing unit (for example, a CPU) (not shown) for executing various control programs including control described later. And a storage device (for example, ROM, RAM, etc.) (not shown) for storing various data including the control program, and an input / output device (not shown) to which various data are input / output. .
  • each control apparatus 20, 21, 22, 23, 24, 25 is mutually connected via CAN (Controller Area Network), and mutually transmits / receives the command value and state quantity of each apparatus.
  • the hybrid controller 20 is located above the controllers of the hydraulic controller 21, the engine controller 22, the inverter controller 23, the converter controller 24 and the storage controller 25, and controls the entire system. To give specific operation commands to the other control devices 21 to 25 so that the entire system exhibits the highest performance.
  • the control devices 20 to 25 shown in FIG. 3 show only controllers necessary to control the respective drive parts of the hybrid system shown in FIG. In order to actually establish a vehicle, a monitor and an information system controller are additionally required, but they are not shown because they are not directly related to the present invention. Further, each of the control devices 20 to 25 does not have to be separate from other control devices as shown in FIG. 3, and two or more control functions may be implemented in one control device.
  • the inverter control device 23 in the figure is written to control two motors 6 and 9 alone.
  • FIG. 4 is a block diagram of the hybrid control device 20 according to the embodiment of the present invention.
  • the hybrid control device 20 shown in this figure includes a system control unit 30, a power distribution unit 31, an engine control unit 32, an M / G control unit 33, a travel control unit 35, and a hydraulic control unit 35. .
  • the system control unit 30 controls the entire hybrid system.
  • the power distribution unit 31 performs a process of distributing the output of the engine 1 and the power of the storage device 11 to each drive unit (the hydraulic pump 4, the motor generator 6, and the traveling motor 9).
  • the engine control unit 32 is a request for the entire vehicle, which is the sum of the power value required by the hydraulic pump 4 (working device 50) (oil pressure required power value Pf) and the power value required by the traveling motor 9 (travel required power value Prun).
  • the rotation speed command of the engine 1 is determined according to the power value (total required power value).
  • the M / G control unit 33 determines the torque command of the motor generator 6 according to the power generation request value.
  • the hydraulic pressure control unit 34 calculates a tilt angle command value of the hydraulic pump 4 based on the required power value Pf of the hydraulic pump 4 calculated from the operation amounts and the like of the M / G control unit 33 and the operation lever 56.
  • the torque command of the traveling motor 9 is calculated based on the depression amount of the accelerator / brake pedal and the traveling required power value Prun calculated from the current vehicle speed.
  • the hybrid controller 20 includes an operation signal (including an operation amount) output from an operation lever (front portion lever) 56, an amount of depression of an accelerator pedal and a brake pedal installed in the cab, and an F / R switch 63. And the vehicle speed (vehicle speed) calculated from the rotational speed of the wheel 61 detected by the speed sensor (wheel speed detection means) 62, and the driving motor 9 output from the inverter 10. The rotational speed, the rotational speed of the engine 1 (engine rotational speed), and the current SOC of the storage device 11 calculated by the storage control device 25 are input. The vehicle speed of the wheel loader may be calculated by the hybrid control device 20 by inputting the detection value of the speed sensor 62.
  • the power distribution unit 31 adds an efficiency to the total required power value corresponding to the sum of the hydraulic required power value Pf and the travel required power value Prun from the range that can be output by the engine speed at that time, and the final engine An output (engine output value Pe) is determined.
  • the output of power storage device 11 power storage device output value Pc
  • the hybrid system determines each output of engine 1 and power storage device 11 so as to optimize the efficiency of the entire system, and Give a command to operate the vehicle.
  • FIG. 5 is a diagram showing a power flow in the hybrid system according to the embodiment of the present invention.
  • the hybrid system according to the present embodiment includes engine 1 and power storage device 11 as power sources for driving a vehicle.
  • the power distribution unit 31 converts the engine output Pe and the storage device output Pc into the output Pf of the work device 50 and the output Prun of the traveling motor 9 according to the following equations (1) and (2). Perform distribution processing.
  • Pmg_in and Pmg_out in the following formulas (1) and (2) indicate the input power and the output power of the motor generator 6, respectively.
  • the hybrid control device 20 requests the power requirement value (hydraulic requirement power value Pf) of the work device 50 and the power requirement value of the traveling motor 9 (travel When the sum of the required power value Prun) (total required power value) is small, the system control unit 30 determines how to output the highest fuel efficiency, and the power distribution unit 31 accordingly responds to the work device 50 and the traveling motor The command value according to each power demand value is given to 9 and the operation of the vehicle is performed.
  • FIG. 6 is another configuration diagram of the hybrid control device 20 according to the embodiment of the present invention.
  • the hybrid control device 20 includes a load state determination unit 40 and a target SOC determination unit 41, and according to these, according to the magnitude of the total required power value (Pf + Prun) (the load state of the vehicle).
  • Pf + Prun the total required power value
  • the operation amount of the operation lever 56 front portion lever operation amount
  • the depression amount of the accelerator pedal / brake pedal the forward / reverse signal of the forward / reverse selector switch (F / R switch) 63
  • the vehicle speed Torque of the traction motor 9 pressure and flow rate of the hydraulic pump 4 (these can be acquired by a pressure sensor and a pump tilt angle installed on the discharge side of the pump 4), work of the work mode switch (P / E switch) 64
  • the mode signal and the charge mode signal of the charge mode changeover switch 65 are input.
  • the load state determination unit 40 calculates the required power (Pf, Prun) of the hydraulic pump 4 and the traveling motor 9 based on these input values.
  • the magnitude of the load based on the operation amount of the operation lever 56 and the depression amount of the accelerator pedal / brake pedal.
  • the vehicle speed, the torque of the traction motor 9, and the pressure and flow rate of the hydraulic pump 4 are used, the actual power of each of the traction drive unit (traveling motor 9) and the hydraulic drive unit (hydraulic pump 4) The calculation accuracy of the required power can be improved, thereby improving the accuracy of the subsequent operation determination.
  • the load state determination unit 40 needs the SOC of the storage device 11 and the switch position of the switches 64 and 65 in addition to the total required power value (Pf + Prun) which is the sum of the required power of the hydraulic pump 4 and the traveling motor 9
  • the load condition of the work vehicle is determined while taking into consideration according to In the present embodiment, the load state of the work vehicle is mainly classified into three. Specifically, the load condition of the vehicle is classified into (1) heavy load, (2) medium load, and (3) light load according to the magnitude of the total required power (Pf + Prun), The load state (target SOC) is further finely classified according to the SOC of the storage device 11 and the positions of the switches 64 and 65.
  • the determination result of the load state determination unit 40 is input to the target SOC determination unit 41.
  • target SOC determination unit 41 a process of determining the target SOC of power storage device 11 in accordance with the "load condition" determined by load condition determination unit 40 is executed.
  • the target SOC determination unit 41 determines which target SOC is selected in which load state, as described later, and the target SOC changes in accordance with the load state.
  • the target SOC determined by the target SOC determination unit 41 is output to the system control unit 30 in the hybrid control device 20 and used to generate a torque command of the motor generator 6 (described later).
  • FIG. 7 is a flowchart of processing executed by the load state determination unit 40 and the target SOC determination unit 41.
  • the load state determination unit 40 first inputs various signals shown in FIG. 6 (S100), and based on the depression amount of the accelerator pedal / brake pedal, the operation amount of the operation lever 56, etc.
  • the hydraulic required power value Pf and the travel required power value Prun are calculated (S102).
  • the load state determination unit 40 determines whether the total required power value (Pf + Prun) is less than the set value P1 (S104).
  • the set value P1 is a value set for the load state determination unit 40 to determine that the load state of the work vehicle is the lightest "light load” of the above three categories, and another set value P2 described later It is set smaller than (P1 ⁇ P2).
  • the "light load” according to the present embodiment assumes a state in which a load that can be supported is acting only by the output of the engine 1, and according to the assumption, the set value P1 is equal to that of the engine output Pe. It is preferable to set smaller than the maximum value.
  • the load state determination unit 40 determines that the load state is "light load” (S106). Then, in response to the input of the determination, the target SOC determination unit 41 sets the target SOC to the set value S3 (S108).
  • the set value S3 is higher than the target SOC (set value S2) at the “medium load” and is higher than the target SOC (set value S1) at the “heavy load”.
  • set value S3 varies depending on the type, specification, and the like of power storage device 11, it is assumed here that the value matches or is close to the upper limit value of target SOC set to prevent overcharging of power storage device 11. In the present embodiment, 70% is described.
  • the target SOC is set, the process returns to the beginning and repeats the processing of S100 and thereafter.
  • the load state determination unit 40 determines whether the total required power value is less than the set value P2 (S110). ).
  • the set value P2 is a value set by the load state determination unit 40 to determine whether the load state of the work vehicle is “medium load” or “heavy load” of the above three categories, and is less than P2 It is determined that “medium load” is given to (P1 ⁇ Pf + Prun ⁇ P2).
  • the time-average load is within the output range of the engine 1, but the load acting at a predetermined time requires the output assist of the power storage device 11
  • a state that is, a state in which the output range of the engine 1 may be out
  • “heavy load” assumes a state where the output assistance of the power storage device 11 is required continuously. Therefore, according to these assumptions, the set value P2 can be set to, for example, a value larger than the maximum value of the engine output Pe.
  • the load state determination unit 40 determines that the load state is "medium load” (S112). Then, the target SOC determination unit 41 receives the input of the determination and sets the target SOC to the set value S2 (S114).
  • the set value S2 is set to be higher than the heavy load target SOC (set value S1), and is set to be lower than the target SOC (set value S3) at the “light load”. (S1 ⁇ S2 ⁇ S3).
  • the set value S2 varies depending on the type, specification, and the like of power storage device 11, it is assumed here that it is set to a value corresponding to an intermediate value of the normal use range of power storage device 11 and is 50% in the present embodiment. explain.
  • the process returns to the beginning and repeats the processing of S100 and thereafter.
  • the value of SOC (current SOC value) of power storage device 11 at that time is used instead of the set value (50%) described above. Also good. That is, in this case, a setting for generating power so as to hold the current SOC value is adopted.
  • the load state determination unit 40 determines that the load state is "heavy load” (H122). Then, the target SOC determination unit 41 receives the input of the determination and sets the target SOC to the set value S1 (S124). Although the set value S1 varies depending on the type, specification, and the like of the power storage device 11, the lower limit value of the target SOC set to prevent the overdischarge of the power storage device 11 or a value close thereto is set here. The form is described as 30%. When the target SOC is set to S1, the process returns to the beginning to repeat the processing from S100.
  • the target SOC of the power storage device 11 is set higher as the total required power is smaller.
  • FIG. 8 is still another configuration diagram of the hybrid control device 20 according to the embodiment of the present invention.
  • a system control unit 30, a power distribution unit 31, and an M / G control unit 33 are shown in this figure.
  • the target SOC determined according to the flowchart of FIG. 7 is input to the system control unit 30.
  • the system control unit 30 instructs the generated power for the motor generator 6 used to charge the power storage device 11 (
  • the M / G power command is calculated by the power calculation unit 30A, and the generated power command is output to the power distribution unit 31. That is, power generation by the motor generator 6 is feedback-controlled based on the deviation of two SOCs.
  • the power distribution unit 31 performs restriction processing on the generated power command according to the state of the engine 1 and the working device 50 in the power restriction unit 31A, and outputs the generated power instruction to the M / G control unit 33.
  • the M / G control unit 33 causes the torque calculation unit 33A to calculate the final torque command of the motor generator 6 and outputs the torque command to the inverter control device 23 that controls the motor generator 6.
  • the SOC of power storage device 11 is controlled to approach the target SOC determined according to the flowchart of FIG. 7.
  • the OCV (open voltage) of power storage device 11 may be used instead of the SOC. good.
  • the command value of the SOC control system related to power storage device 11 is the M / G torque command value
  • the present invention is not limited to this, and the current related to power storage device 11 by DCDC converter 12 shown in FIG. Control may be implemented.
  • the load state determination unit 41 determines that the load is “light load”
  • the target SOC of the power storage device 11 is set to S3 (high level).
  • the output of the engine 1 has a relatively large margin. Therefore, if the SOC of power storage device 11 is kept high enough (that is, when it is charged) by actively performing power generation by motor generator 6 at this time, then the operation shifts to heavy load work. Even if the "heavy load” state continues, it is possible to avoid the occurrence of a situation where the remaining capacity of the storage device 11 is immediately lost against the intention of the operator. Therefore, according to the present embodiment, even when heavy load work is continuously performed, the work can be continued without powering down. Note that the fuel consumption rate when the load state is “light load” is generally not so low (good), and during this time the power storage device 11 is charged to increase the load on the engine 1, thereby reducing fuel consumption of the engine. It is possible to reduce the rate.
  • the target SOC of the power storage device 11 is set to S2 (medium level).
  • S2 medium level
  • the time-average load tends to fall within the output range of the engine 1, but power assistance from the storage device 11 is necessary for instantaneous large power demand.
  • Tends to Such a medium load operation is an operation that accounts for most of the wheel loader's daily work, and maximizes the benefits of hybrid vehicles by achieving the highest fuel efficiency performance at "medium load” be able to. By operating in this manner, it is possible to achieve the highest fuel efficiency performance in medium load operation.
  • SOC of power storage device 11 is relatively separated from the intermediate value (ie, close to S1 or S3), the SOC at that time is maintained without being forcedly charged and discharged. You should control to do.
  • the load state determination unit 40 determines that the load is "heavy load"
  • the power assist by the power storage device 11 (motor generator 6) is required. Therefore, if the "heavy load” state continues for a long time, the storage battery 11 tends to be overdischarged, and even if the initial SOC is high (for example, a state close to S3, finally used It is assumed that the range lower limit (S1) is lowered. Therefore, in the present embodiment, after the SOC of power storage device 11 reaches lower limit value S1, the control is shifted to control (SOC constant control) to maintain the state. As a result, the output power of the vehicle is ultimately limited.
  • charging of power storage device 11 is actively performed as the load on the work vehicle is light and the output of the engine has more margin.
  • the heavy load operation can be started with the SOC high, and the heavy load operation can be performed for a long time without power down.
  • FIG. 9 is a flowchart of another process executed by the load state determination unit 40 and the target SOC determination unit 41.
  • the flowchart shown in this figure shows two more cases ("medium load (P)” and “medium load (E) when the load state is” medium load “according to the switching position (selection mode) of the work mode switch 64. It differs from that of FIG. 7 in that it is classified as “)” and the value of the target SOC is made different in each case.
  • the load state determination unit 40 determines whether the work mode switch 64 is switched to the P mode based on the work mode signal. It determines (S130). Here, if it is confirmed that the switch 64 is switched to the P mode, the load state determination unit 40 determines that the load state is "medium load (P)" (S132) (subscript attached to the load state " “P” indicates that the work mode is a power mode in which the amount of work is important. Then, the target SOC determination unit 41 receives the input of the determination and sets the target SOC to the set value S3 (for example, 70%) (S134). When the target SOC is set, the process returns to the beginning and repeats the processing of S100 and thereafter.
  • S3 for example, 70%
  • the load state determination unit 40 determines that the load state is "medium load (E)" (S112) .
  • the subscript “E” attached to the load state indicates that the work mode is the economy mode in which efficiency is important, and is different from the notation according to S112 in FIG. 7 (“medium load” without subscript). Both are the same, and the target SOC (S2) to be set does not change either. That is, in FIG. 9, in order to distinguish it from the "medium load (P)" of S132, the subscript "E” is simply added for convenience.
  • the load state determination unit 40 further determines whether the current SOC value of the power storage device 11 is larger than the set value S1. Is determined (S116). That is, in S116, it is determined whether the remaining capacity of the power storage device 11 has decreased.
  • the load state determination unit 40 determines that the load state is “heavy load (H)” (S118) The suffix “H” indicates that the remaining capacity is higher than the set value S1). Then, the target SOC determination unit 41 sets the target SOC to the set value S3 in response to the input of the determination (S120). When the target SOC is set, the process returns to the beginning and repeats the processing of S100 and thereafter.
  • the load state determination unit 40 determines that the load state is "heavy load (L)" (H122).
  • L the subscript “L” attached to the load state indicates that the remaining capacity is lower than the set value S1, and is different from the notation according to S122 in FIG. 7 (“heavy load” without subscript)
  • the target SOC (S1) to be set does not change.
  • the SOC of power storage device 11 is held at the lower limit value (S1) at which overdischarge can be prevented.
  • the target SOC is set to S1
  • the process returns to the beginning to repeat the processing from S100.
  • the work mode switching switch 64 when the work mode switching switch 64 is switched to the P mode, it is determined that the operator is highly likely to require a large output to some extent, so that the medium load is medium. Even when the power storage device 11 has a target SOC of S3 (for example, the upper limit value of the use range of the power storage device 11), power generation is actively performed when there is a margin in the output of the engine Execute control to increase the charge amount. On the other hand, when the switch 64 is switched to the E mode, it is determined that the operator desires an energy saving operation that consumes less fuel, so the target SOC of the storage device 11 is kept at S2. Avoid aggressive charging (fuel consumption).
  • S3 for example, the upper limit value of the use range of the power storage device 11
  • the engine output is The target SOC is set to S3 (high level) so that the battery can be charged as much as possible even in a short time when there is a margin.
  • FIG. 10 is a flowchart of another process executed by the load state determination unit 40 and the target SOC determination unit 41.
  • the flowchart shown in this figure differs from those of FIGS. 7 and 9 in that the value of the target SOC is made different according to the switching position (selection mode) of the charge mode switching switch 65.
  • the same processes as those in the flowcharts of FIGS. 7 and 9 will be assigned the same reference numerals and descriptions thereof will be omitted, and processes (S140, 142, 144) different from those in FIGS.
  • the processes after S106, S116, and S130 overlap with the flowchart illustrated in FIG.
  • the load state determination unit 40 determines whether the charge mode switch 65 is switched to the charge priority mode based on the charge mode signal. Is determined (S140). Here, if it is confirmed that the switch 65 is switched to the charge priority mode, the load state determination unit 40 determines that the load state is "medium load (C)" (S142) (Subscript attached to the load state "C" indicates that the charge priority mode is selected). Then, in response to the input of the determination, the target SOC determination unit 41 sets the target SOC to the set value S3 (for example, 70%) (S144). When the target SOC is set, the process returns to the beginning and repeats the processing of S100 and thereafter.
  • S3 for example, 70%
  • the charge mode switching switch 65 when the charge mode switching switch 65 is switched to the charge priority mode, heavy load work will be requested by the operator in the near future, so in the case of FIG. Setting the target SOC of the storage device 11 to S3 (for example, the upper limit value of the range of use of the storage device 11) even when the load is determined to be medium load Control to increase the charge amount of the power storage device 11.
  • target SOC of power storage device 11 is set to S3 or S2 according to the work mode selected by work mode switching switch 64.
  • charging of power storage device 11 is prioritized regardless of the load state of the work vehicle at the time of charge priority mode selection.
  • the remaining capacity of 11 can be positively increased, and the continuity of heavy work scheduled to follow can be secured. That is, it becomes possible to operate the work vehicle in accordance with the operator's request.
  • the wheel loader may set the target SOC based on the operation.
  • V cycle drilling work is a main operation pattern that occupies about 70% or more of the entire actual wheel loader operation.
  • the wheel loader first moves forward with respect to the excavated object such as gravel mountain and loads a material such as gravel into the bucket in such a manner as to plunge into the excavated object of gravel mountain. After that, it moves backward to return to the original position, and while moving the steering wheel, ascends the lift arm and the bucket, it moves forward toward the transporter vehicle such as a dump truck. Then, the bucket is dumped to load the load on the transport vehicle (to release the soil) and the vehicle returns to its original position.
  • the vehicle repeats this work while drawing a V-shaped locus as described above.
  • the average load is within the output range of the engine 1, but sometimes power assistance from the storage device 11 is required, This corresponds to the "medium load” operation.
  • V-cycle digging operation In addition to the above-mentioned "V-cycle digging operation", other operation patterns of the wheel loader include a “running operation” for moving from the work site to another site, and a standby state without particularly performing the operation. There are several patterns, such as “idle state” to continue, and “pick-up operation” that repeatedly climbs up slopes such as Doiyama while repeatedly excavating and releasing soil.
  • the traveling operation and idling for movement are “light load” operations because the load size is relatively small with respect to the engine output. It can be classified into Also, the V-cycle drilling operation can be classified into the "medium load” operation as described above. Furthermore, since it is necessary to climb up while digging the slope, the average load exceeds the output of the engine and the power assist of the storage device 11 is continuously required, so It can be classified into operation.
  • the load state is classified by determining the operation of the work vehicle according to the operation (operation amount) of the operator on the operation lever 56, the accelerator pedal, the brake pedal, etc., and the target SOC is controlled according to the classification.
  • the same effect as that of the embodiment described above can be obtained.
  • the hybrid system targeted by the present invention is not limited to the series hybrid system of FIG. 1, and can be applied to various system configurations such as a traveling unit parallel type.
  • the present invention is not limited to the above embodiment, and includes various modifications within the scope not departing from the gist of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
  • each control device 20, 21, 22, 23, 24, and 25 described above, the function of each configuration, execution processing, and the like partially or entirely execute hardware (for example, each function is executed).
  • the logic may be realized by an integrated circuit, etc.).
  • the configuration related to the control device described above may be a program (software) in which each function related to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU).
  • the information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 エンジン(1)によって駆動される電動発電機(6)と、電動発電機及びエンジンの少なくとも一方に駆動される油圧ポンプ(4)と、油圧ポンプからの圧油によって駆動される作業装置(50)と、車輪(61)を駆動するための走行用電動機(9)と、電動発電機及び走行用電動機に接続され、目標SOCに基づいて充電される蓄電装置(11)と、油圧ポンプ及び走行用電動機の合計要求動力(Pf+Prun)に基づいて、蓄電装置(11)の目標SOCを変化させる制御装置(200)とを備える。

Description

作業車両
 本発明は動力源としてエンジン及び電動機を備える作業車両に関する。
 近年、環境問題、原油価格高騰などの点から、各工業製品に対して省エネ志向が強まっている。例えば、自動車分野においては、エンジンとモータ(電動機)を動力源として備えるハイブリッド車が既に市場に出回っている。また、これまでディーゼルエンジンによる油圧駆動システムが中心であった作業車両(例えば、建設車両、産業車両等)の分野においても、その傾向にあり、電動化による高効率化、省エネルギー化の事例が増加してきている。例えば、作業車両の駆動部分を電動化、すなわち駆動源をモータにした場合、排気ガスの低減のほか、エンジンの高効率駆動(エンジン搭載のハイブリッド機種の場合)、動力伝達効率の向上、回生電力の回収など多くの省エネルギー効果が期待できる。このような作業車両の分野では、フォークリフトの電動化が進んでおり、バッテリーの電力を用いてモータを駆動する、いわゆる「バッテリーフォークリフト」が実用化されている。
 また、最近では、エンジン式の油圧ショベルやフォークリフトなどにおいて、ディーゼルエンジンとモータを駆動源とする「ハイブリッド車両」が製品化され始めている。ハイブリッド化した場合に燃費低減効果が見込まれる作業車両としては、ホイールローダがある。従来のホイールローダは、例えば、トルクコンバータ(トルコン)およびトランスミッション(T/M)を介してエンジンの動力を車輪に伝えて走行を行いながら、車両前方に取り付けられた作業装置のバケット部分で土砂等を掘削・運搬する作業車両である。このようなホイールローダの走行駆動部分を電動化すると、トルコン及びトランスミッション部分における動力伝達効率を電気による動力伝達効率まで向上させることが可能となる。さらにホイールローダでは、作業中、頻繁に発進・停止の走行動作を繰り返すため、走行駆動部分を電動化した場合には、走行用の電動機から制動時の回生電力回収が見込める。
 この種のホイールロータのうち、シリーズ式ハイブリッドシステムのものとして、エンジンと機械的に連結された電動発電機(モータ・ジェネレータ)と、当該電動発電機を制御する第1インバータと、走行部の出力軸(プロペラシャフト)に機械的に連結された走行用電動機と、当該走行用電動機を制御する第2インバータと、DCDCコンバータを介して当該第1及び第2インバータと電気的に接続された蓄電装置とを備えたものがある。当該システムの基本的な動作としては、蓄電装置とDCDCコンバータによってシステム電圧(各インバータ間のDCバス電圧)を所定の値に制御しながら、主にエンジンで電動発電機を発電駆動し、発電された電力により走行用電動機からトルクを発生して車両を走行させている。また、当該システムにおける蓄電装置は、前述のようにシステム電圧を所定の値に保つための電力源のみならず、エンジン動力不足時のアシストパワー源、走行用電動機の回生制動時の電力吸収源として動作するため、比較的容量が大きい蓄電装置が用いられる。たとえば、大容量の電気2重層キャパシタや、Liイオン、Ni-MHに代表される2次電池などがある。
 このようなハイブリッド式の作業車両における蓄電装置の充放電制御に関する技術として、エンジンにより駆動される電動発電機を制御する電動発電機制御部と、電気的に接続された第1の蓄電器と第2の蓄電器との間の充放電を制御する充放電制御部と、当該第2の蓄電器と電気的に接続されたモータと、当該第1の蓄電器及び当該第2の蓄電器の少なくとも一方の蓄電目標値をモータが回生動作を行う前に低減する制御装置とを備えるハイブリッド式の油圧ショベル(建設機械)がある(国際公開第2010/143628号パンフレット)。
国際公開第2010/143628号パンフレット
 上記文献の技術が奏する効果の一面としては、モータによる回生電力が生じると推定される場合に蓄電器の蓄電目標値を予め下げておくことで、当該蓄電器の過充電を抑制することが可能となるとともに、回生電気エネルギーを有効に利用することができるというものがある。すなわち、ハイブリッド車両の一つの特長である、回生電力の利用という面において効率的な動作を実現することが可能となる。
 しかし、この技術のようにモータ回生時に充電目標値を低減するだけでは、仮にハイブリッド車両が比較的大きな負荷動作を継続的に行う場合、当該動作の継続に必要なアシスト用電力を確保することが困難となる可能性がある。例えば、蓄電器(蓄電装置)が電気2重層キャパシタであった場合は、2次電池に比べて電気的容量が小さいため、重負荷動作が継続した場合にはアシスト電力が不足してパワーが制限されることが考えられる。さらに、蓄電装置が2次電池であった場合でも、充電深度(State of Charge(以下、SOCと称することがある))が低いレベルにあった場合には、放電電力を制限する必要が生じることが考えられる。
 そこで、本発明の目的は、駆動部を電動化したハイブリッド式の作業車両において、重負荷作業が継続的に行われた場合でもパワーダウンすることなく作業を継続できる作業車両を提供することにある。
 本発明は、上記目的を達成するために、エンジンによって駆動される電動発電機と、前記電動発電機及び前記エンジンの少なくとも一方に駆動される油圧ポンプと、前記油圧ポンプからの圧油によって駆動される作業装置と、車輪を駆動するための走行用電動機と、前記電動発電機及び前記走行用電動機に接続され、目標SOCに基づいて充電される蓄電装置と、前記油圧ポンプ及び前記走行用電動機の合計要求動力に基づいて、前記蓄電装置の目標SOCを変化させる制御装置とを備えるものとする。
 本発明によれば、重負荷作業が継続的に行われた場合でもパワーダウンすることなく作業車両による作業を継続できる。
本発明の実施の形態に係るハイブリッドホイールローダのシステム構成図。 従来のホイールローダの代表的な構成例。 本発明の実施の形態に係るホイールローダに搭載された制御装置の構成図。 本発明の実施の形態に係るハイブリッド制御装置の構成図。 本発明の実施の形態に係るハイブリッドシステムにおけるパワーフロー図。 本発明の実施の形態に係るハイブリッド制御装置の他の構成図。 本発明の実施の形態に係る負荷状態判定部及び目標SOC決定部で実行される処理のフローチャート。 本発明の実施の形態に係るハイブリッド制御装置のさらに他の構成図。 本発明の実施の形態に係る負荷状態判定部及び目標SOC決定部で実行される処理の他のフローチャート。 本発明の実施の形態に係る負荷状態判定部及び目標SOC決定部で実行される処理のさらに他のフローチャート。
 以下、本発明の実施の形態について図面を用いて説明する。 
 図1は本発明の実施の形態に係るハイブリッドホイールローダのシステム構成図である。この図に示すホイールローダは、シリーズ型ハイブリッドシステムによって構成されており、ディーゼルエンジン1と、エンジン1に機械的に連結されエンジン1によって駆動される電動発電機(モータ/ジェネレータ(M/G))6と、電動発電機6を制御するインバータ装置7と、電動発電機6に機械的に連結され、電動発電機6及びエンジン1の少なくとも一方に駆動される油圧ポンプ4と、バケット及びリフトアーム(図示せず)を有し車体前方に取り付けられ、油圧ポンプ4からの圧油によって駆動される作業装置50と、コントロールバルブ55を介して油圧ポンプ4から供給される圧油によって駆動される油圧アクチュエータ(バケットシリンダ51、リフトシリンダ52及びステアリングシリンダ53)と、4つの車輪61を有する走行体60と、走行体60のプロペラシャフト8に取り付けられ4つの車輪61を駆動する走行用電動機9と、走行用電動機9を制御するインバータ装置10と、DCDCコンバータ12を介してインバータ7,10(電動発電機6,走行用電動機9)と電気的に接続されインバータ7,10との間で直流電力の受け渡しを行う蓄電装置11と、油圧アクチュエータ51,52,53を駆動するための操作信号を操作量に応じて出力する操作装置(操作レバー56及びステアリングホイール(図示せず))と、制御装置200を備えている。
 バケットシリンダ51及びリフトシリンダ52は、キャブ内に設置された操作レバー56の操作量に応じて出力される操作信号(油圧信号)に基づいて駆動される。リフトシリンダ52は、車体前方に回動可能に固定されたリフトアームに取り付けられており、操作レバー56からの操作信号に基づいて伸縮してリフトアームを上下に回動させる。バケットシリンダ51は、リフトアームの先端に回動可能に固定されたバケットに取り付けられており、操作レバー56からの操作信号に基づいて伸縮してバケットを上下に回動させる。ステアリングシリンダ53は、キャブ内に設置されたステアリングホイール(図示せず)の操舵量に応じて出力される操作信号(油圧信号)に基づいて駆動される。ステアリングシリンダ53は、各車輪61に連結されており、ステアリングホイールからの操作信号に基づいて伸縮して車輪61の舵角を変更する。
 また、図1のホイールローダは、前後進切替スイッチ(前後進切替装置)63と、作業モード切替スイッチ(作業モード切換装置)64と、充電モード切替スイッチ(充電モード切換装置)65を備えている。
 前後進切替スイッチ63は、作業車両の進行方向を前進及び後進のいずれかに切り替えるためのスイッチ(F/Rスイッチ)であり、当該スイッチ63の切替位置は前後進信号(スイッチ信号)としてハイブリッド制御装置20に出力される。
 作業モード切替スイッチ64は、作業車両に係る作業モードを、作業量重視のパワーモード(Pモード)と、効率重視のエコノミーモード(Eモード)のいずれかに切り替えるためのスイッチ(P/Eスイッチ)であり、当該スイッチ64の切替位置は作業モード信号(スイッチ信号)としてハイブリッド制御装置20に出力される。エンジン最大回転数と最大油圧ポンプ容量の組合せが各作業モードに予め定められており、本実施の形態ではPモードの方が相対的に高回転数・大容量が許容される設定になっている。すなわち、作業モード切替スイッチ64の切替位置に応じて、油圧ポンプ4と走行用電動機9の合計出力の最大値が変化することになり、Pモードの方がEモードよりも当該合計出力の最大値が高くなる。なお、ここでは、2つのモードを切り替える場合について説明するが、3つ以上の作業モードを備えても良い。
 充電モード切替スイッチ65は、作業量よりも蓄電装置11の充電を優先させるモード(充電優先モード)と、蓄電装置11の充電を優先しないモード(通常モード)のいずれかに作業車両に係る充電モードを切り替えるためのスイッチであり、当該スイッチ65の切替位置は充電モード信号(スイッチ信号)としてハイブリッド制御装置20に出力される。2つの充電モードの違いは、充電優先モードでは、通常モードよりも目標SOCが相対的に大きく設定されることがある点にある。本実施の形態で充電優先モードを選択すると、「中負荷」動作時(後述)に目標SOCが通常モード選択時よりも大きく設定される。なお、オペレータによって充電優先モードが選択される場合としては、例えば、蓄電装置11の電力を積極的に利用する作業(高負荷作業)を行う場合がある。
 蓄電装置11は、特に種類を限定されるものではなく、例えば、大容量電気2重層キャパシタや、リチウムイオン電池、ニッケル水素電池及び鉛電池等の2次電池が利用可能である。本実施の形態では、蓄電装置11としてリチウムイオン電池を利用しているものとする。本実施の形態における蓄電装置11は、DCDCコンバータ12によって電池電圧の昇降圧制御を行い、インバータ7,10(すなわち、電動発電機6及び走行用電動機9)との間で直流電力の受け渡しを行っている。
 なお、ここでは、DCバス13と蓄電装置11の間に設置したDCDCコンバータ12を用いて電力の収受を行う場合について説明したが、蓄電装置11の電圧が当該ハイブリッドシステムのシステム電圧相当である場合には、DCDCコンバータ12を省略することも可能であり、その場合にはDCバス13と蓄電装置11を直接接続しても良い。
 上記のように構成されるハイブリッドホイールローダでは、土砂などの掘削作業を行うための作業装置50に油圧ポンプ4によって適宜油圧を供給することで目的に応じた作業を実施する。また、走行体60の走行動作は、主にエンジン1の動力により電動発電機6で発電した電力を利用し、走行用電動機9を駆動することにより行う。その際、蓄電装置11では、車両制動時に走行用電動機9が発生する回生電力を吸収したり、電動発電機6又は走行用電動機9に蓄電電力を供給することでエンジン1に対する出力アシストを行ったりすることで、車両の消費エネルギー低減に寄与する。
 図2は従来のホイールローダの代表的な構成例を示す図である。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。この図に示した従来のホイールローダは、主な駆動部として走行体60と作業装置50(リフト/バケット部分)を備えており、トルクコンバータ(トルコン)2およびトランスミッション(T/M)3を介してエンジン1の動力を車輪61に伝えて走行を行い、さらに油圧ポンプ4によって駆動される作業装置50で土砂等を掘削・運搬する。トルコンの動力伝達効率は電気による動力伝達効率より劣るため、図2に示したホイールローダの走行駆動部分を電動化(パラレル式ハイブリッド構成も含む)すると、エンジン1からの動力伝達効率を向上させることが可能となる。さらに、作業中のホイールローダでは頻繁に発進・停止の走行動作が繰り返されるため、上記のように走行駆動部分を電動化した場合には走行用電動機9から制動時の回生電力の回収が見込めるようになる。このようにホイールローダの駆動装置の一部を電動化してハイブリッド化すると、燃料消費量を低減することができる。
 図3は本発明の実施の形態に係るホイールローダに搭載された制御装置200の構成図である。この図に示すように、本実施の形態に係るホイールローダ(車両)には、制御装置200として、図1に示したハイブリッドシステム全体のエネルギーフローやパワーフロー等の制御を行うコントローラであるハイブリッド制御装置20と、コントロールバルブ(C/V)55や油圧ポンプ4を制御する油圧制御装置21と、エンジン1の制御を行うエンジン制御装置22と、インバータ7,10を制御するインバータ制御装置23と、DCDCコンバータ12を制御するコンバータ制御装置24と、蓄電装置11の充電状態(SOC)や異常の有無を検出・管理する蓄電制御装置25が搭載されている。蓄電制御装置25は、主に蓄電装置11の電圧等の状態検知に使用されることが多い。
 各制御装置20,21,22,23,24,25は、ハードウェア構成として、後述する制御をはじめとして各種の制御プログラムを実行するための演算処理装置(例えば、CPU)(図示せず)と、当該制御プログラムをはじめとして各種データを記憶するための記憶装置(例えば、ROM、RAM等)(図示せず)と、各種データが入出力される入出力装置(図示せず)を備えている。また、各制御装置20,21,22,23,24,25は、CAN(Controller Area Network)を介して互いに接続されており、相互に各機器の指令値及び状態量を送受信している。ハイブリッド制御装置20は、図3に示すように、油圧制御装置21、エンジン制御装置22、インバータ制御装置23、コンバータ制御装置24及び蓄電制御装置25の各コントローラの上位に位置し、システム全体の制御を行っており、システム全体が最高の作業性能を発揮するように他の各制御装置21~25に具体的動作の指令を与える。
 なお、図3に示した各制御装置20~25は、図1に示すハイブリッドシステムの各駆動部分を制御するために必要なコントローラのみを示している。実際車両を成立させる上では、その他にモニタや情報系のコントローラが必要となってくるが、それらは本発明と直接的な関係が無いため図示していない。また、各制御装置20~25は、図3に示すように他の制御装置と別体である必要はなく、ある1つの制御装置に2つ以上の制御機能を実装しても構わない。図中のインバータ制御装置23は、単体で2基のモータ6,9を制御するように表記している。
 図4は本発明の実施の形態に係るハイブリッド制御装置20の構成図である。この図に示すハイブリッド制御装置20は、システム制御部30と、動力配分部31と、エンジン制御部32と、M/G制御部33と、走行制御部35と、油圧制御部35を備えている。
 システム制御部30では、ハイブリッドシステム全体の制御が行われる。動力配分部31では、エンジン1の出力と蓄電装置11の電力を各駆動部(油圧ポンプ4、電動発電機6、走行用電動機9)に分配する処理が行われる。エンジン制御部32では、油圧ポンプ4(作業装置50)が要求する動力値(油圧要求動力値Pf)と走行用電動機9が要求する動力値(走行要求動力値Prun)を合計した車両全体における要求動力値(合計要求動力値)に応じて、エンジン1の回転数指令が決定される。M/G制御部33では、発電要求値に応じて電動発電機6のトルク指令が決定される。油圧制御部34では、M/G制御部33と操作レバー56の操作量等から演算される油圧ポンプ4の要求動力値Pfに基づいて油圧ポンプ4の傾転角指令値が演算される。走行制御部35では、アクセル/ブレーキペダルの踏み込み量及び現在の車速から演算される走行要求動力値Prunに基づいて走行用電動機9のトルク指令が演算される。
 ハイブリッド制御装置20には、操作レバー(フロント部レバー)56から出力された操作信号(操作量を含む)と、キャブ内に設置されたアクセルペダル及びブレーキペダルの踏み込み量と、F/Rスイッチ63のスイッチ信号(前後進信号)と、速度センサ(車輪速度検出手段)62によって検出された車輪61の回転速度から演算される車両速度(車速)と、インバータ10から出力される走行用電動機9の回転数と、エンジン1の回転数(エンジン回転数)と、蓄電制御装置25で算出される蓄電装置11の現在のSOCが入力されている。なお、ホイールローダの車速は、速度センサ62の検出値を入力することで、ハイブリッド制御装置20で算出しても良い。
 動力配分部31では、油圧要求動力値Pfと走行要求動力値Prunの和に相当する合計要求動力値に対して、その時のエンジン回転数で出力可能な範囲から効率を加味して最終的なエンジン出力(エンジン出力値Pe)が決定される。このとき蓄電装置11の出力(蓄電装置出力値Pc)は、SOCも鑑みながら、合計要求動力値に対してエンジン出力の不足分を補うように決定される。以上のように、ハイブリッドシステムは、その時々の合計要求動力値(Pf+Prun)に応じて、システム全体の効率が最適となるようにエンジン1と蓄電装置11の各出力を決定し、各制御装置に指令を与え、車両の動作を行う。
 図5は本発明の実施の形態に係るハイブリッドシステムにおけるパワーフローを示す図である。本実施の形態に係るハイブリッドシステムは、車両を駆動するための動力源としてエンジン1及び蓄電装置11を有している。動力配分部31は、この図に示したように、下記式(1)及び(2)にしたがって、エンジン出力Peと蓄電装置出力Pcを作業装置50の出力Pfと走行用電動機9の出力Prunに分配する処理を行う。なお、下記式(1)及び(2)におけるPmg_in、Pmg_outは、それぞれ電動発電機6の入力パワー及び出力パワーを示している。
  Pf  = Pe - Pmg_in …式(1)
  Prun = Pmg_out + Pc …式(2)
 ハイブリッド制御装置20は、出力上限値Pe,Pcの和(ハイブリッド出力可能上限値)に対して、作業装置50の動力要求値(油圧要求動力値Pf)と走行用電動機9の動力要求値(走行要求動力値Prun)の和(合計要求動力値)が小さい場合には、システム制御部30において最も燃費が高くなる出力の仕方を判断し、それに応じて動力配分部31で作業装置50および走行電動機9にそれぞれの動力要求値に沿った指令値を与え、車両の動作を行う。
 図6は本発明の実施の形態に係るハイブリッド制御装置20の他の構成図である。この図に示すように、ハイブリッド制御装置20は、負荷状態判定部40と、目標SOC決定部41を備えており、これらにより合計要求動力値(Pf+Prun)の大きさ(車両の負荷状態)に応じて蓄電装置11の目標SOCを変化させる処理を実行している。
 負荷状態判定部40には、操作レバー56の操作量(フロント部レバー操作量)、アクセルペダル/ブレーキペダルの踏み込み量、前後進切替スイッチ(F/Rスイッチ)63の前後進信号、車両速度と走行用電動機9のトルク、油圧ポンプ4の圧力・流量(これらはポンプ4の吐出側に設置した圧力センサやポンプ傾転角により取得可能)、作業モード切替スイッチ(P/Eスイッチ)64の作業モード信号、充電モード切替スイッチ65の充電モード信号が入力されている。負荷状態判定部40は、これらの入力値に基づいて油圧ポンプ4及び走行用電動機9の要求動力(Pf,Prun)を算出する。特に、上記の入力信号の中、操作レバー56の操作量と、アクセルペダル/ブレーキペダルの踏み込み量により、負荷の大きさを判断することが可能である。これに加えて、車両速度、走行用電動機9のトルク、および油圧ポンプ4の圧力・流量を利用すれば、走行駆動部(走行用電動機9)と油圧駆動部(油圧ポンプ4)それぞれの実パワーが演算できるので、要求動力の算出精度を向上させることができ、これにより後続する動作判定の精度も向上する。
 さらに、負荷状態判定部40は、油圧ポンプ4及び走行用電動機9の要求動力の和である合計要求動力値(Pf+Prun)に加えて、蓄電装置11のSOC及びスイッチ64、65の切替位置を必要に応じて考慮しながら、作業車両の負荷状態を判定する。本実施の形態では、作業車両の負荷状態を主として3つに分類している。具体的には、合計要求動力(Pf+Prun)の大きさに応じて、車両の負荷状態を、(1)重負荷、(2)中負荷、(3)軽負荷の3つに分類しており、蓄電装置11のSOC及びスイッチ64,65の位置に応じて負荷状態(目標SOC)をさらに細かく分類している。
 目標SOC決定部41には、負荷状態判定部40の判定結果が入力されている。目標SOC決定部41では、負荷状態判定部40で判定された「負荷状態」に応じて蓄電装置11の目標SOCを決定する処理が実行される。どの負荷状態のときに、目標SOC決定部41でどの目標SOCが選択されるかについては、後述するように予め決められており、目標SOCは負荷状態に応じて変化する。目標SOC決定部41で決定された目標SOCは、ハイブリッド制御装置20内のシステム制御部30に出力され、電動発電機6のトルク指令の生成に利用される(後述)。
 次に、本実施の形態に係る負荷状態判定部40及び目標SOC決定部41で実行される負荷状態判定処理及び目標SOC決定処理について説明する。
 図7は負荷状態判定部40及び目標SOC決定部41で実行される処理のフローチャートである。この図に示すように、負荷状態判定部40は、まず、図6に示した各種信号を入力し(S100)、アクセルペダル/ブレーキペダルの踏み込み量及び操作レバー56の操作量等に基づいて、油圧要求動力値Pfと走行要求動力値Prunを演算する(S102)。
 負荷状態判定部40は、合計要求動力値(Pf+Prun)が設定値P1未満か否かを判定する(S104)。設定値P1は、作業車両の負荷状態が上記3分類の中で最も軽い「軽負荷」であると負荷状態判定部40が判定するために設定した値であり、後述するもう1つの設定値P2よりも小さく設定されている(P1<P2)。なお、本実施の形態に係る「軽負荷」とは、エンジン1の出力のみで対応可能な負荷が作用している状態を想定しており、当該想定によれば設定値P1はエンジン出力Peの最大値よりも小さく設定することが好ましい。
 S104で合計要求動力値が設定値P1未満であると判定された場合には、負荷状態判定部40は負荷状態が「軽負荷」であると判定する(S106)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S3に設定する(S108)。ここで、設定値S3は、「中負荷」のときの目標SOC(設定値S2)より高く、さらに「重負荷」のときの目標SOC(設定値S1)より高い。設定値S3は、蓄電装置11の種類や仕様等に応じて異なるが、ここでは蓄電装置11の過充電を防止するために設定される目標SOCの上限値に一致する値又はこれに近い値とし、本実施の形態では70%として説明する。目標SOCが設定されたら、最初に戻ってS100以降の処理を繰り返す。
 一方、S104で合計要求動力値が設定値P1以上であると判定された場合には、負荷状態判定部40は、さらに、当該合計要求動力値が設定値P2未満か否かを判定する(S110)。設定値P2は、作業車両の負荷状態が上記3分類のうちの「中負荷」か「重負荷」かについて、負荷状態判定部40が判定するために設定した値であり、P2未満である場合(P1≦Pf+Prun<P2)には「中負荷」であると判定される。なお、本実施の形態に係る「中負荷」とは、時間平均的な負荷はエンジン1の出力範囲内であるが、所定の時刻に作用する負荷は蓄電装置11の出力のアシストが必要となる状態(すなわち、エンジン1の出力範囲外になることがある状態)を想定している。さらに、「重負荷」とは、継続して蓄電装置11の出力のアシストが必要となる状態を想定している。そのため、これらの想定によれば設定値P2は例えばエンジン出力Peの最大値より大きい値と設定することができる。
 S110で合計要求動力値が設定値P2未満であると判定された場合には、負荷状態判定部40は負荷状態が「中負荷」であると判定する(S112)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S2に設定する(S114)。ここで、設定値S2は、重負荷の目標SOC(設定値S1)と比較して高く設定されており、さらに「軽負荷」のときの目標SOC(設定値S3)よりも低く設定されている(S1<S2<S3)。設定値S2は、蓄電装置11の種類や仕様等に応じて異なるが、ここでは蓄電装置11の通常の使用範囲の中間値に相当する値に設定するものとし、本実施の形態では50%として説明する。目標SOCが設定されたら、最初に戻ってS100以降の処理を繰り返す。なお、目標SOC決定部41で決定される設定値S2としては、上記の設定値(50%)の代わりに、その時刻における蓄電装置11のSOCの値(現在のSOCの値)を利用しても良い。すなわち、この場合、現SOCの値が保持されるように発電する設定が採用されることになる。
 S110で合計要求動力値が設定値P2以上であると判定された場合には、負荷状態判定部40は、負荷状態が「重負荷」であると判定する(H122)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S1に設定する(S124)。設定値S1は、蓄電装置11の種類や仕様等に応じて異なるが、ここでは蓄電装置11の過放電を防止するために設定される目標SOCの下限値又はこれに近い値とし、本実施の形態では30%として説明する。目標SOCがS1に設定されたら、最初に戻ってS100以降の処理を繰り返す。
 上記のように図7のフローチャートに従って処理すると、蓄電装置11の目標SOCは、合計要求動力が小さいほど高く設定される。
 図8は本発明の実施の形態に係るハイブリッド制御装置20のさらに他の構成図である。この図にはシステム制御部30と、動力配分部31と、M/G制御部33が示されている。システム制御部30には、図7のフローチャートに従って決定された目標SOCが入力されている。システム制御部30は、蓄電制御装置25から入力される蓄電装置11の現在のSOCと目標SOCの偏差に基づいて、蓄電装置11を充電するために利用される電動発電機6に対する発電パワー指令(M/Gパワー指令)をパワー演算部30Aで演算し、当該発電パワー指令を動力配分部31に出力する。すなわち、電動発電機6による発電は、2つのSOCの偏差に基づいてフィードバック制御される。
 動力配分部31は、パワー制限部31Aにおいて、エンジン1及び作業装置50の状態に応じて発電パワー指令に対して制限処理を施し、M/G制御部33に出力する。M/G制御部33は、トルク演算部33Aにおいて、電動発電機6の最終的なトルク指令を演算し電動発電機6を制御するインバータ制御装置23に当該トルク指令を出力する。これにより図7のフローチャートに従って決定された目標SOCに近づくように蓄電装置11のSOCが制御される。
 なお、ここでは蓄電装置11のSOC制御を実施するために、目標SOCに対し、現在のSOCをフィードバックする場合について説明したが、SOCの代わりに蓄電装置11のOCV(開放電圧)を用いても良い。また、蓄電装置11に係るSOC制御系の指令値がM/Gトルク指令値の場合について説明したが、これに限定されるものではなく、図3に示すDCDCコンバータ12により蓄電装置11に係る電流制御を実施しても良い。
 上記のように構成された作業車両において、まず、負荷状態判定部41において「軽負荷」と判定された場合には、蓄電装置11の目標SOCはS3(高レベル)に設定される。また、「軽負荷」のときは、前述のように、エンジン1の出力に比較的余裕がある。そのため、このときに電動発電機6による発電を積極的に行うことで蓄電装置11のSOCを充分に高くしておくと(すなわち、充電しておくと)、その後に重負荷作業に移行して「重負荷」の状態が継続しても、オペレータの意に反して蓄電装置11の残容量が即座に無くなるという事態が発生することを回避できる。したがって、本実施の形態によれば、重負荷作業が継続的に行われる場合でも、パワーダウンすることなく作業を継続することができる。なお、負荷状態が「軽負荷」の場合の燃料消費率は一般的にそれほど低い(良い)ことはなく、この間に蓄電装置11を充電し、エンジン1の負荷を増やすことにより、エンジンの燃料消費率を低減することが可能である。
 次に、負荷状態判定部40において「中負荷」と判定された場合には、蓄電装置11の目標SOCはS2(中レベル)に設定される。「中負荷」のときは、前述のように、時間平均の負荷はエンジン1の出力範囲内に収まる傾向があるが、瞬間的な大きな動力要求に対しては蓄電装置11からのパワーアシストが必要となる傾向がある。このような中負荷動作は、ホイールローダの一日の作業の中でほとんどの割合を占める動作であり、「中負荷」で最高の燃費性能を出すことにより、ハイブリッド車のメリットを最大限に引き出すことができる。このように動作することで、中負荷動作において最高の燃費性能を実現することができる。なお、前述のように、蓄電装置11のSOCが中間値より比較的離れた状態にある場合(すなわち、S1又はS3に近い場合)には、無理に充放電させることなくその時点のSOCを維持するように制御すれば良い。
 さらに、負荷状態判定部40において「重負荷」と判定された場合は、蓄電装置11(電動発電機6)によるパワーアシストが必要となる。そのため、「重負荷」の状態が長期に渡って継続すると、蓄電装置11が放電過多となる傾向が強く、当初のSOCが高い状態(例えば、S3に近い状態)であっても最終的に使用範囲下限(S1)まで低下することが想定される。そこで、本実施の形態では、蓄電装置11のSOCが下限値S1まで達した後は、その状態を維持するような制御(SOC一定制御)に移行することにした。その結果、車両の出力パワーは最終的に制限されることになる。
 以上のように構成された作業車両によれば、作業車両への負荷状態が軽くエンジンの出力に余裕があるときほど蓄電装置11の充電が積極的に行われることになるので、蓄電装置11のSOCが高い状態で重負荷作業を開始することができ、重負荷作業を長時間にわたってパワーダウン無く実施することが可能となる。
 次に、負荷状態判定部40及び目標SOC決定部41で実行される他の目標SOC決定処理について説明する。図9は負荷状態判定部40及び目標SOC決定部41で実行される他の処理のフローチャートである。この図に示すフローチャートは、作業モード切替スイッチ64の切替位置(選択モード)に応じて、負荷状態が「中負荷」の場合をさらに2つ(「中負荷(P)」及び「中負荷(E)」)に分類し、各場合で目標SOCの値を異ならせている点で図7のものと異なる。さらに、蓄電装置11のSOCの値に応じて、負荷状態が「重負荷」の場合をさらに2つ(「重負荷(H)」及び「重負荷(L)」)に分類し、各場合で目標SOCの値を異ならせている点でも異なる。ここでは、図7のフローチャートと同じ処理には同じ符号を付して説明を省略し、主として図7のものと異なる処理(S130,S132,S134,S116,S118,S120)について説明する。
 S110で合計要求動力値が設定値P2未満であると判定された場合には、負荷状態判定部40は、作業モード信号に基づいて作業モード切替スイッチ64がPモードに切り替えられているか否かを判定する(S130)。ここでスイッチ64がPモードに切り替えられていることが確認できたら、負荷状態判定部40は負荷状態が「中負荷(P)」であると判定する(S132)(負荷状態に付した添字「P」は、作業モードが作業量重視のパワーモードであることを示す)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S3(例えば、70%)に設定する(S134)。目標SOCが設定されたら、最初に戻ってS100以降の処理を繰り返す。
 一方、上記とは逆に、S130でスイッチ64がEモードに切り替えられていることが確認できたら、負荷状態判定部40は負荷状態が「中負荷(E)」であると判定する(S112)。ここで負荷状態に付した添字「E」は、作業モードが効率重視のエコノミーモードであることを示しており、図7中のS112に係る表記(添字の無い「中負荷」)と異なるが、両者は同じものであり、設定される目標SOC(S2)も変わらない。すなわち、図9では、S132の「中負荷(P)」と区別するために、便宜的に添字「E」を付したに過ぎない。
 また、S110で合計要求動力値が設定値P2以上であると判定された場合には、負荷状態判定部40は、さらに、蓄電装置11の現在のSOCの値が設定値S1より大きいか否かを判定する(S116)。すなわち、S116では蓄電装置11の残容量が少なくなっていないか否かを判定する。
 S116で蓄電装置11のSOCが設定値S1より大きいと判定された場合には、負荷状態判定部40は負荷状態が「重負荷(H)」であると判定する(S118)(負荷状態に付した添字「H」は残容量が設定値S1より高いことを示す)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S3に設定する(S120)。目標SOCが設定されたら、最初に戻ってS100以降の処理を繰り返す。
 S116で蓄電装置11のSOCが設定値S1以下であると判定された場合には、負荷状態判定部40は負荷状態が「重負荷(L)」であると判定する(H122)。ここで負荷状態に付した添字「L」は、残容量が設定値S1より低いことを示しており、図7中のS122に係る表記(添字の無い「重負荷」)と異なるが、両者は同じものであり、設定される目標SOC(S1)も変わらない。これにより、蓄電装置11のSOCは過放電が防止され得る下限値(S1)に保持される。目標SOCがS1に設定されたら、最初に戻ってS100以降の処理を繰り返す。
 上記のように構成した作業車両によれば、作業モード切替スイッチ64がPモードに切り替えられている場合には、オペレータによってある程度大きな出力が要求される蓋然性が高いと判断されるため、中負荷であっても蓄電装置11の目標SOCをS3(例えば、蓄電装置11の使用範囲の上限値)に設定することで、エンジン1の出力に余裕がある時には積極的に発電を行い、蓄電装置11の充電量を上昇させる制御を実行する。これに対して、スイッチ64がEモードに切り替えられている場合には、あまり燃料を消費しない省エネ運転をオペレータが希望していると判断されるので、蓄電装置11の目標SOCをS2に据え置き、積極的な充電(燃料消費)は実施しないようにする。
 このように作業モード切替スイッチ64の切替位置に応じて目標SOCを設定すると、オペレータが作業量を重視する場合にはパワーダウンができるだけ避けられる一方で、オペレータが省エネ運転を重視する場合には燃料消費量を抑制することができる。すなわち、オペレータの希望に添った作業車両の運用が可能になる。
 さらに、本実施の形態では、負荷状態判定部40において、「重負荷」かつ蓄電装置11のSOCがS1より大きいと判定されたとき(すなわち、「重負荷(H)」)には、エンジン出力に余裕が生じるわずかな時間だけでも可能な限り充電できるように、目標SOCをS3(高レベル)に設定するようにした。これにより図7の場合よりも重負荷作業時に蓄電装置11が積極的に充電されることになるので、蓄電装置11の電力低下をできるだけ遅くすることができ、重負荷作業の継続性を向上できる。
 次に、負荷状態判定部40及び目標SOC決定部41で実行されるさらに他の目標SOC決定処理について説明する。図10は負荷状態判定部40及び目標SOC決定部41で実行される他の処理のフローチャートである。この図に示すフローチャートは、充電モード切替スイッチ65の切替位置(選択モード)に応じて、目標SOCの値を異ならせている点で図7,9のものと異なる。ここでは、図7,9のフローチャートと同じ処理には同じ符号を付して説明を省略し、主として図7,9のものと異なる処理(S140,142,144)について説明する。なお、図10では、S106,S116,S130以降の処理は、それぞれ図9に示したフローチャートと重複するので図示を省略している。
 S110で合計要求動力値が設定値P2未満であると判定された場合には、負荷状態判定部40は、充電モード信号に基づいて充電モード切替スイッチ65が充電優先モードに切り替えられているか否かを判定する(S140)。ここでスイッチ65が充電優先モードに切り替えられていることが確認できたら、負荷状態判定部40は負荷状態が「中負荷(C)」であると判定する(S142)(負荷状態に付した添字「C」は、充電優先モードが選択されていることを示す)。そして、目標SOC決定部41は、当該判定の入力を受けて目標SOCを設定値S3(例えば、70%)に設定する(S144)。目標SOCが設定されたら、最初に戻ってS100以降の処理を繰り返す。
 一方、上記とは逆に、S140でスイッチ65が通常モードに切り替えられていることが確認できたら、作業モード切替スイッチ64からの信号に応じてS130以降の処理を実行する。
 上記のように構成した作業車両によれば、充電モード切替スイッチ65が充電優先モードに切り替えられている場合には、近い将来オペレータによって重負荷作業が要求されることになるので、図7の場合に中負荷と判定される場合であっても蓄電装置11の目標SOCをS3(例えば、蓄電装置11の使用範囲の上限値)に設定し、エンジン1の出力に余裕がある時には積極的に発電を行い、蓄電装置11の充電量を上昇させる制御を実行する。これに対して、充電モード切替スイッチ65が通常モードに切り替えられている場合には、作業モード切替スイッチ64で選択された作業モードに応じて蓄電装置11の目標SOCをS3又はS2に設定する。
 このように充電モード切替スイッチ65の切替位置に応じて目標SOCを設定すると、充電優先モード選択時には作業車両の負荷状態に関わらず蓄電装置11への充電が優先されることになるので、蓄電装置11の残容量を積極的に増加することができ、後続が予定される重作業の継続性を確保できる。すなわち、オペレータの希望に添った作業車両の運用が可能になる。
 なお、図10の例では、作業モード切替スイッチ64と充電モード切替スイッチ65の双方を備える場合のフローについて説明したが、充電モード切替スイッチ65のみを備える作業車両にも適用可能である。この場合には、S140において通常モードが選択されていることが確認できたら、図7中のS112以降の処理を実行すれば足りる。
 ところで、上記の説明では、主として合計要求動力(Pf+Prun)の大きさに基づいて負荷状態を判別し目標SOCを設定する場合について説明したが、ホイールローダは一定のパターンの動作を繰り返すことが多く、さらに当該パターンに含まれる各動作中の負荷はそれぞれ顕著な相違が現れる傾向が強いため、動作と負荷状態を関連付けることが容易である。すなわち、ホイールローダでは動作に基づいて目標SOCを設定しても良い。
 たとえば、最も代表的な作業パターンとしては、Vサイクル掘削作業と呼ばれる作業パターンがある。このVサイクル掘削作業は実際のホイールローダの作業全体に対して、約7割以上を占める主動作パターンである。ホイールローダはこのとき、まず砂利山などの掘削対象物に対して前進し、砂利山の掘削対象物に突っ込むような形で砂利等の運搬物をバケット内に積み込む。その後、後進して元の位置に戻り、ステアリングホイールを操作しながら、かつリフトアーム及びバケットを上昇させながらダンプトラック等の運搬車両に向かって前進する。そして、バケットをダンプさせて運搬車両に運搬物を積み込んで(放土して)再び後進し、車両は元の位置に戻る。車両は以上の説明のようにV字軌跡を描きながらこの作業を繰り返し行う。このVサイクル掘削作業では平均的な車両への負荷として見てみると、平均的な負荷はエンジン1の出力範囲内であるが、時として蓄電装置11からのパワーアシストが必要となることから、「中負荷」の動作に相当する。
 また、その他ホイールローダの動作パターンとしては、上記の「Vサイクル掘削作業」の他にも、作業現場から別の現場に移動するための「走行動作」や、特に作業を実施しないで待機状態を継続する「アイドリング状態」、さらには土山等の斜面を掘削・放土を繰り返しながら登っていく「かき上げ動作」など、いくつかのパターンがあげられる。
 上記に挙げた各動作と車両の負荷状態の関係を述べると、例えば、移動のための走行動作やアイドリングは、エンジン出力に対して負荷の大きさが比較的小さいため、「軽負荷」の動作に分類できる。また、Vサイクル掘削作業は前述のように「中負荷」の動作に分類することができる。さらに、かき上げ動作は斜面を掘削しながら登坂する必要があるため、平均的な負荷がエンジンの出力を上回り、蓄電装置11のパワーアシストを継続的に必要とすることから、「重負荷」の動作に分類することができる。
 したがって、操作レバー56、アクセルペダル及びブレーキペダル等に対するオペレータの操作(操作量)に応じて作業車両の動作を判別することで負荷状態を分類し、当該分類に応じて目標SOCを制御しても上記で説明した実施の形態と同様の効果を得ることができる。
 なお、本発明が対象とするハイブリッドシステムは、図1のシリーズ型ハイブリッドシステムに限られるものではなく、走行部パラレル型等の多様なシステム構成にも適用可能である。
 また、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
 また、上記の各制御装置20,21,22,23,24,25に係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の制御装置に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
 また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
 1…エンジン、2…トルクコンバータ、3…トランスミッション(T/M)、4…油圧ポンプ、6…モータジェネレータ(M/G)、7…インバータ、8…プロペラシャフト、9…走行用電動機、10…インバータ、11…蓄電装置、12…DCDCコンバータ、20…ハイブリッド制御装置、21…エンジン制御装置、22…コンバータ制御装置、23…油圧制御装置、24…インバータ制御装置、25…蓄電制御装置、30…システム制御部、31…動力配分部、32…エンジン制御部、33…M/G制御部、34…油圧制御部、35…走行制御部、40…負荷状態判定部、41…目標SOC決定部、50…作業装置、60…走行体、61…車輪、200…制御装置、Pf…油圧要求動力値、Prun…走行要求動力値、Pe…エンジン出力上限値、Pc…蓄電装置出力上限値

Claims (9)

  1.  エンジンによって駆動される電動発電機と、
     前記電動発電機及び前記エンジンの少なくとも一方に駆動される油圧ポンプと、
     前記油圧ポンプからの圧油によって駆動される作業装置と、
     車輪を駆動するための走行用電動機と、
     前記電動発電機及び前記走行用電動機に接続され、目標SOCに基づいて充電される蓄電装置と、
     前記油圧ポンプ及び前記走行用電動機の合計要求動力に基づいて、前記蓄電装置の目標SOCを変化させる制御装置とを備えることを特徴とする作業車両。
  2.  請求項1に記載の作業車両において、
     前記制御装置は、前記合計要求動力が小さいほど、前記蓄電装置の目標SOCを高く設定することを特徴とする作業車両。
  3.  請求項1に記載の作業車両において、
     前記制御装置は、前記合計要求動力が設定値未満のとき、他の場合と比較して前記蓄電装置の目標SOCを高く設定することを特徴とする作業車両。
  4.  請求項3に記載の作業車両において、
     前記制御装置は、前記合計要求動力の大きさに応じて前記車両の負荷状態を重負荷、中負荷及び軽負荷の3つに判定し、当該判定結果が軽負荷のとき、前記中負荷のときよりも前記蓄電装置の目標SOCを高く設定することを特徴とする作業車両。
  5.  請求項4に記載の作業車両において、
     前記制御装置は、前記判定結果が中負荷のとき、前記軽負荷及び前記重負荷のときよりも前記蓄電装置の目標SOCを低く設定する、又は、その時刻における前記蓄電装置のSOCを前記蓄電装置の目標SOCに設定することを特徴とする作業車両。
  6.  請求項4に記載の作業車両において、
     前記制御装置は、前記判定結果が重負荷の場合であって、前記蓄電装置のSOCが当該蓄電装置の使用範囲の下限値より大きいとき、前記中負荷のときよりも前記蓄電装置の目標SOCを高く設定することを特徴とする作業車両。
  7.  請求項4に記載の作業車両において、
     前記制御装置は、前記判定結果が軽負荷のとき、前記蓄電装置の目標SOCを当該蓄電装置の使用範囲の上限値に設定することを特徴とする作業車両。
  8.  請求項4に記載の作業車両において、
     前記油圧ポンプ及び前記走行用電動機の合計出力の制限値を第1の値又は当該第1の値よりも高い第2の値に切り換えるための第1切替装置をさらに備え、
     前記制御装置は、前記判定結果が中負荷の場合において、
      前記第1切替装置によって前記制限値が前記第1の値に切り換えられているときは、前記軽負荷及び前記重負荷のときよりも前記蓄電装置の目標SOCを低く設定し、又は、その時刻における前記蓄電装置のSOCを前記蓄電装置の目標SOCに設定し、
      前記第1切替装置によって前記制限値が前記第2の値に切り換えられているときは、前記制限値が前記第1の値に切り換えられているときよりも前記蓄電池の目標SOCを高く設定することを特徴とする作業車両。
  9.  請求項4に記載の作業車両において、
     前記判定結果が中負荷のとき、前記蓄電装置の充電を優先する第1の位置と、充電を優先しない第2の位置とに切り替えるための第2切替装置をさらに備え、
     前記制御装置は、前記判定結果が中負荷の場合において、
      前記第2切替装置が第1の位置に切り換えられているときは、前記軽負荷及び前記重負荷のときよりも前記蓄電装置の目標SOCを低く設定し、又は、その時刻における前記蓄電装置のSOCを前記蓄電装置の目標SOCに設定し、
      前記第2切替装置が第2の位置に切り換えられているときは、前記第1の位置に切り換えられているときよりも前記蓄電池の目標SOCを高く設定することを特徴とする作業車両。
PCT/JP2013/080015 2012-11-07 2013-11-06 作業車両 WO2014073569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13853611.5A EP2918435B1 (en) 2012-11-07 2013-11-06 Work vehicle
KR1020157011159A KR101638757B1 (ko) 2012-11-07 2013-11-06 작업 차량
US14/440,897 US9598838B2 (en) 2012-11-07 2013-11-06 Hybrid work vehicle with load dependent target state of charge
CN201380058131.9A CN104768785B (zh) 2012-11-07 2013-11-06 作业车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-245556 2012-11-07
JP2012245556A JP6014463B2 (ja) 2012-11-07 2012-11-07 作業車両

Publications (1)

Publication Number Publication Date
WO2014073569A1 true WO2014073569A1 (ja) 2014-05-15

Family

ID=50684671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080015 WO2014073569A1 (ja) 2012-11-07 2013-11-06 作業車両

Country Status (6)

Country Link
US (1) US9598838B2 (ja)
EP (1) EP2918435B1 (ja)
JP (1) JP6014463B2 (ja)
KR (1) KR101638757B1 (ja)
CN (1) CN104768785B (ja)
WO (1) WO2014073569A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182487A1 (en) * 2015-05-13 2016-11-17 Volvo Construction Equipment Ab A working machine arranged with means to drive and control a hydraulic pump
CN117067939A (zh) * 2023-08-30 2023-11-17 中联重科股份有限公司 电动汽车起重机节能控制的方法、系统及控制装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
JP6433687B2 (ja) * 2014-06-03 2018-12-05 株式会社Kcm ハイブリッド式ホイールローダ
JP6353322B2 (ja) * 2014-09-04 2018-07-04 日立建機株式会社 運搬車両及びその走行制御装置
JP6267090B2 (ja) * 2014-09-29 2018-01-24 日立建機株式会社 運搬車両の走行停止制御装置およびそれを備えた運搬車両
FR3028109B1 (fr) * 2014-11-03 2020-01-24 Renault S.A.S Procede de gestion de l'etat de charge d'une batterie de traction d'un vehicule hybride.
US10035511B2 (en) * 2015-07-27 2018-07-31 Cummins Inc. Method and system for controlling operation of an engine powered device having cyclical duty cycles
US10112596B2 (en) * 2016-05-18 2018-10-30 Ford Global Technologies, Llc Hybrid vehicle operating strategy during loss of motor controllability
EP3565105B1 (en) * 2016-12-27 2023-11-01 Kawasaki Jukogyo Kabushiki Kaisha Power generation system and method for controlling same
KR102013845B1 (ko) * 2017-07-05 2019-08-23 한국생산기술연구원 농업용 전기차량의 발전 시뮬레이션 방법
KR102023359B1 (ko) * 2017-07-10 2019-09-23 한국생산기술연구원 농업용 전기차량의 발전 제어방법
JP6881250B2 (ja) * 2017-11-17 2021-06-02 トヨタ自動車株式会社 賃貸料金設定装置、賃貸料金設定方法および賃貸料金設定システム
JP7105526B2 (ja) * 2018-08-10 2022-07-25 日立建機株式会社 作業車両
CN111021462A (zh) * 2019-12-31 2020-04-17 三一重机有限公司 一种串联式混合动力挖掘机控制系统及其控制方法
GB2592237B (en) * 2020-02-20 2022-07-20 Terex Gb Ltd Material processing apparatus with hybrid power system
DE102020206465A1 (de) 2020-05-25 2021-11-25 Zf Friedrichshafen Ag Verfahren zum Betreiben einer elektrisch angetriebenen Arbeitsmaschine, elektrischer Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
CN114148178B (zh) * 2020-09-08 2023-07-11 株洲变流技术国家工程研究中心有限公司 一种电传动系统的控制方法及系统
CN113431677B (zh) * 2021-06-09 2022-06-14 山推(德州)工程机械有限公司 路面冷再生机发动机的功率自适应调节方法及其控制系统
CN113183736B (zh) * 2021-06-11 2022-12-09 吉林大学重庆研究院 一种装载机油电液混合动力系统及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150701A (ja) * 1996-09-17 1998-06-02 Toyota Motor Corp 動力出力装置
JP2001016704A (ja) * 1999-06-28 2001-01-19 Kobe Steel Ltd 油圧駆動装置
JP2001268719A (ja) * 2000-03-23 2001-09-28 Toyota Motor Corp ハイブリッド車両のバッテリ充電制御装置
JP2003047108A (ja) * 2001-08-03 2003-02-14 Toyota Motor Corp 電池制御装置
JP2003235108A (ja) * 2002-02-06 2003-08-22 Toyota Motor Corp 車両制御装置
JP2005210841A (ja) * 2004-01-23 2005-08-04 Toyota Motor Corp 自動車およびその制御方法
JP2008162346A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
WO2010143628A1 (ja) 2009-06-09 2010-12-16 住友重機械工業株式会社 ハイブリッド式ショベル及びその制御方法
JP2011219039A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp 車両用ハイブリッド駆動装置
JP2012062003A (ja) * 2010-09-17 2012-03-29 Hitachi Constr Mach Co Ltd ハイブリッド作業車両

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176902B (en) * 1985-06-19 1989-10-11 Bl Tech Ltd Method and apparatus for determining the state of charge of a battery
JP3211626B2 (ja) * 1994-06-29 2001-09-25 トヨタ自動車株式会社 ハイブリッド車
JP3094872B2 (ja) * 1995-10-20 2000-10-03 トヨタ自動車株式会社 ハイブリッド車用制御装置
JP3536703B2 (ja) * 1999-02-09 2004-06-14 株式会社日立製作所 ハイブリッド車両の制御方法、ハイブリッド車両の制御装置およびハイブリッド車両
JP2001219039A (ja) 2000-02-09 2001-08-14 Kurita Water Ind Ltd 膜モジュールの洗浄方法
DE10021161A1 (de) * 2000-04-29 2001-10-31 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
US7564213B2 (en) * 2004-08-13 2009-07-21 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
DE102006034933B4 (de) * 2006-07-28 2016-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung eines Hybrid-Fahrzeugantriebs
US7472546B2 (en) * 2006-11-29 2009-01-06 Deere & Company Regenerative braking system for a work machine
JP5132158B2 (ja) * 2007-01-29 2013-01-30 パナソニック株式会社 電源システム、電源システムの電力供給制御方法及びその電力供給制御プログラム
US8022674B2 (en) * 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
US8112207B2 (en) * 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
CN101918649B (zh) * 2007-12-28 2013-02-06 住友重机械工业株式会社 混合式施工机械
US8099203B2 (en) * 2008-05-27 2012-01-17 GM Global Technology Operations LLC Method to autostart an internal combustion engine in a hybrid powertrain system
EP2314848A4 (en) * 2008-06-27 2017-01-25 Sumitomo Heavy Industries, LTD. Hybrid construction machine
JP4513907B2 (ja) 2008-06-30 2010-07-28 トヨタ自動車株式会社 ハイブリッド車両
WO2010109956A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 蓄電装置
US8825243B2 (en) * 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
US8374740B2 (en) * 2010-04-23 2013-02-12 GM Global Technology Operations LLC Self-learning satellite navigation assisted hybrid vehicle controls system
JP5498858B2 (ja) * 2010-05-27 2014-05-21 日立建機株式会社 ホイールローダ
JP5312400B2 (ja) * 2010-05-27 2013-10-09 日立建機株式会社 ハイブリッドホイールローダ
JP5762699B2 (ja) * 2010-06-30 2015-08-12 三洋電機株式会社 ハイブリッドカーの電源装置
JP5136660B2 (ja) * 2010-07-08 2013-02-06 株式会社デンソー 車両用動力伝達装置
EP2628860B1 (en) * 2010-10-15 2019-07-03 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine
RU2013135287A (ru) * 2010-12-27 2015-02-10 Хонда Мотор Ко., Лтд. Устройство управления генерированием и способ управления генерированием
US8935031B2 (en) * 2011-01-21 2015-01-13 Hitachi Construction Machinery Co., Ltd. Construction vehicle control apparatus and construction vehicle
US9352739B2 (en) * 2011-02-15 2016-05-31 GM Global Technology Operations LLC Method for operating a hybrid vehicle
EP2679733B1 (en) * 2011-02-22 2018-04-04 KCM Corporation Wheel loader
CN102166948A (zh) * 2011-03-21 2011-08-31 浙江吉利汽车研究院有限公司 一种串联插电式混合动力汽车的动力系统
KR101882545B1 (ko) * 2011-05-18 2018-07-26 히다찌 겐끼 가부시키가이샤 작업 기계
US8565952B2 (en) * 2011-05-20 2013-10-22 GM Global Technology Operations LLC Forward-looking hybrid vehicle control strategy
JP2013039874A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業車両
US20130096749A1 (en) * 2011-10-18 2013-04-18 Fuel Motion Inc. Method for a vehicle control unit (VCU) for control of the engine in a converted hybrid electric powered vehicle
US20130096747A1 (en) * 2011-10-18 2013-04-18 Fuel Motion Inc. Method and apparatus for a hybrid electric drive train vehicle control unit (VCU) system
JP5919857B2 (ja) * 2012-02-03 2016-05-18 スズキ株式会社 充放電制御装置
JP5998506B2 (ja) * 2012-02-13 2016-09-28 株式会社デンソー ハイブリッド車両の制御装置
JP5884891B2 (ja) * 2012-02-28 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN104203694B (zh) * 2012-03-26 2015-12-02 丰田自动车株式会社 车辆的控制装置
JP5966583B2 (ja) * 2012-05-11 2016-08-10 日産自動車株式会社 電力制御装置
EP2851475B1 (en) * 2012-05-14 2018-07-11 Hitachi Construction Machinery Co., Ltd. Hybrid construction machinery
US9263908B2 (en) * 2012-06-26 2016-02-16 Samsung Sdi Co., Ltd. Battery pack having linear voltage profile, and SOC algorithm applying to the battery pack
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
US9276425B2 (en) * 2012-12-28 2016-03-01 Younicos Inc. Power management systems with dynamic target state of charge
JP5716779B2 (ja) * 2013-03-22 2015-05-13 トヨタ自動車株式会社 ハイブリッド自動車
US20140350875A1 (en) * 2013-05-27 2014-11-27 Scott Allen Mullin Relaxation model in real-time estimation of state-of-charge in lithium polymer batteries
KR101767798B1 (ko) * 2013-06-26 2017-08-11 히다찌 겐끼 가부시키가이샤 하이브리드식 작업 기계
JP6043249B2 (ja) * 2013-07-29 2016-12-14 日立オートモティブシステムズ株式会社 車両制御装置
JP2015147498A (ja) * 2014-02-06 2015-08-20 株式会社デンソー 車両制御装置
US9760138B2 (en) * 2014-04-25 2017-09-12 Microsoft Technology Licensing, Llc Load scheduling in multi-battery devices
US9987942B2 (en) * 2014-09-03 2018-06-05 Ford Global Technologies, Llc Method of operating vehicle powertrain based on prediction of how different chemical type batteries connected in parallel will operate to output demanded current
KR101655609B1 (ko) * 2014-12-11 2016-09-07 현대자동차주식회사 하이브리드 자동차의 배터리 충전 상태 제어 장치 및 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150701A (ja) * 1996-09-17 1998-06-02 Toyota Motor Corp 動力出力装置
JP2001016704A (ja) * 1999-06-28 2001-01-19 Kobe Steel Ltd 油圧駆動装置
JP2001268719A (ja) * 2000-03-23 2001-09-28 Toyota Motor Corp ハイブリッド車両のバッテリ充電制御装置
JP2003047108A (ja) * 2001-08-03 2003-02-14 Toyota Motor Corp 電池制御装置
JP2003235108A (ja) * 2002-02-06 2003-08-22 Toyota Motor Corp 車両制御装置
JP2005210841A (ja) * 2004-01-23 2005-08-04 Toyota Motor Corp 自動車およびその制御方法
JP2008162346A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
WO2010143628A1 (ja) 2009-06-09 2010-12-16 住友重機械工業株式会社 ハイブリッド式ショベル及びその制御方法
JP2011219039A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp 車両用ハイブリッド駆動装置
JP2012062003A (ja) * 2010-09-17 2012-03-29 Hitachi Constr Mach Co Ltd ハイブリッド作業車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182487A1 (en) * 2015-05-13 2016-11-17 Volvo Construction Equipment Ab A working machine arranged with means to drive and control a hydraulic pump
US10377223B2 (en) 2015-05-13 2019-08-13 Volvo Construction Equipment Ab Working machine arranged with means to drive and control a hydraulic pump
CN117067939A (zh) * 2023-08-30 2023-11-17 中联重科股份有限公司 电动汽车起重机节能控制的方法、系统及控制装置

Also Published As

Publication number Publication date
KR20150064149A (ko) 2015-06-10
JP2014094590A (ja) 2014-05-22
CN104768785B (zh) 2017-06-23
EP2918435B1 (en) 2019-01-09
EP2918435A1 (en) 2015-09-16
KR101638757B1 (ko) 2016-07-11
EP2918435A4 (en) 2016-08-03
JP6014463B2 (ja) 2016-10-25
US9598838B2 (en) 2017-03-21
US20150267380A1 (en) 2015-09-24
CN104768785A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014073569A1 (ja) 作業車両
JP5676739B2 (ja) ホイールローダ
JP6434128B2 (ja) ハイブリッド式作業車両
JP5356543B2 (ja) 作業用車両の駆動制御装置
WO2013024869A1 (ja) 作業車両
EP2617902B1 (en) Hybrid wheel loader
JP6433687B2 (ja) ハイブリッド式ホイールローダ
WO2012050010A1 (ja) 建設機械
KR101942674B1 (ko) 하이브리드 건설 기계
WO2014208568A1 (ja) ハイブリッド式作業機械
JP4173489B2 (ja) ハイブリッド駆動式のホイール系作業車両
JP5596583B2 (ja) 作業機械の駆動制御装置
JP6243856B2 (ja) ハイブリッド建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011159

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013853611

Country of ref document: EP