Nothing Special   »   [go: up one dir, main page]

WO2014073285A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2014073285A1
WO2014073285A1 PCT/JP2013/076427 JP2013076427W WO2014073285A1 WO 2014073285 A1 WO2014073285 A1 WO 2014073285A1 JP 2013076427 W JP2013076427 W JP 2013076427W WO 2014073285 A1 WO2014073285 A1 WO 2014073285A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
land portion
circumferential
width direction
Prior art date
Application number
PCT/JP2013/076427
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 寛之
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201380057864.0A priority Critical patent/CN104768773B/en
Publication of WO2014073285A1 publication Critical patent/WO2014073285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve the performance on ice and performance on snow of the tire.
  • An object of the present invention is to provide a pneumatic tire capable of improving the performance on ice and the performance on snow.
  • a pneumatic tire according to the present invention includes at least four circumferential main grooves extending in the tire circumferential direction and a plurality of land portions defined by the circumferential main grooves.
  • the left and right circumferential main grooves on the outermost side in the tire width direction are called outermost circumferential main grooves
  • the land portion closest to the tire equatorial plane is called a center land portion
  • the outermost When the land portion on the outer side in the tire width direction defined by the outer circumferential main groove is referred to as a shoulder land portion, the edge on the outer side in the tire width direction of the center land portion extends continuously from the tread end in the tire width direction.
  • a plurality of first lug grooves that open in the circumferential main groove that divides a portion, and the center land portion that penetrates in the tire width direction and that are arranged in a staggered manner in the tire circumferential direction with respect to the first lug groove
  • Multiple second lug grooves and front Wherein the disposed on the land portion adjacent to the shoulder land portion or the shoulder land portion and a circumferential narrow groove extending in the tire circumferential direction.
  • the first lug groove continuously extends from the tread end to the circumferential main groove defining the center land portion, the drainage in the tire width direction and the snow drainage on the sherbet road surface Improves. Thereby, there exists an advantage which the performance on ice and the performance on snow of a tire improve.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. 2.
  • FIG. 4 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a conventional pneumatic tire.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region in the tire radial direction. The figure shows a small truck studless tire as an example of a pneumatic tire. In the figure, the symbol CL is the tire equator plane.
  • the tire width direction means a direction parallel to a tire rotation axis (not shown), and the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
  • the carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg].
  • a carcass angle of 95 [deg] or less inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 40 [deg] or less.
  • the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure).
  • the belt cover 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material coated with a coat rubber, and has a belt angle of 45 [deg] or more and 70 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17 and 17 are arranged on the outer sides in the tire width direction of the left and right bead cores 11 and 11 and the bead fillers 12 and 12, respectively, and constitute left and right bead portions.
  • the tread rubber 15 preferably has a rubber hardness of 60 or more and 75 or less, and more preferably 65 or more and 70 or less.
  • Rubber hardness refers to JIS-A hardness according to JIS-K6263, and is measured under the condition of 20 [° C.].
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. 2.
  • FIG. 2 shows a traction pattern of a studless tire.
  • FIG. 3 shows a one-sided region with the tire equatorial plane CL as a boundary.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • symbol T is a tire grounding end.
  • This pneumatic tire 1 includes at least four circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 to 33 defined by the circumferential main grooves 21 and 22. Provided in the tread portion (see FIG. 2).
  • the circumferential main groove refers to a circumferential groove having a groove width of 1.0 [mm] or more.
  • the groove width of the circumferential groove is measured excluding notches and chamfers formed in the groove opening of the tread surface.
  • the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves.
  • the land portion 31 closest to the tire equatorial plane CL is called a center land portion.
  • this land portion becomes the center land portion, and when there is a circumferential main groove on the tire equatorial plane CL (not shown).
  • the left and right land portions sandwiching the circumferential main groove are the center land portions.
  • the land portions 33, 33 on the outer side in the tire width direction divided into the left and right outermost circumferential main grooves 22, 22 are referred to as shoulder land portions.
  • the land portion 32 between the center land portion 31 and the shoulder land portion 33 is referred to as a second land portion.
  • the four circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL.
  • the circumferential main grooves 21, 22 divide a row of center land portions 31 on the tire equatorial plane CL, and a pair of left and right second land portions 32, 32 and a pair of left and right shoulder land portions 33. , 33 are partitioned.
  • the pneumatic tire 1 includes a plurality of first lug grooves 41 and a plurality of second lug grooves 42 (see FIG. 2).
  • the first lug groove 41 is a main groove extending in the tire width direction from the tread end and terminating in the center land portion 31. That is, the first lug groove 41 extends in the tire width direction from the tread end, penetrates the shoulder land portion 33 and the second land portion 32, and continuously extends to the center land portion 31. Terminate internally. For this reason, the first lug groove 41 intersects all the circumferential main grooves 21 and 22 between the center land portion 31 and the shoulder land portion 33.
  • the first lug groove 41 continuously extending means that the first lug groove with respect to the circumferential main groove 21 (22) at the intersection of the first lug groove 41 and the circumferential main groove 21 (22). It means that the left and right openings of 41 face each other without being offset in the tire circumferential direction.
  • the first lug groove 41 communicates in the tire width direction as an apparent single main groove from the tread end to the terminal end of the center land portion 31. This improves drainage in the tire width direction and snow drainage on the sherbet road surface.
  • the tread end portion refers to both end portions of the tread pattern portion of the tire when the tire is mounted on a specified rim to apply a specified internal pressure and is in an unloaded state.
  • the stipulated rim is an “applicable rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
  • the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the second lug groove 42 is a main groove that penetrates the center land portion 31 in the tire width direction.
  • the second lug groove 42 extends in the tire width direction without intersecting the first lug groove 41 inside the center land portion 31 and opens to the left and right circumferential main grooves 21, 21.
  • the lug groove refers to a lateral groove having a groove width of 2.0 [mm] or more.
  • the groove width of the lug groove is measured excluding notches and chamfers formed in the groove opening of the tread surface.
  • the plurality of first lug grooves 41 are arranged at predetermined intervals in the tire circumferential direction, and are arranged in the left and right regions with the tire equatorial plane CL as a boundary. Further, these first lug grooves 41 extend continuously from the tread end in the tire width direction and terminate in the center land portion 31 without intersecting the tire equatorial plane CL. For this reason, the 1st lug grooves 41 and 41 of a right-and-left area
  • the first lug groove 41 is inclined in one direction of the tire circumferential direction from the tread end toward the tire equatorial plane CL.
  • the first lug groove 41 has an arc shape as a whole, is curved in one direction without being meandering, and extends in the tire width direction.
  • the first lug groove 41 in one region and the first lug groove 41 in the other region with respect to the tire equatorial plane CL are inclined in mutually different directions with respect to the tire circumferential direction.
  • the first lug groove 41 in the left region of FIG. 3 is inclined upward in the drawing as it goes toward the tire equatorial plane CL, and the first lug groove 41 in the right region of FIG. As it goes to the surface CL, the surface is inclined downward.
  • the inclination angle ⁇ of the first lug groove 41 with respect to the tire width direction increases from the tread end toward the tire equatorial plane CL.
  • the maximum value ⁇ max of the inclination angle ⁇ is preferably in the range of 1 [deg] ⁇ ⁇ max ⁇ 30 [deg], and more preferably in the range of 5 [deg] ⁇ ⁇ max ⁇ 30 [deg]. preferable.
  • This inclination angle ⁇ is measured as an angle formed by the groove center line of the first lug groove 41 and the tire width direction. Further, the first lug groove 41 widens the groove width toward the outer side in the tire width direction. As a result, the snow drainage of the first lug groove 41 is enhanced.
  • the plurality of second lug grooves 42 are arranged at a predetermined interval in the tire circumferential direction, and penetrate only the center land portion 31 and the left and right circumferential main grooves 21, 21. It is terminated.
  • the center land portion 31 is divided in the tire circumferential direction by these second lug grooves 42 to form a block row.
  • a pair of left and right first lug grooves 41, 41 extend from the left and right regions of the tire and terminate between the second lug grooves 42, 42 adjacent in the tire circumferential direction.
  • the left and right first lug grooves 41, 41 and the second lug grooves 42 are arranged in a staggered manner in the tire circumferential direction.
  • each block of the center land part 31 has the notch part by the left-and-right 1st lug grooves 41 and 41 in the circumferential direction main grooves 21 and 21 side edge part, respectively.
  • the pneumatic tire 1 includes a pair of left and right circumferential narrow grooves 23 and 23 (see FIG. 2).
  • the circumferential narrow groove 23 is a narrow groove disposed in the shoulder land portion 33 and extending in the tire circumferential direction.
  • the circumferential narrow groove 23 extends inside the shoulder land portion 33 in the tire circumferential direction without opening to the outermost circumferential main groove 22 and the tread end, and divides the shoulder land portion 33 into two in the tire width direction. .
  • the circumferential narrow groove 23 has a bent shape and extends while meandering in the tire circumferential direction.
  • This bent shape includes both a refractive shape (for example, zigzag shape) and a curved shape (for example, sinusoidal shape).
  • the configuration in which the circumferential narrow groove 23 has a refractive shape is preferable in that the edge component of the shoulder land portion 33 is increased and the traction of the tire is improved.
  • the circumferential narrow groove refers to a circumferential groove having a groove width of 1.0 [mm] or more and less than the groove width of the circumferential main groove.
  • the groove width of the narrow groove is measured as a distance between opposing groove wall surfaces. Therefore, for a groove having an amplitude such as a wavy shape or a zigzag shape, the groove width is measured regardless of the amplitude to determine whether the groove is a circumferential narrow groove.
  • the left and right shoulder land portions 33, 33 each have one circumferential narrow groove 23.
  • the circumferential narrow groove 23 has a zigzag shape having an amplitude in the tire width direction, and has at least one bent portion in each block of the shoulder land portion 33.
  • the number of bent portions of the circumferential narrow groove 23 in one block may be one or two in order to reduce snow clogging in the circumferential narrow groove 23 and improve the escape of the snow column. preferable.
  • the maximum value ⁇ max of the bending angle ⁇ of the circumferential narrow groove 23 is preferably in the range of 1 [deg] ⁇ ⁇ max ⁇ 30 [deg], and the range of 5 [deg] ⁇ ⁇ max ⁇ 25 [deg]. More preferably, it is within.
  • the bending angle ⁇ is measured with reference to the groove center line of the circumferential narrow groove 23. Further, in the configuration in which the circumferential narrow groove 23 has a wave shape, it is measured as an angle formed by an imaginary line connecting adjacent inflection points.
  • the maximum groove depth Hs of the circumferential narrow groove 23 and the maximum groove depth H of the outermost circumferential main groove 22 have a relationship of 0.40 ⁇ Hs / H ⁇ 0.80. Preferably, it has a relationship of 0.50 ⁇ Hs / H ⁇ 0.80.
  • the groove depth is measured excluding the notch of the groove opening and the upper bottom of the groove bottom.
  • the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T have a relationship of 0.70 ⁇ Ls / L ⁇ 0.90. Is preferred.
  • the tire ground contact end T is a tire and a flat plate when the tire is mounted on a specified rim and applied with a specified internal pressure and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load.
  • the center land portion 31, the second land portion 32, and the shoulder land portion 33 include the circumferential main grooves 21, 22, the first lug groove 41, and the second lug groove 42. It is divided into a block row. These block rows are configured to be point-symmetric about a point on the tire equatorial plane CL in a tread plan view. Such a point-symmetric pattern is preferable because convenience during tire rotation is improved.
  • the edge portion of the center land portion 31 has a step portion that is offset in the tire width direction at the intersection position with the first lug groove 41. That is, the edge portion on the circumferential main groove 21 side of the center land portion 31 is divided into two in the tire circumferential direction by the first lug groove 41, and one edge portion and the other edge portion are displaced in the tire width direction. Are arranged.
  • the step W1 of the edge portion is preferably in the range of 1 [mm] ⁇ W1 ⁇ 4 [mm].
  • the circumferential main groove 21 between the center land portion 31 and the second land portion 32 has a step shape at the groove opening portion on the center land portion 31 side, and is formed on the groove opening portion on the second land portion 32 side. And has a straight shape.
  • the left and right land portions 32, 33 facing each other with the outermost circumferential main groove 22 interposed therebetween are edge portions offset in the tire width direction.
  • the edge portions of the blocks adjacent in the tire circumferential direction are arranged at different positions in the tire width direction at the opening of the first lug groove 41.
  • the edge part by the side of the outermost circumferential direction main groove 22 of each block has a level
  • the edge part of the block which opposes on both sides of the outermost periphery direction main groove 22 has the step part which changes mutually in the same direction, and the groove width of the outermost periphery direction main groove 22 is maintained substantially constant.
  • the outermost circumferential main groove 22 extends in substantially the same groove width in the tire circumferential direction while being bent stepwise in the tire width direction.
  • the blocks of the land portions 31 to 33 each have a plurality of sipes 5.
  • the edge component of a block is reinforced and the traction performance as a studless tire is improved.
  • Sipe refers to a cut having a sipe width of less than 1.0 [mm].
  • the sipe may be a plane sipe having a straight sipe wall surface in a cross-sectional view perpendicular to the sipe length direction, or bent in a sipe width direction in a cross-sectional view perpendicular to the sipe length direction.
  • a three-dimensional sipe having a shaped sipe wall surface may be used.
  • the three-dimensional sipe has an action of reinforcing the rigidity of the land portion because the meshing force of the opposing sipe wall surfaces is stronger than that of the two-dimensional sipe.
  • the first lug groove 41 extends to the center land portion 31 and terminates inside the center land portion 31.
  • the notch by the first lug groove 41 is formed at the edge portion of the center land portion 31. Then, the edge component of the center land part 31 increases and it is preferable at the point which the traction property of a tire improves.
  • the present invention is not limited to this, and the first lug groove 41 may open to the circumferential main groove 21 that defines the outer edge portion of the center land portion 31 in the tire width direction and terminate at this position (not shown). . That is, the first lug groove 41 may not extend to the center land portion 31. At this time, it is necessary that the opening of the first lug groove 41 and the opening of the second lug groove 42 in the circumferential main groove 21 are at different positions in the tire circumferential direction.
  • the circumferential narrow groove 23 is disposed only in the shoulder land portion 33.
  • Such a configuration is preferable in that the edge component of the shoulder land portion 33 is improved and the turning performance of the tire is improved.
  • the rigidity of the tread portion center region is ensured, so that the stop and go performance of the tire is improved.
  • generation of centerware is suppressed.
  • the present invention is not limited to this, and the circumferential narrow groove 23 may be disposed in a land portion (second land portion 32) adjacent to the shoulder land portion 33 (not shown).
  • the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T are 0.70 ⁇ Ls / L ⁇ 0.90. (See FIG. 2).
  • the circumferential narrow groove 23 has a zigzag shape having a linear component. Further, the circumferential narrow groove 23 has at least one bent portion inside the block. In such a configuration, when the circumferential narrow groove 23 is closed when the tire is in contact with the tire, the opposing groove walls of the circumferential narrow groove 23 are engaged to ensure the rigidity of the block. This is preferable in that the traction of the tire is ensured.
  • the present invention is not limited to this, and the circumferential narrow groove 23 may have a wavy shape or may not have a bent portion inside the block (not shown).
  • the opening of the circumferential narrow groove 23 in one block and the opening of the circumferential narrow groove 23 in the other block are
  • the circumferential narrow groove 23 and the first lug groove 41 are disposed at the same position in the tire width direction (opposite to each other) at the intersection position. Therefore, one circumferential narrow groove 23 is continuously arranged in the tire circumferential direction.
  • Such a configuration is preferable in that the occurrence of uneven wear in each block can be suppressed.
  • adjacent openings of the circumferential narrow groove 23 may be arranged offset (shifted in the groove length direction of the first lug groove 41) (not shown).
  • the pneumatic tire 1 includes at least four circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land divided by the circumferential main grooves 21 and 22. Parts 31 to 33 (see FIG. 2).
  • the pneumatic tire 1 has a plurality of first lugs that continuously extend in the tire width direction from the tread end and open to the circumferential main grooves 21 that define the outer edge portions of the center land portion 31 in the tire width direction.
  • the groove 41, the plurality of second lug grooves 42 penetrating the center land portion 31 in the tire width direction and arranged in a staggered manner in the tire circumferential direction with respect to the first lug groove 41, and the shoulder land portion 33 are disposed.
  • a circumferential narrow groove 23 extending in the tire circumferential direction.
  • the first lug groove 41 and the second lug groove 42 are arranged in a staggered manner in the tire circumferential direction (see FIG. 3), whereby the opening of the first lug groove 41 with respect to the circumferential main groove 21. And the opening of the second lug groove 42 are arranged so as to be displaced from each other in the tire circumferential direction.
  • the traction component in the tread portion center region is increased as compared with a configuration (not shown) in which the second lug groove is disposed on the extended line of the first lug groove.
  • the circumferential narrow groove 23 is disposed in the shoulder land portion 33 that receives a large contact pressure when the vehicle is turning, so that the traction component in the tire width direction is increased, and the turning performance of the tire is improved.
  • the shear force in snow increases due to an increase in the groove volume of the shoulder land portion 33, and the on-ice performance of the tire and on the snow are increased.
  • the performance is improved.
  • the first lug groove 41 extends continuously to the center land portion 31 without intersecting the second lug groove 42 and ends inside the center land portion 31 (FIG. 2). And FIG. 3).
  • the notch by the first lug groove 41 is formed at the edge portion of the center land portion 31, and the edge component of the center land portion 31 increases.
  • the shoulder land portion 33 has a block that is partitioned into a pair of first lug grooves 41 and 41 adjacent to each other in the tire circumferential direction and an outermost circumferential main groove 22.
  • the circumferential narrow groove 23 has at least one bent portion inside the block (see FIG. 3).
  • the edge component of the shoulder land part 33 increases, and there exists an advantage which the performance on ice and the performance on snow of a tire improve.
  • the circumferential narrow groove 23 has a bent portion inside the block, compared to a configuration in which the circumferential narrow groove has a straight shape (not shown), the collapse of the block is suppressed, and the anti-bias resistance of the tire is reduced. There is an advantage that wear resistance is improved.
  • the maximum value ⁇ max of the bending angle ⁇ of the bent portion of the circumferential narrow groove 23 is in the range of 1 [deg] ⁇ ⁇ max ⁇ 30 [deg] (see FIG. 3).
  • the relationship between the maximum groove depth Hs of the circumferential narrow groove 23 and the maximum groove depth H of the outermost circumferential main groove 22 is 0.40 ⁇ Hs / H ⁇ 0.80.
  • the groove depth Hs of the circumferential direction fine groove 23 is optimized. That is, when 0.40 ⁇ Hs / H, the shearing force in the snow due to the circumferential narrow groove 23 is ensured, and when Hs / H ⁇ 0.80, the circumferential narrow groove 23 at the end of tire wear. The action is ensured properly.
  • the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T are 0.70 ⁇ Ls / L ⁇ 0. .90 (see FIG. 2).
  • the position of the tire width direction of the circumferential direction narrow groove 23 is optimized.
  • the circumferential narrow grooves 23 can be disposed in the ground contact surface even when the tire ground contact width is small when the vehicle is empty.
  • the function of the circumferential narrow groove 23 can be appropriately ensured regardless of the loading condition of the vehicle.
  • the edge part of the center land part 31 has the level
  • the traction component of the center land part 31 increases, and there exists an advantage which the on-ice performance and on-snow performance of a tire improve.
  • the snow drainage can be secured by the edge portion of the second land portion 32 that is flush with the step portion of the center land portion 31 as described above.
  • the level difference W1 of the level difference portion is in the range of 1 [mm] ⁇ W1 ⁇ 4 [mm] (see FIG. 3).
  • the maximum value ⁇ max of the inclination angle ⁇ with respect to the tire width direction of the first lug groove 41 is in the range of 1 [deg] ⁇ ⁇ max ⁇ 30 [deg] (see FIG. 3).
  • tilt angle (beta) of the 1st lug groove 41 is optimized. That is, when 1 [deg] ⁇ ⁇ max, the drainage performance of the first lug groove 41 in the tire width direction and the snow drainage performance on the sherbet road surface are improved. Further, by satisfying ⁇ max ⁇ 30 [deg], an edge component in the tire circumferential direction is ensured, the traction performance of the tire is ensured, and the uneven wear resistance under the stop-and-go use condition is ensured.
  • the first lug groove 41 is inclined in one direction in the tire circumferential direction from the tread end toward the tire equatorial plane CL (see FIGS. 2 and 3).
  • the drainage performance and snow drainage performance of the 1st lug groove 41 improve.
  • a configuration in which the first lug groove extends in the tire width direction while meandering (not shown) is not preferable because the drainage performance and snow removal performance of the first lug groove 41 cannot be sufficiently obtained.
  • the land portions 31 to 33 have a plurality of sipes 5 (see FIGS. 2 and 3). Thereby, an edge component increases and there exists an advantage which the traction performance of a tire improves.
  • the left and right land portions 32 and 33 that are opposed to each other across the outermost circumferential main groove 22 at the intersection of the outermost circumferential main groove 22 and the first lug groove 41 have tire widths. It has an edge portion offset in the direction (see FIG. 3).
  • the tread rubber 15 has a rubber hardness of 60 or more and 75 or less. Thereby, there exists an advantage by which the rigidity of a tread part is ensured appropriately.
  • the pneumatic tire 1 is preferably applied to a small truck tire having a JATMA prescribed maximum air pressure in a range of 350 [kPa] to 600 [kPa]. Since small truck tires are mainly used for local travel, center wear is likely to occur due to repeated stop-and-go.
  • the circumferential narrow groove 23 is disposed in the shoulder land portion 33, so that it is compared with a configuration (not shown) in which the circumferential narrow groove is disposed in the center land portion or the second land portion.
  • the rigidity of the center area of the tread portion is ensured.
  • there is an advantage that the stop and go performance of the tire is improved and the occurrence of center wear is suppressed.
  • FIG. 4 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a conventional pneumatic tire.
  • the test vehicle travels on a paved road of 50,000 [km] at an average speed of 60 [km / h], and uneven wear generated on each land block is observed. . Then, based on the observation result, index evaluation using the conventional example as a reference (100) is performed. A larger value is preferable.
  • the pneumatic tire 1 of Example 1 has the configuration described in FIGS.
  • the pneumatic tire 1 of Examples 2 to 8 is a modification of the pneumatic tire 1 of Example 1.
  • the conventional pneumatic tire has the configuration shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

This pneumatic tire (1) is provided with at least four circumferential main grooves (21, 22) extending in a tire circumferential direction, and a plurality of land portions (31-33) formed by being demarcated by the circumferential main grooves (21, 22). The pneumatic tire (1) is further provided with a plurality of first lug grooves (41) continuously extending from a tread end in a tire width direction and open to the circumferential main groove (21) that demarcates an outer edge portion in the tire width direction of the center land portion (31), a plurality of second lug grooves (42) penetrating the center land portion (31) in the tire width direction and disposed in a staggered pattern with respect to the first lug grooves (41) in the tire circumferential direction, and a circumferential narrow groove (23) disposed in the shoulder land portion (33) and extending in the tire circumferential direction.

Description

空気入りタイヤPneumatic tire
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの氷上性能および雪上性能を向上できる空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve the performance on ice and performance on snow of the tire.
 小型トラック用スタッドレスタイヤでは、タイヤの氷上性能および雪上性能を向上させるべき課題があり、サイプを有する複数のブロック列を備えたトラクションパターンが採用されている。かかる課題に関する従来の空気入りタイヤとして、特許文献1、2に記載される技術が知られている。 In small truck studless tires, there is a problem to improve the performance on the ice and the performance of the snow, and a traction pattern having a plurality of block rows having sipes is adopted. As conventional pneumatic tires related to such problems, techniques described in Patent Documents 1 and 2 are known.
特開2009-214775号公報JP 2009-214775 A 特開2009-96220号公報JP 2009-96220 A
 この発明は、タイヤの氷上性能および雪上性能を向上できる空気入りタイヤを提供することを目的とする。 An object of the present invention is to provide a pneumatic tire capable of improving the performance on ice and the performance on snow.
 上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する少なくとも4本の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、タイヤ幅方向の最も外側にある左右の前記周方向主溝を最外周方向主溝と呼び、タイヤ赤道面に最も近い前記陸部をセンター陸部と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向外側の前記陸部をショルダー陸部と呼ぶときに、トレッド端からタイヤ幅方向に連続的に延在して前記センター陸部のタイヤ幅方向外側のエッジ部を区画する前記周方向主溝に開口する複数の第一ラグ溝と、前記センター陸部をタイヤ幅方向に貫通すると共に前記第一ラグ溝に対してタイヤ周方向に千鳥状に配置される複数の第二ラグ溝と、前記ショルダー陸部あるいは前記ショルダー陸部に隣り合う前記陸部に配置されてタイヤ周方向に延在する周方向細溝とを備えることを特徴とする。 In order to achieve the above object, a pneumatic tire according to the present invention includes at least four circumferential main grooves extending in the tire circumferential direction and a plurality of land portions defined by the circumferential main grooves. In the pneumatic tire, the left and right circumferential main grooves on the outermost side in the tire width direction are called outermost circumferential main grooves, the land portion closest to the tire equatorial plane is called a center land portion, and the outermost When the land portion on the outer side in the tire width direction defined by the outer circumferential main groove is referred to as a shoulder land portion, the edge on the outer side in the tire width direction of the center land portion extends continuously from the tread end in the tire width direction. A plurality of first lug grooves that open in the circumferential main groove that divides a portion, and the center land portion that penetrates in the tire width direction and that are arranged in a staggered manner in the tire circumferential direction with respect to the first lug groove Multiple second lug grooves and front Wherein the disposed on the land portion adjacent to the shoulder land portion or the shoulder land portion and a circumferential narrow groove extending in the tire circumferential direction.
 この発明にかかる空気入りタイヤでは、第一ラグ溝がトレッド端からセンター陸部を区画する周方向主溝まで連続的に延在するので、タイヤ幅方向への排水性およびシャーベット路面での排雪性が向上する。これにより、タイヤの氷上性能および雪上性能が向上する利点がある。 In the pneumatic tire according to the present invention, since the first lug groove continuously extends from the tread end to the circumferential main groove defining the center land portion, the drainage in the tire width direction and the snow drainage on the sherbet road surface Improves. Thereby, there exists an advantage which the performance on ice and the performance on snow of a tire improve.
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1. 図3は、図2に記載した空気入りタイヤのトレッド面を示す拡大図である。FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. 2. 図4は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。FIG. 4 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention. 図5は、従来例の空気入りタイヤを示す説明図である。FIG. 5 is an explanatory view showing a conventional pneumatic tire.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域を示している。また、同図は、空気入りタイヤの一例として、小型トラック用スタッドレスタイヤを示している。なお、同図において、符号CLは、タイヤ赤道面である。また、タイヤ幅方向とは、タイヤ回転軸(図示省略)に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
[Pneumatic tire]
FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region in the tire radial direction. The figure shows a small truck studless tire as an example of a pneumatic tire. In the figure, the symbol CL is the tire equator plane. The tire width direction means a direction parallel to a tire rotation axis (not shown), and the tire radial direction means a direction perpendicular to the tire rotation axis.
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。 The pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。 The pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions. The pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
 カーカス層13は、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13は、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。 The carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12. The carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg]. A carcass angle of 95 [deg] or less (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上40[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のベルトコードを圧延加工して構成され、絶対値で45[deg]以上70[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。 The belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13. The pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 40 [deg] or less. Have. Further, the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure). The belt cover 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material coated with a coat rubber, and has a belt angle of 45 [deg] or more and 70 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびビードフィラー12、12のタイヤ幅方向外側にそれぞれ配置されて、左右のビード部を構成する。 The tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire. The pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions. The pair of rim cushion rubbers 17 and 17 are arranged on the outer sides in the tire width direction of the left and right bead cores 11 and 11 and the bead fillers 12 and 12, respectively, and constitute left and right bead portions.
 なお、トレッドゴム15は、60以上75以下のゴム硬度を有することが好ましく、65以上70以下のゴム硬度を有することがより好ましい。ゴム硬度とは、JIS-K6263に準拠したJIS-A硬度をいい、20[℃]の条件下にて測定される。 Note that the tread rubber 15 preferably has a rubber hardness of 60 or more and 75 or less, and more preferably 65 or more and 70 or less. Rubber hardness refers to JIS-A hardness according to JIS-K6263, and is measured under the condition of 20 [° C.].
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。図3は、図2に記載した空気入りタイヤのトレッド面を示す拡大図である。これらの図において、図2は、スタッドレスタイヤのトラクションパターンを示している。図3は、タイヤ赤道面CLを境界とした片側領域を示している。なお、これらの図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
[Tread pattern]
FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1. FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. 2. In these drawings, FIG. 2 shows a traction pattern of a studless tire. FIG. 3 shows a one-sided region with the tire equatorial plane CL as a boundary. In these drawings, the tire circumferential direction refers to the direction around the tire rotation axis. Moreover, the code | symbol T is a tire grounding end.
 この空気入りタイヤ1は、タイヤ周方向に延在する少なくとも4本の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31~33とをトレッド部に備える(図2参照)。 This pneumatic tire 1 includes at least four circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 to 33 defined by the circumferential main grooves 21 and 22. Provided in the tread portion (see FIG. 2).
 周方向主溝とは、1.0[mm]以上の溝幅を有する周方向溝をいう。周方向溝の溝幅は、トレッド踏面の溝開口部に形成された切欠部や面取部を除外して測定される。 The circumferential main groove refers to a circumferential groove having a groove width of 1.0 [mm] or more. The groove width of the circumferential groove is measured excluding notches and chamfers formed in the groove opening of the tread surface.
 なお、この実施の形態では、タイヤ幅方向の最も外側にある左右の周方向主溝22、22を最外周方向主溝と呼ぶ。また、タイヤ赤道面CLに最も近い陸部31をセンター陸部と呼ぶ。このとき、タイヤ赤道面CL上に陸部がある場合(図2参照)には、この陸部がセンター陸部となり、タイヤ赤道面CL上に周方向主溝がある場合(図示省略)には、この周方向主溝を挟む左右の陸部がセンター陸部となる。また、左右の最外周方向主溝22、22に区画されたタイヤ幅方向外側の陸部33、33をショルダー陸部と呼ぶ。また、センター陸部31とショルダー陸部33との間にある陸部32を、セカンド陸部と呼ぶ。 In this embodiment, the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves. The land portion 31 closest to the tire equatorial plane CL is called a center land portion. At this time, when there is a land portion on the tire equatorial plane CL (see FIG. 2), this land portion becomes the center land portion, and when there is a circumferential main groove on the tire equatorial plane CL (not shown). The left and right land portions sandwiching the circumferential main groove are the center land portions. Further, the land portions 33, 33 on the outer side in the tire width direction divided into the left and right outermost circumferential main grooves 22, 22 are referred to as shoulder land portions. The land portion 32 between the center land portion 31 and the shoulder land portion 33 is referred to as a second land portion.
 例えば、図2の構成では、4本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。また、これらの周方向主溝21、22により、1列のセンター陸部31がタイヤ赤道面CL上に区画され、また、左右一対のセカンド陸部32、32と、左右一対のショルダー陸部33、33とが区画されている。 For example, in the configuration of FIG. 2, the four circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL. The circumferential main grooves 21, 22 divide a row of center land portions 31 on the tire equatorial plane CL, and a pair of left and right second land portions 32, 32 and a pair of left and right shoulder land portions 33. , 33 are partitioned.
 また、この空気入りタイヤ1は、複数の第一ラグ溝41と、複数の第二ラグ溝42とを備える(図2参照)。 Further, the pneumatic tire 1 includes a plurality of first lug grooves 41 and a plurality of second lug grooves 42 (see FIG. 2).
 第一ラグ溝41は、トレッド端からタイヤ幅方向に延在してセンター陸部31の内部で終端する主溝である。すなわち、第一ラグ溝41は、トレッド端からタイヤ幅方向に延在してショルダー陸部33およびセカンド陸部32を貫通し、センター陸部31まで連続的に延在してセンター陸部31の内部で終端する。このため、第一ラグ溝41は、センター陸部31とショルダー陸部33との間にあるすべての周方向主溝21、22に対して交差する。 The first lug groove 41 is a main groove extending in the tire width direction from the tread end and terminating in the center land portion 31. That is, the first lug groove 41 extends in the tire width direction from the tread end, penetrates the shoulder land portion 33 and the second land portion 32, and continuously extends to the center land portion 31. Terminate internally. For this reason, the first lug groove 41 intersects all the circumferential main grooves 21 and 22 between the center land portion 31 and the shoulder land portion 33.
 ここで、第一ラグ溝41が連続的に延在するとは、第一ラグ溝41と周方向主溝21(22)との交差点にて、周方向主溝21(22)に対する第一ラグ溝41の左右の開口部がタイヤ周方向にオフセットすることなく相互に対向することを意味する。かかる構成では、第一ラグ溝41が、トレッド端からセンター陸部31の終端部まで見かけ上1本の主溝としてタイヤ幅方向に連通する。これにより、タイヤ幅方向への排水性およびシャーベット路面での排雪性が向上する。 Here, the first lug groove 41 continuously extending means that the first lug groove with respect to the circumferential main groove 21 (22) at the intersection of the first lug groove 41 and the circumferential main groove 21 (22). It means that the left and right openings of 41 face each other without being offset in the tire circumferential direction. In such a configuration, the first lug groove 41 communicates in the tire width direction as an apparent single main groove from the tread end to the terminal end of the center land portion 31. This improves drainage in the tire width direction and snow drainage on the sherbet road surface.
 トレッド端部とは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのタイヤのトレッド模様部分の両端部をいう。 The tread end portion refers to both end portions of the tread pattern portion of the tire when the tire is mounted on a specified rim to apply a specified internal pressure and is in an unloaded state.
 ここで、規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。 Here, the stipulated rim is an “applicable rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO. The specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO. The specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO. However, in JATMA, in the case of tires for passenger cars, the specified internal pressure is air pressure 180 [kPa], and the specified load is 88 [%] of the maximum load capacity.
 第二ラグ溝42は、センター陸部31をタイヤ幅方向に貫通する主溝である。この第二ラグ溝42は、センター陸部31の内部にて第一ラグ溝41に交差することなくタイヤ幅方向に延在して左右の周方向主溝21、21に開口する。 The second lug groove 42 is a main groove that penetrates the center land portion 31 in the tire width direction. The second lug groove 42 extends in the tire width direction without intersecting the first lug groove 41 inside the center land portion 31 and opens to the left and right circumferential main grooves 21, 21.
 ラグ溝とは、2.0[mm]以上の溝幅を有する横溝をいう。ラグ溝の溝幅は、トレッド踏面の溝開口部に形成された切欠部や面取部を除外して測定される。 The lug groove refers to a lateral groove having a groove width of 2.0 [mm] or more. The groove width of the lug groove is measured excluding notches and chamfers formed in the groove opening of the tread surface.
 例えば、図2の構成では、複数の第一ラグ溝41が、タイヤ周方向に所定間隔をあけて配置され、また、タイヤ赤道面CLを境界とする左右の領域にそれぞれ配置されている。また、これらの第一ラグ溝41が、トレッド端からタイヤ幅方向にそれぞれ連続的に延在して、タイヤ赤道面CLに交差することなくセンター陸部31の内部で終端している。このため、左右の領域の第一ラグ溝41、41が、相互に交差することなく配置されている。また、これらの第一ラグ溝41がセンター陸部31の内部で終端することにより、センター陸部31の左右のエッジ部に、第一ラグ溝41による切欠が形成されている。また、これらの第一ラグ溝41により、左右のショルダー陸部33、33およびセカンド陸部32、32がタイヤ周方向に分断されてブロック列となっている。 For example, in the configuration of FIG. 2, the plurality of first lug grooves 41 are arranged at predetermined intervals in the tire circumferential direction, and are arranged in the left and right regions with the tire equatorial plane CL as a boundary. Further, these first lug grooves 41 extend continuously from the tread end in the tire width direction and terminate in the center land portion 31 without intersecting the tire equatorial plane CL. For this reason, the 1st lug grooves 41 and 41 of a right-and-left area | region are arrange | positioned without mutually crossing. In addition, when these first lug grooves 41 terminate in the center land portion 31, notches by the first lug grooves 41 are formed in the left and right edge portions of the center land portion 31. Further, by these first lug grooves 41, the left and right shoulder land portions 33, 33 and the second land portions 32, 32 are divided in the tire circumferential direction to form a block row.
 また、図3に示すように、第一ラグ溝41が、トレッド端からタイヤ赤道面CLに向かうに連れてタイヤ周方向の一方向に傾斜している。具体的には、第一ラグ溝41が、全体として円弧形状を有し、蛇行することなく一方向に湾曲してタイヤ幅方向に延在している。また、タイヤ赤道面CLに対して一方の領域にある第一ラグ溝41と、他方の領域にある第一ラグ溝41とが、タイヤ周方向に対して相互に異なる方向に傾斜している。具体的には、図3の左側領域にある第一ラグ溝41が、タイヤ赤道面CLに向かうに連れて紙面上方に傾斜し、図3の右側領域にある第一ラグ溝41が、タイヤ赤道面CLに向かうに連れて紙面下方に傾斜している。 Further, as shown in FIG. 3, the first lug groove 41 is inclined in one direction of the tire circumferential direction from the tread end toward the tire equatorial plane CL. Specifically, the first lug groove 41 has an arc shape as a whole, is curved in one direction without being meandering, and extends in the tire width direction. Further, the first lug groove 41 in one region and the first lug groove 41 in the other region with respect to the tire equatorial plane CL are inclined in mutually different directions with respect to the tire circumferential direction. Specifically, the first lug groove 41 in the left region of FIG. 3 is inclined upward in the drawing as it goes toward the tire equatorial plane CL, and the first lug groove 41 in the right region of FIG. As it goes to the surface CL, the surface is inclined downward.
 また、第一ラグ溝41のタイヤ幅方向に対する傾斜角βが、トレッド端からタイヤ赤道面CLに向かうに連れて増加している。また、傾斜角βの最大値βmaxが、1[deg]≦βmax≦30[deg]の範囲内にあることが好ましく、5[deg]≦βmax≦30[deg]の範囲内にあることがより好ましい。この傾斜角βは、第一ラグ溝41の溝中心線とタイヤ幅方向とのなす角として測定される。また、第一ラグ溝41が、タイヤ幅方向外側に向かうに連れて溝幅を拡幅している。これらにより、第一ラグ溝41の排雪性が高められている。 In addition, the inclination angle β of the first lug groove 41 with respect to the tire width direction increases from the tread end toward the tire equatorial plane CL. The maximum value βmax of the inclination angle β is preferably in the range of 1 [deg] ≦ βmax ≦ 30 [deg], and more preferably in the range of 5 [deg] ≦ βmax ≦ 30 [deg]. preferable. This inclination angle β is measured as an angle formed by the groove center line of the first lug groove 41 and the tire width direction. Further, the first lug groove 41 widens the groove width toward the outer side in the tire width direction. As a result, the snow drainage of the first lug groove 41 is enhanced.
 また、図2の構成では、複数の第二ラグ溝42が、タイヤ周方向に所定間隔をあけて配置され、また、センター陸部31のみを貫通して左右の周方向主溝21、21で終端している。また、これらの第二ラグ溝42により、センター陸部31がタイヤ周方向に分断されてブロック列となっている。また、タイヤ周方向に隣り合う第二ラグ溝42、42の間に、左右一対の第一ラグ溝41、41がタイヤ左右の領域からそれぞれ延在して終端している。このため、センター陸部31では、左右の第一ラグ溝41、41と第二ラグ溝42とがタイヤ周方向に向かって千鳥状に配置されている。また、センター陸部31の各ブロックが、左右の第一ラグ溝41、41による切欠部を周方向主溝21、21側の左右のエッジ部にそれぞれ有している。 Further, in the configuration of FIG. 2, the plurality of second lug grooves 42 are arranged at a predetermined interval in the tire circumferential direction, and penetrate only the center land portion 31 and the left and right circumferential main grooves 21, 21. It is terminated. Moreover, the center land portion 31 is divided in the tire circumferential direction by these second lug grooves 42 to form a block row. A pair of left and right first lug grooves 41, 41 extend from the left and right regions of the tire and terminate between the second lug grooves 42, 42 adjacent in the tire circumferential direction. For this reason, in the center land portion 31, the left and right first lug grooves 41, 41 and the second lug grooves 42 are arranged in a staggered manner in the tire circumferential direction. Moreover, each block of the center land part 31 has the notch part by the left-and-right 1st lug grooves 41 and 41 in the circumferential direction main grooves 21 and 21 side edge part, respectively.
 また、この空気入りタイヤ1は、左右一対の周方向細溝23、23を備える(図2参照)。 The pneumatic tire 1 includes a pair of left and right circumferential narrow grooves 23 and 23 (see FIG. 2).
 周方向細溝23は、ショルダー陸部33に配置されてタイヤ周方向に延在する細溝である。この周方向細溝23は、最外周方向主溝22およびトレッド端に開口することなくショルダー陸部33の内部をタイヤ周方向に延在して、ショルダー陸部33をタイヤ幅方向に二分割する。 The circumferential narrow groove 23 is a narrow groove disposed in the shoulder land portion 33 and extending in the tire circumferential direction. The circumferential narrow groove 23 extends inside the shoulder land portion 33 in the tire circumferential direction without opening to the outermost circumferential main groove 22 and the tread end, and divides the shoulder land portion 33 into two in the tire width direction. .
 また、周方向細溝23は、屈曲形状を有し、タイヤ周方向に蛇行しつつ延在する。この屈曲形状には、屈折形状(例えば、ジグザグ形状)および湾曲形状(例えば、正弦波形状)の双方が含まれる。このとき、周方向細溝23が屈折形状を有する構成では、ショルダー陸部33のエッジ成分が増加して、タイヤのトラクション性が向上する点で好ましい。 Further, the circumferential narrow groove 23 has a bent shape and extends while meandering in the tire circumferential direction. This bent shape includes both a refractive shape (for example, zigzag shape) and a curved shape (for example, sinusoidal shape). At this time, the configuration in which the circumferential narrow groove 23 has a refractive shape is preferable in that the edge component of the shoulder land portion 33 is increased and the traction of the tire is improved.
 周方向細溝とは、1.0[mm]以上かつ周方向主溝の溝幅未満の溝幅を有する周方向溝をいう。細溝の溝幅は、対向する溝壁面間の距離として測定される。したがって、波状形状、ジグザグ形状などの振幅を有する溝については、その振幅によらずに溝幅が測定されて周方向細溝か否かが判断される。 The circumferential narrow groove refers to a circumferential groove having a groove width of 1.0 [mm] or more and less than the groove width of the circumferential main groove. The groove width of the narrow groove is measured as a distance between opposing groove wall surfaces. Therefore, for a groove having an amplitude such as a wavy shape or a zigzag shape, the groove width is measured regardless of the amplitude to determine whether the groove is a circumferential narrow groove.
 例えば、図2の構成では、左右のショルダー陸部33、33が、1本の周方向細溝23をそれぞれ有している。また、図3に示すように、周方向細溝23が、タイヤ幅方向に振幅を有するジグザグ形状を有し、また、少なくとも一つの屈曲部をショルダー陸部33の各ブロックにそれぞれ有している。このとき、1つのブロックにおける周方向細溝23の屈曲部の数は、周方向細溝23における雪詰まりを低減して雪柱の抜けを良くするために、1つまたは2つであることが好ましい。また、周方向細溝23の屈曲角αの最大値αmaxが、1[deg]≦αmax≦30[deg]の範囲内にあることが好ましく、5[deg]≦αmax≦25[deg]の範囲内にあることがより好ましい。 For example, in the configuration of FIG. 2, the left and right shoulder land portions 33, 33 each have one circumferential narrow groove 23. Further, as shown in FIG. 3, the circumferential narrow groove 23 has a zigzag shape having an amplitude in the tire width direction, and has at least one bent portion in each block of the shoulder land portion 33. . At this time, the number of bent portions of the circumferential narrow groove 23 in one block may be one or two in order to reduce snow clogging in the circumferential narrow groove 23 and improve the escape of the snow column. preferable. The maximum value αmax of the bending angle α of the circumferential narrow groove 23 is preferably in the range of 1 [deg] ≦ αmax ≦ 30 [deg], and the range of 5 [deg] ≦ αmax ≦ 25 [deg]. More preferably, it is within.
 屈曲角αは、周方向細溝23の溝中心線を基準として測定される。また、周方向細溝23が波状形状を有する構成では、隣り合う変曲点を結ぶ仮想線のなす角として測定される。 The bending angle α is measured with reference to the groove center line of the circumferential narrow groove 23. Further, in the configuration in which the circumferential narrow groove 23 has a wave shape, it is measured as an angle formed by an imaginary line connecting adjacent inflection points.
 また、図2の構成では、周方向細溝23の最大溝深さHsと、最外周方向主溝22の最大溝深さHとが、0.40≦Hs/H≦0.80の関係を有することが好ましく、0.50≦Hs/H≦0.80の関係を有することがより好ましい。溝深さは、溝開口部の切り欠きや溝底の底上部を除外して測定される。 In the configuration of FIG. 2, the maximum groove depth Hs of the circumferential narrow groove 23 and the maximum groove depth H of the outermost circumferential main groove 22 have a relationship of 0.40 ≦ Hs / H ≦ 0.80. Preferably, it has a relationship of 0.50 ≦ Hs / H ≦ 0.80. The groove depth is measured excluding the notch of the groove opening and the upper bottom of the groove bottom.
 また、タイヤ赤道面CLから周方向細溝23までの距離Lsと、タイヤ赤道面CLからタイヤ接地端Tまでの距離Lとが、0.70≦Ls/L≦0.90の関係を有することが好ましい。 Further, the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T have a relationship of 0.70 ≦ Ls / L ≦ 0.90. Is preferred.
 タイヤ接地端Tとは、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置をいう。 The tire ground contact end T is a tire and a flat plate when the tire is mounted on a specified rim and applied with a specified internal pressure and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. The maximum width position in the tire axial direction on the contact surface.
 また、この空気入りタイヤ1では、上記のように、センター陸部31、セカンド陸部32およびショルダー陸部33が、周方向主溝21、22と、第一ラグ溝41および第二ラグ溝42とに区画されてブロック列となっている。そして、これらのブロック列が、トレッド平面視にて、タイヤ赤道面CL上の点を中心として点対称となるように構成されている。かかる点対称パターンは、タイヤローテーション時の利便性が向上するため、好ましい。 In the pneumatic tire 1, as described above, the center land portion 31, the second land portion 32, and the shoulder land portion 33 include the circumferential main grooves 21, 22, the first lug groove 41, and the second lug groove 42. It is divided into a block row. These block rows are configured to be point-symmetric about a point on the tire equatorial plane CL in a tread plan view. Such a point-symmetric pattern is preferable because convenience during tire rotation is improved.
 また、図3の構成では、センター陸部31のエッジ部が、第一ラグ溝41との交差位置にてタイヤ幅方向にオフセットした段差部を有している。すなわち、センター陸部31の周方向主溝21側のエッジ部が第一ラグ溝41によりタイヤ周方向に二分割され、一方のエッジ部と他方のエッジ部とが、タイヤ幅方向に位置をずらして配置されている。このエッジ部の段差W1は、1[mm]≦W1≦4[mm]の範囲内にあることが好ましい。 Further, in the configuration of FIG. 3, the edge portion of the center land portion 31 has a step portion that is offset in the tire width direction at the intersection position with the first lug groove 41. That is, the edge portion on the circumferential main groove 21 side of the center land portion 31 is divided into two in the tire circumferential direction by the first lug groove 41, and one edge portion and the other edge portion are displaced in the tire width direction. Are arranged. The step W1 of the edge portion is preferably in the range of 1 [mm] ≦ W1 ≦ 4 [mm].
 また、センター陸部31のタイヤ幅方向外側にある周方向主溝21と第二ラグ溝42との交差位置にて、センター陸部31のタイヤ幅方向外側にある陸部(図2では、セカンド陸部32)のセンター陸部31側のエッジ部が、面一(段差W2=0[mm])となり、段差を有していない。したがって、センター陸部31とセカンド陸部32との間にある周方向主溝21は、センター陸部31側の溝開口部にてステップ形状を有し、セカンド陸部32側の溝開口部にてストレート形状を有している。 Further, at the intersection of the circumferential main groove 21 on the outer side in the tire width direction of the center land portion 31 and the second lug groove 42, the land portion on the outer side in the tire width direction of the center land portion 31 (in FIG. The edge portion of the land portion 32) on the center land portion 31 side is flush (step W2 = 0 [mm]) and has no step. Therefore, the circumferential main groove 21 between the center land portion 31 and the second land portion 32 has a step shape at the groove opening portion on the center land portion 31 side, and is formed on the groove opening portion on the second land portion 32 side. And has a straight shape.
 また、最外周方向主溝22と第一ラグ溝41との交差位置にて、最外周方向主溝22を挟んで対向する左右の陸部32、33が、タイヤ幅方向にオフセットしたエッジ部を有している。具体的には、セカンド陸部32およびショルダー陸部33では、タイヤ周方向に隣り合うブロックのエッジ部が、第一ラグ溝41の開口部にてタイヤ幅方向に位置をずらして配置されている。また、各ブロックの最外周方向主溝22側のエッジ部が、タイヤ幅方向にステップ状に変化する段差部をそれぞれ有している。また、最外周方向主溝22を挟んで対向するブロックのエッジ部が、相互に同一方向に変化する段差部を有することにより、最外周方向主溝22の溝幅が略一定に維持されている。これにより、最外周方向主溝22が、タイヤ幅方向にステップ状に屈曲しつつタイヤ周方向に略同一の溝幅で延在している。 Also, at the intersection of the outermost circumferential main groove 22 and the first lug groove 41, the left and right land portions 32, 33 facing each other with the outermost circumferential main groove 22 interposed therebetween are edge portions offset in the tire width direction. Have. Specifically, in the second land portion 32 and the shoulder land portion 33, the edge portions of the blocks adjacent in the tire circumferential direction are arranged at different positions in the tire width direction at the opening of the first lug groove 41. . Moreover, the edge part by the side of the outermost circumferential direction main groove 22 of each block has a level | step-difference part which changes in a step shape in a tire width direction, respectively. Moreover, the edge part of the block which opposes on both sides of the outermost periphery direction main groove 22 has the step part which changes mutually in the same direction, and the groove width of the outermost periphery direction main groove 22 is maintained substantially constant. . As a result, the outermost circumferential main groove 22 extends in substantially the same groove width in the tire circumferential direction while being bent stepwise in the tire width direction.
 また、この空気入りタイヤ1では、図2および図3に示すように、各陸部31~33のブロックが、それぞれ複数のサイプ5を有している。これにより、ブロックのエッジ成分が補強されて、スタッドレスタイヤとしてのトラクション性能が高められている。 Further, in this pneumatic tire 1, as shown in FIGS. 2 and 3, the blocks of the land portions 31 to 33 each have a plurality of sipes 5. Thereby, the edge component of a block is reinforced and the traction performance as a studless tire is improved.
 サイプとは、1.0[mm]未満のサイプ幅を有する切り込みをいう。なお、サイプは、サイプ長さ方向に垂直な断面視にて直線形状のサイプ壁面を有する平面サイプであっても良いし、サイプ長さ方向に垂直な断面視にて、サイプ幅方向に屈曲した形状のサイプ壁面を有する三次元サイプであっても良い。三次元サイプは、二次元サイプと比較して、対向するサイプ壁面の噛合力が強いため、陸部の剛性を補強する作用を有する。 Sipe refers to a cut having a sipe width of less than 1.0 [mm]. The sipe may be a plane sipe having a straight sipe wall surface in a cross-sectional view perpendicular to the sipe length direction, or bent in a sipe width direction in a cross-sectional view perpendicular to the sipe length direction. A three-dimensional sipe having a shaped sipe wall surface may be used. The three-dimensional sipe has an action of reinforcing the rigidity of the land portion because the meshing force of the opposing sipe wall surfaces is stronger than that of the two-dimensional sipe.
[変形例]
 なお、図2の構成では、第一ラグ溝41がセンター陸部31まで延在してセンター陸部31の内部で終端している。かかる構成では、第一ラグ溝41による切り欠きがセンター陸部31のエッジ部に形成される。すると、センター陸部31のエッジ成分が増加して、タイヤのトラクション性が向上する点で好ましい。
[Modification]
In the configuration of FIG. 2, the first lug groove 41 extends to the center land portion 31 and terminates inside the center land portion 31. In such a configuration, the notch by the first lug groove 41 is formed at the edge portion of the center land portion 31. Then, the edge component of the center land part 31 increases and it is preferable at the point which the traction property of a tire improves.
 しかし、これに限らず、第一ラグ溝41が、センター陸部31のタイヤ幅方向外側のエッジ部を区画する周方向主溝21に開口し、この位置で終端しても良い(図示省略)。すなわち、第一ラグ溝41が、センター陸部31まで延在していなくとも良い。このとき、周方向主溝21における第一ラグ溝41の開口部と第二ラグ溝42の開口部とが、タイヤ周方向に相互に異なる位置にあることを要する。 However, the present invention is not limited to this, and the first lug groove 41 may open to the circumferential main groove 21 that defines the outer edge portion of the center land portion 31 in the tire width direction and terminate at this position (not shown). . That is, the first lug groove 41 may not extend to the center land portion 31. At this time, it is necessary that the opening of the first lug groove 41 and the opening of the second lug groove 42 in the circumferential main groove 21 are at different positions in the tire circumferential direction.
 また、図2の構成では、周方向細溝23が、ショルダー陸部33のみに配置されている。かかる構成では、ショルダー陸部33のエッジ成分が向上して、タイヤの旋回性能が向上する点で好ましい。また、周方向主溝21がセンター陸部31あるいはセカンド陸部32に配置される構成と比較して、トレッド部センター領域の剛性が確保されるので、タイヤのストップ・アンド・ゴー性能が向上し、また、センターウェアの発生が抑制される点で好ましい。 Further, in the configuration of FIG. 2, the circumferential narrow groove 23 is disposed only in the shoulder land portion 33. Such a configuration is preferable in that the edge component of the shoulder land portion 33 is improved and the turning performance of the tire is improved. Further, compared with the configuration in which the circumferential main groove 21 is disposed in the center land portion 31 or the second land portion 32, the rigidity of the tread portion center region is ensured, so that the stop and go performance of the tire is improved. In addition, it is preferable in that generation of centerware is suppressed.
 しかし、これに限らず、周方向細溝23が、ショルダー陸部33に隣り合う陸部(セカンド陸部32)に配置されても良い(図示省略)。ただし、上記のように、タイヤ赤道面CLから周方向細溝23までの距離Lsと、タイヤ赤道面CLからタイヤ接地端Tまでの距離Lとが、0.70≦Ls/L≦0.90の関係を有することを要する(図2参照)。 However, the present invention is not limited to this, and the circumferential narrow groove 23 may be disposed in a land portion (second land portion 32) adjacent to the shoulder land portion 33 (not shown). However, as described above, the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T are 0.70 ≦ Ls / L ≦ 0.90. (See FIG. 2).
 また、図3の構成では、周方向細溝23が、直線成分を有するジグザグ形状を有している。また、周方向細溝23が、ブロックの内部に少なくとも一つの屈曲部を有している。かかる構成では、タイヤ接地時にて周方向細溝23が塞がったときに、周方向細溝23の対向する溝壁が噛み合うことによりブロックの剛性が確保される。これにより、タイヤのトラクション性が確保される点で好ましい。 Further, in the configuration of FIG. 3, the circumferential narrow groove 23 has a zigzag shape having a linear component. Further, the circumferential narrow groove 23 has at least one bent portion inside the block. In such a configuration, when the circumferential narrow groove 23 is closed when the tire is in contact with the tire, the opposing groove walls of the circumferential narrow groove 23 are engaged to ensure the rigidity of the block. This is preferable in that the traction of the tire is ensured.
 しかし、これに限らず、周方向細溝23が、波状形状を有しても良いし、ブロックの内部に屈曲部を有していなくとも良い(図示省略)。 However, the present invention is not limited to this, and the circumferential narrow groove 23 may have a wavy shape or may not have a bent portion inside the block (not shown).
 また、図3の構成では、ショルダー陸部33のタイヤ周方向に隣り合うブロックにおいて、一方のブロックにおける周方向細溝23の開口部と、他方のブロックにおける周方向細溝23の開口部とが、周方向細溝23と第一ラグ溝41との交差位置にてタイヤ幅方向の同位置に(相互に対向して)配置されている。このため、1本の周方向細溝23が、タイヤ周方向に連続して配置されている。かかる構成では、各ブロックにおける偏摩耗の発生を抑制できる点で好ましい。 In the configuration of FIG. 3, in the blocks adjacent to the tire circumferential direction of the shoulder land portion 33, the opening of the circumferential narrow groove 23 in one block and the opening of the circumferential narrow groove 23 in the other block are The circumferential narrow groove 23 and the first lug groove 41 are disposed at the same position in the tire width direction (opposite to each other) at the intersection position. Therefore, one circumferential narrow groove 23 is continuously arranged in the tire circumferential direction. Such a configuration is preferable in that the occurrence of uneven wear in each block can be suppressed.
 しかし、これに限らず、周方向細溝23の隣り合う開口部が、オフセットして(第一ラグ溝41の溝長さ方向に位置をずらして)配置されても良い(図示省略)。 However, the present invention is not limited to this, and adjacent openings of the circumferential narrow groove 23 may be arranged offset (shifted in the groove length direction of the first lug groove 41) (not shown).
[効果]
 以上説明したように、この空気入りタイヤ1は、タイヤ周方向に延在する少なくとも4本の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31~33とを備える(図2参照)。また、空気入りタイヤ1は、トレッド端からタイヤ幅方向に連続的に延在してセンター陸部31のタイヤ幅方向外側のエッジ部を区画する周方向主溝21に開口する複数の第一ラグ溝41と、センター陸部31をタイヤ幅方向に貫通すると共に第一ラグ溝41に対してタイヤ周方向に千鳥状に配置される複数の第二ラグ溝42と、ショルダー陸部33に配置されてタイヤ周方向に延在する周方向細溝23とを備える。
[effect]
As described above, the pneumatic tire 1 includes at least four circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land divided by the circumferential main grooves 21 and 22. Parts 31 to 33 (see FIG. 2). The pneumatic tire 1 has a plurality of first lugs that continuously extend in the tire width direction from the tread end and open to the circumferential main grooves 21 that define the outer edge portions of the center land portion 31 in the tire width direction. The groove 41, the plurality of second lug grooves 42 penetrating the center land portion 31 in the tire width direction and arranged in a staggered manner in the tire circumferential direction with respect to the first lug groove 41, and the shoulder land portion 33 are disposed. And a circumferential narrow groove 23 extending in the tire circumferential direction.
 かかる構成では、(1)第一ラグ溝41がトレッド端からセンター陸部31を区画する周方向主溝21まで連続的に延在するので、タイヤ幅方向への排水性およびシャーベット路面での排雪性が向上する。これにより、タイヤの氷上性能および雪上性能が向上する利点がある。 In this configuration, (1) since the first lug groove 41 continuously extends from the tread end to the circumferential main groove 21 that defines the center land portion 31, drainage in the tire width direction and drainage on the sherbet road surface are performed. Snowiness improves. Thereby, there exists an advantage which the performance on ice and the performance on snow of a tire improve.
 また、(2)第一ラグ溝41と第二ラグ溝42とがタイヤ周方向に千鳥状に配置されることにより(図3参照)、周方向主溝21に対する第一ラグ溝41の開口部と第二ラグ溝42の開口部とが、タイヤ周方向に相互に位置をずらして配置される。かかる構成では、第一ラグ溝の延長線上に第二ラグ溝が配置される構成(図示省略)と比較して、トレッド部センター領域におけるトラクション成分が増加する。これにより、タイヤの氷上性能および雪上性能が向上する利点がある。また、接地圧が分散されて、タイヤの耐偏摩耗性能が維持される利点がある。 Further, (2) the first lug groove 41 and the second lug groove 42 are arranged in a staggered manner in the tire circumferential direction (see FIG. 3), whereby the opening of the first lug groove 41 with respect to the circumferential main groove 21. And the opening of the second lug groove 42 are arranged so as to be displaced from each other in the tire circumferential direction. In such a configuration, the traction component in the tread portion center region is increased as compared with a configuration (not shown) in which the second lug groove is disposed on the extended line of the first lug groove. Thereby, there exists an advantage which the performance on ice and the performance on snow of a tire improve. Further, there is an advantage that the uneven wear resistance performance of the tire is maintained by distributing the ground pressure.
 また、(3)周方向細溝23が、車両の旋回走行時にて大きな接地圧を受けるショルダー陸部33に配置されるので、タイヤ幅方向へのトラクション成分が増加して、タイヤの旋回性能が向上する利点がある。また、周方向細溝23に代えてサイプが配置される構成(図示省略)と比較して、ショルダー陸部33の溝体積の増加により雪中剪断力が増加して、タイヤの氷上性能および雪上性能が向上する利点がある。 Further, (3) the circumferential narrow groove 23 is disposed in the shoulder land portion 33 that receives a large contact pressure when the vehicle is turning, so that the traction component in the tire width direction is increased, and the turning performance of the tire is improved. There is an advantage to improve. Further, compared with a configuration in which sipes are arranged in place of the circumferential narrow grooves 23 (not shown), the shear force in snow increases due to an increase in the groove volume of the shoulder land portion 33, and the on-ice performance of the tire and on the snow are increased. There is an advantage that the performance is improved.
 また、この空気入りタイヤ1では、第一ラグ溝41が、第二ラグ溝42に交差することなくセンター陸部31まで連続的に延在してセンター陸部31の内部で終端する(図2および図3参照)。かかる構成では、第一ラグ溝41による切り欠きがセンター陸部31のエッジ部に形成されて、センター陸部31のエッジ成分が増加する。これにより、タイヤのトラクション性が向上して、タイヤの氷上性能および雪上性能が向上する利点がある。 In the pneumatic tire 1, the first lug groove 41 extends continuously to the center land portion 31 without intersecting the second lug groove 42 and ends inside the center land portion 31 (FIG. 2). And FIG. 3). In such a configuration, the notch by the first lug groove 41 is formed at the edge portion of the center land portion 31, and the edge component of the center land portion 31 increases. Thereby, there exists an advantage which the traction property of a tire improves and the performance on ice and performance on snow of a tire improve.
 また、この空気入りタイヤ1では、ショルダー陸部33が、タイヤ周方向に隣り合う一対の第一ラグ溝41、41と、最外周方向主溝22とに区画されて成るブロックを有し、また、周方向細溝23が、ブロックの内部に少なくとも一つの屈曲部を有する(図3参照)。これにより、ショルダー陸部33のエッジ成分が増加して、タイヤの氷上性能および雪上性能が向上する利点がある。また、周方向細溝23がブロックの内部に屈曲部を有することにより、周方向細溝がストレート形状を有する構成(図示省略)と比較して、ブロックの倒れ込みが抑制されて、タイヤの耐偏摩耗性が向上する利点がある。 In the pneumatic tire 1, the shoulder land portion 33 has a block that is partitioned into a pair of first lug grooves 41 and 41 adjacent to each other in the tire circumferential direction and an outermost circumferential main groove 22. The circumferential narrow groove 23 has at least one bent portion inside the block (see FIG. 3). Thereby, the edge component of the shoulder land part 33 increases, and there exists an advantage which the performance on ice and the performance on snow of a tire improve. Further, since the circumferential narrow groove 23 has a bent portion inside the block, compared to a configuration in which the circumferential narrow groove has a straight shape (not shown), the collapse of the block is suppressed, and the anti-bias resistance of the tire is reduced. There is an advantage that wear resistance is improved.
 また、この空気入りタイヤ1では、周方向細溝23の屈曲部の屈曲角αの最大値αmaxが、1[deg]≦αmax≦30[deg]の範囲内にある(図3参照)。これにより、周方向細溝23の屈曲角αが適正化される利点がある。すなわち、1[deg]≦αmaxであることにより、屈曲部によるエッジ成分の増加作用が得られ、また、αmax≦30[deg]であることにより、周方向細溝23における排雪性が確保される。 Further, in the pneumatic tire 1, the maximum value αmax of the bending angle α of the bent portion of the circumferential narrow groove 23 is in the range of 1 [deg] ≦ αmax ≦ 30 [deg] (see FIG. 3). Thereby, there exists an advantage by which the bending angle (alpha) of the circumferential direction fine groove 23 is optimized. That is, when 1 [deg] ≦ αmax, an effect of increasing the edge component due to the bent portion is obtained, and when αmax ≦ 30 [deg], the snow drainage property in the circumferential narrow groove 23 is ensured. The
 また、この空気入りタイヤ1では、周方向細溝23の最大溝深さHsと、最外周方向主溝22の最大溝深さHとが、0.40≦Hs/H≦0.80の関係を有する。これにより、周方向細溝23の溝深さHsが適正化される利点がある。すなわち、0.40≦Hs/Hであることにより、周方向細溝23による雪中剪断力が確保され、Hs/H≦0.80であることにより、タイヤ摩耗末期における周方向細溝23の作用が適正に確保される。 In the pneumatic tire 1, the relationship between the maximum groove depth Hs of the circumferential narrow groove 23 and the maximum groove depth H of the outermost circumferential main groove 22 is 0.40 ≦ Hs / H ≦ 0.80. Have Thereby, there exists an advantage by which the groove depth Hs of the circumferential direction fine groove 23 is optimized. That is, when 0.40 ≦ Hs / H, the shearing force in the snow due to the circumferential narrow groove 23 is ensured, and when Hs / H ≦ 0.80, the circumferential narrow groove 23 at the end of tire wear. The action is ensured properly.
 また、この空気入りタイヤ1では、タイヤ赤道面CLから周方向細溝23までの距離Lsと、タイヤ赤道面CLからタイヤ接地端Tまでの距離Lとが、0.70≦Ls/L≦0.90の関係を有する(図2参照)。これにより、周方向細溝23のタイヤ幅方向の位置が適正化される利点がある。例えば、周方向細溝23の配置を上記のように設定することにより、車両の空荷時にてタイヤ接地幅が小さいときにも、周方向細溝23を接地面内に配置できる。これにより、車両の積載条件に関わらず、周方向細溝23の機能を適正に確保できる利点がある。 In this pneumatic tire 1, the distance Ls from the tire equatorial plane CL to the circumferential narrow groove 23 and the distance L from the tire equatorial plane CL to the tire ground contact edge T are 0.70 ≦ Ls / L ≦ 0. .90 (see FIG. 2). Thereby, there exists an advantage by which the position of the tire width direction of the circumferential direction narrow groove 23 is optimized. For example, by setting the arrangement of the circumferential narrow grooves 23 as described above, the circumferential narrow grooves 23 can be disposed in the ground contact surface even when the tire ground contact width is small when the vehicle is empty. Thereby, there is an advantage that the function of the circumferential narrow groove 23 can be appropriately ensured regardless of the loading condition of the vehicle.
 また、この空気入りタイヤ1では、センター陸部31と第一ラグ溝41との交差位置にて、センター陸部31のエッジ部が、タイヤ幅方向にオフセットした段差部を有する(図3参照)。これにより、センター陸部31のトラクション成分が増加して、タイヤの氷上性能および雪上性能が向上する利点がある。 Moreover, in this pneumatic tire 1, the edge part of the center land part 31 has the level | step-difference part offset in the tire width direction in the crossing position of the center land part 31 and the 1st lug groove 41 (refer FIG. 3). . Thereby, the traction component of the center land part 31 increases, and there exists an advantage which the on-ice performance and on-snow performance of a tire improve.
 また、この空気入りタイヤ1では、センター陸部31のタイヤ幅方向外側にある周方向主溝21と第二ラグ溝42との交差位置にて、センター陸部31のタイヤ幅方向外側にある陸部(図2では、セカンド陸部32)のセンター陸部31側のエッジ部が、面一(段差W2=0[mm])となる(図3参照)。かかる構成では、トレッド部センター領域にて、上記したセンター陸部31の段差部によりトラクション成分を確保しつつ、面一となるセカンド陸部32のエッジ部により排雪性を確保できる利点がある。 In the pneumatic tire 1, the land on the outer side in the tire width direction of the center land portion 31 at the intersection of the circumferential main groove 21 and the second lug groove 42 on the outer side in the tire width direction of the center land portion 31. The edge portion on the center land portion 31 side of the portion (second land portion 32 in FIG. 2) is flush (step W2 = 0 [mm]) (see FIG. 3). In such a configuration, there is an advantage that in the tread portion center region, the snow drainage can be secured by the edge portion of the second land portion 32 that is flush with the step portion of the center land portion 31 as described above.
 また、この空気入りタイヤ1では、上記した段差部の段差W1が、1[mm]≦W1≦4[mm]の範囲内にある(図3参照)。これにより、段差部の段差W1が適正化される利点がある。すなわち、1[mm]≦W1であることにより、段差部によるトラクション効果が得られ、W1≦4[mm]であることにより、段差部における排雪性が確保される。 Moreover, in this pneumatic tire 1, the level difference W1 of the level difference portion is in the range of 1 [mm] ≦ W1 ≦ 4 [mm] (see FIG. 3). Thereby, there exists an advantage by which the level | step difference W1 of a level | step-difference part is optimized. That is, when 1 [mm] ≦ W1, a traction effect by the stepped portion is obtained, and when W1 ≦ 4 [mm], snow drainage at the stepped portion is ensured.
 また、この空気入りタイヤ1では、第一ラグ溝41のタイヤ幅方向に対する傾斜角βの最大値βmaxが、1[deg]≦βmax≦30[deg]の範囲内にある(図3参照)。これにより、第一ラグ溝41の傾斜角βが適正化される利点がある。すなわち、1[deg]≦βmaxであることにより、第一ラグ溝41のタイヤ幅方向への排水性およびシャーベット路面での排雪性が向上する。また、βmax≦30[deg]であることにより、タイヤ周方向のエッジ成分が確保されて、タイヤのトラクション性能が確保され、また、ストップ・アンド・ゴー使用条件下における耐偏摩耗性が確保される。 Further, in the pneumatic tire 1, the maximum value βmax of the inclination angle β with respect to the tire width direction of the first lug groove 41 is in the range of 1 [deg] ≦ βmax ≦ 30 [deg] (see FIG. 3). Thereby, there exists an advantage by which the inclination | tilt angle (beta) of the 1st lug groove 41 is optimized. That is, when 1 [deg] ≦ βmax, the drainage performance of the first lug groove 41 in the tire width direction and the snow drainage performance on the sherbet road surface are improved. Further, by satisfying βmax ≦ 30 [deg], an edge component in the tire circumferential direction is ensured, the traction performance of the tire is ensured, and the uneven wear resistance under the stop-and-go use condition is ensured. The
 また、この空気入りタイヤ1では、第一ラグ溝41が、トレッド端からタイヤ赤道面CLに向かうに連れてタイヤ周方向の一方向に傾斜する(図2および図3参照)。これにより、第一ラグ溝41の排水性能および排雪性能が向上する利点がある。例えば、第一ラグ溝が蛇行しつつタイヤ幅方向に延在する構成(図示省略)では、上記した第一ラグ溝41の排水性能および排雪性能が十分に得られず、好ましくない。 Further, in the pneumatic tire 1, the first lug groove 41 is inclined in one direction in the tire circumferential direction from the tread end toward the tire equatorial plane CL (see FIGS. 2 and 3). Thereby, there exists an advantage which the drainage performance and snow drainage performance of the 1st lug groove 41 improve. For example, a configuration in which the first lug groove extends in the tire width direction while meandering (not shown) is not preferable because the drainage performance and snow removal performance of the first lug groove 41 cannot be sufficiently obtained.
 また、この空気入りタイヤ1では、陸部31~33が、複数のサイプ5を有する(図2および図3参照)。これにより、エッジ成分が増加して、タイヤのトラクション性能が向上する利点がある。 In the pneumatic tire 1, the land portions 31 to 33 have a plurality of sipes 5 (see FIGS. 2 and 3). Thereby, an edge component increases and there exists an advantage which the traction performance of a tire improves.
 また、この空気入りタイヤ1では、最外周方向主溝22と第一ラグ溝41との交差位置にて、最外周方向主溝22を挟んで対向する左右の陸部32、33が、タイヤ幅方向にオフセットしたエッジ部を有している(図3参照)。これにより、トラクション成分が増加して、タイヤの氷上性能および雪上性能が向上する利点がある。 In the pneumatic tire 1, the left and right land portions 32 and 33 that are opposed to each other across the outermost circumferential main groove 22 at the intersection of the outermost circumferential main groove 22 and the first lug groove 41 have tire widths. It has an edge portion offset in the direction (see FIG. 3). Thereby, there is an advantage that the traction component is increased and the on-ice performance and on-snow performance of the tire are improved.
 また、この空気入りタイヤ1では、トレッドゴム15が、60以上75以下のゴム硬度を有する。これにより、トレッド部の剛性が適正に確保される利点がある。 In the pneumatic tire 1, the tread rubber 15 has a rubber hardness of 60 or more and 75 or less. Thereby, there exists an advantage by which the rigidity of a tread part is ensured appropriately.
[適用対象]
 また、この空気入りタイヤ1は、JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とすることが好ましい。小型トラック用タイヤは、主として地場走行に用いられるため、ストップ・アンド・ゴーの繰り返しにより、センターウェアが発生し易い。この点において、この空気入りタイヤ1では、周方向細溝23がショルダー陸部33に配置されるので、周方向細溝がセンター陸部あるいはセカンド陸部に配置される構成(図示省略)と比較して、トレッド部センター領域の剛性が確保される。これにより、タイヤのストップ・アンド・ゴー性能が向上し、また、センターウェアの発生が抑制される利点がある。
[Applicable to]
The pneumatic tire 1 is preferably applied to a small truck tire having a JATMA prescribed maximum air pressure in a range of 350 [kPa] to 600 [kPa]. Since small truck tires are mainly used for local travel, center wear is likely to occur due to repeated stop-and-go. In this respect, in the pneumatic tire 1, the circumferential narrow groove 23 is disposed in the shoulder land portion 33, so that it is compared with a configuration (not shown) in which the circumferential narrow groove is disposed in the center land portion or the second land portion. Thus, the rigidity of the center area of the tread portion is ensured. As a result, there is an advantage that the stop and go performance of the tire is improved and the occurrence of center wear is suppressed.
 図4は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。図5は、従来例の空気入りタイヤを示す説明図である。 FIG. 4 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention. FIG. 5 is an explanatory view showing a conventional pneumatic tire.
 この性能試験では、相互に異なる複数の空気入りタイヤについて、(1)耐偏摩耗性能、(2)氷上性能および(3)雪上性能に関する評価が行われた(図4参照)。この性能試験では、タイヤサイズ205/85R16 117/115Lの空気入りタイヤ(小型トラック用スタッドレスタイヤ)がJATMA規定の適用リムに組み付けられ、この空気入りタイヤにJATMA規定の最高空気圧および最大負荷が付与される。また、空気入りタイヤが、試験車両である3トン積みトラックの総輪に装着される。 In this performance test, evaluation was made on (1) uneven wear resistance, (2) performance on ice, and (3) performance on snow for a plurality of different pneumatic tires (see FIG. 4). In this performance test, a pneumatic tire (studless tire for light trucks) with a tire size of 205 / 85R16 117 / 115L is assembled to an applicable rim stipulated by JATMA, and this pneumatic tire is given the highest pneumatic pressure and maximum load specified by JATMA. The Pneumatic tires are mounted on all wheels of a 3-ton truck that is a test vehicle.
 (1)耐偏摩耗性能に関する評価では、試験車両が平均速度60[km/h]にて5万[km]の舗装路を走行し、各陸部のブロックに発生した偏摩耗が観察される。そして、この観察結果に基づいて、従来例を基準(100)とした指数評価が行われる。この数値は大きいほど好ましい。 (1) In the evaluation on uneven wear resistance performance, the test vehicle travels on a paved road of 50,000 [km] at an average speed of 60 [km / h], and uneven wear generated on each land block is observed. . Then, based on the observation result, index evaluation using the conventional example as a reference (100) is performed. A larger value is preferable.
 (2)氷上性能に関する評価では、試験車両が氷路面を走行し、40[km/h]からの制動距離が測定される。そして、この測定結果に基づいて、従来例を基準(100)とした指数評価が行われる。この数値は大きいほど好ましい。 (2) In the evaluation on the performance on ice, the test vehicle runs on the ice road surface, and the braking distance from 40 [km / h] is measured. Then, based on the measurement result, index evaluation using the conventional example as a reference (100) is performed. A larger value is preferable.
 (3)雪上性能に関する評価では、試験車両が雪路面を走行し、40[km/h]からの制動距離が測定される。そして、この測定結果に基づいて、従来例を基準(100)とした指数評価が行われる。この数値は大きいほど好ましい。 (3) In the evaluation on the performance on snow, the test vehicle travels on the snow road surface, and the braking distance from 40 [km / h] is measured. Then, based on the measurement result, index evaluation using the conventional example as a reference (100) is performed. A larger value is preferable.
 実施例1の空気入りタイヤ1は、図1~図3に記載した構成を有する。実施例2~8の空気入りタイヤ1は、実施例1の空気入りタイヤ1の変形例である。また、タイヤ赤道面CLから接地端Tまでの距離LがL=156[mm]である。また、最外周方向主溝22の最大溝深さHがH=13.0[mm]である。また、第一ラグ溝41のタイヤ幅方向に対する傾斜角βが、トレッド端にてβ=0[deg]であり、タイヤ幅方向内側に向かうに連れて増加して、終端部にて最大値βmaxをとる。 The pneumatic tire 1 of Example 1 has the configuration described in FIGS. The pneumatic tire 1 of Examples 2 to 8 is a modification of the pneumatic tire 1 of Example 1. The distance L from the tire equatorial plane CL to the ground contact end T is L = 156 [mm]. Further, the maximum groove depth H of the outermost circumferential main groove 22 is H = 13.0 [mm]. Further, the inclination angle β of the first lug groove 41 with respect to the tire width direction is β = 0 [deg] at the tread end, and increases toward the inner side in the tire width direction, and reaches the maximum value βmax at the end portion. Take.
 従来例の空気入りタイヤは、図5に記載した構成を有する。 The conventional pneumatic tire has the configuration shown in FIG.
 試験結果に示すように、実施例1~8の空気入りタイヤ1では、タイヤの耐偏摩耗性能、氷上性能および雪上性能が向上することが分かる。 As shown in the test results, it can be seen that in the pneumatic tires 1 of Examples 1 to 8, the uneven wear resistance performance, on-ice performance, and on-snow performance of the tire are improved.
 1:空気入りタイヤ、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、21:周方向主溝、22:最外周方向主溝、23:周方向細溝、31:センター陸部、32:セカンド陸部、33:ショルダー陸部、41:第一ラグ溝、42:第二ラグ溝、5:サイプ 1: pneumatic tire, 11: bead core, 12: bead filler, 13: carcass layer, 14: belt layer, 141, 142: cross belt, 143: belt cover, 15: tread rubber, 16: sidewall rubber, 17: Rim cushion rubber, 21: circumferential main groove, 22: outermost circumferential main groove, 23: circumferential narrow groove, 31: center land portion, 32: second land portion, 33: shoulder land portion, 41: first lug groove , 42: second lug groove, 5: sipe

Claims (15)

  1.  タイヤ周方向に延在する少なくとも4本の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、
     タイヤ幅方向の最も外側にある左右の前記周方向主溝を最外周方向主溝と呼び、タイヤ赤道面に最も近い前記陸部をセンター陸部と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向外側の前記陸部をショルダー陸部と呼ぶときに、
     トレッド端からタイヤ幅方向に連続的に延在して前記センター陸部のタイヤ幅方向外側のエッジ部を区画する前記周方向主溝に開口する複数の第一ラグ溝と、前記センター陸部をタイヤ幅方向に貫通すると共に前記第一ラグ溝に対してタイヤ周方向に千鳥状に配置される複数の第二ラグ溝と、前記ショルダー陸部あるいは前記ショルダー陸部に隣り合う前記陸部に配置されてタイヤ周方向に延在する周方向細溝とを備えることを特徴とする空気入りタイヤ。
    A pneumatic tire comprising at least four circumferential main grooves extending in the tire circumferential direction, and a plurality of land portions defined by the circumferential main grooves,
    The left and right circumferential main grooves on the outermost side in the tire width direction are referred to as outermost circumferential main grooves, and the land portion closest to the tire equator plane is referred to as a center land portion, and is divided into the outermost circumferential main grooves. When the land portion outside the tire width direction is called a shoulder land portion,
    A plurality of first lug grooves that continuously extend from the tread end in the tire width direction and that open to the circumferential main groove that defines the outer edge portion of the center land portion in the tire width direction, and the center land portion A plurality of second lug grooves penetrating in the tire width direction and arranged in a staggered manner in the tire circumferential direction with respect to the first lug groove, and arranged in the land portion adjacent to the shoulder land portion or the shoulder land portion A pneumatic tire comprising a circumferential narrow groove extending in the tire circumferential direction.
  2.  前記第一ラグ溝が、前記第二ラグ溝に交差することなく前記センター陸部まで連続的に延在して前記センター陸部の内部で終端する請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the first lug groove continuously extends to the center land portion without intersecting the second lug groove and terminates in the center land portion.
  3.  前記ショルダー陸部が、タイヤ周方向に隣り合う一対の前記第一ラグ溝と、前記最外周方向主溝とに区画されて成るブロックを有し、且つ、
     前記周方向細溝が、前記ブロックの内部に少なくとも一つの屈曲部を有する請求項1または2に記載の空気入りタイヤ。
    The shoulder land portion has a block that is divided into a pair of the first lug grooves adjacent to each other in the tire circumferential direction and the outermost circumferential main groove, and
    The pneumatic tire according to claim 1, wherein the circumferential narrow groove has at least one bent portion inside the block.
  4.  前記屈曲部の屈曲角αの最大値αmaxが、1[deg]≦αmax≦30[deg]の範囲内にある請求項3に記載の空気入りタイヤ。 The pneumatic tire according to claim 3, wherein a maximum value αmax of the bending angle α of the bending portion is in a range of 1 [deg] ≦ αmax ≦ 30 [deg].
  5.  前記周方向細溝の最大溝深さHsと、前記周方向主溝の最大溝深さHとが、0.40≦Hs/H≦0.80の関係を有する請求項1~4のいずれか一つに記載の空気入りタイヤ。 The maximum groove depth Hs of the circumferential narrow groove and the maximum groove depth H of the circumferential main groove have a relationship of 0.40 ≦ Hs / H ≦ 0.80. The pneumatic tire according to one.
  6.  タイヤ赤道面から前記周方向細溝までの距離Lsと、タイヤ赤道面からタイヤ接地端までの距離Lとが、0.70≦Ls/L≦0.90の関係を有する請求項1~5のいずれか一つに記載の空気入りタイヤ。 The distance Ls from the tire equatorial plane to the circumferential narrow groove and the distance L from the tire equatorial plane to the tire ground contact edge have a relationship of 0.70 ≦ Ls / L ≦ 0.90. The pneumatic tire according to any one of the above.
  7.  前記センター陸部と前記第一ラグ溝との交差位置にて、前記センター陸部のエッジ部が、タイヤ幅方向にオフセットした段差部を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。 The air according to any one of claims 1 to 6, wherein an edge portion of the center land portion has a step portion offset in a tire width direction at an intersection position between the center land portion and the first lug groove. Tires.
  8.  前記センター陸部のタイヤ幅方向外側にある前記周方向主溝と前記第二ラグ溝との交差位置にて、前記センター陸部のタイヤ幅方向外側にある前記陸部の前記センター陸部側のエッジ部が、面一となる請求項7に記載の空気入りタイヤ。 At the intersection of the circumferential main groove and the second lug groove on the outer side in the tire width direction of the center land portion, on the center land portion side of the land portion on the outer side in the tire width direction of the center land portion. The pneumatic tire according to claim 7, wherein the edge portion is flush.
  9.  前記段差部の段差W1が、1[mm]≦W1≦4[mm]の範囲内にある請求項7または8に記載の空気入りタイヤ。 The pneumatic tire according to claim 7 or 8, wherein the step W1 of the stepped portion is in a range of 1 [mm] ≤ W1 ≤ 4 [mm].
  10.  前記第一ラグ溝のタイヤ幅方向に対する傾斜角βの最大値βmaxが、1[deg]≦βmax≦30[deg]の範囲内にある請求項1~9のいずれか一つに記載の空気入りタイヤ。 The pneumatic pressure according to any one of claims 1 to 9, wherein a maximum value βmax of an inclination angle β with respect to the tire width direction of the first lug groove is in a range of 1 [deg] ≤ βmax ≤ 30 [deg]. tire.
  11.  前記第一ラグ溝が、トレッド端からタイヤ赤道面に向かうに連れてタイヤ周方向の一方向に傾斜する請求項10に記載の空気入りタイヤ。 The pneumatic tire according to claim 10, wherein the first lug groove is inclined in one direction of the tire circumferential direction from the tread end toward the tire equatorial plane.
  12.  前記陸部が、複数のサイプを有する請求項1~11のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 11, wherein the land portion has a plurality of sipes.
  13.  前記最外周方向主溝と前記第一ラグ溝との交差位置にて、前記最外周方向主溝を挟んで対向する左右の前記陸部が、タイヤ幅方向にオフセットしたエッジ部を有する請求項1~12のいずれか一つに記載の空気入りタイヤ。 The left and right land portions facing each other across the outermost circumferential main groove at the intersection of the outermost circumferential main groove and the first lug groove have edge portions offset in the tire width direction. The pneumatic tire according to any one of 1 to 12.
  14.  トレッドゴムが、60以上75以下のゴム硬度を有する請求項1~13のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 13, wherein the tread rubber has a rubber hardness of 60 to 75.
  15.  JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とする請求項1~14のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 14, wherein the tire is applied to a small truck tire having a maximum air pressure defined by JATMA within a range of 350 [kPa] to 600 [kPa].
PCT/JP2013/076427 2012-11-07 2013-09-27 Pneumatic tire WO2014073285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380057864.0A CN104768773B (en) 2012-11-07 2013-09-27 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-245749 2012-11-07
JP2012245749A JP5915505B2 (en) 2012-11-07 2012-11-07 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2014073285A1 true WO2014073285A1 (en) 2014-05-15

Family

ID=50684402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076427 WO2014073285A1 (en) 2012-11-07 2013-09-27 Pneumatic tire

Country Status (3)

Country Link
JP (1) JP5915505B2 (en)
CN (1) CN104768773B (en)
WO (1) WO2014073285A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208112A1 (en) * 2016-02-04 2017-08-23 Sumitomo Rubber Industries, Ltd. Tire
US20210370723A1 (en) * 2018-01-18 2021-12-02 The Yokohama Rubber Co., Ltd. Pneumatic Tire
TWI810902B (en) * 2022-04-20 2023-08-01 正新橡膠工業股份有限公司 Tire with snow consolidation and removal function

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027576B2 (en) * 2014-07-07 2016-11-16 住友ゴム工業株式会社 Pneumatic tire
JP6558124B2 (en) * 2015-07-31 2019-08-14 住友ゴム工業株式会社 Pneumatic tire
JP6790495B2 (en) * 2016-06-24 2020-11-25 住友ゴム工業株式会社 tire
JP6880878B2 (en) * 2017-03-21 2021-06-02 住友ゴム工業株式会社 Pneumatic tires
JP6958327B2 (en) * 2017-12-19 2021-11-02 住友ゴム工業株式会社 Motorcycle tires for rough terrain
JP7098948B2 (en) * 2018-02-06 2022-07-12 横浜ゴム株式会社 Pneumatic tires
JP7115150B2 (en) * 2018-08-30 2022-08-09 横浜ゴム株式会社 pneumatic tire
JP7192325B2 (en) * 2018-09-06 2022-12-20 横浜ゴム株式会社 pneumatic tire
US11964514B2 (en) * 2019-02-22 2024-04-23 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP7116014B2 (en) * 2019-06-12 2022-08-09 株式会社ブリヂストン pneumatic tire
JP7121695B2 (en) * 2019-06-19 2022-08-18 株式会社ブリヂストン tire
JP7489186B2 (en) * 2019-11-29 2024-05-23 株式会社ブリヂストン tire
JP7430093B2 (en) * 2020-03-26 2024-02-09 Toyo Tire株式会社 pneumatic tires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327298A (en) * 2005-05-24 2006-12-07 Bridgestone Corp Pneumatic tire
JP2009096220A (en) * 2007-10-12 2009-05-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2010023595A (en) * 2008-07-16 2010-02-04 Bridgestone Corp Pneumatic tire
JP2011144267A (en) * 2010-01-14 2011-07-28 Sumitomo Rubber Ind Ltd Studless tire for truck/bus or light truck
JP2012218651A (en) * 2011-04-12 2012-11-12 Sumitomo Rubber Ind Ltd Pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200101150T2 (en) * 1998-10-29 2001-08-21 Pirelli Pneumatici S.P.A. Tire and tread
JP4223064B2 (en) * 2007-06-12 2009-02-12 横浜ゴム株式会社 Pneumatic tire
CN201863649U (en) * 2010-09-14 2011-06-15 青岛黄海橡胶股份有限公司 Passenger car tire tread

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327298A (en) * 2005-05-24 2006-12-07 Bridgestone Corp Pneumatic tire
JP2009096220A (en) * 2007-10-12 2009-05-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2010023595A (en) * 2008-07-16 2010-02-04 Bridgestone Corp Pneumatic tire
JP2011144267A (en) * 2010-01-14 2011-07-28 Sumitomo Rubber Ind Ltd Studless tire for truck/bus or light truck
JP2012218651A (en) * 2011-04-12 2012-11-12 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208112A1 (en) * 2016-02-04 2017-08-23 Sumitomo Rubber Industries, Ltd. Tire
US20210370723A1 (en) * 2018-01-18 2021-12-02 The Yokohama Rubber Co., Ltd. Pneumatic Tire
TWI810902B (en) * 2022-04-20 2023-08-01 正新橡膠工業股份有限公司 Tire with snow consolidation and removal function

Also Published As

Publication number Publication date
CN104768773A (en) 2015-07-08
JP2014094600A (en) 2014-05-22
JP5915505B2 (en) 2016-05-11
CN104768773B (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP5915505B2 (en) Pneumatic tire
JP5942795B2 (en) Pneumatic tire
JP6330568B2 (en) Pneumatic tire
US10603961B2 (en) Pneumatic tire
JP6135070B2 (en) Pneumatic tire
JP5835399B2 (en) Pneumatic tire
WO2015166802A1 (en) Pneumatic tire
US20190023080A1 (en) Pneumatic Tire
JP6032240B2 (en) Pneumatic tire
WO2016117696A1 (en) Pneumatic tire
JP6075425B2 (en) Pneumatic tire
AU2016210113A1 (en) Pneumatic tire
AU2017216717A1 (en) Pneumatic tire
WO2016088856A1 (en) Pneumatic tire
JP7147354B2 (en) pneumatic tire
JP7283331B2 (en) pneumatic tire
JP7276045B2 (en) pneumatic tire
JP2022056696A (en) tire
EP3882052B1 (en) Pneumatic tire
EP3882053B1 (en) Pneumatic tire
JP2022056698A (en) tire
JP2019194038A (en) Pneumatic tire
JP6237216B2 (en) Pneumatic tire
JP7283330B2 (en) pneumatic tire
EP3486096B1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853585

Country of ref document: EP

Kind code of ref document: A1