Nothing Special   »   [go: up one dir, main page]

WO2014069466A1 - 正極活物質およびその製造方法 - Google Patents

正極活物質およびその製造方法 Download PDF

Info

Publication number
WO2014069466A1
WO2014069466A1 PCT/JP2013/079291 JP2013079291W WO2014069466A1 WO 2014069466 A1 WO2014069466 A1 WO 2014069466A1 JP 2013079291 W JP2013079291 W JP 2013079291W WO 2014069466 A1 WO2014069466 A1 WO 2014069466A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
carbonate
sulfate
Prior art date
Application number
PCT/JP2013/079291
Other languages
English (en)
French (fr)
Inventor
酒井 智弘
角崎 健太郎
道教 末原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380056235.6A priority Critical patent/CN104756291B/zh
Priority to JP2014544525A priority patent/JP6345118B2/ja
Publication of WO2014069466A1 publication Critical patent/WO2014069466A1/ja
Priority to US14/663,033 priority patent/US10122013B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material and a method for producing the same, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • a positive electrode active material of a lithium ion secondary battery a positive electrode active material (LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.) made of a composite oxide containing Li and a transition metal element .)It has been known.
  • a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using a lithium alloy, graphite, carbon fiber, or the like as a negative electrode can be widely used as a battery having a high energy density because a high voltage of about 4 V can be obtained.
  • LiCoO 2 LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.
  • the lithium ion secondary battery has a discharge capacity per unit mass (hereinafter simply referred to as “discharge capacity”) and characteristics that make it difficult to reduce the discharge capacity and the average discharge voltage after repeated charge / discharge cycles (hereinafter referred to as “discharge capacity”). It is also called “cycle characteristics”).
  • the positive electrode active material having a high discharge capacity is a positive electrode made of a complex oxide (hereinafter also referred to as “Li-rich positive electrode active material”) having a high Li ratio to a transition metal element such as the following positive electrode active material (i). Active materials are attracting attention.
  • a positive electrode active material satisfying Ni y / 2 Mn 2x / 3 + y / 2 (x + y ⁇ 1, 0 ⁇ y and 1/3 ⁇ x ⁇ 2/3) Patent Document 1).
  • the positive electrode active material (i) tends to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. For this reason, the crystal structure of the positive electrode active material (i) tends to be unstable, and sufficient cycle characteristics cannot be obtained.
  • a positive electrode active material in which a lithium dihydrogen phosphate solution or a diammonium hydrogen phosphate solution is brought into contact with the positive electrode active material, and a layer containing P is formed on the surface layer of the positive electrode active material Patent Document 2.
  • An oxide or hydroxide containing a transition metal element, a lithium salt, and a phosphorus compound containing at least one of PO 3 and PO 4 are mixed and fired to form a phosphorus compound near the surface of the lithium composite oxide.
  • a positive electrode active material contained Patent Document 3).
  • the present invention provides a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage, and a method for producing the same.
  • the present invention also provides a positive electrode for a lithium ion secondary battery using the positive electrode active material, and a lithium ion secondary battery having the positive electrode for a lithium ion secondary battery.
  • the gist of the present invention is as follows.
  • a method for producing a positive electrode active material comprising the following steps (I) to (IV): (I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate; At least one carbonate (B) selected from the group consisting of sodium carbonate and potassium carbonate, Mix in the state of aqueous solution, A step of obtaining a coprecipitation compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn. (II) A step of mixing the coprecipitation compound and an aqueous phosphate solution.
  • step (III) A step of obtaining a precursor compound by volatilizing water from a mixture of the coprecipitation compound and an aqueous phosphate solution.
  • step (IV) A step of mixing the precursor compound and lithium carbonate and baking at 500 to 1000 ° C.
  • the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg, and the carbonate (B) in the aqueous solution
  • the pH of the mixed solution when the aqueous solution of the sulfate (A) and the aqueous solution of the carbonate (B) are mixed is 7 to 12, (1) or (2)
  • the phosphate aqueous solution in the step (II) and the step (III) is at least one aqueous solution selected from the group consisting of phosphoric acid, ammonium dihydrogen phosphate and diammonium hydrogen phosphate, The method for producing a positive electrode active material according to any one of 1) to (5).
  • the ratio (P / X) of the total number of moles of P contained in the phosphate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound The method for producing a positive electrode active material according to any one of the above (1) to (6), which is 0.01 to 10 mol%.
  • the ratio (Li / X) of the total number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the precursor compound is 1
  • a positive electrode active material comprising Li, at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn, and P,
  • CV value coefficient of variation
  • the cross section of each positive electrode active material was scanned in the diameter direction at an interval of 2 ⁇ m and a spot diameter of 2 ⁇ m with an electron microanalyzer, and the converted peak intensity (Ip) of P and the transition metal element (X ) And converted peak intensity (Ix).
  • the ratio of the number of moles of Li to the number of moles of the transition metal element (X) (Li / X) is 1.1 times or more, and the ratio of the number of moles of P to the number of moles of the transition metal element (X)
  • a lithium ion secondary battery comprising the lithium ion secondary battery positive electrode
  • the positive electrode active material of the present invention has excellent cycle characteristics and a small decrease in discharge voltage. According to the method for producing a positive electrode active material of the present invention, a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage can be obtained. If the positive electrode for lithium ion secondary batteries of the present invention is used, a lithium ion secondary battery having excellent cycle characteristics and a small decrease in discharge voltage can be obtained. The lithium ion secondary battery of the present invention has excellent cycle characteristics and a small decrease in discharge voltage.
  • Li represents a lithium element.
  • Ni, Co, Mn, P, etc. also indicate each element.
  • the positive electrode active material of the present invention is a positive electrode active material made of a composite oxide containing Li, at least one transition metal element (X) selected from the group consisting of Ni, Co, and Mn, and P.
  • the positive electrode active material in the present invention is in the form of particles.
  • the particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
  • the particle diameter (D50) of the positive electrode active material of the present invention is preferably 4 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 6 to 15 ⁇ m. When the particle diameter (D50) is within the above range, a high discharge capacity can be obtained.
  • the particle diameter (D50) means a particle diameter at a point of 50% in a cumulative volume distribution curve with a total volume of 100% of a particle size distribution obtained on a volume basis, that is, a volume-based cumulative 50% diameter.
  • the particle diameter (D50) is measured by the method described in the examples.
  • the positive electrode active material of the present invention is preferably secondary particles in which primary particles having a particle diameter (D50) of 10 to 500 nm are aggregated.
  • D50 particle diameter
  • P is uniformly distributed in the secondary particles from the viewpoint of sufficiently suppressing the discharge voltage.
  • the specific surface area of the positive electrode active material of the present invention is preferably 0.1 ⁇ 15m 2 / g, more preferably 2 ⁇ 10m 2 / g, particularly preferably 4 ⁇ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity can be obtained. If the specific surface area is not more than the upper limit, excellent cycle characteristics can be obtained. The specific surface area is measured by the method described in Examples.
  • the average value of the coefficient of variation (CV value) of the converted peak intensity ratio (Ip / Ix) of P and the transition metal element (X) obtained by the following coefficient of variation measurement method is 0 to 20%. It is.
  • the average value of the coefficient of variation (CV value) is within the above range, P is present uniformly in the particles of the positive electrode active material, and a positive electrode active material exhibiting excellent cycle characteristics can be obtained.
  • the cross section of each positive electrode active material was scanned in the diameter direction at intervals of 2 ⁇ m and a spot diameter of 2 ⁇ m with an electron beam microanalyzer (hereinafter referred to as “EPMA”).
  • the cross section of the positive electrode active material in the variation coefficient measurement method can be obtained, for example, by embedding the positive electrode active material in an epoxy resin and exposing a smooth cross section of the positive electrode active material by mechanical polishing. In order to impart conductivity, it is preferable to coat carbon with a thickness of 10 to 50 nm on the obtained cross section.
  • EPMA is an apparatus that performs composition analysis of a minute region (spot) irradiated with an electron beam by observing characteristic X-rays obtained by irradiating a target substance with an accelerated electron beam. By performing line analysis along the diameter direction of the cross section of the positive electrode active material by EPMA, the concentration distribution of a specific element can be measured at each spot along the diameter direction of the cross section of the positive electrode active material.
  • the converted peak intensity in the measurement by EPMA indicates a value obtained by subtracting the background intensity from the peak intensity and dividing by the current value, and the unit is cps / ⁇ A.
  • the variation coefficient (%) of the converted peak intensity ratio (Ip / Ix) for one positive electrode active material is the average of the converted peak intensity ratios (Ip / Ix) of each measurement spot in the one positive electrode active material. It is calculated by dividing the standard deviation of the value by the average value of the converted peak intensity ratio (Ip / Ix) and multiplying by 100.
  • the average value of the coefficient of variation (CV value) obtained by the method of measuring the coefficient of variation of the positive electrode active material of the present invention is 0 to 20%, preferably 0 to 15%, particularly preferably 0 to 10%. If the average value of the coefficient of variation is not more than the upper limit value, P is uniformly distributed in the positive electrode active material, and a high discharge capacity and excellent cycle characteristics can be obtained.
  • the average value of the converted peak intensity ratio (Ip / Ix) of each positive electrode active material is preferably 0.001 to 0.1, more preferably 0.001 to 0.07, and particularly preferably 0.001 to 0.05. .
  • the average value of the converted peak intensity ratio (Ip / Ix) is not less than the lower limit value, excellent cycle characteristics can be obtained. If the average value of the converted peak intensity ratio (Ip / Ix) is equal to or less than the upper limit value, a decrease in discharge capacity due to the impurity phase caused by P can be suppressed.
  • the ratio of the number of moles of Li to the number of moles of the transition metal element (X) is preferably 1.1 times or more, preferably 1.1 times or more and 1.6 times or less. More preferably, it is 1.1 times or more and 1.4 times or less. If Li / X is 1.1 times or more and 1.6 times or less, a higher discharge capacity can be obtained.
  • the ratio of the number of moles of P to the number of moles of the transition metal element (X) is preferably 0.01 to 10 mol%, more preferably 0.1 to 5 mol%, 0.5 to 3 mol% is particularly preferred. If the P / X is not less than the lower limit value, excellent cycle characteristics can be easily obtained. If P / X is not more than the upper limit value, excellent electrical characteristics can be easily obtained.
  • the compound (1) represented by the following formula (1) is preferable.
  • a to e are 0.1 ⁇ a ⁇ 0.6, 0.001 ⁇ b ⁇ 0.1, 0.1 ⁇ c ⁇ 0.5, and 0 ⁇ d ⁇ 0. 3, 0.2 ⁇ e ⁇ 0.9, 0.9 ⁇ c + d + e ⁇ 1.05, and f is a numerical value determined by the valences of Li, P, Ni, Co, and Mn.
  • Compound (1) has a high effect of suppressing a decrease in discharge voltage due to the cycle when 0.001 ⁇ b ⁇ 0.1. Although the cause for obtaining the effect is not clear, it is presumed that the crystal structure change due to the cycle is suppressed by precipitation of P at the crystal interface of the positive electrode active material.
  • a is a positive electrode active material having a high initial discharge capacity and initial discharge voltage, and therefore 0.1 ⁇ a ⁇ 0.4 is more preferable.
  • b is more preferably 0.005 ⁇ b ⁇ 0.03 because both the initial discharge capacity and the cycle characteristics can be achieved.
  • c in the compound (1) is more preferably 0.15 ⁇ c ⁇ 0.45, and particularly preferably 0.2 ⁇ c ⁇ 0.4.
  • D of the compound (1) is more preferably 0 ⁇ d ⁇ 0.2, and particularly preferably 0 ⁇ d ⁇ 0.15, for the same reason as a.
  • E of compound (1) is more preferably 0.35 ⁇ e ⁇ 0.85, and particularly preferably 0.4 ⁇ e ⁇ 0.8, for the same reason as a.
  • the discharge voltage maintenance rate of the positive electrode active material of the present invention is preferably 94% or more, more preferably 95% or more, and particularly preferably 96% or more. The discharge voltage maintenance rate is measured under the conditions described in the examples.
  • the method for producing a positive electrode active material of the present invention includes the following steps (I) to (IV).
  • step (I) sulfate (A) and carbonate (B) are mixed in the form of an aqueous solution. You may use an additive further as needed. Thereby, the coprecipitation compound containing a transition metal element (X) precipitates.
  • the aspect which mixes sulfate (A) and carbonate (B) in the state of aqueous solution will not be specifically limited if sulfate (A) and carbonate (B) are in the state of aqueous solution at the time of mixing.
  • an aqueous solution of sulfate (A) and an aqueous solution of carbonate (B) are continuously added to the reaction vessel.
  • aqueous solution of sulfate (A) may be two or more kinds of aqueous solutions separately containing each of the two or more kinds of sulfates (A).
  • the sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
  • Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
  • Examples of Co sulfate include cobalt sulfate (II) heptahydrate and cobalt sulfate (II) ammonium hexahydrate.
  • Mn examples include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
  • a sulfate (A) may be used individually by 1 type, and may use 2 or more types together.
  • the sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity.
  • Ni sulfate, Co sulfate and Mn It is more preferable to use a combination of sulfates. That is, the coprecipitation compound is preferably a carbonate containing Ni and Mn as the transition metal element (X), and more preferably a carbonate containing Ni, Co and Mn as the transition metal element (X).
  • the carbonate (B) is at least one selected from the group consisting of sodium carbonate and potassium carbonate. Carbonate (B) also serves as a pH adjuster for coprecipitation of Ni, Co, and Mn. As the carbonate (B), either sodium carbonate or potassium carbonate may be used alone, or sodium carbonate and potassium carbonate may be used in combination.
  • the amount of Ni contained in the sulfate of Ni is preferably 10 to 50 mol% and more preferably 15 to 45 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 20 to 45 mol% is particularly preferable. If the ratio of the amount of Ni is not less than the lower limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained. If the ratio of the amount of Ni is not more than the upper limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained.
  • the amount of Co contained in the sulfate of Co is preferably 0 to 30 mol% and more preferably 0 to 20 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 0 to 15 mol% is particularly preferable. When the proportion of the amount of Co is not more than the upper limit value, a positive electrode active material exhibiting excellent cycle characteristics can be obtained.
  • the amount of Mn contained in the sulfate of Mn is preferably 20 to 90 mol%, more preferably 35 to 85 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 40 to 80 mol% is particularly preferable.
  • the ratio of the amount of Mn is not less than the lower limit value, a positive electrode active material exhibiting a high discharge capacity can be obtained. If the ratio of the amount of Mn is not more than the upper limit value, a positive electrode active material exhibiting a high discharge voltage can be obtained.
  • the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density
  • the concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the density
  • the solvent of the aqueous solution of the sulfate (A) and the aqueous solution of the carbonate (B) may be water alone as long as the sulfate (A) and the carbonate (B) are dissolved.
  • an aqueous medium containing components other than water examples include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like.
  • the polyol examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
  • the proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is not more than the upper limit value, it is excellent in terms of environment, handleability, and cost.
  • the mixing of the aqueous solution of sulfate (A) and the aqueous solution of carbonate (B) is preferably performed while stirring in the reaction vessel.
  • the stirring device include a three-one motor.
  • the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
  • the temperature of the mixed liquid when the aqueous solution of sulfate (A) and the aqueous solution of carbonate (B) are mixed is preferably 20 to 80 ° C., more preferably 25 to 60 ° C. preferable. Further, the mixing of the aqueous solution of the sulfate (A) and the aqueous solution of the carbonate (B) is preferably performed in a nitrogen atmosphere or an argon atmosphere from the viewpoint of suppressing oxidation of the precipitated coprecipitate compound. From the viewpoint, it is particularly preferable to carry out in a nitrogen atmosphere.
  • the pH of the mixed solution when the aqueous solution of sulfate (A) and the aqueous solution of carbonate (B) are mixed is preferably 7 to 12, and more preferably 7.5 to 10.
  • the coprecipitation compound is likely to precipitate.
  • ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, or the like may be added to the above mixed solution in order to adjust the pH and the solubility of the transition metal element (X).
  • the preferred ranges of the respective proportions of Ni, Co and Mn in the obtained coprecipitation compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in all the sulfates (A) used as described above. is there. Thereby, it is easy to obtain a spherical coprecipitation compound having an appropriate particle size.
  • the particle size (D50) of the coprecipitated compound is preferably 5 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 7 to 15 ⁇ m. If the particle size (D50) of the coprecipitated compound is within the above range, the positive electrode active material obtained in step (IV), which will be described later, can easily be controlled to have a particle size (D50) within a preferable range, and the positive electrode exhibits sufficient battery characteristics. Active material is easy to obtain.
  • the particle size (D50) of the coprecipitated compound is measured by the method described in the Examples in the same manner as the particle size (D50) of the positive electrode active material.
  • the specific surface area of the coprecipitated compound is preferably 50 ⁇ 300m 2 / g, more preferably 100 ⁇ 250m 2 / g.
  • the phosphate aqueous solution in the step (II) described later easily penetrates into the inside of the particles, and a positive electrode active material exhibiting high discharge capacity and cycle characteristics is easily obtained.
  • the specific surface area of the coprecipitated compound is measured in the same manner as the specific surface area of the positive electrode active material.
  • the step (I) preferably includes a step of removing the aqueous solution by filtration or centrifugation after the coprecipitation compound is precipitated.
  • a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used as filtration or centrifugation.
  • the obtained coprecipitated compound is preferably washed to remove impurity ions.
  • Examples of the coprecipitation compound washing method include a method of repeating pressure filtration and dispersion in distilled water.
  • the coprecipitated compound may be dried as necessary after washing.
  • the drying temperature of the coprecipitated compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C.
  • the drying time of the coprecipitated compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
  • step (II) the coprecipitated compound obtained in step (I) is mixed with an aqueous phosphate solution.
  • Examples of the method of mixing the coprecipitation compound and the phosphate aqueous solution include a spray coating method and a dipping method. Of these, the spray coating method is preferred because the phosphate is more uniformly applied to the coprecipitation compound.
  • spray-coating an aqueous phosphate solution on the coprecipitation compound spray-coating the aqueous phosphate solution on the coprecipitation compound with stirring, or stirring them after spray-coating the aqueous phosphate solution on the coprecipitation compound Is more preferable.
  • a Roedige mixer for agitation of the coprecipitation compound and the phosphate aqueous solution, a Roedige mixer, a rocking mixer, a Nauta mixer, a spiral mixer, a spray dryer, a V mixer, or the like can be used.
  • the aqueous solution of phosphate may be spray-coated with the coprecipitated compound spread thinly.
  • the phosphate aqueous solution is preferably an aqueous solution of phosphoric acid or ammonium phosphate, since components other than P are volatilized by firing in step (IV) and hardly remain in the positive electrode active material.
  • At least one aqueous solution selected from the group consisting of ammonium dihydrogen and diammonium hydrogen phosphate is more preferable, and an aqueous solution of ammonium dihydrogen phosphate is particularly preferable.
  • the concentration of the phosphate in the aqueous phosphate solution is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, and particularly preferably 1 to 20% by mass.
  • the concentration of the phosphate is not less than the lower limit, it is easy to uniformly impart phosphate to the coprecipitation compound. If the concentration of the phosphate is not more than the upper limit value, the phosphate is easily dissolved in the aqueous solution.
  • step (II) the ratio (P / X) of the total number of moles of P contained in the phosphate to the total number of moles of the transition metal element (X) contained in the coprecipitation compound is 0.01 Is preferably 10 to 10 mol%, more preferably 0.1 to 5 mol%, and particularly preferably 0.5 to 3 mol%.
  • P / X is not less than the lower limit value, a positive electrode active material exhibiting excellent cycle characteristics is easily obtained. If P / X is not more than the upper limit value, impurities are hardly generated after firing in step (IV), and excellent electrical characteristics are easily obtained.
  • step (III) water is volatilized from the mixture of the coprecipitated compound and the aqueous phosphate solution obtained in step (II) to obtain a precursor compound.
  • Step (III) may be performed simultaneously with the above-described step (II), or step (III) may be performed after step (II).
  • step (III) is not performed, much water remains in the precursor compound. If a large amount of moisture remains in the precursor compound, lithium carbonate is easily dissolved in moisture in step (IV) described later, and aggregation of lithium carbonate is likely to occur due to firing in step (IV).
  • the moisture content which the precursor compound obtained by process (III) remains is 30 mass% or less with respect to the total mass of a precursor compound, 15 mass% More preferably, it is more preferably 5% by mass or less.
  • the amount of water remaining can be measured by the Karl Fischer method.
  • the method for volatilizing moisture examples include a method of drying by heating.
  • the heating temperature in step (III) is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If heating temperature is more than a lower limit, the moisture content in the obtained precursor compound will decrease, and the positive electrode active material which shows the outstanding cycling characteristics will be easy to be obtained. When the heating temperature is equal to or lower than the upper limit value, the precursor compound is hardly thermally deteriorated.
  • the heating time varies depending on the heating temperature, it is preferably 1 to 300 hours, more preferably 1 to 120 hours.
  • step (IV) the precursor compound obtained in step (III) and lithium carbonate are mixed and baked at 500 to 1000 ° C.
  • the method of mixing the precursor compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
  • the ratio (Li / X) of the total number of moles of Li contained in lithium carbonate to the total number of moles of the transition metal element (X) contained in the precursor compound is 1.1 times. It is preferable to mix a precursor compound and lithium carbonate so that it may become the above. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
  • the ratio (Li / X) of the total number of moles of Li contained in lithium carbonate is more preferably 1.1 times to 1.6 times, and particularly preferably 1.1 times to 1.4 times. When Li / X is not more than the upper limit value, a high discharge capacity can be obtained.
  • An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the precursor compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
  • the air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per liter of the internal volume of the furnace.
  • the firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
  • the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
  • the firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C.
  • two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
  • the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C.
  • the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
  • the reason why the positive electrode active material obtained by the production method of the present invention has excellent cycle characteristics and the decrease in discharge voltage is small is not clear, but the specific surface area of the coprecipitated compound obtained in step (I) is large.
  • the coprecipitation compound and the aqueous phosphate solution are mixed in the step (II), it is considered that the aqueous solution can penetrate uniformly into the pores of the coprecipitation compound. Therefore, it is considered that a positive electrode active material in which P is uniformly diffused and distributed to the inside of the particles is obtained by firing in the step (IV).
  • the positive electrode for a lithium ion secondary battery of the present invention has a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
  • a well-known aspect can be employ
  • Positive electrode current collector examples include an aluminum foil and a stainless steel foil.
  • the positive electrode active material layer in the positive electrode for a lithium ion secondary battery of the present invention is a layer containing the positive electrode active material of the present invention described above, a conductive material, and a binder.
  • the positive electrode active material layer may contain other components such as a thickener as necessary.
  • Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
  • a conductive material may be used individually by 1 type, and may use 2 or more types together.
  • binder examples include fluorine resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), polymers and copolymers having unsaturated bonds (styrene-butadiene rubber, isoprene rubber). , Butadiene rubber, etc.), acrylic acid polymers and copolymers (acrylic acid copolymers, methacrylic acid copolymers, etc.).
  • a binder may be used individually by 1 type and may use 2 or more types together.
  • the positive electrode active material of this invention may be used individually by 1 type, and may use 2 or more types together.
  • thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone.
  • a thickener may be used individually by 1 type and may use 2 or more types together.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries of this invention can employ
  • the following method is mentioned as a manufacturing method of the positive electrode for lithium ion secondary batteries of this invention.
  • the positive electrode active material, conductive material and binder of the present invention are dissolved or dispersed in a medium to obtain a slurry, or the positive electrode active material, conductive material and binder of the present invention are kneaded with a medium to obtain a kneaded product.
  • a positive electrode active material layer is formed by coating the obtained slurry or kneaded material on the positive electrode current collector.
  • the lithium ion secondary battery of this invention has the above-mentioned positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • the negative electrode current collector include metal foils such as nickel foil and copper foil.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. Silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like.
  • iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used as the negative electrode active material.
  • Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons.
  • Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
  • Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
  • the negative electrode is obtained, for example, by preparing a slurry by mixing a negative electrode active material with an organic solvent, applying the prepared slurry to a negative electrode current collector, drying, and pressing.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
  • organic solvent known organic solvents for non-aqueous electrolytes can be employed, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples thereof include ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, and propionic acid ester.
  • the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
  • the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt.
  • the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), crosslinked poly (ethylene oxide), etc.), ester polymer compounds (poly (methacrylate), poly (acrylate, etc.). .)) And the like.
  • the matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used.
  • the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like.
  • high molecular compounds polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.).
  • Examples of the monomer copolymerized with polyethylene oxide as the copolymer include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
  • electrolyte salt known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and the shape such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, and the like is appropriately selected according to the application. You can choose.
  • Examples 1 to 9 are examples, and examples 10 to 16 are comparative examples.
  • Particle size (D10, 50, 90) By sufficiently dispersing the positive electrode active material in water by ultrasonic treatment, and measuring with a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd .; MT-3300EX), a frequency distribution and a cumulative volume distribution curve are obtained. A volume-based particle size distribution was obtained. The particle diameter at the point of 50% in the obtained cumulative volume distribution curve was defined as the particle diameter (D50). In the obtained cumulative volume distribution curve, a particle diameter (D10) which is a particle diameter at a point of 10% and a particle diameter (D90) which is a particle diameter at a point of 90% were also calculated.
  • Specific surface area The specific surface areas of the coprecipitated compound and the positive electrode active material were measured with a specific surface area measuring apparatus (manufactured by Mountech; HM model-1208) using the BET (Brunauer, Emmett, Teller) method.
  • composition analysis (Ni, Co, Mn, P, Li)
  • the composition analysis of the positive electrode active material was performed by a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
  • the positive electrode active material was embedded in an epoxy resin, a smooth cross section was exposed in the positive electrode active material by mechanical polishing, and a carbon coat with a thickness of 30 nm was applied to the exposed cross section to form a cross section of the positive electrode active material.
  • a FE-EPMA (JXA-8500F) manufactured by JEOL under the conditions of an acceleration voltage of 15 kV, an irradiation current of 30 nA, and a spot diameter of 2 ⁇ m, the cross section of the positive electrode active material was scanned at intervals of 2 ⁇ m in the diameter direction.
  • the converted peak intensity (Ix) of the transition metal element (X) and the converted peak intensity (Ip) of P were measured.
  • the count value of Ni K ⁇ 1 characteristic X-ray is 115.600 mm
  • Co K ⁇ 1 characteristic X-ray is 124.300 mm
  • Mn K ⁇ 1 characteristic X-ray is 146.450 mm
  • P K ⁇ 1 characteristic X-ray is 66.650 mm.
  • the converted peak intensity ratio (Ip / Ix) of P and transition metal element (X) at each measurement spot in one positive electrode active material was determined, and the average value and standard deviation thereof were determined. Thereafter, the standard deviation of the average value of the converted peak intensity ratio (Ip / Ix) is divided by the average value of the converted peak intensity ratio (Ip / Ix) and multiplied by 100 to obtain the converted peak intensity ratio (Ip / Ix).
  • the coefficient of variation (CV value) (%) was calculated.
  • the variation coefficient (CV value) of the converted peak intensity ratio (Ip / Ix) was calculated for a total of three positive electrode active materials, and the average value was obtained.
  • required in each positive electrode active material was calculated
  • 2 kg of an aqueous sulfate solution was prepared by dissolving in distilled water so that the total amount of sulfate was 1.5 mol / kg. Further, 99.1 g of ammonium sulfate was dissolved in 900.9 g of distilled water to prepare a 0.75 mol / kg aqueous ammonia solution.
  • aqueous carbonate solution (pH adjusting solution).
  • distilled water is put into a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is added at 5.0 g / min, and the aqueous ammonia solution is added. Each was added at a rate of 0.5 g / min for 6 hours to precipitate a coprecipitated compound containing Ni, Co, and Mn.
  • step (I) the amounts of nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate (II) pentahydrate were adjusted to the moles of Ni, Co and Mn.
  • a coprecipitated compound was obtained in the same manner as in Example 1 except that the ratio was changed as shown in Table 1.
  • Example 1 except that the ratio of the total amount of P contained in the phosphate to the total amount (100 mol%) of the transition metal element (X) contained in the coprecipitation compound was changed as shown in Table 1.
  • a precursor compound was obtained in the same manner.
  • the positive electrode was prepared in the same manner as in Example 1 except that the molar ratio of the total amount of Li contained in lithium carbonate to the total amount of transition metal element (X) contained in the precursor compound was changed as shown in Table 1.
  • An active material was obtained.
  • Table 1 shows the particle diameter (D50) and specific surface area of the obtained positive electrode active material.
  • Table 1 shows the average value of the converted peak intensity ratio (Ip / Ix) and the average coefficient of variation (CV value) of the converted peak intensity ratio (Ip / Ix) in Examples 2, 3, and 5.
  • step (I) the amounts of nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate (II) pentahydrate were adjusted to the moles of Ni, Co and Mn.
  • a coprecipitated compound was obtained in the same manner as in Example 1 except that the ratio was changed as shown in Table 1. Further, the ratio of the total amount of P contained in the phosphate to the total amount (100 mol%) of the transition metal element (X) contained in the coprecipitation compound was changed as shown in Table 1, and the step (III) A precursor compound was obtained in the same manner as in Example 1 except that drying was not performed.
  • the positive electrode was prepared in the same manner as in Example 1 except that the molar ratio of the total amount of Li contained in lithium carbonate to the total amount of transition metal element (X) contained in the precursor compound was changed as shown in Table 1.
  • An active material was obtained.
  • Table 1 shows the particle diameter (D50) and specific surface area of the obtained positive electrode active material.
  • step (I) the amounts of nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate (II) pentahydrate were adjusted to the moles of Ni, Co and Mn.
  • a coprecipitated compound was obtained in the same manner as in Example 1 except that the ratio was changed as shown in Table 1.
  • Table 1 shows the molar ratio of the total amount of Li contained in the lithium carbonate to the total amount of the transition metal element (X) contained in the coprecipitation compound without carrying out the steps (II) and (III).
  • Example 1 shows the particle diameter (D50) and specific surface area of the obtained positive electrode active material.
  • Table 1 shows the average value of the converted peak intensity ratios (Ip / Ix) in Example 15.
  • step (I) the amounts of nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate (II) pentahydrate were adjusted to the moles of Ni, Co and Mn.
  • a coprecipitated compound was obtained in the same manner as in Example 1 except that the ratio was changed as shown in Table 1.
  • Table 1 shows the molar ratio of the total amount of Li contained in the lithium carbonate to the total amount of the transition metal element (X) contained in the coprecipitation compound without carrying out the steps (II) and (III). Except as described above, lithium carbonate was mixed and fired in the same manner as in Example 1 to obtain a positive electrode active material.
  • the ratio of the total amount of P contained in the phosphate to the total amount (100 mol%) of the transition metal element (X) contained in the positive electrode active material was 1.15 mol%.
  • an aqueous solution in which ammonium dihydrogen phosphate was dissolved in 3.6 g of distilled water was spray-coated.
  • P is fired at 450 ° C. for 8 hours while flowing the air at 1.5 L / min.
  • the positive electrode active material coated on was obtained.
  • Table 1 shows the particle diameter (D50) and specific surface area of the positive electrode active material obtained by coating the obtained P with the particle surface.
  • Table 1 shows the average value of the converted peak intensity ratio (Ip / Ix) and the average value of the coefficient of variation (CV value) of the converted peak intensity ratio (Ip / Ix).
  • “P / X” in Table 1 is the ratio of the total amount of P contained in the phosphate to the total amount (100 mol%) of the transition metal element (X) contained in the coprecipitation compound in the step (II) ( mol%).
  • “P / X” is the ratio of the total amount of P contained in the coated phosphate to the total amount (100 mol%) of the transition metal element (X) contained in the positive electrode active material ( mol%).
  • “Li / X” means the molar ratio (mol times) of the total amount of Li contained in lithium carbonate to the total amount of transition metal element (X) contained in the precursor compound in step (III). To do.
  • “Li / X” is the molar ratio (mol times) of the total amount of Li contained in lithium carbonate to the total amount of transition metal element (X) contained in the coprecipitation compound. means.
  • the obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in a glove box under argon.
  • a stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 ⁇ m was formed on the negative electrode current collector to form a negative electrode.
  • porous polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • the obtained lithium ion secondary battery was connected to a charge / discharge evaluation device (manufactured by Toyo System Co., Ltd., device name: TOSCAT-3000), charged / discharged at a load current of 20 mA per 1 g of the positive electrode active material, and activated. did. Then, the charge / discharge cycle which charges to 4.5V with a load current of 200 mA per 1 g of the positive electrode active material and discharges to 2 V with a load current of 200 mA per 1 g of the positive electrode active material was repeated 100 times.
  • the discharge capacity at the time of activation processing is “initial discharge capacity”, the discharge capacity at the 100th cycle is “post-cycle discharge capacity”, and the ratio of the post-cycle discharge capacity to the discharge capacity at the third cycle is “discharge capacity maintenance ratio”. did.
  • the average discharge voltage during the activation process is “initial discharge voltage”, the average discharge voltage at the 100th cycle is “post-cycle discharge voltage”, and the ratio of the post-cycle discharge voltage to the third cycle discharge voltage is “discharge voltage”. Maintenance rate ". Table 2 shows the measurement results of the initial discharge capacity and discharge voltage, the post-cycle discharge capacity and discharge voltage, and the discharge capacity retention rate and discharge voltage retention rate in each example.
  • the lithium ion secondary batteries of Examples 1 to 9 have a higher discharge voltage maintenance rate than the lithium ion secondary batteries of Examples 10 to 16, and the discharge capacity maintenance rate is equivalent or higher. Excellent cycle characteristics.
  • a positive electrode active material for a lithium ion secondary battery having a high discharge capacity and excellent cycle characteristics can be obtained.
  • the positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質およびその製造方法の提供。 Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、水溶液の状態で混合して共沈化合物を得る工程と、前記共沈化合物とリン酸塩水溶液とを混合させる工程と、前記共沈化合物とリン酸塩水溶液との混合物から水分を揮発させ前駆体化合物を得る工程と、前記前駆体化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程と、を有する正極活物質の製造方法、及び該製造方法により得られる、Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Pと、を含み、変動係数測定方法で求められるPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値が0~20%である正極活物質。

Description

正極活物質およびその製造方法
 本発明は、正極活物質およびその製造方法、リチウムイオン二次電池用正極、ならびにリチウムイオン二次電池に関する。
 携帯電話、ノート型パソコン等の携帯型電子機器等には、リチウムイオン二次電池が広く使用されている。リチウムイオン二次電池の正極活物質としては、Liと遷移金属元素を含む複合酸化物からなる正極活物質(LiCoO、LiNiO、LiNi0.8Co0.2、LiMn等。)が知られている。例えば、正極活物質としてLiCoOを用い、負極としてリチウム合金、グラファイト、カーボンファイバー等を用いたリチウムイオン二次電池は、約4Vの高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。
 携帯型電子機器用、車載用等のリチウムイオン二次電池には、小型化、軽量化が求められている。そのため、リチウムイオン二次電池は、単位質量あたりの放電容量(以下、単に「放電容量」という。)、および、充放電サイクルを繰り返した後に放電容量および平均放電電圧を低下させ難い特性(以下、「サイクル特性」ともいう。)のさらなる向上が求められている。
 放電容量の高い正極活物質としては、下記の正極活物質(i)のような遷移金属元素に対するLi比が高い複合酸化物(以下、「Liリッチ系正極活物質」ともいう。)からなる正極活物質が注目されている。
 (i)α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含み、前記固溶体が含有するLiおよび遷移金属元素の組成比が、組成式Li1+1/3xCo1-x-yNiy/2Mn2x/3+y/2(x+y≦1、0≦y、かつ、1/3<x≦2/3)を満たす正極活物質(特許文献1)。
 しかし、正極活物質(i)は、高電圧での充電によって電解液から生じた分解物と接触することでMnが電解液中に溶出しやすい。そのため、正極活物質(i)の結晶構造が不安定になりやすく、充分なサイクル特性が得られない。
 そこで、サイクル特性を高めるために、以下に示す正極活物質(ii)および(iii)が提案されている。
 (ii)正極活物質に、リン酸二水素リチウム溶液またはリン酸水素二アンモニウム溶液を接触させ、該正極活物質の表層にPを含む層を形成させた正極活物質(特許文献2)。
 (iii)遷移金属元素を含む酸化物または水酸化物と、リチウム塩と、POおよびPOの少なくとも一方を含むリン化合物と、を混合焼成し、リチウム複合酸化物の表面近傍にリン化合物を含有させた正極活物質(特許文献3)。
 しかし、正極活物質(ii)および(iii)は、Liリッチ系正極活物質とする場合に、充分なサイクル特性を得ることが難しい。
特開2009-152114号公報 特表2008-530747号公報 特開2008-251434号公報
 本発明は、優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質およびその製造方法を提供する。また、本発明は、前記正極活物質を用いたリチウムイオン二次電池用正極、および該リチウムイオン二次電池用正極を有するリチウムイオン二次電池を提供する。
 本発明は、以下の構成を要旨とするものである。
(1)下記の工程(I)~(IV)を有することを特徴とする正極活物質の製造方法。
 (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
 炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
 水溶液の状態で混合して、
 Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)を含む共沈化合物を得る工程。
 (II)前記共沈化合物とリン酸塩水溶液とを混合せしめる工程。
 (III)前記共沈化合物とリン酸塩水溶液との混合物から水分を揮発させ前駆体化合物を得る工程。
 (IV)前記前駆体化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
(2)前記工程(I)において、硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度が、0.1~3mol/kgであり、かつ、炭酸塩(B)の水溶液中における炭酸塩(B)の濃度は、0.1~2mol/kgである、上記(1)に記載の正極活物質の製造方法。
(3)前記工程(I)において、硫酸塩(A)の水溶液と炭酸塩(B)の水溶液とを混合する際の混合液のpHが7~12である、上記(1)または(2)に記載の正極活物質の製造方法。
(4)前記工程(I)における共沈化合物が、NiおよびMnを含む炭酸塩であるか、又はNi、CoおよびMnを含む炭酸塩である、上記(1)~(3)のいずれか一項に記載の正極活物質の製造方法。
(5)前記工程(I)における共沈化合物の粒子径(D50)が5~20μmであり、比表面積は、50~300m/gである、上記(1)~(4)のいずれか一項に記載の正極活物質の製造方法。
(6)前記工程(II)および工程(III)におけるリン酸塩水溶液が、リン酸、リン酸二水素アンモニウムおよびリン酸水素二アンモニウムからなる群から選ばれる少なくとも1種の水溶液である、上記(1)~(5)のいずれか一項に記載の正極活物質の製造方法。
(7)前記工程(II)において、共沈化合物に含まれる前記遷移金属元素(X)の合計モル数に対してリン酸塩に含まれるPの合計モル数の比(P/X)が、0.01~10mol%である、上記(1)~(6)のいずれか一項に記載の正極活物質の製造方法。
(8)前記工程(IV)において、前駆体化合物に含まれる前記遷移金属元素(X)の合計モル数に対して炭酸リチウムに含まれるLiの合計モル数の比(Li/X)が、1.1倍以上である、上記(1)~(7)のいずれか一項に記載の正極活物質の製造方法。
(9)Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Pと、を含む正極活物質であって、
 下記変動係数測定方法で求められるPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値が0~20%であることを特徴とする正極活物質。
(変動係数測定方法)
 3個の正極活物質について、電子線マイクロアナライザにより、各正極活物質の断面を直径方向に2μm間隔、スポット径2μmで走査して、Pの換算ピーク強度(Ip)と前記遷移金属元素(X)の換算ピーク強度(Ix)とを測定する。次いで、各測定スポットのPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)を求め、各正極活物質の前記換算ピーク強度比(Ip/Ix)の変動係数(CV値)を算出し、平均値を求める。
(10)前記変動係数測定方法で求められる各正極活物質の換算ピーク強度比(Ip/Ix)の平均値が0.001~0.1である、上記(9)に記載の正極活物質。
(11)遷移金属元素(X)のモル数に対するLiのモル数の比(Li/X)は、1.1倍以上であり、遷移金属元素(X)のモル数に対するPのモル数の比(P/X)は、0.01~10mol%である、上記(9)または(10)に記載の正極活物質。
(12)下式(1)で表される化合物(1)である、上記(9)~(11)のいずれか一項に記載の正極活物質。
 Li1+aNiCoMn2+f ・・・(1)
(ただし、0.1≦a≦0.6、0.001≦b≦0.1、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05、fはLi、P、Ni、CoおよびMnの価数によって決定される数値。)
(13)正極集電体と、該正極集電体上に設けられた正極活物質層と、を有し、
 前記正極活物質層が、上記(9)~(12)のいずれか一項に記載の正極活物質と、導電材と、バインダーと、を含有する、リチウムイオン二次電池用正極。
(14)上記(13)に記載のリチウムイオン二次電池用正極と、負極と、非水電解質と、を有するリチウムイオン二次電池。
 本発明の正極活物質は、優れたサイクル特性を有し、放電電圧の低下が小さい。
 本発明の正極活物質の製造方法によれば、優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質が得られる。
 本発明のリチウムイオン二次電池用正極を用いれば、優れたサイクル特性を有し、放電電圧の低下が小さいリチウムイオン二次電池が得られる。
 本発明のリチウムイオン二次電池は、優れたサイクル特性を有し、放電電圧の低下が小さい。
例12におけるEPMAによる測定で得られたスペクトルチャートである。
 本明細書において、Liはリチウム元素を示す。また、Ni、Co、Mn、P等も同様に各元素を示す。
<正極活物質>
 本発明の正極活物質は、Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Pとを含む複合酸化物からなる正極活物質である。
 本発明における正極活物質は粒子状である。正極活物質の粒子形状は、特に限定されず、例えば、球状、針状、板状等が挙げられる。なかでも、正極の製造時に正極活物質の充填性が高くなることから、正極活物質の粒子形状は球状がより好ましい。
 本発明の正極活物質の粒子径(D50)は、4~20μmが好ましく、5~18μmがより好ましく、6~15μmが特に好ましい。前記粒子径(D50)が前記範囲内であれば、高い放電容量が得られる。
 なお、粒子径(D50)は、体積基準で求めた粒度分布の、全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径を意味する。粒子径(D50)は、実施例に記載の方法で測定される。
 本発明の正極活物質は、粒子径(D50)が10~500nmの一次粒子が凝集した二次粒子であることが好ましい。これにより、リチウムイオン二次電池を製造したときに、電解液が正極における正極活物質間に充分に行き渡りやすくなる。放電電圧の低下を充分に抑制できる点から、Pは二次粒子内に均一に分布していることが好ましい。
 本発明の正極活物質の比表面積は、0.1~15m/gが好ましく、2~10m/gがより好ましく、4~8m/gが特に好ましい。比表面積が下限値以上であれば、高い放電容量が得られる。前記比表面積が上限値以下であれば、優れたサイクル特性が得られる。
 前記比表面積は、実施例に記載の方法で測定される。
 本発明の正極活物質は、下記変動係数測定方法で求められるPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値が0~20%である。変動係数(CV値)の平均値が前記範囲内であれば、Pが正極活物質の粒子内に均一に存在し、優れたサイクル特性を示す正極活物質が得られる。
(変動係数測定方法)
 3個の正極活物質について、電子線マイクロアナライザ(以下、「EPMA」という。)により、各正極活物質の断面を直径方向に2μm間隔、スポット径2μmで走査して、Pの換算ピーク強度(Ip)と遷移金属元素(X)の換算ピーク強度(Ix)とを測定する。次いで、各測定スポットのPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)を求め、各正極活物質の前記換算ピーク強度比(Ip/Ix)の変動係数(CV値)を算出し、平均値を求める。
 変動係数測定方法における正極活物質の断面は、例えば、正極活物質をエポキシ樹脂に包埋させ、機械研磨によって正極活物質の平滑な断面を露出させることで得ることができる。導電性を付与することから、得られた断面に厚さ10~50nmでカーボンをコートすることが好ましい。
 EPMAは、加速された電子線を、対象とする物質に照射することによって得られる特性X線を観測することにより、電子線を当てた微小領域(スポット)の組成分析を行う装置である。EPMAによって、正極活物質の断面について、その直径方向に沿って線分析を行うことで、正極活物質の断面の直径方向に沿った各スポットにおいて、特定の元素の濃度分布を測定できる。
 EPMAによる測定における換算ピーク強度とは、ピーク強度からバックグランド強度を差し引き、電流値で除した値を示し、単位はcps/μAである。また、1個の正極活物質についての換算ピーク強度比(Ip/Ix)の変動係数(%)は、当該1個の正極活物質における各測定スポットの換算ピーク強度比(Ip/Ix)の平均値の標準偏差を、該換算ピーク強度比(Ip/Ix)の平均値で除して100倍することで算出される。
 本発明の正極活物質における前記変動係数測定方法で求めた変動係数(CV値)の平均値は、0~20%であり、0~15%が好ましく、0~10%が特に好ましい。前記変動係数の平均値が上限値以下であれば、Pが正極活物質内に均一に分布しており、高い放電容量および優れたサイクル特性が得られる。
 各正極活物質の換算ピーク強度比(Ip/Ix)の平均値は、0.001~0.1が好ましく、0.001~0.07がより好ましく、0.001~0.05が特に好ましい。前記換算ピーク強度比(Ip/Ix)の平均値が下限値以上であれば、優れたサイクル特性が得られる。前記換算ピーク強度比(Ip/Ix)の平均値が上限値以下であれば、Pに起因する不純物相による放電容量低下を抑制できる。
 本発明の正極活物質における、遷移金属元素(X)のモル数に対するLiのモル数の比(Li/X)は、1.1倍以上が好ましく、1.1倍以上1.6倍以下がより好ましく、1.1倍以上1.4倍以下が特に好ましい。前記Li/Xが1.1倍以上1.6倍以下であれば、より高い放電容量が得られる。
 本発明の正極活物質における、遷移金属元素(X)のモル数に対するPのモル数の割合(P/X)は、0.01~10mol%が好ましく、0.1~5mol%がより好ましく、0.5~3mol%が特に好ましい。前記P/Xが下限値以上であれば、優れたサイクル特性が得られやすい。前記P/Xが上限値以下であれば、優れた電気特性が得られやすい。
 本発明の正極活物質としては、下式(1)で表される化合物(1)が好ましい。
 Li1+aNiCoMn2+f ・・・(1)
 ただし、前記式(1)中、a~eはそれぞれ0.1≦a≦0.6、0.001≦b≦0.1、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05であり、fはLi、P、Ni、CoおよびMnの価数によって決定される数値である。
 化合物(1)は、0.001≦b≦0.1であることで、サイクルによる放電電圧の低下が抑制される効果が高い。該効果が得られる要因は明確ではないが、Pが正極活物質の結晶界面に析出することで、サイクルによる結晶構造変化が抑制されているためと推察される。
 化合物(1)のaは、初期放電容量および初期放電電圧が高い正極活物質となることから、0.1≦a≦0.4であることがより好ましい。
 化合物(1)のbは、初期放電容量とサイクル特性を両立できることから、0.005≦b≦0.03であることがより好ましい。
 化合物(1)のcは、aと同様の理由で、0.15≦c≦0.45であることがより好ましく、0.2≦c≦0.4であることが特に好ましい。
 化合物(1)のdは、aと同様の理由で、0≦d≦0.2であることがより好ましく、0≦d≦0.15であることが特に好ましい。
 化合物(1)のeは、aと同様の理由で、0.35≦e≦0.85であることがより好ましく、0.4≦e≦0.8であることが特に好ましい。
 本発明の正極活物質は、Pが正極活物質の内部まで均一に分布しているため、Pによる効果が効率的に発現し、優れたサイクル特性が得られ、放電電圧の低下が小さくなると考えられる。これに対して、特許文献2、3のような従来のPを含む正極活物質は、正極活物質の表面にPが偏在しているためにPによる効果が小さく、優れたサイクル特性が得られ難かったと考えられる。 
 本発明の正極活物質の放電電圧維持率は、94%以上であることが好ましく、95%以上であることがより好ましく、96%以上であることが特に好ましい。放電電圧維持率は、実施例に記載の条件で測定される。
<正極活物質の製造方法>
 本発明の正極活物質の製造方法は、下記の工程(I)~(IV)を有する。
[工程(I)]
 工程(I)では、硫酸塩(A)と炭酸塩(B)とを、水溶液の状態で混合する。必要に応じてさらに添加剤を用いてもよい。これにより、遷移金属元素(X)を含む共沈化合物が析出する。
 硫酸塩(A)と炭酸塩(B)とを、水溶液の状態で混合する態様は、硫酸塩(A)と炭酸塩(B)とが混合の際に水溶液の状態であれば特に限定されない。
 具体的には、共沈化合物が析出しやすく、かつ粒子径を制御しやすいことから、反応槽に硫酸塩(A)の水溶液と、炭酸塩(B)の水溶液とを連続的に添加することが好ましい。反応槽には、予めイオン交換水、純水、蒸留水等を入れておくことが好ましく、さらに炭酸塩(B)や後述する添加剤等を用いてpHを制御しておくことがより好ましい。
 硫酸塩(A)を2種以上使用する場合、硫酸塩(A)の水溶液としては、それら2種以上の硫酸塩(A)のそれぞれを別々に含む2種以上の水溶液としてもよく、2種以上の硫酸塩(A)を含む1種の水溶液としてもよい。また、1種の硫酸塩(A)を含む水溶液と、2種以上の硫酸塩(A)を含む水溶液とを併用してもよい。2種の炭酸塩(B)を使用する場合も同様である。
 硫酸塩(A)は、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩である。
 Niの硫酸塩としては、例えば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
 Coの硫酸塩としては、例えば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
 Mnの硫酸塩としては、例えば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。
 硫酸塩(A)は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
 硫酸塩(A)としては、放電容量が高いリチウムイオン二次電池が得られやすい点から、Niの硫酸塩およびMnの硫酸塩を含むことが好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩を併用することがより好ましい。すなわち、共沈化合物は、遷移金属元素(X)としてNiおよびMnを含む炭酸塩であることが好ましく、遷移金属元素(X)としてNi、CoおよびMnを含む炭酸塩であることがより好ましい。
 炭酸塩(B)は、炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種である。炭酸塩(B)は、Ni、Co、Mnを共沈させるためのpH調整剤としての役割も果たす。
 炭酸塩(B)は、炭酸ナトリウムまたは炭酸カリウムの一方を単独で使用してもよく、炭酸ナトリウムおよび炭酸カリウムを併用してもよい。
 Niの硫酸塩に含まれるNiの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、10~50mol%が好ましく、15~45mol%がより好ましく、20~45mol%が特に好ましい。前記Niの量の割合が下限値以上であれば、高い放電電圧を示す正極活物質が得られる。前記Niの量の割合が上限値以下であれば、高い放電容量を示す正極活物質が得られる。
 Coの硫酸塩に含まれるCoの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、0~30mol%が好ましく、0~20mol%がより好ましく、0~15mol%が特に好ましい。前記Coの量の割合が上限値以下であれば、優れたサイクル特性を示す正極活物質が得られる。
 Mnの硫酸塩に含まれるMnの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、20~90mol%が好ましく、35~85mol%がより好ましく、40~80mol%が特に好ましい。前記Mnの量の割合が下限値以上であれば、高い放電容量を示す正極活物質が得られる。前記Mnの量の割合が上限値以下であれば、高い放電電圧を示す正極活物質が得られる。
 硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度は、0.1~3mol/kgが好ましく、0.5~2.5mol/kgがより好ましい。前記濃度が下限値以上であれば、生産性が高い。前記濃度が上限値以下であれば、硫酸塩(A)を充分に溶解させることができる。
 硫酸塩(A)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について遷移金属元素(X)の濃度を前記範囲内とすることが好ましい。
 炭酸塩(B)の水溶液中における炭酸塩(B)の濃度は、0.1~2mol/kgが好ましく、0.5~2mol/kgがより好ましい。前記炭酸塩(B)の濃度が前記範囲内であれば、共沈化合物が析出しやすい。
 硫酸塩(B)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について硫酸塩(B)の濃度を前記範囲内とすることが好ましい。
 硫酸塩(A)の水溶液および炭酸塩(B)の水溶液の溶媒としては、硫酸塩(A)および炭酸塩(B)が溶解する範囲であれば、水のみであってもよく、水に加えて水以外の成分を含む水性媒体であってもよい。
 前記水以外の成分としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
 水性媒体中の水以外の成分の割合は、0~20質量%が好ましく、0~10質量%がより好ましく、0~1質量%が特に好ましく、含まないことが最も好ましい。前記水以外の成分の割合が上限値以下であれば、環境面、取扱い性、コストの点で優れている。
 硫酸塩(A)の水溶液と炭酸塩(B)の水溶液との混合は、反応槽中で撹拌しながら行うことが好ましい。
 撹拌装置としては、例えば、スリーワンモーター等が挙げられる。撹拌翼としては、例えば、アンカー型、プロペラ型、パドル型等の撹拌翼が挙げられる。
 硫酸塩(A)の水溶液と炭酸塩(B)の水溶液とを混合する際の混合液の温度は、共沈化合物が析出しやすいことから、20~80℃が好ましく、25~60℃がより好ましい。
 また、硫酸塩(A)の水溶液と炭酸塩(B)の水溶液との混合は、析出した共沈化合物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下で行うことが好ましく、コストの面から、窒素雰囲気下で行うことが特に好ましい。
 硫酸塩(A)の水溶液と炭酸塩(B)の水溶液とを混合する際の混合液のpHは、7~12が好ましく、7.5~10がより好ましい。前記pHが前記範囲内であれば、共沈化合物が析出しやすい。
 上記の混合液には、例えば、pHや遷移金属元素(X)の溶解度を調整するために、アンモニア、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等を添加してもよい。
 得られた共沈化合物中のNi、CoおよびMnのそれぞれの割合の好ましい範囲は、前述した使用する全ての硫酸塩(A)中のNi、CoおよびMnのそれぞれの割合の好ましい範囲と同じである。これにより、適度な粒子径の球形の共沈化合物が得られやすい。
 共沈化合物の粒子径(D50)は、5~20μmが好ましく、5~18μmがより好ましく、7~15μmが特に好ましい。共沈化合物の粒子径(D50)が前記範囲内であれば、後述する工程(IV)において得られる正極活物質の粒子径(D50)を好ましい範囲に制御しやすく、充分な電池特性を示す正極活物質が得られやすい。
 共沈化合物の粒子径(D50)は、正極活物質の粒子径(D50)と同様に実施例に記載の方法で測定される。
 共沈化合物の比表面積は、50~300m/gが好ましく、100~250m/gがより好ましい。共沈化合物の比表面積が前記範囲内であれば、後述する工程(II)におけるリン酸塩水溶液が粒子内部まで浸透しやすく、高い放電容量およびサイクル特性を示す正極活物質が得られやすい。
 共沈化合物の比表面積は、正極活物質の比表面積と同様にして測定される。
 工程(I)は、共沈化合物が析出したのちに、ろ過、または遠心分離によって水溶液を取り除く工程を有することが好ましい。ろ過または遠心分離としては、加圧ろ過機、減圧濾過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機等を用いることができる。
 得られた共沈化合物は、不純物イオンを取り除くために、洗浄することが好ましい。共沈化合物の洗浄方法としては、例えば、加圧ろ過と蒸留水への分散を繰り返す方法等が挙げられる。
 共沈化合物は、洗浄後に、必要に応じて乾燥してもよい。
 共沈化合物の乾燥温度は、60~200℃が好ましく、80℃~130℃がより好ましい。前記乾燥温度が下限値以上であれば、共沈化合物を短時間で乾燥できる。前記乾燥温度が上限値以下であれば、共沈化合物の酸化を抑制できる。
 共沈化合物の乾燥時間は、1~300時間が好ましく、5~120時間がより好ましい。
[工程(II)]
 工程(II)では、工程(I)で得られた共沈化合物と、リン酸塩水溶液とを混合する。
 共沈化合物と、リン酸塩水溶液とを混合する方法としては、例えば、スプレーコート法、浸漬法等が挙げられる。なかでも、共沈化合物にリン酸塩がより均一に付与されることから、スプレーコート法が好ましい。
 共沈化合物にリン酸塩水溶液をスプレーコートする場合、撹拌しながら共沈化合物にリン酸塩水溶液をスプレーコートする、または、共沈化合物にリン酸塩水溶液をスプレーコートした後にそれらを撹拌することがより好ましい。
 共沈化合物とリン酸塩水溶液との撹拌には、レーディゲミキサ、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、スプレードライ、Vミキサ等が使用できる。
 なお、共沈化合物を薄く広げた状態にして、リン酸塩水溶液をスプレーコートしてもよい。
 リン酸塩水溶液としては、工程(IV)の焼成によってP以外の成分が揮発し、正極活物質中に残存しにくいことから、リン酸またはリン酸アンモニウム塩の水溶液が好ましく、リン酸、リン酸二水素アンモニウムおよびリン酸水素二アンモニウムからなる群から選ばれる少なくとも1種の水溶液がより好ましく、リン酸二水素アンモニウムの水溶液が特に好ましい。
 リン酸塩水溶液中のリン酸塩の濃度は、0.1~50質量%が好ましく、1~30質量%がより好ましく、1~20質量%が特に好ましい。前記リン酸塩の濃度が下限値以上であれば、共沈化合物にリン酸塩を均一に付与しやすい。前記リン酸塩の濃度が上限値以下であれば、水溶液にリン酸塩を充分に溶解させやすい。
 工程(II)においては、共沈化合物に含まれる前記遷移金属元素(X)の合計モル数に対してリン酸塩に含まれるPの合計モル数の割合(P/X)は、0.01~10mol%が好ましく、0.1~5mol%がより好ましく、0.5~3mol%が特に好ましい。前記P/Xが下限値以上であれば、優れたサイクル特性を示す正極活物質が得られやすい。前記P/Xが上限値以下であれば、工程(IV)の焼成後に不純物が発生し難く、優れた電気特性が得られやすい。
[工程(III)]
 工程(III)では、工程(II)で得られる、共沈化合物とリン酸塩水溶液との混合物から水分を揮発させて前駆体化合物を得る。
 工程(III)は、前述の工程(II)と同時に実施してもよく、工程(II)の後に工程(III)を実施してもよい。工程(III)を実施しない場合、前駆体化合物には水分が多く残存してしまう。前駆体化合物に水分が多く残存してしまうと、後述する工程(IV)において炭酸リチウムは水分に溶解しやすく、工程(IV)における焼成によって炭酸リチウムの凝集が生じやすくなる。炭酸リチウムの凝集が生じると、正極活物質中のLiおよびPの分布が不均一になり、充分なサイクル特性を有する正極活物質が得られなくなる。
 なお、前記した悪影響が小さいことから、工程(III)で得られた前駆体化合物の残存する水分量は、前駆体化合物の全質量に対して30質量%以下であることが好ましく、15質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。
 残存する水分量は、カールフィッシャー法によって測定することができる。
 水分を揮発させる方法は、例えば、加熱によって乾燥する方法が挙げられる。
 工程(III)における加熱温度は、60~200℃が好ましく、80~130℃がより好ましい。加熱温度が下限値以上であれば、得られた前駆体化合物中の水分量が少なくなり、優れたサイクル特性を示す正極活物質が得られやすい。加熱温度が上限値以下であれば、前駆体化合物が熱劣化し難い。
 加熱時間は、加熱温度によっても異なるが、1~300時間が好ましく、1~120時間がより好ましい。
[工程(IV)]
 工程(IV)では、工程(III)で得られた前駆体化合物と、炭酸リチウムとを混合し、500~1000℃で焼成する。
 前駆体化合物と炭酸リチウムとを混合する方法は、例えば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。
 工程(IV)においては、前駆体化合物に含まれる前記遷移金属元素(X)の合計モル数に対して炭酸リチウムに含まれるLiの合計モル数の比(Li/X)が、1.1倍以上となるように、前駆体化合物と炭酸リチウムとを混合することが好ましい。前記割合が下限値以上であれば、高い放電容量が得られる。
 炭酸リチウムに含まれるLiの合計モル数の比(Li/X)は、1.1倍以上1.6倍以下がより好ましく、1.1倍以上1.4倍以下が特に好ましい。前記Li/Xが上限値以下であれば、高い放電容量が得られる。
 焼成装置には、電気炉、連続焼成炉、ロータリーキルン等を使用できる。焼成時に前駆体化合物は酸化されることから、焼成は大気下で行うことが好ましく、空気を供給しながら行うことが特に好ましい。
 空気の供給速度は、炉の内容積に1Lあたり対して10~200mL/分が好ましく、40~150mL/分がより好ましい。
 焼成時に空気を供給することで、前駆体化合物中の遷移金属元素(X)が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有する正極活物質が得られる。
 焼成温度は、500~1000℃であり、600~1000℃が好ましく、800~950℃が特に好ましい。焼成温度が、前記範囲内であれば、結晶性の高い正極活物質が得られる。
 焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。
 焼成は、500~1000℃での1段焼成でもよく、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う2段焼成でもよい。なかでも、Liが正極活物質中に均一に拡散しやすいことから2段焼成が好ましい。
 2段焼成の場合の仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。また、2段焼成の場合の本焼成の温度は、700~1000℃が好ましく、800~950℃がより好ましい。
 本発明の製造方法で得られた正極活物質が、優れたサイクル特性を有し、放電電圧の低下が小さい要因は明確ではないが、工程(I)で得られる共沈化合物の比表面積が大きく、工程(II)において共沈化合物とリン酸塩水溶液を混合させる際に、共沈化合物の細孔の内部まで均一に水溶液が浸透できるものと考えられる。従って、工程(IV)における焼成によって粒子内部までPが均一に拡散・分布された正極活物質が得られるためと考えられる。
<リチウムイオン二次電池用正極>
 本発明のリチウムイオン二次電池用正極は、正極集電体と、該正極集電体上に設けられた正極活物質層と、を有する。本発明のリチウムイオン二次電池用正極は、本発明の正極活物質を用いる以外は、公知の態様を採用できる。
[正極集電体]
 正極集電体としては、例えば、アルミニウム箔、ステンレス鋼箔等が挙げられる。
[正極活物質層]
 本発明のリチウムイオン二次電池用正極における正極活物質層は、前記した本発明の正極活物質と、導電材と、バインダーと、を含む層である。正極活物質層には、必要に応じて増粘剤等の他の成分が含まれていてもよい。
 導電材としては、例えば、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボンブラック等が挙げられる。導電材は、1種を単独で使用してもよく、2種以上を併用してもよい。
 バインダーとしては、例えば、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等。)、ポリオレフィン(ポリエチレン、ポリプロピレン等。)、不飽和結合を有する重合体および共重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等。)、アクリル酸系重合体および共重合体(アクリル酸共重合体、メタクリル酸共重合体等。)等が挙げられる。バインダーは、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明の正極活物質は、1種を単独で使用してもよく、2種以上を併用してもよい。
 増粘剤としては、例えば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドン等が挙げられる。増粘剤は1種を単独で使用してもよく、2種以上を併用してもよい。
[リチウムイオン二次電池用正極の製造方法]
 本発明のリチウムイオン二次電池用正極の製造方法は、本発明の正極活物質を用いる以外は、公知の製造方法を採用できる。例えば、本発明のリチウムイオン二次電池用正極の製造方法としては、以下の方法が挙げられる。
 本発明の正極活物質、導電材およびバインダーを、媒体に溶解もしくは分散させてスラリーを得る、または本発明の正極活物質、導電材およびバインダーを、媒体と混錬して混錬物を得る。次いで、得られたスラリーまたは混錬物を正極集電体上に塗工等によって正極活物質層を形成させる。
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、前記した本発明のリチウムイオン二次電池用正極と、負極と、非水電解質とを有する。
[負極]
 負極は、負極集電体上に、負極活物質を含む負極活物質層が形成されてなる。
 負極集電体としては、例えばニッケル箔、銅箔等の金属箔が挙げられる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。また、負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物およびその他の窒化物等を使用してもよい。
 負極活物質の炭素材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等。)、グラファイト類、ガラス状炭素類、有機高分子化合物(フェノール樹脂、フラン樹脂等。)を適当な温度で焼成して炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等が挙げられる。
 周期表14族の金属としては、例えば、Si、Sn等が挙げられる。なかでも、周期表14族の金属としては、Siが好ましい。
 負極は、例えば、負極活物質を有機溶媒と混合することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって得られる。
 非水電解質としては、例えば、有機溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等が挙げられる。
 有機溶媒としては、非水電解液用の有機溶媒として公知のものを採用でき、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。なかでも、電圧安定性の点からは、有機溶媒としては、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類が好ましい。有機溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質のいずれを使用してもよい。
 無機固体電解質としては、例えば、窒化リチウム、ヨウ化リチウム等が挙げられる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を含む電解質が挙げられる。電解質塩を溶解する高分子化合物としては、エーテル系高分子化合物(ポリ(エチレンオキサイド)、ポリ(エチレンオキサイド)の架橋体等。)、エステル系高分子化合物(ポリ(メタクリレート)、ポリ(アクリレート等。))等が挙げられる。
 ゲル状電解質のマトリックスとしては、前記非水電解液を吸収してゲル化するものであればよく、種々の高分子化合物を使用できる。前記高分子化合物としては、例えば、フッ素系高分子化合物(ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)等。)、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、エーテル系高分子化合物(ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、ならびに該共重合体の架橋体等。)等が挙げられる。前記共重合体としてポリエチレンオキサイドに共重合させるモノマーとしては、例えば、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等が挙げられる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の点から、前記高分子化合物のうち、特にフッ素系高分子化合物が好ましい。
 電解質塩は、リチウムイオン二次電池に使用されている公知のものが使用でき、例えば、LiClO、LiPF、LiBF、CFSOLi等が挙げられる。
 本発明のリチウムイオン二次電池の形状は、特に限定されず、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~9が実施例、例10~16が比較例である。
[粒子径(D10、50、90)]
 正極活物質を水中に超音波処理によって充分に分散させ、レーザー回折/散乱式粒子径分布測定装置(日機装社製;MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線における50%となる点の粒子径を粒子径(D50)とした。また、得られた累積体積分布曲線において、10%となる点の粒子径である粒子径(D10)と、90%となる点の粒子径である粒子径(D90)も算出した。
[比表面積]
 共沈化合物および正極活物質の比表面積は、BET(Brunauer,Emmett,Teller)法を用いて、比表面積測定装置(マウンテック社製;HM model-1208)により測定した。
[組成分析(Ni、Co、Mn、P、Li)]
 正極活物質の組成分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、型式名:SPS3100H)により行った。
[変動係数測定]
 正極活物質をエポキシ樹脂に包埋させ、機械研磨によって正極活物質において平滑な断面を露出させ、露出した断面に厚さ30nmのカーボンコートを行い、正極活物質の断面を形成した。JEOL社製のFE-EPMA(JXA-8500F)を使用し、加速電圧15kV、照射電流30nA、スポット径2μmの条件で、正極活物質断面を直径方向に2μm間隔で走査し、各測定スポットにおける、遷移金属元素(X)の換算ピーク強度(Ix)とPの換算ピーク強度(Ip)とを測定した。NiのKα1特性X線およびMnのKα1特性X線の分光には、分光結晶としてJEOL社製LIFHを使用した。CoのKα1特性X線の分光には、JEOL社製LIFを使用した。また、PのKα1特性X線の分光には、JEOL社製TAPを使用した。結果を図1に下記例12を用いて測定した場合の一例を示す。
 図1より、NiのKα1特性X線を115.600mm、CoのKα1特性X線を124.300mm、MnのKα1特性X線を146.450mm、PのKα1特性X線を66.650mmのカウント値をピーク強度として使用した。
 1個の正極活物質における各測定スポットのPと遷移金属元素(X)の換算ピーク強度比(Ip/Ix)を求め、それらの平均値と標準偏差を求めた。その後、換算ピーク強度比(Ip/Ix)の平均値の標準偏差を、換算ピーク強度比(Ip/Ix)の平均値で除して100倍することで、換算ピーク強度比(Ip/Ix)の変動係数(CV値)(%)を算出した。
 同様にして合計3個の正極活物質について換算ピーク強度比(Ip/Ix)の変動係数(CV値)を算出し、その平均値を求めた。
 また、各正極活物質において求めた換算ピーク強度比(Ip/Ix)の平均値を求めた。
[例1]
 工程(I):
 硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物を、Ni、CoおよびMnのモル比が表1に示すとおりになるように、かつ硫酸塩の合計量が1.5mol/kgとなるように蒸留水に溶解させて、硫酸塩水溶液を2kg調製した。また、硫酸アンモニウム99.1gを蒸留水900.9gに溶解させ、0.75mol/kgのアンモニア水溶液を調製した。また、炭酸ナトリウム381.2gを蒸留水2018.8gに溶解させ、炭酸塩水溶液(pH調整液)を調製した。
 次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れ、マントルヒータで50℃に加熱し、パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を5.0g/分、前記アンモニア水溶液を0.5g/分の速度でそれぞれ6時間添加し、Ni、Co、およびMnを含む共沈化合物を析出させた。なお、前記硫酸塩水溶液の添加中は、反応槽内のpHを8.0に保つように炭酸塩水溶液(pH調整液)を添加した。また、析出反応中は、反応槽内の液量が2Lを超えないように、ろ布を用いて連続的に液の抜き出しを行った。
 得られた共沈化合物から不純物イオンを取り除くために、加圧ろ過と蒸留水への分散を繰り返し、共沈化合物の洗浄を行った。ろ液の電気伝導度が20mS/mとなった時点で洗浄を終了し、120℃で15時間乾燥させて共沈化合物を得た。得られた共沈化合物の比表面積と、Ni、CoおよびMnの組成分析結果を表1に示す。
 工程(II)および工程(III):
 得られた共沈化合物18gに、該共沈化合物に含まれる遷移金属元素(X)の合計量(100mol%)に対する、リン酸塩に含まれるPの合計量の割合が1mol%になるように、リン酸二水素アンモニウム0.17gを3.6gの蒸留水に溶解させた水溶液をスプレーコートした。その後、90℃で3時間乾燥して前駆体化合物を得た。
 工程(IV):
 前記前駆体化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比(Li/X)が1.275になるように、前記前駆体化合物と炭酸リチウム7.15gとを混合した。さらに、電気炉(FO510、ヤマト科学社製)を用いて、大気を内容積1Lあたり133mL/分でフローしながら、600℃で5時間仮焼成し、ついで850℃で16時間本焼成して正極活物質を得た。
 得られた正極活物質の粒子径(D50)と比表面積を表1に示す。
[例2~9]
 工程(I)において硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして共沈化合物を得た。また、共沈化合物に含まれる遷移金属元素(X)の合計量(100mol%)に対する、リン酸塩に含まれるPの合計量の割合を表1に示すとおりに変更した以外は、例1と同様にして前駆体化合物を得た。また、前駆体化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比を表1に示すとおりに変更した以外は、例1と同様にして正極活物質を得た。
 得られた正極活物質の粒子径(D50)と比表面積を表1に示す。また、例2、3、5における、換算ピーク強度比(Ip/Ix)の平均値と、換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値を表1に示す。
[例10~12、16]
 工程(I)において硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして共沈化合物を得た。また、共沈化合物に含まれる遷移金属元素(X)の合計量(100mol%)に対する、リン酸塩に含まれるPの合計量の割合を表1に示すとおりに変更し、工程(III)の乾燥を行わなかった以外は、例1と同様にして前駆体化合物を得た。また、前駆体化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比を表1に示すとおりに変更した以外は、例1と同様にして正極活物質を得た。
 得られた正極活物質の粒子径(D50)と比表面積を表1に示す。
[例13、15]
 工程(I)において硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして共沈化合物を得た。次いで、工程(II)および工程(III)を実施せず、共沈化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比を表1に示すとおりにした以外は、例1と同様に炭酸リチウムの混合および焼成を行って正極活物質を得た。
 得られた正極活物質の粒子径(D50)と比表面積を表1に示す。また、例15の換算ピーク強度比(Ip/Ix)の平均値を表1に示す。
[例14]
 工程(I)において硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物の仕込み量を、Ni、CoおよびMnのモル比が表1に示すとおりとなるように変更した以外は、例1と同様にして共沈化合物を得た。次いで、工程(II)および工程(III)を実施せず、共沈化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比を表1に示すとおりにした以外は、例1と同様に炭酸リチウムの混合および焼成を行って正極活物質を得た。
 さらに、得られた正極活物質18gに、該正極活物質に含まれる遷移金属元素(X)の合計量(100mol%)に対する、リン酸塩に含まれるPの合計量の割合が1.15mol%になるように、リン酸二水素アンモニウムを3.6gの蒸留水に溶解させた水溶液をスプレーコートした。その後、90℃で2時間乾燥してから電気炉(FO510、ヤマト科学社製)を用いて、大気を1.5L/分でフローしながら、450℃で8時間焼成することでPが粒子表面にコートされた正極活物質を得た。
 得られたPが粒子表面にコートされた正極活物質の粒子径(D50)と比表面積を表1に示す。また、換算ピーク強度比(Ip/Ix)の平均値と、換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値を表1に示す。
 表1における「P/X」は、工程(II)における、共沈化合物に含まれる遷移金属元素(X)の合計量(100mol%)に対する、リン酸塩に含まれるPの合計量の割合(mol%)を意味する。なお、例14においては、「P/X」は、正極活物質に含まれる遷移金属元素(X)の合計量(100mol%)に対する、コートしたリン酸塩に含まれるPの合計量の割合(mol%)を意味する。また、「Li/X」は、工程(III)における、前駆体化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比(mol倍)を意味する。なお、例13~15においては、「Li/X」は、共沈化合物に含まれる遷移金属元素(X)の合計量に対する、炭酸リチウムに含まれるLiの合計量のモル比(mol倍)を意味する。
Figure JPOXMLDOC01-appb-T000001
[サイクル特性の評価] 
(正極体シートの製造)
 各例で得られた正極活物質と、導電材であるアセチレンブラックと、ポリフッ化ビニリデン(バインダー)とを、それぞれ、質量比で80:10:10でN-メチルピロリドンに加え、スラリーを調製した。
 次いで、該スラリーを、厚さ20μmのアルミニウム箔(正極集電体)の片面上にドクターブレードにより塗工し、120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
(リチウムイオン二次電池の製造)
 得られた正極体シートを直径18mmの円形に打ち抜いたものを正極とし、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴン下のグローブボックス内で組み立てた。なお、負極集電体として厚さ1mmのステンレス鋼板を使用し、該負極集電体上に厚さ500μmの金属リチウム箔を形成して負極とした。セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の質量比1:1の混合溶媒に、濃度が1mol/dmとなるようにLiPFを溶解させた液を電解液として使用した。
(放電容量維持率および放電電圧維持率の測定)
 得られたリチウムイオン二次電池を、充放電評価装置(東洋システム社製、装置名:TOSCAT-3000)に接続し、正極活物質1gにつき20mAの負荷電流で充放電を行い、活性化処理をした。その後、正極活物質1gにつき200mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき200mAの負荷電流にて2Vまで放電する充放電サイクルを100回繰り返した。
 活性化処理時の放電容量を「初期放電容量」、100サイクル目の放電容量を「サイクル後放電容量」とし、3サイクル目の放電容量に対するサイクル後放電容量の割合を「放電容量維持率」とした。また、活性化処理時の平均放電電圧を「初期放電電圧」、100サイクル目の平均放電電圧を「サイクル後放電電圧」とし、3サイクル目の放電電圧に対するサイクル後放電電圧の割合を「放電電圧維持率」とした。
 各例における初期放電容量および放電電圧、サイクル後放電容量および放電電圧、ならびに放電容量維持率および放電電圧維持率の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、例1~9のリチウムイオン二次電池は、例10~16のリチウムイオン二次電池と比較して放電電圧維持率が高く、放電容量維持率も同等以上であり、サイクル特性に優れていた。
 本発明によれば、放電容量が高く、かつサイクル特性に優れるリチウムイオン二次電池用の正極活物質が得られる。該正極活物質は、携帯電話等の電子機器、車載用の小型・軽量なリチウムイオン二次電池に用いるリチウムイオン二次電池用正極の形成に好適に利用できる。
なお、2012年10月29日に出願された日本特許出願2012-238274号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  下記の工程(I)~(IV)を有することを特徴とする正極活物質の製造方法。
     (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
     炭酸ナトリウムおよび炭酸カリウムからなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
     水溶液の状態で混合して、
     Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)を含む共沈化合物を得る工程。
     (II)前記共沈化合物とリン酸塩水溶液とを混合せしめる工程。
     (III)前記共沈化合物とリン酸塩水溶液との混合物から水分を揮発させ前駆体化合物を得る工程。
     (IV)前記前駆体化合物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
  2.  前記工程(I)において、硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度が、0.1~3mol/kgであり、かつ、炭酸塩(B)の水溶液中における炭酸塩(B)の濃度は、0.1~2mol/kgである、請求項1に記載の正極活物質の製造方法。
  3.  前記工程(I)において、硫酸塩(A)の水溶液と炭酸塩(B)の水溶液とを混合する際の混合液のpHが7~12である、請求項または2に記載の正極活物質の製造方法。
  4.  前記工程(I)における共沈化合物が、NiおよびMnを含む炭酸塩であるか、又は
    Ni、CoおよびMnを含む炭酸塩である、請求項1~3のいずれか一項に記載の正極活物質の製造方法。
  5.  前記工程(II)において、共沈化合物とリン酸塩水溶液との混合をスプレーコート法で行う、請求項1~4のいずれか一項に記載の正極活物質の製造方法。
  6.  前記工程(II)および工程(III)におけるリン酸塩水溶液が、リン酸、リン酸二水素アンモニウムおよびリン酸水素二アンモニウムからなる群から選ばれる少なくとも1種の水溶液である、請求項1~5のいずれか一項に記載の正極活物質の製造方法。
  7.  前記工程(II)において、共沈化合物に含まれる前記遷移金属元素(X)の合計モル数に対してリン酸塩に含まれるPの合計モル数の割合(P/X)が、0.01~10mol%である、請求項1~6のいずれか一項に記載の正極活物質の製造方法。
  8.  前記工程(IV)において、前駆体化合物に含まれる前記遷移金属元素(X)の合計モル数に対して炭酸リチウムに含まれるLiの合計モル数の比(Li/X)が、1.1倍以上である、請求項1~7のいずれか一項に記載の正極活物質の製造方法。
  9.  Liと、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)と、Pと、を含む正極活物質であって、
     下記変動係数測定方法で求められるPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)の変動係数(CV値)の平均値が0~20%であることを特徴とする正極活物質。
    (変動係数測定方法)
     3個の正極活物質について、電子線マイクロアナライザにより、各正極活物質の断面を直径方向に2μm間隔、スポット径2μmで走査して、Pの換算ピーク強度(Ip)と前記遷移金属元素(X)の換算ピーク強度(Ix)とを測定する。次いで、各測定スポットのPと前記遷移金属元素(X)の換算ピーク強度比(Ip/Ix)を求め、各正極活物質の前記換算ピーク強度比(Ip/Ix)の変動係数(CV値)を算出し、平均値を求める。
  10.  前記変動係数測定方法で求められる各正極活物質の換算ピーク強度比(Ip/Ix)の平均値が0.001~0.1である、請求項9に記載の正極活物質。
  11.  遷移金属元素(X)のモル数に対するLiのモル数の比(Li/X)は、1.1倍以上であり、遷移金属元素(X)のモル数に対するPのモル数の比(P/X)は、0.01~10mol%である、請求項9または10に記載の正極活物質。
  12.  下式(1)で表される化合物(1)である、請求項9~11のいずれか一項に記載の正極活物質。
     Li1+aNiCoMn2+f ・・・(1)
    (ただし、0.1≦a≦0.6、0.001≦b≦0.1、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05、fはLi、P、Ni、CoおよびMnの価数によって決定される数値。)
  13.  正極集電体と、該正極集電体上に設けられた正極活物質層と、を有し、
     前記正極活物質層が、請求項9~12のいずれか一項に記載の正極活物質と、導電材と、バインダーと、を含有する、リチウムイオン二次電池用正極。
  14.  請求項13に記載のリチウムイオン二次電池用正極と、負極と、非水電解質と、を有するリチウムイオン二次電池。
PCT/JP2013/079291 2012-10-29 2013-10-29 正極活物質およびその製造方法 WO2014069466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380056235.6A CN104756291B (zh) 2012-10-29 2013-10-29 正极活性物质及其制造方法
JP2014544525A JP6345118B2 (ja) 2012-10-29 2013-10-29 正極活物質およびその製造方法
US14/663,033 US10122013B2 (en) 2012-10-29 2015-03-19 Cathode active material and process for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012238274 2012-10-29
JP2012-238274 2012-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,033 Continuation US10122013B2 (en) 2012-10-29 2015-03-19 Cathode active material and process for its production

Publications (1)

Publication Number Publication Date
WO2014069466A1 true WO2014069466A1 (ja) 2014-05-08

Family

ID=50627368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079291 WO2014069466A1 (ja) 2012-10-29 2013-10-29 正極活物質およびその製造方法

Country Status (3)

Country Link
US (1) US10122013B2 (ja)
JP (1) JP6345118B2 (ja)
WO (1) WO2014069466A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502036A (ja) * 2014-11-28 2018-01-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウム化遷移金属酸化物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064136A (ko) * 2013-09-30 2016-06-07 다우 글로벌 테크놀로지스 엘엘씨 개선된 전기화학적 성능을 갖는 lmfp 캐소드 물질
US10189719B1 (en) * 2017-07-28 2019-01-29 Nano One Materials Corp. Process for the manufacture of lithium metal oxide cathode materials
CN110492097B (zh) * 2019-08-30 2021-04-27 中南大学 一种ncm三元复合正极材料及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530747A (ja) * 2005-02-11 2008-08-07 コミツサリア タ レネルジー アトミーク 少なくとも一種の遷移金属を含有するリチウムベースの酸化物を修飾する方法、当該酸化物を含む正極、及びリチウム二次電池
JP2008251434A (ja) * 2007-03-30 2008-10-16 Sony Corp 正極活物質、正極および非水電解質電池
WO2012124256A1 (ja) * 2011-03-15 2012-09-20 パナソニック株式会社 非水電解質二次電池用正極活物質およびそれを用いた正極、並びに正極活物質の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054374B2 (en) * 2005-05-17 2015-06-09 Sony Corporation Cathode active material, method of manufacturing the same and battery
JP4306697B2 (ja) * 2006-06-16 2009-08-05 ソニー株式会社 二次電池
CN102290573B (zh) * 2007-03-30 2015-07-08 索尼株式会社 正极活性物质、正极、非水电解质电池
JP5050834B2 (ja) 2007-12-21 2012-10-17 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池及びその製造方法
CN101355159B (zh) * 2008-09-17 2010-06-16 金瑞新材料科技股份有限公司 一种锂离子电池正极材料镍钴锰酸锂的制备方法
JP5149926B2 (ja) * 2010-03-05 2013-02-20 株式会社日立製作所 リチウムイオン二次電池用正極、リチウムイオン二次電池、これを搭載した乗り物および電力貯蔵システム
WO2012038270A2 (de) 2010-09-21 2012-03-29 Basf Se Verfahren zur herstellung von modifizierten übergangsmetallmischoxiden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530747A (ja) * 2005-02-11 2008-08-07 コミツサリア タ レネルジー アトミーク 少なくとも一種の遷移金属を含有するリチウムベースの酸化物を修飾する方法、当該酸化物を含む正極、及びリチウム二次電池
JP2008251434A (ja) * 2007-03-30 2008-10-16 Sony Corp 正極活物質、正極および非水電解質電池
WO2012124256A1 (ja) * 2011-03-15 2012-09-20 パナソニック株式会社 非水電解質二次電池用正極活物質およびそれを用いた正極、並びに正極活物質の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502036A (ja) * 2014-11-28 2018-01-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウム化遷移金属酸化物の製造方法

Also Published As

Publication number Publication date
JP6345118B2 (ja) 2018-06-20
US10122013B2 (en) 2018-11-06
US20150200394A1 (en) 2015-07-16
CN104756291A (zh) 2015-07-01
JPWO2014069466A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6377983B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6587804B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6089701B2 (ja) 正極活物質およびその製造方法
JP6487279B2 (ja) リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2012169217A (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6600136B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6745929B2 (ja) リチウム含有複合酸化物の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2014116162A (ja) 正極活物質
JP6929793B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2013154142A1 (ja) リチウムイオン二次電池用正極活物質
JP6345118B2 (ja) 正極活物質およびその製造方法
US9643859B2 (en) Process for producing carbonate compound and cathode active material
JP6209435B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6851316B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6259771B2 (ja) 正極活物質の製造方法
JP6388573B2 (ja) 正極活物質の製造方法
JP2014089848A (ja) 正極活物質およびその製造方法
JP6378676B2 (ja) 炭酸化合物とその製造方法、およびリチウムイオン二次電池用正極活物質の製造方法
JP2014089826A (ja) 正極活物質
JP2018163892A (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2019081703A (ja) リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850156

Country of ref document: EP

Kind code of ref document: A1