WO2014069449A1 - 変倍光学系、光学装置、変倍光学系の製造方法 - Google Patents
変倍光学系、光学装置、変倍光学系の製造方法 Download PDFInfo
- Publication number
- WO2014069449A1 WO2014069449A1 PCT/JP2013/079240 JP2013079240W WO2014069449A1 WO 2014069449 A1 WO2014069449 A1 WO 2014069449A1 JP 2013079240 W JP2013079240 W JP 2013079240W WO 2014069449 A1 WO2014069449 A1 WO 2014069449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens group
- lens
- optical system
- end state
- variable magnification
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/20—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/143—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
- G02B15/1431—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
- G02B15/143105—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged +-+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/4984—Retaining clearance for motion between assembled parts
Definitions
- the present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
- variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, etc.
- many lenses having a positive refractive power in the most object side lens group have been proposed.
- an optical system capable of focusing from an infinitely distant object to a close object by moving some lens groups along the optical axis For example, see JP 2010-19959 A).
- variable magnification optical system as described above can achieve a sufficiently high optical performance even when focusing from an object at infinity to a short distance object while reducing the size while maintaining a high zoom ratio.
- the present invention has been made in view of the above problems, and has a high zoom ratio, is small, and has a high optical performance even when focusing from an object at infinity to a short distance object.
- An object of the present invention is to provide an optical device and a method for manufacturing a variable magnification optical system.
- the present invention provides: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the image The distance to the surface changes, On the most image side, there is a fixed lens group whose position is fixed at the time of zooming from the wide-angle end state to the telephoto end state, The zoom lens system is characterized in that the third lens unit moves along the optical axis when focusing from an object at infinity to an object at a short distance.
- the present invention also provides: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group, Have At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The distance between the fourth lens group and the distance between the fourth lens group and the fifth lens group change, When focusing from an object at infinity to a near object, the third lens group moves along the optical axis; A variable magnification optical system characterized by satisfying the following conditional expression is provided.
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the telephoto end state.
- the present invention provides an optical device characterized by having the variable magnification optical system.
- the present invention also provides: In order from the object side, a method for manufacturing a variable magnification optical system having a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the image So that the distance to the surface changes, At the most image side, it has a fixed lens group whose position is fixed when zooming from the wide-angle end state to the telephoto end state, The third lens group moves along the optical axis at the time of focusing from an object at infinity to an object at a short distance.
- the present invention also provides: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group, A method of manufacturing a variable magnification optical system having The third lens group satisfies the following conditional expression: At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The interval between the fourth lens group and the interval between the fourth lens group and the fifth lens group are changed, A method of manufacturing a variable magnification optical system is provided in which the third lens group moves along an optical axis when focusing from an object at infinity to an object at a short distance.
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the telephoto end state.
- variable power optical system an optical device, and a variable power optical system that have a high zoom ratio, are small, and have high optical performance even when focusing from an object at infinity to a short distance object.
- a method can be provided.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- FIG. 3A and 3B respectively show various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the first and second embodiments of the present application.
- FIG. 4A, 4B, and 4C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the first example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- 5A and 5B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- 6A, FIG. 6B, FIG. 6C, FIG. 6D, and FIG. 6E respectively show the wide-angle end state, the first intermediate focal length state, and the first intermediate focal length state of the variable magnification optical system according to the second example of the first and second embodiments of the present application. It is sectional drawing in a 2 intermediate
- FIG. 7A, 7B, and 7C are a wide-angle end state, a first intermediate focal length state, and a second intermediate focal length state of the variable magnification optical system according to the second example of the first and second embodiments of the present application, respectively.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- FIGS. 8A and 8B show various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the first and second embodiments of the present application, respectively.
- FIG. 9A, 9B, and 9C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 10A and 10B respectively show the zooming optical system according to the second example of the first and second embodiments of the present application at the time of focusing on a short distance object in the third intermediate focal length state and the telephoto end state (shooting magnification). It is an aberration diagram of -0.0100 times).
- 11A, 11B, 11C, 11D, and 11E respectively show the wide-angle end state, the first intermediate focal length state, and the first intermediate focal length state of the variable magnification optical system according to the third example of the first and second embodiments of the present application. It is sectional drawing in a 2 intermediate
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- FIG. 13A and 13B respectively show various aberrations during focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the first and second embodiments of the present application.
- FIG. 14A, 14B, and 14C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- 15A and 15B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- 16A, FIG. 16B, FIG. 16C, FIG. 16D, and FIG. 16E respectively show the wide-angle end state, the first intermediate focal length state, and the first intermediate focal length state of the zoom optical system according to the fourth example of the first and second embodiments of the present application. It is sectional drawing in a 2 intermediate
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 18A and 18B show various aberrations when the object at infinity is focused in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application, respectively.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 18A and 18B show various aberrations when the object at infinity is focused in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application, respectively.
- FIG. 19A, 19B, and 19C are a wide-angle end state, a first intermediate focal length state, and a second intermediate focal length state, respectively, of the zoom optical system according to the fourth example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 20A and 20B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- variable magnification optical system includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the image
- the feature is that the surface changes.
- variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .
- the most image side there is a fixed lens group whose position is fixed when zooming from the wide-angle end state to the telephoto end state.
- the height from the optical axis of the peripheral rays incident on the fixed lens group can be changed at the time of zooming from the wide-angle end state to the telephoto end state, and astigmatism variation can be suppressed.
- the third lens unit is moved along the optical axis for focusing from an object at infinity to an object at a short distance.
- the amount of movement during focusing on the telephoto side can be reduced, the overall length of the entire optical system can be reduced, and the size can be reduced.
- the telephoto side is incident on the third lens group that is the focusing lens group. It is possible to suppress variations in the height of the light beam from the optical axis, and to suppress variations in spherical aberration and astigmatism during focusing. With the above configuration, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be realized.
- the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state.
- this configuration it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group during zooming.
- the diameter of the first lens group be reduced, but also fluctuations in astigmatism can be suppressed during zooming.
- variable magnification optical system satisfies the following conditional expression (1-1).
- (1-1) 0.220 ⁇ f3 / ft ⁇ 0.500
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group.
- Conditional expression (1-1) defines an appropriate focal length range of the third lens group.
- the zoom optical system according to the first embodiment of the present application satisfies the conditional expression (1-1), so that zooming from the wide-angle end to the telephoto end and focusing from an infinite object to a short-distance object can be performed. Variations in spherical aberration and astigmatism can be suppressed. If the lower limit of the corresponding value of the conditional expression (1-1) of the variable magnification optical system according to the first embodiment of the present application is below the variation of spherical aberration and astigmatism that occurs in the third lens group at the time of zooming or focusing It becomes difficult to suppress the above, and high optical performance cannot be realized.
- the lower limit of conditional expression (1-1) it is more preferable to set the lower limit of conditional expression (1-1) to 0.242.
- the corresponding value of the conditional expression (1-1) of the variable magnification optical system according to the first embodiment of the present application exceeds the upper limit value, the amount of movement of the third lens unit at the time of focusing from an infinite object to a close object Becomes larger.
- the height from the optical axis of the light beam incident on the third lens group at the time of focusing largely fluctuates, so that fluctuations in spherical aberration and astigmatism increase, and high optical performance cannot be realized.
- variable magnification optical system of the first embodiment of the present application has an intermediate lens group that is disposed between the third lens group and the fixed lens group and has a positive refractive power.
- the variable magnification optical system of the present application has an intermediate lens group with positive refractive power disposed between the third lens group and the fixed lens group, so that the focal length of the third lens group can be made relatively long. The variation of spherical aberration and astigmatism occurring in the third lens group during zooming can be suppressed.
- variable magnification optical system satisfies the following conditional expression (1-2).
- ft the total focal length in the telephoto end state of the variable magnification optical system
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
- Conditional expression (1-2) is an optical axis from the most image side lens surface of the third lens unit to the most object side lens surface of the intermediate lens unit at the time of zooming from the wide-angle end state to the telephoto end state. It defines the appropriate range of distance.
- the zoom optical system according to the first embodiment of the present application can suppress fluctuations in coma and astigmatism during zooming by satisfying conditional expression (1-2). If the corresponding value of the conditional expression (1-2) of the variable magnification optical system according to the first embodiment of the present application is below the lower limit value, it becomes difficult to suppress fluctuations in astigmatism that occurs in the third lens group during zooming. High optical performance cannot be realized.
- conditional expression (1-2) In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-2) to 0.000. On the other hand, if the upper limit of the corresponding value of the conditional expression (1-2) of the variable magnification optical system according to the first embodiment of the present application is exceeded, it becomes difficult to suppress fluctuations in coma generated in the intermediate lens group at the time of zooming. High optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-2) to 0.065. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1-2) to 0.035.
- variable magnification optical system it is desirable that only the intermediate lens group is disposed between the third lens group and the fixed lens group.
- the number of groups of the entire variable power optical system is reduced by forming only the intermediate lens group between the third lens group and the fixed lens group.
- the decentered coma aberration caused by the core can be kept relatively small, and an optical system with high optical performance can be provided.
- variable magnification optical system satisfies the following conditional expression (1-3).
- f3 focal length of the third lens group
- fim focal length of the intermediate lens group.
- Conditional expression (1-3) defines an appropriate focal length ratio range between the third lens group and the intermediate lens group.
- the zoom optical system according to the first embodiment of the present application can suppress the variation in spherical aberration and astigmatism during zooming by satisfying conditional expression (1-3).
- conditional expression (1-3) of the zoom optical system according to the first embodiment of the present application is below the lower limit value, it is possible to suppress fluctuations in spherical aberration and astigmatism that occur in the third lens group during zooming. This makes it difficult to achieve high optical performance.
- conditional expression (1-3) of the variable magnification optical system according to the first embodiment of the present application exceeds the upper limit value, fluctuations in spherical aberration and astigmatism occurring in the intermediate lens group at the time of variable magnification are suppressed. This makes it difficult to achieve high optical performance.
- the zoom optical system of the present application it is desirable that the distance between the intermediate lens group and the fixed lens group is increased when zooming from the wide-angle end state to the telephoto end state.
- the zoom optical system of the present application increases the combined magnification of the third lens group and the intermediate lens group by increasing the distance between the intermediate lens group and the fixed lens group when zooming from the wide-angle end state to the telephoto end state.
- the zoom optical system it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state.
- this configuration it is possible to increase the magnification of the second lens group, and it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.
- the zoom optical system it is desirable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state.
- the composite magnification of the third lens group and the subsequent lens groups can be increased, and the variation in spherical aberration and astigmatism during zooming can be achieved while efficiently realizing a high zoom ratio. Can be suppressed.
- variable magnification optical system in the zoom optical system according to the first embodiment of the present application, it is desirable that the distance between the third lens group and the image plane is increased when zooming from the wide-angle end state to the telephoto end state.
- the variable magnification optical system according to the first embodiment of the present application can increase the combined magnification of the third lens group and the subsequent lens groups by increasing the distance between the third lens group and the image plane at the time of zooming. In addition, it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.
- variable magnification optical system it is desirable that the fixed lens group has a positive refractive power.
- the fixed lens group has a positive refractive power, so that the use magnification of the fixed lens group becomes smaller than the same magnification.
- the variable magnification optical system of the present application can make the combined focal length of the lens group on the object side relatively longer than the fixed lens group, and the lens in the lens group on the object side than the fixed lens group generated in manufacturing. Eccentric coma due to decentration in the middle can be kept relatively small, and high optical performance can be realized.
- the third lens group moves to the image side when focusing from an object at infinity to an object at a short distance.
- the variable magnification optical system according to the first embodiment of the present application can favorably focus from an object at infinity to a near object by moving the third lens group to the image side during focusing.
- the optical device of the first embodiment of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having a high zoom ratio, a small size, and high optical performance can be realized.
- the manufacturing method of the variable magnification optical system according to the first embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a distance between the first lens group and the second lens group, and the second lens group and the third lens at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the lens group and the distance between the third lens group and the image plane are changed so that the most image side has a fixed lens group whose position is fixed when zooming from the wide-angle end state to the telephoto end state. The third lens group moves along the optical axis when focusing from an infinitely distant object to a close object.
- variable magnification optical system includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power.
- the fourth lens group and the fifth lens group and at the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, and the second lens group The distance between the third lens group, the distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group vary.
- variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .
- the third lens unit is moved along the optical axis for focusing from an object at infinity to an object at a short distance.
- the amount of movement during focusing on the telephoto side can be reduced, the overall length of the entire optical system can be reduced, and the size can be reduced.
- the telephoto side is incident on the third lens group that is the focusing lens group. It is possible to suppress variations in the height of the light beam from the optical axis, and to suppress variations in spherical aberration and astigmatism during focusing.
- variable magnification optical system is characterized in that the following conditional expressions (2-1) and (2-2) are satisfied.
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the telephoto end state.
- Conditional expression (2-1) defines an appropriate focal length range of the third lens group.
- the zoom optical system according to the second embodiment of the present application satisfies the conditional expression (2-1), so that the zooming from the wide-angle end state to the telephoto end state and focusing from an infinite object to a short-distance object are performed. Variation of spherical aberration and astigmatism at the time can be suppressed. If the lower limit of the corresponding value of the conditional expression (2-1) of the variable magnification optical system according to the second embodiment of the present application is below the variation of spherical aberration and astigmatism that occurs in the third lens group at the time of zooming or focusing It will be difficult to suppress this, and it will not be possible to achieve high optical performance.
- conditional expression (2-1) it is more preferable to set the lower limit of conditional expression (2-1) to 0.242.
- the corresponding value of the conditional expression (2-1) of the variable magnification optical system according to the second embodiment of the present application exceeds the upper limit value, the amount of movement of the third lens unit at the time of focusing from an infinite object to a close object Becomes larger.
- the height from the optical axis of the light beam incident on the third lens group at the time of focusing largely fluctuates, so that fluctuations in spherical aberration and astigmatism increase, and high optical performance cannot be realized.
- Conditional expression (2-2) is an optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group at the time of zooming from the wide-angle end state to the telephoto end state. It defines the appropriate range of distance above.
- the zoom optical system according to the second embodiment of the present application can suppress fluctuations in coma and astigmatism during zooming by satisfying conditional expression (2-2). If the corresponding value of the conditional expression (2-2) of the zoom optical system according to the second embodiment of the present application is less than the lower limit value, it becomes difficult to suppress fluctuations in astigmatism that occurs in the third lens group during zooming. High optical performance cannot be realized.
- conditional expression (2-2) In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2-2) to 0.000. On the other hand, if the upper limit of the corresponding value of the conditional expression (2-2) of the zoom optical system according to the second embodiment of the present application is exceeded, it becomes difficult to suppress fluctuations in coma generated in the fourth lens group at the time of zooming. It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-2) to 0.065. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-2) to 0.035. With the above configuration, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be realized.
- the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state.
- this configuration it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group during zooming.
- the diameter of the first lens group be reduced, but also fluctuations in astigmatism can be suppressed during zooming.
- variable magnification optical system according to the second embodiment of the present application satisfies the following conditional expression (2-3).
- fw the total focal length in the wide-angle end state of the variable magnification optical system
- f2 focal length of the second lens group.
- Conditional expression (2-3) defines an appropriate focal length range of the second lens group.
- the zoom optical system according to the second embodiment of the present application can suppress fluctuations in spherical aberration and astigmatism during zooming by satisfying conditional expression (2-3).
- conditional expression (2-3) of the variable magnification optical system according to the second embodiment of the present application is below the lower limit value, the first lens group and the second lens group at the time of variable magnification are obtained in order to obtain a predetermined variable magnification. It is necessary to increase the amount of change in the interval.
- conditional expression (2-3) of the variable magnification optical system of the second embodiment of the present application exceeds the upper limit value, fluctuations in spherical aberration and astigmatism occurring in the second lens group at the time of variable magnification are reduced. It becomes difficult to suppress, and high optical performance cannot be realized.
- variable magnification optical system satisfies the following conditional expression (2-4).
- (2-4) 0.410 ⁇ f3 / f4 ⁇ 1.00
- f3 focal length of the third lens group
- f4 focal length of the fourth lens group.
- Conditional expression (2-4) defines an appropriate focal length ratio range of the third lens group and the fourth lens group.
- the variable magnification optical system according to the second embodiment of the present application can suppress fluctuations in spherical aberration and astigmatism during zooming by satisfying conditional expression (2-4).
- conditional expression (2-4) of the variable magnification optical system according to the second embodiment of the present application is below the lower limit value, it is possible to suppress variations in spherical aberration and astigmatism that occur in the third lens group at the time of zooming. This makes it difficult to achieve high optical performance.
- conditional expression (2-4) of the variable magnification optical system according to the second embodiment of the present application exceeds the upper limit value, the variation in spherical aberration and astigmatism that occurs in the fourth lens group at the time of zooming is suppressed. This makes it difficult to achieve high optical performance.
- the position of the fifth lens group is fixed when zooming from the wide-angle end state to the telephoto end state.
- astigmatism fluctuation at the time of zooming can be suppressed more favorably.
- it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state.
- the zoom optical system according to the second embodiment of the present application it is desirable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state.
- the composite magnification of the third lens group and the subsequent lens groups can be increased, and the variation in spherical aberration and astigmatism during zooming can be achieved while efficiently realizing a high zoom ratio. Can be suppressed.
- the zoom optical system of the second embodiment of the present application it is desirable that the distance between the fourth lens group and the fifth lens group is increased when zooming from the wide-angle end state to the telephoto end state.
- the combined magnification of the third lens group and the fourth lens group can be increased, and the variation of spherical aberration and astigmatism are suppressed during zooming while efficiently realizing a high zoom ratio. be able to.
- the fifth lens group has a positive refractive power.
- the fifth lens group has a positive refractive power, so that the use magnification of the fifth lens group becomes smaller than the same magnification.
- the combined focal length from the first lens group to the fourth lens group can be made relatively long, resulting from the eccentricity between the lenses arranged from the first lens group to the fourth lens group, which occurs in the manufacturing process.
- the influence of decentration coma and the like can be suppressed relatively small, and a variable power optical system with high optical performance can be provided.
- the third lens group moves toward the image side when focusing from an object at infinity to an object at a short distance.
- the variable magnification optical system according to the second embodiment of the present application can favorably focus from an object at infinity to a near object by moving the third lens group to the image side during focusing.
- the optical device according to the second embodiment of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having a high zoom ratio, a small size, and high optical performance can be realized.
- the method of manufacturing the variable magnification optical system according to the second embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, A method of manufacturing a variable magnification optical system having a fourth lens group having positive refractive power and a fifth lens group, wherein the fourth lens group and the fifth lens group have the following conditional expressions (2-1), (2-2) is satisfied, and at the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the second lens group, and the third lens group , The distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group are changed, and focusing from an object at infinity to a near object is performed.
- the third lens group is moved along the optical axis.
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the telephoto end state.
- (First embodiment) 1A, 1B, 1C, 1D, and 1E respectively show the wide-angle end state, the first intermediate focal length state, and the first intermediate focal length state of the variable magnification optical system according to the first example of the first and second embodiments of the present application. It is sectional drawing in a 2 intermediate
- the variable magnification optical system includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.
- the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24.
- the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
- the third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side.
- An aperture stop S is provided on the object side of the third lens group G3.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave meniscus facing the object side.
- the negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the fifth lens group G5 includes, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side.
- the negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state is changed.
- the air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed.
- the first lens group G1 to the fourth lens group G4 move along the optical axis. Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming.
- the second lens group G2 moves toward the object side from the wide-angle end state to the third intermediate focal length state, and moves toward the image side from the third intermediate focal length state to the telephoto end state.
- the position of the fifth lens group G5 in the optical axis direction is fixed during zooming.
- the aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming. Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.
- the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4.
- the fifth lens group G5 increase in air space.
- the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state.
- the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state.
- Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
- f indicates the focal length
- BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
- m is the order of the optical surfaces counted from the object side
- r is the radius of curvature
- d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface)
- nd is d.
- the refractive index for the line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for the d line (wavelength 587.6 nm), respectively.
- OP indicates the object plane
- variable indicates the variable surface interval
- aperture stops S and I indicate the image plane.
- the radius of curvature r ⁇ indicates a plane.
- * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r.
- the refractive index nd 1.000000 air is omitted.
- [Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
- x (h 2 / r) / [1+ ⁇ 1- ⁇ (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
- h is the height in the direction perpendicular to the optical axis
- x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h
- ⁇ is the conic constant.
- A4, A6, A8, A10, A12 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature).
- E ⁇ n (n is an integer) indicates “ ⁇ 10 ⁇ n ”, for example “1.234E-05” indicates “1.234 ⁇ 10 ⁇ 5 ”.
- the secondary aspherical coefficient A2 is 0 and is not shown.
- FNO is the F number
- ⁇ is the half angle of view (unit is “°”)
- Y is the image height
- TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity) (Distance on the optical axis to the surface I)
- dn represents the variable distance between the nth surface and the (n + 1) th surface
- ⁇ represents the diameter of the aperture stop S.
- W represents the wide-angle end state
- M1 represents the first intermediate focal length state
- M2 represents the second intermediate focal length state
- M3 represents the third intermediate focal length state
- T represents the telephoto end state.
- [Focus group movement amount at the time of focusing] indicates the movement amount of the focusing lens group (third lens group) from the infinitely focused state to the short-distance focused state (imaging magnification: -0.0100 times).
- the moving direction of the focusing lens group is positive when moving toward the image side.
- the shooting distance indicates the distance from the object to the image plane.
- [Lens Group Data] indicates the start surface ST and focal length f of each lens group.
- [Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.
- the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
- the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
- symbol of Table 1 described above shall be similarly used also in the table
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 3A and 3B respectively show various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the first and second embodiments of the present application.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 3A and 3B respectively show various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 5A and 5B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- FNO is the F number
- NA is the numerical aperture of the light beam incident on the first lens group
- A is the light beam incident angle, that is, the half field angle (unit is “°”)
- H0 is the object height (unit: mm).
- d indicates the aberration at the d-line (wavelength 587.6 nm)
- g indicates the aberration at the g-line (wavelength 435.8 nm)
- those without d and g indicate the aberration at the d-line.
- the solid line indicates the sagittal image plane
- the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
- variable magnification optical system has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- variable magnification optical system includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.
- the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24.
- the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
- the third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side.
- An aperture stop S is provided on the object side of the third lens group G3.
- the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a convex surface directed toward the object side and a negative meniscus lens L42 having a convex surface directed toward the object side, a biconvex positive lens L43, and an object.
- the negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the fifth lens group G5 includes, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side.
- the negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state is changed.
- the air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed.
- the first lens group G1 to the fourth lens group G4 move along the optical axis. Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming.
- the second lens group G2 moves toward the object side from the wide-angle end state to the third intermediate focal length state, and moves toward the image side from the third intermediate focal length state to the telephoto end state.
- the position of the fifth lens group G5 in the optical axis direction is fixed during zooming.
- the aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming. Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.
- the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4.
- the fifth lens group G5 increase in air space.
- the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state.
- the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state.
- Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
- FIG. 7A, 7B, and 7C are a wide-angle end state, a first intermediate focal length state, and a second intermediate focal length state of the variable magnification optical system according to the second example of the first and second embodiments of the present application, respectively.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- FIGS. 8A and 8B show various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the first and second embodiments of the present application, respectively.
- FIG. 9A, 9B, and 9C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 10A and 10B respectively show the zooming optical system according to the second example of the first and second embodiments of the present application at the time of focusing on a short distance object in the third intermediate focal length state and the telephoto end state (shooting magnification). It is an aberration diagram of -0.0100 times).
- variable magnification optical system has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- the variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.
- the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24.
- the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
- the third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side.
- An aperture stop S is provided on the object side of the third lens group G3.
- the fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave meniscus facing the object side.
- the negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the fifth lens group G5 includes, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side.
- the negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state is changed.
- the air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed.
- the first lens group G1 to the fourth lens group G4 move toward the object side along the optical axis.
- the position of the fifth lens group G5 in the optical axis direction is fixed during zooming.
- the aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming. Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.
- the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group.
- the air space between G4 and the fifth lens group G5 increases.
- the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state.
- the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state.
- FIG. 12A, FIG. 12B, and FIG. 12C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third example of the first and second embodiments of the present application.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 13A and 13B respectively show various aberrations during focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the first and second embodiments of the present application.
- FIG. 14A, 14B, and 14C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 15A and 15B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- variable magnification optical system has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- variable magnification optical system includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
- the lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.
- the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side.
- the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24.
- the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
- the third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side.
- An aperture stop S is provided on the object side of the third lens group G3.
- the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a convex surface directed toward the object side and a negative meniscus lens L42 having a convex surface directed toward the object side, a biconvex positive lens L43, and an object.
- a cemented lens with a negative meniscus lens L44 with a concave surface facing the side, a biconcave negative lens L45, a cemented lens with a biconvex positive lens L46 and a negative meniscus lens L47 with a concave surface facing the object side Become.
- the negative lens L45 is a glass mold aspheric lens having an aspheric lens surface on the object side
- the negative meniscus lens L47 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the fifth lens group G5 includes, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side.
- the negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.
- the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state is changed.
- the air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed.
- the first lens group G1 to the fourth lens group G4 move along the optical axis. Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming.
- the second lens group G2 moves toward the object side from the wide-angle end state to the second intermediate focal length state, moves toward the image side from the second intermediate focal length state to the third intermediate focal length state, and is in the third intermediate focal length state.
- the position of the fifth lens group G5 in the optical axis direction is fixed during zooming.
- the aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming. Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.
- the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4.
- the fifth lens group G5 increase in air space.
- the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state.
- the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state.
- Table 4 below shows numerical data of the zoom lens system according to Example.
- FIGS. 17A, 17B, and 17C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 18A and 18B show various aberrations when the object at infinity is focused in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application, respectively.
- FIG. 6 is a diagram showing various aberrations when focusing on an object at infinity.
- 18A and 18B show various aberrations when the object at infinity is focused in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application, respectively.
- FIG. 19A, 19B, and 19C are a wide-angle end state, a first intermediate focal length state, and a second intermediate focal length state, respectively, of the zoom optical system according to the fourth example of the first and second embodiments of the present application.
- FIG. 6 is a diagram of various aberrations when focusing on a short-distance object (capturing magnification: -0.0100).
- FIGS. 20A and 20B respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the first and second embodiments of the present application at the time of focusing on a short distance object (shooting magnification). It is an aberration diagram of -0.0100 times).
- variable magnification optical system has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.
- each of the above embodiments a variable power optical system having a high zoom ratio, a small size, and high optical performance can be realized.
- each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
- variable magnification optical system of the present application is shown as having a five-group configuration, but the present application is not limited to this, and constitutes a variable magnification optical system of other group configurations (for example, six groups, seven groups, etc.). You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used.
- the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
- the focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
- any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis
- a configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible.
- the lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface.
- the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
- the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
- the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
- the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good. Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
- FIG. 21 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the first and second embodiments of the present application.
- the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the variable magnification optical system according to the first example as the photographing lens 2.
- the photographing lens 2 In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown).
- OLPF Optical low pass filter
- the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject.
- This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1.
- EVF Electronic view finder
- the photographer can observe the subject via the EVF 4.
- the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
- the zoom optical system according to the first embodiment mounted as the photographing lens 2 in the camera 1 is a zoom optical system having a high zoom ratio, a small size, and high optical performance. Therefore, the present camera 1 can achieve downsizing and high optical performance while having a high zoom ratio. Even if a camera equipped with the variable magnification optical system according to the second to fourth embodiments as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.
- the manufacturing method of the variable magnification optical system according to the first embodiment shown in FIG. 22 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing a variable power optical system having a third lens group having refractive power, which includes the following steps S11, S12, and S13.
- Step S11 A fixed lens group whose position is fixed at the time of zooming from the wide-angle end state to the telephoto end state is arranged on the most image side of the lens barrel.
- Step S12 By providing a known moving mechanism on the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the third lens group, the distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group are changed.
- Step S13 By providing a known moving mechanism on the lens barrel, the third lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
- variable magnification optical system of the first embodiment of the present application a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be manufactured.
- the manufacturing method of the variable magnification optical system according to the second embodiment shown in FIG. 22 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive
- Step S21 The fourth lens group and the fifth lens group satisfy the following conditional expressions (2-1) and (2-2), and the respective lens groups are sequentially arranged in the lens barrel from the object side.
- (2-1) 0.220 ⁇ f3 / ft ⁇ 0.500
- (2-2) ⁇ 0.010 ⁇ (d3t ⁇ d3w) / ft ⁇ 0.130
- ft the total focal length in the telephoto end state of the variable magnification optical system
- f3 focal length of the third lens group
- d3w the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the wide-angle end state
- d3t Distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the fourth lens group in the telephoto end state.
- Step S22 By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the first lens group at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the third lens group, the distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group are changed.
- Step S23 By providing a known moving mechanism in the lens barrel, the third lens group is moved along the optical axis when focusing from an object at infinity to an object at a short distance.
- a zoom optical system having a high zoom ratio, a small size, and high optical performance can be manufactured.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化し、 最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有し、 無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することにより、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供すること。
Description
本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。
従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されているが、これらの変倍光学系のうち、一部のレンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行なうことができる光学系が提案されている。(例えば、特開2010-19959号公報を参照。)。
しかしながら、上述のような従来の変倍光学系は、高変倍比を維持しながら小型化を図り、無限遠物体から近距離物体への合焦時にも、十分に高い光学性能を得ることが困難であるという問題があった。
そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。
そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。
上記課題を解決するため、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化し、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系を提供する。
また、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化し、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系を提供する。
また、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。
また、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化するようにし、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系の製造方法を提供する。
また、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動するようにすることを特徴とする変倍光学系の製造方法を提供する。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化するようにし、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系の製造方法を提供する。
また、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動するようにすることを特徴とする変倍光学系の製造方法を提供する。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
本発明によれば、高変倍比を有し、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。
以下、本願第1及び第2実施形態の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願第1実施形態の変倍光学系は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面とが変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
本願第1実施形態の変倍光学系は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面とが変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
また、最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有する。この構成により、広角端状態から望遠端状態への変倍時に、固定レンズ群に入射する周辺光線の光軸からの高を変化させ、非点収差の変動を抑えることができる。
また、無限遠物体から近距離物体への合焦を第3レンズ群を光軸に沿って移動させる構成である。この構成により、望遠側の合焦時の移動量を抑え、光学系全系の全長を抑えて小型化できるようになり、加えて望遠側において合焦レンズ群である第3レンズ群に入射する光線の光軸からの高さの変動を抑え、合焦時における球面収差や非点収差の変動を抑えることができる。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
また、本願第1実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。
また、本願第1実施形態の変倍光学系は、以下の条件式(1-1)を満足することが望ましい。
(1-1) 0.220 < f3/ft < 0.500
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離。
(1-1) 0.220 < f3/ft < 0.500
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離。
条件式(1-1)は、第3レンズ群の適切な焦点距離範囲を規定するものである。本願第1実施形態の変倍光学系は、条件式(1-1)を満足することにより、広角端から望遠端への変倍時、及び無限遠物体から近距離物体への合焦時の球面収差や非点収差の変動を抑えることができる。
本願第1実施形態の変倍光学系の条件式(1-1)の対応値の下限値を下回ると、変倍時や合焦時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-1)の下限値を0.242とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦時の第3レンズ群の移動量が大きくなる。これにより、合焦時の第3レンズ群に入射する光線の光軸からの高さが大きく変動するため、球面収差や非点収差の変動が大きくなり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-1)の上限値を0.385とすることがより好ましい。
本願第1実施形態の変倍光学系の条件式(1-1)の対応値の下限値を下回ると、変倍時や合焦時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-1)の下限値を0.242とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦時の第3レンズ群の移動量が大きくなる。これにより、合焦時の第3レンズ群に入射する光線の光軸からの高さが大きく変動するため、球面収差や非点収差の変動が大きくなり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-1)の上限値を0.385とすることがより好ましい。
また、本願第1実施形態の変倍光学系は、第3レンズ群と固定レンズ群の間に配置され、屈折力が正の中間レンズ群を有することが望ましい。本願の変倍光学系は、第3レンズ群と固定レンズ群の間に配置される正屈折力の中間レンズ群を有することで、第3レンズ群の焦点距離を相対的に長くすることができ、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることができる。
また、本願第1実施形態の変倍光学系は、以下の条件式(1-2)を満足することが望ましい。
(1-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
(1-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
条件式(1-2)は、広角端状態から望遠端状態への変倍時における、第3レンズ群の最も像側のレンズ面から中間レンズ群の最も物体側のレンズ面までの光軸上の距離の適切な範囲を規定するものである。本願第1実施形態の変倍光学系は、条件式(1-2)を満足することにより、変倍時のコマ収差や非点収差の変動を抑えることができる。
本願第1実施形態の変倍光学系の条件式(1-2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-2)の下限値を0.000とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-2)の対応値の上限値を上回ると、変倍時に中間レンズ群で発生するコマ収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-2)の上限値を0.065とすることがより好ましい。また、本願の効果をさらに確実にするため、条件式(1-2)の上限値を0.035とすることがさらに好ましい。
本願第1実施形態の変倍光学系の条件式(1-2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-2)の下限値を0.000とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-2)の対応値の上限値を上回ると、変倍時に中間レンズ群で発生するコマ収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1-2)の上限値を0.065とすることがより好ましい。また、本願の効果をさらに確実にするため、条件式(1-2)の上限値を0.035とすることがさらに好ましい。
また、本願第1実施形態の変倍光学系は、第3レンズ群と固定レンズ群との間には、中間レンズ群のみが配置されることが望ましい。本願の変倍光学系は、第3レンズ群と固定レンズ群との間を中間レンズ群のみで構成することで、変倍光学系全体の群数を減らし、製造時にレンズ群間で発生する偏芯に起因する偏芯コマ収差などを相対的に小さく抑える事ができるようになり、高い光学性能の光学系を提供することができる。
また、本願第1実施形態の変倍光学系は、以下の条件式(1-3)を満足することが望ましい。
(1-3) 0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
(1-3) 0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
条件式(1-3)は、第3レンズ群と中間レンズ群の適切な焦点距離比の範囲を規定するものである。本願第1実施形態の変倍光学系は、条件式(1-3)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることができる。
本願第1実施形態の変倍光学系の条件式(1-3)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の下限値を0.550とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-3)の対応値が上限値を上回ると、変倍時に中間レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の上限値を0.880とすることがより好ましい。
本願第1実施形態の変倍光学系の条件式(1-3)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の下限値を0.550とすることがより好ましい。
一方、本願第1実施形態の変倍光学系の条件式(1-3)の対応値が上限値を上回ると、変倍時に中間レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の上限値を0.880とすることがより好ましい。
また、本願第1実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、中間レンズ群と固定レンズ群の間隔が増加することが望ましい。本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、中間レンズ群と固定レンズ群の間隔を増加させることで第3レンズ群と中間レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差や非点収差の変動を抑える事ができる。
また、本願第1実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第1実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群とそれ以降のレンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第1実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と像面との間隔が増加することが望ましい。本願第1実施形態の変倍光学系は、変倍時に第3レンズ群と像面との間隔を増加させることで第3レンズ群とそれ以降のレンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差や非点収差の変動を抑える事ができる。
また、本願第1実施形態の変倍光学系では、前記固定レンズ群は正屈折力を有することが望ましい。本願第1実施形態の変倍光学系では、固定レンズ群が正屈折力となることで、固定レンズ群の使用倍率は等倍より小さくなる。その結果、本願の変倍光学系は、固定レンズ群より物体側にあるレンズ群の合成焦点距離を相対的に長くでき、製造上発生する固定レンズ群より物体側にあるレンズ群の中のレンズ間の偏芯に起因する偏芯コマ収差などを相対的に小さく抑える事ができるようになり、高い光学性能を実現することができる。
また、本願第1実施形態の変倍光学系は、無限遠物体から近距離物体への合焦時に、前記第3レンズ群が像側へ移動することが望ましい。本願第1実施形態の変倍光学系は、合焦時に第3レンズ群を像側へ移動させることで無限遠物体から近距離物体への合焦を良好に行うことができる。
本願第1実施形態の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する光学装置を実現することができる。
本願第1実施形態の変倍光学系の製造方法は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化するようにし、最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有するようにし、無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする。
次に、本願第2実施形態の変倍光学系について説明する。本願第2実施形態の変倍光学系は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
また、無限遠物体から近距離物体への合焦を第3レンズ群を光軸に沿って移動させる構成である。この構成により、望遠側の合焦時の移動量を抑え、光学系全系の全長を抑えて小型化できるようになり、加えて望遠側において合焦レンズ群である第3レンズ群に入射する光線の光軸からの高さの変動を抑え、合焦時における球面収差や非点収差の変動を抑えることができる。
また、本願第2実施形態の変倍光学系は、以下の条件式(2-1)、(2-2)を満足することを特徴としている。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
条件式(2-1)は、第3レンズ群の適切な焦点距離範囲を規定するものである。本願第2実施形態の変倍光学系は、条件式(2-1)を満足することにより、広角端状態から望遠端状態への変倍時、及び無限遠物体から近距離物体への合焦時の球面収差や非点収差の変動を抑えることができる。
本願第2実施形態の変倍光学系の条件式(2-1)の対応値の下限値を下回ると、変倍時や合焦時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしますう。なお、本願の効果をより確実にするため、条件式(2-1)の下限値を0.242とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦時の第3レンズ群の移動量が大きくなる。これにより、合焦時の第3レンズ群に入射する光線の光軸からの高さが大きく変動するため、球面収差や非点収差の変動が大きくなり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-1)の上限値を0.385とすることがより好ましい。
本願第2実施形態の変倍光学系の条件式(2-1)の対応値の下限値を下回ると、変倍時や合焦時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしますう。なお、本願の効果をより確実にするため、条件式(2-1)の下限値を0.242とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦時の第3レンズ群の移動量が大きくなる。これにより、合焦時の第3レンズ群に入射する光線の光軸からの高さが大きく変動するため、球面収差や非点収差の変動が大きくなり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-1)の上限値を0.385とすることがより好ましい。
条件式(2-2)は、広角端状態から望遠端状態への変倍時における、第3レンズ群の最も像側のレンズ面から第4レンズ群の最も物体側のレンズ面までの光軸上の距離の適切な範囲を規定するものである。本願第2実施形態の変倍光学系は、条件式(2-2)を満足することにより、変倍時のコマ収差や非点収差の変動を抑えることができる。
本願第2実施形態の変倍光学系の条件式(2-2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-2)の下限値を0.000とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-2)の対応値の上限値を上回ると、変倍時に第4レンズ群で発生するコマ収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-2)の上限値を0.065とすることがより好ましい。また、本願の効果をさらに確実にするため、条件式(2-2)の上限値を0.035とすることがさらに好ましい。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
本願第2実施形態の変倍光学系の条件式(2-2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-2)の下限値を0.000とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-2)の対応値の上限値を上回ると、変倍時に第4レンズ群で発生するコマ収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2-2)の上限値を0.065とすることがより好ましい。また、本願の効果をさらに確実にするため、条件式(2-2)の上限値を0.035とすることがさらに好ましい。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。
また、本願第2実施形態の変倍光学系は、以下の条件式(2-3)を満足することが望ましい。
(2-3) -1.240 < f2/fw < -0.650
但し、
fw:前記変倍光学系の広角端状態における全系焦点距離、
f2:前記第2レンズ群の焦点距離。
(2-3) -1.240 < f2/fw < -0.650
但し、
fw:前記変倍光学系の広角端状態における全系焦点距離、
f2:前記第2レンズ群の焦点距離。
条件式(2-3)は、第2レンズ群の適切な焦点距離範囲を規定するものである。本願第2実施形態の変倍光学系は、条件式(2-3)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることができる。
本願第2実施形態の変倍光学系の条件式(2-3)の対応値が下限値を下回ると、所定の変倍率を得る為に、変倍時の第1レンズ群と第2レンズ群との間隔変化量を大きくする必要がある。これにより、小型化しづらくなるばかりでなく、第1レンズ群から第2レンズ群に入射する軸外光束の光軸からの高さが変倍に伴って大きく変化するため非点収差の変動が過大となってしまい、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の下限値を-1.180とすることがより好ましい。また、本願の効果をさらに確実にするために、条件式(2-3)の下限値を-1.145とすることがさらに好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-3)の対応値が上限値を上回ると、変倍時の第2レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の上限値を-0.760とすることがより好ましい。
本願第2実施形態の変倍光学系の条件式(2-3)の対応値が下限値を下回ると、所定の変倍率を得る為に、変倍時の第1レンズ群と第2レンズ群との間隔変化量を大きくする必要がある。これにより、小型化しづらくなるばかりでなく、第1レンズ群から第2レンズ群に入射する軸外光束の光軸からの高さが変倍に伴って大きく変化するため非点収差の変動が過大となってしまい、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の下限値を-1.180とすることがより好ましい。また、本願の効果をさらに確実にするために、条件式(2-3)の下限値を-1.145とすることがさらに好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-3)の対応値が上限値を上回ると、変倍時の第2レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-3)の上限値を-0.760とすることがより好ましい。
また、本願第2実施形態の変倍光学系は、以下の条件式(2-4)を満足することが望ましい。
(2-4) 0.410 < f3/f4 < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
f4:前記第4レンズ群の焦点距離。
(2-4) 0.410 < f3/f4 < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
f4:前記第4レンズ群の焦点距離。
条件式(2-4)は、第3レンズ群と第4レンズ群の適切な焦点距離比の範囲を規定するものである。本願第2実施形態の変倍光学系は、条件式(2-4)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることができる。
本願第2実施形態の変倍光学系の条件式(2-4)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の下限値を0.550とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-4)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の上限値を0.880とすることがより好ましい。
本願第2実施形態の変倍光学系の条件式(2-4)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の下限値を0.550とすることがより好ましい。
一方、本願第2実施形態の変倍光学系の条件式(2-4)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の上限値を0.880とすることがより好ましい。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第5レンズ群の位置が固定であることが望ましい。この構成により、変倍時に第4レンズ群から第5レンズ群へ入射する周辺光線の光軸からの高さを変化させることができる。これにより、変倍時の非点収差の変動をより良好に抑えることができる。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群とそれ以降のレンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第2実施形態の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が増加することが望ましい。この構成により、第3レンズ群と第4レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
また、本願第2実施形態の変倍光学系は、前記第5レンズ群は正屈折力を有することが望ましい。本願の変倍光学系では、第5レンズ群が正屈折力となることで、第5レンズ群の使用倍率は等倍より小さくなる。その結果、第1レンズ群から第4レンズ群までの合成焦点距離が相対的に長くでき、製造上発生する第1レンズ群から第4レンズ群までに配置された各レンズ間の偏芯に起因する偏芯コマ収差などの影響を相対的に小さく抑える事ができるようになり、高い光学性能の変倍光学系を提供することができる。
また、本願第2実施形態の変倍光学系は、無限遠物体から近距離物体への合焦時に、前記第3レンズ群が像側へ移動することが望ましい。本願第2実施形態の変倍光学系は、合焦時に第3レンズ群を像側へ移動させることで無限遠物体から近距離物体への合焦を良好に行うことができる。
本願第2実施形態の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する光学装置を実現することができる。
本願第2実施形態の変倍光学系の製造方法は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、前記第4レンズ群と前記第5レンズ群が以下の条件式(2-1)、(2-2)を満足するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化するようにし、無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動するようにすることを特徴としている。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
以下、本願第1及び第2実施形態の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1A、図1B、図1C、図1D、及び図1Eはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
(第1実施例)
図1A、図1B、図1C、図1D、及び図1Eはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1~第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、開口絞りS、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、開口絞りS、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h2/r)/[1+{1-κ(h/r)2}1/2]
+A4h4+A6h6+A8h8+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E-n」(nは整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。2次の非球面係数A2は0であり、記載を省略している。
x=(h2/r)/[1+{1-κ(h/r)2}1/2]
+A4h4+A6h6+A8h8+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E-n」(nは整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[合焦時の合焦群移動量]は、無限遠合焦状態から近距離合焦状態(撮影倍率-0.0100倍)への、合焦レンズ群(第3レンズ群)の移動量を示す。ここで、合焦レンズ群の移動方向は像側への移動を正とする。また撮影距離は、物体から像面までの距離を示す。
[レンズ群データ]には、各レンズ群の始面STと焦点距離fを示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
[合焦時の合焦群移動量]は、無限遠合焦状態から近距離合焦状態(撮影倍率-0.0100倍)への、合焦レンズ群(第3レンズ群)の移動量を示す。ここで、合焦レンズ群の移動方向は像側への移動を正とする。また撮影距離は、物体から像面までの距離を示す。
[レンズ群データ]には、各レンズ群の始面STと焦点距離fを示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
m r d nd νd
OP ∞
1 165.4019 1.6350 1.902650 35.73
2 41.8893 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8 -16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32.1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12 -29.3627 d12
13 ∞ d13 開口絞りS
14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16 -43.0421 d16
17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22 -22.7118 1.5000
23 -46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25 -30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
*28 -35.2149 d28
29 -40.0000 1.6432 1.497820 82.57
30 -19.4318 1.0000 1.834410 37.28
*31 -22.7996 BF
I ∞
[非球面データ]
m 6
κ 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13
m 28
κ 1.0000
A4 -5.59168E-05
A6 -2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000
m 31
κ 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8 -1.34346E-09
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.14
W T
f 9.47 ~ 133.87
FNO 4.12 ~ 5.78
ω 41.95 ~ 3.27°
Y 8.00 ~ 8.00
TL 112.25 ~ 165.65
W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04999 14.04993 14.05005
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 919.8426 1738.0661 5883.2483 8797.7469 12999.8339
移動量 0.1898 0.1340 0.1875 0.2426 0.3440
[レンズ群データ]
ST f
G1 1 68.08250
G2 6 -9.98760
G3 14 38.80284
G4 17 60.78065
G5 29 129.99998
[条件式対応値]
(1-1)f3/ft = 0.290
(1-2)(d3t-d3w)/ft =0.025
(1-3)f3/fim = 0.638 (fim=f4)
(2-1)f3/ft = 0.290
(2-2)(d3t-d3w)/ft =0.025
(2-3)f2/fw = -1.055
(2-4)f3/f4 = 0.638
[面データ]
m r d nd νd
OP ∞
1 165.4019 1.6350 1.902650 35.73
2 41.8893 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8 -16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32.1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12 -29.3627 d12
13 ∞ d13 開口絞りS
14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16 -43.0421 d16
17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22 -22.7118 1.5000
23 -46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25 -30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
*28 -35.2149 d28
29 -40.0000 1.6432 1.497820 82.57
30 -19.4318 1.0000 1.834410 37.28
*31 -22.7996 BF
I ∞
[非球面データ]
m 6
κ 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13
m 28
κ 1.0000
A4 -5.59168E-05
A6 -2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000
m 31
κ 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8 -1.34346E-09
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.14
W T
f 9.47 ~ 133.87
FNO 4.12 ~ 5.78
ω 41.95 ~ 3.27°
Y 8.00 ~ 8.00
TL 112.25 ~ 165.65
W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04999 14.04993 14.05005
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 919.8426 1738.0661 5883.2483 8797.7469 12999.8339
移動量 0.1898 0.1340 0.1875 0.2426 0.3440
[レンズ群データ]
ST f
G1 1 68.08250
G2 6 -9.98760
G3 14 38.80284
G4 17 60.78065
G5 29 129.99998
[条件式対応値]
(1-1)f3/ft = 0.290
(1-2)(d3t-d3w)/ft =0.025
(1-3)f3/fim = 0.638 (fim=f4)
(2-1)f3/ft = 0.290
(2-2)(d3t-d3w)/ft =0.025
(2-3)f2/fw = -1.055
(2-4)f3/f4 = 0.638
図2A、図2B、及び図2Cはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図3A、及び図3Bはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図4A、図4B、及び図4Cはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図5A、及び図5Bはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図3A、及び図3Bはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図4A、図4B、及び図4Cはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図5A、及び図5Bはそれぞれ、本願第1及び第2実施形態の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
各収差図において、FNOはFナンバー、NAは第1レンズ群に入射する光線の開口数、Aは光線入射角即ち半画角(単位は「°」)、H0は物体高(単位:mm)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
(第2実施例)
図6A、図6B、図6C、図6D、及び図6Eはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
図6A、図6B、図6C、図6D、及び図6Eはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1~第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
m r d nd νd
OP ∞
1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3 -200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8 -27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11 -15.0205 1.0000 1.883000 40.66
12 103.6128 d12
13 ∞ d13 開口絞りS
14 26.3876 1.0000 1.883000 40.66
15 13.2001 3.5030 1.593190 67.90
16 -39.4805 d16
17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22 -25.6259 1.5000
23 -19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25 -17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
*28 -28.1926 d28
29 -40.0000 1.7646 1.497820 82.57
30 -18.8409 1.0000 1.834410 37.28
*31 -25.0038 BF
I ∞
[非球面データ]
m 6
κ 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13
m 28
κ 1.0000
A4 -7.26393E-05
A6 -3.38257E-07
A8 1.26743E-09
A10 -2.83030E-11
A12 0.00000
m 31
κ 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 10.30 ~ 145.50
FNO 4.08 ~ 5.71
ω 39.62 ~ 3.01°
Y 8.00 ~ 8.00
TL 112.60 ~ 162.60
W M1 M2 M3 T
f 10.30001 18.00395 60.55030 89.50052 145.50102
ω 39.61866 23.08393 7.20247 4.88583 3.00545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.62642 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.7184 1753.8805 5887.3315 8709.3640 14147.3818
移動量 0.1340 0.1142 0.1657 0.2131 0.3302
[レンズ群データ]
ST f
G1 1 64.91265
G2 6 -9.00339
G3 14 38.07719
G4 17 46.69911
G5 29 260.10501
[条件式対応値]
(1-1)f3/ft = 0.262
(1-2)(d3t-d3w)/ft =0.005
(1-3)f3/fim = 0.815 (fim=f4)
(2-1)f3/ft = 0.262
(2-2)(d3t-d3w)/ft =0.005
(2-3)f2/fw = -0.874
(2-4)f3/f4 = 0.815
[面データ]
m r d nd νd
OP ∞
1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3 -200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8 -27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11 -15.0205 1.0000 1.883000 40.66
12 103.6128 d12
13 ∞ d13 開口絞りS
14 26.3876 1.0000 1.883000 40.66
15 13.2001 3.5030 1.593190 67.90
16 -39.4805 d16
17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22 -25.6259 1.5000
23 -19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25 -17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
*28 -28.1926 d28
29 -40.0000 1.7646 1.497820 82.57
30 -18.8409 1.0000 1.834410 37.28
*31 -25.0038 BF
I ∞
[非球面データ]
m 6
κ 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13
m 28
κ 1.0000
A4 -7.26393E-05
A6 -3.38257E-07
A8 1.26743E-09
A10 -2.83030E-11
A12 0.00000
m 31
κ 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 10.30 ~ 145.50
FNO 4.08 ~ 5.71
ω 39.62 ~ 3.01°
Y 8.00 ~ 8.00
TL 112.60 ~ 162.60
W M1 M2 M3 T
f 10.30001 18.00395 60.55030 89.50052 145.50102
ω 39.61866 23.08393 7.20247 4.88583 3.00545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.62642 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.7184 1753.8805 5887.3315 8709.3640 14147.3818
移動量 0.1340 0.1142 0.1657 0.2131 0.3302
[レンズ群データ]
ST f
G1 1 64.91265
G2 6 -9.00339
G3 14 38.07719
G4 17 46.69911
G5 29 260.10501
[条件式対応値]
(1-1)f3/ft = 0.262
(1-2)(d3t-d3w)/ft =0.005
(1-3)f3/fim = 0.815 (fim=f4)
(2-1)f3/ft = 0.262
(2-2)(d3t-d3w)/ft =0.005
(2-3)f2/fw = -0.874
(2-4)f3/f4 = 0.815
図7A、図7B、及び図7Cはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図8A、及び図8Bはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9A、図9B、及び図9Cはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図10A、及び図10Bはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図8A、及び図8Bはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9A、図9B、及び図9Cはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図10A、及び図10Bはそれぞれ、本願第1及び第2実施形態の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
(第3実施例)
図11A、図11B、図11C、図11D、及び図11Eはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
図11A、図11B、図11C、図11D、及び図11Eはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1~第4レンズ群G4が光軸に沿って物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
詳細には、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
m r d nd νd
OP ∞
1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3 -244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8 -20.3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0881 4.0634 1.808090 22.74
11 -12.5975 1.0000 1.883000 40.66
12 -38.6924 d12
13 ∞ d13 開口絞りS
14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 d16
17 13.5000 9.6782 1.717000 47.98
18 -38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21 -12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23 -39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25 -30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27 -8.5118 1.0000 1.820800 42.71
*28 -28.2741 d28
29 -40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
*31 -22.6207 BF
I ∞
[非球面データ]
m 6
κ -3.81950
A4 4.21558E-05
A6 -2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12 -2.85950E-13
m 28
κ 1.0000
A4 -6.70317E-05
A6 -2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000
m 31
κ 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8 -6.04092E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 9.27 ~ 130.95
FNO 4.11 ~ 5.71
ω 42.66 ~ 3.37°
Y 8.00 ~ 8.00
TL 113.35 ~ 167.85
W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.70436
d12 24.57776 16.27840 5.38702 3.71762 2.20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 901.3901 1749.0924 5884.2963 8698.3557 12722.0798
移動量 0.1657 0.1331 0.1783 0.2359 0.3221
[レンズ群データ]
ST f
G1 1 67.49208
G2 6 -9.52181
G3 14 41.09622
G4 17 53.39457
G5 29 147.67270
[条件式対応値]
(1-1)f3/ft = 0.314
(1-2)(d3t-d3w)/ft =0.025
(1-3)f3/fim = 0.770 (fim=f4)
(2-1)f3/ft = 0.314
(2-2)(d3t-d3w)/ft = 0.025
(2-3)f2/fw = -1.027
(2-4)f3/f4 = 0.770
[面データ]
m r d nd νd
OP ∞
1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3 -244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8 -20.3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0881 4.0634 1.808090 22.74
11 -12.5975 1.0000 1.883000 40.66
12 -38.6924 d12
13 ∞ d13 開口絞りS
14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 d16
17 13.5000 9.6782 1.717000 47.98
18 -38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21 -12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23 -39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25 -30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27 -8.5118 1.0000 1.820800 42.71
*28 -28.2741 d28
29 -40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
*31 -22.6207 BF
I ∞
[非球面データ]
m 6
κ -3.81950
A4 4.21558E-05
A6 -2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12 -2.85950E-13
m 28
κ 1.0000
A4 -6.70317E-05
A6 -2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000
m 31
κ 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8 -6.04092E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 9.27 ~ 130.95
FNO 4.11 ~ 5.71
ω 42.66 ~ 3.37°
Y 8.00 ~ 8.00
TL 113.35 ~ 167.85
W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.70436
d12 24.57776 16.27840 5.38702 3.71762 2.20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 901.3901 1749.0924 5884.2963 8698.3557 12722.0798
移動量 0.1657 0.1331 0.1783 0.2359 0.3221
[レンズ群データ]
ST f
G1 1 67.49208
G2 6 -9.52181
G3 14 41.09622
G4 17 53.39457
G5 29 147.67270
[条件式対応値]
(1-1)f3/ft = 0.314
(1-2)(d3t-d3w)/ft =0.025
(1-3)f3/fim = 0.770 (fim=f4)
(2-1)f3/ft = 0.314
(2-2)(d3t-d3w)/ft = 0.025
(2-3)f2/fw = -1.027
(2-4)f3/f4 = 0.770
図12A、図12B、及び図12Cはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図13A、及び図13Bはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図14A、図14B、及び図14Cはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図15A、及び図15Bはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図13A、及び図13Bはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図14A、図14B、及び図14Cはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図15A、及び図15Bはそれぞれ、本願第1及び第2実施形態の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
(第4実施例)
図16A、図16B、図16C、図16D、及び図16Eはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
図16A、図16B、図16C、図16D、及び図16Eはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と、両凸形状の正レンズL46と物体側に凹面を向けた負メニスカスレンズL47との接合レンズとからなる。なお、負レンズL45は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL47は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と、両凸形状の正レンズL46と物体側に凹面を向けた負メニスカスレンズL47との接合レンズとからなる。なお、負レンズL45は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL47は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1~第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第2中間焦点距離状態まで物体側へ移動し、第2中間焦点距離状態から第3中間焦点距離状態まで像側へ移動し、第3中間焦点距離状態から望遠端状態まで物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第2中間焦点距離状態まで物体側へ移動し、第2中間焦点距離状態から第3中間焦点距離状態まで像側へ移動し、第3中間焦点距離状態から望遠端状態まで物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表4)第4実施例
[面データ]
m r d nd νd
OP ∞
1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3 -200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8 -31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11 -12.7389 1.0000 1.902650 35.73
12 182.6358 d12
13 ∞ d13 開口絞りS
14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16 -54.4618 d16
17 13.5315 7.0129 1.816000 46.59
18 20.2242 1.0000 1.850260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22 -21.9214 1.5000
*23 -2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26 -8.0000 1.0000 1.851350 40.10
*27 -22.6238 d27
28 -75.6072 2.0606 1.497820 82.57
29 -18.0744 1.0000 1.834410 37.28
*30 -25.8110 BF
I ∞
[非球面データ]
m 6
κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13
m 23
κ 1.00000
A4 -3.10495E-05
A6 4.64001E-07
A8 -2.52074E-09
A10 1.73753E-10
A12 0.00000
m 27
κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000
m 30
κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 10.30 ~ 145.50
FNO 4.12 ~ 5.77
ω 39.65 ~ 3.02°
Y 8.00 ~ 8.00
TL 107.35 ~ 157.35
W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47054 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04886
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.8412 1751.1017 5887.3639 9762.4492 14160.5711
移動量 0.1413 0.1262 0.1768 0.2719 0.3338
[レンズ群データ]
ST f
G1 1 62.23195
G2 6 -9.03822
G3 14 37.53030
G4 17 49.24516
G5 28 130.00164
[条件式対応値]
(1-1)f3/ft = 0.258
(1-2)(d3T-d3W)/ft =0.015
(1-3)f3/fim = 0.762 (fim=f4)
(2-1)f3/ft = 0.258
(2-2)(d3T-d3W)/ft =0.015
(2-3)f2/fw = -0.877
(2-4)f3/f4 = 0.762
[面データ]
m r d nd νd
OP ∞
1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3 -200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 d5
*6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8 -31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11 -12.7389 1.0000 1.902650 35.73
12 182.6358 d12
13 ∞ d13 開口絞りS
14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16 -54.4618 d16
17 13.5315 7.0129 1.816000 46.59
18 20.2242 1.0000 1.850260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22 -21.9214 1.5000
*23 -2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26 -8.0000 1.0000 1.851350 40.10
*27 -22.6238 d27
28 -75.6072 2.0606 1.497820 82.57
29 -18.0744 1.0000 1.834410 37.28
*30 -25.8110 BF
I ∞
[非球面データ]
m 6
κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13
m 23
κ 1.00000
A4 -3.10495E-05
A6 4.64001E-07
A8 -2.52074E-09
A10 1.73753E-10
A12 0.00000
m 27
κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000
m 30
κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000
[各種データ]
変倍比 14.13
W T
f 10.30 ~ 145.50
FNO 4.12 ~ 5.77
ω 39.65 ~ 3.02°
Y 8.00 ~ 8.00
TL 107.35 ~ 157.35
W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47054 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04886
[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.8412 1751.1017 5887.3639 9762.4492 14160.5711
移動量 0.1413 0.1262 0.1768 0.2719 0.3338
[レンズ群データ]
ST f
G1 1 62.23195
G2 6 -9.03822
G3 14 37.53030
G4 17 49.24516
G5 28 130.00164
[条件式対応値]
(1-1)f3/ft = 0.258
(1-2)(d3T-d3W)/ft =0.015
(1-3)f3/fim = 0.762 (fim=f4)
(2-1)f3/ft = 0.258
(2-2)(d3T-d3W)/ft =0.015
(2-3)f2/fw = -0.877
(2-4)f3/f4 = 0.762
図17A、図17B、及び図17Cはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図18A、及び図18Bはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図19A、図19B、及び図19Cはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図20A、及び図20Bはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図18A、及び図18Bはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図19A、図19B、及び図19Cはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図20A、及び図20Bはそれぞれ、本願第1及び第2実施形態の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
上記各実施例によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
また、本願の変倍光学系において、合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
次に、本願第1及び第2実施形態の変倍光学系を備えたカメラを図21に基づいて説明する。
図21は、本願第1及び第2実施形態の変倍光学系を備えたカメラの構成を示す図である。
図21に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
図21は、本願第1及び第2実施形態の変倍光学系を備えたカメラの構成を示す図である。
図21に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、高変倍比を有しつつ、小型化と高い光学性能を実現することができる。なお、上記第2~第4実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
次に、本願第1実施形態の変倍光学系の製造方法の概略を図22に基づいて説明する。
図22に示す本願第1実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、以下のステップS11、S12、S13を含むものである。
図22に示す本願第1実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、以下のステップS11、S12、S13を含むものである。
ステップS11:レンズ鏡筒の最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を配置する。
ステップS12:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、第3レンズ群と第4レンズ群との間隔、及び第4レンズ群と第5レンズ群との間隔が変化するようにする。
ステップS13:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って移動するようにする。
ステップS13:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って移動するようにする。
斯かる本願第1実施形態の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。
最後に、本願第2実施形態の変倍光学系の製造方法の概略を図23に基づいて説明する。
図22に示す本願第2実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、以下のステップS21、S22、S23を含むものである。
図22に示す本願第2実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、以下のステップS21、S22、S23を含むものである。
ステップS21:第4レンズ群と第5レンズ群が以下の条件式(2-1)、(2-2)を満足するようにし、各レンズ群をレンズ鏡筒内に物体側から順に配置する。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
(2-1) 0.220 < f3/ft < 0.500
(2-2) -0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
ステップS22:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、第3レンズ群と第4レンズ群との間隔、及び第4レンズ群と第5レンズ群との間隔が変化するようにする。
ステップS23:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って移動するようにする。
ステップS23:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って移動するようにする。
斯かる本願第2実施形態の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。
Claims (26)
- 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化し、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系。 - 広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動することを特徴とする請求項1に記載の変倍光学系。
- 以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
0.220 < f3/ft < 0.500
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離。 - 前記第3レンズ群と前記固定レンズ群の間に配置され、屈折力が正の中間レンズ群を有することを特徴とする請求項1に記載の変倍光学系。
- 以下の条件式を満足することを特徴とする請求項4に記載の変倍光学系。
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。 - 前記第3レンズ群と前記固定レンズ群との間には、前記中間レンズ群のみが配置されることを特徴とする請求項4に記載の変倍光学系。
- 以下の条件式を満足することを特徴とする請求項4に記載の変倍光学系。
0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。 - 広角端状態から望遠端状態への変倍時に、前記中間レンズ群と前記固定レンズ群の間隔が増加することを特徴とする請求項4に記載の変倍光学系。
- 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が増加することを特徴とする請求項1に記載の変倍光学系。
- 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群の間隔が減少することを特徴とする請求項1に記載の変倍光学系。
- 広角端状態から望遠端状態への変倍時に、前記第3レンズ群と像面との間隔が増加することを特徴とする請求項1に記載の変倍光学系。
- 前記固定レンズ群は、正屈折力を有することを特徴とする請求項1に記載の変倍光学系。
- 無限遠物体から近距離物体への合焦時に、前記第3レンズ群は像側へ移動することを特徴とする請求項1に記載の変倍光学系。
- 以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
-1.240 < f2/fw < -0.650
但し、
fw:前記変倍光学系の広角端状態における全系焦点距離、
f2:前記第2レンズ群の焦点距離。 - 請求項1に記載の変倍光学系を有することを特徴とする光学装置。
- 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。 - 広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動することを特徴とする請求項16に記載の変倍光学系。
- 以下の条件式を満足することを特徴とする請求項16に記載の変倍光学系。
-1.240 < f2/fw < -0.650
但し、
fw:前記変倍光学系の広角端状態における全系焦点距離、
f2:前記第2レンズ群の焦点距離。 - 以下の条件式を満足することを特徴とする請求項16に記載の変倍光学系。
0.410 < f3/f4 < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
f4:前記第4レンズ群の焦点距離。 - 広角端状態から望遠端状態への変倍時に、前記第5レンズ群の位置が固定であることを特徴とする請求項16に記載の変倍光学系。
- 広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群の間隔が増加することを特徴とする請求項16に記載の変倍光学系。
- 前記第5レンズ群は正屈折力を有することを特徴とする請求項16に記載の変倍光学系。
- 無限遠物体から近距離物体への合焦時に、前記第3レンズ群は像側へ移動することを特徴とする請求項1に記載の変倍光学系。
- 請求項16に記載の変倍光学系を有することを特徴とする光学装置。
- 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化するようにし、
最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする変倍光学系の製造方法。 - 物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が以下の条件を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔が変化するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動するようにすることを特徴とする変倍光学系の製造方法。
0.220 < f3/ft < 0.500
-0.010 < (d3t-d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記第4レンズ群の最も物体側のレンズ面までの光軸上の距離。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380057336.5A CN104919354B (zh) | 2012-10-30 | 2013-10-29 | 可变放大率光学系统、光学装置,和用于可变放大率光学系统的生产方法 |
US14/700,493 US10168512B2 (en) | 2012-10-30 | 2015-04-30 | Variable magnification optical system, optical device, and production method for variable magnification optical system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-238735 | 2012-10-30 | ||
JP2012-238736 | 2012-10-30 | ||
JP2012238736A JP6326713B2 (ja) | 2012-10-30 | 2012-10-30 | 変倍光学系、光学装置 |
JP2012238735A JP6079137B2 (ja) | 2012-10-30 | 2012-10-30 | 変倍光学系、光学装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/700,493 Continuation US10168512B2 (en) | 2012-10-30 | 2015-04-30 | Variable magnification optical system, optical device, and production method for variable magnification optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069449A1 true WO2014069449A1 (ja) | 2014-05-08 |
Family
ID=50627353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079240 WO2014069449A1 (ja) | 2012-10-30 | 2013-10-29 | 変倍光学系、光学装置、変倍光学系の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10168512B2 (ja) |
CN (1) | CN104919354B (ja) |
WO (1) | WO2014069449A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110749987B (zh) * | 2019-10-23 | 2021-07-20 | 浙江大华技术股份有限公司 | 一种镜头 |
WO2024221180A1 (en) * | 2023-04-24 | 2024-10-31 | Huawei Technologies Co., Ltd. | Variable optical system and electronic device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08179214A (ja) * | 1994-12-21 | 1996-07-12 | Canon Inc | ズームレンズ |
JP2007079194A (ja) * | 2005-09-15 | 2007-03-29 | Konica Minolta Photo Imaging Inc | 変倍光学系、および撮像装置 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3357930B2 (ja) | 1994-03-15 | 2002-12-16 | 株式会社ニコン | ズームレンズ |
US5666229A (en) | 1993-07-12 | 1997-09-09 | Nikon Corporation | Variable focal length optical system |
JP3267435B2 (ja) | 1994-03-24 | 2002-03-18 | キヤノン株式会社 | ズームレンズ |
JP3067481B2 (ja) | 1993-08-04 | 2000-07-17 | キヤノン株式会社 | ズームレンズ |
US5691851A (en) | 1993-07-14 | 1997-11-25 | Canon Kabushiki Kaisha | Zoom lens |
JPH0850245A (ja) | 1994-08-05 | 1996-02-20 | Canon Inc | ズームレンズ |
US6028716A (en) | 1993-11-29 | 2000-02-22 | Canon Kabushiki Kaisha | Zoom lens |
JP3755609B2 (ja) | 1994-09-29 | 2006-03-15 | 株式会社ニコン | 像シフトが可能なズームレンズ |
JPH08146354A (ja) | 1994-11-22 | 1996-06-07 | Nikon Corp | 像シフトが可能なズームレンズ |
US5831768A (en) | 1994-10-06 | 1998-11-03 | Nikon Corporation | Zoom lens capable of shifting an image |
JPH08190052A (ja) | 1995-01-12 | 1996-07-23 | Nikon Corp | 近距離合焦可能なズームレンズ |
JPH11271614A (ja) | 1998-03-25 | 1999-10-08 | Nikon Corp | 可変焦点距離レンズ系 |
JPH11295595A (ja) | 1998-04-10 | 1999-10-29 | Canon Inc | ズームレンズ |
JP2000275525A (ja) | 1999-03-24 | 2000-10-06 | Nikon Corp | 可変焦点距離レンズ系 |
US6414800B1 (en) | 1999-05-10 | 2002-07-02 | Canon Kabushiki Kaisha | Variable magnification optical system and camera having the same |
JP2002098893A (ja) | 2000-09-26 | 2002-04-05 | Minolta Co Ltd | 撮像レンズ装置 |
JP2004061681A (ja) | 2002-07-26 | 2004-02-26 | Canon Inc | ズームレンズ及びそれを有する光学機器 |
JP2004102089A (ja) | 2002-09-12 | 2004-04-02 | Minolta Co Ltd | 撮像装置 |
JP2006301474A (ja) * | 2005-04-25 | 2006-11-02 | Sony Corp | ズームレンズ及び撮像装置 |
JP2008158418A (ja) | 2006-12-26 | 2008-07-10 | Sony Corp | ズームレンズ及び撮像装置 |
JP2008164725A (ja) | 2006-12-27 | 2008-07-17 | Sony Corp | ズームレンズ及び撮像装置 |
JP5289795B2 (ja) | 2008-02-20 | 2013-09-11 | オリンパスイメージング株式会社 | ズームレンズ及びそれを用いた撮像装置 |
JP5162305B2 (ja) | 2008-04-02 | 2013-03-13 | パナソニック株式会社 | ズームレンズ系、交換レンズ装置、及びカメラシステム |
JP2010019959A (ja) | 2008-07-09 | 2010-01-28 | Olympus Imaging Corp | ズームレンズ及びそれを有する撮像装置 |
EP2244117B1 (en) * | 2009-04-24 | 2017-05-31 | Ricoh Company, Ltd. | Zoom lens unit |
JP5527516B2 (ja) | 2009-10-23 | 2014-06-18 | 株式会社ニコン | 変倍光学系、及び、この変倍光学系を備える光学機器 |
JP5521496B2 (ja) | 2009-11-04 | 2014-06-11 | 株式会社ニコン | 変倍光学系、光学装置 |
US8339713B2 (en) | 2009-11-04 | 2012-12-25 | Nikon Corporation | Zoom optical system, optical apparatus and method for manufacturing zoom optical system |
JP5544959B2 (ja) | 2010-03-18 | 2014-07-09 | 株式会社ニコン | 変倍光学系、光学機器、変倍光学系の製造方法 |
JP2012042557A (ja) * | 2010-08-16 | 2012-03-01 | Sony Corp | 撮像ユニット及び撮像装置 |
JP2012078426A (ja) * | 2010-09-30 | 2012-04-19 | Sony Corp | ズームレンズ及び撮像装置 |
US8804249B2 (en) * | 2012-04-27 | 2014-08-12 | Olympus Imaging Corp. | Zoom lens and image pickup apparatus using the same |
-
2013
- 2013-10-29 CN CN201380057336.5A patent/CN104919354B/zh active Active
- 2013-10-29 WO PCT/JP2013/079240 patent/WO2014069449A1/ja active Application Filing
-
2015
- 2015-04-30 US US14/700,493 patent/US10168512B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08179214A (ja) * | 1994-12-21 | 1996-07-12 | Canon Inc | ズームレンズ |
JP2007079194A (ja) * | 2005-09-15 | 2007-03-29 | Konica Minolta Photo Imaging Inc | 変倍光学系、および撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
US10168512B2 (en) | 2019-01-01 |
CN104919354A (zh) | 2015-09-16 |
US20150234161A1 (en) | 2015-08-20 |
CN104919354B (zh) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6127462B2 (ja) | 変倍光学系、光学装置 | |
WO2014112176A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6182868B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2014077120A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6102269B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2014069449A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6299060B2 (ja) | 変倍光学系、光学装置 | |
WO2014069446A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2014069447A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2015163368A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6268697B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2014065266A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6326712B2 (ja) | 変倍光学系、光学装置 | |
JP6451074B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
WO2014069448A1 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6540857B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 | |
JP6326713B2 (ja) | 変倍光学系、光学装置 | |
JP6079137B2 (ja) | 変倍光学系、光学装置 | |
JP6131567B2 (ja) | 変倍光学系、光学装置 | |
JP6131566B2 (ja) | 変倍光学系、光学装置 | |
JP6299059B2 (ja) | 変倍光学系、光学装置 | |
JP6355885B2 (ja) | 変倍光学系、光学装置 | |
JP6145991B2 (ja) | 変倍光学系、光学装置 | |
JP6136195B2 (ja) | 変倍光学系、光学装置 | |
JP6311433B2 (ja) | 変倍光学系、光学装置、変倍光学系の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13851602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13851602 Country of ref document: EP Kind code of ref document: A1 |