Nothing Special   »   [go: up one dir, main page]

WO2014068948A1 - Charging device and method for controlling same - Google Patents

Charging device and method for controlling same Download PDF

Info

Publication number
WO2014068948A1
WO2014068948A1 PCT/JP2013/006377 JP2013006377W WO2014068948A1 WO 2014068948 A1 WO2014068948 A1 WO 2014068948A1 JP 2013006377 W JP2013006377 W JP 2013006377W WO 2014068948 A1 WO2014068948 A1 WO 2014068948A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage value
difference
secondary battery
battery
Prior art date
Application number
PCT/JP2013/006377
Other languages
French (fr)
Japanese (ja)
Inventor
竜三 杉原
建史 八木
正吾 住友
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014068948A1 publication Critical patent/WO2014068948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging device for an alkaline secondary battery and a control method thereof, and more particularly, to a charging device used for a nickel hydride secondary battery or a nickel cadmium secondary battery method and a control method thereof.
  • FIG. 9 is a schematic diagram showing the relationship between the charging time and the battery voltage in the conventional charging device described in Patent Document 1.
  • the time T (n) required to increase the unit voltage of 10 mV / cell is 10 mV / cell last time. It is determined whether or not the time T (n-1) required for the rise has become twice or more, and such a case is detected as a peak voltage, and charging is stopped as full charge.
  • An object of this invention is to provide the charging device which improves charging efficiency, and its control method in view of the said problem.
  • a method for controlling a charging device monitors a voltage value of the alkaline secondary battery while supplying a constant current to the alkaline secondary battery, and the voltage value is When the reference voltage value indicating the upper limit of the flat portion in the curve representing the voltage value characteristics during charging of the alkaline secondary battery is exceeded, the amount of change in the voltage value per unit time decreases from increase over time. Charging is stopped when turning to.
  • the display when the amount of change in the voltage value per unit time is equal to or greater than a predetermined value, the display may be displayed until charging is stopped. In another aspect, the charging may be stopped before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time. In another aspect, the charging efficiency, which is the ratio of the discharge capacity that can be taken out from the alkaline secondary battery by discharging to the amount of charge used for charging the alkaline secondary battery, is in the range of 95% to 99%. In the configuration, the charging of the alkaline secondary battery may be stopped.
  • a set of time (TN, TN-1), (TN-2, TN-3) composed of two times separated by a unit time ⁇ T and in ascending order with respect to the natural number N
  • voltage values VN, VN-1, VN-2, VN-3 of the alkaline secondary battery, VN-4, VN-5, VN-6, and VN-7 are measured, and the voltage value change V′N indicated by the difference VN ⁇ VN-1 between the voltage value VN and the voltage value VN ⁇ 1, and the voltage value
  • the difference VN-2 between the voltage value VN-2 and the voltage value VN-3, and the difference VN-4- between the voltage value VN-4 and the voltage value VN-5.
  • V ′′ N ⁇ 2 is positive and the voltage value change difference V ′′ N ⁇ 1 and the voltage value change difference V ′′ N are both negative
  • the configuration may be such that charging is stopped.
  • the alkaline secondary battery may be a nickel hydride secondary battery or a nickel cadmium secondary battery.
  • the charging device according to one embodiment of the present invention is a charging device that charges an alkaline secondary battery, and is provided in a constant current power supply unit and a current path connecting the constant current power supply unit and the alkaline secondary battery.
  • the voltage value of the switch unit and the alkaline secondary battery was monitored, and the voltage value exceeded the reference voltage value indicating the upper limit of the flat part in the curve representing the voltage value characteristics during charging of the alkaline secondary battery.
  • the switch unit includes a control unit that cuts off the current to the battery when the amount of change in the voltage value per unit time changes from increasing to decreasing with time. .
  • the display device further includes a display, and the control unit displays the display until the charging is stopped when the amount of change in the voltage value per unit time becomes equal to or greater than a predetermined value.
  • the structure characterized by making it may be sufficient.
  • the control unit causes the switch unit to cut off the current to the battery before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time. The structure characterized by this may be used.
  • control unit has a charging efficiency of 95% to 99%, which is a ratio of a discharge capacity that can be taken out from the alkaline secondary battery by discharging to an amount of charge used for charging the alkaline secondary battery.
  • the switch unit may be configured to cut off the current to the battery.
  • control unit is composed of two times separated by a unit time ⁇ T, and a set of time (TN, TN-1), (TN-2, TN-3), (TN-4, TN-5), and (TN-6, TN-7) at the respective times included in the voltage values VN, VN-1, VN-2 of the alkaline secondary battery.
  • VN-3, VN-4, VN-5, VN-6, and VN-7 respectively, and a voltage value change V ′ indicated by a difference VN ⁇ VN ⁇ 1 between the voltage value VN and the voltage value VN ⁇ 1.
  • N a voltage value change V′N ⁇ 1 indicated by a difference VN ⁇ 2 ⁇ VN ⁇ 3 between a voltage value VN ⁇ 2 and a voltage value VN ⁇ 3, and a voltage value VN ⁇ 4 and a voltage value VN ⁇ 5
  • Voltage value change V'N-2 indicated by the difference VN-4-VN-5 and voltage value change V 'indicated by the difference VN-6-VN-7 between the voltage value VN-6 and the voltage value VN-7 N-3 is calculated, and further, a voltage value change difference V ′′ N indicated by a difference V′N ⁇ V′N ⁇ 1 between the voltage value change V′N and the voltage value change V′N ⁇ 1.
  • the voltage value change difference V ′′ N ⁇ 1 represented by the difference V′N ⁇ 1 ⁇ V′N-2 between the voltage value change V′N ⁇ 1 and the voltage value change V′N-2, and the voltage value A voltage value change difference V ′′ N-2 indicated by a difference V′N-2-V′N-3 between the change V′N-2 and the voltage value change V′N-3 is calculated, and the voltage When the value change difference V ′′ N-2 is positive and the voltage value change difference V ′′ N ⁇ 1 and the voltage value change difference V ′′ N are both negative, the alkali 2
  • the structure characterized by stopping the charge to a secondary battery may be sufficient.
  • the charging device can detect the inflection point of the voltage gradient in the battery voltage during charging, stop charging, and increase charging efficiency. .
  • FIG. 1 shows the ratio of the amount of charged electricity to the rated battery capacity (hereinafter abbreviated as charge ratio) and the ratio of the discharge capacity to the rated battery capacity (hereinafter referred to as discharge) in the alkaline secondary battery obtained by the inventors through experiments.
  • FIG. 6 is a characteristic diagram showing a relationship with a capacity ratio).
  • the “charged electricity amount” refers to the amount of electricity (mAh) used for charging, and in the case of constant current charging, it is the product of the current value and the charging time.
  • discharge capacity refers to a capacity (mAh) that is charged to a battery and can be taken out by discharge.
  • the inventors diligently studied a method for detecting that the charging electricity amount ratio is in the range of 80% to 100% during charging, in order to realize a method of stopping charging in a state where charging efficiency is high, The inventors have arrived at a charging device and a control method thereof according to an aspect of an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an electrically functional configuration of charging apparatus 100 according to one aspect of the embodiment.
  • a charging device 100 according to one embodiment of the present invention is a charging device that charges an alkaline secondary battery 1 (hereinafter abbreviated as a battery 1) that is detachable from the device.
  • the power supply part 2 which supplies an electric current
  • the switch part 3 which supplies or interrupts
  • the charging device 100 further includes a control unit 4 that monitors the voltage value output from the battery 1 to detect an inflection point in the voltage gradient, and operates the switch unit 3 and the power supply unit 2. To instruct the switch unit 3 to supply current to the battery 1 or to interrupt the supply of current.
  • the charging device 100 charges an AA or AAA battery.
  • As the alkaline secondary battery for example, a nickel hydride secondary battery or a nickel cadmium secondary battery can be used. Also, 1 to 4 batteries 1 are detachably attached to the charging device 100, and the charging device 100 can charge them simultaneously.
  • Power supply unit 2 The power supply unit 2 is a constant current power supply that supplies a charging current to the battery 1.
  • the switch unit 3 is connected between the power source unit 2 and the battery 1, and supplies or blocks a charging current to the battery 1 based on a signal from the control unit 4 described later.
  • the control unit 4 incorporates a microcomputer (not shown), outputs a charge on / off signal of the switch unit 3, and switches the switch unit 3 on and off to adjust the charging current.
  • the switch unit 3 is turned on / off to adjust the duty ratio, and the battery 1 is charged with a constant current having a desired average current value.
  • control unit 4 turns on and off the switch unit 3 during charging, periodically stops charging, and measures the output voltage of the battery 1 at the measurement point a. At this time, for example, charging is stopped for about 0.1 to 2.0 seconds during a period of about 1 to 5 seconds. This is because the battery voltage can be measured more accurately when charging is stopped.
  • the configuration is not limited to this, and the battery voltage may be measured during charging.
  • the control unit 4 outputs a charging voltage / current control signal to the power supply unit 2 and controls the power supply unit 2 to be on or off. Details of the charge control method in the control unit 4 will be described later.
  • the temperature sensor 5 detects the temperature of the battery 1 and outputs a temperature signal to the control unit 4.
  • the temperature sensor 5 is composed of a thermistor or the like.
  • the battery 1 is attached to the charging device 100 and the battery 1 and the temperature sensor 5 are in close contact with each other, or the battery 1 is disposed at a position where the temperature of the battery 1 can be monitored appropriately without contact.
  • the temperature sensor 5 is thermally connected. When the temperature of the battery 1 exceeds a predetermined temperature, the control unit 4 stops charging.
  • control unit 4 when the battery temperature exceeds 60 to 65 ° C., the control unit 4 turns off the switch unit 3 and stops charging. Thereafter, when the battery temperature falls to a chargeable temperature, the control unit 4 turns on the switch unit 3 again and resumes charging after continuing.
  • control unit 4 determines a predetermined voltage value V0 described later corresponding to the battery temperature.
  • LED6 charge status display
  • the LED 6 receives a signal from the control unit 4 and displays a charging state such as a charging state or a full charging state. For example, during charging, the control unit 4 explicitly turns on the LED 6 by turning on the LED 6 as “charging state display”.
  • LED7 energy saving induction lamp
  • the environmental temperature when charging is started can be measured using the temperature sensor 5. This is because the temperature sensor 5 indicates the same temperature as the environmental temperature since the charging is before the battery is heated to a high temperature. In addition, it is also possible to provide a separate temperature sensor in a place where it is difficult to be affected by the temperature of the battery and components in the case of the charging device.
  • the control unit 4 turns on the LED 7 as a display.
  • the predetermined value refers to, for example, a case where the increase in battery voltage per unit time is 3 mV or more during about 1.5 to 2.5 minutes. Then, the lighting of the LED 7 is continued until the charging is stopped, and when the charging is stopped, the LED 7 is turned off. As will be described later, in the charging device of the present embodiment, charging is stopped in a state where high charging efficiency is maintained. It is possible to display to the user that the energy saving charging is performed by turning on the LED 7.
  • FIG. 3A is a schematic diagram of a curve representing the voltage value characteristic of the battery 1 showing the relationship between the charging time and the battery voltage in the charging device 100 according to one aspect of the embodiment.
  • the control unit 4 performs control based on the following three types of criteria.
  • the control unit 4 determines whether or not the predetermined time T0 has elapsed, and continues charging until the predetermined time T0 has elapsed. This is because, in an inactive battery such as a nickel metal hydride secondary battery that has been used for a long period of time or has been repeatedly charged at a shallow depth of discharge and thus has a memory effect, when this is charged, it is within this predetermined time T0. This is because a peak voltage may occur, and these are detected to prevent erroneous detection of full charge. (2) In order to prevent detection of an inflection point, which will be described later, from a flat portion in the battery voltage characteristic curve shown in FIG.
  • the control unit 4 will be described later until it reaches a predetermined voltage value V0 or more (3 ) Detection based on the criteria is not performed.
  • the predetermined voltage value V0 is the upper limit voltage value of the flat portion in the curve representing the voltage value characteristics when the battery 1 is charged, and is about 1.38V to 1.45V at a battery temperature of about 20-30 ° C. Desirably, the value is about 1.40V or more and 1.43V or less, for example, about 1.42V.
  • the control unit 4 monitors the voltage value output from the battery 1, and when the voltage value is equal to or higher than the predetermined voltage value V0, the change amount ⁇ V of the voltage value per unit time ⁇ T increases with time. Detects that it started to decrease. In that case, the switch unit 3 is made to cut off the current supply to the battery 1.
  • the curve representing the voltage value characteristic during charging of the battery 1 shows a flat portion where the voltage gradually rises, and then the slope of the rise once increases.
  • the charging time B reaches its peak.
  • an inflection point in the gradient of the battery voltage value generated during the charging time A is detected.
  • the control unit 4 monitors the voltage value V output from the battery 1, and calculates the amount of change ⁇ V in the voltage value per unit time ⁇ T when the voltage value is equal to or greater than the predetermined voltage value V0.
  • ⁇ V changes from increasing to decreasing with time, the voltage is detected as an inflection point.
  • the inflection point is detected when a decrease in ⁇ V is detected twice in succession.
  • Such an inflection point has been found by the inventors 'examination by the inventors' experiments that the above-described charging electricity amount ratio is in the range of 80% to 100%.
  • the control unit 4 By detecting this inflection point in the control unit 4, it is possible to stop charging in a state where the charge electricity amount ratio is in the range of 80% to 100%.
  • FIG. 3B is a schematic diagram illustrating a relationship between charging time and charging efficiency in the charging device 100 according to one aspect of the embodiment.
  • FIG. 3 (b) by detecting the inflection point at the charging time A and stopping the charging, the charging efficiency is lowered when the charging is continued beyond the charging time B and the energy loss caused thereby. Can be prevented.
  • FIG. 4 is a flowchart showing an operation related to the charging operation of charging apparatus 100 according to one aspect of the first embodiment.
  • Step 0 (S0) the controller 4 determines whether or not the predetermined time T0 has elapsed after the start of charging, and repeats step 0 (S0) until the predetermined time T0 elapses to continue charging. This is because an inactive battery such as a nickel metal hydride secondary battery in which a memory effect has occurred may generate a peak voltage within this predetermined time T0, and prevent these from being erroneously detected as full charge. Because.
  • the predetermined time T0 is counted by a timer built in the control unit 4 to determine whether the predetermined time T0 has elapsed.
  • the predetermined time T0 uses, for example, 3 minutes and a current of 0.3 It (about A for an AA battery). When the predetermined time T0 has elapsed, the process proceeds to the next.
  • step 1 (S1) the control unit 4 measures the output voltage V of the battery 1 at the measurement point a in FIG. 1 during charging. Then, after the unit time ⁇ T has elapsed, the output voltage V of the battery 1 is measured again. Then, a voltage change ⁇ V that is a change amount of the voltage V is calculated, and charging is stopped when a positive (> 0) ⁇ V is not detected. On the other hand, if positive (> 0) ⁇ V is detected, ⁇ V is stored in the memory built in the control unit 4 and then the process proceeds to the next.
  • the unit time ⁇ T is preferably in the range of about 1.5 minutes to 2.5 minutes.
  • the time is shorter than 1.5 minutes, since the time interval is short and the voltage change is small, it is necessary to accurately measure small voltage fluctuations separately from noise or the like, which increases the cost of the apparatus.
  • the time interval is increased beyond 3 minutes, the time resolution for detecting the inflection point will be low, and the inflection point may be detected after the peak voltage is exceeded. It may not be detected correctly.
  • the control unit 4 turns on the LED 7 when the voltage change amount ⁇ V per unit time ⁇ T becomes equal to or greater than a predetermined value.
  • the predetermined value refers to, for example, a case where the increase in battery voltage per unit time is 3 mV or more during about 1.5 to 2.5 minutes.
  • the control unit 4 has a battery voltage equal to or higher than a predetermined voltage value (for example, 1.42 V) that is an upper limit voltage value of a flat portion in a curve representing a voltage value characteristic when the battery 1 is charged. It is determined whether or not. If it does not reach the predetermined voltage value, the process returns to step 1 (S1) to continue charging.
  • a predetermined voltage value for example, 1.42 V
  • Step 3 (S3) the control unit 4 compares ⁇ V calculated in step 1 (S1) with ⁇ V calculated in step 1 (S1) in the previous loop. If the calculated ⁇ V is increased compared to the previously calculated ⁇ V, or if ⁇ V is calculated for the first time this time, the process returns to step 1 (S1) and charging is continued. On the other hand, when ⁇ V calculated this time is smaller than ⁇ V calculated last time, the identification information indicating that ⁇ V has decreased is stored in the memory built in the control unit 4 and then the process proceeds to the next.
  • Step 4 (S4) the control unit 4 determines whether or not ⁇ V detected in step 3 (S3) has decreased in the previous loop based on the presence or absence of the identification information stored in the control unit 4. . If the control unit 4 has identification information indicating that ⁇ V has decreased in the previous loop, it is determined that ⁇ V has decreased continuously twice. In that case, charging is stopped. On the other hand, when there is no identification information and it cannot be said that ⁇ V has decreased in the previous loop, the process returns to step 1 (S1) to continue charging.
  • the charging experiment was performed using the charging device 100 according to one aspect of the described embodiment.
  • the battery 1 was a nickel metal hydride secondary battery having a battery capacity of 1900 mAh, four batteries were connected in parallel, and a constant current of 2.2 A was supplied from the power supply unit 2 to perform charging.
  • the battery 1 was charged while measuring the voltage value output from the battery 1 and the temperature of the battery surface, and the discharge capacity, which is the capacity that can be taken out by discharging after different charging times, was measured.
  • the discharge capacity which is the capacity that can be taken out by discharging after different charging times, was measured.
  • FIG. 5 is an experimental result showing the relationship between the charging time and the battery voltage in the charging apparatus 100. 3 shows a curve representing voltage value characteristics during charging of the battery 1 in the charging apparatus 100. As shown in FIG.
  • the inflection point of the voltage gradient at which the change amount ⁇ of the voltage value per unit time ⁇ T turns from increasing to decreasing with the lapse of time was 3.4 hours charging time indicated by A.
  • the control unit 4 causes the switch unit to cut off the current to the battery.
  • charging was able to be stopped by detecting the inflection point of the voltage gradient at the charging time of 3.4 hours.
  • FIG. 6 is an experimental result showing the relationship between the charging time, the charge electricity amount, and the discharge capacity in the charging apparatus 100. As shown in FIG. 6, the amount of charged electricity is proportional to the charging time. On the other hand, the discharge capacity is proportional to the charging time up to about 3.2 hours, but thereafter, the slope gradually decreases and reaches the battery capacity of 1900 mAh in the charging time of about 3.8 hours.
  • FIG. 7 shows experimental results showing the relationship between the charging time, the charging efficiency, and the discharge capacity ratio in the charging apparatus 100.
  • the discharge capacity ratio is the ratio of the discharge capacity to the rated battery capacity of 1900 mAh at each charging time. As shown in FIG. 7, the discharge capacity ratio is proportional to the charging time up to about 3.2 hours, but thereafter, the slope gradually decreases and reaches about 100% at the charging time of about 3.8 hours.
  • the charging efficiency shows a high value of about 99% or more until about 3.2 hours, but after that, gradually decreases and is about 95% at the charging time 3.6 h indicating the peak voltage, the discharge capacity ratio. However, it decreases to about 91% at a charging time of about 3.8 hours reaching about 100%.
  • the charging device 100 is configured to stop charging at a charging time of 3.4 hours indicated by point A by detecting an inflection point in the voltage gradient of the battery 1 and stopping charging.
  • the charging efficiency in the charging time of 3.4 hours is about 99%, and higher charging efficiency can be realized as compared with the conventional method in which charging is stopped after detecting the peak voltage.
  • the voltage value of battery 1 changes from increasing to decreasing over time in charging time 3.6 hours. The charging is stopped before the point.
  • the unit time ⁇ T is set in the range of about 1.5 to 2.5 minutes, the inflection point in the voltage gradient of the battery 1 is detected, and the charging is stopped, so that the voltage value of the battery 1 is changed over time. Charging can be stopped before point B, which turns from increasing to decreasing as time passes.
  • the charging efficiency in the charging time of 3.6 hours is about 95%, and higher charging efficiency can be realized as compared with the conventional method in which the charging is stopped after detecting the peak voltage.
  • FIG. 8 shows experimental results showing the relationship between the charging time and the battery temperature in the charging apparatus 100. As shown in FIG. 8, the battery temperature first rises after charging is started, and shows a constant value of about 25.5 ° C.
  • the charging device 100 is configured to stop charging at the charging time of 3.4 hours indicated by point A.
  • the battery temperature at the charging time of 3.4 hours is about 25.5 ° C., and charging can be stopped before the rapid temperature rise starts. Compared with the conventional configuration in which charging is stopped after detecting the peak voltage. Battery temperature can be reduced.
  • the charging device 100 and the control method thereof according to the embodiment of the present invention monitor the voltage value output from the battery 1 and, when the voltage value is equal to or higher than the predetermined voltage value, per unit time When the amount of change in the voltage value changes from increasing to decreasing with the passage of time, the switching unit 3 is provided with a control unit that cuts off the current to the battery.
  • the control unit 4 calculates a voltage change ⁇ V that is a change amount of the output voltage V of the battery 1 before and after the unit time ⁇ T during charging, and increases or decreases By detecting this, the inflection point of the voltage gradient is detected.
  • the control unit 4 only needs to detect an increase / decrease over time of the change amount of the voltage value per unit time, and may be configured as follows.
  • the control unit 4 detects the battery voltage at each charging time, and calculates the charging time ⁇ T required for the unit voltage change ⁇ V during charging from the battery voltage. And it was set as the structure which detects the inflection point of a voltage gradient by detecting the increase / decrease.
  • control unit 4 calculates voltage change ⁇ V that is the amount of change in output voltage V of battery 1 before and after unit time ⁇ T during charging, and performs twice. ⁇ continuously The charging is stopped when V decreases.
  • the control unit 4 only needs to accurately detect increase / decrease in the voltage gradient, and may have the following configuration.
  • the control unit 4 may be configured to stop charging when ⁇ V decreases three or four times in succession.
  • Such a configuration can be realized by shortening the interval of the unit time ⁇ T as compared with the charging device 100 and increasing the detection accuracy of the battery voltage, and can detect the inflection point of the voltage gradient more accurately.
  • ⁇ Supplement> Each of the embodiments described above shows a preferred specific example of the present invention.
  • the numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the embodiments are merely examples, and are not intended to limit the present invention.
  • steps that are not described in the independent claims indicating the highest concept of the present invention are described as arbitrary constituent elements constituting a more preferable form.
  • the scales of the components shown in the above-described embodiments may be different from actual ones.
  • the present invention is not limited by the description of each of the above embodiments, and can be appropriately changed without departing from the gist of the present invention.
  • circuit components, lead wires, and other members on the board in the charging device various aspects can be implemented based on ordinary knowledge in the technical field of lighting devices and the like regarding electrical wiring and electrical circuits. The description of the present invention is omitted because it is not directly relevant.
  • Each figure shown above is a schematic diagram, and is not necessarily illustrated strictly.
  • the charging device and the control method of the charging device according to the present invention include, for example, alkaline secondary batteries such as nickel hydride secondary batteries and nickel-cadmium secondary batteries used in home or public facilities, or portable electronic devices for business use. Can be suitably used for a charging device for charging the battery, a control method thereof, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a charging device for an alkali secondary battery capable of increasing charging efficiency, and a method for controlling the charging device. A method for controlling a charging device is characterized by monitoring the voltage value of an alkali secondary battery (1) while supplying the alkali secondary battery (1) with constant current, and suspending charging when the variation in the voltage value per unit time shifts from an increase to a decrease over time in the case where the voltage value exceeds a reference voltage value indicating the upper limit of the flat part of the curve that represents voltage value characteristics during charging for the alkali secondary battery (1).

Description

充電装置およびその制御方法Charging device and control method thereof
 本発明は、アルカリ2次電池用の充電装置およびその制御方法に関し、特に、ニッケル水素2次電池又はニッケルカドミウム2次電池方法に用いる充電装置およびその制御方法に関する。 The present invention relates to a charging device for an alkaline secondary battery and a control method thereof, and more particularly, to a charging device used for a nickel hydride secondary battery or a nickel cadmium secondary battery method and a control method thereof.
 近年、携帯電子機器等に用いられるニッケル水素2次電池、ニッケル-カドミウム2次電池等のアルカリ2次電池に充電をする充電装置および充電方法が、広く、利用されている。このような充電装置では、2次電池を定電流にて充電し、2次電池の電圧のピーク電圧を検出することによって満充電を検出し、充電を停止する制御方法が一般的である。例えば、特許文献1記載の充電装置では、電池電圧のピーク電圧からの電圧低下-ΔV(例えば、10mV)を検出して、ピーク電圧検出、満充電に相当として判定し、充電を停止している。そして、電圧低下-ΔVの検出のために電池電圧の変化傾きが極端に緩やかになったことを検出する。図9は、特許文献1に記載された従来の充電装置における充電時間と電池電圧の関係を示す概略図である。図9に示すように、特許文献1に記載された従来の充電装置では、具体的には、単位電圧である10mV/cell上昇するのに要した時間T(n)が、前回に10mV/cell上昇するのに要した時間T(n-1)よりも、2倍以上長くなったかどうかを判定して、そのような場合をピーク電圧と検出し、満充電として、充電を停止している。 In recent years, charging devices and charging methods for charging alkaline secondary batteries such as nickel metal hydride secondary batteries and nickel-cadmium secondary batteries used for portable electronic devices have been widely used. In such a charging apparatus, a control method in which a secondary battery is charged at a constant current, a full charge is detected by detecting a peak voltage of the voltage of the secondary battery, and the charging is stopped is generally used. For example, the charging device described in Patent Document 1 detects a voltage drop −ΔV (for example, 10 mV) from the peak voltage of the battery voltage, determines that it corresponds to peak voltage detection and full charge, and stops charging. . Then, it is detected that the change slope of the battery voltage has become extremely gentle in order to detect the voltage drop −ΔV. FIG. 9 is a schematic diagram showing the relationship between the charging time and the battery voltage in the conventional charging device described in Patent Document 1. In FIG. As shown in FIG. 9, in the conventional charging device described in Patent Document 1, specifically, the time T (n) required to increase the unit voltage of 10 mV / cell is 10 mV / cell last time. It is determined whether or not the time T (n-1) required for the rise has become twice or more, and such a case is detected as a peak voltage, and charging is stopped as full charge.
特開2007-252086号公報JP 2007-252086 A
 しかしながら、従来の方式では、充電を完了する直前の段階において、電池の充電に使用された充電電気量に対する電池から放電により取り出せる放電容量の比率として表される充電効率が大きく低下する。その結果、充電に費やした時間や充電電気量の割には、電池に蓄えられた放電容量が高まらないという課題があった。
 本発明は、上記問題点に鑑み、充電効率を高める充電装置およびその制御方法を提供することを目的とする。
However, in the conventional system, in the stage immediately before the completion of charging, the charging efficiency expressed as the ratio of the discharge capacity that can be taken out from the battery to the amount of charge used for charging the battery is greatly reduced. As a result, there is a problem that the discharge capacity stored in the battery does not increase with respect to the time spent for charging and the amount of charged electricity.
An object of this invention is to provide the charging device which improves charging efficiency, and its control method in view of the said problem.
 上記目的を達成するために、本発明の一態様に係る充電装置の制御方法は、アルカリ2次電池に定電流を供給しつつ前記アルカリ2次電池の電圧値をモニターし、前記電圧値が、前記アルカリ2次電池が有する充電時の電圧値特性を表す曲線における平坦部の上限を示す基準電圧値を超えた場合において、単位時間当たりの電圧値の変化量が時間経過に伴って増加から減少に転じたときに充電を停止することを特徴とする。 In order to achieve the above object, a method for controlling a charging device according to one aspect of the present invention monitors a voltage value of the alkaline secondary battery while supplying a constant current to the alkaline secondary battery, and the voltage value is When the reference voltage value indicating the upper limit of the flat portion in the curve representing the voltage value characteristics during charging of the alkaline secondary battery is exceeded, the amount of change in the voltage value per unit time decreases from increase over time. Charging is stopped when turning to.
 また、別の態様では、前記単位時間当たりの電圧値の変化量が所定値以上になった場合、充電を停止するまで表示器を表示させることを特徴とする構成であってもよい。
 また、別の態様では、前記アルカリ2次電池の電圧値が時間経過に伴って増加から減少に転じる前に充電を停止することを特徴とする構成であってもよい。
 また、別の態様では、前記アルカリ2次電池の充電に使用された充電電気量に対する前記アルカリ2次電池から放電により取り出せる放電容量の比率である充電効率が95%~99%の範囲にある状態において、前記アルカリ2次電池への充電を停止することを特徴とする構成であってもよい。
In another aspect, when the amount of change in the voltage value per unit time is equal to or greater than a predetermined value, the display may be displayed until charging is stopped.
In another aspect, the charging may be stopped before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time.
In another aspect, the charging efficiency, which is the ratio of the discharge capacity that can be taken out from the alkaline secondary battery by discharging to the amount of charge used for charging the alkaline secondary battery, is in the range of 95% to 99%. In the configuration, the charging of the alkaline secondary battery may be stopped.
 また、別の態様では、単位時間ΔTを隔てた2つの時刻から構成され、自然数Nに対し時間的に昇順の時刻の組(TN、TN-1)、(TN-2、TN-3)、(TN-4、TN-5)、及び(TN-6、TN-7)に含まれる各々の時刻において、前記アルカリ2次電池の電圧値VN、VN-1、VN-2、VN-3、VN-4、VN-5、VN-6、VN-7を各々測定し、電圧値VNと電圧値VN-1との差分VN-VN-1で示される電圧値変化V´Nと、電圧値VN-2と電圧値VN-3との差分VN-2-VN-3で示される電圧値変化V´N-1と、電圧値VN-4と電圧値VN-5との差分VN-4-VN-5で示される電圧値変化V´N-2と、電圧値VN-6と電圧値VN-7との差分VN-6-VN-7で示される電圧値変化V´N-3とを算出し、さらに、電圧値変化V´Nと電圧値変化V´N-1との差分V´N-V´N-1で示される電圧値変化の差分V´´Nと、電圧値変化V´N-1と電圧値変化V´N-2との差分V´N-1-V´N-2で示される電圧値変化の差分V´´N-1と、電圧値変化V´N-2と電圧値変化V´N-3との差分V´N-2-V´N-3で示される電圧値変化の差分V´´N-2とを算出し、前記電圧値変化の差分V´´N-2が正であって、前記電圧値変化の差分V´´N-1及び前記電圧値変化の差分V´´Nが共に負である場合に、前記アルカリ2次電池への充電を停止することを特徴とする構成であってもよい。 In another aspect, a set of time (TN, TN-1), (TN-2, TN-3) composed of two times separated by a unit time ΔT and in ascending order with respect to the natural number N, At each time included in (TN-4, TN-5) and (TN-6, TN-7), voltage values VN, VN-1, VN-2, VN-3 of the alkaline secondary battery, VN-4, VN-5, VN-6, and VN-7 are measured, and the voltage value change V′N indicated by the difference VN−VN-1 between the voltage value VN and the voltage value VN−1, and the voltage value The difference VN-2 between the voltage value VN-2 and the voltage value VN-3, and the difference VN-4- between the voltage value VN-4 and the voltage value VN-5. A voltage value change V′N-2 indicated by VN-5 and a voltage value change V′N-3 indicated by a difference VN-6−VN-7 between the voltage value VN-6 and the voltage value VN-7 Further, the difference V ″ N of the voltage value change indicated by the difference V′N−V′N−1 between the voltage value change V′N and the voltage value change V′N−1, and the voltage value change are calculated. The difference V′N−1 of the voltage value change indicated by the difference V′N−1−V′N−2 between the V′N−1 and the voltage value change V′N-2 and the voltage value change V′N -2 and the voltage value change V′N-3, a difference V′N-2 of the voltage value change indicated by the difference V′N−2−V′N-3 is calculated, and the voltage value change difference is calculated. When V ″ N−2 is positive and the voltage value change difference V ″ N−1 and the voltage value change difference V ″ N are both negative, The configuration may be such that charging is stopped.
 また、前記アルカリ2次電池は、ニッケル水素2次電池又はニッケルカドミウム2次電池の何れかであることを特徴とする構成であってもよい。
 また、本発明の一態様に係る充電装置は、アルカリ2次電池を充電する充電装置であって、定電流電源部と、前記定電流電源部と前記アルカリ2次電池を結ぶ電流路に設けられたスイッチ部と、前記アルカリ2次電池の電圧値をモニターし、当該電圧値が前記アルカリ2次電池が有する充電時の電圧値特性を表す曲線における平坦部の上限を示す基準電圧値を超えた場合において、単位時間当たりの電圧値の変化量が時間経過に伴って増加から減少に転じたときに前記スイッチ部に前記電池への電流を遮断させる制御部と、を備えたことを特徴とする。
The alkaline secondary battery may be a nickel hydride secondary battery or a nickel cadmium secondary battery.
The charging device according to one embodiment of the present invention is a charging device that charges an alkaline secondary battery, and is provided in a constant current power supply unit and a current path connecting the constant current power supply unit and the alkaline secondary battery. The voltage value of the switch unit and the alkaline secondary battery was monitored, and the voltage value exceeded the reference voltage value indicating the upper limit of the flat part in the curve representing the voltage value characteristics during charging of the alkaline secondary battery. In this case, the switch unit includes a control unit that cuts off the current to the battery when the amount of change in the voltage value per unit time changes from increasing to decreasing with time. .
 また、別の態様では、表示器をさらに備え、前記制御部は、前記単位時間当たりの電圧値の変化量が所定値以上になった場合、充電を停止するまでの間、前記表示器を表示させることを特徴とする構成であってもよい。
 また、別の態様では、前記制御部は、前記アルカリ2次電池の電圧値が時間経過に伴って増加から減少に転じる前に前記スイッチ部に前記電池への電流を遮断させる、
ことを特徴とする構成であってもよい。
In another aspect, the display device further includes a display, and the control unit displays the display until the charging is stopped when the amount of change in the voltage value per unit time becomes equal to or greater than a predetermined value. The structure characterized by making it may be sufficient.
In another aspect, the control unit causes the switch unit to cut off the current to the battery before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time.
The structure characterized by this may be used.
 また、別の態様では、前記制御部は、前記アルカリ2次電池の充電に使用された充電電気量に対する前記アルカリ2次電池から放電により取り出せる放電容量の比率である充電効率が95%~99%の範囲にある状態において、前記スイッチ部に前記電池への電流を遮断させることを特徴とする構成であってもよい。
 また、別の態様では、前記制御部は、単位時間ΔTを隔てた2つの時刻から構成され、自然数Nに対し時間的に昇順の時刻の組(TN、TN-1)、(TN-2、TN-3)、(TN-4、TN-5)、及び(TN-6、TN-7)に含まれる各々の時刻において、前記アルカリ2次電池の電圧値VN、VN-1、VN-2、VN-3、VN-4、VN-5、VN-6、VN-7を各々測定し、電圧値VNと電圧値VN-1との差分VN-VN-1で示される電圧値変化V´Nと、電圧値VN-2と電圧値VN-3との差分VN-2-VN-3で示される電圧値変化V´N-1と、電圧値VN-4と電圧値VN-5との差分VN-4-VN-5で示される電圧値変化V´N-2と、電圧値VN-6と電圧値VN-7との差分VN-6-VN-7で示される電圧値変化V´N-3とを算出し、さらに、電圧値変化V´Nと電圧値変化V´N-1との差分V´N-V´N-1で示される電圧値変化の差分V´´Nと、電圧値変化V´N-1と電圧値変化V´N-2との差分V´N-1-V´N-2で示される電圧値変化の差分V´´N-1と、電圧値変化V´N-2と電圧値変化V´N-3との差分V´N-2-V´N-3で示される電圧値変化の差分V´´N-2とを算出し、前記電圧値変化の差分V´´N-2が正であって、前記電圧値変化の差分V´´N-1及び前記電圧値変化の差分V´´Nが共に負である場合に、前記アルカリ2次電池への充電を停止することを特徴とする構成であってもよい。
In another aspect, the control unit has a charging efficiency of 95% to 99%, which is a ratio of a discharge capacity that can be taken out from the alkaline secondary battery by discharging to an amount of charge used for charging the alkaline secondary battery. In this state, the switch unit may be configured to cut off the current to the battery.
In another aspect, the control unit is composed of two times separated by a unit time ΔT, and a set of time (TN, TN-1), (TN-2, TN-3), (TN-4, TN-5), and (TN-6, TN-7) at the respective times included in the voltage values VN, VN-1, VN-2 of the alkaline secondary battery. , VN-3, VN-4, VN-5, VN-6, and VN-7, respectively, and a voltage value change V ′ indicated by a difference VN−VN−1 between the voltage value VN and the voltage value VN−1. N, a voltage value change V′N−1 indicated by a difference VN−2−VN−3 between a voltage value VN−2 and a voltage value VN−3, and a voltage value VN−4 and a voltage value VN−5 Voltage value change V'N-2 indicated by the difference VN-4-VN-5 and voltage value change V 'indicated by the difference VN-6-VN-7 between the voltage value VN-6 and the voltage value VN-7 N-3 is calculated, and further, a voltage value change difference V ″ N indicated by a difference V′N−V′N−1 between the voltage value change V′N and the voltage value change V′N−1. The voltage value change difference V ″ N−1 represented by the difference V′N−1−V′N-2 between the voltage value change V′N−1 and the voltage value change V′N-2, and the voltage value A voltage value change difference V ″ N-2 indicated by a difference V′N-2-V′N-3 between the change V′N-2 and the voltage value change V′N-3 is calculated, and the voltage When the value change difference V ″ N-2 is positive and the voltage value change difference V ″ N−1 and the voltage value change difference V ″ N are both negative, the alkali 2 The structure characterized by stopping the charge to a secondary battery may be sufficient.
 本発明の一態様に係る充電装置又はその制御方法は、上記した構成により、充電中の電池電圧における電圧勾配の変曲点を検出し充電を停止することができ、充電効率を高めることができる。 With the above-described configuration, the charging device according to one embodiment of the present invention or the control method thereof can detect the inflection point of the voltage gradient in the battery voltage during charging, stop charging, and increase charging efficiency. .
発明者らが実験により求めたアルカリ2次電池における充電電気量の定格電池容量に対する比率と放電容量の定格電池容量に対する比率との関係を示す特性図である。It is a characteristic view which shows the relationship between the ratio with respect to the rated battery capacity of the amount of charge in the alkaline secondary battery which the inventors obtained by experiment, and the ratio with respect to the rated battery capacity of discharge capacity. 実施の形態の一態様に係る充電装置100の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the charging device 100 which concerns on the one aspect | mode of embodiment. (a)実施の形態の一態様に係る充電装置100における充電時間と電池電圧との関係を示す電池1の電圧値特性を表す曲線の概略図である。(b)実施の形態の一態様に係る充電装置100における充電時間と充電効率との関係を示す概略図である。(A) It is the schematic of the curve showing the voltage value characteristic of the battery 1 which shows the relationship between the charging time and the battery voltage in the charging device 100 which concerns on the one aspect | mode of embodiment. (B) It is the schematic which shows the relationship between the charging time in the charging device 100 which concerns on the one aspect | mode of embodiment, and charging efficiency. 実施の形態の一態様に係る充電装置100の充電動作に関する動作を示すフローチャートである。It is a flowchart which shows the operation | movement regarding the charging operation of the charging device 100 which concerns on the one aspect | mode of embodiment. 実施の形態の一態様に係る充電装置100における充電時間と電池電圧との関係を示す実験結果である。It is an experimental result which shows the relationship between the charging time and the battery voltage in the charging device 100 which concerns on the one aspect | mode of embodiment. 実施の形態の一態様に係る充電装置100における充電時間と充電電気量及び放電容量との関係を示す実験結果である。It is an experimental result which shows the relationship between the charge time in the charging device 100 which concerns on the one aspect | mode of embodiment, the amount of charge electricity, and the discharge capacity. 実施の形態の一態様に係る充電装置100における充電時間と充電効率及び放電容量比率との関係を示す実験結果である。It is an experimental result which shows the relationship between the charging time in the charging device 100 which concerns on 1 aspect of embodiment, charging efficiency, and a discharge capacity ratio. 実施の形態の一態様に係る充電装置100における充電時間と電池温度との関係を示す実験結果である。It is an experimental result which shows the relationship between the charging time in the charging device 100 which concerns on the one aspect | mode of embodiment, and battery temperature. 特許文献1に記載された従来の充電装置における充電時間と電池電圧の関係を示す概略図である。It is the schematic which shows the relationship between the charging time in the conventional charging device described in patent document 1, and a battery voltage.
≪本発明を実施するための形態に至った経緯について≫
 図1は、発明者らが実験により求めたアルカリ2次電池における充電電気量の定格電池容量に対する比率(以後、充電電気量比率と省略する)と放電容量の定格電池容量に対する比率(以後、放電容量比率と省略する)との関係を示す特性図である。
 ここで、「充電電気量」とは、充電に使用される電気量(mAh)を指し、定電流充電の場合は、その電流値と充電時間の積になる。「放電容量」とは、電池に充電され放電により取り出せる容量(mAh)を指す。
≪Background to the form for carrying out the present invention≫
FIG. 1 shows the ratio of the amount of charged electricity to the rated battery capacity (hereinafter abbreviated as charge ratio) and the ratio of the discharge capacity to the rated battery capacity (hereinafter referred to as discharge) in the alkaline secondary battery obtained by the inventors through experiments. FIG. 6 is a characteristic diagram showing a relationship with a capacity ratio).
Here, the “charged electricity amount” refers to the amount of electricity (mAh) used for charging, and in the case of constant current charging, it is the product of the current value and the charging time. “Discharge capacity” refers to a capacity (mAh) that is charged to a battery and can be taken out by discharge.
 図1に示すように、充電電気量比率が80%の範囲までは、充電電気量比率と放電容量比率とはほぼ比例し充電効率は100%に近い。しかしながら、充電電気量比率約80%を超えて充電を継続した場合、充電電気量比率の増加に対する放電容量比率の増加の割合は徐々に低下し、充電効率は低下する。そのため、放電容量比率として100%に近い容量まで充電するためには、充電電気量比率が120%程度になるまで充電することが必要となり、この場合、充電電気量として約20%程度の損失が生じる。電池の出力電圧のピーク電圧を検出することによって満充電を検出し充電を停止する従来の充電装置では、このように、充電電気量比率が120%程度となるまで充電を行っていた。そして、この充電方法では、充電電気量の損失は発熱となり電池の温度を高め寿命劣化の要因となっていた。但し、周囲環境等の影響により、図1において破線で示した比率を表すカーブは変動する。 As shown in FIG. 1, until the charge electricity amount ratio is in the range of 80%, the charge electricity amount ratio and the discharge capacity ratio are almost proportional and the charging efficiency is close to 100%. However, when charging is continued exceeding the charge amount ratio of about 80%, the rate of increase of the discharge capacity ratio with respect to the increase of the charge amount ratio is gradually decreased, and the charge efficiency is decreased. Therefore, in order to charge to a capacity close to 100% as the discharge capacity ratio, it is necessary to charge until the charge electricity amount ratio reaches about 120%. In this case, a loss of about 20% as the charge electricity amount is required. Arise. In the conventional charging device that detects the full charge by detecting the peak voltage of the output voltage of the battery and stops the charging, the charging is performed until the charge amount ratio is about 120%. In this charging method, the loss of charge electricity becomes heat generation, which increases the temperature of the battery and causes deterioration of the life. However, the curve representing the ratio indicated by the broken line in FIG. 1 varies due to the influence of the surrounding environment and the like.
 仮に、充電中に充電電気量比率が80%から100%の範囲にあること検出することができ、この範囲で充電を停止することができれば、高い充電効率にて充電された電池を使用することができる。また、充電電気量比率が100%を超えたところで発生する発熱を防止することができ、電池の寿命を高めることができる。
 そこで、発明者らは、充電効率の高い状態で充電を停止する方法の実現に向け、充電中に充電電気量比率が80%から100%の範囲にあること検出する方法について鋭意検討を行い、本発明の実施の形態の一態様に係る充電装置およびその制御方法に想到するに至った。
If it is possible to detect that the charge amount ratio is in the range of 80% to 100% during charging, and if charging can be stopped in this range, use a battery charged with high charging efficiency. Can do. Moreover, the heat_generation | fever which generate | occur | produces when the amount ratio of charge electricity exceeds 100% can be prevented, and the lifetime of a battery can be improved.
Therefore, the inventors diligently studied a method for detecting that the charging electricity amount ratio is in the range of 80% to 100% during charging, in order to realize a method of stopping charging in a state where charging efficiency is high, The inventors have arrived at a charging device and a control method thereof according to an aspect of an embodiment of the present invention.
 以下、本発明の実施の形態の一態様に係る充電装置およびその制御方法について、図面を参照しながら説明する。
≪実施の形態≫
 <充電装置100の構成>
 図2は、実施の形態の一態様に係る充電装置100の電気的に機能構成を示すブロック図である。図2に示すように、本発明の一態様に係る充電装置100は、装置に着脱自在のアルカリ2次電池1(以後、電池1と省略する)に充電する充電装置であって、電池1に電流を供給する電源部2と、電池へ電流を供給又は遮断するスイッチ部3とを備える。そして、充電装置100は、さらに、制御部4を備え、制御部4は、電池1が出力する電圧値をモニターして電圧勾配における変曲点を検出し、スイッチ部3と電源部2の動作を制御してスイッチ部3に対し電池1へ電流の供給又は電流供給の遮断を指示する。
(電池1)
 充電装置100は、単3形、又は単4形の電池に充電を行う。アルカリ2次電池としては、例えば、ニッケル水素2次電池又はニッケルカドミウム2次電池を利用できる。また、充電装置100には、1~4本の電池1が着脱自在に装着され、充電装置100はこれらに対し同時に充電を行うことができる。
(電源部2)
 電源部2は、電池1に充電電流を供給する定電流電源である。例えば、交流100Vから240Vの商用電源から電力供給を受け、2.2Aの定電流を出力する。電池1を3~4本装着した場合には、各電池1に供給される電流は550mAとなり、電池1~2本を装着した場合には、各電池1に供給される電流は1.1Aとなる。
(スイッチ部3)
 スイッチ部3は、電源部2と電池1との間に接続され、後述の制御部4から信号に基づき電池1への充電電流を供給又は遮断する。
(制御部4)
 制御部4は、図示しないマイコンを内蔵し、スイッチ部3の充電オン/オフ信号を出力し、スイッチ部3のオンとオフを切り換えて充電電流を調整する。スイッチ部3をオンオフしてデューティー比を調整し、所望の平均電流値からなる定電流により電池1を充電する。
Hereinafter, a charging device and a control method thereof according to an aspect of an embodiment of the present invention will be described with reference to the drawings.
<< Embodiment >>
<Configuration of charging device 100>
FIG. 2 is a block diagram illustrating an electrically functional configuration of charging apparatus 100 according to one aspect of the embodiment. As shown in FIG. 2, a charging device 100 according to one embodiment of the present invention is a charging device that charges an alkaline secondary battery 1 (hereinafter abbreviated as a battery 1) that is detachable from the device. The power supply part 2 which supplies an electric current, and the switch part 3 which supplies or interrupts | interrupts an electric current to a battery are provided. The charging device 100 further includes a control unit 4 that monitors the voltage value output from the battery 1 to detect an inflection point in the voltage gradient, and operates the switch unit 3 and the power supply unit 2. To instruct the switch unit 3 to supply current to the battery 1 or to interrupt the supply of current.
(Battery 1)
The charging device 100 charges an AA or AAA battery. As the alkaline secondary battery, for example, a nickel hydride secondary battery or a nickel cadmium secondary battery can be used. Also, 1 to 4 batteries 1 are detachably attached to the charging device 100, and the charging device 100 can charge them simultaneously.
(Power supply unit 2)
The power supply unit 2 is a constant current power supply that supplies a charging current to the battery 1. For example, power is supplied from a commercial power supply of AC 100V to 240V, and a constant current of 2.2A is output. When 3 to 4 batteries 1 are installed, the current supplied to each battery 1 is 550 mA, and when 1 to 2 batteries are installed, the current supplied to each battery 1 is 1.1 A. Become.
(Switch part 3)
The switch unit 3 is connected between the power source unit 2 and the battery 1, and supplies or blocks a charging current to the battery 1 based on a signal from the control unit 4 described later.
(Control unit 4)
The control unit 4 incorporates a microcomputer (not shown), outputs a charge on / off signal of the switch unit 3, and switches the switch unit 3 on and off to adjust the charging current. The switch unit 3 is turned on / off to adjust the duty ratio, and the battery 1 is charged with a constant current having a desired average current value.
 また、制御部4は、充電中に、スイッチ部3をオンオフして、周期的に充電を停止し、測定点aにおける電池1の出力電圧を測定する。この際、例えば、約1~5秒の周期の間に、約0.1~2.0秒間充電を停止させる。これは、充電を停止中の方が、電池電圧を正確に測定できるためである。しかしながら、これに限られず充電中に電池電圧を測定する構成としてもよい。 In addition, the control unit 4 turns on and off the switch unit 3 during charging, periodically stops charging, and measures the output voltage of the battery 1 at the measurement point a. At this time, for example, charging is stopped for about 0.1 to 2.0 seconds during a period of about 1 to 5 seconds. This is because the battery voltage can be measured more accurately when charging is stopped. However, the configuration is not limited to this, and the battery voltage may be measured during charging.
 また、制御部4は、電源部2に充電電圧/電流制御信号を出力し電源部2のオン又はオフ等の制御を行う。
 制御部4における、充電制御の方法の詳細については、後述する。
(温度センサー5)
 温度センサー5は、電池1の温度を検出して制御部4に温度信号を出力する。温度センサー5は、サーミスタ等から構成される。充電装置100に、電池1を装着した状態で、電池1と温度センサー5とが密着する構成、又は密着しなくとも適切に電池1の温度がモニターできる位置に配置される構成とし、電池1と温度センサー5とを熱的に接続した状態となっている。電池1の温度が所定の温度を超えた場合、制御部4は充電を停止する。例えば、制御部4は、電池温度が、60~65℃を超えるとき等に、スイッチ部3をオフとして充電を停止する。その後、電池温度が充電可能温度まで下がると、制御部4は再度、スイッチ部3をオンして続きから充電を再開する。
Further, the control unit 4 outputs a charging voltage / current control signal to the power supply unit 2 and controls the power supply unit 2 to be on or off.
Details of the charge control method in the control unit 4 will be described later.
(Temperature sensor 5)
The temperature sensor 5 detects the temperature of the battery 1 and outputs a temperature signal to the control unit 4. The temperature sensor 5 is composed of a thermistor or the like. The battery 1 is attached to the charging device 100 and the battery 1 and the temperature sensor 5 are in close contact with each other, or the battery 1 is disposed at a position where the temperature of the battery 1 can be monitored appropriately without contact. The temperature sensor 5 is thermally connected. When the temperature of the battery 1 exceeds a predetermined temperature, the control unit 4 stops charging. For example, when the battery temperature exceeds 60 to 65 ° C., the control unit 4 turns off the switch unit 3 and stops charging. Thereafter, when the battery temperature falls to a chargeable temperature, the control unit 4 turns on the switch unit 3 again and resumes charging after continuing.
 また、制御部4は電池温度に対応して後述する所定電圧値V0を決定する。
 (LED6(充電状態表示))
 LED6は、制御部4からの信号を受け、充電状態、満充電状態等の充電の状態を表示する。例えば、制御部4は、充電中には「充電状態表示」としてLED6をオンとして充電中を明示する。
Further, the control unit 4 determines a predetermined voltage value V0 described later corresponding to the battery temperature.
(LED6 (charge status display))
The LED 6 receives a signal from the control unit 4 and displays a charging state such as a charging state or a full charging state. For example, during charging, the control unit 4 explicitly turns on the LED 6 by turning on the LED 6 as “charging state display”.
 (LED7(省エネ誘導ランプ))
 通常、充電を開始するときの環境温度が-5~40℃の範囲にあるときに充電を開始する。さらに、充電を開始するときの環境温度が5~30℃の範囲にあるときに充電を開始すると高い充電効率にて充電することができる。そのため、制御部4は、環境温度が5~30℃の範囲にあるときに充電を開始すると、所定の時間、例えば、10分間、LED7を「省エネ誘導ランプ」として点灯する。これにより、5℃未満の低温環境や30℃を超える高温環境で充電する場合に比べて、相対的に高い充電効率にて充電できる状態であることを、使用者に向けて表示することができる。ここで、充電を開始するときの環境温度は、温度センサー5を用いて測定することができる。充電開始時は、電池が充電により高温になる前であるので、温度センサー5は環境温度と同じ温度を示しているからである。なお、充電装置のケース内で、電池、部品の温度の影響を受けにくい場所に、温度センサーを別に設けることも可能である。
(LED7 (energy saving induction lamp))
Normally, charging is started when the environmental temperature at the start of charging is in the range of −5 to 40 ° C. Furthermore, if charging is started when the environmental temperature at the start of charging is in the range of 5 to 30 ° C., charging can be performed with high charging efficiency. Therefore, when charging starts when the environmental temperature is in the range of 5 to 30 ° C., the control unit 4 lights the LED 7 as an “energy saving induction lamp” for a predetermined time, for example, 10 minutes. Thereby, it is possible to display to the user that the battery can be charged with relatively high charging efficiency as compared with the case of charging in a low temperature environment of less than 5 ° C or a high temperature environment of more than 30 ° C. . Here, the environmental temperature when charging is started can be measured using the temperature sensor 5. This is because the temperature sensor 5 indicates the same temperature as the environmental temperature since the charging is before the battery is heated to a high temperature. In addition, it is also possible to provide a separate temperature sensor in a place where it is difficult to be affected by the temperature of the battery and components in the case of the charging device.
 また、充電が継続され、単位時間ΔTあたりの電圧変化量ΔVが所定値以上になると、
制御部4は、表示器としてLED7を点灯させる。所定値とは、単位時間あたりの電池電圧の上昇が、例えば、約1.5分から2.5分の間に、3mV以上の電圧増加が生じた場合等を指す。そして、充電を停止するまで、LED7の点灯を継続し、充電が停止するとLED7を消灯する。後述するように、本実施の形態の充電装置では、高い充電効率を維持した状態で充電を停止する。LED7の点灯により省エネ充電であることを使用者に向けて表示することができる。
Further, when the charging is continued and the voltage change amount ΔV per unit time ΔT becomes a predetermined value or more,
The control unit 4 turns on the LED 7 as a display. The predetermined value refers to, for example, a case where the increase in battery voltage per unit time is 3 mV or more during about 1.5 to 2.5 minutes. Then, the lighting of the LED 7 is continued until the charging is stopped, and when the charging is stopped, the LED 7 is turned off. As will be described later, in the charging device of the present embodiment, charging is stopped in a state where high charging efficiency is maintained. It is possible to display to the user that the energy saving charging is performed by turning on the LED 7.
 <制御部4における充電制御について>
 図3(a)は、実施の形態の一態様に係る充電装置100における充電時間と電池電圧との関係を示す電池1の電圧値特性を表す曲線の概略図である。図3(a)に示すように、電池1の充電時の電圧値特性を表す曲線では、充電を開始した後、電池電圧は先ず急激に上昇し、その後、ゆるやかに電圧が上昇する平坦部を示す。その後、上昇の傾きが再び増加して充電時間Bにおいてピークを迎え、その後、ピークを過ぎ下降し充電時間Cに至るカーブを示す。このような電池電圧の特性に対し、制御部4は、以下の3種類の基準に基づく制御を行う。
(1)制御部4は、充電開始後、所定時間T0が経過しているかどうかを判断し、所定時間T0が経過するまでは充電を継続する。これは、長期間の不使用の、または、浅い放電深度の放電充電を繰り返してメモリー効果が発生したニッケル水素2次電池等の不活性電池において、これを充電したとき、この所定時間T0以内にピーク電圧が発生することがあり、これらを検出して満充電と誤検出することを防止するためである。
(2)図3に示す電池電圧の特性曲線における平坦部から後述する変曲点を検出することを防止するために、制御部4は、所定電圧値V0以上となるまでは、後述する(3)の基準に基づく検出は行わない。所定電圧値V0とは、電池1の充電時の電圧値特性を表す曲線における平坦部の上限電圧値であって、電池温度約20~30℃では、約1.38V以上1.45V以下であり、望ましくは、約1.40V以上1.43V以下の値、例えば、約1.42Vである。
(3)制御部4は、電池1が出力する電圧値をモニターし、電圧値が所定電圧値V0以上である場合において、単位時間ΔT当たりの電圧値の変化量ΔVが時間経過に伴って増加から減少に転じたことを検出する。そして、その場合に、スイッチ部3に電池1への電流供給を遮断させる。
<About charge control in the control unit 4>
FIG. 3A is a schematic diagram of a curve representing the voltage value characteristic of the battery 1 showing the relationship between the charging time and the battery voltage in the charging device 100 according to one aspect of the embodiment. As shown in FIG. 3 (a), in the curve representing the voltage value characteristics during charging of the battery 1, after starting charging, the battery voltage first increases rapidly, and then the flat portion where the voltage gradually increases is shown. Show. Thereafter, the rising slope increases again to reach a peak at the charging time B, and then shows a curve that goes down the peak and reaches the charging time C. For such battery voltage characteristics, the control unit 4 performs control based on the following three types of criteria.
(1) After starting charging, the control unit 4 determines whether or not the predetermined time T0 has elapsed, and continues charging until the predetermined time T0 has elapsed. This is because, in an inactive battery such as a nickel metal hydride secondary battery that has been used for a long period of time or has been repeatedly charged at a shallow depth of discharge and thus has a memory effect, when this is charged, it is within this predetermined time T0. This is because a peak voltage may occur, and these are detected to prevent erroneous detection of full charge.
(2) In order to prevent detection of an inflection point, which will be described later, from a flat portion in the battery voltage characteristic curve shown in FIG. 3, the control unit 4 will be described later until it reaches a predetermined voltage value V0 or more (3 ) Detection based on the criteria is not performed. The predetermined voltage value V0 is the upper limit voltage value of the flat portion in the curve representing the voltage value characteristics when the battery 1 is charged, and is about 1.38V to 1.45V at a battery temperature of about 20-30 ° C. Desirably, the value is about 1.40V or more and 1.43V or less, for example, about 1.42V.
(3) The control unit 4 monitors the voltage value output from the battery 1, and when the voltage value is equal to or higher than the predetermined voltage value V0, the change amount ΔV of the voltage value per unit time ΔT increases with time. Detects that it started to decrease. In that case, the switch unit 3 is made to cut off the current supply to the battery 1.
 上述のように電池1の充電時の電圧値特性を表す曲線は、ゆるやかに電圧が上昇する平坦部を示した後、上昇の傾きが一旦増加し、その後、充電時間Aにおいて上昇の傾きが減少し、充電時間Bにおいてピークを迎える。ここでは、充電時間Aにおいて生じる電池電圧値の勾配における変曲点を検出する。具体的には、制御部4は、電池1が出力する電圧値Vをモニターし、電圧値が所定電圧値V0以上である場合において、単位時間ΔT当たりの電圧値の変化量ΔVを算出する。そして、ΔVが時間経過に伴って増加から減少に転じた場合に、その電圧を変曲点として検出する。尚、本実施の形態では、ノイズ等による誤検出を防止するために、2回連続してΔVの減少を検出した場合に変曲点を検出する構成とした。このような変曲点は、発明者らの実験により上述した充電電気量比率が80%から100%の範囲に存在することが発明者らの検討によって判明している。制御部4において、この変曲点を検出することにより、充電電気量比率が80%から100%の範囲にある状態において、充電を停止することが可能となる。 As described above, the curve representing the voltage value characteristic during charging of the battery 1 shows a flat portion where the voltage gradually rises, and then the slope of the rise once increases. However, the charging time B reaches its peak. Here, an inflection point in the gradient of the battery voltage value generated during the charging time A is detected. Specifically, the control unit 4 monitors the voltage value V output from the battery 1, and calculates the amount of change ΔV in the voltage value per unit time ΔT when the voltage value is equal to or greater than the predetermined voltage value V0. When ΔV changes from increasing to decreasing with time, the voltage is detected as an inflection point. In the present embodiment, in order to prevent erroneous detection due to noise or the like, the inflection point is detected when a decrease in ΔV is detected twice in succession. Such an inflection point has been found by the inventors 'examination by the inventors' experiments that the above-described charging electricity amount ratio is in the range of 80% to 100%. By detecting this inflection point in the control unit 4, it is possible to stop charging in a state where the charge electricity amount ratio is in the range of 80% to 100%.
 図3(b)は、実施の形態の一態様に係る充電装置100における充電時間と充電効率との関係を示す概略図である。図3(b)に示すように、充電時間Aにある変曲点を検出し充電を停止することにより、充電時間Bを超えて充電を継続したときに生じる充電効率の低下とそれによるエネルギー損失を防止することができる。
 <充電装置100の動作について>
 以上の構成からなる充電装置1の動作についてフローチャートを用いて説明する。図4は、実施の形態1の一態様に係る充電装置100の充電動作に関する動作を示すフローチャートである。
(ステップ0(S0))
 ステップ0(S0)において、制御部4は、充電開始後、所定時間T0が経過しているかどうかを判断し、所定時間T0が経過するまでステップ0(S0)を繰り返して充電を継続する。これは、メモリー効果が発生したニッケル水素2次電池等の不活性電池において、この所定時間T0以内にピーク電圧が発生することがあり、これらを検出して満充電と誤検出することを防止するためである。なお、この所定時間T0は、制御部4が内蔵するタイマーにてカウントして、所定時間T0の経過を判断している。所定時間T0は、例えば、3分、電流0.3It(単3形電池なら0.6A程度)を利用している。所定時間T0が経過したら、次に進む。
FIG. 3B is a schematic diagram illustrating a relationship between charging time and charging efficiency in the charging device 100 according to one aspect of the embodiment. As shown in FIG. 3 (b), by detecting the inflection point at the charging time A and stopping the charging, the charging efficiency is lowered when the charging is continued beyond the charging time B and the energy loss caused thereby. Can be prevented.
<About operation of charging device 100>
The operation of the charging apparatus 1 having the above configuration will be described using a flowchart. FIG. 4 is a flowchart showing an operation related to the charging operation of charging apparatus 100 according to one aspect of the first embodiment.
(Step 0 (S0))
In step 0 (S0), the controller 4 determines whether or not the predetermined time T0 has elapsed after the start of charging, and repeats step 0 (S0) until the predetermined time T0 elapses to continue charging. This is because an inactive battery such as a nickel metal hydride secondary battery in which a memory effect has occurred may generate a peak voltage within this predetermined time T0, and prevent these from being erroneously detected as full charge. Because. The predetermined time T0 is counted by a timer built in the control unit 4 to determine whether the predetermined time T0 has elapsed. The predetermined time T0 uses, for example, 3 minutes and a current of 0.3 It (about A for an AA battery). When the predetermined time T0 has elapsed, the process proceeds to the next.
 なお、制御部4は、充電を開始したときに温度センサー5が示す温度が5~30℃の範囲にある場合に、所定の時間、例えば、10分間、LED7を点灯させる。
(ステップ1(S1))
 ステップ1(S1)において、制御部4は、充電中に、図1における測定点aにおける電池1の出力電圧Vを測定する。そして、単位時間ΔT経過後に電池1の出力電圧Vを再度測定する。そして、電圧Vの変化量である電圧変化ΔVを算出し、正(>0)のΔVを
検出しない場合は充電を停止する。一方、正(>0)のΔVを検出した場合は、制御部4に内蔵するメモリー内にΔVを記憶した後、次に進む。
When the temperature indicated by the temperature sensor 5 is in the range of 5 to 30 ° C. when charging is started, the control unit 4 turns on the LED 7 for a predetermined time, for example, 10 minutes.
(Step 1 (S1))
In step 1 (S1), the control unit 4 measures the output voltage V of the battery 1 at the measurement point a in FIG. 1 during charging. Then, after the unit time ΔT has elapsed, the output voltage V of the battery 1 is measured again. Then, a voltage change ΔV that is a change amount of the voltage V is calculated, and charging is stopped when a positive (> 0) ΔV is not detected. On the other hand, if positive (> 0) ΔV is detected, ΔV is stored in the memory built in the control unit 4 and then the process proceeds to the next.
 尚、単位時間ΔTは、約1.5分から2.5分の範囲であることが好ましい。1.5分より短い場合は、時間間隔が短く電圧変化が小さいため小さな電圧変動をノイズ等と区別して正確に測定することが必要となり装置のコストが高くなる。一方、3分を超えて時間間隔を増加させた場合は、変曲点を検出する時間的分解能が低くなり、ピーク電圧を超えてから変曲点を検出するような場合が生じ変曲点を正しく検出できない可能性がある。 The unit time ΔT is preferably in the range of about 1.5 minutes to 2.5 minutes. When the time is shorter than 1.5 minutes, since the time interval is short and the voltage change is small, it is necessary to accurately measure small voltage fluctuations separately from noise or the like, which increases the cost of the apparatus. On the other hand, if the time interval is increased beyond 3 minutes, the time resolution for detecting the inflection point will be low, and the inflection point may be detected after the peak voltage is exceeded. It may not be detected correctly.
 また、制御部4は、単位時間ΔTあたりの電圧変化量ΔVが所定値以上になると、LED7を点灯させる。所定値とは、単位時間あたりの電池電圧の上昇が、例えば、約1.5分から2.5分の間に、3mV以上の電圧増加が生じた場合等を指す。
(ステップ2(S2))
 ステップ2(S2)においては、制御部4は、電池電圧が電池1の充電時の電圧値特性を表す曲線における平坦部の上限電圧値である所定電圧値(例えば、1.42V)以上であるか否かを判定する。所定電圧値に満たない場合には、ステップ1(S1)に戻り充電を継続する。一方、所定電圧値を超えている場合には、次に進む。
(ステップ3(S3))
 ステップ3(S3)においては、制御部4は、ステップ1(S1)において算出したΔVと、前回のループおけるステップ1(S1)において算出したΔVとの大小を比較する。今回、算出したΔVが、前回算出したΔVと比べて増加している場合、又は今回、初め
てΔVを算出した場合には、ステップ1(S1)に戻り充電を継続する。一方、今回算出したΔVが、前回算出したΔVと比べて減少している場合は、制御部4に内蔵するメモリ
ー内にΔVが減少したことを示す識別情報を記憶させた後、次に進む。
(ステップ4(S4))
 ステップ4(S4)においては、制御部4は、前回のループにおいてもステップ3(S3)において検出したΔVが減少していたか否を、制御部4に記憶された識別情報の有無に基づき判定する。制御部4に前回のループにおいてΔVが減少したことを示す識別情報がある場合には、2回連続してΔVが減少したと判定する。その場合、充電を停止する。一方、識別情報が無く、前回のループにおいてΔVが減少していたとはいえない場合には、ステップ1(S1)に戻り充電を継続する。
<実験結果>
 以上、説明した実施の形態の一態様に係る充電装置100を用いて充電の実験を行った。電池1には、電池容量1900mAhのニッケル水素2次電池を使用し、4本の電池を並列に接続し、電源部2から2.2Aの定電流を供給して充電を行った。実験では、電池1が出力する電圧値と電池表面の温度を測定しながら充電を行い、異なる充電時間において充電を停止し放電により取り出せる容量である放電容量を各々測定した。以下、その結果について図面を用いて説明する。
(充電時間と電池電圧の関係について)
 図5は、充電装置100における充電時間と電池電圧との関係を示す実験結果である。充電装置100における電池1の充電時の電圧値特性を表す曲線を示す。図5に示すように、電池電圧は、充電を開始した後、電池電圧は、先ず急激に上昇し、約1時間を経過した後、ゆるやかに電圧が上昇する平坦部を示す。その後、このアルカリ2次電池が有する充電時の電圧値特性を表す曲線における平坦部の上限を示す電圧値V0である約1.42Vを超えた後、上昇の傾きが再び増加して充電時間Bで示される充電時間3.6時間においてピークを迎え、その後、ピークを過ぎ下降する特性を示した。
Further, the control unit 4 turns on the LED 7 when the voltage change amount ΔV per unit time ΔT becomes equal to or greater than a predetermined value. The predetermined value refers to, for example, a case where the increase in battery voltage per unit time is 3 mV or more during about 1.5 to 2.5 minutes.
(Step 2 (S2))
In step 2 (S2), the control unit 4 has a battery voltage equal to or higher than a predetermined voltage value (for example, 1.42 V) that is an upper limit voltage value of a flat portion in a curve representing a voltage value characteristic when the battery 1 is charged. It is determined whether or not. If it does not reach the predetermined voltage value, the process returns to step 1 (S1) to continue charging. On the other hand, when it exceeds the predetermined voltage value, it proceeds to the next.
(Step 3 (S3))
In step 3 (S3), the control unit 4 compares ΔV calculated in step 1 (S1) with ΔV calculated in step 1 (S1) in the previous loop. If the calculated ΔV is increased compared to the previously calculated ΔV, or if ΔV is calculated for the first time this time, the process returns to step 1 (S1) and charging is continued. On the other hand, when ΔV calculated this time is smaller than ΔV calculated last time, the identification information indicating that ΔV has decreased is stored in the memory built in the control unit 4 and then the process proceeds to the next.
(Step 4 (S4))
In step 4 (S4), the control unit 4 determines whether or not ΔV detected in step 3 (S3) has decreased in the previous loop based on the presence or absence of the identification information stored in the control unit 4. . If the control unit 4 has identification information indicating that ΔV has decreased in the previous loop, it is determined that ΔV has decreased continuously twice. In that case, charging is stopped. On the other hand, when there is no identification information and it cannot be said that ΔV has decreased in the previous loop, the process returns to step 1 (S1) to continue charging.
<Experimental result>
As described above, the charging experiment was performed using the charging device 100 according to one aspect of the described embodiment. The battery 1 was a nickel metal hydride secondary battery having a battery capacity of 1900 mAh, four batteries were connected in parallel, and a constant current of 2.2 A was supplied from the power supply unit 2 to perform charging. In the experiment, the battery 1 was charged while measuring the voltage value output from the battery 1 and the temperature of the battery surface, and the discharge capacity, which is the capacity that can be taken out by discharging after different charging times, was measured. The results will be described below with reference to the drawings.
(Relationship between charging time and battery voltage)
FIG. 5 is an experimental result showing the relationship between the charging time and the battery voltage in the charging apparatus 100. 3 shows a curve representing voltage value characteristics during charging of the battery 1 in the charging apparatus 100. As shown in FIG. 5, after the battery voltage starts charging, the battery voltage rapidly increases first, and after about 1 hour, a flat portion where the voltage gradually increases is shown. After that, after exceeding about 1.42 V which is the voltage value V0 indicating the upper limit of the flat portion in the curve representing the voltage value characteristic at the time of charging that the alkaline secondary battery has, the rising slope increases again and the charging time B In the charging time of 3.6 hours, the peak was reached, and after that, the characteristic passed the peak and decreased.
 本実験では、単位時間ΔT当たりの電圧値の変化量Δが時間経過に伴って増加から減少に転じる、電圧勾配の変曲点はAで示される充電時間3.4時間であった。充電装置100では、上記したように、単位時間当たりの前記電圧値の変化量が時間経過に伴って増加から減少に転じた場合に、前記スイッチ部に前記電池への電流を遮断させる制御部4を採用することによって、充電時間3.4時間において電圧勾配の変曲点を検出し充電を停止することができた。 In this experiment, the inflection point of the voltage gradient at which the change amount Δ of the voltage value per unit time ΔT turns from increasing to decreasing with the lapse of time was 3.4 hours charging time indicated by A. In the charging device 100, as described above, when the amount of change in the voltage value per unit time has changed from increasing to decreasing with the passage of time, the control unit 4 causes the switch unit to cut off the current to the battery. By adopting, charging was able to be stopped by detecting the inflection point of the voltage gradient at the charging time of 3.4 hours.
 尚、本実験では、変曲点を検出して充電を停止する充電装置100の動作実験に加えて、異なる充電時間において充電を停止する条件で充電実験を行い、充電時間3.4時間を超える時間においても、電池電圧、電池温度、及び放電容量を測定した。
(充電時間と充電電気量及び放電容量との関係について)
 図6は、充電装置100における充電時間と充電電気量及び放電容量との関係を示す実験結果である。図6に示すように、充電電気量は充電時間と比例する。これに対し、放電容量は約3.2時間までは充電時間と比例するが、以後、徐々に傾きが減少し、充電時間約3.8時間で、電池容量である1900mAhに到達する。その時点における、充電電気量は約2090mAhであり、定格電池容量1900mAhまで充電するために約10%の充電電気量を余分に要した。
(充電時間と放電容量比率及び充電効率との関係について)
 図7は、充電装置100における充電時間と充電効率及び放電容量比率との関係を示す実験結果である。放電容量比率とは、各充電時間における放電容量の定格電池容量1900mAhに対する比率である。図7に示すように、放電容量比率は、約3.2時間までは充電時間と比例するが、以後、徐々に傾きが減少し、充電時間約3.8時間で約100%に達する。これに対し、充電効率は、約3.2時間までは約99%以上の高い数値を示すが、以後、徐々に減少し、ピーク電圧を示す充電時間3.6hでは約95%、放電容量比率が、約100%に達する充電時間約3.8時間では約91%まで低下する。
In addition, in this experiment, in addition to the operation experiment of the charging device 100 that detects the inflection point and stops the charging, the charging experiment is performed under the condition that the charging is stopped at different charging times, and the charging time exceeds 3.4 hours. The battery voltage, battery temperature, and discharge capacity were also measured over time.
(Relationship between charging time, amount of charge and discharge capacity)
FIG. 6 is an experimental result showing the relationship between the charging time, the charge electricity amount, and the discharge capacity in the charging apparatus 100. As shown in FIG. 6, the amount of charged electricity is proportional to the charging time. On the other hand, the discharge capacity is proportional to the charging time up to about 3.2 hours, but thereafter, the slope gradually decreases and reaches the battery capacity of 1900 mAh in the charging time of about 3.8 hours. At that time, the amount of charged electricity was about 2090 mAh, and an extra amount of charged electricity of about 10% was required to charge to the rated battery capacity of 1900 mAh.
(Relationship between charging time, discharge capacity ratio and charging efficiency)
FIG. 7 shows experimental results showing the relationship between the charging time, the charging efficiency, and the discharge capacity ratio in the charging apparatus 100. The discharge capacity ratio is the ratio of the discharge capacity to the rated battery capacity of 1900 mAh at each charging time. As shown in FIG. 7, the discharge capacity ratio is proportional to the charging time up to about 3.2 hours, but thereafter, the slope gradually decreases and reaches about 100% at the charging time of about 3.8 hours. On the other hand, the charging efficiency shows a high value of about 99% or more until about 3.2 hours, but after that, gradually decreases and is about 95% at the charging time 3.6 h indicating the peak voltage, the discharge capacity ratio. However, it decreases to about 91% at a charging time of about 3.8 hours reaching about 100%.
 上述したように、充電装置100では、電池1の電圧勾配における変曲点を検出し充電を停止することで、A点で示される充電時間3.4時間において充電を停止する構成とした。充電時間3.4時間における充電効率は約99%であり、ピーク電圧を検出した後に充電を停止する従来の方式に比べ、高い充電効率を実現することができる。
 また、充電装置100では、電池1の電圧勾配における変曲点を検出し充電を停止することで、充電時間3.6時間において電池1の電圧値が時間経過に伴って増加から減少に転じるB点よりも前に充電を停止する構成とした。すなわち、上述したように単位時間ΔTを、約1.5分から2.5分の範囲とし、電池1の電圧勾配における変曲点を検出し充電を停止することで、電池1の電圧値が時間経過に伴って増加から減少に転じるB点よりも前に充電を停止することができる。充電時間3.6時間における充電効率は約95%であり、ピーク電圧を検出した後に充電を停止する従来の方式に比べ、より高い充電効率を実現することができる。
(充電時間と電池温度との関係について)
 図8は、充電装置100における充電時間と電池温度との関係を示す実験結果である。図8に示すように、電池温度は、充電を開始した後、先ず上昇し、約1時間を経過した後、ほぼ約25.5℃の一定値を示す。その後、A点で示される充電時間3.4時間を経過した後、急激に上昇して充電時間Bで示される充電時間3.6時間において約28.5℃を示す。そして、放電容量比率が、約100%に達する充電時間約3.8時間では、約34℃まで上昇する。
As described above, the charging device 100 is configured to stop charging at a charging time of 3.4 hours indicated by point A by detecting an inflection point in the voltage gradient of the battery 1 and stopping charging. The charging efficiency in the charging time of 3.4 hours is about 99%, and higher charging efficiency can be realized as compared with the conventional method in which charging is stopped after detecting the peak voltage.
Further, in charging device 100, by detecting an inflection point in the voltage gradient of battery 1 and stopping charging, the voltage value of battery 1 changes from increasing to decreasing over time in charging time 3.6 hours. The charging is stopped before the point. That is, as described above, the unit time ΔT is set in the range of about 1.5 to 2.5 minutes, the inflection point in the voltage gradient of the battery 1 is detected, and the charging is stopped, so that the voltage value of the battery 1 is changed over time. Charging can be stopped before point B, which turns from increasing to decreasing as time passes. The charging efficiency in the charging time of 3.6 hours is about 95%, and higher charging efficiency can be realized as compared with the conventional method in which the charging is stopped after detecting the peak voltage.
(Relationship between charging time and battery temperature)
FIG. 8 shows experimental results showing the relationship between the charging time and the battery temperature in the charging apparatus 100. As shown in FIG. 8, the battery temperature first rises after charging is started, and shows a constant value of about 25.5 ° C. after about 1 hour. Thereafter, after a charging time of 3.4 hours indicated by point A has elapsed, the temperature rapidly increases and shows about 28.5 ° C. at a charging time of 3.6 hours indicated by charging time B. Then, the charging capacity ratio rises to about 34 ° C. in the charging time of about 3.8 hours when it reaches about 100%.
 上述したように、充電装置100では、A点で示される充電時間3.4時間において充電を停止する構成とした。充電時間3.4時間における電池温度は約25.5℃であり、急激な温度上昇が始まる前に充電を停止することができ、ピーク電圧を検出した後に充電を停止する従来の構成と比べて電池温度を低減することができる。
<まとめ>
 以上、説明したとおり、本発明の実施の形態に係る充電装置100およびその制御方法は、電池1が出力する電圧値をモニターし、電圧値が所定の電圧値以上である場合において、単位時間当たりの電圧値の変化量が時間経過に伴って増加から減少に転じた場合に、スイッチ部3に電池への電流を遮断させる制御部を備える。これにより、充電中の電池電圧の電圧勾配の変曲点を検出し充電を停止できるので、充電電気量に対する放電容量の比率として表される充電効率高めることができる。また、充電電気量比率が100%を超えたところで発生する電池の発熱を防止することができ電池の寿命を高めることができる。
<変形例>
 以上、実施の形態の一態様に係る充電装置100及びその制御方法の実施形態を説明したが、例示した充電装置100を以下のように変形することも可能であり、本発明が上述の実施形態で示した通りの充電装置100に限られないことは勿論である。
(1)実施の形態の一態様に係る充電装置100では、制御部4は、充電中に単位時間ΔT経過前後に電池1の出力電圧Vの変化量である電圧変化ΔVを算出し、その増減を検出することにより電圧勾配の変曲点を検出する構成とした。しかしながら、制御部4は、単位時間当たりの前記電圧値の変化量の時間経過に伴う増減を検出するものであれば足り、以下に示す構成であってもよい。例えば、変形例では、制御部4は、各充電時間における電池電圧を検出し、そこから充電中に単位電圧変化ΔVに要する充電時間ΔTを算出する
。そして、その増減を検出することにより電圧勾配の変曲点を検出する構成とする構成とした。この場合も、実施の形態に係る充電装置100同様に、充電中の電池電圧の電圧勾配の変曲点を検出し充電を停止できる。
(2)実施の形態の一態様に係る充電装置100では、制御部4は、充電中に単位時間ΔT経過前後に電池1の出力電圧Vの変化量である電圧変化ΔVを算出し、2回連続してΔ
Vが減少した場合に充電を停止する構成とした。しかしながら、制御部4は、電圧勾配の増減を正確に検出するものであれば足り、以下に示す構成であってもよい。例えば、変形例では、制御部4は、3又は4回連続してΔVが減少した場合に充電を停止する構成であっても良い。このような構成は、単位時間ΔTの間隔を充電装置100に比べて短くし、かつ電池電圧の検出精度を高めることで実現でき、より正確に電圧勾配の変曲点を検出することができる。
≪補足≫
 以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない工程については、より好ましい形態を構成する任意の構成要素として説明される。
As described above, the charging device 100 is configured to stop charging at the charging time of 3.4 hours indicated by point A. The battery temperature at the charging time of 3.4 hours is about 25.5 ° C., and charging can be stopped before the rapid temperature rise starts. Compared with the conventional configuration in which charging is stopped after detecting the peak voltage. Battery temperature can be reduced.
<Summary>
As described above, the charging device 100 and the control method thereof according to the embodiment of the present invention monitor the voltage value output from the battery 1 and, when the voltage value is equal to or higher than the predetermined voltage value, per unit time When the amount of change in the voltage value changes from increasing to decreasing with the passage of time, the switching unit 3 is provided with a control unit that cuts off the current to the battery. Thereby, since the inflection point of the voltage gradient of the battery voltage during charging can be detected and charging can be stopped, the charging efficiency expressed as the ratio of the discharge capacity to the amount of charge can be increased. In addition, the heat generation of the battery that occurs when the charge amount ratio exceeds 100% can be prevented, and the battery life can be increased.
<Modification>
As mentioned above, although embodiment of the charging device 100 which concerns on the one aspect | mode of embodiment, and its control method was described, it is also possible to modify the illustrated charging device 100 as follows, and this invention is the above-mentioned embodiment. Of course, the charging device 100 is not limited to that shown in FIG.
(1) In the charging device 100 according to one aspect of the embodiment, the control unit 4 calculates a voltage change ΔV that is a change amount of the output voltage V of the battery 1 before and after the unit time ΔT during charging, and increases or decreases By detecting this, the inflection point of the voltage gradient is detected. However, the control unit 4 only needs to detect an increase / decrease over time of the change amount of the voltage value per unit time, and may be configured as follows. For example, in the modification, the control unit 4 detects the battery voltage at each charging time, and calculates the charging time ΔT required for the unit voltage change ΔV during charging from the battery voltage. And it was set as the structure which detects the inflection point of a voltage gradient by detecting the increase / decrease. Also in this case, similarly to the charging device 100 according to the embodiment, the charging can be stopped by detecting the inflection point of the voltage gradient of the battery voltage during charging.
(2) In charging apparatus 100 according to one aspect of the embodiment, control unit 4 calculates voltage change ΔV that is the amount of change in output voltage V of battery 1 before and after unit time ΔT during charging, and performs twice. Δ continuously
The charging is stopped when V decreases. However, the control unit 4 only needs to accurately detect increase / decrease in the voltage gradient, and may have the following configuration. For example, in a modification, the control unit 4 may be configured to stop charging when ΔV decreases three or four times in succession. Such a configuration can be realized by shortening the interval of the unit time ΔT as compared with the charging device 100 and increasing the detection accuracy of the battery voltage, and can detect the inflection point of the voltage gradient more accurately.
<Supplement>
Each of the embodiments described above shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the embodiment, steps that are not described in the independent claims indicating the highest concept of the present invention are described as arbitrary constituent elements constituting a more preferable form.
 また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 さらに、充電装置においては基板上に回路部品、リード線等の部材も存在するが、電気的配線、電気回路について照明装置等の技術分野における通常の知識に基づいて様々な態様を実施可能であり、本発明の説明として直接的には無関係のため、説明を省略している。尚、上記示した各図は模式図であり、必ずしも厳密に図示したものではない。
Further, for easy understanding of the invention, the scales of the components shown in the above-described embodiments may be different from actual ones. The present invention is not limited by the description of each of the above embodiments, and can be appropriately changed without departing from the gist of the present invention.
Furthermore, although there are circuit components, lead wires, and other members on the board in the charging device, various aspects can be implemented based on ordinary knowledge in the technical field of lighting devices and the like regarding electrical wiring and electrical circuits. The description of the present invention is omitted because it is not directly relevant. Each figure shown above is a schematic diagram, and is not necessarily illustrated strictly.
 本発明の充電装置および充電装置の制御方法は、例えば、家庭用もしくは公共施設、あるいは業務用の携帯電子機器等に用いられるニッケル水素2次電池、ニッケル-カドミウム2次電池等のアルカリ2次電池を充電をする充電装置およびその制御方法等に好適に利用可能である。 The charging device and the control method of the charging device according to the present invention include, for example, alkaline secondary batteries such as nickel hydride secondary batteries and nickel-cadmium secondary batteries used in home or public facilities, or portable electronic devices for business use. Can be suitably used for a charging device for charging the battery, a control method thereof, and the like.
 1 電池(アルカリ2次電池)
 2 電源部
 3 スイッチ部
 4 制御部
 5 温度センサー
 6 LED(充電状態表示)
 7 LED(省エネ誘導ランプ)                                                                                           
1 Battery (Alkaline secondary battery)
2 Power supply unit 3 Switch unit 4 Control unit 5 Temperature sensor 6 LED (Charge status display)
7 LED (energy saving induction lamp)

Claims (12)

  1.  アルカリ2次電池に定電流を供給しつつ前記アルカリ2次電池の電圧値をモニターし、
     前記電圧値が、前記アルカリ2次電池が有する充電時の電圧値特性を表す曲線における平坦部の上限を示す基準電圧値を超えた場合において、単位時間当たりの電圧値の変化量が時間経過に伴って増加から減少に転じたときに充電を停止することを特徴とする充電装置の制御方法。
    Monitoring the voltage value of the alkaline secondary battery while supplying a constant current to the alkaline secondary battery;
    When the voltage value exceeds a reference voltage value indicating an upper limit of a flat portion in a curve representing a voltage value characteristic during charging of the alkaline secondary battery, the amount of change in the voltage value per unit time is elapsed over time. A method for controlling a charging device, wherein charging is stopped when a change is made from increase to decrease.
  2.  前記単位時間当たりの電圧値の変化量が所定値以上になった場合、充電を停止するまでの間、表示器を表示させることを特徴とする請求項1の充電装置の制御方法。 The method for controlling a charging apparatus according to claim 1, wherein when the amount of change in the voltage value per unit time is equal to or greater than a predetermined value, the display is displayed until the charging is stopped.
  3.  前記アルカリ2次電池の電圧値が時間経過に伴って増加から減少に転じる前に充電を停止することを特徴とする請求項1に記載の充電装置の制御方法。 The charging device control method according to claim 1, wherein the charging is stopped before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time.
  4.  前記アルカリ2次電池の充電に使用された充電電気量に対する前記アルカリ2次電池から放電により取り出せる放電容量の比率である充電効率が95%~99%の範囲にある状態において、前記アルカリ2次電池への充電を停止することを特徴とする請求項3記載の充電装置の制御方法。 In a state where the charging efficiency, which is the ratio of the discharge capacity that can be taken out from the alkaline secondary battery to the amount of charge used for charging the alkaline secondary battery by discharging, is in the range of 95% to 99%, the alkaline secondary battery The charging device control method according to claim 3, wherein charging of the battery is stopped.
  5.  単位時間ΔTを隔てた2つの時刻から構成され、自然数Nに対し時間的に昇順の時刻の組(TN、TN-1)、(TN-2、TN-3)、(TN-4、TN-5)、及び(TN-6、TN-7)に含ま
    れる各々の時刻において、前記アルカリ2次電池の電圧値VN、VN-1、VN-2、VN-3、V
    N-4、VN-5、VN-6、VN-7を各々測定し、
     差分VN-VN-1で示される電圧値変化V´Nと、
    差分VN-2-VN-3で示される電圧値変化V´N-1と、
    差分VN-4-VN-5で示される電圧値変化V´N-2と、
    差分VN-6-VN-7で示される電圧値変化V´N-3とを算出し、
     さらに、差分V´N-V´N-1で示される電圧値変化の差分V´´Nと、
    差分V´N-1-V´N-2で示される電圧値変化の差分V´´N-1と、
    差分V´N-2-V´N-3で示される電圧値変化の差分V´´N-2とを算出し、
     前記電圧値変化の差分V´´N-2が正であって、前記電圧値変化の差分V´´N-1及び前記電圧値変化の差分V´´Nが共に負である場合に、前記アルカリ2次電池への充電を停止することを特徴とする請求項1から4の何れかに記載の充電装置の制御方法。
    A set of time (TN, TN-1), (TN-2, TN-3), (TN-4, TN-) composed of two times separated by a unit time ΔT in ascending order with respect to the natural number N. 5) and voltage values VN, VN-1, VN-2, VN-3, V of the alkaline secondary battery at each time included in (TN-6, TN-7).
    Measure N-4, VN-5, VN-6, VN-7,
    Voltage value change V′N indicated by the difference VN−VN−1,
    Voltage value change V′N−1 indicated by the difference VN−2−VN−3,
    Voltage value change V′N−2 indicated by the difference VN−4−VN−5,
    The voltage value change V′N-3 indicated by the difference VN-6−VN-7 is calculated,
    Further, the difference V ″ N of the voltage value change indicated by the difference V′N−V′N−1,
    A difference V ′ ″ N−1 in voltage value change indicated by a difference V′N−1−V′N−2;
    The voltage value change difference V ″ N−2 indicated by the difference V′N−2−V′N−3 is calculated,
    When the voltage value change difference V ″ N-2 is positive and the voltage value change difference V ″ N−1 and the voltage value change difference V ″ N are both negative, 5. The method for controlling a charging device according to claim 1, wherein charging of the alkaline secondary battery is stopped.
  6.  前記アルカリ2次電池は、ニッケル水素2次電池又はニッケルカドミウム2次電池の何れかであることを特徴とする請求項1から5の何れかに記載の充電装置の制御方法。 The method for controlling a charging device according to any one of claims 1 to 5, wherein the alkaline secondary battery is either a nickel-hydrogen secondary battery or a nickel-cadmium secondary battery.
  7.  アルカリ2次電池を充電する充電装置であって、
     定電流電源部と、
     前記定電流電源部と前記アルカリ2次電池を結ぶ電流路に設けられたスイッチ部と、
     前記アルカリ2次電池の電圧値をモニターし、当該電圧値が前記アルカリ2次電池が有する充電時の電圧値特性を表す曲線における平坦部の上限を示す基準電圧値を超えた場合において、単位時間当たりの電圧値の変化量が時間経過に伴って増加から減少に転じたときに前記スイッチ部に前記電池への電流を遮断させる制御部と、
    を備えたことを特徴とする充電装置。
    A charging device for charging an alkaline secondary battery,
    A constant current power supply,
    A switch unit provided in a current path connecting the constant current power source unit and the alkaline secondary battery;
    When the voltage value of the alkaline secondary battery is monitored and the voltage value exceeds the reference voltage value indicating the upper limit of the flat portion in the curve representing the voltage value characteristics during charging of the alkaline secondary battery, the unit time A control unit that causes the switch unit to cut off a current to the battery when the amount of change in the per-voltage value changes from increasing to decreasing with the passage of time;
    A charging device comprising:
  8.  表示器をさらに備え、前記制御部は、前記単位時間当たりの電圧値の変化量が所定値以上になった場合、充電を停止するまでの間、前記表示器を表示させることを特徴とする請求項7の充電装置。 The display device further includes a display, and when the amount of change in the voltage value per unit time is equal to or greater than a predetermined value, the control unit displays the display until charging is stopped. Item 7. The charging device according to Item 7.
  9.  前記制御部は、前記アルカリ2次電池の電圧値が時間経過に伴って増加から減少に転じる前に前記スイッチ部に前記電池への電流を遮断させる、
    ことを特徴とする請求項7に記載の充電装置。
    The control unit causes the switch unit to cut off the current to the battery before the voltage value of the alkaline secondary battery changes from increasing to decreasing with time.
    The charging device according to claim 7.
  10.  前記制御部は、前記アルカリ2次電池の充電に使用された充電電気量に対する前記アルカリ2次電池から放電により取り出せる放電容量の比率である充電効率が95%~99%の範囲にある状態において、前記スイッチ部に前記電池への電流を遮断させる、
    ことを特徴とする請求項9に記載の充電装置。
    In the state where the charging efficiency, which is the ratio of the discharge capacity that can be taken out from the alkaline secondary battery by discharging to the amount of charge used for charging the alkaline secondary battery, is in the range of 95% to 99%, Blocking the current to the battery in the switch unit;
    The charging device according to claim 9.
  11.  前記制御部は、単位時間ΔTを隔てた2つの時刻から構成され、自然数Nに対し時間的に昇順の時刻の組(TN、TN-1)、(TN-2、TN-3)、(TN-4、TN-5)、及び(TN-6
    、TN-7)に含まれる各々の時刻において、前記アルカリ2次電池の電圧値VN、VN-1、
    VN-2、VN-3、VN-4、VN-5、VN-6、VN-7を各々測定し、
     差分VN-VN-1で示される電圧値変化V´Nと、
    差分VN-2-VN-3で示される電圧値変化V´N-1と、
    差分VN-4-VN-5で示される電圧値変化V´N-2と、
    差分VN-6-VN-7で示される電圧値変化V´N-3とを算出し、
     さらに、差分V´N-V´N-1で示される電圧値変化の差分V´´Nと、
    差分V´N-1-V´N-2で示される電圧値変化の差分V´´N-1と、
    差分V´N-2-V´N-3で示される電圧値変化の差分V´´N-2とを算出し、
     前記電圧値変化の差分V´´N-2が正であって、前記電圧値変化の差分V´´N-1及び前記電圧値変化の差分V´´Nが共に負である場合に、前記アルカリ2次電池への充電を停止することを特徴とする請求項7から10の何れかに記載の充電装置。
    The control unit is composed of two times separated by a unit time ΔT, and a set of time (TN, TN-1), (TN-2, TN-3), (TN -4, TN-5), and (TN-6
    , TN-7) at each of the times included in the voltage values VN, VN-1,
    Measure VN-2, VN-3, VN-4, VN-5, VN-6, VN-7,
    Voltage value change V′N indicated by the difference VN−VN−1,
    Voltage value change V′N−1 indicated by the difference VN−2−VN−3,
    Voltage value change V′N−2 indicated by the difference VN−4−VN−5,
    The voltage value change V′N-3 indicated by the difference VN-6−VN-7 is calculated,
    Further, the difference V ″ N of the voltage value change indicated by the difference V′N−V′N−1,
    A difference V ′ ″ N−1 in voltage value change indicated by a difference V′N−1−V′N−2;
    The voltage value change difference V ″ N−2 indicated by the difference V′N−2−V′N−3 is calculated,
    When the voltage value change difference V ″ N-2 is positive and the voltage value change difference V ″ N−1 and the voltage value change difference V ″ N are both negative, The charging device according to claim 7, wherein charging to the alkaline secondary battery is stopped.
  12.  前記アルカリ2次電池は、ニッケル水素2次電池又はニッケルカドミウム2次電池の何れかであることを特徴とする請求項7から11の何れかに記載の充電装置。 The charging device according to any one of claims 7 to 11, wherein the alkaline secondary battery is either a nickel metal hydride secondary battery or a nickel cadmium secondary battery.
PCT/JP2013/006377 2012-11-02 2013-10-29 Charging device and method for controlling same WO2014068948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012242806A JP2016012948A (en) 2012-11-02 2012-11-02 Charger and control method thereof
JP2012-242806 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014068948A1 true WO2014068948A1 (en) 2014-05-08

Family

ID=50626897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006377 WO2014068948A1 (en) 2012-11-02 2013-10-29 Charging device and method for controlling same

Country Status (2)

Country Link
JP (1) JP2016012948A (en)
WO (1) WO2014068948A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146088A (en) * 1991-11-18 1993-06-11 Hitachi Maxell Ltd Charger
JPH07308031A (en) * 1994-05-13 1995-11-21 Toshiba Battery Co Ltd Charger for secondary battery
JP2007252086A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method of charging secondary battery
JP2010114958A (en) * 2008-11-04 2010-05-20 Hitachi Koki Co Ltd Charger
JP2010263735A (en) * 2009-05-11 2010-11-18 Toshiba Corp Information processing apparatus and battery charging control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146088A (en) * 1991-11-18 1993-06-11 Hitachi Maxell Ltd Charger
JPH07308031A (en) * 1994-05-13 1995-11-21 Toshiba Battery Co Ltd Charger for secondary battery
JP2007252086A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method of charging secondary battery
JP2010114958A (en) * 2008-11-04 2010-05-20 Hitachi Koki Co Ltd Charger
JP2010263735A (en) * 2009-05-11 2010-11-18 Toshiba Corp Information processing apparatus and battery charging control method

Also Published As

Publication number Publication date
JP2016012948A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6148882B2 (en) Battery pack and charger
CN1896762B (en) Battery charger with battery life judging function
JP5652802B2 (en) Internal short circuit detection device and internal short circuit detection method for secondary battery
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
EP2587584A2 (en) Temperature detection device and battery pack
JP4817647B2 (en) Secondary battery life judgment method.
JP2007259532A (en) Method for charging secondary battery
JP2008277136A (en) Battery pack, battery circuit, and charging system
JP2008301638A (en) Battery charging circuit
JP2012034425A (en) Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
WO2012008247A1 (en) Secondary battery charging method and charging apparatus
WO2021077798A1 (en) Charging method and charging apparatus
JP2020008520A (en) Life determination method of energy storage system, and energy storage system
JP2012152057A (en) Power supply apparatus
WO2014068948A1 (en) Charging device and method for controlling same
JP2007252086A (en) Method of charging secondary battery
JP2004194481A (en) Battery charging controlling device and battery charging device
JPH1118314A (en) Method and equipment for charging lithium ion secondary battery
JP4372074B2 (en) Rechargeable battery charging method
CN103580071A (en) Charging device with battery management system
JP5178137B2 (en) Electronics
JP2005245056A (en) Battery pack and rechargeable electric appliance set
JP2015029390A (en) Charger
JPH10327540A (en) Charger
WO2021186937A1 (en) Battery pack, charging system, and method for charging battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP