Nothing Special   »   [go: up one dir, main page]

WO2014064983A1 - Aliphatic polyester resin composition and biodegradable film - Google Patents

Aliphatic polyester resin composition and biodegradable film Download PDF

Info

Publication number
WO2014064983A1
WO2014064983A1 PCT/JP2013/070778 JP2013070778W WO2014064983A1 WO 2014064983 A1 WO2014064983 A1 WO 2014064983A1 JP 2013070778 W JP2013070778 W JP 2013070778W WO 2014064983 A1 WO2014064983 A1 WO 2014064983A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
aliphatic
aliphatic polyester
acid
resin composition
Prior art date
Application number
PCT/JP2013/070778
Other languages
French (fr)
Japanese (ja)
Inventor
梨絵 砥綿
達哉 落合
Original Assignee
三菱樹脂アグリドリーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂アグリドリーム株式会社 filed Critical 三菱樹脂アグリドリーム株式会社
Priority to JP2014543166A priority Critical patent/JPWO2014064983A1/en
Priority to CN201380042662.9A priority patent/CN104540895A/en
Publication of WO2014064983A1 publication Critical patent/WO2014064983A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to an aliphatic polyester resin composition excellent in biodegradability and a biodegradable film using the same.
  • biodegradable materials include aliphatic polyester resins such as polylactic acid, polybutylene succinate, polybutylene succinate adipate, and aromatic-aliphatic copolyester resins such as polybutylene adipate terephthalate.
  • aliphatic polyester resins such as polylactic acid, polybutylene succinate, polybutylene succinate adipate, and aromatic-aliphatic copolyester resins such as polybutylene adipate terephthalate.
  • polyfunctional low-melting polymers having biodegradability such as aliphatic aromatic polyesters obtained by condensing a dicarboxylic acid component composed of adipic acid and terephthalic acid and a diol component composed of 1,4-butanediol.
  • Flexibility and strength can be achieved by blending an aliphatic polyester resin obtained by polycondensation reaction of polyol with dicarboxylic acid such as succinic acid and adipic acid with a resin having a relatively high melting point, such as a polylactic acid resin. It was done. However, blending polylactic acid in the composition lacked compatibility and thus did not have the effect as expected.
  • the film when applying biodegradable films to agricultural applications, until the cultivated crops grow to some extent, the film should not be broken in order to keep the ground temperature at a predetermined temperature and prevent weeds from growing. Sufficient strength is required, while the film used in the previous period needs to be decomposed to some extent in the soil when the harvesting is finished and the cultivation of the next crop begins. . However, those having the strength to withstand use as such an agricultural film and having the property of biodegrading in an appropriate period have not yet been put into practical use.
  • the present invention has a sufficient heat-retaining function for preventing the growth of weeds in the period from sowing and planting of cultivated crops to the cultivation of crops to a certain extent, and the cultivated crops.
  • the aliphatic polyester resin composition having biodegradable properties that can be decomposed to the extent that there is virtually no hindrance in the cultivation work, and the biodegradation It aims at providing an adhesive film.
  • an aliphatic polyester resin comprising an aliphatic polyester resin containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin not containing an adipic acid unit as a dicarboxylic acid unit ( A) and an aliphatic polyester-based resin composition containing an aliphatic aromatic polyester-based resin (B) in a specific ratio and a biodegradable film using the same have been found to solve the above-mentioned problems. It came.
  • An aliphatic polyester resin composition The aliphatic polyester resin (A) comprises an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) containing no adipic acid unit as a dicarboxylic acid unit.
  • the present invention provides a biodegradable film that is excellent in moldability and impact strength, and that maintains a predetermined level of tensile breaking elongation in the molding direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours. be able to. Therefore, according to the present invention, in the period from the sowing and fixed planting of cultivated crops to the cultivation of crops to some extent, it has a sufficient strength necessary to prevent weeds from growing and having a heat retaining function of the ground temperature, and Providing a biodegradable film with biodegradable properties that enables it to be decomposed to the extent that there is virtually no hindrance in the cultivation work before the harvest of the cultivated crop is finished and before the cultivation of the next crop begins. It becomes possible.
  • the aliphatic polyester resin (A) is an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and a dicarboxylic acid unit.
  • Aliphatic polyester resin (A) The aliphatic polyester resin (A) is composed of an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) containing no adipic acid unit as a dicarboxylic acid unit.
  • the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2), which are constituents of the aliphatic polyester resin (A) have an aliphatic diol unit and an aliphatic dicarboxylic acid unit as main components. It is preferable that it is an aliphatic polyester-type resin.
  • the “main component” refers to 70 mol% or more, preferably 80 mol of an aliphatic diol unit and an aliphatic dicarboxylic acid unit, based on the whole monomer unit constituting the aliphatic polyester (100 mol%). % Or more, more preferably 90 mol% or more.
  • aliphatic polyester-based resin (a1) and the aliphatic polyester-based resin (a2) include a chain aliphatic and / or alicyclic diol unit represented by the following formula (1), and the following: It consists of a chain aliphatic and / or alicyclic dicarboxylic acid unit represented by the formula (2).
  • R 1 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 1 are present in the resin.
  • R 2 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 2 are present in the resin. May be included.
  • a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group means a divalent chain aliphatic hydrocarbon group. This means that both a group and a divalent alicyclic hydrocarbon group may be contained.
  • chain aliphatic and / or alicyclic may be simply abbreviated as “aliphatic”.
  • the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention contain 1,4 butanediol units as essential components as the diol units of the above formula (1).
  • the content of 1,4 butanediol units is 30 to 60 mol% based on the total monomer units constituting the aliphatic polyester resin (a1) or the aliphatic polyester resin (a2) (100 mol%). In particular, it is preferably 40 to 50 mol%.
  • the diol unit other than the 1,4 butanediol unit is not particularly limited, but an aliphatic diol unit having 3 to 10 carbon atoms is preferable, and an aliphatic diol unit having 4 to 6 carbon atoms is particularly preferable. Specific examples include 1,3-propanediol and 1,4-hexanedimethanol. Two or more kinds of diol components giving the aliphatic diol unit can be used.
  • the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention further contain a succinic acid unit as an essential component as a dicarboxylic acid unit.
  • the aliphatic polyester-based resin (a1) contains adipic acid as an essential component as a dicarboxylic acid unit, and the content of the adipic acid unit is based on the whole monomer unit constituting the aliphatic polyester-based resin (a1) ( 100 mol%) is preferably 0.5 to 20 mol%, more preferably 1 to 15 mol%.
  • the aliphatic polyester resin (a2) does not substantially contain an adipic acid unit.
  • the dicarboxylic acid unit other than the succinic acid unit and the adipic acid unit is not particularly limited, but an aliphatic dicarboxylic acid unit having 2 to 10 carbon atoms is preferable, and an aliphatic dicarboxylic acid unit having 4 to 8 carbon atoms is particularly preferable. Specific examples include suberic acid, sebacic acid, dodecanedioic acid and the like. Two or more kinds of dicarboxylic acid components giving the aliphatic dicarboxylic acid unit can be used.
  • the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid and the like, or lower alcohols or intramolecular esters thereof.
  • any of D-form, L-form and racemic form may be sufficient, and the form may be any of solid, liquid or aqueous solution.
  • lactic acid or glycolic acid is particularly preferred.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the content of the aliphatic oxycarboxylic acid unit is 0 to 30 mol% based on the whole monomer unit constituting the aliphatic polyester resin (a1) or the aliphatic polyester resin (a2) (100 mol%). It is preferably 0.01 to 20 mol%, more preferably 0.01 to 10 mol%.
  • Specific examples of such aliphatic polyester resins include “GSPla” manufactured by Mitsubishi Chemical Corporation and “Bionore” manufactured by Showa Denko.
  • the aliphatic polyester resin (A) is composed of an aliphatic polyester (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester (a2) containing no adipic acid unit as a dicarboxylic acid unit.
  • the blending ratio (weight ratio) of both is preferably in the range of 1: 9 to 9: 1, more preferably 1: 6 to 6: 1, and still more preferably 1: 4 to 4: 1.
  • the heat retaining function of the ground temperature in such a configuration, in particular, when used for an agricultural film or the like, in the period from the sowing of the cultivated crop or the fixed planting until the crop is grown to some extent, the heat retaining function of the ground temperature. It has sufficient strength to prevent weeds from growing, and before harvesting of the cultivated crop is completed and before the cultivation of the next crop begins, it is decomposed to the extent that there is virtually no hindrance in the cultivation work. Can be.
  • Aliphatic aromatic polyester resin (B) The aliphatic aromatic polyester resin (B) used in the present invention contains an aliphatic dicarboxylic acid unit, an aromatic dicarboxylic acid unit, a chain aliphatic and / or alicyclic diol unit, and an aromatic dicarboxylic acid unit.
  • the content of the acid unit is 5 to 60 mol% based on the total amount of the aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit (100 mol%).
  • the aliphatic aromatic polyester resin (B) in the present invention includes, for example, an aliphatic diol unit represented by the following formula (3) and an aliphatic dicarboxylic group represented by the following formula (4).
  • An acid unit and an aromatic dicarboxylic acid unit represented by the following formula (5) are essential components.
  • R 3 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is not limited to one type when copolymerized.
  • R 4 represents a direct bond or a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is limited to one type when copolymerized.
  • —OC—R 5 —CO— (5) In the formula, R 5 represents a divalent aromatic hydrocarbon group and is not limited to one type when copolymerized.
  • the diol component giving the diol unit of the formula (3) usually has 2 to 10 carbon atoms, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedi Methanol etc. are mentioned. Of these, diols having 2 to 4 carbon atoms are preferable, ethylene glycol and 1,4-butanediol are more preferable, and 1,4-butanediol is particularly preferable.
  • the dicarboxylic acid component that gives the dicarboxylic acid unit of the formula (4) usually has 2 to 10 carbon atoms, and examples thereof include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like. Among these, succinic acid or adipic acid is preferable.
  • aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit of the formula (5) include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like, among which terephthalic acid and isophthalic acid are preferable, and terephthalic acid is particularly preferable. preferable.
  • aromatic dicarboxylic acid in which a part of the aromatic ring is substituted with a sulfonate is exemplified. Two or more types of aliphatic dicarboxylic acid components, aliphatic diol components, and aromatic dicarboxylic acid components can be used.
  • the aliphatic aromatic polyester resin (B) in the present invention may contain an aliphatic oxycarboxylic acid unit.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, or a mixture thereof.
  • these lower alkyl esters or intramolecular esters may be used.
  • any of D-form, L-form and racemic form may be used, and the form may be any of solid, liquid or aqueous solution.
  • lactic acid or glycolic acid is preferable.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the amount of the aliphatic oxycarboxylic acid is preferably 0 to 30% by mole, more preferably 0.01 to 20% by mole, based on all components constituting the aliphatic aromatic polyester resin (B). Is preferred.
  • the melt flow rate (MFR) of the aliphatic aromatic polyester resin (B) in the present invention is preferably 0.1 to 100 g / 10 min, more preferably when measured at 190 ° C. and a load of 2.16 kg.
  • the amount is from 0.1 to 50 g / 10 minutes, and particularly preferably from 0.1 to 30 g / 10 minutes.
  • aliphatic aromatic polyester resins (B) include “Ecoflex” manufactured by BASF and “EnPol” manufactured by S-EnPol.
  • the blending ratio (A) :( B) (weight ratio) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B) is preferably The ratio is 1: 1 to 4: 1, more preferably 1: 1 to 3.8: 1, and still more preferably 1: 1 to 2: 1.
  • the blending ratio (A) :( B) exceeds 1: 1 and the aliphatic aromatic polyester resin (B) is blended, the moldability of the film is deteriorated or the deterioration at the end of cultivation is insufficient. There is a risk of film wrapping during processing on the machine. Further, when the aliphatic polyester resin (A) is blended exceeding the blending ratio of 4: 1, there is a risk that a hard film lacking in flexibility is formed.
  • the aliphatic polyester resin composition is a lactic acid resin based on the total weight (100 parts by weight) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B).
  • the polyester resin (C) is preferably contained in an amount of 3 to 20 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 5 to 10 parts by weight. If the content of the lactic acid-based polyester resin (C) is out of the range of 3 to 20 parts by weight, there is a possibility that the period until biodegradation becomes longer or the flexibility becomes poor.
  • the aliphatic polyester-based resin composition of the present invention contains a certain amount of the aliphatic polyester-based resin (A), the aliphatic aromatic polyester-based resin (B), and the lactic acid-based polyester resin (C), and By having the degree of biodegradation, after the cultivation is completed and before the cultivation of the next crop is started, it has the performance of decomposing to the extent that there is virtually no problem in the operation of starting cultivation.
  • L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, a homopolymer or a copolymer such as lactide, and the like can be used as the lactic acid polyester resin (C).
  • the lactic acid polyester resin (C) can be produced from these raw materials directly by dehydration condensation or ring opening polymerization of lactide, but the production method is not particularly limited.
  • other than the lactic acid other hydroxycarboxylic acids, aliphatic polyhydric alcohols, aliphatic polybasic acids and the like may be copolymerized to such an extent that the properties of the lactic acid polyester resin are not impaired.
  • Specific examples of such a lactic acid-based polyester resin include “Ingeo Biopolymer” manufactured by Nature Works, “REVODE” manufactured by Zhejiang Kaisho Biomaterials, and the like.
  • the lactic acid polyester resin (C) is not particularly limited, but an amorphous lactic acid polyester resin is preferable. Dispersibility of lactic acid polyester resin (C) is better than aliphatic polyester resin (A) and aliphatic aromatic polyester resin (B) by using amorphous lactic acid polyester resin And more uniform performance can be obtained.
  • the crystalline lactic acid-based polyester resin (C) has a higher melting point than the aliphatic polyester-based resin (A) and the aliphatic aromatic polyester-based resin (B). ) And (C), the range of good molding conditions tends to be narrow. However, by using an amorphous lactic acid-based polyester resin (C), (A), ( About the composition which mixed resin of B) and (C), it becomes possible to make the range of favorable molding conditions wider.
  • the aliphatic polyester resin composition contains an inorganic filler.
  • the inorganic filler is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.9 part by weight, with respect to 100 parts by weight of the aliphatic polyester resin composition. More preferably 0.2 to 0.8 part by weight is contained.
  • the aliphatic polyester resin composition can have an appropriate viscosity, and better moldability can be obtained.
  • inorganic fillers examples include silica, mica, talc, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, Carbon, wollastonite, calcined perlite, silicates such as calcium silicate and sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate, calcium hydroxide, ferric carbonate, zinc oxide, iron oxide, aluminum phosphate and barium sulfate Of these, one of these may be used alone, or two or more may be used in combination.
  • additives can be further blended in the aliphatic polyester resin composition of the present invention.
  • the additive include a crystal nucleating agent, an antioxidant, an antiblocking agent, a slip agent, an ultraviolet absorber, a light resistance agent, a plasticizer, a heat stabilizer, a colorant, a flame retardant, a release agent, an antistatic agent, Examples include antifogging agents, surface wetting improvers, incineration aids, pigments, lubricants, dispersants, various surfactants, and hydrolysis inhibitors. These may be used alone or in combination of two or more. Among these, it is particularly preferable to add a slip agent and an antiblocking agent.
  • slip agent examples include unsaturated fatty acid amides and unsaturated fatty acid bisamides composed of unsaturated fatty acids having 6 to 30 carbon atoms, with erucic acid amide and erucic acid bisamide being preferred.
  • anti-blocking agent examples include saturated fatty acid amides having 6 to 30 carbon atoms, or saturated fatty acid bisamides (for example, stearic acid amide, stearic acid bisamide), methylol amide, ethanol amide, natural silica, synthetic silica, synthetic zeolite, talc and the like. It is done.
  • colorant commonly used colorants such as carbon black and titanium oxide can be used.
  • coloring agent you may use as it is and may add as a masterbatch.
  • Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and bis (1- Octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di-t-butyl-4-hydroxyphenyl) -2-n-butyl-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) malonate, 2- (3,5-di-tert-butyl-4-hydroxyphenyl) -2-n-butyl-bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) malonate, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl-bis (2,2,6,6-tetramethyl-4-piperidyl) ) Malonate, 2- (3,5 Di-t-butyl-4-
  • UV absorber among the UV absorbers such as benzophenone, benzotriazole, salicylic acid and cyanoacrylate, a benzotriazole UV absorber is preferable. Specifically, 2- [5-chloro (2H ) -Benzotriazol-2-yl] -4-methyl 6- (tert-butyl) phenol, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxy-phenol.
  • Antioxidants include BHT, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl- ⁇ , ⁇ ′, ⁇ ′′-(mesitylene-2,4,6-triyl) tri-p-cresol, octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1, 3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3
  • the stabilizer examples include fatty acid metal salts.
  • the fatty acid component of the fatty acid metal salt is a linear carboxylic acid having a carboxyl group and usually having 6 to 30 carbon atoms, which may be linear or branched, and has only a saturated bond or an unsaturated bond. Also good.
  • fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, montanic acid, palmitoleic acid, oleic acid, eicosenoic acid, erucic acid, elaidic acid , Trans 11 eicosenoic acid, trans 13 docosenoic acid, linoleic acid, linolenic acid, ricinoleic acid, erucic acid and the like.
  • the metal atom atoms of 1A, 2A, 2B and 3B groups of the periodic table are preferable.
  • Preferable examples include sodium, potassium, calcium, magnesium, barium, aluminum, zinc and the like.
  • Examples of the fatty acid metal salt include calcium stearate, magnesium stearate, barium stearate, aluminum stearate, zinc stearate, calcium laurate, magnesium laurate, aluminum laurate, sodium montanate and the like. These may be used alone or in combination of two or more. Among these, calcium stearate, magnesium stearate, aluminum stearate, calcium laurate, magnesium laurate and aluminum laurate are preferable.
  • the dispersant examples include ester waxes such as montan wax.
  • the aliphatic polyester resin composition of the present invention includes biodegradable resins and natural products, such as polycaprolactone, polyamide, polyvinyl alcohol, cellulose ester, starch, cellulose, and the like as long as the effects of the present invention are not impaired. Paper, wood powder, chitin / chitosan, coconut shell powder, walnut shell powder and other animal / plant material fine powders or mixtures thereof can be blended.
  • Biodegradable film Another embodiment of the present invention is a biodegradable film comprising the above-described aliphatic polyester resin composition of the present invention.
  • the biodegradable film of the present invention has a tensile elongation at break in the molding direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours before the exposure to the weather resistance tester. It is preferably 40% or more with respect to the tensile elongation at break in the machine direction (MD). Thereby, it is possible to have a necessary strength for a period of 3 to 6 months during cultivation in outdoor cultivation work.
  • a sunshine weather meter for example, a sunshine weather meter manufactured by Suga Test Instruments Co., Ltd.
  • JISA1415 can be used as an exposure condition in a weather resistance tester.
  • the biodegradable film of the present invention preferably has an impact strength of 3.0 kg ⁇ cm or more in the initial puncture impact test after molding. Thereby, in cultivation work outdoors, it can have impact strength required in the case of work performed at the beginning of cultivation, such as expansion by a machine.
  • the thickness of the biodegradable film is preferably 5 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 40 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m.
  • the thickness of the biodegradable film is 5 ⁇ m or less, the molding of the film becomes unstable, and the strength may be insufficient when used for a stretching operation or the like.
  • film thickness becomes thicker than 50 micrometers, there exists a possibility that decomposition
  • a general method can be used as a kneading method of the resin composition. Specifically, pellets, powders, solid strips, etc. are dry-mixed with a Henschel mixer or ribbon mixer, and then mixed into a known melt kneader such as a single or twin screw extruder, Banbury mixer, kneader, or mixing roll. It can be supplied and melt kneaded.
  • a known melt kneader such as a single or twin screw extruder, Banbury mixer, kneader, or mixing roll. It can be supplied and melt kneaded.
  • an extrusion method in which a film extruded by a T die using an extruder is cooled and solidified by a cast roll, or a method of forming by an inflation molding machine is suitable. .
  • Elongation at break (%) ((distance between marked lines at break) ⁇ (initial distance between marked lines)) / (initial distance between marked lines)) ⁇ 100
  • the tensile test was performed before and after the weather resistance test, and the residual elongation rate was calculated from the following formula.
  • Residual elongation (%) (Elongation after weathering test) / (Initial elongation) ⁇ 100 ⁇ Evaluation criteria for residual elongation rate (after 100 hours exposure)> ⁇ : Residual elongation is 60% or more ⁇ : Residual elongation is 40% or more and less than 60% ⁇ : Residual elongation is 20% or more and less than 40% ⁇ : Residual elongation is less than 20% (3) Formability Inflation molding machine When the film was formed using, the difference in the set temperature of the extruder from the case where the lactic acid polyester (C) was not added was evaluated according to the following criteria. ⁇ : Less than 20 ° C. ⁇ : 20 ° C.
  • Puncture impact strength Four test pieces each having a size of 100 mm ⁇ 100 mm were prepared from each film formed by an inflation molding machine, and conformed to JIS P8134. Using the Toyo Seiki “Puncture Tester (with a 1-inch round spherical head at the tip)”, read the amount of energy (impact strength [kg ⁇ cm]) required to destroy the specimen from the scale plate. It was. The average value of four measured specimens was determined. This value was judged according to the criteria described below. A: 5.0 kg ⁇ cm or more ⁇ : 3.0-5.0 kg ⁇ cm ⁇ : Less than 3.0 kg ⁇ cm
  • Aliphatic polyester (aliphatic polyester (a1)): “GSPla FD99WN” manufactured by Mitsubishi Chemical Corporation Aliphatic polyester (aliphatic polyester (a2)): “GSPla FZ91PN” manufactured by Mitsubishi Chemical Corporation Aliphatic aromatic polyester: Product name “Ecoflex” manufactured by BASF Lactic acid based polyester: Nature Works, Inc. Trade names “Ingeo Biopolymer 2003D”, “IngeoBiopolymer 4060D” Inorganic filler (talc): “MISTRON 850JS” by Nippon Mystron
  • Examples 1 to 6 For inorganic fillers, a master batch is prepared by melting and kneading a mixture of aliphatic polyester and a certain amount in advance using a twin-screw extruder, and each of the formulations shown in Table 1 is in a pellet state. The cylinder and the die temperature were set to the melting temperature of the aliphatic polyester + 40 ° C., and the thickness was 18 ⁇ m (Examples 1 to 5) and 12 ⁇ m (Example 6) using an inflation molding machine manufactured by Modern. The film was formed.
  • the obtained film was evaluated for the residual elongation and the moldability after the weather resistance test according to the above test method and evaluation criteria. The results are shown in Table 1. Also, in all of Examples 1 to 6, decomposition has progressed to the extent that it can be processed by a machine after 5 months of expansion, and the debris that has been sown in the soil before the next cultivation is started. It was confirmed that the decomposition progressed to the extent that there was no problem.
  • Example 1 Weight ratio of aliphatic polyester (a1) to aliphatic polyester (a2)
  • Example 1: FD99WN (a1) / FZ91PN (a2) 9/1
  • Example 2: FD99WN (a1) / FZ91PN (a2) 3/7
  • Example 3: FD99WN (a1) / FZ91PN (a2) 9/1
  • Example 4: FD99WN (a1) / FZ91PN (a2) 5/5
  • Example 5: FD99WN (a1) / FZ91PN (a2) 8/2
  • Example 6: FD99WN (a1) / FZ91PN (a2) 6/4
  • Comparative Example 1: FD99WN (a1) / FZ91PN (a2) 0/0
  • Comparative Example 2: FD99WN (a1) / FZ91PN (a2) 10/0
  • the film thickness of Examples 1 to 5 and Comparative Examples 1 and 2 is 18 ⁇ m, and the film thickness of Example 6 is 12 ⁇ m.
  • the biodegradable film of the present invention is excellent in moldability and has a good tensile elongation at break in the machine direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours. Therefore, according to the present invention, in the period from the sowing and fixed planting of cultivated crops to the cultivation of crops to some extent, it has a sufficient strength necessary to prevent weeds from growing and having a heat retaining function of the ground temperature, and Providing a biodegradable film with biodegradable properties that enables it to be decomposed to the extent that there is virtually no hindrance in the cultivation work before the harvest of the cultivated crop is finished and before the cultivation of the next crop begins. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is an aliphatic polyester resin composition which can be degraded to such an extent that a cultivation operation is not affected substantially before the start of the cultivation of following crops. The composition comprises an aliphatic polyester resin (A) and an aliphatic aromatic polyester resin (B) at a content ratio, (A):(B), of 1:1 to 4:1 (by weight), wherein the aliphatic polyester resin (A) comprises an aliphatic polyester resin (a1) that contains an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) that does not contain an adipic acid unit as a dicarboxylic acid unit at a content ratio, i.e., (a1):(a2), of 1:9 to 9:1 (by weight).

Description

脂肪族ポリエステル系樹脂組成物および生分解性フィルムAliphatic polyester resin composition and biodegradable film
 本発明は、生分解性に優れた脂肪族ポリエステル系樹脂組成物、およびこれを用いた生分解性フィルムに関する。 The present invention relates to an aliphatic polyester resin composition excellent in biodegradability and a biodegradable film using the same.
 昨今の廃棄物問題等を解決する手段の一つとして、生分解性を有する材料を用いた研究が数多くなされてきている。生分解性材料の代表例としては、ポリ乳酸、ポリブチレンスクシネート、ポリブチレンスクシネートアジペートといった脂肪族ポリエステル系樹脂やポリブチレンアジペートテレフタレートといった芳香族-脂肪族共重合ポリエステル系樹脂が挙げられ、種々検討が行なわれている。 Many researches using biodegradable materials have been made as a means of solving the recent waste problems. Representative examples of biodegradable materials include aliphatic polyester resins such as polylactic acid, polybutylene succinate, polybutylene succinate adipate, and aromatic-aliphatic copolyester resins such as polybutylene adipate terephthalate. Various studies have been conducted.
 しかしながら、生分解性フィルムをインフレーション成形機でフィルム化する場合、強度がありかつ柔軟性に優れたフィルムを実用的に製造することができなかった。これまでは、生分解性を有する低融点ポリマー、例えばアジピン酸とテレフタル酸からなるジカルボン酸成分と、1,4-ブタンジオールからなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルを多官能イソシアネートで高分子化した脂肪族芳香族ポリエステル系樹脂や、コハク酸、1,4-ブタンジオール、乳酸とを直接脱水重縮合してなる脂肪族ポリエステル系樹脂、或いは1、4-ブタンジオール等のポリオールとコハク酸、アジピン酸のようなジカルボン酸との重縮合反応により得られる脂肪族ポリエステル系樹脂に、比較的高融点である樹脂、例えばポリ乳酸系樹脂をブレンドすることにより柔軟性と強度を持たせることが行われていた。しかし組成中にポリ乳酸をブレンドしても相溶性に欠けるために期待したほどの効果がなかった。 However, when a biodegradable film is formed into a film by an inflation molding machine, a film having strength and excellent flexibility cannot be practically produced. Until now, polyfunctional low-melting polymers having biodegradability, such as aliphatic aromatic polyesters obtained by condensing a dicarboxylic acid component composed of adipic acid and terephthalic acid and a diol component composed of 1,4-butanediol. Aliphatic aromatic polyester resins polymerized with isocyanate, aliphatic polyester resins obtained by direct dehydration polycondensation with succinic acid, 1,4-butanediol, lactic acid, or 1,4-butanediol Flexibility and strength can be achieved by blending an aliphatic polyester resin obtained by polycondensation reaction of polyol with dicarboxylic acid such as succinic acid and adipic acid with a resin having a relatively high melting point, such as a polylactic acid resin. It was done. However, blending polylactic acid in the composition lacked compatibility and thus did not have the effect as expected.
 このような中、生分解性組成物の相溶性を高めることにより、柔軟性を損なうことなく、機械的強度を向上させた生分解性フィルムとして、アジピン酸とテレフタル酸からなるジカルボン酸成分と、1,4-ブタンジオールからなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルを多官能イソシアネートで高分子化した脂肪族芳香族ポリエステル系樹脂、及びコハク酸、1,4-ブタンジオール、乳酸とを直接脱水重縮合してなる脂肪族ポリエステル系樹脂、さらに生分解性を有する芳香族ポリエステル系樹脂とをインフレーション加工機によりフィルム化したものが提案されている(特許文献1)。 In such a situation, by increasing the compatibility of the biodegradable composition, as a biodegradable film with improved mechanical strength without impairing flexibility, a dicarboxylic acid component composed of adipic acid and terephthalic acid, Aliphatic aromatic polyester resins obtained by polymerizing an aliphatic aromatic polyester obtained by condensing a diol component composed of 1,4-butanediol with polyfunctional isocyanate, and succinic acid, 1,4-butanediol, lactic acid An aliphatic polyester-based resin obtained by direct dehydration polycondensation of the above and a biodegradable aromatic polyester-based resin into a film using an inflation processing machine has been proposed (Patent Document 1).
 ところで、生分解性フィルムを農業用などの用途に適用する場合には、栽培作物がある程度育つまでは、地温を所定温度に保持すると共に雑草が生えるのを防止するためにフィルムが破れないように十分な強度が必要とされ、一方、作物の刈り取りが終了し、次期作物の栽培が始まる頃には、前の期で使用したフィルムは、ある程度まで土中で分解していることが必要である。しかしながら、このような農業用フィルムとしての使用に耐え得る強度を有し、かつ、適正な期間で生分解する特性を兼ね備えたものは未だ実用化に至っていない。 By the way, when applying biodegradable films to agricultural applications, until the cultivated crops grow to some extent, the film should not be broken in order to keep the ground temperature at a predetermined temperature and prevent weeds from growing. Sufficient strength is required, while the film used in the previous period needs to be decomposed to some extent in the soil when the harvesting is finished and the cultivation of the next crop begins. . However, those having the strength to withstand use as such an agricultural film and having the property of biodegrading in an appropriate period have not yet been put into practical use.
特開2009-227882号公報JP 2009-227882 A
 本発明は、栽培作物の播種や定植からある程度作物が育つまでの期間においては、地温の保温機能を有すると共に雑草が生えることを防止するために必要な十分な強度を有し、かつ、栽培作物の収穫が終わり、次期作物の栽培が始まる前には、耕作作業において事実上支障がない程度まで分解していることを可能とした生分解特性を有する脂肪族ポリエステル系樹脂組成物、及び生分解性フィルムを提供することを目的とする。 The present invention has a sufficient heat-retaining function for preventing the growth of weeds in the period from sowing and planting of cultivated crops to the cultivation of crops to a certain extent, and the cultivated crops. The aliphatic polyester resin composition having biodegradable properties that can be decomposed to the extent that there is virtually no hindrance in the cultivation work, and the biodegradation It aims at providing an adhesive film.
 本発明者等は、鋭意検討したところ、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル系樹脂とジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル系樹脂とからなる脂肪族ポリエステル系樹脂(A)と、及び脂肪族芳香族ポリエステル系樹脂(B)を特定の比率で含む脂肪族ポリエステル系樹脂組成物及びこれを用いた生分解性フィルムが、上記課題を解決できることを見出し、本発明に至った。 As a result of diligent studies, the present inventors have found that an aliphatic polyester resin comprising an aliphatic polyester resin containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin not containing an adipic acid unit as a dicarboxylic acid unit ( A) and an aliphatic polyester-based resin composition containing an aliphatic aromatic polyester-based resin (B) in a specific ratio and a biodegradable film using the same have been found to solve the above-mentioned problems. It came.
 即ち、本発明の要旨は、
(1)脂肪族ポリエステル系樹脂(A)及び脂肪族芳香族ポリエステル系樹脂(B)を含み、両者の配合比率が(A):(B)=1:1~4:1(重量比)である脂肪族ポリエステル系樹脂組成物であって、
 前記脂肪族ポリエステル系樹脂(A)は、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル系樹脂(a1)とジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル系樹脂(a2)とからなり、これらの配合比率が(a1):(a2)=1:9~9:1(重量比)である、該脂肪族ポリエステル系樹脂組成物。
(2)前記脂肪族ポリエステル系樹脂(A)と前記脂肪族芳香族ポリエステル系樹脂(B)の合計重量部(100重量部)に対し、乳酸系ポリエステル系樹脂(C)を3~20重量部含有する、(1)に記載の脂肪族ポリエステル系樹脂組成物。
(3)脂肪族ポリエステル系樹脂組成物100重量部に対し、無機充填材を0.05~1.0重量部含む、(1)または(2)に記載の脂肪族ポリエステル系樹脂組成物。
(4)(1)~(3)のいずれか1項に記載の脂肪族ポリエステル系樹脂組成物からなる生分解性フィルムであって、耐候性試験機に100時間暴露した後の機械の成形方向(MD)の引張破断伸び率が、耐候性試験機に暴露する前の引張破断伸び率に対して40%以上保持していることを特徴とする、該生分解性フィルム。
に存する。
That is, the gist of the present invention is as follows.
(1) Including an aliphatic polyester-based resin (A) and an aliphatic aromatic polyester-based resin (B), and the blending ratio of both is (A) :( B) = 1: 1 to 4: 1 (weight ratio) An aliphatic polyester resin composition,
The aliphatic polyester resin (A) comprises an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) containing no adipic acid unit as a dicarboxylic acid unit. The aliphatic polyester resin composition, wherein the blending ratio thereof is (a1) :( a2) = 1: 9 to 9: 1 (weight ratio).
(2) 3 to 20 parts by weight of lactic acid polyester resin (C) with respect to the total parts by weight (100 parts by weight) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B) The aliphatic polyester resin composition according to (1), which is contained.
(3) The aliphatic polyester resin composition according to (1) or (2), comprising 0.05 to 1.0 part by weight of an inorganic filler with respect to 100 parts by weight of the aliphatic polyester resin composition.
(4) A biodegradable film comprising the aliphatic polyester resin composition according to any one of (1) to (3), wherein the machine is molded after being exposed to a weather resistance tester for 100 hours. The biodegradable film characterized in that the tensile break elongation of (MD) is maintained at 40% or more with respect to the tensile break elongation before being exposed to a weather resistance tester.
Exist.
 本発明により、成形性、衝撃強度に優れるとともに、耐候性試験機に100時間暴露した後の機械の成形方向(MD)の引張破断伸度が所定のレベルを保持する生分解性フィルムを提供することができる。従って、本発明により、栽培作物の播種や定植からある程度作物が育つまでの期間においては、地温の保温機能を有すると共に雑草が生えることを防止するために必要な十分な強度を有し、かつ、栽培作物の収穫が終わり、次期作物の栽培が始まる前には、耕作作業において事実上支障がない程度まで分解していることを可能とした生分解特性を有する生分解性フィルムを提供することが可能となる。 The present invention provides a biodegradable film that is excellent in moldability and impact strength, and that maintains a predetermined level of tensile breaking elongation in the molding direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours. be able to. Therefore, according to the present invention, in the period from the sowing and fixed planting of cultivated crops to the cultivation of crops to some extent, it has a sufficient strength necessary to prevent weeds from growing and having a heat retaining function of the ground temperature, and Providing a biodegradable film with biodegradable properties that enables it to be decomposed to the extent that there is virtually no hindrance in the cultivation work before the harvest of the cultivated crop is finished and before the cultivation of the next crop begins. It becomes possible.
 本発明の1つの実施形態は、脂肪族ポリエステル系樹脂(A)及び脂肪族芳香族ポリエステル系樹脂(B)を含み、両者の配合比率が(A):(B)=1:1~4:1(重量比)である脂肪族ポリエステル系樹脂組成物であって、前記脂肪族ポリエステル系樹脂(A)は、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル系樹脂(a1)とジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル系樹脂(a2)からなり、これらの配合比率が(a1):(a2)=1:9~9:1(重量比)である、該脂肪族ポリエステル系樹脂組成物である。 One embodiment of the present invention includes an aliphatic polyester-based resin (A) and an aliphatic aromatic polyester-based resin (B), and the blending ratio of both is (A) :( B) = 1: 1 to 4: 1 (weight ratio), the aliphatic polyester resin (A) is an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and a dicarboxylic acid unit. The aliphatic polyester resin comprising an aliphatic polyester resin (a2) containing no adipic acid unit and having a blending ratio of (a1) :( a2) = 1: 9 to 9: 1 (weight ratio) It is a resin composition.
脂肪族ポリエステル系樹脂(A)
 脂肪族ポリエステル系樹脂(A)は、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル系樹脂(a1)とジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル系樹脂(a2)からなる。
 本発明においては、脂肪族ポリエステル系樹脂(A)の構成成分である脂肪族ポリエステル系樹脂(a1)及び脂肪族ポリエステル系樹脂(a2)は、脂肪族ジオール単位と脂肪族ジカルボン酸単位を主成分とする脂肪族ポリエステル系樹脂であることが好ましい。ここで、「主成分」とは、脂肪族ポリエステルを構成する単量体単位全体を基準(100モル%)として、脂肪族ジオール単位と脂肪族ジカルボン酸単位が70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上であることをいう。
Aliphatic polyester resin (A)
The aliphatic polyester resin (A) is composed of an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) containing no adipic acid unit as a dicarboxylic acid unit.
In the present invention, the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2), which are constituents of the aliphatic polyester resin (A), have an aliphatic diol unit and an aliphatic dicarboxylic acid unit as main components. It is preferable that it is an aliphatic polyester-type resin. Here, the “main component” refers to 70 mol% or more, preferably 80 mol of an aliphatic diol unit and an aliphatic dicarboxylic acid unit, based on the whole monomer unit constituting the aliphatic polyester (100 mol%). % Or more, more preferably 90 mol% or more.
 脂肪族ポリエステル系樹脂(a1)及び脂肪族ポリエステル系樹脂(a2)を具体的に示すと、例えば下記式(1)で表される鎖状脂肪族および/または脂環式ジオール単位、並びに、下記式(2)で表される鎖状脂肪族および/または脂環式ジカルボン酸単位からなるものである。
-O-R-O-    (1)
(式中、Rは2価の鎖状脂肪族炭化水素基および/または2価の脂環式炭化水素基を示す。共重合されている場合には、樹脂中に二種以上のRが含まれていてもよい。)
-OC-R-CO-  (2)
(式中、Rは2価の鎖状脂肪族炭化水素基および/または2価の脂環式炭化水素基を示す。共重合されている場合には、樹脂中に二種以上のRが含まれていてもよい。)
 なお、上記式(1)、式(2)において、「2価の鎖状脂肪族炭化水素基および/または2価の脂環式炭化水素基」とは、2価の鎖状脂肪族炭化水素基と2価の脂環式炭化水素基の両方を含んでいてもよいという意味である。また、以下「鎖状脂肪族および/または脂環式」を単に「脂肪族」と略記する場合がある。
Specific examples of the aliphatic polyester-based resin (a1) and the aliphatic polyester-based resin (a2) include a chain aliphatic and / or alicyclic diol unit represented by the following formula (1), and the following: It consists of a chain aliphatic and / or alicyclic dicarboxylic acid unit represented by the formula (2).
—O—R 1 —O— (1)
(In the formula, R 1 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 1 are present in the resin. May be included.)
—OC—R 2 —CO— (2)
(In the formula, R 2 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group. When copolymerized, two or more types of R 2 are present in the resin. May be included.)
In the above formulas (1) and (2), “a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group” means a divalent chain aliphatic hydrocarbon group. This means that both a group and a divalent alicyclic hydrocarbon group may be contained. Hereinafter, “chain aliphatic and / or alicyclic” may be simply abbreviated as “aliphatic”.
 本発明の脂肪族ポリエステル系樹脂(a1)及び脂肪族ポリエステル系樹脂(a2)は、上記式(1)のジオール単位として、1,4ブタンジオール単位を必須成分として含むものである。1,4ブタンジオール単位の含有量は、脂肪族ポリエステル系樹脂(a1)又は脂肪族ポリエステル系樹脂(a2)を構成する単量体単位全体を基準(100モル%)として、30~60モル%、特に40~50モル%であるのが好ましい。
 1,4ブタンジオール単位以外のジオール単位としては特に限定されないが、炭素数3~10個の脂肪族ジオール単位が好ましく、炭素数4~6個の脂肪族ジオール単位が特に好ましい。具体的には1,3-プロパンジオール、1,4-ヘキサンジメタノール等が挙げられる。前記脂肪族ジオール単位を与えるジオール成分は2種類以上を用いることもできる。
The aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention contain 1,4 butanediol units as essential components as the diol units of the above formula (1). The content of 1,4 butanediol units is 30 to 60 mol% based on the total monomer units constituting the aliphatic polyester resin (a1) or the aliphatic polyester resin (a2) (100 mol%). In particular, it is preferably 40 to 50 mol%.
The diol unit other than the 1,4 butanediol unit is not particularly limited, but an aliphatic diol unit having 3 to 10 carbon atoms is preferable, and an aliphatic diol unit having 4 to 6 carbon atoms is particularly preferable. Specific examples include 1,3-propanediol and 1,4-hexanedimethanol. Two or more kinds of diol components giving the aliphatic diol unit can be used.
 本発明の脂肪族ポリエステル系樹脂(a1)及び脂肪族ポリエステル系樹脂(a2)は、更に、ジカルボン酸単位としてコハク酸単位を必須成分として含むものである。
 また、脂肪族ポリエステル系樹脂(a1)はジカルボン酸単位としてアジピン酸を必須成分として含み、アジピン酸単位の含有量は、脂肪族ポリエステル系樹脂(a1)を構成する単量体単位全体を基準(100モル%)として、0.5~20モル%であるのが好ましく、1~15モル%であるのが更に好ましい。なお、脂肪族ポリエステル系樹脂(a2)は、アジピン酸単位を実質的に含まない。
 コハク酸単位、アジピン酸単位以外のジカルボン酸単位としては特に限定されないが、炭素数2~10個の脂肪族ジカルボン酸単位が好ましく、炭素数4~8個の脂肪族ジカルボン酸単位が特に好ましい。具体的には、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。前記脂肪族ジカルボン酸単位を与えるジカルボン酸成分は2種類以上を用いることもできる。
The aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention further contain a succinic acid unit as an essential component as a dicarboxylic acid unit.
The aliphatic polyester-based resin (a1) contains adipic acid as an essential component as a dicarboxylic acid unit, and the content of the adipic acid unit is based on the whole monomer unit constituting the aliphatic polyester-based resin (a1) ( 100 mol%) is preferably 0.5 to 20 mol%, more preferably 1 to 15 mol%. The aliphatic polyester resin (a2) does not substantially contain an adipic acid unit.
The dicarboxylic acid unit other than the succinic acid unit and the adipic acid unit is not particularly limited, but an aliphatic dicarboxylic acid unit having 2 to 10 carbon atoms is preferable, and an aliphatic dicarboxylic acid unit having 4 to 8 carbon atoms is particularly preferable. Specific examples include suberic acid, sebacic acid, dodecanedioic acid and the like. Two or more kinds of dicarboxylic acid components giving the aliphatic dicarboxylic acid unit can be used.
 更に、本発明の脂肪族ポリエステル系樹脂(a1)及び脂肪族ポリエステル系樹脂(a2)は、脂肪族オキシカルボン酸単位を含有していてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸等、またはこれらの低級アルコールもしくは分子内エステルが挙げられる。これらに光学異性体が存在する場合には、D体、L体またはラセミ体の何れでもよく、形態としては固体、液体または水溶液の何れであってもよい。これらの中で特に好ましいのは、乳酸またはグリコール酸である。これらの脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 脂肪族オキシカルボン酸単位の含有量は、脂肪族ポリエステル系樹脂(a1)又は脂肪族ポリエステル系樹脂(a2)を構成する単量体単位全体を基準(100モル%)として、0~30モル%であるのが好ましく、更に0.01~20モル%であるのが好ましく、特に0.01~10モル%であるのが好ましい。
 このような脂肪族ポリエステル系樹脂の具体例としては、三菱化学社製「GSPla」、昭和電工社製「ビオノーレ」などが挙げられる。
Furthermore, the aliphatic polyester resin (a1) and the aliphatic polyester resin (a2) of the present invention may contain an aliphatic oxycarboxylic acid unit. Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid and the like, or lower alcohols or intramolecular esters thereof. When optical isomers exist in these, any of D-form, L-form and racemic form may be sufficient, and the form may be any of solid, liquid or aqueous solution. Of these, lactic acid or glycolic acid is particularly preferred. These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
The content of the aliphatic oxycarboxylic acid unit is 0 to 30 mol% based on the whole monomer unit constituting the aliphatic polyester resin (a1) or the aliphatic polyester resin (a2) (100 mol%). It is preferably 0.01 to 20 mol%, more preferably 0.01 to 10 mol%.
Specific examples of such aliphatic polyester resins include “GSPla” manufactured by Mitsubishi Chemical Corporation and “Bionore” manufactured by Showa Denko.
 本発明においては、脂肪族ポリエステル系樹脂(A)は、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル(a1)と、ジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル(a2)とからなり、両者の配合比率(重量比)は、好ましくは1:9~9:1、より好ましくは1:6~6:1、更に好ましくは1:4~4:1の範囲である。
 脂肪族ポリエステル系樹脂(A)としてこのように2種類の脂肪族ポリエステル系樹脂を用い、特定の範囲の配合比率とすることにより、フィルムの成形性を安定に保つことができ、フィルムの耐候性、生分解性等の性能バランスをより良好にすることができる。脂肪族ポリエステル系樹脂(A)をこのような構成とすることにより、特に、農業用フィルムなどに使用する場合、栽培作物の播種や定植からある程度作物が育つまでの期間においては、地温の保温機能や、雑草が生えることを防止するために必要な十分な強度を有し、栽培作物の収穫が終わり、次期作物の栽培が始まる前には、耕作作業において事実上支障がない程度まで分解していることができる。
In the present invention, the aliphatic polyester resin (A) is composed of an aliphatic polyester (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester (a2) containing no adipic acid unit as a dicarboxylic acid unit. The blending ratio (weight ratio) of both is preferably in the range of 1: 9 to 9: 1, more preferably 1: 6 to 6: 1, and still more preferably 1: 4 to 4: 1.
By using two types of aliphatic polyester resins as the aliphatic polyester resin (A) and setting the blending ratio within a specific range, the moldability of the film can be kept stable, and the weather resistance of the film. The performance balance such as biodegradability can be made better. By using the aliphatic polyester-based resin (A) in such a configuration, in particular, when used for an agricultural film or the like, in the period from the sowing of the cultivated crop or the fixed planting until the crop is grown to some extent, the heat retaining function of the ground temperature. It has sufficient strength to prevent weeds from growing, and before harvesting of the cultivated crop is completed and before the cultivation of the next crop begins, it is decomposed to the extent that there is virtually no hindrance in the cultivation work. Can be.
脂肪族芳香族ポリエステル系樹脂(B)
 本発明において用いられる脂肪族芳香族ポリエステル系樹脂(B)は、脂肪族ジカルボン酸単位と、芳香族ジカルボン酸単位と、鎖状脂肪族および/または脂環式ジオール単位とを含み、芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量を基準(100モル%)として、5~60モル%である。
Aliphatic aromatic polyester resin (B)
The aliphatic aromatic polyester resin (B) used in the present invention contains an aliphatic dicarboxylic acid unit, an aromatic dicarboxylic acid unit, a chain aliphatic and / or alicyclic diol unit, and an aromatic dicarboxylic acid unit. The content of the acid unit is 5 to 60 mol% based on the total amount of the aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit (100 mol%).
 本発明における脂肪族芳香族ポリエステル系樹脂(B)は、具体的には、例えば、下記式(3)で表される脂肪族ジオ-ル単位、下記式(4)で表される脂肪族ジカルボン酸単位、および、下記式(5)で表される芳香族ジカルボン酸単位を必須成分とするものである。
 -O-R-O-     (3)
(式中、Rは2価の鎖状脂肪族炭化水素基および/または2価の脂環式炭化水素基を示し、共重合されている場合には1種に限定されない。)
-OC-R-CO-    (4)
(式中、Rは直接結合を示すか、2価の鎖状脂肪族炭化水素基および/または2価の脂環式炭化水素基を示し、共重合されている場合には1種に限定されない。)
-OC-R-CO-    (5)
(式中、Rは2価の芳香族炭化水素基を示し、共重合されている場合には1種に限定されない。)
Specifically, the aliphatic aromatic polyester resin (B) in the present invention includes, for example, an aliphatic diol unit represented by the following formula (3) and an aliphatic dicarboxylic group represented by the following formula (4). An acid unit and an aromatic dicarboxylic acid unit represented by the following formula (5) are essential components.
—O—R 3 —O— (3)
(In the formula, R 3 represents a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is not limited to one type when copolymerized.)
—OC—R 4 —CO— (4)
(In the formula, R 4 represents a direct bond or a divalent chain aliphatic hydrocarbon group and / or a divalent alicyclic hydrocarbon group, and is limited to one type when copolymerized. Not.)
—OC—R 5 —CO— (5)
(In the formula, R 5 represents a divalent aromatic hydrocarbon group and is not limited to one type when copolymerized.)
 式(3)のジオール単位を与えるジオール成分は、炭素数が通常2~10のものであり、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。中でも、炭素数2以上4以下のジオールが好ましく、エチレングリコール、1,4-ブタンジオールがより好ましく、1,4-ブタンジオールが特に好ましい。 The diol component giving the diol unit of the formula (3) usually has 2 to 10 carbon atoms, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedi Methanol etc. are mentioned. Of these, diols having 2 to 4 carbon atoms are preferable, ethylene glycol and 1,4-butanediol are more preferable, and 1,4-butanediol is particularly preferable.
 式(4)のジカルボン酸単位を与えるジカルボン酸成分は、炭素数が通常2以上10以下のものであり、例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。中でも、コハク酸またはアジピン酸が好ましい。 The dicarboxylic acid component that gives the dicarboxylic acid unit of the formula (4) usually has 2 to 10 carbon atoms, and examples thereof include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like. Among these, succinic acid or adipic acid is preferable.
 式(5)の芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられ、中でも、テレフタル酸、イソフタル酸が好ましく、テレフタル酸が特に好ましい。また、芳香環の一部がスルホン酸塩で置換されている芳香族ジカルボン酸が挙げられる。なお、脂肪族ジカルボン酸成分、脂肪族ジオール成分および芳香族ジカルボン酸成分は、それぞれ2種類以上を用いることもできる。 Examples of the aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit of the formula (5) include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like, among which terephthalic acid and isophthalic acid are preferable, and terephthalic acid is particularly preferable. preferable. Moreover, aromatic dicarboxylic acid in which a part of the aromatic ring is substituted with a sulfonate is exemplified. Two or more types of aliphatic dicarboxylic acid components, aliphatic diol components, and aromatic dicarboxylic acid components can be used.
 本発明における脂肪族芳香族ポリエステル系樹脂(B)には、脂肪族オキシカルボン酸単位が含有されていてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、またはこれらの混合物等が挙げられる。さらに、これらの低級アルキルエステル又は分子内エステルであってもよい。これらに光学異性体が存在する場合には、D体、L体またはラセミ体の何れでもよく、形態としては固体、液体または水溶液のいずれであってもよい。これらの中で好ましいものは、乳酸またはグリコール酸である。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。 The aliphatic aromatic polyester resin (B) in the present invention may contain an aliphatic oxycarboxylic acid unit. Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, or a mixture thereof. Furthermore, these lower alkyl esters or intramolecular esters may be used. When optical isomers are present in these, any of D-form, L-form and racemic form may be used, and the form may be any of solid, liquid or aqueous solution. Among these, lactic acid or glycolic acid is preferable. These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
 この脂肪族オキシカルボン酸の量は、脂肪族芳香族ポリエステル系樹脂(B)を構成する全構成成分中、0~30モル%であるのが好ましく、更に0.01~20モル%であるのが好ましい。 The amount of the aliphatic oxycarboxylic acid is preferably 0 to 30% by mole, more preferably 0.01 to 20% by mole, based on all components constituting the aliphatic aromatic polyester resin (B). Is preferred.
 本発明における脂肪族芳香族ポリエステル系樹脂(B)のメルトフローレート(MFR)は、190℃、2.16kg荷重で測定した場合、好ましくは0.1~100g/10分であり、更に好ましくは0.1~50g/10分であり、特に好ましくは0.1~30g/10分である。 The melt flow rate (MFR) of the aliphatic aromatic polyester resin (B) in the present invention is preferably 0.1 to 100 g / 10 min, more preferably when measured at 190 ° C. and a load of 2.16 kg. The amount is from 0.1 to 50 g / 10 minutes, and particularly preferably from 0.1 to 30 g / 10 minutes.
 このような脂肪族芳香族ポリエステル系樹脂(B)の具体例としては、BASF社製「Ecoflex」、S-EnPol社製「EnPol」などが挙げられる。 Specific examples of such aliphatic aromatic polyester resins (B) include “Ecoflex” manufactured by BASF and “EnPol” manufactured by S-EnPol.
 本発明の脂肪族ポリエステル系樹脂組成物においては、脂肪族ポリエステル系樹脂(A)と脂肪族芳香族ポリエステル系樹脂(B)の配合比率(A):(B)(重量比)は、好ましくは1:1~4:1であり、より好ましくは1:1~3.8:1であり、更に好ましくは1:1~2:1である。
 配合比率(A):(B)が1:1を超えて脂肪族芳香族ポリエステル系樹脂(B)を配合した場合は、フィルムの成形性が悪くなったり、栽培終了時の劣化が不十分で、機械での処理時にフィルムが巻き付く恐れがある。また、配合比率4:1を超えて脂肪族ポリエステル系樹脂(A)を配合した場合には、柔軟性に欠けた硬いフィルムとなる恐れがある。
In the aliphatic polyester resin composition of the present invention, the blending ratio (A) :( B) (weight ratio) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B) is preferably The ratio is 1: 1 to 4: 1, more preferably 1: 1 to 3.8: 1, and still more preferably 1: 1 to 2: 1.
When the blending ratio (A) :( B) exceeds 1: 1 and the aliphatic aromatic polyester resin (B) is blended, the moldability of the film is deteriorated or the deterioration at the end of cultivation is insufficient. There is a risk of film wrapping during processing on the machine. Further, when the aliphatic polyester resin (A) is blended exceeding the blending ratio of 4: 1, there is a risk that a hard film lacking in flexibility is formed.
乳酸系ポリエステル系樹脂(C)
 本発明の好ましい態様においては、脂肪族ポリエステル系樹脂組成物は、脂肪族ポリエステル系樹脂(A)と脂肪族芳香族ポリエステル系樹脂(B)の合計重量部(100重量部)に対し、乳酸系ポリエステル系樹脂(C)を好ましくは3~20重量部、より好ましくは3~15重量部、更に好ましくは5~10重量部含有する。乳酸系ポリエステル系樹脂(C)の含有量が3~20重量部の範囲を外れると、生分解するまでの期間が長くなったり、柔軟性に乏しくなるおそれがある。
 本発明の脂肪族ポリエステル系樹脂組成物は、脂肪族ポリエステル系樹脂(A)と脂肪族芳香族ポリエステル系樹脂(B)と乳酸系ポリエステル系樹脂(C)を一定の量配合し、かつ上記の生分解度を有することにより、栽培が終了した後、次期作物の栽培が始まる前には、栽培を開始する作業において、事実上支障がない程度まで分解している性能を有する。
Lactic acid polyester resin (C)
In a preferred embodiment of the present invention, the aliphatic polyester resin composition is a lactic acid resin based on the total weight (100 parts by weight) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B). The polyester resin (C) is preferably contained in an amount of 3 to 20 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 5 to 10 parts by weight. If the content of the lactic acid-based polyester resin (C) is out of the range of 3 to 20 parts by weight, there is a possibility that the period until biodegradation becomes longer or the flexibility becomes poor.
The aliphatic polyester-based resin composition of the present invention contains a certain amount of the aliphatic polyester-based resin (A), the aliphatic aromatic polyester-based resin (B), and the lactic acid-based polyester resin (C), and By having the degree of biodegradation, after the cultivation is completed and before the cultivation of the next crop is started, it has the performance of decomposing to the extent that there is virtually no problem in the operation of starting cultivation.
 本発明においては、乳酸系ポリエステル系樹脂(C)として、L-乳酸、D-乳酸、DL-乳酸またはそれらの混合物、ラクチドなどのホモポリマーまたはコポリマーなどが使用できる。乳酸系ポリエステル系樹脂(C)は、これらの原料から直接脱水縮合またはラクチドの開環重合などによって製造することができるが、製法は特に限定されない。また、乳酸系ポリエステル系樹脂の性質を損なわない程度に、乳酸以外の他のヒドロキシカルボン酸、脂肪族多価アルコール、脂肪族多塩基酸等を共重合してもかまわない。
 このような乳酸系ポリエステル系樹脂の具体例としては、Nature Works社製「Ingeo Biopolymer」、浙江海正生物材料社製「REVODE」などが挙げられる。
In the present invention, L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, a homopolymer or a copolymer such as lactide, and the like can be used as the lactic acid polyester resin (C). The lactic acid polyester resin (C) can be produced from these raw materials directly by dehydration condensation or ring opening polymerization of lactide, but the production method is not particularly limited. Further, other than the lactic acid, other hydroxycarboxylic acids, aliphatic polyhydric alcohols, aliphatic polybasic acids and the like may be copolymerized to such an extent that the properties of the lactic acid polyester resin are not impaired.
Specific examples of such a lactic acid-based polyester resin include “Ingeo Biopolymer” manufactured by Nature Works, “REVODE” manufactured by Zhejiang Kaisho Biomaterials, and the like.
 また、乳酸系ポリエステル系樹脂(C)は特に限定されることはないが、非結晶性の乳酸系ポリエステル系樹脂の方が好ましい。
 非結晶の乳酸系ポリエステル系樹脂を使用することで、脂肪族ポリエステル系樹脂(A)と脂肪族芳香族ポリエステル系樹脂(B)に対して、乳酸系ポリエステル系樹脂(C)の分散性が良好となり、より均一な性能を有することができる。
 また、結晶性の乳酸系ポリエステル系樹脂(C)は、脂肪族ポリエステル系樹脂(A)と脂肪族芳香族ポリエステル系樹脂(B)と比較して融点が高いため、これら(A)、(B)及び(C)の樹脂を混合した組成物について、良好な成形条件の範囲が狭くなる傾向にあるが、非結晶の乳酸系ポリエステル系樹脂(C)を使用することにより、(A)、(B)及び(C)の樹脂を混合した組成物について、良好な成形条件の範囲をより広くすることが可能となる。
The lactic acid polyester resin (C) is not particularly limited, but an amorphous lactic acid polyester resin is preferable.
Dispersibility of lactic acid polyester resin (C) is better than aliphatic polyester resin (A) and aliphatic aromatic polyester resin (B) by using amorphous lactic acid polyester resin And more uniform performance can be obtained.
The crystalline lactic acid-based polyester resin (C) has a higher melting point than the aliphatic polyester-based resin (A) and the aliphatic aromatic polyester-based resin (B). ) And (C), the range of good molding conditions tends to be narrow. However, by using an amorphous lactic acid-based polyester resin (C), (A), ( About the composition which mixed resin of B) and (C), it becomes possible to make the range of favorable molding conditions wider.
無機充填材
 本発明のもう1つの好ましい態様においては、前記脂肪族ポリエステル系樹脂組成物は、無機充填材を含有する。本発明の好ましい態様においては、脂肪族ポリエステル系樹脂組成物100重量部に対し、無機充填材を好ましくは0.05~1.0重量部、より好ましくは0.1~0.9重量部、更に好ましくは0.2~0.8重量部含む。無機充填材を上記のように含有させることで、脂肪族ポリエステル系樹脂組成物を適度な粘度とすることができ、より良好な成形性を得ることが可能となる。
Inorganic filler In another preferred embodiment of the present invention, the aliphatic polyester resin composition contains an inorganic filler. In a preferred embodiment of the present invention, the inorganic filler is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.9 part by weight, with respect to 100 parts by weight of the aliphatic polyester resin composition. More preferably 0.2 to 0.8 part by weight is contained. By containing the inorganic filler as described above, the aliphatic polyester resin composition can have an appropriate viscosity, and better moldability can be obtained.
 本発明において使用できる無機充填材としては、シリカ、雲母、タルク、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、珪酸カルシウム及び珪酸ナトリウム等の珪酸塩、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム並びに硫酸バリウム等が挙げられ、これらのうち1種を単独で用いてもよく、2種以上を混合して使用してもよい。 Examples of inorganic fillers that can be used in the present invention include silica, mica, talc, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, Carbon, wollastonite, calcined perlite, silicates such as calcium silicate and sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate, calcium hydroxide, ferric carbonate, zinc oxide, iron oxide, aluminum phosphate and barium sulfate Of these, one of these may be used alone, or two or more may be used in combination.
その他の成分
 本発明の脂肪族ポリエステル系樹脂組成物には、さらに、従来公知の各種添加剤を配合することができる。添加剤としては、例えば、結晶核剤、酸化防止剤、アンチブロッキング剤、スリップ剤、紫外線吸収剤、耐光剤、可塑剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、顔料、滑剤、分散剤や各種界面活性剤、加水分解防止剤等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。これらの中で特にスリップ剤、アンチブロッキング剤は配合した方が好ましい。
Other Components Various conventionally known additives can be further blended in the aliphatic polyester resin composition of the present invention. Examples of the additive include a crystal nucleating agent, an antioxidant, an antiblocking agent, a slip agent, an ultraviolet absorber, a light resistance agent, a plasticizer, a heat stabilizer, a colorant, a flame retardant, a release agent, an antistatic agent, Examples include antifogging agents, surface wetting improvers, incineration aids, pigments, lubricants, dispersants, various surfactants, and hydrolysis inhibitors. These may be used alone or in combination of two or more. Among these, it is particularly preferable to add a slip agent and an antiblocking agent.
 スリップ剤としては、炭素数6~30の不飽和脂肪酸からなる不飽和脂肪酸アマイド、不飽和脂肪酸ビスアマイドが挙げられ、エルカ酸アマイド、エルカ酸ビスアマイドが好ましい。 Examples of the slip agent include unsaturated fatty acid amides and unsaturated fatty acid bisamides composed of unsaturated fatty acids having 6 to 30 carbon atoms, with erucic acid amide and erucic acid bisamide being preferred.
 アンチブロッキング剤としては、炭素数6~30の飽和脂肪酸アマイド、または飽和脂肪酸ビスアマイド(例えばステアリン酸アマイド、ステアリン酸ビスアマイド)、メチロールアマイド、エタノールアマイド、天然シリカ、合成シリカ、合成ゼオライト、タルク等が挙げられる。 Examples of the anti-blocking agent include saturated fatty acid amides having 6 to 30 carbon atoms, or saturated fatty acid bisamides (for example, stearic acid amide, stearic acid bisamide), methylol amide, ethanol amide, natural silica, synthetic silica, synthetic zeolite, talc and the like. It is done.
 着色剤としては、カーボンブラック、酸化チタン等通常使用される着色剤が使用できる。着色剤としては、そのまま使用してもよいし、マスターバッチとして添加してもよい。 As the colorant, commonly used colorants such as carbon black and titanium oxide can be used. As a coloring agent, you may use as it is and may add as a masterbatch.
 耐光剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-2-n-ブチル-ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、2-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-2-n-ブチル-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチル-ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチル-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ミックスド(2,2,6,6-テトラメチル-4-ピペリジル/トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ミックスド(1,2,2,6,6-ペンタメチル-4-ピペリジル/トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ミックスド{2,2,6,6-テトラメチル-4-ピペリジル/β,β,β’,β’-テトラメチル-3,9-〔2,4,8,10-テトラオキサスピロ[5.5]ウンデカン〕ジエチル}-1,2,3,4-ブタンテトラカルボキシレート、ミックスド{1,2,2,6,6-ペンタメチル-4-ピペリジル/β,β,β’,β’-テトラメチル-3,9-〔2,4,8,10-テトラオキサスピロ[5.5]ウンデカン〕ジエチル}-1,2,3,4-ブタンテトラカルボキシレート、1,2-ビス(3-オキソ-2,2,6,6-テトラメチル-4-ピペリジル)エタン、1-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-1,1-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシカルボニル)ペンタン、ポリ〔1-オキシエチレン(2,2,6,6-テトラメチル-1,4-ピペリジル)オキシスクシニル〕、ポリ〔2-(1,1,4-トリメチルブチルイミノ)-4,6-トリアジンジイル-(2,2,6,6-テトラメチル-4-ピペリジル)イミノヘキサメチレン-(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス〔N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ〕-6-クロロ-1,3,5-トリアジン縮合物及びそのN-メチル化合物、コハク酸と1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンとの重縮合物、ポリ[{6-((1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{((2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等が挙げられる。 Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and bis (1- Octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di-t-butyl-4-hydroxyphenyl) -2-n-butyl-bis (2,2 , 6,6-Tetramethyl-4-piperidyl) malonate, 2- (3,5-di-tert-butyl-4-hydroxyphenyl) -2-n-butyl-bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) malonate, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl-bis (2,2,6,6-tetramethyl-4-piperidyl) ) Malonate, 2- (3,5 Di-t-butyl-4-hydroxybenzyl) -2-n-butyl-bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, tetrakis (2,2,6,6-tetramethyl) -4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate , Mixed (2,2,6,6-tetramethyl-4-piperidyl / tridecyl) -1,2,3,4-butanetetracarboxylate, mixed (1,2,2,6,6-pentamethyl- 4-piperidyl / tridecyl) -1,2,3,4-butanetetracarboxylate, mixed {2,2,6,6-tetramethyl-4-piperidyl / β, β, β ′, β′-tetrame Til-3,9- [2,4,8,10-tetraoxaspiro [5.5] undecane] diethyl} -1,2,3,4-butanetetracarboxylate, mixed {1,2,2, 6,6-pentamethyl-4-piperidyl / β, β, β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro [5.5] undecane] diethyl} -1 , 2,3,4-butanetetracarboxylate, 1,2-bis (3-oxo-2,2,6,6-tetramethyl-4-piperidyl) ethane, 1- (3,5-di-t- Butyl-4-hydroxyphenyl) -1,1-bis (2,2,6,6-tetramethyl-4-piperidyloxycarbonyl) pentane, poly [1-oxyethylene (2,2,6,6-tetramethyl) -1,4-piperidyl) oxysuccinyl Poly [2- (1,1,4-trimethylbutylimino) -4,6-triazinediyl- (2,2,6,6-tetramethyl-4-piperidyl) iminohexamethylene- (2,2,6 , 6-Tetramethyl-4-piperidyl) imino], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (2,2,6,6-tetramethyl) -4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate and its N-methyl compound, succinic acid and 1- (2-hydroxyethyl) -4-hydroxy-2,2,6, Polycondensate with 6-tetramethylpiperidine, poly [{6-((1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine 2,4-diyl} {(2,2 , 6,6-Tetramethyl-4-piperidyl) imino} hexame Len {((2,2,6,6-tetramethyl-4-piperidyl) imino}], and the like.
 紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸系、シアノアクリレート系等の紫外線吸収剤の中で、ベンゾトリアゾール系紫外線吸収剤が好ましく、具体的には、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル6-(tert-ブチル)フェノール、2-[2-ヒドロキシ-3,5-ビス(α、α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシ-フェノールが挙げられる。 As the UV absorber, among the UV absorbers such as benzophenone, benzotriazole, salicylic acid and cyanoacrylate, a benzotriazole UV absorber is preferable. Specifically, 2- [5-chloro (2H ) -Benzotriazol-2-yl] -4-methyl 6- (tert-butyl) phenol, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxy-phenol.
 酸化防止剤としては、BHT、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-α,α’,α”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリス[(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル]-1,3,5-トリアジン-2,4,6(1H、3H,5H)-トリオン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H、3H,5H)-トリオン、カルシウムジエチルビス[{3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル}メチル]ホスホネート、ビス(2,2’-ジヒドロキシ-3,3’-ジ-tert-ブチル-5,5’-ジメチルフェニル)エタン、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル)-4-ヒドロキシフェニル]プロピオンアミド、n-オクタデシル3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート等のヒンダードフェノール系酸化防止剤、トリデシルホスファイト、ジフェニルデシルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4’―ジイルビスホスフォナイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト等のリン系酸化防止剤、3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとキシレンの反応生成物等のラクトン系酸化防止剤、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等の硫黄系酸化防止剤及びこれらの2種以上の混合物などが例示できる。 Antioxidants include BHT, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-α, α ′, α ″-(mesitylene-2,4,6-triyl) tri-p-cresol, octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1, 3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3 5-triazine-2,4,6 (1H, 3H, 5H) -trione, calcium diethylbis [{3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl} methyl] phosphonate, bis (2 , 2′-dihydroxy-3,3′-di-tert-butyl-5,5′-dimethylphenyl) ethane, N, N′-hexane-1,6-diylbis [3- (3,5-di-tert Hindered phenolic antioxidants such as -butyl) -4-hydroxyphenyl] propionamide, n-octadecyl 3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, tridecylphos Phyto, diphenyldecyl phosphite, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphos Phosphonite, phosphorus such as bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite -Based antioxidants, lactone-based antioxidants such as 3-hydroxy-5,7-di-tert-butyl-furan-2-one and xylene reaction products, dilauryl thiodipropionate, distearyl thiodipropio Examples thereof include sulfur-based antioxidants such as nates and mixtures of two or more thereof.
 安定剤としては脂肪酸金属塩が挙げられる。脂肪酸金属塩の脂肪酸成分としてはカルボキシル基を有する通常炭素数が6~30の鎖状のカルボン酸であり、直鎖状でも分岐状でもよく、また飽和結合のみでも不飽和結合を有していてもよい。脂肪酸の具体例としてはカプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘニン酸、モンタン酸、パルミトレイン酸、オレイン酸、エイコセン酸、エルシン酸、エライジン酸、トランス11エイコセン酸、トランス13ドコセン酸、リノール酸、リノレン酸、リシノール酸、エルカ酸等が挙げられる。
 一方、金属原子としては、周期表の1A、2A、2B及び3B族の原子が好ましい。好ましい例としては、ナトリウム、カリウム、カルシウム、マグネシウム、バリウム、アルミニウム、亜鉛などが挙げられる。
Examples of the stabilizer include fatty acid metal salts. The fatty acid component of the fatty acid metal salt is a linear carboxylic acid having a carboxyl group and usually having 6 to 30 carbon atoms, which may be linear or branched, and has only a saturated bond or an unsaturated bond. Also good. Specific examples of fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, montanic acid, palmitoleic acid, oleic acid, eicosenoic acid, erucic acid, elaidic acid , Trans 11 eicosenoic acid, trans 13 docosenoic acid, linoleic acid, linolenic acid, ricinoleic acid, erucic acid and the like.
On the other hand, as the metal atom, atoms of 1A, 2A, 2B and 3B groups of the periodic table are preferable. Preferable examples include sodium, potassium, calcium, magnesium, barium, aluminum, zinc and the like.
 脂肪酸金属塩としては、例えば、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ラウリン酸カルシウム、ラウリン酸マグネシウム、ラウリン酸アルミニウム、モンタン酸ナトリウム等が挙げられる。これらは1種でもよく2種類以上を組み合わせて用いてもよい。これらの中でもステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ラウリン酸カルシウム、ラウリン酸マグネシウム及びラウリン酸アルミニウムが好ましい。 Examples of the fatty acid metal salt include calcium stearate, magnesium stearate, barium stearate, aluminum stearate, zinc stearate, calcium laurate, magnesium laurate, aluminum laurate, sodium montanate and the like. These may be used alone or in combination of two or more. Among these, calcium stearate, magnesium stearate, aluminum stearate, calcium laurate, magnesium laurate and aluminum laurate are preferable.
 分散剤としては、モンタンワックス等のエステル系ワックスが挙げられる。
 また、本発明の脂肪族ポリエステル系樹脂組成物には、本発明の効果を阻害しない範囲で生分解性樹脂および天然物、例えば、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、セルロースエステル等や澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末またはこれらの混合物を配合することができる。
Examples of the dispersant include ester waxes such as montan wax.
In addition, the aliphatic polyester resin composition of the present invention includes biodegradable resins and natural products, such as polycaprolactone, polyamide, polyvinyl alcohol, cellulose ester, starch, cellulose, and the like as long as the effects of the present invention are not impaired. Paper, wood powder, chitin / chitosan, coconut shell powder, walnut shell powder and other animal / plant material fine powders or mixtures thereof can be blended.
生分解性フィルム
 本発明のもう一つの実施形態は、上記した本発明の脂肪族ポリエステル系樹脂組成物からなる生分解性フィルムである。
 本発明の生分解性フィルムは、耐候性試験機に100時間暴露した後の機械の成形方向(MD)の引張破断伸度が、耐候性試験機に暴露する前の前記生分解性樹脂フィルムの機械の成形方向(MD)の引張破断伸度に対して40%以上であることが好ましい。これにより、屋外での栽培作業において栽培している期間、3~6ヶ月程度の間は必要な強度を有することができる。
 ここで、耐候性試験機としては、サンシャインウェザーメーター(例えば、スガ試験機社製のサンシャインウェザーメーター)を用いることができる。
 また、耐候性試験機での暴露条件としては、JISA1415を用いることができる。
Biodegradable film Another embodiment of the present invention is a biodegradable film comprising the above-described aliphatic polyester resin composition of the present invention.
The biodegradable film of the present invention has a tensile elongation at break in the molding direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours before the exposure to the weather resistance tester. It is preferably 40% or more with respect to the tensile elongation at break in the machine direction (MD). Thereby, it is possible to have a necessary strength for a period of 3 to 6 months during cultivation in outdoor cultivation work.
Here, a sunshine weather meter (for example, a sunshine weather meter manufactured by Suga Test Instruments Co., Ltd.) can be used as the weather resistance tester.
Moreover, JISA1415 can be used as an exposure condition in a weather resistance tester.
 また、本発明の生分解性フィルムは、成形後の初期のパンクチャー衝撃試験での衝撃強度が3.0kg・cm以上であることが好ましい。これにより、屋外での栽培作業において、機械での展張など、栽培初期に行う作業の際に必要な衝撃強度を有することができる。 The biodegradable film of the present invention preferably has an impact strength of 3.0 kg · cm or more in the initial puncture impact test after molding. Thereby, in cultivation work outdoors, it can have impact strength required in the case of work performed at the beginning of cultivation, such as expansion by a machine.
 また、生分解性フィルムの厚さは、5μm~50μmが好ましく、5μm~40μmがより好ましく、5μm~30μmが更に好ましい。生分解性フィルムの厚さが5μm以下になるとフィルムの成形が不安定になり、展張作業等に使用するときに強度が不十分になるおそれがある。また、フィルム厚さが50μmより厚くなると、栽培終了時や土中での分解が不十分になるおそれがある。 The thickness of the biodegradable film is preferably 5 μm to 50 μm, more preferably 5 μm to 40 μm, and even more preferably 5 μm to 30 μm. When the thickness of the biodegradable film is 5 μm or less, the molding of the film becomes unstable, and the strength may be insufficient when used for a stretching operation or the like. Moreover, when film thickness becomes thicker than 50 micrometers, there exists a possibility that decomposition | disassembly at the time of completion | finish of cultivation or in soil may become inadequate.
 本発明の生分解性フィルムを構成する脂肪族ポリエステル系樹脂組成物の混練方法は、樹脂組成物の混練方法として一般的な方法が使用できる。具体的には、ペレットや粉体、固体の細片等をヘンシェルミキサーやリボンミキサーで乾式混合し、単軸や2軸の押出し機、バンバリーミキサー、ニーダー、ミキシングロールなどの公知の溶融混練機に供給して溶融混練することができる。
 脂肪族ポリエステル系樹脂組成物からフィルムを成形加工する方法は、押出機を用いてTダイにて押出ししたフィルムをキャストロールで冷却固化する押出成形や、インフレーション成形機により成形する方法が適している。
As a kneading method of the aliphatic polyester resin composition constituting the biodegradable film of the present invention, a general method can be used as a kneading method of the resin composition. Specifically, pellets, powders, solid strips, etc. are dry-mixed with a Henschel mixer or ribbon mixer, and then mixed into a known melt kneader such as a single or twin screw extruder, Banbury mixer, kneader, or mixing roll. It can be supplied and melt kneaded.
As a method of forming a film from the aliphatic polyester resin composition, an extrusion method in which a film extruded by a T die using an extruder is cooled and solidified by a cast roll, or a method of forming by an inflation molding machine is suitable. .
 以下本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
[評価方法]
(1)耐候性試験方法
 インフレーション成形機を用いて成形したフィルムを、JISA1415の条件に従って、スガ試験機社製サンシャインウェザーメーターを用いて、ブラックパネル温度を63℃とし、100時間暴露した。
(2)耐候性試験後の伸び残率の測定方法
 JISK6781に準拠した方法で、(株)島津製作所製の引張試験機を用いて、機械の成形方向(MD)の引張試験を行い、サンプル破断時の標線間距離から次の計算式により算出した。
破断伸び率(%)=((破断時の標線間距離)-(初期の標線間距離))/(初期の標線間距離))×100
引張試験は、耐候性試験を行う前後に行い、以下の計算式から伸び残率を算出した。
伸び残率(%)=(耐候性試験後の伸び率)/(初期伸び率)×100
<伸び残率の評価基準(100時間暴露後)>
◎:伸び残率が60%以上
○:伸び残率が40%以上60%未満
△:伸び残率が20%以上40%未満
×:伸び残率が20%未満
(3)成形性
 インフレーション成形機を用いてフィルムを成形する際、乳酸系ポリエステル(C)を添加しない場合との押出し機の設定温度の差を以下に記す基準で評価した。
◎:20℃未満
○:20℃以上
(4)パンクチャー衝撃強度
 インフレーション成形機で成形した各フィルムから、大きさが100mm×100mmの試験片を各フィルムにつき4個作製し、JIS P8134に準拠した、東洋精機社製「パンクチャーテスタ(先端は1インチ丸球面ヘッドを使用)」を使用して、試験片の破壊に要したエネルギーの量(衝撃強度[kg・cm])を目盛板より読み取った。測定した4個の試験片の平均値を求めた。この値を以下に記す基準で判断した。
◎:5.0kg・cm以上
○:3.0-5.0kg・cm
×:3.0kg・cm未満
[Evaluation methods]
(1) Weather resistance test method A film formed using an inflation molding machine was exposed to a black panel temperature of 63 ° C. for 100 hours using a sunshine weather meter manufactured by Suga Test Instruments Co., Ltd. according to the conditions of JIS A1415.
(2) Measuring method of residual elongation rate after weather resistance test Using a tensile tester manufactured by Shimadzu Corporation with a method in accordance with JISK6781, a tensile test in the molding direction (MD) of the machine is performed, and the sample breaks. It calculated with the following formula from the distance between marked lines at the time.
Elongation at break (%) = ((distance between marked lines at break) − (initial distance between marked lines)) / (initial distance between marked lines)) × 100
The tensile test was performed before and after the weather resistance test, and the residual elongation rate was calculated from the following formula.
Residual elongation (%) = (Elongation after weathering test) / (Initial elongation) × 100
<Evaluation criteria for residual elongation rate (after 100 hours exposure)>
◎: Residual elongation is 60% or more ○: Residual elongation is 40% or more and less than 60% △: Residual elongation is 20% or more and less than 40% ×: Residual elongation is less than 20% (3) Formability Inflation molding machine When the film was formed using, the difference in the set temperature of the extruder from the case where the lactic acid polyester (C) was not added was evaluated according to the following criteria.
◎: Less than 20 ° C. ○: 20 ° C. or more (4) Puncture impact strength Four test pieces each having a size of 100 mm × 100 mm were prepared from each film formed by an inflation molding machine, and conformed to JIS P8134. Using the Toyo Seiki “Puncture Tester (with a 1-inch round spherical head at the tip)”, read the amount of energy (impact strength [kg · cm]) required to destroy the specimen from the scale plate. It was. The average value of four measured specimens was determined. This value was judged according to the criteria described below.
A: 5.0 kg · cm or more ○: 3.0-5.0 kg · cm
×: Less than 3.0 kg · cm
[使用原料]
脂肪族ポリエステル(脂肪族ポリエステル(a1)):三菱化学社製「GSPla FD99WN」
脂肪族ポリエステル(脂肪族ポリエステル(a2)):三菱化学社製「GSPla FZ91PN」
脂肪族芳香族ポリエステル:BASF社製 商品名「エコフレックス」
乳酸系ポリエステル:Nature Works社 商品名「Ingeo Biopolymer 2003D」、「IngeoBiopolymer 4060D」
無機充填材(タルク):日本ミストロン社「MISTRON850JS」
[Raw materials]
Aliphatic polyester (aliphatic polyester (a1)): “GSPla FD99WN” manufactured by Mitsubishi Chemical Corporation
Aliphatic polyester (aliphatic polyester (a2)): “GSPla FZ91PN” manufactured by Mitsubishi Chemical Corporation
Aliphatic aromatic polyester: Product name "Ecoflex" manufactured by BASF
Lactic acid based polyester: Nature Works, Inc. Trade names “Ingeo Biopolymer 2003D”, “IngeoBiopolymer 4060D”
Inorganic filler (talc): “MISTRON 850JS” by Nippon Mystron
[実施例1~6]
 無機充填材については、事前に脂肪族ポリエステルと一定量で混合したものを二軸の押出し機を用いて溶融混練してマスターバッチを作製し、各々表1に記載されている配合により、ペレット状態でドライブレンドし、シリンダおよびダイス温度は脂肪族ポリエステルの溶融温度+40℃に設定し、モダン社製のインフレーション成形機を用いて、厚さ18μm(実施例1~5)、12μm(実施例6)のフィルムを成形した。
[Examples 1 to 6]
For inorganic fillers, a master batch is prepared by melting and kneading a mixture of aliphatic polyester and a certain amount in advance using a twin-screw extruder, and each of the formulations shown in Table 1 is in a pellet state. The cylinder and the die temperature were set to the melting temperature of the aliphatic polyester + 40 ° C., and the thickness was 18 μm (Examples 1 to 5) and 12 μm (Example 6) using an inflation molding machine manufactured by Modern. The film was formed.
 得られたフィルムを上記の試験方法及び評価基準により、耐候性試験後の伸び残率及び成形性を評価した。その結果を表1に示す。
 また、実施例1~6の何れも、展張5ヶ月後において機械で処理ができる程度に分解が進んでおり、土中に鋤き込まれた破片についても、次の栽培が開始されるまでに問題のない程度に分解が進むことを確認した。
The obtained film was evaluated for the residual elongation and the moldability after the weather resistance test according to the above test method and evaluation criteria. The results are shown in Table 1.
Also, in all of Examples 1 to 6, decomposition has progressed to the extent that it can be processed by a machine after 5 months of expansion, and the debris that has been sown in the soil before the next cultivation is started. It was confirmed that the decomposition progressed to the extent that there was no problem.
Figure JPOXMLDOC01-appb-T000001
脂肪族ポリエステル(a1)と脂肪族ポリエステル(a2)の重量比
実施例1:FD99WN(a1)/FZ91PN(a2)=9/1
実施例2:FD99WN(a1)/FZ91PN(a2)=3/7
実施例3:FD99WN(a1)/FZ91PN(a2)=9/1
実施例4:FD99WN(a1)/FZ91PN(a2)=5/5
実施例5:FD99WN(a1)/FZ91PN(a2)=8/2
実施例6:FD99WN(a1)/FZ91PN(a2)=6/4
比較例1:FD99WN(a1)/FZ91PN(a2)=0/0
比較例2:FD99WN(a1)/FZ91PN(a2)=10/0
実施例1~5および比較例1~2のフィルム厚みは18μm、実施例6のフィルム厚みは12μmである。
Figure JPOXMLDOC01-appb-T000001
Weight ratio of aliphatic polyester (a1) to aliphatic polyester (a2) Example 1: FD99WN (a1) / FZ91PN (a2) = 9/1
Example 2: FD99WN (a1) / FZ91PN (a2) = 3/7
Example 3: FD99WN (a1) / FZ91PN (a2) = 9/1
Example 4: FD99WN (a1) / FZ91PN (a2) = 5/5
Example 5: FD99WN (a1) / FZ91PN (a2) = 8/2
Example 6: FD99WN (a1) / FZ91PN (a2) = 6/4
Comparative Example 1: FD99WN (a1) / FZ91PN (a2) = 0/0
Comparative Example 2: FD99WN (a1) / FZ91PN (a2) = 10/0
The film thickness of Examples 1 to 5 and Comparative Examples 1 and 2 is 18 μm, and the film thickness of Example 6 is 12 μm.
 表1より、本発明の生分解性フィルムは、成形性に優れるとともに、耐候性試験機に100時間暴露した後の機械の成形方向(MD)で良好な引張破断伸度を有している。従って、本発明により、栽培作物の播種や定植からある程度作物が育つまでの期間においては、地温の保温機能を有すると共に雑草が生えることを防止するために必要な十分な強度を有し、かつ、栽培作物の収穫が終わり、次期作物の栽培が始まる前には、耕作作業において事実上支障がない程度まで分解していることを可能とした生分解特性を有する生分解性フィルムを提供することが可能となる。 From Table 1, the biodegradable film of the present invention is excellent in moldability and has a good tensile elongation at break in the machine direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours. Therefore, according to the present invention, in the period from the sowing and fixed planting of cultivated crops to the cultivation of crops to some extent, it has a sufficient strength necessary to prevent weeds from growing and having a heat retaining function of the ground temperature, and Providing a biodegradable film with biodegradable properties that enables it to be decomposed to the extent that there is virtually no hindrance in the cultivation work before the harvest of the cultivated crop is finished and before the cultivation of the next crop begins. It becomes possible.

Claims (4)

  1.  脂肪族ポリエステル系樹脂(A)及び脂肪族芳香族ポリエステル系樹脂(B)を含み、両者の配合比率が(A):(B)=1:1~4:1(重量比)である脂肪族ポリエステル系樹脂組成物であって、
     前記脂肪族ポリエステル系樹脂(A)は、ジカルボン酸単位としてアジピン酸単位を含む脂肪族ポリエステル系樹脂(a1)とジカルボン酸単位としてアジピン酸単位を含まない脂肪族ポリエステル系樹脂(a2)とからなり、これらの配合比率が(a1):(a2)=1:9~9:1(重量比)である、該脂肪族ポリエステル系樹脂組成物。
    Aliphatic polyester resin (A) and aliphatic aromatic polyester resin (B), the blending ratio of which is (A) :( B) = 1: 1 to 4: 1 (weight ratio) A polyester resin composition,
    The aliphatic polyester resin (A) comprises an aliphatic polyester resin (a1) containing an adipic acid unit as a dicarboxylic acid unit and an aliphatic polyester resin (a2) containing no adipic acid unit as a dicarboxylic acid unit. The aliphatic polyester resin composition, wherein the blending ratio thereof is (a1) :( a2) = 1: 9 to 9: 1 (weight ratio).
  2.  前記脂肪族ポリエステル系樹脂(A)と前記脂肪族芳香族ポリエステル系樹脂(B)の合計重量部(100重量部)に対し、乳酸系ポリエステル系樹脂(C)を3~20重量部含有する、請求項1に記載の脂肪族ポリエステル系樹脂組成物。 The lactic acid polyester resin (C) is contained in an amount of 3 to 20 parts by weight based on the total weight part (100 parts by weight) of the aliphatic polyester resin (A) and the aliphatic aromatic polyester resin (B). The aliphatic polyester resin composition according to claim 1.
  3.  脂肪族ポリエステル系樹脂組成物100重量部に対し、無機充填材を0.05~1.0重量部含む、請求項1または2に記載の脂肪族ポリエステル系樹脂組成物。 The aliphatic polyester resin composition according to claim 1 or 2, comprising 0.05 to 1.0 part by weight of an inorganic filler with respect to 100 parts by weight of the aliphatic polyester resin composition.
  4.  請求項1~3のいずれか1項に記載の脂肪族ポリエステル系樹脂組成物からなる生分解性フィルムであって、耐候性試験機に100時間暴露した後の機械の成形方向(MD)の引張破断伸び率が、耐候性試験機に暴露する前の引張破断伸び率に対して40%以上保持していることを特徴とする、該生分解性フィルム。 A biodegradable film comprising the aliphatic polyester-based resin composition according to any one of claims 1 to 3, wherein the tensile strength in the machine direction (MD) of the machine after being exposed to a weather resistance tester for 100 hours The biodegradable film characterized in that the elongation at break is maintained at 40% or more with respect to the tensile elongation at break before being exposed to a weather resistance tester.
PCT/JP2013/070778 2012-10-23 2013-07-31 Aliphatic polyester resin composition and biodegradable film WO2014064983A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014543166A JPWO2014064983A1 (en) 2012-10-23 2013-07-31 Aliphatic polyester resin composition and biodegradable film
CN201380042662.9A CN104540895A (en) 2012-10-23 2013-07-31 Aliphatic polyester resin composition and biodegradable film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233943 2012-10-23
JP2012233943 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014064983A1 true WO2014064983A1 (en) 2014-05-01

Family

ID=50544364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070778 WO2014064983A1 (en) 2012-10-23 2013-07-31 Aliphatic polyester resin composition and biodegradable film

Country Status (3)

Country Link
JP (1) JPWO2014064983A1 (en)
CN (1) CN104540895A (en)
WO (1) WO2014064983A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187936A (en) * 2020-05-29 2021-12-13 三井化学東セロ株式会社 Film having excellent biodegradability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101642A4 (en) * 2020-02-03 2024-04-03 Nippon Beet Sugar Manufacturing Co.,Ltd. Seedling-growing pot body with long-term stability, and decomposition promotion method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172488A (en) * 1999-10-05 2001-06-26 Nippon Shokubai Co Ltd Biodegradable polyester resin composition and its use
JP2003001704A (en) * 2001-06-27 2003-01-08 C I Kasei Co Ltd Biodegradable film
JP2004352799A (en) * 2003-05-28 2004-12-16 C I Kasei Co Ltd Biodegradable agricultural covering material
JP2010253902A (en) * 2009-04-28 2010-11-11 Mkv Dream Co Ltd Biodegradable laminated film for agriculture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172488A (en) * 1999-10-05 2001-06-26 Nippon Shokubai Co Ltd Biodegradable polyester resin composition and its use
JP2003001704A (en) * 2001-06-27 2003-01-08 C I Kasei Co Ltd Biodegradable film
JP2004352799A (en) * 2003-05-28 2004-12-16 C I Kasei Co Ltd Biodegradable agricultural covering material
JP2010253902A (en) * 2009-04-28 2010-11-11 Mkv Dream Co Ltd Biodegradable laminated film for agriculture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187936A (en) * 2020-05-29 2021-12-13 三井化学東セロ株式会社 Film having excellent biodegradability

Also Published As

Publication number Publication date
JPWO2014064983A1 (en) 2016-09-08
CN104540895A (en) 2015-04-22

Similar Documents

Publication Publication Date Title
KR101150085B1 (en) biodegradable resin composition
JP5942447B2 (en) Polyester resin composition, film formed from the resin composition, and bag formed from the film
JP4611214B2 (en) Biodegradable resin composition
JP5264487B2 (en) Biodegradable resin composition and molded article thereof
JP2020122131A (en) Tubular body, straw, cotton swab, and baloon stick
WO2014115811A1 (en) Film for agriculture
JP2009179786A (en) Resin composition and method of producing resin molding
JP2007308650A (en) Biodegradable resin composition
WO2014064983A1 (en) Aliphatic polyester resin composition and biodegradable film
JP4634235B2 (en) Biodegradable resin composition and film
JP6886232B2 (en) Agricultural film
JP2016112013A (en) Biodegradable film for agriculture
JP2013172678A (en) Biodegradable mulch film
WO2020202813A1 (en) Polyester resin composition, production method therefor, and molded body
JP2018139560A (en) Biodegradable film for agriculture
JP6916927B2 (en) Agricultural film
JP2022104869A (en) Materials for three-dimensional modeling with excellent biodegradability and their modeled products
JP2004352987A (en) Biodegradable film with improved water vapor barrier property, and method for controlling water vapor barrier property
JP7552198B2 (en) film
JP2008195784A (en) Polyester-based resin composition and molded article thereof
JP2023037365A (en) Three-dimensional molding material excellent in biodegradability and molded product thereof
JP2022145600A (en) Biodegradable film, and bag
JP6065512B2 (en) Resin composition and molded product formed by molding the resin composition
JP5472502B2 (en) Film containing polyester resin composition
JP6074995B2 (en) Resin composition and molded product formed by molding the resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848342

Country of ref document: EP

Kind code of ref document: A1