Nothing Special   »   [go: up one dir, main page]

WO2014061513A1 - Led classification method, led classification device, led classification program, recording medium, and liquid-crystal display device - Google Patents

Led classification method, led classification device, led classification program, recording medium, and liquid-crystal display device Download PDF

Info

Publication number
WO2014061513A1
WO2014061513A1 PCT/JP2013/077382 JP2013077382W WO2014061513A1 WO 2014061513 A1 WO2014061513 A1 WO 2014061513A1 JP 2013077382 W JP2013077382 W JP 2013077382W WO 2014061513 A1 WO2014061513 A1 WO 2014061513A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromaticity
light
led
liquid crystal
leds
Prior art date
Application number
PCT/JP2013/077382
Other languages
French (fr)
Japanese (ja)
Inventor
太田 将之
宮田 正高
和雄 玉置
崇 中西
賢一 栗田
清史 長田
正毅 辰巳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012228160A external-priority patent/JP6207826B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380053821.5A priority Critical patent/CN104718631A/en
Priority to US14/435,334 priority patent/US20150268408A1/en
Publication of WO2014061513A1 publication Critical patent/WO2014061513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an LED classification method for classifying whether or not a plurality of LEDs (light emitting diodes) can be used for a backlight of a liquid crystal display device based on the chromaticity distribution.
  • a white LED is usually used for such a backlight.
  • the white LED is generally configured by combining a blue LED and a phosphor.
  • white light is obtained by mixing the blue light emitted from the blue LED chip and the light emitted when the phosphor is excited by the blue light.
  • green light and red light obtained by exciting the green phosphor and the red phosphor with blue light are mixed with blue light. I get white light.
  • Patent Document 1 discloses a method capable of easily and quickly providing a phosphor capable of changing a white emission color obtained by a blue LED and a phosphor to a more uniform color tone in a manufacturing process.
  • the phosphor material related to the coefficient obtained by applying the required emission color information is specified.
  • the phosphor specific information including the type, composition ratio, and mixing ratio (part by weight) of the fluorescent material that substantially satisfies the required emission color information requested by the customer. It can be obtained quickly.
  • Patent Document 2 since white LEDs have high color reproducibility, a method for quickly producing white LEDs by obtaining a phosphor mixture concentration by software calculation without trial and error. Is disclosed. In this method, first, a process is performed in which the mixed spectrum obtained by mixing the light of two types of phosphors with adjusted concentrations and the light of the LED is brought close to the standard spectrum. Next, an area surrounded by the chromaticity coordinates of the three primary colors obtained by dividing the light mixture spectrum by the color filter is obtained, and a process for obtaining the chromaticity coordinate position of the white light constituting the three primary colors is performed. Such processing is executed by calculation.
  • Patent Document 3 describes that the backlight adjusts the blue leakage of the phosphor layer in the white LED according to the blue wavelength of the blue LED included in the white LED.
  • Patent Document 4 discloses a method for improving display uniformity in a display panel irradiated with light from a backlight.
  • the method includes, for example, estimating a filter function of a transmissive display component through which backlight emission is transmitted, and estimating filtered chromaticity data corresponding to the filter function for a plurality of light emitters. .
  • Patent Documents 1 and 2 as described above are methods for determining the phosphor concentration and the like at the time of manufacturing the white LED.
  • the method disclosed in Patent Document 3 is a method of adjusting blue light when manufacturing a white LED.
  • the phosphor when using a plurality of white LEDs combining a blue LED and a phosphor for the backlight, the phosphor has the desired concentration and amount even if the phosphor concentration is optimally determined as described above. It is very difficult to form a phosphor layer. For this reason, the density
  • FIG. 10 is a diagram showing an example of such chromaticity rank classification.
  • only white LEDs having chromaticity distribution within the rectangular frame F within the predetermined range are selected and used.
  • the frame F is divided into finer ranges, and is configured so that chromaticity can be ranked for each division.
  • the chromaticity of the white LEDs in the group having a short peak wavelength of the blue light component is distributed in a range D11 indicated by a solid line.
  • the peak wavelength is 444.7 nm
  • the average value AVE11 of chromaticity is at a position indicated by a solid line circle.
  • the chromaticity of the white LEDs of the group having a long blue light component peak wavelength is distributed in a range D12 indicated by a broken line.
  • the peak wavelength is 446.2 nm
  • the average value AVE12 of chromaticity is at a position indicated by a broken-line circle.
  • the variation range of the chromaticity of the white LED on the panel display that is transmitted through the liquid crystal panel is expanded. Is done. This is because the chromaticity of the white LED on the panel display is divided into groups of chromaticity variation ranges corresponding to the peak wavelength of blue light, particularly due to the influence of the color filter. For this reason, a white LED appears out of the desired chromaticity rank range on the panel display of the liquid crystal panel. The reason for this will be described in detail below.
  • the maximum value of the luminance of blue light on the display surface of the liquid crystal panel is the transmittance of the color filter (blue filter) of the liquid crystal panel through which the blue light is transmitted (and the liquid crystal from the LED light source such as an optical sheet or a diffusion plate). It includes a luminance reduction generated when passing through the optical member up to the panel) and the light intensity of the blue light emitted from the blue LED of the white LED (light intensity ⁇ transmittance).
  • the white LED having the chromaticity classified into the predetermined chromaticity rank range as described above the deviation of the peak wavelength of the blue light component is about ⁇ 5 nm.
  • the transmittance of the color filter (blue filter) tends to decrease as the wavelength is shorter. For this reason, when the peak wavelength of the blue light component is shifted as described above, the maximum value of the luminance of the blue light on the display surface of the liquid crystal panel differs.
  • FIG. 11 is a graph showing the relationship between the emission spectrum of a blue LED in a white LED and the transmission characteristics of a color filter (blue filter).
  • the vertical axis represents the transmittance of the color filter and the intensity of the emitted light of the blue LED.
  • the peak wavelength of the blue light component when the center of the peak wavelength of the blue light component is set to 450 nm, the peak wavelength is shifted in the range of 445 nm to 455 nm.
  • the spectrum of blue light having a peak wavelength of 455 nm is indicated by a broken line, and the spectrum of blue light having a peak wavelength of 445 nm is indicated by a one-dot chain line. Further, in the blue light spectrum, a portion exceeding the transmittance of the blue filter (shown by hatching in the figure) is cut.
  • the amount of light cut by the blue filter differs between blue light having a peak wavelength of 455 nm and blue light having a peak wavelength of 445 nm.
  • the shorter the peak wavelength of blue light the lower the transmittance of the blue filter, so the amount of light cut by the blue filter increases.
  • the chromaticity of white light including blue light having a short peak wavelength is shifted to the yellow side by a small amount of the blue light when the white light passes through the color filter.
  • the blue light component further decreases due to the effect of visibility (the ratio of the light component by the phosphor increases with respect to the blue light component).
  • FIG. 12 is a graph showing the spectra of a plurality of white LEDs showing the same chromaticity.
  • FIG. 13 is a diagram illustrating the chromaticity rank range of the emitted light of the white LED and the chromaticity rank range of the emitted light transmitted through the liquid crystal panel.
  • each white LED shown in FIG. 12 the peak wavelength of blue light is shifted, but the chromaticity of each white LED is the same in the frame F shown in FIG.
  • the color filter blue filter
  • the amount of blue light is cut in accordance with the transmission characteristics, so the chromaticity distribution is shifted in the direction of higher chromaticity.
  • the chromaticity is distributed in the frame Ftyp shifted from the frame F in the direction in which the x value and the y value increase. To do.
  • chromaticity is distributed in a frame Fmin shifted in a direction in which the x value and the y value increase from the frame Ftyp.
  • chromaticity is distributed in a frame Fmax shifted in a direction in which the x value and the y value decrease from the frame Ftyp.
  • the present invention has been made in view of the above-described problems, and the object thereof is chromaticity on a panel display which does not require a large white balance adjustment that leads to a decrease in display luminance on a liquid crystal panel.
  • An object of the present invention is to provide a white LED that is selected so that the variation is within a desired range.
  • the LED classification method includes a combination of an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light.
  • the LED classification device combines an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light. If the chromaticity of the primary light of the LED that emits the combined light of the primary light and the secondary light is within a predetermined range, the LED is classified as an object used for the backlight of the liquid crystal display device.
  • a chromaticity predicting unit that predicts the chromaticity of the primary light that has passed through a color filter in a liquid crystal panel provided in the liquid crystal display device with respect to the total number of LEDs to be classified; Chromaticity rank classification means for classifying the LED into chromaticity ranks based on the corrected chromaticity.
  • a liquid crystal display device includes a liquid crystal panel, a plurality of LEDs, a plurality of linear light sources provided adjacent to each other, and an output from the linear light source incident from at least one end side.
  • a light guide plate that radiates light to the liquid crystal panel in a planar shape, and is closer to the light incident side than a central portion between the light incident side end of the light guide plate and the end facing the end.
  • the LED mounted on the linear light source is selected so that the emitted light from each linear light source matches the chromaticity of the transmitted light that has passed through the liquid crystal panel through the light guide plate.
  • (A) is the graph which shows the emission spectrum of the light from one said LED bar according to distribution of the blue component shown in FIG. 15, (b) is the other said above according to distribution of the blue component shown in FIG. It is a graph which shows the emission spectrum of the light from a LED bar. It is a graph which shows the relationship between the distance from said 2 LED bar, and the height of the peak of the blue component of the light from these LED bar.
  • (A) and (b) are chromaticity corrections so that there is no chromaticity difference between the two systems of light from the two LED bars in the backlight at the center of the liquid crystal panel provided in the liquid crystal display device of FIG.
  • FIG. 5 is a graph showing the relationship between the distance from the two LED bars using LEDs and the chromaticity x and chromaticity y of the two lights. (A) and (b) described above using LEDs that have been chromatically corrected so that there is no chromaticity difference between the two systems of light from the two LED bars in a region close to the two LED bars in the liquid crystal panel. It is a graph which shows the relationship between the distance from two LED bars, and chromaticity x and chromaticity y of said two lights, respectively.
  • Embodiment 1 An embodiment according to the present invention will be described below with reference to FIGS.
  • FIG. 1 is a perspective view showing a schematic configuration of a liquid crystal display device 1 according to the present embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of another liquid crystal display device 2 according to the present embodiment.
  • FIG. 3 is a graph showing a transmission spectrum of the color filter 7 in the liquid crystal display devices 1 and 2.
  • the liquid crystal display device 1 includes a backlight 3 and a liquid crystal panel 4.
  • the backlight 3 is disposed on the back side of the liquid crystal panel 4, is an edge light type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a plurality of light emitting devices 5 and a light guide plate 6.
  • the light emitting device 5 is a white LED that is mounted on the side of the light guide plate 6 at a predetermined interval and emits light toward the light guide plate 6 side.
  • the white LED includes a blue LED and a red phosphor and a green phosphor that are excited by the blue light of the blue LED.
  • the light guide plate 6 deflects the light emitted from the light emitting device 5 so as to be emitted to the liquid crystal panel 4 side.
  • the liquid crystal panel 4 is filled with liquid crystal between two opposing transparent substrates, and the transmittance of light from the backlight 3 is changed by changing the alignment state of the liquid crystal in units of pixels configured in a matrix. change. Further, the liquid crystal panel 4 has a color filter 7 disposed on the display surface side. In the color filter 7, a filter for each color of red (R), green (G), and blue (B) having a transmission spectrum shown in FIG. 3 is formed for every three sub-pixels constituting each pixel. When light passes through each filter, the light of the color of each filter can be emitted.
  • RGB red
  • G green
  • B blue
  • liquid crystal panel 4 based on the light color component ratio of red (R), green (G), and blue (B) corresponding to the color of each pixel determined for each display image, transmission of the liquid crystal layer corresponding to the sub-pixel is performed. By adjusting the rate individually, each pixel is displayed in a color to be displayed.
  • the liquid crystal display device 2 includes a backlight 8 and a liquid crystal panel 4.
  • the backlight 8 is disposed on the back side of the liquid crystal panel 4 and is a direct type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a plurality of light emitting devices 5 and a mounting substrate 9.
  • the light emitting device 5 is mounted on the entire surface of the mounting substrate 9 at a predetermined interval and emits light directly to the liquid crystal panel 4. Since the backlight 8 can modulate the brightness for each small region (for example, pixel), it is excellent in energy saving and can increase the contrast ratio between light and dark.
  • FIG. 4 is a longitudinal sectional view showing a configuration of the LED 10 as the light emitting device 5 used in the above-described backlights 3 and 8.
  • FIG. 5 is a graph showing an emission spectrum of the LED 10.
  • a white LED used as the light emitting device 5 includes a frame 11, an LED chip 12, a lead frame 13, a wire 14, a resin 15, and phosphors 16 and 17.
  • the frame 11 is disposed on the lead frame 13.
  • the frame 11 is made of a nylon material and has a recess 11a.
  • the inclined surface of the recess 11a is formed as a reflective surface that reflects the emitted light of the LED chip 12.
  • the reflecting surface is preferably formed of a metal film containing silver or aluminum in order to efficiently extract the emitted light from the LED chip 12.
  • the lead frame 13 is insert-molded in the frame body 11.
  • the upper end portion of the lead frame 13 is divided and formed, and a part of the lead frame 13 is exposed at the bottom surface of the concave portion 11 a of the frame body 11.
  • the lower end portion of the lead frame 13 is cut to a predetermined length and is bent along the outer wall of the frame body 11 to form an external terminal.
  • the LED chip 12 (LED element) is, for example, a GaN-based semiconductor light-emitting element having a conductive substrate, and a bottom electrode is formed on the bottom surface of the conductive substrate, and an upper electrode is formed on the opposite surface.
  • the outgoing light (primary light) of the LED chip 12 is blue light in the range of 430 to 480 nm and has a peak wavelength at 450 nm.
  • the LED chip 12 is die-bonded with a conductive brazing material on one side of the upper end portion of the lead frame 13 exposed on the bottom surface of the recess 11a. Further, in the LED chip 12, the upper electrode and the other side of the upper end portion of the lead frame 13 are wire-bonded by a wire 14. Thus, the LED chip 12 is electrically connected to the lead frame 13.
  • Resin 15 seals the recess 11a by filling the recess 11a. Further, since the resin 15 is required to have high durability with respect to primary light having a short wavelength, a silicone resin is preferably used.
  • the phosphors 16 and 17 are dispersed in the resin 15.
  • the phosphor 16 is a green phosphor that emits green secondary light having a longer wavelength than the primary light (peak wavelength is 500 nm or more and 550 nm or less), and is made of, for example, a Eu-activated ⁇ sialon phosphor material.
  • the phosphor 17 is a red phosphor that emits red light having a longer wavelength than the primary light (peak wavelength is 600 nm or more and 780 nm or less).
  • the phosphor 17 is made of a phosphor material mixed with CaAlSiN3: Eu. Become. By using such phosphors 16 and 17, it is possible to obtain a three-wavelength type LED 10 having good color rendering properties.
  • the LED 10 configured as described above, as the primary light emitted from the LED chip 12 passes through the resin 15, a part thereof is converted into secondary light by exciting the phosphors 16 and 17.
  • the outgoing light (combined light) in which the primary light and the secondary light are mixed is radiated to the outside as substantially white light.
  • FIG. 5 is a graph showing the emission spectrum of the LED 10, where the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the emission spectrum of the three-wavelength type LED 10 is distributed so as to have peaks in blue, green and red, and the peak of blue light is the largest.
  • the LED 10 uses specific phosphors 16 and 17 that are excited by blue light having a wavelength in the range of 430 to 480 nm in the primary light and emit light with high efficiency.
  • the light-emitting device 5 which has the spectral characteristic adjusted according to the transmission characteristic of the liquid crystal display devices 1 and 2 can be obtained.
  • FIG. 6 is a block diagram showing the configuration of the LED classification device 21.
  • the LED classification device 21 shown in FIG. 6 realizes the LED classification method of this embodiment for classifying whether the LED 10 used as the light-emitting device 5 is a light-emitting device 5 suitable for the backlights 3 and 8. Used for.
  • the LED classification device 21 includes a memory 22, a storage unit 23, a display unit 24, and an arithmetic processing unit 25 in order to classify the LEDs 10.
  • the memory 22 is a volatile memory that temporarily stores a characteristic measurement value of the LED 10 from the LED characteristic measurement device 31 and temporarily stores calculation data generated by calculation processing by the calculation processing unit 25.
  • the characteristic measurement values are stored in the memory 22 in a state in which codes assigned to the respective LEDs 10 are associated with each other so that the LEDs 10 can be identified with respect to the total number of the LEDs 10 to be classified.
  • the LED characteristic measuring device 31 is a device that measures the characteristics of the LED 10, and measures the chromaticity, peak wavelength, and the like of each LED 10 in a state where a large number of LEDs 10 emit light, and outputs the measured values as characteristic measured values.
  • the storage unit 23 is a storage device that stores the classification result of the LED 10 obtained by the arithmetic processing of the arithmetic processing unit 25, and includes a hard disk device or the like.
  • the display unit 24 is a display device for displaying the above classification result.
  • the arithmetic processing unit 25 performs processing for classifying the LEDs 10 based on the characteristic measurement values from the LED characteristic measurement device 31.
  • the arithmetic processing unit 25 uses the following arithmetic expression to correct the chromaticity (x, y) of the emitted light from the LED 10 assuming that the emitted light from the LED 10 has passed through the color filter 7 (blue filter). Correction to chromaticity (x1, y1) (chromaticity correction means). Further, the arithmetic processing unit 25 performs chromaticity rank classification of the LED 10 based on the corrected chromaticity (x1, y1). Or the arithmetic processing part 25 performs chromaticity rank classification
  • correction is performed in consideration of a change in chromaticity until the light emitted from the light emitting device 5 passes through the liquid crystal panel 4.
  • This change in chromaticity is caused when the emitted light from the light emitting device 5 is transmitted through optical members such as a diffusion plate, an optical sheet, and a light guide plate, the color filter 7 (blue filter), and the liquid crystal panel 4. Is a change in chromaticity of transmitted light with respect to.
  • amendment becomes more preferable correction
  • the correction of the transmission characteristic of the color filter 7 is the correction of the transmission characteristic of the blue filter.
  • this is because the deviation of the peak wavelength of the blue light component in the light emitted from the light emitting device 5 is large at the mass production level of the light emitting device 5. This is because the chromaticity of the emitted light greatly affects the deviation before and after transmission through the color filter 7.
  • by correcting the transmission characteristics of the red filter and the green filter it is possible to perform correction in accordance with the actual display on the liquid crystal panel 4.
  • the method of only correcting the transmission characteristics of the blue filter can be said to be a simple method of correcting the measurement data of the light emitting device 5 by a simple correction formula as will be described later.
  • this correction method can eliminate the rank classification regarding the blue light peak, the characteristic classification items (management characteristic items) of the light emitting device 5 can be reduced.
  • ⁇ p is a measured value of the peak wavelength of the blue light component in the light emitted from the LED 10.
  • the influence of blue light on the chromaticity affects not only the peak wavelength but also the spectral shape. Therefore, this measured value is not the maximum point of the emission intensity, but a measured value of the dominant wavelength (main wavelength) to which the emission spectrum shape is added.
  • the dominant wavelength is measured, for example, by measuring the dominant wavelength as blue monochromatic light by extracting an emission spectrum of 480 nm or less. This measurement takes into account the influence of the blue LED light in the light emitting device 5 being absorbed by the phosphor.
  • ⁇ 0 is the center value (reference wavelength) of the measured value of this peak wavelength, and is set in the range of 445 nm to 450 nm, preferably about 448 nm.
  • the reference wavelength ⁇ 0 is, for example, a specific wavelength determined based on the user's request.
  • the LED 10 is manufactured so that the peak wavelength ⁇ p becomes the reference wavelength ⁇ 0, but actually the peak wavelength ⁇ p varies in the range of 442 nm to 452 nm.
  • ⁇ and ⁇ are coefficients (wavelength correction coefficients for chromaticity), and are set in the range of 0 to 0.01.
  • the chromaticity (x, y) and the peak wavelength ⁇ p are acquired from the LED characteristic measurement device 31 as characteristic measurement values of the LED 10.
  • the arithmetic processing unit 25 includes a coefficient calculation unit 26 (chromaticity prediction unit), a corrected chromaticity calculation unit 27 (chromaticity prediction unit), and a chromaticity rank classification unit 28 in order to realize the above processing. .
  • the coefficient calculation unit 26 (coefficient calculation means) stores the coefficient ⁇ of the arithmetic expression based on the chromaticity (x, y) and the peak wavelength ⁇ p as the characteristic measurement value stored in the memory 22 as the characteristic measurement value. And the coefficient ⁇ is calculated. Specifically, the coefficient calculation unit 26 performs the following processing.
  • FIG. 7 is a diagram for explaining the processing, and the change in chromaticity after transmission of the blue light through the color filter with respect to the shift amount of the peak wavelength from the reference wavelength of the peak wavelength of the blue light from the LED 10 to be classified. It is a graph which shows quantity.
  • the coefficient calculation unit 26 includes straight lines Lx connecting two points respectively specified by two different peak wavelengths ⁇ p of the LEDs 10 and two change amounts ⁇ x and ⁇ y corresponding to these peak wavelengths ⁇ p. , Ly are obtained as coefficients ⁇ , ⁇ and stored in the memory 22.
  • the amounts of change ⁇ x and ⁇ y with respect to the shift amount of an arbitrary peak wavelength ⁇ p from the reference wavelength ⁇ 0 can be linearly obtained using the straight lines Lx and Ly.
  • the correction chromaticity calculation unit 27 (correction chromaticity calculation means) applies the coefficients ⁇ and ⁇ stored in the memory 22 to the arithmetic expression, and calculates the peak wavelength ⁇ p for all the LEDs 10 read from the memory 22. Thus, the corrected chromaticity (x1, y1) is calculated.
  • the corrected chromaticity calculation unit 27 stores the calculated corrected chromaticity (x1, y1) in the memory 22.
  • chromaticity change amounts ⁇ x and ⁇ y with respect to the wavelength shift amount are linear. Approximately obtained.
  • a correction value for chromaticity (x, y) can be obtained by multiplying the wavelength shift amount by the above-mentioned coefficients ⁇ and ⁇ . Then, the corrected chromaticity (x1, y1) is obtained by subtracting the correction value from the chromaticity (x, y) read from the memory 22.
  • the chromaticity rank classification unit 28 (chromaticity rank classification means) reads the corrected chromaticity (x1, y1) from the memory 22, and performs the chromaticity rank classification of the LED 10 based on the corrected chromaticity (x1, y1). .
  • FIG. 8 is a diagram illustrating an example of such chromaticity rank classification. As shown in FIG. 8, the chromaticity rank classification unit 28 classifies the LEDs 10 based on whether or not the corrected chromaticity (x1, y1) is distributed within a rectangular frame F within a predetermined range, and stores the result. The unit 23 is stored in a state associated with the code of the LED 10. Further, the chromaticity rank classification unit 28 causes the display unit 24 to display the classification result of the LED 10 stored in the memory 22 as the LED 10 to be selected together with the code.
  • the above frame F is divided into finer ranges, and is configured so that the chromaticity can be ranked for each division.
  • the corrected chromaticity (x1, y1) of the group of LEDs 10 having a short blue light wavelength is distributed in a range D1 indicated by a solid line.
  • the peak wavelength is 444.7 nm
  • the chromaticity average value AVE1 is at the position indicated by the solid line circle.
  • the chromaticity of the group of LEDs 10 having a long blue light wavelength is distributed in a range D2 indicated by a broken line.
  • the peak wavelength is 446.2 nm
  • the average value AVE2 of chromaticity is at a position indicated by a broken-line circle.
  • the chromaticity rank classification unit 28 may perform the chromaticity rank classification of the LEDs 10 based on a predicted value (simulation value) obtained by predicting (simulating) the chromaticity of light transmitted through the liquid crystal panel 4 by the chromaticity simulator 32. . This eliminates the need to calculate the coefficients ⁇ and ⁇ and the corrected chromaticity (x1, y1).
  • the above simulation values are obtained by the chromaticity simulator 32 (chromaticity prediction means) shown in FIG. 6 on the basis of several peak wavelengths ⁇ p (dominant wavelengths) assumed in advance, and are associated with the peak wavelengths ⁇ p. Prepared in the form of a table. Thereby, the chromaticity rank classification
  • the chromaticity simulator 32 is included in the LED classification device 21.
  • the chromaticity simulator 32 performs transmission characteristics of optical members such as a diffusion plate, an optical sheet, and a light guide plate, and a color filter 7 (blue filter) with respect to spectrum data (specific measurement values) measured by the LED characteristic measurement device 31.
  • the output chromaticity (xd, yd) on the display is calculated by a simulation considering the above.
  • the corrected chromaticity (x1, y1) is the chromaticity corrected to perform the chromaticity rank classification of the LED 10, and only the above-described changes ⁇ x and ⁇ y due to the difference in the wavelength of the LED 10 are reflected.
  • output chromaticity (xd, yd) is chromaticity on the display.
  • the corrected chromaticity (x1, y1) and the output chromaticity (xd, yd) are related by the following equation.
  • the following expression is an approximate expression because the corrected chromaticity (x1, y1) is approximated linearly.
  • the form for providing the simulation value is not limited to the above example, and various forms can be applied.
  • Each block of the coefficient calculation unit 26, the corrected chromaticity calculation unit 27, and the chromaticity rank classification unit 28 in the arithmetic processing unit 25 is realized by software (LED classification program) using a CPU as follows. That is, the LED classification program causes the computer to function as the LED classification device 21 (the coefficient calculation unit 26, the corrected chromaticity calculation unit 27, and the chromaticity rank classification unit 28).
  • each said block may be comprised by a hardware logic, and may be implement
  • DSP Digital * Signal * Processor
  • the program code (execution format program, intermediate code program, source program) of the above software may be recorded on a computer-readable recording medium.
  • the object of the present invention can also be achieved by supplying the recording medium to the LED classification device 21 and reading and executing the program code recorded on the recording medium by the CPU.
  • the recording medium examples include magnetic tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and optical disks such as CD-ROM / MO / MD / BD / DVD / CD-R. Can be used.
  • a card system such as an IC card (including a memory card) / optical card or a semiconductor memory system such as a mask ROM / EPROM / EEPROM (registered trademark) / flash ROM can be used. .
  • the LED classification device 21 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc.
  • infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • FIG. 9 is a flowchart showing the procedure of the classification process.
  • the characteristic measurement values from the LED characteristic measurement device 31 are acquired for the total number of LEDs 10 to be classified, and stored in the memory 22 (step S1).
  • coefficients ⁇ and ⁇ are calculated in advance based on simulation using the acquired characteristic measurement values (coefficient calculation process, chromaticity correction process).
  • the coefficient calculation unit 26 determines the slopes of the straight lines Lx and Ly connecting the two points as the coefficients ⁇ and ⁇ as described above.
  • the chromaticity rank classification of the LED 10 is performed based on the corrected chromaticity (x1, y1) (step S3: chromaticity rank classification process).
  • the chromaticity rank classification unit 28 performs the chromaticity rank classification of the LEDs 10 depending on whether or not the correction chromaticity (x1, y1) is distributed within the frame F shown in FIG. If the corrected chromaticity (x1, y1) is within a predetermined range by this chromaticity rank classification, the LED 10 indicating the corrected chromaticity (x1, y1) is classified as an object to be used for the backlights 3 and 8.
  • the characteristic measurement values from the LED characteristic measurement device 31 are acquired for the total number of LEDs 10 to be classified and stored in the memory 22 as in step S1. Further, the output chromaticity (xd, yd) is calculated in advance by the simulation by the chromaticity simulator 32. Then, the chromaticity rank classification of the LED 10 is performed based on the output chromaticity (xd, yd).
  • the LED classification device 21 corrects the chromaticity (x, y) after transmission through the color filter 7 as the corrected chromaticity (x1, y1) by the arithmetic processing unit 25, and this corrected chromaticity (x1) , Y1), the chromaticity rank classification of the LED 10 is performed.
  • the corrected chromaticity (x1, y1) is calculated so that the chromaticity (x, y) is shifted to blue (the lower chromaticity).
  • the corrected chromaticity (x1, y1) is calculated so that the chromaticity (x, y) shifts to yellow (the higher chromaticity) for the LED 10 whose peak wavelength ⁇ p is shifted to the shorter one ( Reference: Average value AVE1 in FIG.
  • the chromaticity rank classification of the LED 10 can be similarly performed using the above-described output chromaticity (xd, yd).
  • the LED 10 having high and low chromaticity distribution is also used.
  • the LED characteristic measurement device 31 can obtain the wavelength of blue light by measuring the peak wavelength. However, since the measurement of the peak wavelength is likely to cause noise, an error is likely to occur. In order to suppress the influence of noise, the LED characteristic measuring device 31 specifies a wavelength range from 400 nm until the phosphor color component does not appear on the long wavelength side, and calculates the dominant wavelength (main wavelength) in this wavelength range. do it. As described above, for example, a dominant wavelength as blue monochromatic light is measured by extracting an emission spectrum of 480 nm or less. This measurement takes into account the influence of the blue LED light in the light emitting device 5 being absorbed by the phosphor.
  • the fluorescent substance which LED10 contains is not limited to this.
  • a yellow phosphor that is excited by blue light of a blue LED may be included.
  • pseudo white can be obtained by mixing the blue light of the blue LED and the yellow light of the yellow phosphor.
  • the LED characteristic measuring device 31 is provided outside the LED classification device 21, but may be provided as a part of the LED classification device 21.
  • Embodiment 2 Another embodiment according to the present invention will be described below with reference to FIGS.
  • FIG. 14 is a perspective view showing a schematic configuration of the liquid crystal display device 41 according to the present embodiment.
  • the liquid crystal display device 41 includes a backlight 42 and a liquid crystal panel 4.
  • the backlight 42 is disposed on the back side of the liquid crystal panel 4 and is an edge light type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a light guide plate 6 and LED bars 43 and 44.
  • the LED bars 43 and 44 are linear light sources and are arranged adjacent to the end of the light guide plate 6 where light on at least one side is incident.
  • the LED bars 43 and 44 are arranged on the lower side in the example shown in FIG.
  • the LED bar 43 is disposed on the right side of the liquid crystal display device 41 and the LED bar 44 is disposed on the left side.
  • the LED bars 43 and 44 are each composed of a plurality of light emitting devices 5 and a substrate 45.
  • the substrate 45 is formed in an elongated strip shape (linear shape), and has a width that is slightly wider than the outer size (width) of the light emitting device 5.
  • the substrate 45 is provided with a printed wiring (not shown) for supplying power to the light emitting device 5 on a mounting surface on which the light emitting device 5 is mounted. Further, a positive terminal and a negative terminal (not shown) connected to the printed wiring are provided at both ends or one end of the substrate 45.
  • the light emitting device 5 is supplied with power by connecting wiring for supplying power from the outside to the positive terminal and the negative terminal.
  • the light emitting device 5 is a white LED, and is mounted on the substrate 45 at a predetermined interval so as to emit light toward the light guide plate 6 side.
  • the chromaticity rank is classified based on the corrected chromaticity (x1, y1) obtained by the LED classification device 21 as in the white LED used in the liquid crystal display devices 1 and 2 of the first embodiment.
  • the aforementioned LED 10 is used.
  • the light guide plate 6 has a structure in which light can be extracted from each part of the light emitting surface so that linear light incident from the LED bars 43 and 44 is emitted in a planar shape.
  • the two LED bars 43 and 44 are used as the light source of the backlight 42, but three or more LED bars may be used.
  • FIG. 15 is a diagram showing the distribution of the blue component of light in different regions of the liquid crystal panel 4 of each light emitted from the LED bars 43 and 44.
  • 16A is a graph showing an emission spectrum of light from the LED bar 43 corresponding to the distribution of the blue component shown in FIG. 15, and
  • FIG. 16B is a graph showing the distribution of the blue component shown in FIG. 4 is a graph showing an emission spectrum of light from the LED bar 44.
  • FIG. 17 is a graph showing the relationship between the distance from the LED bars 43 and 44 and the height of the peak of the blue component of the light from these LED bars 43 and 44.
  • the general light guide plate including the light guide plate 6 has a transmittance characteristic that absorbs the blue component of light as the distance from the light source increases. For this reason, the light emitted from the LED bars 43 and 44 and traveling through the light guide plate 6 gradually attenuates the blue component.
  • the wavelength at which the intensity of the blue component of the light emitted from the LED bar 43 reaches a peak is 451.5 nm
  • the blue peak wavelength of the light emitted from the LED bar 44 is 441. 5 nm.
  • the light emitted from the LED bar 43 passes from the area A1 close to the LED bar 43 to the central area B1 of the liquid crystal panel 4 (display surface), and the area C1 far from the LED bar 43 (near the opposite side where the LED bar 43 is disposed).
  • the peak value (blue peak) of the intensity of the blue component is attenuated in the process of proceeding to (). As shown in FIG. 16A, the blue peak is highest in the region A1, slightly lower in the region B1, and lowest in the region C1.
  • the light emitted from the LED bar 44 passes from the region A2 close to the LED bar 44 to the region B2 in the central portion of the liquid crystal panel 4, and the region C2 far from the LED bar 44 (region on the opposite side where the LED bar 44 is disposed).
  • the blue peak attenuates in the process of going to). As shown in FIG. 16B, the blue peak is the highest in the region A2, slightly lower in the region B2, and lowest in the region C2.
  • the amount of attenuation of the light emitted from the LED bars 43 and 44 varies depending on the distance L from the LED bars 43 and 44.
  • the central portion of the liquid crystal panel 4 is the center between the light incident side end of the light guide plate 6 (the end on the arrangement side of the LED bars 43 and 44) and the end facing the end. It shall correspond to the area
  • the height of the blue peak of the light emitted from the LED bar 43 (blue peak wavelength 451.5 nm) and the light emitted from the LED bar 44 (blue peak wavelength 441.5 nm)
  • the amount of attenuation differs according to the distance from 43 and 44.
  • the horizontal axis represents the relative distance from the LED bars 43 and 44, the position closest to the LED bars 43 and 44 is represented by “0”, and the position farthest from the LED bars 43 and 44 is represented. It is represented by “10”.
  • the vertical axis represents the relative height of the blue peak, with the minimum value represented by “0” and the maximum value represented by “100”.
  • the height of the blue peak of the light from the LED bars 43 and 44 is the maximum value at a distance from the LED bars 43 and 44 (hereinafter simply referred to as “distance”) “0”. .
  • the height of the blue peak of the light from the LED bar 43 decreases to about “90” at the distance “10”, whereas the height of the blue peak of the light from the LED bar 44 is the distance “10”. It falls below “80”.
  • the height of the blue peak is greatly attenuated as the blue peak wavelength is shorter.
  • [Adjustment of chromaticity] 18A and 18B show the chromaticity correction so that the chromaticity difference between the two systems of transmitted light from the LED bars 43 and 44 transmitted through the central portion (areas B1 and B2) of the liquid crystal panel 4 is eliminated. It is a graph which shows the relationship between the distance from LED bar 43,44 using the LED10 made, and the chromaticity x and chromaticity y of said two lights, respectively. 19A and 19B, the chromaticity correction is performed so that the chromaticity difference between the two systems of light emitted in the regions (regions A1 and A2) near the LED bars 43 and 44 in the liquid crystal panel 4 is eliminated. 4 is a graph showing the relationship between the distance from the LED bars 43 and 44 using the LED 10 and the chromaticity x and chromaticity y of the two lights.
  • the horizontal axis represents the relative distance from the LED bars 43 and 44, and the position closest to the LED bars 43 and 44 is represented by “0”. The position farthest from the LED bars 43 and 44 is represented by “10”. In the following description, the distance from the LED bars 43 and 44 represented by the horizontal axis is simply referred to as “distance”.
  • the line of sight of a person with respect to the liquid crystal display device 41 is often concentrated in the central portion of the screen. Therefore, as shown by a one-dot chain line in FIG. 15, the light appearing in the central portion (regions B1 and B2) in the liquid crystal panel 4 It is preferable to eliminate the chromaticity difference. For this reason, the chromaticity correction and chromaticity rank classification according to the first embodiment are eliminated for the LED 10 in which the LED 10 is mounted on the LED bars 43 and 44 so that the chromaticity difference between the two systems of light emitted in the regions B1 and B2 is eliminated. The LED 10 in which the above is performed is used.
  • the blue peak wavelength of LED bar 43,44 is an average value of the blue peak wavelength of all the light-emitting devices 5 (LED10) mounted in LED bar 43,44, respectively.
  • the chromaticities x and y of the light appearing in the areas A1 and A2 coincide with each other rather than the areas B1 and B2, the chromaticity difference generated in the boundary portion between the areas A1 and A2 is reduced. Can be relaxed. More preferably, as shown in FIGS. 19A and 19B, it appears at a position slightly closer to the LED bars 43 and 44 than the areas B1 and B2 (for example, a position at a distance “4” in the areas A1 and A2). It is only necessary that the chromaticities x and y of light match.
  • the position where the chromaticity matches as described above is preferably set as follows. Specifically, as shown in FIG. 15, the distance between the end of the light guide plate 6 on the light incident side and the center of the light guide plate 6 (more specifically, the center of the regions B1 and B2). It is a position separated by a distance of 40% or more and less than 50% of L1. Thereby, the chromaticity difference which arises in the boundary part between area
  • the difference in blue peak wavelength between the LED bars 43 and 44 was 7.5 nm or more, and the chromaticity boundary was seen. If the difference was 10 nm or less, the wavelength difference was such that the chromaticity boundary could not be seen. Can be relaxed. Thereby, the LED bar 43 whose blue peak wavelength is 451.5 nm and the LED bar 44 whose blue peak wavelength is 441.5 nm can be combined.
  • the chromaticity difference generated at the boundary between the regions B1 and B2 can be made inconspicuous.
  • the chromaticity difference increases between the regions C1 and C2 far from the LED bars 43 and 44.
  • the light from the LED bars 43 and 44 mixes (mixes colors) with each other by spreading while traveling through the light guide plate 6. For this reason, the chromaticity boundary is not visible at the boundary between the regions C1 and C2, so that the color unevenness between the regions C1 and C2 is not noticeable.
  • the coefficients ⁇ and ⁇ used by the coefficient calculation unit 26 to obtain the corrected chromaticity (x1, y1) are Set to a value smaller than the value when the chromaticity matches at the center.
  • the coefficient calculation unit 26 changes the coefficients ⁇ n and ⁇ n when shifting the position where the chromaticity matches with respect to the coefficients ⁇ m and ⁇ m when the chromaticity matches in the central portion as follows.
  • the LED bars 43 and 44 are disposed on the lower side (lower side) of the light guide plate 6, but are not limited thereto, and may be disposed on one of the left and right sides or the upper side of the liquid crystal panel 4. Further, LED bars may be provided on the two opposite sides of the light guide plate 6. Thereby, the boundary of chromaticity near the LED bar can be made inconspicuous on both sides, which is preferable to the configuration in which the LED bar is provided on one side of the light guide plate 6.
  • liquid crystal display device 41 produces good results particularly under the following conditions.
  • LED10 size 4-8mm ⁇ 1-4mm
  • the pitch of the LEDs 10 in the LED bars 43 and 44 0.5 to 2.0 cm LED bars 43 and 44 length: 30 to 100 cm (for screen size 31 to 100 inches of liquid crystal display device 41)
  • the present invention is not limited to the above conditions.
  • An LED classification method includes an LED element (LED chip 12) that emits primary light and a phosphor that emits secondary light having a longer wavelength than the primary light when excited by the primary light. If the chromaticity of the primary light of the LED (LED 10) that emits the combined light of the primary light and the secondary light by combining the LED chips 16, 17) is within a predetermined range, the LED is An LED classification method for classifying as an object to be used for a backlight (backlight 3, 8, 42) of a liquid crystal display device (liquid crystal display device 1, 2, 41), wherein the primary light is provided in the liquid crystal display device A chromaticity prediction step (a coefficient calculation unit 26 and a corrected chromaticity calculation unit 27 or a chromaticity simulator 3) that predicts the chromaticity transmitted through the color filter in the liquid crystal panel for all the LEDs to be classified. ) And, and a chromaticity rank classification step of the LED chromaticity rank classification based on the predicted chromat
  • the LED classification device (LED classification device 21) according to one aspect of the present invention has an LED element (LED chip 12) that emits primary light and is excited by the primary light and has a longer wavelength than the primary light.
  • the chromaticity of the primary light of the LED (LED 10) that emits the combined light of the primary light and the secondary light by combining the phosphors (LED chips 16, 17) that emit secondary light is within a predetermined range.
  • Chromaticity prediction means (coefficient calculation unit 26 and correction chromaticity calculation) that predicts the chromaticity of light transmitted through a color filter in a liquid crystal panel provided in the liquid crystal display device for the total number of LEDs to be classified. 27 or chromaticity simulator 32), and a chromaticity rank classification means for chromaticity rank classifying the LED based on the predicted chromaticity (chromaticity rank classification section 28).
  • the chromaticity assuming that the primary light has passed through the color filter is predicted by the chromaticity prediction step or the chromaticity prediction means. Then, the chromaticity rank classification step or the chromaticity rank classification means classifies the LEDs based on the predicted chromaticity.
  • the chromaticity prediction step calculates a correction value of the chromaticity due to transmission of the primary light through the color filter for all the LEDs to be classified, and classifies based on the correction value.
  • the reference chromaticity at the time when the chromaticity is changed and the change amount of the chromaticity with respect to the reference chromaticity are calculated, and the inclination of the change amount relative to the shift amount of the peak wavelength of the primary light from the reference wavelength is corrected for the chromaticity
  • a coefficient calculation step that calculates the coefficient of the value; and the correction value is calculated by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient, and the correction value is divided.
  • it contains a correction chromaticity calculating step of calculating the corrected chromaticity by subtracting from each of the chromaticity obtained on the LED of the total number of interest (correcting chroma calculating unit 27).
  • the chromaticity prediction means calculates a correction value of the chromaticity due to transmission of the primary light through the color filter for the total number of LEDs to be classified, and based on the correction value.
  • a chromaticity correction unit that corrects the chromaticity as a correction chromaticity for the total number of LEDs to be classified, and the chromaticity correction unit receives the primary light having a predetermined reference wavelength as the color.
  • a reference chromaticity when passing through the filter and a change amount of the chromaticity with respect to the reference chromaticity are calculated, and an inclination of the change amount with respect to a shift amount of a peak wavelength of the primary light from the reference wavelength is calculated.
  • a coefficient calculating means (coefficient calculating unit 26) that calculates the coefficient of the degree of correction value, and the correction value is calculated by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient;
  • Correction chromaticity calculation means (correction chromaticity calculation unit 27) for calculating the correction chromaticity by subtracting from the chromaticity obtained for the total number of LEDs to be classified. preferable.
  • the chromaticity correction value assuming that the primary light has passed through the color filter is calculated for the total number of LEDs to be classified by the chromaticity correction step or the chromaticity correction means, and this correction value Based on the above, the chromaticity obtained for the total number of LEDs to be classified is corrected as the corrected chromaticity.
  • the coefficient of the correction value is calculated based on the gradient of the amount of change in chromaticity with respect to the reference chromaticity obtained by the coefficient calculating step or the coefficient calculating means assuming that the color filter has been transmitted, 1 A change in chromaticity due to the transmission of the next light color filter is reflected in the correction value. Then, the correction chromaticity is calculated by subtracting the correction value thus obtained from the chromaticity by the correction chromaticity calculation step or the correction chromaticity calculation means.
  • the backlight includes a plurality of LEDs, and a plurality of linear light sources (LED bars 43 and 44) provided adjacent to each other and incident from at least one end side.
  • the liquid crystal display device including a light guide plate that radiates light emitted from a linear light source in a planar manner to the liquid crystal panel, an end portion on the light incident side of the light guide plate and an end portion facing the end portion.
  • the coefficient is calculated so that the emitted light from each linear light source matches the chromaticity of the transmitted light that has passed through the liquid crystal panel through the light guide plate at a position closer to the light incident side than the central portion between It is preferable to do.
  • the coefficient calculating means includes a plurality of linear light sources provided adjacent to each other, the backlight having the plurality of LEDs, and the linear light source incident at least from one end side.
  • the liquid crystal display device including the light guide plate that radiates the emitted light in a planar shape to the liquid crystal panel, between the end on the light incident side of the light guide plate and the end facing the end. It is preferable to calculate the coefficient so that the emitted light from each linear light source matches the chromaticity of the transmitted light transmitted through the liquid crystal panel through the light guide plate at a position closer to the light incident side than the central portion. .
  • the LEDs are classified into chromaticity ranks based on the corrected chromaticity calculated using the coefficient calculated as described above.
  • the chromaticity of the transmitted light that is transmitted from the linear light source through the light guide plate through the liquid crystal panel is the same at a position closer to the light incident side than the central portion. To do.
  • the boundary of chromaticity in the region close to the linear light source can be made inconspicuous.
  • the coefficient calculating step and the coefficient calculating means calculate the coefficient so that a chromaticity difference of the transmitted light at the central portion is 3/1000 or less.
  • the chromaticity boundary can be made inconspicuous even in the central portion.
  • the primary light is blue light.
  • the chromaticity rank is appropriately classified based on the change in the chromaticity distribution by the color filter by correcting the chromaticity by predicting the change due to the transmission of the color filter as described above. Can do.
  • the LED classification program according to an aspect of the present invention is a program for causing a computer to function as each unit in the LED classification apparatus.
  • a recording medium according to an aspect of the present invention is a computer-readable recording medium that records the LED classification program.
  • a liquid crystal display device includes a liquid crystal panel, a plurality of linear light sources that are provided adjacent to each other, and light emitted from the linear light source that is incident at least from one end side.
  • a light guide plate that radiates the liquid crystal panel in a planar shape, and a position closer to the light incident side than a central portion between an end on the light incident side of the light guide plate and an end facing the end.
  • the liquid crystal display device since the liquid crystal display device includes the linear light source using the LEDs selected as described above, the light emitted from each linear light source passes through the light guide plate at a position closer to the light incident side than the central portion.
  • the chromaticity of the transmitted light that has passed through the liquid crystal panel is matched. Thereby, as described above, the boundary of chromaticity in the region close to the linear light source can be made inconspicuous.
  • the position where the chromaticity matches is a distance of 40% or more and less than 50% of the distance between the light incident side end and the central portion from the light incident side end. It is preferable that it is a separated position. Thereby, the chromaticity difference in the region close to the linear light source can be almost eliminated.
  • the LED classification method according to the present invention corrects the chromaticity of the LED by predicting the luminance change in the state of being transmitted through the color filter, and thus can be suitably used for a liquid crystal display device using an LED as a backlight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is an LED classification device (21) whereby, when a chromaticity of a primary light of an LED, wherein an LED element which emits the primary light is combined with a fluorescent light body which is excited by the primary light and emits a secondary light of a longer wavelength than the primary light, is within a prescribed range, the LED is classified as being usable in a backlight of a liquid-crystal display device. A coefficient computation unit (26) and a correction chromaticity computation unit (27) compute, for the total number of LEDs which are to be classified, a correction value of a chromaticity which is obtained with the primary light envisioned as having passed through a color filter of the liquid-crystal display device, and correct the chromaticity by subtracting the correction value from the chromaticity which is obtained for each of the total number of LEDs which are to be classified. A chromaticity rank classification unit (28) classifies the LEDs by chromaticity rank on the basis of the corrected chromaticity.

Description

LED分類方法、LED分類装置、LED分類プログラム、記録媒体および液晶表示装置LED classification method, LED classification device, LED classification program, recording medium, and liquid crystal display device
 本発明は、複数のLED(発光ダイオード)を液晶表示装置のバックライトに用いることができるか否かについてその色度分布に基づいて分類するLED分類方法に関する。 The present invention relates to an LED classification method for classifying whether or not a plurality of LEDs (light emitting diodes) can be used for a backlight of a liquid crystal display device based on the chromaticity distribution.
 近年、液晶表示装置のバックライトとして、長寿命であり、かつ消費電力の少ないLEDを光源として用いたバックライトが普及してきている。このようなバックライトには、通常、白色LEDが用いられる。白色LEDは、一般に、青色LEDと蛍光体とを組み合わせて構成されている。このような白色LEDにおいては、青色LEDチップから発される青色光と、蛍光体がこの青色光で励起されることによって発する光との混色によって白色光が得られる。例えば、蛍光体として緑色蛍光体および赤色蛍光体を用いた白色LEDでは、緑色蛍光体および赤色蛍光体を青色光で励起することにより得られた緑色光および赤色光と、青色光とを混色することで白色光を得ている。 In recent years, backlights using LEDs having a long life and low power consumption as light sources have become widespread as backlights for liquid crystal display devices. A white LED is usually used for such a backlight. The white LED is generally configured by combining a blue LED and a phosphor. In such a white LED, white light is obtained by mixing the blue light emitted from the blue LED chip and the light emitted when the phosphor is excited by the blue light. For example, in a white LED using a green phosphor and a red phosphor as a phosphor, green light and red light obtained by exciting the green phosphor and the red phosphor with blue light are mixed with blue light. I get white light.
 このような白色LEDをバックライトに用いるには、液晶表示装置における液晶パネルの表示特性に応じて、所望の白色に発色するように蛍光体を適用する必要がある。 In order to use such a white LED as a backlight, it is necessary to apply a phosphor so as to develop a desired white color according to the display characteristics of the liquid crystal panel in the liquid crystal display device.
 例えば、特許文献1には、青色LEDおよび蛍光体によって得られる白色の発光色をより均一な色調に変え得る蛍光体を容易かつ迅速に製造工程に提供し得る方法が開示されている。この方法では、白色LEDの光源色情報と要求発光色情報との関係を蛍光体材料に関連する係数を介して関係付けた内容に対して、顧客から提示された特定の白色LEDの光源色情報および要求発光色情報を適用させて求めた係数に関連する蛍光体材料を特定する。これにより、顧客が要求する要求発光色情報を実質満足する蛍光原料の種類、組成比、基材に対する混合比(重量部)等を、蛍光体特定情報として、現実に発光素子の入手を待つまでもなく、素早く得ることが可能となる。 For example, Patent Document 1 discloses a method capable of easily and quickly providing a phosphor capable of changing a white emission color obtained by a blue LED and a phosphor to a more uniform color tone in a manufacturing process. In this method, the light source color information of a specific white LED presented by the customer to the content in which the relationship between the light source color information of the white LED and the required light emission color information is related through the coefficient related to the phosphor material. Then, the phosphor material related to the coefficient obtained by applying the required emission color information is specified. Thus, until the actual acquisition of the light-emitting element is waited for, with the phosphor specific information including the type, composition ratio, and mixing ratio (part by weight) of the fluorescent material that substantially satisfies the required emission color information requested by the customer. It can be obtained quickly.
 一方、特許文献2には、白色LEDが高い色再現性を備えるために、蛍光体の混合濃度を試行錯誤によらずにソフトウェアによる計算で求めて、白色LEDを迅速に製造することができる方法が開示されている。この方法では、まず、濃度を調整した2種類の蛍光体の光とLEDの光とを混合して得た混光スペクトルと標準スペクトルとを接近させる処理が行われる。次いで、混光スペクトルをカラーフィルタにより分けた3原色の色度座標に囲まれる面積を求め、3原色が構成する白色光の色度座標位置を求める処理が行われる。このような処理は計算により実行される。 On the other hand, in Patent Document 2, since white LEDs have high color reproducibility, a method for quickly producing white LEDs by obtaining a phosphor mixture concentration by software calculation without trial and error. Is disclosed. In this method, first, a process is performed in which the mixed spectrum obtained by mixing the light of two types of phosphors with adjusted concentrations and the light of the LED is brought close to the standard spectrum. Next, an area surrounded by the chromaticity coordinates of the three primary colors obtained by dividing the light mixture spectrum by the color filter is obtained, and a process for obtaining the chromaticity coordinate position of the white light constituting the three primary colors is performed. Such processing is executed by calculation.
 また、特許文献3には、バックライトが、白色LEDに含まれる青色LEDの青色波長に応じて白色LEDにおける蛍光体層の青色リークを調整することが記載されている。 Further, Patent Document 3 describes that the backlight adjusts the blue leakage of the phosphor layer in the white LED according to the blue wavelength of the blue LED included in the white LED.
 さらに、特許文献4には、バックライトによって光が照射されるディスプレイパネルにおける表示の均一性を向上させる方法が開示されている。この方法は、例えば、バックライト発光が透過する透過性ディスプレイコンポーネントのフィルタ関数を推定することと、複数の発光器について、フィルタ関数に対応するフィルタリングされた色度データを推定することを含んでいる。 Furthermore, Patent Document 4 discloses a method for improving display uniformity in a display panel irradiated with light from a backlight. The method includes, for example, estimating a filter function of a transmissive display component through which backlight emission is transmitted, and estimating filtered chromaticity data corresponding to the filter function for a plurality of light emitters. .
日本国公開特許公報「特開2001-107036号公報(2001年4月17日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-107036” (published on April 17, 2001) 日本国公開特許公報「特開2010-93237号公報(2010年4月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-93237 (published on April 22, 2010)” 日本国公開特許公報「特表2012-503215号公報(2012年2月2日公表)」Japanese Patent Publication “Special Table 2012-503215 (published February 2, 2012)” 日本国公開特許公報「特表2011-504605号公報(2011年2月10日公表)」Japanese Patent Publication “Special Table 2011-504605 (published on February 10, 2011)”
 上記のような特許文献1,2に開示された方法は、白色LEDの製造時における蛍光体の濃度等を決定する手法である。また、特許文献3に開示された方法は、白色LEDの製造時における青色光を調整する手法である。 The methods disclosed in Patent Documents 1 and 2 as described above are methods for determining the phosphor concentration and the like at the time of manufacturing the white LED. In addition, the method disclosed in Patent Document 3 is a method of adjusting blue light when manufacturing a white LED.
 しかしながら、青色LEDと蛍光体とを組み合わせた白色LEDをバックライトに複数用いる場合、蛍光体の濃度等を上記のように最適に決定しても、蛍光体が所望の濃度や量になるように蛍光体層を形成することは非常に困難である。このため、製造時に蛍光体の濃度や量が白色LED間で均一にならない。また、青色LEDも発光層の特性も製品間でばらつきがあることから、白色LED間で青色光のピーク波長にばらつきがある。このため、蛍光体の励起光と青色LEDの青色光との光強度のバランスにばらつきが生じるので、白色LED間で色度もばらついてしまう。 However, when using a plurality of white LEDs combining a blue LED and a phosphor for the backlight, the phosphor has the desired concentration and amount even if the phosphor concentration is optimally determined as described above. It is very difficult to form a phosphor layer. For this reason, the density | concentration and quantity of a fluorescent substance do not become uniform between white LED at the time of manufacture. Moreover, since the characteristics of the blue LED and the light emitting layer vary among products, the peak wavelength of blue light varies among white LEDs. For this reason, since the balance of the light intensity of the excitation light of the phosphor and the blue light of the blue LED varies, the chromaticity varies among the white LEDs.
 このような色度のばらついた白色LEDをバックライトにそのまま用いると、表示面内で表示色が不均一になるという不都合がある。従来、このような不都合を解消するために、色度分布が所定範囲に収まるように色度ランク分類した白色LEDのみを選別してバックライトに用いていた。 If such white LEDs with varying chromaticities are used as they are in the backlight, there is a disadvantage that the display color becomes non-uniform in the display surface. Conventionally, in order to eliminate such inconvenience, only white LEDs classified by chromaticity rank so that the chromaticity distribution falls within a predetermined range have been selected and used for the backlight.
 図10は、このような色度ランク分類の一例を示す図である。図10に示すように、上記の所定範囲となる矩形の枠F内に色度が分布する白色LEDのみを選別して用いる。この枠Fは、さらに細かい範囲に区分されており、区分ごとに色度のランク分けができるように構成されている。この枠F内において、青色光成分のピーク波長が短いグループの白色LEDの色度は、実線にて示す範囲D11に分布する。範囲D11において、ピーク波長は444.7nmであり、色度の平均値AVE11は実線の丸で示す位置にある。一方、枠F内において、青色光成分のピーク波長が長いグループの白色LEDの色度は、破線にて示す範囲D12に分布する。範囲D12において、ピーク波長は446.2nmであり、色度の平均値AVE12は破線の丸で示す位置にある。 FIG. 10 is a diagram showing an example of such chromaticity rank classification. As shown in FIG. 10, only white LEDs having chromaticity distribution within the rectangular frame F within the predetermined range are selected and used. The frame F is divided into finer ranges, and is configured so that chromaticity can be ranked for each division. Within this frame F, the chromaticity of the white LEDs in the group having a short peak wavelength of the blue light component is distributed in a range D11 indicated by a solid line. In the range D11, the peak wavelength is 444.7 nm, and the average value AVE11 of chromaticity is at a position indicated by a solid line circle. On the other hand, in the frame F, the chromaticity of the white LEDs of the group having a long blue light component peak wavelength is distributed in a range D12 indicated by a broken line. In the range D12, the peak wavelength is 446.2 nm, and the average value AVE12 of chromaticity is at a position indicated by a broken-line circle.
 ところが、このように白色LED自体の放出光そのものの色度が所定範囲に収まった白色LEDを選別しても、液晶パネルを透過した、パネル表示上での白色LEDの色度のばらつき範囲が拡大される。これは、パネル表示上での白色LEDの色度が、特にカラーフィルタの影響によって、青色光のピーク波長に応じた色度ばらつき範囲のグループに分かれることによる。このため、液晶パネルのパネル表示上で所望の色度ランク範囲から外れてしまう白色LEDが現れる。この理由について、以下に詳しく説明する。 However, even if the white LED in which the chromaticity of the emitted light itself of the white LED itself falls within the predetermined range is selected as described above, the variation range of the chromaticity of the white LED on the panel display that is transmitted through the liquid crystal panel is expanded. Is done. This is because the chromaticity of the white LED on the panel display is divided into groups of chromaticity variation ranges corresponding to the peak wavelength of blue light, particularly due to the influence of the color filter. For this reason, a white LED appears out of the desired chromaticity rank range on the panel display of the liquid crystal panel. The reason for this will be described in detail below.
 まず、液晶パネルの表示面上での青色光の輝度の最大値は、当該青色光が透過する液晶パネルのカラーフィルタ(青色フィルタ)の透過率(および光学シート、拡散板等のLED光源から液晶パネルまでの光学部材を透過する際に発生する輝度低下分を含む)と、白色LEDの青色LEDから発される当該青色光の光強度とによって決まる(光強度×透過率)。これに対し、上記のように所定の色度ランク範囲に分類された色度を有する白色LEDでも、青色光成分のピーク波長のずれが±5nm程度ある。また、カラーフィルタ(青色フィルタ)の透過率は、波長が短いほど低下する傾向にある。このため、青色光成分のピーク波長が上記のようにずれることにより、液晶パネルの表示面上での青色光の輝度の最大値が異なってくる。 First, the maximum value of the luminance of blue light on the display surface of the liquid crystal panel is the transmittance of the color filter (blue filter) of the liquid crystal panel through which the blue light is transmitted (and the liquid crystal from the LED light source such as an optical sheet or a diffusion plate). It includes a luminance reduction generated when passing through the optical member up to the panel) and the light intensity of the blue light emitted from the blue LED of the white LED (light intensity × transmittance). On the other hand, even in the white LED having the chromaticity classified into the predetermined chromaticity rank range as described above, the deviation of the peak wavelength of the blue light component is about ± 5 nm. Further, the transmittance of the color filter (blue filter) tends to decrease as the wavelength is shorter. For this reason, when the peak wavelength of the blue light component is shifted as described above, the maximum value of the luminance of the blue light on the display surface of the liquid crystal panel differs.
 図11は、白色LEDにおける青色LEDの発光スペクトルとカラーフィルタ(青色フィルタ)の透過特性との関係を示すグラフである。図11において、縦軸は、カラーフィルタの透過率と青色LEDの発光光の強度とを示している。 FIG. 11 is a graph showing the relationship between the emission spectrum of a blue LED in a white LED and the transmission characteristics of a color filter (blue filter). In FIG. 11, the vertical axis represents the transmittance of the color filter and the intensity of the emitted light of the blue LED.
 図11に示すように、青色光成分のピーク波長の中心を450nmとすると、ピーク波長は445nm~455nmの範囲でずれる。図11において、455nmのピーク波長を有する青色光のスペクトルを破線にて示し、445nmのピーク波長を有する青色光のスペクトルを一点鎖線にて示す。また、青色光のスペクトルは、青色フィルタの透過率を越える部分(図中斜線にて示す)がカットされる。 As shown in FIG. 11, when the center of the peak wavelength of the blue light component is set to 450 nm, the peak wavelength is shifted in the range of 445 nm to 455 nm. In FIG. 11, the spectrum of blue light having a peak wavelength of 455 nm is indicated by a broken line, and the spectrum of blue light having a peak wavelength of 445 nm is indicated by a one-dot chain line. Further, in the blue light spectrum, a portion exceeding the transmittance of the blue filter (shown by hatching in the figure) is cut.
 このため、455nmのピーク波長を有する青色光と445nmのピーク波長を有する青色光とでは、青色フィルタによってカットされる光量が異なる。具体的には、青色光のピーク波長が短いほど青色フィルタの透過率が低くなるので、青色フィルタによってカットされる光量が多くなる。したがって、短いピーク波長を有する青色光を含む白色光の色度は、当該白色光がカラーフィルタを透過すると、当該青色光の光量が少ない分だけ黄色側にシフトする。しかも、視感度の影響により、さらに青色光成分が低下する(蛍光体による光成分の比率が青色光の光成分に対して増加する)。 For this reason, the amount of light cut by the blue filter differs between blue light having a peak wavelength of 455 nm and blue light having a peak wavelength of 445 nm. Specifically, the shorter the peak wavelength of blue light, the lower the transmittance of the blue filter, so the amount of light cut by the blue filter increases. Accordingly, the chromaticity of white light including blue light having a short peak wavelength is shifted to the yellow side by a small amount of the blue light when the white light passes through the color filter. In addition, the blue light component further decreases due to the effect of visibility (the ratio of the light component by the phosphor increases with respect to the blue light component).
 図12は、同一色度を示す複数の白色LEDのスペクトルを示すグラフである。図13は、白色LEDの発光光の色度のランク範囲と液晶パネルを透過した当該発光光の色度のランク範囲とを示す図である。 FIG. 12 is a graph showing the spectra of a plurality of white LEDs showing the same chromaticity. FIG. 13 is a diagram illustrating the chromaticity rank range of the emitted light of the white LED and the chromaticity rank range of the emitted light transmitted through the liquid crystal panel.
 図12に示す各白色LEDのスペクトルは、青色光のピーク波長がずれているが、各白色LEDの色度は図13に示す枠F内にあって同一である。各白色LEDの発光光がカラーフィルタ(青色フィルタ)を透過すると、青色光の光量が透過特性に応じてカットされるため、色度分布が色度の高い方向にシフトする。この場合、青色光成分のピーク波長が中心値(図11に示す場合は450nm)である白色LEDについては、枠Fからx値およびy値が増大する方向にシフトした枠Ftypに色度が分布する。これに対し、青色光成分のピーク波長が中心値より短い白色LEDについては、枠Ftypよりもx値およびy値が増大する方向にシフトした枠Fminに色度が分布する。一方、青色光成分のピーク波長が中心値より長い白色LEDについては、枠Ftypよりもx値およびy値が減少する方向にシフトした枠Fmaxに色度が分布する。 In the spectrum of each white LED shown in FIG. 12, the peak wavelength of blue light is shifted, but the chromaticity of each white LED is the same in the frame F shown in FIG. When the light emitted from each white LED passes through the color filter (blue filter), the amount of blue light is cut in accordance with the transmission characteristics, so the chromaticity distribution is shifted in the direction of higher chromaticity. In this case, for the white LED whose peak wavelength of the blue light component is the center value (450 nm in the case of FIG. 11), the chromaticity is distributed in the frame Ftyp shifted from the frame F in the direction in which the x value and the y value increase. To do. On the other hand, for a white LED whose peak wavelength of the blue light component is shorter than the center value, chromaticity is distributed in a frame Fmin shifted in a direction in which the x value and the y value increase from the frame Ftyp. On the other hand, for a white LED in which the peak wavelength of the blue light component is longer than the center value, the chromaticity is distributed in a frame Fmax shifted in a direction in which the x value and the y value decrease from the frame Ftyp.
 上記のように青色光成分のピーク波長が短い場合、色度が黄色側にシフトするという不都合を回避するには、液晶パネルにおいて、ホワイトバランス調整を行う必要がある。このホワイトバランスにより、赤色光および緑色光の最大輝度を、それぞれ所望の輝度より低下してしまった青色光の最大輝度とバランス調整する。しかしながら、このようなホワイトバランス調整によって、液晶パネルの表示輝度が全体的に低下するという問題が新たに生じる。 As described above, when the peak wavelength of the blue light component is short, in order to avoid the disadvantage that the chromaticity shifts to the yellow side, it is necessary to perform white balance adjustment in the liquid crystal panel. By this white balance, the maximum brightness of red light and green light is balanced with the maximum brightness of blue light that has been lowered from the desired brightness. However, such a white balance adjustment causes a new problem that the display brightness of the liquid crystal panel decreases as a whole.
 これに対し、特許文献4に開示された方法では、複数の発光器について、推定したフィルタ関数に対応するフィルタリングされた色度データを推定するが、カラーフィルタにおける青色光のカットについては考慮されていない。 On the other hand, in the method disclosed in Patent Document 4, the filtered chromaticity data corresponding to the estimated filter function is estimated for a plurality of light emitters, but the blue light cut in the color filter is considered. Absent.
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、液晶パネル上の表示輝度の低下につながるような大きなホワイトバランス調整を行う必要が生じない、パネル表示上での色度ばらつきが所望の範囲内になるように選別した白色LEDを提供できるようにすることにある。 The present invention has been made in view of the above-described problems, and the object thereof is chromaticity on a panel display which does not require a large white balance adjustment that leads to a decrease in display luminance on a liquid crystal panel. An object of the present invention is to provide a white LED that is selected so that the variation is within a desired range.
 本発明の一態様に係るLED分類方法は、1次光を発するLED素子と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体とを組み合わせることにより前記1次光と前記2次光との合成光を発するLEDの前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置のバックライトに用いられる対象として分類するLED分類方法であって、前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測工程と、予測された色度に基づいて前記LEDを色度ランク分類する色度ランク分類工程とを含んでいる。 The LED classification method according to an aspect of the present invention includes a combination of an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light. An LED classification for classifying an LED that is used as a backlight of a liquid crystal display device if the chromaticity of the primary light of the LED that emits the combined light of the primary light and the secondary light is within a predetermined range. A chromaticity prediction step of predicting the chromaticity of the primary light transmitted through a color filter in a liquid crystal panel provided in the liquid crystal display device for all the LEDs to be classified, and the predicted chromaticity And a chromaticity rank classification step of classifying the LEDs according to chromaticity rank.
 また、本発明の一態様に係るLED分類装置は、1次光を発するLED素子と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体とを組み合わせることにより前記1次光と前記2次光との合成光を発するLEDの前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置のバックライトに用いられる対象として分類するLED分類装置であって、前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測手段と、予測された補正色度に基づいて前記LEDを色度ランク分類する色度ランク分類手段とを備えている。 In addition, the LED classification device according to an aspect of the present invention combines an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light. If the chromaticity of the primary light of the LED that emits the combined light of the primary light and the secondary light is within a predetermined range, the LED is classified as an object used for the backlight of the liquid crystal display device. A chromaticity predicting unit that predicts the chromaticity of the primary light that has passed through a color filter in a liquid crystal panel provided in the liquid crystal display device with respect to the total number of LEDs to be classified; Chromaticity rank classification means for classifying the LED into chromaticity ranks based on the corrected chromaticity.
 また、本発明の一態様に係る液晶表示装置は、液晶パネルと、複数のLEDを有し、隣接して設けられる複数の線状光源と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを備え、前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記線状光源に実装される前記LEDが選別されている。 In addition, a liquid crystal display device according to one embodiment of the present invention includes a liquid crystal panel, a plurality of LEDs, a plurality of linear light sources provided adjacent to each other, and an output from the linear light source incident from at least one end side. A light guide plate that radiates light to the liquid crystal panel in a planar shape, and is closer to the light incident side than a central portion between the light incident side end of the light guide plate and the end facing the end. The LED mounted on the linear light source is selected so that the emitted light from each linear light source matches the chromaticity of the transmitted light that has passed through the liquid crystal panel through the light guide plate.
 本発明の一態様によれば、バックライトに実装されても輝度を低下させる必要のないLEDを容易に選別することができる。 According to one embodiment of the present invention, it is possible to easily select LEDs that do not need to have reduced luminance even when mounted on a backlight.
本発明の一実施形態に係るLED分類方法で分類されるLEDをバックライトに用いる液晶表示装置の構成を示す斜視図である。It is a perspective view which shows the structure of the liquid crystal display device which uses LED classified by the LED classification method which concerns on one Embodiment of this invention for a backlight. 本発明の一実施形態に係るLED分類方法で分類されるLEDをバックライトに用いる他の液晶表示装置の構成を示す斜視図である。It is a perspective view which shows the structure of the other liquid crystal display device which uses LED classified by the LED classification method which concerns on one Embodiment of this invention for a backlight. 各液晶表示装置におけるカラーフィルタの透過スペクトルを示すグラフである。It is a graph which shows the transmission spectrum of the color filter in each liquid crystal display device. 上記LEDの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the said LED. 上記LEDの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of said LED. 上記LED分類方法を実現するためのLED分類装置の構成を示すブロック図である。It is a block diagram which shows the structure of the LED classification device for implement | achieving the said LED classification method. 分類対象となる上記LEDからの青色光のピーク波長の基準波長からのピーク波長のシフト量に対する青色光のカラーフィルタ透過後の色度の変化量を示すグラフである。It is a graph which shows the variation | change_quantity of the chromaticity after the color filter permeation | transmission of the blue light with respect to the shift amount of the peak wavelength from the reference wavelength of the peak wavelength of the blue light from said LED used as classification | category object. 上記LED分類装置によってカラーフィルタ透過後の値に換算された補正色度による色度ランク分類を示す図である。It is a figure which shows the chromaticity rank classification | category by the correction | amendment chromaticity converted into the value after color filter permeation | transmission by the said LED classification device. 上記LED分類装置によるLEDの分類の手順を示すフローチャートである。It is a flowchart which shows the procedure of the classification | category of LED by the said LED classification device. 白色LEDの従来の色度ランク分類を示す図である。It is a figure which shows the conventional chromaticity rank classification | category of white LED. 白色LEDにおける青色LEDの発光スペクトルとカラーフィルタの透過特性との関係を示すグラフである。It is a graph which shows the relationship between the emission spectrum of blue LED in white LED, and the permeation | transmission characteristic of a color filter. 図10の色度ランク分類による同一色度の複数の白色LEDの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of several white LED of the same chromaticity by the chromaticity rank classification | category of FIG. 白色LEDの発光光の色度のランク範囲と液晶パネルを透過した当該発光光の色度のランク範囲とを示す図である。It is a figure which shows the rank range of chromaticity of the emitted light of white LED, and the rank range of chromaticity of the said emitted light which permeate | transmitted the liquid crystal panel. 本発明の他の実施形態に係るLED分類方法で分類されるLEDをバックライトに用いる液晶表示装置の構成を示す斜視図である。It is a perspective view which shows the structure of the liquid crystal display device which uses LED classified by the LED classification method which concerns on other embodiment of this invention for a backlight. 図14の液晶表示装置におけるバックライトに用いられる2つのLEDバー(光源)から出射されるそれぞれの光の液晶パネルにおける異なる領域での光の青色成分の分布を示す図である。It is a figure which shows distribution of the blue component of the light in a different area | region in the liquid crystal panel of each light radiate | emitted from two LED bar (light source) used for the backlight in the liquid crystal display device of FIG. (a)は図15に示す青色成分の分布に応じた一方の上記LEDバーからの光の発光スペクトルを示すグラフであり、(b)は図15に示す青色成分の分布に応じた他方の上記LEDバーからの光の発光スペクトルを示すグラフである。(A) is the graph which shows the emission spectrum of the light from one said LED bar according to distribution of the blue component shown in FIG. 15, (b) is the other said above according to distribution of the blue component shown in FIG. It is a graph which shows the emission spectrum of the light from a LED bar. 上記2つのLEDバーからの距離とこれらのLEDバーからの光の青色成分のピークの高さとの関係を示すグラフである。It is a graph which shows the relationship between the distance from said 2 LED bar, and the height of the peak of the blue component of the light from these LED bar. (a)および(b)は図14の液晶表示装置に設けられる液晶パネルにおける中央部分で上記バックライトにおける上記2つのLEDバーからの2系統の光の色度差がなくなるように色度補正されたLEDを用いた上記2つのLEDバーからの距離と上記2つの光の色度xおよび色度yとの関係をそれぞれ示すグラフである。(A) and (b) are chromaticity corrections so that there is no chromaticity difference between the two systems of light from the two LED bars in the backlight at the center of the liquid crystal panel provided in the liquid crystal display device of FIG. 5 is a graph showing the relationship between the distance from the two LED bars using LEDs and the chromaticity x and chromaticity y of the two lights. (a)および(b)は上記液晶パネルにおける上記2つのLEDバーに近い領域で上記2つのLEDバーからの2系統の光の色度差がなくなるように色度補正されたLEDを用いた上記2つのLEDバーからの距離と上記2つの光の色度xおよび色度yとの関係をそれぞれ示すグラフである。(A) and (b) described above using LEDs that have been chromatically corrected so that there is no chromaticity difference between the two systems of light from the two LED bars in a region close to the two LED bars in the liquid crystal panel. It is a graph which shows the relationship between the distance from two LED bars, and chromaticity x and chromaticity y of said two lights, respectively.
 《実施形態1》
 本発明に係る一実施形態について、図1~図9を参照して以下に説明する。
Embodiment 1
An embodiment according to the present invention will be described below with reference to FIGS.
 [液晶表示装置]
 〔液晶表示装置の構成〕
 図1は、本実施形態に係る液晶表示装置1の概略構成を示す斜視図である。図2は、本実施形態に係る他の液晶表示装置2の概略構成を示す斜視図である。図3は、液晶表示装置1,2におけるカラーフィルタ7の透過スペクトルを示すグラフである。
[Liquid Crystal Display]
[Configuration of liquid crystal display device]
FIG. 1 is a perspective view showing a schematic configuration of a liquid crystal display device 1 according to the present embodiment. FIG. 2 is a perspective view showing a schematic configuration of another liquid crystal display device 2 according to the present embodiment. FIG. 3 is a graph showing a transmission spectrum of the color filter 7 in the liquid crystal display devices 1 and 2.
 図1に示すように、液晶表示装置1は、バックライト3と、液晶パネル4とを備えている。 As shown in FIG. 1, the liquid crystal display device 1 includes a backlight 3 and a liquid crystal panel 4.
 バックライト3は、液晶パネル4の背面側に配置されており、液晶パネル4の全面に光を照射するエッジライト方式バックライトであり、複数の発光装置5および導光板6を有している。発光装置5は、導光板6の側方に所定の間隔をおいて実装されており、導光板6側に光を発する白色LEDである。白色LEDは、前述のように、青色LEDと、青色LEDの青色光で励起する赤色蛍光体および緑色蛍光体とを含んでいる。導光板6は、発光装置5から発せられた光を液晶パネル4側に出射するように偏向する。 The backlight 3 is disposed on the back side of the liquid crystal panel 4, is an edge light type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a plurality of light emitting devices 5 and a light guide plate 6. The light emitting device 5 is a white LED that is mounted on the side of the light guide plate 6 at a predetermined interval and emits light toward the light guide plate 6 side. As described above, the white LED includes a blue LED and a red phosphor and a green phosphor that are excited by the blue light of the blue LED. The light guide plate 6 deflects the light emitted from the light emitting device 5 so as to be emitted to the liquid crystal panel 4 side.
 液晶パネル4は、対向する2枚の透明基板間に液晶が満たされており、マトリクス状に構成される画素単位で液晶の配向状態を変化させることによって、バックライト3からの光の透過率を変更する。また、液晶パネル4は、表示面側に配置されるカラーフィルタ7を有している。カラーフィルタ7は、各画素を構成する3つの副画素毎に、図3に示す透過スペクトルを有する赤(R),緑(G),青(B)の各色用のフィルタが形成されている。光が各フィルタを透過することによって、各フィルタの色の光を出射することができる。液晶パネル4においては、表示画像毎に決められる各画素の色に応じた赤(R),緑(G),青(B)の光色成分比に基づき、副画素に対応する液晶層の透過率が個別に調整されることによって、各画素が表示すべき色で表示される。 The liquid crystal panel 4 is filled with liquid crystal between two opposing transparent substrates, and the transmittance of light from the backlight 3 is changed by changing the alignment state of the liquid crystal in units of pixels configured in a matrix. change. Further, the liquid crystal panel 4 has a color filter 7 disposed on the display surface side. In the color filter 7, a filter for each color of red (R), green (G), and blue (B) having a transmission spectrum shown in FIG. 3 is formed for every three sub-pixels constituting each pixel. When light passes through each filter, the light of the color of each filter can be emitted. In the liquid crystal panel 4, based on the light color component ratio of red (R), green (G), and blue (B) corresponding to the color of each pixel determined for each display image, transmission of the liquid crystal layer corresponding to the sub-pixel is performed. By adjusting the rate individually, each pixel is displayed in a color to be displayed.
 図2に示すように、液晶表示装置2は、バックライト8と、液晶パネル4とを備えている。 As shown in FIG. 2, the liquid crystal display device 2 includes a backlight 8 and a liquid crystal panel 4.
 バックライト8は、液晶パネル4の背面側に配置されており、液晶パネル4の全面に光を照射する直下方式バックライトであり、複数の発光装置5および実装基板9を有している。発光装置5は、実装基板9の全面に所定の間隔をおいて実装されており、液晶パネル4に直接光を発する。このバックライト8は、小さい領域(例えば画素)毎に明るさを変調することができるため、省エネルギーに優れ、また明暗のコントラスト比を増大させることができる。 The backlight 8 is disposed on the back side of the liquid crystal panel 4 and is a direct type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a plurality of light emitting devices 5 and a mounting substrate 9. The light emitting device 5 is mounted on the entire surface of the mounting substrate 9 at a predetermined interval and emits light directly to the liquid crystal panel 4. Since the backlight 8 can modulate the brightness for each small region (for example, pixel), it is excellent in energy saving and can increase the contrast ratio between light and dark.
 〔LEDの構成〕
 図4は、前述のバックライト3,8に用いられる発光装置5としてのLED10の構成を示す縦断面図である。図5は、LED10の発光スペクトルを示すグラフである。
[Configuration of LED]
FIG. 4 is a longitudinal sectional view showing a configuration of the LED 10 as the light emitting device 5 used in the above-described backlights 3 and 8. FIG. 5 is a graph showing an emission spectrum of the LED 10.
 図4に示すLED10は、発光装置5として用いられる白色LEDであり、枠体11、LEDチップ12、リードフレーム13、ワイヤ14、樹脂15および蛍光体16,17を備えている。 4 is a white LED used as the light emitting device 5, and includes a frame 11, an LED chip 12, a lead frame 13, a wire 14, a resin 15, and phosphors 16 and 17.
 枠体11は、リードフレーム13上に配置されている。また、枠体11は、ナイロン系材料にて形成されており、凹部11aを有している。凹部11aの傾斜面は、LEDチップ12の出射光を反射する反射面として形成されている。この反射面は、LEDチップ12の出射光を効率良く取り出すため、銀またはアルミニウムを含む金属膜で形成されることが好ましい。 The frame 11 is disposed on the lead frame 13. The frame 11 is made of a nylon material and has a recess 11a. The inclined surface of the recess 11a is formed as a reflective surface that reflects the emitted light of the LED chip 12. The reflecting surface is preferably formed of a metal film containing silver or aluminum in order to efficiently extract the emitted light from the LED chip 12.
 リードフレーム13は、枠体11にインサート成形されている。リードフレーム13の上端部は、分割して形成されており、その一部が枠体11の凹部11aの底面において露出している。また、リードフレーム13の下端部は、所定の長さに切断されるとともに枠体11の外壁に沿って折曲され、外部端子をなしている。 The lead frame 13 is insert-molded in the frame body 11. The upper end portion of the lead frame 13 is divided and formed, and a part of the lead frame 13 is exposed at the bottom surface of the concave portion 11 a of the frame body 11. The lower end portion of the lead frame 13 is cut to a predetermined length and is bent along the outer wall of the frame body 11 to form an external terminal.
 LEDチップ12(LED素子)は、例えば、導電性基板を有するGaN系半導体発光素子であって、導電性基板の底面に底面電極が形成され、その逆の面に上部電極が形成されている。LEDチップ12の出射光(1次光)は、430~480nmの範囲の青色光であり、450nmにピーク波長を有する。また、LEDチップ12は、凹部11aの底面に露出するリードフレーム13における上端部の一方側に導電性のロウ材によってダイボンドされている。さらに、LEDチップ12は、上部電極とリードフレーム13における上端部の他方側とがワイヤ14によってワイヤボンドされている。このように、LEDチップ12は、リードフレーム13と電気的に接続されている。 The LED chip 12 (LED element) is, for example, a GaN-based semiconductor light-emitting element having a conductive substrate, and a bottom electrode is formed on the bottom surface of the conductive substrate, and an upper electrode is formed on the opposite surface. The outgoing light (primary light) of the LED chip 12 is blue light in the range of 430 to 480 nm and has a peak wavelength at 450 nm. The LED chip 12 is die-bonded with a conductive brazing material on one side of the upper end portion of the lead frame 13 exposed on the bottom surface of the recess 11a. Further, in the LED chip 12, the upper electrode and the other side of the upper end portion of the lead frame 13 are wire-bonded by a wire 14. Thus, the LED chip 12 is electrically connected to the lead frame 13.
 樹脂15は、凹部11a内に充填されることによって凹部11aを封止している。また、樹脂15は波長の短い1次光に対して耐久性の高いことが要求されるため、シリコーン樹脂が好適に用いられる。 Resin 15 seals the recess 11a by filling the recess 11a. Further, since the resin 15 is required to have high durability with respect to primary light having a short wavelength, a silicone resin is preferably used.
 蛍光体16,17は、樹脂15に分散されている。蛍光体16は、1次光よりも長波長の緑色(ピーク波長が500nm以上550nm以下)の2次光を発する緑色蛍光体であり、例えばEu賦活βサイアロンの蛍光体材料からなる。一方、蛍光体17は、1次光よりも長波長の赤色(ピーク波長が600nm以上780nm以下)の2次光を発する赤色蛍光体であり、例えばCaAlSiN3:Euとを混合させた蛍光体材料からなる。このような蛍光体16,17を用いることにより、演色性の良好な3波長タイプのLED10を得ることができる。 The phosphors 16 and 17 are dispersed in the resin 15. The phosphor 16 is a green phosphor that emits green secondary light having a longer wavelength than the primary light (peak wavelength is 500 nm or more and 550 nm or less), and is made of, for example, a Eu-activated β sialon phosphor material. On the other hand, the phosphor 17 is a red phosphor that emits red light having a longer wavelength than the primary light (peak wavelength is 600 nm or more and 780 nm or less). For example, the phosphor 17 is made of a phosphor material mixed with CaAlSiN3: Eu. Become. By using such phosphors 16 and 17, it is possible to obtain a three-wavelength type LED 10 having good color rendering properties.
 上記のように構成されるLED10では、LEDチップ12から出射される1次光が樹脂15を通過するにつれ、その一部が蛍光体16,17を励起することで2次光に変換される。1次光と2次光とが混合された出射光(合成光)は、ほぼ白色光となって外部に放射される。 In the LED 10 configured as described above, as the primary light emitted from the LED chip 12 passes through the resin 15, a part thereof is converted into secondary light by exciting the phosphors 16 and 17. The outgoing light (combined light) in which the primary light and the secondary light are mixed is radiated to the outside as substantially white light.
 図5は、LED10の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 FIG. 5 is a graph showing the emission spectrum of the LED 10, where the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
 図5に示すように、3波長タイプのLED10の発光スペクトルは、青色、緑色および赤色にピークを有するように分布しており、青色光のピークが最も大きい。また、LED10は、1次光における430~480nmの範囲の波長の青色光によって励起して高効率に発光する特定の蛍光体16,17を用いている。これにより、液晶表示装置1,2の透過特性に合わせて調整されたスペクトル特性を有する発光装置5(LED10)を得ることができる。 As shown in FIG. 5, the emission spectrum of the three-wavelength type LED 10 is distributed so as to have peaks in blue, green and red, and the peak of blue light is the largest. The LED 10 uses specific phosphors 16 and 17 that are excited by blue light having a wavelength in the range of 430 to 480 nm in the primary light and emit light with high efficiency. Thereby, the light-emitting device 5 (LED10) which has the spectral characteristic adjusted according to the transmission characteristic of the liquid crystal display devices 1 and 2 can be obtained.
 [LED分類装置]
 図6は、LED分類装置21の構成を示すブロック図である。
[LED classification device]
FIG. 6 is a block diagram showing the configuration of the LED classification device 21.
 図6に示すLED分類装置21は、前述の発光装置5として用いられるLED10が、バックライト3,8に適した発光装置5であるか否かを分類する本実施形態のLED分類方法を実現するために用いられる。このLED分類装置21は、LED10の分類を行うために、メモリ22と、記憶部23と、表示部24と、演算処理部25とを備えている。 The LED classification device 21 shown in FIG. 6 realizes the LED classification method of this embodiment for classifying whether the LED 10 used as the light-emitting device 5 is a light-emitting device 5 suitable for the backlights 3 and 8. Used for. The LED classification device 21 includes a memory 22, a storage unit 23, a display unit 24, and an arithmetic processing unit 25 in order to classify the LEDs 10.
 〔メモリ、記憶部および表示部の構成〕
 メモリ22は、LED特性測定装置31からのLED10の特性測定値を一時的に記憶したり、演算処理部25による演算処理で生じる演算データを一時的に記憶したりする揮発性のメモリである。特性測定値は、分類の対象となるLED10の全数について、LED10を特定できるように各LED10に付与されたコードが対応付けられた状態でメモリ22に記憶される。LED特性測定装置31は、LED10の特性を測定する装置であり、多数のLED10を発光させた状態で各LED10の色度やピーク波長等を測定して特性測定値として出力する。
[Configuration of memory, storage unit and display unit]
The memory 22 is a volatile memory that temporarily stores a characteristic measurement value of the LED 10 from the LED characteristic measurement device 31 and temporarily stores calculation data generated by calculation processing by the calculation processing unit 25. The characteristic measurement values are stored in the memory 22 in a state in which codes assigned to the respective LEDs 10 are associated with each other so that the LEDs 10 can be identified with respect to the total number of the LEDs 10 to be classified. The LED characteristic measuring device 31 is a device that measures the characteristics of the LED 10, and measures the chromaticity, peak wavelength, and the like of each LED 10 in a state where a large number of LEDs 10 emit light, and outputs the measured values as characteristic measured values.
 記憶部23は、演算処理部25の演算処理によって得られたLED10の分類結果を保存する記憶装置であり、ハードディスク装置等によって構成されている。 The storage unit 23 is a storage device that stores the classification result of the LED 10 obtained by the arithmetic processing of the arithmetic processing unit 25, and includes a hard disk device or the like.
 表示部24は、上記の分類結果を表示するための表示装置である。 The display unit 24 is a display device for displaying the above classification result.
 〔演算処理部の構成〕
 演算処理部25は、LED特性測定装置31からの特性測定値に基づいて、LED10を分類するための処理を行う。この演算処理部25は、下記の演算式を用いて、LED10の出射光の色度(x,y)をLED10の出射光が前述のカラーフィルタ7(青色フィルタ)を透過したことを想定した補正色度(x1,y1)に補正する(色度補正手段)。また、演算処理部25は、補正色度(x1,y1)に基づいてLED10の色度ランク分類を行う。あるいは、演算処理部25は、予めシミュレーションによって求められた、液晶パネル4(ディスプレイ)から出力される光についての出力色度(xd,yd)に基づいてLED10の色度ランク分類を行う。
[Configuration of arithmetic processing unit]
The arithmetic processing unit 25 performs processing for classifying the LEDs 10 based on the characteristic measurement values from the LED characteristic measurement device 31. The arithmetic processing unit 25 uses the following arithmetic expression to correct the chromaticity (x, y) of the emitted light from the LED 10 assuming that the emitted light from the LED 10 has passed through the color filter 7 (blue filter). Correction to chromaticity (x1, y1) (chromaticity correction means). Further, the arithmetic processing unit 25 performs chromaticity rank classification of the LED 10 based on the corrected chromaticity (x1, y1). Or the arithmetic processing part 25 performs chromaticity rank classification | category of LED10 based on the output chromaticity (xd, yd) about the light output from the liquid crystal panel 4 (display) previously calculated | required by simulation.
 なお、カラーフィルタ7(青色フィルタ)を透過したことの想定においては、発光装置5からの出射光が液晶パネル4を透過するまでの色度の変化を考慮して補正する。この色度の変化は、発光装置5からの出射光が、拡散板、光学シート、導光板などの光学部材、カラーフィルタ7(青色フィルタ)、および液晶パネル4を透過した場合における、当該出射光に対する透過光の色度の変化である。これにより、当該補正が、より実際の液晶パネル4での表示に合わせた、より好ましい補正となる。 Note that, assuming that the light has passed through the color filter 7 (blue filter), correction is performed in consideration of a change in chromaticity until the light emitted from the light emitting device 5 passes through the liquid crystal panel 4. This change in chromaticity is caused when the emitted light from the light emitting device 5 is transmitted through optical members such as a diffusion plate, an optical sheet, and a light guide plate, the color filter 7 (blue filter), and the liquid crystal panel 4. Is a change in chromaticity of transmitted light with respect to. Thereby, the said correction | amendment becomes more preferable correction | amendment matched with the display in the actual liquid crystal panel 4. FIG.
 また、本実施形態では、上記のように、カラーフィルタ7の透過特性の補正を青色フィルタの透過特性の補正としている。これは、発明が解決しようとする課題にて記載したように、発光装置5からの出射光における青色光成分のピーク波長のずれが発光装置5の量産レベルで大きいことが、発光装置5からの出射光の色度がカラーフィルタ7の透過の前後でずれることに大きく影響を及ぼすことによる。これに対し、赤色フィルタおよび緑色フィルタの透過特性を補正することで、より実際の液晶パネル4での表示に合わせた補正を行うことができる。ただし、青色フィルタの透過特性の補正のみとする方法は、後述するように簡便な補正式によって、発光装置5の測定データを補正する簡便な方法といえる。また、この補正方法は、青色光ピークに関するランク分類を不要にすることができるので、発光装置5の特性分類項目(管理特性項目)を減らすことができる。 In the present embodiment, as described above, the correction of the transmission characteristic of the color filter 7 is the correction of the transmission characteristic of the blue filter. As described in the problem to be solved by the invention, this is because the deviation of the peak wavelength of the blue light component in the light emitted from the light emitting device 5 is large at the mass production level of the light emitting device 5. This is because the chromaticity of the emitted light greatly affects the deviation before and after transmission through the color filter 7. On the other hand, by correcting the transmission characteristics of the red filter and the green filter, it is possible to perform correction in accordance with the actual display on the liquid crystal panel 4. However, the method of only correcting the transmission characteristics of the blue filter can be said to be a simple method of correcting the measurement data of the light emitting device 5 by a simple correction formula as will be described later. Moreover, since this correction method can eliminate the rank classification regarding the blue light peak, the characteristic classification items (management characteristic items) of the light emitting device 5 can be reduced.
 x1=x-α×(λp-λ0)
 y1=y-β×(λp-λ0)
 上記の演算式において、λpは、LED10の出射光における青色光成分のピーク波長の測定値である。青色光の色度に対する影響は、ピーク波長だけでなく、スペクトル形状も影響する。したがって、この測定値は、発光強度の最大点ではなく、発光スペクトル形状が加味されるドミナント波長(主波長)の測定値とする。ドミナント波長の測定は、例えば、480nm以下の発光スペクトルを抜き出すことによって、青色単色光としてのドミナント波長を測定することで行われる。この測定は、発光装置5内の青色LED光が蛍光体に吸収される影響を加味したものとなっている。
x1 = x−α × (λp−λ0)
y1 = y−β × (λp−λ0)
In the above arithmetic expression, λp is a measured value of the peak wavelength of the blue light component in the light emitted from the LED 10. The influence of blue light on the chromaticity affects not only the peak wavelength but also the spectral shape. Therefore, this measured value is not the maximum point of the emission intensity, but a measured value of the dominant wavelength (main wavelength) to which the emission spectrum shape is added. The dominant wavelength is measured, for example, by measuring the dominant wavelength as blue monochromatic light by extracting an emission spectrum of 480 nm or less. This measurement takes into account the influence of the blue LED light in the light emitting device 5 being absorbed by the phosphor.
 λ0は、このピーク波長の測定値の中心値(基準波長)であり、445nm~450nmの範囲で設定され、448nm程度が好ましい。基準波長λ0は、例えば、ユーザの要望に基づいて定められた特定の波長である。LED10は、ピーク波長λpがこの基準波長λ0となるように製造されるが、実際にはピーク波長λpが442nm~452nmの範囲でばらついてしまう。 Λ0 is the center value (reference wavelength) of the measured value of this peak wavelength, and is set in the range of 445 nm to 450 nm, preferably about 448 nm. The reference wavelength λ0 is, for example, a specific wavelength determined based on the user's request. The LED 10 is manufactured so that the peak wavelength λp becomes the reference wavelength λ0, but actually the peak wavelength λp varies in the range of 442 nm to 452 nm.
 αおよびβは、係数(色度の波長補正係数)であり、0~0.01の範囲で設定される。 Α and β are coefficients (wavelength correction coefficients for chromaticity), and are set in the range of 0 to 0.01.
 色度(x,y)およびピーク波長λpは、LED特性測定装置31からLED10の特性測定値として取得される。 The chromaticity (x, y) and the peak wavelength λp are acquired from the LED characteristic measurement device 31 as characteristic measurement values of the LED 10.
 演算処理部25は、上記の処理を実現するために、係数算出部26(色度予測手段)、補正色度算出部27(色度予測手段)および色度ランク分類部28を有している。 The arithmetic processing unit 25 includes a coefficient calculation unit 26 (chromaticity prediction unit), a corrected chromaticity calculation unit 27 (chromaticity prediction unit), and a chromaticity rank classification unit 28 in order to realize the above processing. .
 〈係数算出部の構成〉
 係数算出部26(係数算出手段)は、メモリ22に記憶されている、LED特性測定装置31からの特性測定値としての色度(x,y)およびピーク波長λpに基づいて演算式の係数αおよび係数βを算出する。具体的には、係数算出部26は次の処理を行う。図7は、その処理を説明するための図であり、分類対象となるLED10からの青色光のピーク波長の基準波長からのピーク波長のシフト量に対する青色光のカラーフィルタ透過後の色度の変化量を示すグラフである。
<Configuration of coefficient calculation unit>
The coefficient calculation unit 26 (coefficient calculation means) stores the coefficient α of the arithmetic expression based on the chromaticity (x, y) and the peak wavelength λp as the characteristic measurement value stored in the memory 22 as the characteristic measurement value. And the coefficient β is calculated. Specifically, the coefficient calculation unit 26 performs the following processing. FIG. 7 is a diagram for explaining the processing, and the change in chromaticity after transmission of the blue light through the color filter with respect to the shift amount of the peak wavelength from the reference wavelength of the peak wavelength of the blue light from the LED 10 to be classified. It is a graph which shows quantity.
 係数算出部26は、図7に示すように、2つの互いに異なるLED10のピーク波長λpとこれらのピーク波長λpに対応する2つの変化量Δx,Δyとでそれぞれ特定される2点を結ぶ直線Lx,Lyの傾きを係数α,βとして得て、メモリ22に記憶させる。このような係数α,βを用いることにより、直線Lx,Lyを用いて、基準波長λ0からの任意のピーク波長λpのシフト量に対する変化量Δx,Δyを直線近似的に得ることができる。 As shown in FIG. 7, the coefficient calculation unit 26 includes straight lines Lx connecting two points respectively specified by two different peak wavelengths λp of the LEDs 10 and two change amounts Δx and Δy corresponding to these peak wavelengths λp. , Ly are obtained as coefficients α, β and stored in the memory 22. By using such coefficients α and β, the amounts of change Δx and Δy with respect to the shift amount of an arbitrary peak wavelength λp from the reference wavelength λ0 can be linearly obtained using the straight lines Lx and Ly.
 〈補正色度算出部の構成〉
 補正色度算出部27(補正色度算出手段)は、メモリ22に記憶された係数α,βを演算式に適用し、メモリ22から読み出した全数のLED10についてのピーク波長λpに対して演算式により補正色度(x1,y1)を計算する。補正色度算出部27は、算出した補正色度(x1,y1)をメモリ22に記憶させる。
<Configuration of correction chromaticity calculation unit>
The correction chromaticity calculation unit 27 (correction chromaticity calculation means) applies the coefficients α and β stored in the memory 22 to the arithmetic expression, and calculates the peak wavelength λp for all the LEDs 10 read from the memory 22. Thus, the corrected chromaticity (x1, y1) is calculated. The corrected chromaticity calculation unit 27 stores the calculated corrected chromaticity (x1, y1) in the memory 22.
 演算式における(λp-λ0)は、ピーク波長λpと基準波長λ0との差(波長シフト量)であり、図7に示すように、この波長シフト量に対する色度の変化量Δx,Δyが直線近似的に得られる。波長シフト量に上記の係数α,βをそれぞれ乗算することにより、色度(x,y)の補正値が得られる。そして、メモリ22から読み出した色度(x,y)から補正値を減算することにより、補正色度(x1,y1)が得られる。 (Λp−λ0) in the arithmetic expression is a difference (wavelength shift amount) between the peak wavelength λp and the reference wavelength λ0, and as shown in FIG. 7, chromaticity change amounts Δx and Δy with respect to the wavelength shift amount are linear. Approximately obtained. A correction value for chromaticity (x, y) can be obtained by multiplying the wavelength shift amount by the above-mentioned coefficients α and β. Then, the corrected chromaticity (x1, y1) is obtained by subtracting the correction value from the chromaticity (x, y) read from the memory 22.
 〈色度ランク分類部の構成〉
 色度ランク分類部28(色度ランク分類手段)は、補正色度(x1,y1)をメモリ22から読み出し、当該補正色度(x1,y1)に基づいて、LED10の色度ランク分類を行う。図8は、このような色度ランク分類の一例を示す図である。色度ランク分類部28は、図8に示すように、所定の範囲となる矩形の枠F内に補正色度(x1,y1)が分布するか否かでLED10を分類し、その結果を記憶部23にLED10のコードと対応付けた状態で保存させる。また、色度ランク分類部28は、メモリ22に保存されたLED10の分類結果を選別すべきLED10として表示部24にコードとともに表示させる。
<Configuration of chromaticity rank classification unit>
The chromaticity rank classification unit 28 (chromaticity rank classification means) reads the corrected chromaticity (x1, y1) from the memory 22, and performs the chromaticity rank classification of the LED 10 based on the corrected chromaticity (x1, y1). . FIG. 8 is a diagram illustrating an example of such chromaticity rank classification. As shown in FIG. 8, the chromaticity rank classification unit 28 classifies the LEDs 10 based on whether or not the corrected chromaticity (x1, y1) is distributed within a rectangular frame F within a predetermined range, and stores the result. The unit 23 is stored in a state associated with the code of the LED 10. Further, the chromaticity rank classification unit 28 causes the display unit 24 to display the classification result of the LED 10 stored in the memory 22 as the LED 10 to be selected together with the code.
 上記の枠Fは、さらに細かい範囲に区分されており、区分ごとに色度のランク分けができるように構成されている。この枠F内において、青色光の波長が短いグループのLED10の補正色度(x1,y1)は、実線にて示す範囲D1に分布する。範囲D1において、ピーク波長は444.7nmであり、色度の平均値AVE1が実線の丸で示す位置にある。一方、枠F内において、青色光の波長が長いグループのLED10の色度は、破線にて示す範囲D2に分布する。範囲D2において、ピーク波長は446.2nmであり、色度の平均値AVE2が破線の丸で示す位置にある。 The above frame F is divided into finer ranges, and is configured so that the chromaticity can be ranked for each division. Within this frame F, the corrected chromaticity (x1, y1) of the group of LEDs 10 having a short blue light wavelength is distributed in a range D1 indicated by a solid line. In the range D1, the peak wavelength is 444.7 nm, and the chromaticity average value AVE1 is at the position indicated by the solid line circle. On the other hand, in the frame F, the chromaticity of the group of LEDs 10 having a long blue light wavelength is distributed in a range D2 indicated by a broken line. In the range D2, the peak wavelength is 446.2 nm, and the average value AVE2 of chromaticity is at a position indicated by a broken-line circle.
 〈色度シミュレータの構成〉
 色度ランク分類部28は、色度シミュレータ32によって、液晶パネル4を透過した光の色度を予測(シミュレーション)した予測値(シミュレーション値)に基づいてLED10の色度ランク分類を行ってもよい。これにより、上記の係数α,βおよび補正色度(x1,y1)の計算が不要になる。
<Configuration of chromaticity simulator>
The chromaticity rank classification unit 28 may perform the chromaticity rank classification of the LEDs 10 based on a predicted value (simulation value) obtained by predicting (simulating) the chromaticity of light transmitted through the liquid crystal panel 4 by the chromaticity simulator 32. . This eliminates the need to calculate the coefficients α and β and the corrected chromaticity (x1, y1).
 上記のシミュレーション値は、予め想定されるいくつかのピーク波長λp(ドミナント波長)に基づいて、図6に示す色度シミュレータ32(色度予測手段)によって求められ、当該ピーク波長λpと対応付けられたテーブルの形態で用意されている。これにより、色度ランク分類部28は、実際に測定されたピーク波長λpに基づいてテーブルから読み出したシミュレーション値に基づいてLED10の色度ランク分類を行う。上記の色度シミュレータ32は、LED分類装置21に含まれている。 The above simulation values are obtained by the chromaticity simulator 32 (chromaticity prediction means) shown in FIG. 6 on the basis of several peak wavelengths λp (dominant wavelengths) assumed in advance, and are associated with the peak wavelengths λp. Prepared in the form of a table. Thereby, the chromaticity rank classification | category part 28 performs chromaticity rank classification | category of LED10 based on the simulation value read from the table based on the peak wavelength (lambda) p actually measured. The chromaticity simulator 32 is included in the LED classification device 21.
 色度シミュレータ32は、LED特性測定装置31によって測定されたスペクトラムデータ(特定測定値)に対して、拡散板、光学シート、導光板などの光学部材、およびカラーフィルタ7(青色フィルタ)の透過特性を考慮したシミュレーションにより、ディスプレイ上での出力色度(xd,yd)を計算する。 The chromaticity simulator 32 performs transmission characteristics of optical members such as a diffusion plate, an optical sheet, and a light guide plate, and a color filter 7 (blue filter) with respect to spectrum data (specific measurement values) measured by the LED characteristic measurement device 31. The output chromaticity (xd, yd) on the display is calculated by a simulation considering the above.
 ここで、前述の補正色度(x1,y1)は、出力色度(xd,yd)と全く異なる値である。以下に、その理由について説明する。 Here, the above-described corrected chromaticity (x1, y1) is completely different from the output chromaticity (xd, yd). The reason will be described below.
 補正色度(x1,y1)は、LED10の色度ランク分類を行うために補正された色度であり、LED10の波長の相違による前述の変化量Δx,Δyのみが反映されている。これに対し、出力色度(xd,yd)は、ディスプレイ上での色度である。 The corrected chromaticity (x1, y1) is the chromaticity corrected to perform the chromaticity rank classification of the LED 10, and only the above-described changes Δx and Δy due to the difference in the wavelength of the LED 10 are reflected. On the other hand, output chromaticity (xd, yd) is chromaticity on the display.
 補正色度(x1,y1)および出力色度(xd,yd)は、次式によって関連付けられる。次式は、補正色度(x1,y1)が直線的に近似されていることから、近似式となる。 The corrected chromaticity (x1, y1) and the output chromaticity (xd, yd) are related by the following equation. The following expression is an approximate expression because the corrected chromaticity (x1, y1) is approximated linearly.
 xd≒x1+Sx0
   =x-α×(λp-λ0)+Sx0
 yd≒y1+Sy0
   =y-α×(λp-λ0)+Sy0
 上式において、Sx0は定数であり、λp=λ0であるときの色度xのシフト量(ディスプレイ上の色度xとLED10の色度xとの差)として表される。このシフト量は、2/100-3/100程度の値となる。また、Sy0は定数であり、λp=λ0であるときの色度yのシフト量(ディスプレイ上の色度yとLED10の色度yとの差)として表される。このシフト量は、5/100-6/100程度の値となる。
xd≈x1 + Sx0
= X−α × (λp−λ0) + Sx0
yd≈y1 + Sy0
= Y-α × (λp-λ0) + Sy0
In the above equation, Sx0 is a constant and is expressed as a shift amount of chromaticity x when λp = λ0 (difference between chromaticity x on the display and chromaticity x of LED 10). This shift amount is about 2 / 100-3 / 100. Sy0 is a constant and is expressed as a shift amount of chromaticity y when λp = λ0 (difference between chromaticity y on the display and chromaticity y of LED 10). This shift amount is a value of about 5 / 100-6 / 100.
 シミュレーション値を提供する形態は、上記の例に限定されず、種々の形態を適用することができる。 The form for providing the simulation value is not limited to the above example, and various forms can be applied.
 〈演算処理部の実現形態〉
 演算処理部25における係数算出部26、補正色度算出部27および色度ランク分類部28の各ブロックは、以下のようにCPUを用いてソフトウェア(LED分類プログラム)によって実現される。つまり、このLED分類プログラムは、コンピュータをLED分類装置21(係数算出部26、補正色度算出部27および色度ランク分類部28)として機能させる。
<Realization form of arithmetic processing unit>
Each block of the coefficient calculation unit 26, the corrected chromaticity calculation unit 27, and the chromaticity rank classification unit 28 in the arithmetic processing unit 25 is realized by software (LED classification program) using a CPU as follows. That is, the LED classification program causes the computer to function as the LED classification device 21 (the coefficient calculation unit 26, the corrected chromaticity calculation unit 27, and the chromaticity rank classification unit 28).
 あるいは、上記の各ブロックは、ハードウェアロジックによって構成されてもよいし、DSP(Digital Signal Processor)を用いたプログラムによる処理で実現されてもよい。 Or each said block may be comprised by a hardware logic, and may be implement | achieved by the process by the program using DSP (Digital * Signal * Processor).
 上記のソフトウェアのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)は、コンピュータで読み取り可能に記録した記録媒体に記録されてもよい。本発明の目的は、当該記録媒体をLED分類装置21に供給し、CPUが記録媒体に記録されているプログラムコードを読み出して実行することによっても達成することが可能である。 The program code (execution format program, intermediate code program, source program) of the above software may be recorded on a computer-readable recording medium. The object of the present invention can also be achieved by supplying the recording medium to the LED classification device 21 and reading and executing the program code recorded on the recording medium by the CPU.
 上記の記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/BD/DVD/CD-R等の光ディスクを含むディスク系を用いることができる。その他、上記の記録媒体としては、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM(登録商標)/フラッシュROM等の半導体メモリ系などを用いることもできる。 Examples of the recording medium include magnetic tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and optical disks such as CD-ROM / MO / MD / BD / DVD / CD-R. Can be used. In addition, as the recording medium, a card system such as an IC card (including a memory card) / optical card or a semiconductor memory system such as a mask ROM / EPROM / EEPROM (registered trademark) / flash ROM can be used. .
 また、LED分類装置21を通信ネットワークと接続可能に構成し、上記のプログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Alternatively, the LED classification device 21 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available. Further, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 〔LED分類装置によるLED分類処理〕
 LED分類装置21によるLED10の分類処理について、図9のフローチャートを参照して説明する。図9は、その分類処理の手順を示すフローチャートである。
[LED classification processing by LED classification device]
The classification processing of the LEDs 10 by the LED classification device 21 will be described with reference to the flowchart of FIG. FIG. 9 is a flowchart showing the procedure of the classification process.
 図9に示すように、まず、LED特性測定装置31からの特性測定値を分類対象となるLED10の全数について取得し、メモリ22に記憶させる(ステップS1)。また、予め、取得した特性測定値を用い、シミュレーションに基づいて係数α,βを算出しておく(係数算出工程,色度補正工程)。このとき、係数算出部26は、前述のように2点を結ぶ直線Lx,Lyのそれぞれの傾きを係数α,βとして求める。 As shown in FIG. 9, first, the characteristic measurement values from the LED characteristic measurement device 31 are acquired for the total number of LEDs 10 to be classified, and stored in the memory 22 (step S1). In addition, coefficients α and β are calculated in advance based on simulation using the acquired characteristic measurement values (coefficient calculation process, chromaticity correction process). At this time, the coefficient calculation unit 26 determines the slopes of the straight lines Lx and Ly connecting the two points as the coefficients α and β as described above.
 次いで、前述の演算式および上記の係数α,βを用いて、補正色度(x1,y1)を計算する(ステップS2:補正色度算出工程,色度補正工程)。このとき、補正色度算出部27は、分類対象となるLED10の全数について、測定した色度(x,y)およびピーク波長λpを用いて補正色度(x1,y1)を算出する。 Next, the corrected chromaticity (x1, y1) is calculated using the above-described arithmetic expression and the above-described coefficients α, β (step S2: corrected chromaticity calculating step, chromaticity correcting step). At this time, the corrected chromaticity calculation unit 27 calculates the corrected chromaticity (x1, y1) using the measured chromaticity (x, y) and the peak wavelength λp for the total number of LEDs 10 to be classified.
 そして、補正色度(x1,y1)に基づいてLED10の色度ランク分類を行う(ステップS3:色度ランク分類工程)。このとき、色度ランク分類部28は、図8に示す枠F内に補正色度(x1,y1)に分布するか否かでLED10の色度ランク分類を行う。この色度ランク分類によって補正色度(x1,y1)が所定の範囲内にあれば、その補正色度(x1,y1)を示すLED10がバックライト3,8に用いられる対象として分類される。 Then, the chromaticity rank classification of the LED 10 is performed based on the corrected chromaticity (x1, y1) (step S3: chromaticity rank classification process). At this time, the chromaticity rank classification unit 28 performs the chromaticity rank classification of the LEDs 10 depending on whether or not the correction chromaticity (x1, y1) is distributed within the frame F shown in FIG. If the corrected chromaticity (x1, y1) is within a predetermined range by this chromaticity rank classification, the LED 10 indicating the corrected chromaticity (x1, y1) is classified as an object to be used for the backlights 3 and 8.
 また、前述の出力色度(xd,yd)を用いる場合、図示はしないが、次の手順で処理が行われる。 Further, when the output chromaticity (xd, yd) described above is used, although not shown, the processing is performed according to the following procedure.
 まず、LED特性測定装置31からの特性測定値を分類対象となるLED10の全数について取得し、メモリ22に記憶させるのは、ステップS1と同様である。また、予め、色度シミュレータ32によって、シミュレーションを行って出力色度(xd,yd)を算出しておく。そして、出力色度(xd,yd)に基づいてLED10の色度ランク分類を行う。 First, the characteristic measurement values from the LED characteristic measurement device 31 are acquired for the total number of LEDs 10 to be classified and stored in the memory 22 as in step S1. Further, the output chromaticity (xd, yd) is calculated in advance by the simulation by the chromaticity simulator 32. Then, the chromaticity rank classification of the LED 10 is performed based on the output chromaticity (xd, yd).
 [LED分類装置による効果]
 上記のように、LED分類装置21は、演算処理部25によって、カラーフィルタ7の透過後の色度(x,y)を補正色度(x1,y1)として補正し、この補正色度(x1,y1)に基づいてLED10の色度ランク分類を行うように構成されている。
[Effects of LED classification device]
As described above, the LED classification device 21 corrects the chromaticity (x, y) after transmission through the color filter 7 as the corrected chromaticity (x1, y1) by the arithmetic processing unit 25, and this corrected chromaticity (x1) , Y1), the chromaticity rank classification of the LED 10 is performed.
 これにより、ピーク波長λpが長い方にずれたLED10については、色度(x,y)が青色(色度の低い方)にシフトするように、補正色度(x1,y1)が算出される(参照:図8における平均値AVE2)。一方、ピーク波長λpが短い方にずれたLED10については、色度(x,y)が黄色(色度の高い方)にシフトするように、補正色度(x1,y1)が算出される(参照:図8における平均値AVE1)。 Thereby, for the LED 10 whose peak wavelength λp is shifted to the longer side, the corrected chromaticity (x1, y1) is calculated so that the chromaticity (x, y) is shifted to blue (the lower chromaticity). (Reference: Average value AVE2 in FIG. 8). On the other hand, the corrected chromaticity (x1, y1) is calculated so that the chromaticity (x, y) shifts to yellow (the higher chromaticity) for the LED 10 whose peak wavelength λp is shifted to the shorter one ( Reference: Average value AVE1 in FIG.
 そして、このように補正された補正色度(x1,y1)を用いることにより、カラーフィルタ7による青色光の強度の低下分(シフト量)を予測してLED10の色度ランク分類をすることができる。 Then, by using the corrected chromaticity (x1, y1) corrected in this way, a decrease in the intensity of blue light (shift amount) by the color filter 7 can be predicted and the chromaticity rank classification of the LED 10 can be performed. it can.
 あるいは、前述の出力色度(xd,yd)を用いても、同様にLED10の色度ランク分類をすることができる。 Alternatively, the chromaticity rank classification of the LED 10 can be similarly performed using the above-described output chromaticity (xd, yd).
 このような色度ランク分類に基づいて選別されたLED10を液晶表示装置1,2におけるそれぞれのバックライト3,8に実装することにより、液晶パネル4での青色光の輝度のばらつきを抑えることができる。特に、ピーク波長λpが短いLED10の出射光は、液晶パネル4(カラーフィルタ7)を透過すると、カラーフィルタ7により、青色光成分が大きくカットされ、色度がより黄色側にシフトする。したがって、上記の色度補正を行うことにより、液晶パネル用光源としてより適切な色度ランク分類を行うことができる。 By mounting the LEDs 10 selected based on the chromaticity rank classification on the backlights 3 and 8 in the liquid crystal display devices 1 and 2, it is possible to suppress variations in luminance of the blue light in the liquid crystal panel 4. it can. In particular, when the light emitted from the LED 10 having a short peak wavelength λp is transmitted through the liquid crystal panel 4 (color filter 7), the blue light component is largely cut by the color filter 7 and the chromaticity is shifted to the yellow side. Therefore, by performing the above chromaticity correction, it is possible to perform chromaticity rank classification more appropriate as a light source for a liquid crystal panel.
 なお、図8に示す枠Fの中心のランクのLED10のみを用いるのでは歩留りが低いので、色度が高低に分布したLED10も使用する。これは、色度が大きく異なるLED10同士を隣接配置することにより液晶パネル4の全体として色度を平均化するという公知の配列ルールを用いている。 In addition, since the yield is low if only the LED 10 having the center rank in the frame F shown in FIG. 8 is used, the LED 10 having high and low chromaticity distribution is also used. This employs a known arrangement rule in which the LEDs 10 having greatly different chromaticities are arranged adjacent to each other to average the chromaticity of the entire liquid crystal panel 4.
 [付記事項]
 蛍光体16,17を含むLED10は、発光スペクトルが蛍光体色の成分も含む形となるので、LED特性測定装置31において、ピーク波長を測定することによって、青色光の波長を得ることができる。しかしながら、ピーク波長の測定はノイズが乗りやすいので、誤差が生じやすい。ノイズの影響を抑えるには、LED特性測定装置31において、400nmから長波長側に蛍光体色の成分が現れないまでの波長範囲を指定して、この波長範囲でドミナント波長(主波長)を計算すればよい。前述のように、例えば、480nm以下の発光スペクトルを抜き出すことによって、青色単色光としてのドミナント波長を測定する。この測定は、発光装置5内の青色LED光が蛍光体に吸収される影響を加味したものとなっている。
[Additional Notes]
Since the LED 10 including the phosphors 16 and 17 has a shape in which the emission spectrum also includes a phosphor color component, the LED characteristic measurement device 31 can obtain the wavelength of blue light by measuring the peak wavelength. However, since the measurement of the peak wavelength is likely to cause noise, an error is likely to occur. In order to suppress the influence of noise, the LED characteristic measuring device 31 specifies a wavelength range from 400 nm until the phosphor color component does not appear on the long wavelength side, and calculates the dominant wavelength (main wavelength) in this wavelength range. do it. As described above, for example, a dominant wavelength as blue monochromatic light is measured by extracting an emission spectrum of 480 nm or less. This measurement takes into account the influence of the blue LED light in the light emitting device 5 being absorbed by the phosphor.
 なお、本実施形態では、緑色蛍光体および赤色蛍光体を含むLED10の分類について説明したが、LED10が含む蛍光体は、これには限定されない。例えば、緑色蛍光体および赤色蛍光体に代えて、青色LEDの青色光で励起する黄色蛍光体を含んでいてもよい。これにより、青色LEDの青色光と、黄色蛍光体の黄色光との混合によって、擬似白色を得ることができる。 In addition, although this embodiment demonstrated the classification | category of LED10 containing a green fluorescent substance and a red fluorescent substance, the fluorescent substance which LED10 contains is not limited to this. For example, instead of the green phosphor and the red phosphor, a yellow phosphor that is excited by blue light of a blue LED may be included. Thereby, pseudo white can be obtained by mixing the blue light of the blue LED and the yellow light of the yellow phosphor.
 また、本実施形態では、LED特性測定装置31が、LED分類装置21の外部に設けられる構成となっているが、LED分類装置21の一部として設けられていてもよい。 In this embodiment, the LED characteristic measuring device 31 is provided outside the LED classification device 21, but may be provided as a part of the LED classification device 21.
 《実施形態2》
 本発明に係る他の実施形態について、図14~図19を参照して以下に説明する。
<< Embodiment 2 >>
Another embodiment according to the present invention will be described below with reference to FIGS.
 なお、本実施形態において、前述の実施形態1における構成要素と同等の機能を有する構成要素については、同一の符号を付記してその説明を省略する。 In the present embodiment, components having functions equivalent to those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 [液晶表示装置]
 〔液晶表示装置の構成〕
 図14は、本実施形態に係る液晶表示装置41の概略構成を示す斜視図である。
[Liquid Crystal Display]
[Configuration of liquid crystal display device]
FIG. 14 is a perspective view showing a schematic configuration of the liquid crystal display device 41 according to the present embodiment.
 図14に示すように、液晶表示装置41は、バックライト42と、液晶パネル4とを備えている。 As shown in FIG. 14, the liquid crystal display device 41 includes a backlight 42 and a liquid crystal panel 4.
 バックライト42は、液晶パネル4の背面側に配置されており、液晶パネル4の全面に光を照射するエッジライト方式バックライトであり、導光板6およびLEDバー43,44を有している。 The backlight 42 is disposed on the back side of the liquid crystal panel 4 and is an edge light type backlight that irradiates light on the entire surface of the liquid crystal panel 4, and includes a light guide plate 6 and LED bars 43 and 44.
 LEDバー43,44は、線状の光源であり、導光板6における少なくとも一辺側の光が入射される端部に、隣接するように配置されている。LEDバー43,44は、図14に示す例では下方の一辺側に配置されている。また、LEDバー43は液晶表示装置41の正面に向かって右側に配置され、LEDバー44は左側に配置されている。 The LED bars 43 and 44 are linear light sources and are arranged adjacent to the end of the light guide plate 6 where light on at least one side is incident. The LED bars 43 and 44 are arranged on the lower side in the example shown in FIG. The LED bar 43 is disposed on the right side of the liquid crystal display device 41 and the LED bar 44 is disposed on the left side.
 LEDバー43,44は、それぞれ複数の発光装置5および基板45によって構成されている。 The LED bars 43 and 44 are each composed of a plurality of light emitting devices 5 and a substrate 45.
 基板45は、細長い短冊状(直線状)に形成されており、発光装置5の外形サイズ(幅)よりやや広い幅を有している。この基板45は、発光装置5を実装する実装面に、発光装置5への給電のための図示しないプリント配線が形成されている。また、基板45の両端部または一方の端部には、プリント配線に接続される図示しない正極端子および負極端子が設けられている。この正極端子および負極端子に外部からの給電のための配線が接続されることにより、発光装置5が給電される。 The substrate 45 is formed in an elongated strip shape (linear shape), and has a width that is slightly wider than the outer size (width) of the light emitting device 5. The substrate 45 is provided with a printed wiring (not shown) for supplying power to the light emitting device 5 on a mounting surface on which the light emitting device 5 is mounted. Further, a positive terminal and a negative terminal (not shown) connected to the printed wiring are provided at both ends or one end of the substrate 45. The light emitting device 5 is supplied with power by connecting wiring for supplying power from the outside to the positive terminal and the negative terminal.
 発光装置5は、白色LEDであり、導光板6側に光を発するように基板45上に所定の間隔をおいて実装されている。この白色LEDとしては、実施形態1の液晶表示装置1,2で用いられる白色LEDと同様に、LED分類装置21によって得られた補正色度(x1,y1)に基づいて色度ランクが分類された前述のLED10が用いられる。 The light emitting device 5 is a white LED, and is mounted on the substrate 45 at a predetermined interval so as to emit light toward the light guide plate 6 side. As this white LED, the chromaticity rank is classified based on the corrected chromaticity (x1, y1) obtained by the LED classification device 21 as in the white LED used in the liquid crystal display devices 1 and 2 of the first embodiment. The aforementioned LED 10 is used.
 導光板6は、LEDバー43,44から入射する直線状の光を面状に放射するように、光を光放射面の各部から取り出せる構造を有している。 The light guide plate 6 has a structure in which light can be extracted from each part of the light emitting surface so that linear light incident from the LED bars 43 and 44 is emitted in a planar shape.
 なお、液晶表示装置41では、バックライト42の光源として2つのLEDバー43,44を用いているが、3つ以上の複数のLEDバーを用いてもよい。 In the liquid crystal display device 41, the two LED bars 43 and 44 are used as the light source of the backlight 42, but three or more LED bars may be used.
 〔導光板による光の青色成分の減衰〕
 図15は、LEDバー43,44から出射されるそれぞれの光の液晶パネル4における異なる領域での光の青色成分の分布を示す図である。図16の(a)は図15に示す青色成分の分布に応じたLEDバー43からの光の発光スペクトルを示すグラフであり、図16の(b)は図15に示す青色成分の分布に応じたLEDバー44からの光の発光スペクトルを示すグラフである。図17は、LEDバー43,44からの距離とこれらのLEDバー43,44からの光の青色成分のピークの高さとの関係を示すグラフである。
[Attenuation of blue component of light by light guide plate]
FIG. 15 is a diagram showing the distribution of the blue component of light in different regions of the liquid crystal panel 4 of each light emitted from the LED bars 43 and 44. 16A is a graph showing an emission spectrum of light from the LED bar 43 corresponding to the distribution of the blue component shown in FIG. 15, and FIG. 16B is a graph showing the distribution of the blue component shown in FIG. 4 is a graph showing an emission spectrum of light from the LED bar 44. FIG. 17 is a graph showing the relationship between the distance from the LED bars 43 and 44 and the height of the peak of the blue component of the light from these LED bars 43 and 44.
 導光板6を含む一般の導光板は、光源から遠ざかるほど光の青色成分を吸収する透過率特性を有している。このため、LEDバー43,44から出射して導光板6内を進んでいく光は、徐々に青色成分が減衰していく。 The general light guide plate including the light guide plate 6 has a transmittance characteristic that absorbs the blue component of light as the distance from the light source increases. For this reason, the light emitted from the LED bars 43 and 44 and traveling through the light guide plate 6 gradually attenuates the blue component.
 ここで、図15に示すように、LEDバー43が発する光の青色成分の強度がピークとなる波長(青色ピーク波長)を451.5nmとし、LEDバー44が発する光の青色ピーク波長を441.5nmとする。 Here, as shown in FIG. 15, the wavelength at which the intensity of the blue component of the light emitted from the LED bar 43 reaches a peak (blue peak wavelength) is 451.5 nm, and the blue peak wavelength of the light emitted from the LED bar 44 is 441. 5 nm.
 LEDバー43が発する光は、LEDバー43から近い領域A1から液晶パネル4(表示面)における中央部分の領域B1を経て、LEDバー43から遠い領域C1(LEDバー43が配置される反対側付近の領域)に進んでいく過程で青色成分の強度のピーク値(青色ピーク)が減衰する。図16の(a)に示すように、青色ピークは、領域A1で最も高く、領域B1でやや低下し、領域C1で最も低い。 The light emitted from the LED bar 43 passes from the area A1 close to the LED bar 43 to the central area B1 of the liquid crystal panel 4 (display surface), and the area C1 far from the LED bar 43 (near the opposite side where the LED bar 43 is disposed). The peak value (blue peak) of the intensity of the blue component is attenuated in the process of proceeding to (). As shown in FIG. 16A, the blue peak is highest in the region A1, slightly lower in the region B1, and lowest in the region C1.
 一方、LEDバー44が発する光は、LEDバー44から近い領域A2から液晶パネル4における中央部分の領域B2を経て、LEDバー44から遠い領域C2(LEDバー44が配置される反対側付近の領域)に進んでいく過程で青色ピークが減衰する。図16の(b)に示すように、青色ピークは、領域A2で最も高く、領域B2でやや低下し、領域C2で最も低い。 On the other hand, the light emitted from the LED bar 44 passes from the region A2 close to the LED bar 44 to the region B2 in the central portion of the liquid crystal panel 4, and the region C2 far from the LED bar 44 (region on the opposite side where the LED bar 44 is disposed). ) The blue peak attenuates in the process of going to). As shown in FIG. 16B, the blue peak is the highest in the region A2, slightly lower in the region B2, and lowest in the region C2.
 このように、LEDバー43,44が発する光は、LEDバー43,44からの距離Lに応じて減衰量が異なる。 Thus, the amount of attenuation of the light emitted from the LED bars 43 and 44 varies depending on the distance L from the LED bars 43 and 44.
 なお、液晶パネル4の上記の中央部分は、導光板6における光入射側の端部(LEDバー43,44の配置側の端部)と、当該端部に対向する端部との間の中央を含む所定範囲の領域に相当するものとする。 The central portion of the liquid crystal panel 4 is the center between the light incident side end of the light guide plate 6 (the end on the arrangement side of the LED bars 43 and 44) and the end facing the end. It shall correspond to the area | region of the predetermined range containing.
 図17に示すように、LEDバー43から出射される光(青色ピーク波長451.5nm)およびLEDバー44から出射される光(青色ピーク波長441.5nm)の青色ピークの高さは、LEDバー43,44からの距離に応じた減衰量が異なる。図17において、横軸は、LEDバー43,44からの相対的な距離を表しており、LEDバー43,44に最も近い位置を“0”で表し、LEDバー43,44から最も遠い位置を“10”で表している。また、縦軸は、青色ピークの相対的な高さを表しており、最小値を“0”で表し、最大値を“100”で表している。 As shown in FIG. 17, the height of the blue peak of the light emitted from the LED bar 43 (blue peak wavelength 451.5 nm) and the light emitted from the LED bar 44 (blue peak wavelength 441.5 nm) The amount of attenuation differs according to the distance from 43 and 44. In FIG. 17, the horizontal axis represents the relative distance from the LED bars 43 and 44, the position closest to the LED bars 43 and 44 is represented by “0”, and the position farthest from the LED bars 43 and 44 is represented. It is represented by “10”. The vertical axis represents the relative height of the blue peak, with the minimum value represented by “0” and the maximum value represented by “100”.
 図17に示すように、LEDバー43,44からの光の青色ピークの高さは、LEDバー43,44からの距離(以降、単に「距離」と称する)“0”でともに最大値である。しかしながら、LEDバー43からの光の青色ピークの高さが距離“10”で“90”程度に低下するのに対し、LEDバー44からの光の青色ピークの高さは距離“10”であり“80”以下に低下する。 As shown in FIG. 17, the height of the blue peak of the light from the LED bars 43 and 44 is the maximum value at a distance from the LED bars 43 and 44 (hereinafter simply referred to as “distance”) “0”. . However, the height of the blue peak of the light from the LED bar 43 decreases to about “90” at the distance “10”, whereas the height of the blue peak of the light from the LED bar 44 is the distance “10”. It falls below “80”.
 このように、青色ピークの高さは、青色ピーク波長が短いほど大きく減衰する。 As described above, the height of the blue peak is greatly attenuated as the blue peak wavelength is shorter.
 〔色度の調整〕
 図18の(a)および(b)は、液晶パネル4における中央部分(領域B1,B2)で透過するLEDバー43,44からの2系統の透過光の色度差がなくなるように色度補正されたLED10を用いたLEDバー43,44からの距離と上記2つの光の色度xおよび色度yとの関係をそれぞれ示すグラフである。図19の(a)および(b)は、液晶パネル4におけるLEDバー43,44に近い領域(領域A1,A2)で放射される2系統の光の色度差がなくなるように色度補正されたLED10を用いたLEDバー43,44からの距離と上記2つの光の色度xおよび色度yとの関係をそれぞれ示すグラフである。
[Adjustment of chromaticity]
18A and 18B show the chromaticity correction so that the chromaticity difference between the two systems of transmitted light from the LED bars 43 and 44 transmitted through the central portion (areas B1 and B2) of the liquid crystal panel 4 is eliminated. It is a graph which shows the relationship between the distance from LED bar 43,44 using the LED10 made, and the chromaticity x and chromaticity y of said two lights, respectively. 19A and 19B, the chromaticity correction is performed so that the chromaticity difference between the two systems of light emitted in the regions (regions A1 and A2) near the LED bars 43 and 44 in the liquid crystal panel 4 is eliminated. 4 is a graph showing the relationship between the distance from the LED bars 43 and 44 using the LED 10 and the chromaticity x and chromaticity y of the two lights.
 なお、図18および図19においても、図17と同様、横軸は、LEDバー43,44からの相対的な距離を表しており、LEDバー43,44に最も近い位置を“0”で表し、LEDバー43,44から最も遠い位置を“10”で表している。また、以降の説明では、上記の横軸で表されるLEDバー43,44からの距離を単に「距離」と称する。 18 and 19, as in FIG. 17, the horizontal axis represents the relative distance from the LED bars 43 and 44, and the position closest to the LED bars 43 and 44 is represented by “0”. The position farthest from the LED bars 43 and 44 is represented by “10”. In the following description, the distance from the LED bars 43 and 44 represented by the horizontal axis is simply referred to as “distance”.
 通常、液晶表示装置41に対する人の視線は画面の中央部分に集中することが多いため、図15において一点鎖線にて示すように、液晶パネル4における中央部分(領域B1,B2)に現れる光の色度差がなくなるようにすることが好ましい。このため、LED10をLEDバー43,44に実装するLED10については、領域B1,B2で放射される2系統の光の色度差がなくなるように、実施形態1による色度補正および色度ランク分類が行われたLED10が用いられる。 Usually, the line of sight of a person with respect to the liquid crystal display device 41 is often concentrated in the central portion of the screen. Therefore, as shown by a one-dot chain line in FIG. 15, the light appearing in the central portion (regions B1 and B2) in the liquid crystal panel 4 It is preferable to eliminate the chromaticity difference. For this reason, the chromaticity correction and chromaticity rank classification according to the first embodiment are eliminated for the LED 10 in which the LED 10 is mounted on the LED bars 43 and 44 so that the chromaticity difference between the two systems of light emitted in the regions B1 and B2 is eliminated. The LED 10 in which the above is performed is used.
 これにより、図18の(a)および(b)に示すように、領域B1,B2の中央に相当する距離“5”の位置で現れる光の色度x,yが一致する。 Thereby, as shown in FIGS. 18A and 18B, the chromaticities x and y of the light appearing at the position of the distance “5” corresponding to the centers of the regions B1 and B2 match.
 ただし、上記のように色度補正および色度ランク分類が行われたLED10をLEDバー43,44に実装した場合、次のような不都合が生じる。 However, when the LED 10 subjected to chromaticity correction and chromaticity rank classification as described above is mounted on the LED bars 43 and 44, the following inconvenience occurs.
 LEDバー43,44から近い領域A1,A2(距離“0”~“4”の範囲)では、図18の(a)および(b)に示すように、LEDバー43,44から出射されるそれぞれの光の色度x,yの差が大きくなる。特に、距離“0”においては、光の色度差が最大となる。これは、領域A1,A2では、青色ピーク波長が長いほど色度が高く、青色ピーク波長が短いほど色度が低いからである。 In the areas A1 and A2 (distance “0” to “4”) close to the LED bars 43 and 44, as shown in FIGS. 18A and 18B, the light emitted from the LED bars 43 and 44, respectively. The difference between the chromaticities x and y of the light increases. In particular, at the distance “0”, the chromaticity difference of light becomes maximum. This is because in regions A1 and A2, the longer the blue peak wavelength, the higher the chromaticity, and the shorter the blue peak wavelength, the lower the chromaticity.
 このため、図15に示すように、領域A1,A2に現れる光の間に色度差が生じ、領域A1,A2の境界部分に色度の境界が見えるようになる。この現象は、LEDバー43,44の青色ピーク波長の差が7.5nm以上であるときに見られる。 For this reason, as shown in FIG. 15, a chromaticity difference is generated between the lights appearing in the areas A1 and A2, and the boundary of chromaticity becomes visible at the boundary between the areas A1 and A2. This phenomenon is seen when the difference between the blue peak wavelengths of the LED bars 43 and 44 is 7.5 nm or more.
 なお、ここでのLEDバー43,44の青色ピーク波長は、LEDバー43,44にそれぞれ実装される全ての発光装置5(LED10)の青色ピーク波長の平均値である。 In addition, the blue peak wavelength of LED bar 43,44 here is an average value of the blue peak wavelength of all the light-emitting devices 5 (LED10) mounted in LED bar 43,44, respectively.
 このような不都合を回避するには、領域B1,B2よりも、領域A1,A2で現れる光の色度x,yが一致すれば、領域A1,A2の間の境界部分に生じる色度差を緩和することができる。より好ましくは、図19の(a)および(b)に示すように、領域B1,B2よりもややLEDバー43,44に近い位置(例えば領域A1,A2における距離“4”の位置)で現れる光の色度x,yが一致すればよい。 In order to avoid such inconvenience, if the chromaticities x and y of the light appearing in the areas A1 and A2 coincide with each other rather than the areas B1 and B2, the chromaticity difference generated in the boundary portion between the areas A1 and A2 is reduced. Can be relaxed. More preferably, as shown in FIGS. 19A and 19B, it appears at a position slightly closer to the LED bars 43 and 44 than the areas B1 and B2 (for example, a position at a distance “4” in the areas A1 and A2). It is only necessary that the chromaticities x and y of light match.
 これにより、領域A1,A2の間の境界部分に生じる色度差を目立たなくすることができる。 Thereby, the chromaticity difference generated at the boundary between the areas A1 and A2 can be made inconspicuous.
 また、上記のように色度が一致する位置は、次のように設定されることが好ましい。具体的には、図15に示すように、導光板6の光入射側の端部から、当該端部と導光板6の中央部分(より詳しくは領域B1,B2の中央)との間の距離L1の40%以上50%未満の距離を隔てた位置である。これにより、領域A1,A2の間の境界部分に生じる色度差をほとんどなくすことができる。 Also, the position where the chromaticity matches as described above is preferably set as follows. Specifically, as shown in FIG. 15, the distance between the end of the light guide plate 6 on the light incident side and the center of the light guide plate 6 (more specifically, the center of the regions B1 and B2). It is a position separated by a distance of 40% or more and less than 50% of L1. Thereby, the chromaticity difference which arises in the boundary part between area | region A1, A2 can be almost eliminated.
 また、LEDバー43,44の間の青色ピーク波長の差が7.5nm以上で色度の境界が見えていたのを、10nm以下の差であれば色度の境界が見えない程度に波長差の制限を緩和することができる。これにより、青色ピーク波長が451.5nmであるLEDバー43と、青色ピーク波長が441.5nmであるLEDバー44とを組み合わせることができる。 In addition, the difference in blue peak wavelength between the LED bars 43 and 44 was 7.5 nm or more, and the chromaticity boundary was seen. If the difference was 10 nm or less, the wavelength difference was such that the chromaticity boundary could not be seen. Can be relaxed. Thereby, the LED bar 43 whose blue peak wavelength is 451.5 nm and the LED bar 44 whose blue peak wavelength is 441.5 nm can be combined.
 さらに、次に説明するように、領域B1,B2の間の境界部分に生じる色度差も目立たなくすることができる。 Further, as will be described below, the chromaticity difference generated at the boundary between the regions B1 and B2 can be made inconspicuous.
 LEDバー43,44からそれぞれ出射されて液晶パネル4から出力される光の色度が一致する位置を、上記のように液晶パネル4の中央部分からLEDバー43,44寄りにシフトさせると、中央部分でのそれぞれの光の色度がずれるので、色度差が生じる。しかしながら、その色度差が、色度x,yについてそれぞれ3/1000以下であれば、人間には当該色度差による色度の境界が認識されにくい。逆に、上記の色度差が、色度x,yについてそれぞれ3/1000より大きければ、人間には当該色度差による色度の境界が認識されやすくなる。 When the positions where the chromaticities of the light beams emitted from the LED bars 43 and 44 and output from the liquid crystal panel 4 match are shifted from the central portion of the liquid crystal panel 4 toward the LED bars 43 and 44 as described above, Since the chromaticity of each light in the portion is shifted, a chromaticity difference is generated. However, if the chromaticity difference is 3/1000 or less for chromaticity x and y, respectively, it is difficult for humans to recognize the chromaticity boundary due to the chromaticity difference. Conversely, if the above chromaticity difference is greater than 3/1000 for each of the chromaticity x and y, humans can easily recognize the chromaticity boundary due to the chromaticity difference.
 また、上記のように色度が一致する位置をLEDバー43,44寄りにシフトさせることにより、LEDバー43,44から遠い領域C1,C2の間では色度差が大きくなる。しかしながら、領域C1,C2では、LEDバー43,44からの光が、導光板6内を進んでいくうちに広がっていくことにより互いに混ざり合う(混色する)。このため、領域C1,C2の境界部分で色度の境界が見えることはないので、領域C1,C2の間における色むらは目立たない。 Further, by shifting the position where the chromaticity matches as described above toward the LED bars 43 and 44, the chromaticity difference increases between the regions C1 and C2 far from the LED bars 43 and 44. However, in the areas C1 and C2, the light from the LED bars 43 and 44 mixes (mixes colors) with each other by spreading while traveling through the light guide plate 6. For this reason, the chromaticity boundary is not visible at the boundary between the regions C1 and C2, so that the color unevenness between the regions C1 and C2 is not noticeable.
 なお、液晶表示装置41の画面サイズが大型であるほどLEDバー43,44と同種のLEDバーを多く設ける必要がある。したがって、LEDバーの近い領域で透過光の色度の境界を上記のようにして目立たなくすることは、画面サイズの大型化に伴う画質向上を図る上で有効である。 In addition, it is necessary to provide many LED bars of the same type as the LED bars 43 and 44 as the screen size of the liquid crystal display device 41 is larger. Therefore, making the chromaticity boundary of transmitted light inconspicuous in the region near the LED bar as described above is effective in improving image quality as the screen size increases.
 〔色度補正〕
 上記のように色度が一致する位置をLEDバー43,44寄りにシフトさせるには、前述の係数算出部26が、補正色度(x1,y1)を得るために用いる係数α,βを、色度が中央部分で一致するときの値よりも小さい値に設定する。例えば、係数算出部26は、色度が中央部分で一致するときの係数αm,βmに対し、色度が一致する位置をシフトさせたときの係数αn,βnは、次のように変更する。
(Chromaticity correction)
In order to shift the position where the chromaticity matches as described above toward the LED bars 43 and 44, the coefficients α and β used by the coefficient calculation unit 26 to obtain the corrected chromaticity (x1, y1) are Set to a value smaller than the value when the chromaticity matches at the center. For example, the coefficient calculation unit 26 changes the coefficients αn and βn when shifting the position where the chromaticity matches with respect to the coefficients αm and βm when the chromaticity matches in the central portion as follows.
 αn=αm×0.75
 βn=βm×0.75
 補正色度算出部27が、これらの係数αn,βnを用いて演算した結果、得られた補正色度(x1,y1)は、中央部分で色度が一致するときの値より若干大きくなる。それゆえ、図19の(a)および(b)に示すように、距離“5”の位置(中央部分)よりLEDバー43,44寄りの距離“4”の位置で放射される2系統の光の色度x,yを一致させることができる。
αn = αm × 0.75
βn = βm × 0.75
As a result of the correction chromaticity calculation unit 27 calculating using these coefficients αn and βn, the obtained correction chromaticity (x1, y1) is slightly larger than the value when the chromaticity matches in the central portion. Therefore, as shown in FIGS. 19 (a) and 19 (b), two systems of light radiated at a distance “4” closer to the LED bars 43 and 44 than a position “center” (distance “5”). The chromaticities x and y can be matched.
 [付記事項]
 本実施形態において、LEDバー43,44は、導光板6の下側(下辺側)配置されているが、それに限らず、液晶パネル4の左右の一方側や上側に配置されてもよい。また、導光板6の対向する2辺側にLEDバーを設けてもよい。これにより、両辺側でLEDバー付近の色度の境界を目立たなくすることができるので、導光板6の一辺側にLEDバーを設ける構成よりも好ましい。
[Additional Notes]
In the present embodiment, the LED bars 43 and 44 are disposed on the lower side (lower side) of the light guide plate 6, but are not limited thereto, and may be disposed on one of the left and right sides or the upper side of the liquid crystal panel 4. Further, LED bars may be provided on the two opposite sides of the light guide plate 6. Thereby, the boundary of chromaticity near the LED bar can be made inconspicuous on both sides, which is preferable to the configuration in which the LED bar is provided on one side of the light guide plate 6.
 また、液晶表示装置41において、特に下記の条件において良好な結果を生じる。 Further, the liquid crystal display device 41 produces good results particularly under the following conditions.
 LED10のサイズ:4~8mm×1~4mm
 LEDバー43,44におけるLED10のピッチ:0.5~2.0cm
 LEDバー43,44の長さ:30~100cm(液晶表示装置41の画面サイズ31~100インチに対して)
 なお、本発明は、上記の条件に限定されないのは勿論である。
LED10 size: 4-8mm × 1-4mm
The pitch of the LEDs 10 in the LED bars 43 and 44: 0.5 to 2.0 cm
LED bars 43 and 44 length: 30 to 100 cm (for screen size 31 to 100 inches of liquid crystal display device 41)
Needless to say, the present invention is not limited to the above conditions.
 [まとめ]
 本発明の一態様に係るLED分類方法は、1次光を発するLED素子(LEDチップ12)と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体(LEDチップ16,17)とを組み合わせることにより前記1次光と前記2次光との合成光を発するLED(LED10)の前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置(液晶表示装置1,2,41)のバックライト(バックライト3,8,42)に用いられる対象として分類するLED分類方法であって、前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測工程(係数算出部26および補正色度算出部27または色度シミュレータ32)と、予測された色度に基づいて前記LEDを色度ランク分類する色度ランク分類工程(色度ランク分類部28)とを含んでいる。
[Summary]
An LED classification method according to an aspect of the present invention includes an LED element (LED chip 12) that emits primary light and a phosphor that emits secondary light having a longer wavelength than the primary light when excited by the primary light. If the chromaticity of the primary light of the LED (LED 10) that emits the combined light of the primary light and the secondary light by combining the LED chips 16, 17) is within a predetermined range, the LED is An LED classification method for classifying as an object to be used for a backlight ( backlight 3, 8, 42) of a liquid crystal display device (liquid crystal display device 1, 2, 41), wherein the primary light is provided in the liquid crystal display device A chromaticity prediction step (a coefficient calculation unit 26 and a corrected chromaticity calculation unit 27 or a chromaticity simulator 3) that predicts the chromaticity transmitted through the color filter in the liquid crystal panel for all the LEDs to be classified. ) And, and a chromaticity rank classification step of the LED chromaticity rank classification based on the predicted chromaticity (chromaticity rank classification section 28).
 また、本発明の一態様に係るLED分類装置(LED分類装置21)は、1次光を発するLED素子(LEDチップ12)と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体(LEDチップ16,17)とを組み合わせることにより前記1次光と前記2次光との合成光を発するLED(LED10)の前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置(液晶表示装置1,2,41)のバックライト(バックライト3,8,42)に用いられる対象として分類するLED分類装置であって、前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測手段(係数算出部26および補正色度算出部27または色度シミュレータ32)と、予測された色度に基づいて前記LEDを色度ランク分類する色度ランク分類手段(色度ランク分類部28)とを備えている。 In addition, the LED classification device (LED classification device 21) according to one aspect of the present invention has an LED element (LED chip 12) that emits primary light and is excited by the primary light and has a longer wavelength than the primary light. The chromaticity of the primary light of the LED (LED 10) that emits the combined light of the primary light and the secondary light by combining the phosphors (LED chips 16, 17) that emit secondary light is within a predetermined range. An LED classification device for classifying the LED as an object to be used for a backlight ( backlight 3, 8, 42) of a liquid crystal display device (liquid crystal display device 1, 2, 41). Chromaticity prediction means (coefficient calculation unit 26 and correction chromaticity calculation) that predicts the chromaticity of light transmitted through a color filter in a liquid crystal panel provided in the liquid crystal display device for the total number of LEDs to be classified. 27 or chromaticity simulator 32), and a chromaticity rank classification means for chromaticity rank classifying the LED based on the predicted chromaticity (chromaticity rank classification section 28).
 上記の構成では、色度予測工程または色度予測手段によって、1次光がカラーフィルタを透過したことを想定した色度が予測される。そして、色度ランク分類工程または色度ランク分類手段によって、LEDが予測された色度に基づいて色度ランク分類される。 In the above configuration, the chromaticity assuming that the primary light has passed through the color filter is predicted by the chromaticity prediction step or the chromaticity prediction means. Then, the chromaticity rank classification step or the chromaticity rank classification means classifies the LEDs based on the predicted chromaticity.
 このように予測された色度を用いて色度ランク分類することにより、カラーフィルタによる光の強度の変化分を予測して、より適切にLEDを色度ランク分類することができる。このような色度ランク分類に基づいて選別されたLEDを液晶表示装置におけるそれぞれのバックライトに実装することにより、バックライトからカラーフィルタを透過した光の輝度のばらつきを抑えることができる。 By performing the chromaticity rank classification using the chromaticity predicted in this way, it is possible to predict the amount of change in light intensity due to the color filter and more appropriately classify the LEDs into the chromaticity rank classification. By mounting the LEDs selected based on the chromaticity rank classification on each backlight in the liquid crystal display device, it is possible to suppress variation in luminance of light transmitted from the backlight through the color filter.
 前記LED分類方法において、前記色度予測工程は、前記1次光の前記カラーフィルタの透過による前記色度の補正値を分類対象となる前記LEDの全数について算出し、当該補正値に基づいて分類対象となる前記LEDの全数について前記色度を補正色度として補正する色度補正工程を含み、当該色度補正工程は、予め定められた基準波長を有する前記1次光が前記カラーフィルタを透過したときの基準色度と当該基準色度に対する前記色度の変化量とを算出し、前記基準波長からの前記1次光のピーク波長のシフト量に対する前記変化量の傾きを前記色度の補正値の係数として算出する係数算出工程(係数算出部26)と、前記補正値を前記ピーク波長と前記基準波長との差に前記係数を乗算することによって算出し、当該補正値を分類対象となる前記LEDの全数について得られた前記色度からそれぞれ減算することにより前記補正色度を算出する補正色度算出工程(補正色度算出部27)とを含んでいることが好ましい。 In the LED classification method, the chromaticity prediction step calculates a correction value of the chromaticity due to transmission of the primary light through the color filter for all the LEDs to be classified, and classifies based on the correction value. A chromaticity correction step of correcting the chromaticity as a correction chromaticity for the total number of the target LEDs, wherein the chromaticity correction step transmits the primary light having a predetermined reference wavelength through the color filter. The reference chromaticity at the time when the chromaticity is changed and the change amount of the chromaticity with respect to the reference chromaticity are calculated, and the inclination of the change amount relative to the shift amount of the peak wavelength of the primary light from the reference wavelength is corrected for the chromaticity A coefficient calculation step (coefficient calculation unit 26) that calculates the coefficient of the value; and the correction value is calculated by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient, and the correction value is divided. Preferably it contains a correction chromaticity calculating step of calculating the corrected chromaticity by subtracting from each of the chromaticity obtained on the LED of the total number of interest (correcting chroma calculating unit 27).
 また、前記LED分類装置において、前記色度予測手段は、前記1次光の前記カラーフィルタの透過による前記色度の補正値を分類対象となる前記LEDの全数について算出し、当該補正値に基づいて分類対象となる前記LEDの全数について前記色度を補正色度として補正する色度補正手段を有し、当該色度補正手段は、予め定められた基準波長を有する前記1次光が前記カラーフィルタを透過したときの基準色度と当該基準色度に対する前記色度の変化量とを算出し、前記基準波長からの前記1次光のピーク波長のシフト量に対する前記変化量の傾きを前記色度の補正値の係数として算出する係数算出手段(係数算出部26)と、前記補正値を前記ピーク波長と前記基準波長との差に前記係数を乗算することによって算出し、当該補正値を分類対象となる前記LEDの全数について得られた前記色度からそれぞれ減算することにより前記補正色度を算出する補正色度算出手段(補正色度算出部27)とを有していることが好ましい。 Further, in the LED classification device, the chromaticity prediction means calculates a correction value of the chromaticity due to transmission of the primary light through the color filter for the total number of LEDs to be classified, and based on the correction value. A chromaticity correction unit that corrects the chromaticity as a correction chromaticity for the total number of LEDs to be classified, and the chromaticity correction unit receives the primary light having a predetermined reference wavelength as the color. A reference chromaticity when passing through the filter and a change amount of the chromaticity with respect to the reference chromaticity are calculated, and an inclination of the change amount with respect to a shift amount of a peak wavelength of the primary light from the reference wavelength is calculated. A coefficient calculating means (coefficient calculating unit 26) that calculates the coefficient of the degree of correction value, and the correction value is calculated by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient; Correction chromaticity calculation means (correction chromaticity calculation unit 27) for calculating the correction chromaticity by subtracting from the chromaticity obtained for the total number of LEDs to be classified. preferable.
 上記の構成では、色度補正工程または色度補正手段によって、1次光がカラーフィルタを透過したことを想定した色度の補正値が、分類対象となるLEDの全数について算出され、この補正値に基づいて、分類対象となるLEDの全数について得られた色度が補正色度として補正される。また、補正値の係数が、係数算出工程または係数算出手段によって、カラーフィルタを透過したことを想定して得た、基準色度に対する色度の変化量の傾きに基づいて算出されるので、1次光のカラーフィルタの透過による色度の変化が補正値に反映される。そして、補正色度算出工程または補正色度算出手段によって、このようにして得られた補正値が色度から減算されることによって補正色度が算出される。 In the above configuration, the chromaticity correction value assuming that the primary light has passed through the color filter is calculated for the total number of LEDs to be classified by the chromaticity correction step or the chromaticity correction means, and this correction value Based on the above, the chromaticity obtained for the total number of LEDs to be classified is corrected as the corrected chromaticity. In addition, since the coefficient of the correction value is calculated based on the gradient of the amount of change in chromaticity with respect to the reference chromaticity obtained by the coefficient calculating step or the coefficient calculating means assuming that the color filter has been transmitted, 1 A change in chromaticity due to the transmission of the next light color filter is reflected in the correction value. Then, the correction chromaticity is calculated by subtracting the correction value thus obtained from the chromaticity by the correction chromaticity calculation step or the correction chromaticity calculation means.
 これにより、カラーフィルタによる色度の変化を容易に色度の補正に反映させることができる。 This makes it possible to easily reflect the change in chromaticity due to the color filter in the correction of chromaticity.
 前記LED分類方法は、前記係数算出工程において、前記バックライトが、複数のLEDを有し、隣接して設けられる複数の線状光源(LEDバー43,44)と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを含む前記液晶表示装置に対して、前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記係数を算出することが好ましい。 In the LED classification method, in the coefficient calculation step, the backlight includes a plurality of LEDs, and a plurality of linear light sources (LED bars 43 and 44) provided adjacent to each other and incident from at least one end side. With respect to the liquid crystal display device including a light guide plate that radiates light emitted from a linear light source in a planar manner to the liquid crystal panel, an end portion on the light incident side of the light guide plate and an end portion facing the end portion The coefficient is calculated so that the emitted light from each linear light source matches the chromaticity of the transmitted light that has passed through the liquid crystal panel through the light guide plate at a position closer to the light incident side than the central portion between It is preferable to do.
 また、前記LED分類装置において、前記係数算出手段は、前記バックライトが、複数の前記LEDを有し、隣接して設けられる複数の線状光源と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを含む前記液晶表示装置に対して、前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記係数を算出することが好ましい。 Further, in the LED classification device, the coefficient calculating means includes a plurality of linear light sources provided adjacent to each other, the backlight having the plurality of LEDs, and the linear light source incident at least from one end side. For the liquid crystal display device including the light guide plate that radiates the emitted light in a planar shape to the liquid crystal panel, between the end on the light incident side of the light guide plate and the end facing the end. It is preferable to calculate the coefficient so that the emitted light from each linear light source matches the chromaticity of the transmitted light transmitted through the liquid crystal panel through the light guide plate at a position closer to the light incident side than the central portion. .
 上記の構成では、上記のように算出された係数を用いて算出された補正色度に基づいてLEDが色度ランク分類される。このLEDを用いて線状光源を作製することにより、中央部分よりも光入射側に近い位置で、各線状光源からの出射光が導光板を経て液晶パネルを透過した透過光の色度が一致する。これにより、前述のように、線状光源に近い領域での色度の境界を目立たなくすることができる。 In the above configuration, the LEDs are classified into chromaticity ranks based on the corrected chromaticity calculated using the coefficient calculated as described above. By producing a linear light source using this LED, the chromaticity of the transmitted light that is transmitted from the linear light source through the light guide plate through the liquid crystal panel is the same at a position closer to the light incident side than the central portion. To do. Thereby, as described above, the boundary of chromaticity in the region close to the linear light source can be made inconspicuous.
 また、前記係数算出工程および前記係数算出手段は、前記中央部分での前記透過光の色度差が3/1000以下であるように前記係数を算出することが好ましい。 Further, it is preferable that the coefficient calculating step and the coefficient calculating means calculate the coefficient so that a chromaticity difference of the transmitted light at the central portion is 3/1000 or less.
 上記の構成では、中央部分での透過光の色度差が3/1000以下であれば、人間にはその色度差による色度の境界が認識されにくい。これにより、中央部分でも色度の境界を目立たなくすることができる。 In the above configuration, if the chromaticity difference of the transmitted light in the central portion is 3/1000 or less, it is difficult for humans to recognize the chromaticity boundary due to the chromaticity difference. As a result, the chromaticity boundary can be made inconspicuous even in the central portion.
 前記LED分類方法または前記LED分類装置において、前記1次光が青色光であることが好ましい。 In the LED classification method or the LED classification device, it is preferable that the primary light is blue light.
 前述のように、青色光については、LED間でのピーク波長のずれによって、カラーフィルタを透過した後の光強度がばらついて表示色に影響を及ぼす。これに対し、前述のようにして、カラーフィルタの透過による変化を予測して色度を補正することにより、カラーフィルタによる色度分布の変化に基づいて、LEDを適正に色度ランク分類することができる。 As described above, with respect to blue light, due to the shift in peak wavelength between LEDs, the light intensity after passing through the color filter varies and affects the display color. On the other hand, as described above, the chromaticity rank is appropriately classified based on the change in the chromaticity distribution by the color filter by correcting the chromaticity by predicting the change due to the transmission of the color filter as described above. Can do.
 本発明の一態様に係るLED分類プログラムは、コンピュータを前記LED分類装置における各手段として機能させるためのプログラムである。また、本発明の一態様に係る記録媒体は、前記LED分類プログラムを記録したコンピュータ読み取り可能な記録媒体である。これらのLED分類プログラムおよび記録媒体も本実施形態の技術的範囲に含まれる。 The LED classification program according to an aspect of the present invention is a program for causing a computer to function as each unit in the LED classification apparatus. A recording medium according to an aspect of the present invention is a computer-readable recording medium that records the LED classification program. These LED classification programs and recording media are also included in the technical scope of the present embodiment.
 本発明の一態様に係る液晶表示装置は、液晶パネルと、複数の前記LEDを有し、隣接して設けられる複数の線状光源と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを備え、前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記線状光源に実装される前記LEDが選別されている。
囲に含まれる。
A liquid crystal display device according to one embodiment of the present invention includes a liquid crystal panel, a plurality of linear light sources that are provided adjacent to each other, and light emitted from the linear light source that is incident at least from one end side. A light guide plate that radiates the liquid crystal panel in a planar shape, and a position closer to the light incident side than a central portion between an end on the light incident side of the light guide plate and an end facing the end Thus, the LEDs mounted on the linear light source are selected so that the emitted light from each linear light source matches the chromaticity of the transmitted light transmitted through the liquid crystal panel through the light guide plate.
Included in the enclosure.
 この構成では、液晶表示装置が上記のように選別されたLEDを用いて線状光源を備えることにより、中央部分よりも光入射側に近い位置で、各線状光源からの出射光が導光板を経て液晶パネルを透過した透過光の色度が一致する。これにより、前述のように、線状光源に近い領域での色度の境界を目立たなくすることができる。 In this configuration, since the liquid crystal display device includes the linear light source using the LEDs selected as described above, the light emitted from each linear light source passes through the light guide plate at a position closer to the light incident side than the central portion. The chromaticity of the transmitted light that has passed through the liquid crystal panel is matched. Thereby, as described above, the boundary of chromaticity in the region close to the linear light source can be made inconspicuous.
 上記液晶表示装置において、前記色度が一致する位置は、前記光入射側の端部から、前記光入射側の端部と前記中央部分との間の距離の40%以上50%未満の距離を隔てた位置であることが好ましい。これにより、線状光源に近い領域での色度差をほとんどなくすことができる。 In the liquid crystal display device, the position where the chromaticity matches is a distance of 40% or more and less than 50% of the distance between the light incident side end and the central portion from the light incident side end. It is preferable that it is a separated position. Thereby, the chromaticity difference in the region close to the linear light source can be almost eliminated.
 また、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Embodiments are also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明に係るLED分類方法は、カラーフィルタを透過した状態の輝度変化を予測してLEDの色度を補正するので、バックライトにLEDを用いる液晶表示装置に好適に利用できる。 The LED classification method according to the present invention corrects the chromaticity of the LED by predicting the luminance change in the state of being transmitted through the color filter, and thus can be suitably used for a liquid crystal display device using an LED as a backlight.
  1  液晶表示装置
  2  液晶表示装置
  3  バックライト
  4  液晶パネル
  5  発光装置
  7  カラーフィルタ
  8  バックライト
 10  LED
 12  LEDチップ(LED素子)
 16  蛍光体
 17  蛍光体
 21  LED分類装置
 22  メモリ
 23  記憶部
 24  表示部
 25  演算処理部
 26  係数算出部(色度予測手段,色度補正手段,係数算出手段)
 27  補正色度算出部(色度予測手段,色度補正手段,補正色度算出手段)
 28  色度ランク分類部(色度ランク分類手段)
 31  LED特性測定装置
 32  色度シミュレータ(色度予測手段)
 41  液晶表示装置
 42  バックライト
 43  LEDバー(線状光源)
 44  LEDバー(線状光源)
 A1  領域
 A2  領域
 B1  領域
 B2  領域
 C1  領域
 C2  領域
 F   枠(所定の範囲)
 Sx0 定数
 Sy0 定数
 (x,y) 色度
 (x1,y1) 補正色度
 Δx,Δy 変化量
 (xd,yd) 出力色度
 α   係数
 β   係数
 αm  係数
 βm  係数
 αn  係数
 βn  係数
 λ0  基準波長
 λp  ピーク波長
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 2 Liquid crystal display device 3 Backlight 4 Liquid crystal panel 5 Light-emitting device 7 Color filter 8 Backlight 10 LED
12 LED chip (LED element)
16 phosphor 17 phosphor 21 LED classification device 22 memory 23 storage unit 24 display unit 25 arithmetic processing unit 26 coefficient calculation unit (chromaticity prediction means, chromaticity correction means, coefficient calculation means)
27 Correction chromaticity calculation unit (chromaticity prediction means, chromaticity correction means, corrected chromaticity calculation means)
28 Chromaticity rank classification part (chromaticity rank classification means)
31 LED characteristic measuring device 32 Chromaticity simulator (chromaticity prediction means)
41 Liquid crystal display device 42 Backlight 43 LED bar (Linear light source)
44 LED bar (linear light source)
A1 area A2 area B1 area B2 area C1 area C2 area F Frame (predetermined range)
Sx0 constant Sy0 constant (x, y) Chromaticity (x1, y1) Correction chromaticity Δx, Δy Change amount (xd, yd) Output chromaticity α coefficient β coefficient αm coefficient βm coefficient αn coefficient βn coefficient λ0 reference wavelength λp peak wavelength

Claims (14)

  1.  1次光を発するLED素子と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体とを組み合わせることにより前記1次光と前記2次光との合成光を発するLEDの前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置のバックライトに用いられる対象として分類するLED分類方法であって、
     前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測工程と、
     予測された色度に基づいて前記LEDを色度ランク分類する色度ランク分類工程とを含んでいることを特徴とするLED分類方法。
    A combined light of the primary light and the secondary light by combining an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light. If the chromaticity of the primary light of the LED that emits light is within a predetermined range, the LED is classified as an object to be used for a backlight of a liquid crystal display device,
    A chromaticity prediction step of predicting the chromaticity of the primary light transmitted through a color filter in a liquid crystal panel provided in the liquid crystal display device with respect to the total number of LEDs to be classified;
    And a chromaticity rank classification step of classifying the LED according to a predicted chromaticity to a chromaticity rank classification.
  2.  前記色度予測工程は、
     前記1次光の前記カラーフィルタの透過による前記色度の補正値を分類対象となる前記LEDの全数について算出し、当該補正値に基づいて分類対象となる前記LEDの全数について前記色度を補正色度として補正する色度補正工程を含み、
     当該色度補正工程は、
     予め定められた基準波長を有する前記1次光が前記カラーフィルタを透過したときの基準色度と当該基準色度に対する前記色度の変化量とを算出し、前記基準波長からの前記1次光のピーク波長のシフト量に対する前記変化量の傾きを前記色度の補正値の係数として算出する係数算出工程と、
     前記補正値を前記ピーク波長と前記基準波長との差に前記係数を乗算することによって算出し、当該補正値を分類対象となる前記LEDの全数について得られた前記色度からそれぞれ減算することにより前記補正色度を算出する補正色度算出工程とを含んでいることを特徴とする請求項1に記載のLED分類方法。
    The chromaticity prediction step includes
    The correction value of the chromaticity due to the transmission of the primary light through the color filter is calculated for the total number of the LEDs to be classified, and the chromaticity is corrected for the total number of the LEDs to be classified based on the correction value. Including a chromaticity correction step of correcting as chromaticity,
    The chromaticity correction step is
    A reference chromaticity when the primary light having a predetermined reference wavelength passes through the color filter and a change amount of the chromaticity with respect to the reference chromaticity are calculated, and the primary light from the reference wavelength is calculated. A coefficient calculating step of calculating a slope of the change amount with respect to the shift amount of the peak wavelength of the chromaticity as a coefficient of the correction value;
    By calculating the correction value by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient, and subtracting the correction value from the chromaticity obtained for the total number of LEDs to be classified, respectively. The LED classification method according to claim 1, further comprising a corrected chromaticity calculation step of calculating the corrected chromaticity.
  3.  前記係数算出工程において、
     前記バックライトが、複数の前記LEDを有し、隣接して設けられる複数の線状光源と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを含む前記液晶表示装置に対して、
     前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記係数を算出することを特徴とする請求項2に記載のLED分類方法。
    In the coefficient calculation step,
    The backlight includes a plurality of the LEDs, and radiates light from the plurality of linear light sources provided adjacent to each other and the linear light source incident from at least one end to the liquid crystal panel in a planar shape. For the liquid crystal display device including a light guide plate,
    In the light guide plate, light emitted from each linear light source passes through the light guide plate at a position closer to the light incident side than the central portion between the end on the light incident side and the end facing the end. 3. The LED classification method according to claim 2, wherein the coefficient is calculated so that chromaticities of transmitted light transmitted through the panel match.
  4.  前記係数算出工程において、
     前記中央部分での前記透過光の色度差が3/1000以下であるように前記係数を算出することを特徴とする請求項3に記載のLED分類方法。
    In the coefficient calculation step,
    The LED classification method according to claim 3, wherein the coefficient is calculated so that a chromaticity difference of the transmitted light in the central portion is 3/1000 or less.
  5.  前記1次光が青色光であることを特徴とする請求項1から4までのいずれか1項に記載のLED分類方法。 5. The LED classification method according to any one of claims 1 to 4, wherein the primary light is blue light.
  6.  1次光を発するLED素子と前記1次光によって励起して前記1次光よりも長波長の2次光を発する蛍光体とを組み合わせることにより前記1次光と前記2次光との合成光を発するLEDの前記1次光の色度が所定の範囲内にあれば、当該LEDを液晶表示装置のバックライトに用いられる対象として分類するLED分類装置であって、
     前記1次光が前記液晶表示装置に設けられる液晶パネルにおけるカラーフィルタを透過した色度を分類対象となる前記LEDの全数について予測する色度予測手段と、
     予測された補正色度に基づいて前記LEDを色度ランク分類する色度ランク分類手段とを備えていることを特徴とするLED分類装置。
    A combined light of the primary light and the secondary light by combining an LED element that emits primary light and a phosphor that is excited by the primary light and emits secondary light having a longer wavelength than the primary light. If the chromaticity of the primary light of the LED that emits light is within a predetermined range, the LED classification device classifies the LED as an object used for a backlight of a liquid crystal display device,
    Chromaticity prediction means for predicting the chromaticity of the primary light transmitted through a color filter in a liquid crystal panel provided in the liquid crystal display device with respect to the total number of LEDs to be classified;
    An LED classification apparatus comprising: a chromaticity rank classification unit that classifies the LEDs according to a predicted corrected chromaticity.
  7.  前記色度予測手段は、
     前記1次光の前記カラーフィルタの透過による前記色度の補正値を分類対象となる前記LEDの全数について算出し、当該補正値に基づいて分類対象となる前記LEDの全数について前記色度を補正色度として補正する色度補正手段を有し、
     当該色度補正手段は、
     予め定められた基準波長を有する前記1次光が前記カラーフィルタを透過したときの基準色度と当該基準色度に対する前記色度の変化量とを算出し、前記基準波長からの前記1次光のピーク波長のシフト量に対する前記変化量の傾きを前記色度の補正値の係数として算出する係数算出手段と、
     前記補正値を前記ピーク波長と前記基準波長との差に前記係数を乗算することによって算出し、当該補正値を分類対象となる前記LEDの全数について得られた前記色度からそれぞれ減算することにより前記補正色度を算出する補正色度算出手段とを有していることを特徴とする請求項6に記載のLED分類装置。
    The chromaticity prediction means includes
    The correction value of the chromaticity due to the transmission of the primary light through the color filter is calculated for the total number of the LEDs to be classified, and the chromaticity is corrected for the total number of the LEDs to be classified based on the correction value. Chromaticity correction means for correcting as chromaticity,
    The chromaticity correction means is
    A reference chromaticity when the primary light having a predetermined reference wavelength passes through the color filter and a change amount of the chromaticity with respect to the reference chromaticity are calculated, and the primary light from the reference wavelength is calculated. Coefficient calculation means for calculating the slope of the change amount with respect to the shift amount of the peak wavelength as a coefficient of the chromaticity correction value;
    By calculating the correction value by multiplying the difference between the peak wavelength and the reference wavelength by the coefficient, and subtracting the correction value from the chromaticity obtained for the total number of LEDs to be classified, respectively. The LED classification device according to claim 6, further comprising a correction chromaticity calculation unit that calculates the correction chromaticity.
  8.  前記係数算出手段は、
     前記バックライトが、複数の前記LEDを有し、隣接して設けられる複数の線状光源と、少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを含む前記液晶表示装置に対して、
     前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記係数を算出することを特徴とする請求項7に記載のLED分類装置。
    The coefficient calculating means includes
    The backlight includes a plurality of the LEDs, and radiates light from the plurality of linear light sources provided adjacent to each other and the linear light source incident from at least one end to the liquid crystal panel in a planar shape. For the liquid crystal display device including a light guide plate,
    In the light guide plate, light emitted from each linear light source passes through the light guide plate at a position closer to the light incident side than the central portion between the end portion on the light incident side and the end portion facing the end portion. The LED classification device according to claim 7, wherein the coefficient is calculated so that chromaticities of transmitted light transmitted through the panel match.
  9.  前記係数算出手段は、
     前記中央部分での前記透過光の色度差が3/1000以下であるように前記係数を算出することを特徴とする請求項8に記載のLED分類装置。
    The coefficient calculating means includes
    The LED classification device according to claim 8, wherein the coefficient is calculated so that a chromaticity difference of the transmitted light in the central portion is 3/1000 or less.
  10.  前記1次光が青色光であることを特徴とする請求項6から9までのいずれか1項に記載のLED分類装置。 The LED classification device according to any one of claims 6 to 9, wherein the primary light is blue light.
  11.  コンピュータを請求項6から10までのいずれか1項に記載のLED分類装置における各手段として機能させることを特徴とするLED分類プログラム。 An LED classification program that causes a computer to function as each means in the LED classification device according to any one of claims 6 to 10.
  12.  請求項11に記載のLED分類プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the LED classification program according to claim 11 is recorded.
  13.  液晶パネルと、
     複数のLEDを有し、隣接して設けられる複数の線状光源と、
     少なくとも一端側から入射する当該線状光源からの出射光を、前記液晶パネルに面状に放射する導光板とを備え、
     前記導光板における光入射側の端部と当該端部と対向する端部との間の中央部分よりも光入射側に近い位置で、各線状光源からの出射光が前記導光板を経て前記液晶パネルを透過した透過光の色度が一致するように、前記線状光源に実装される前記LEDが選別されていることを特徴とする液晶表示装置。
    LCD panel,
    A plurality of linear light sources having a plurality of LEDs and provided adjacent to each other;
    A light guide plate that emits the light emitted from the linear light source incident from at least one end side in a plane to the liquid crystal panel;
    In the light guide plate, light emitted from each linear light source passes through the light guide plate at a position closer to the light incident side than the central portion between the end on the light incident side and the end facing the end. The liquid crystal display device, wherein the LEDs mounted on the linear light source are selected so that chromaticities of transmitted light transmitted through the panel match.
  14.  前記色度が一致する位置は、前記光入射側の端部から、前記光入射側の端部と前記中央部分との間の距離の40%以上50%未満の距離を隔てた位置であることを特徴とする請求項13に記載の液晶表示装置。 The position where the chromaticity matches is a position separated from the end on the light incident side by a distance of 40% or more and less than 50% of the distance between the end on the light incident side and the central portion. The liquid crystal display device according to claim 13.
PCT/JP2013/077382 2012-01-31 2013-10-08 Led classification method, led classification device, led classification program, recording medium, and liquid-crystal display device WO2014061513A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380053821.5A CN104718631A (en) 2012-10-15 2013-10-08 LED classification method, LED classification device, LED classification program, recording medium, and liquid-crystal display device
US14/435,334 US20150268408A1 (en) 2012-01-31 2013-10-08 Led classification method, led classification device, recording medium, and liquid-crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228160 2012-10-15
JP2012228160A JP6207826B2 (en) 2012-01-31 2012-10-15 LED classification method, LED classification apparatus, LED classification program, and recording medium

Publications (1)

Publication Number Publication Date
WO2014061513A1 true WO2014061513A1 (en) 2014-04-24

Family

ID=50488943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077382 WO2014061513A1 (en) 2012-01-31 2013-10-08 Led classification method, led classification device, led classification program, recording medium, and liquid-crystal display device

Country Status (2)

Country Link
CN (1) CN104718631A (en)
WO (1) WO2014061513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047852A (en) * 2018-09-20 2020-03-26 豊田合成株式会社 Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130398A1 (en) * 2017-12-25 2019-07-04 株式会社Fuji Production management apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103094A (en) * 1997-09-29 1999-04-13 Unitec:Kk Light-emitting diode measuring selecting device
JP2009158903A (en) * 2007-12-05 2009-07-16 Toshiba Lighting & Technology Corp Led light emitting unit and light-emitting device
JP2011504605A (en) * 2007-11-15 2011-02-10 クリー インコーポレイテッド Apparatus and method for selecting a light emitter for a transmissive display
JP2012160534A (en) * 2011-01-31 2012-08-23 Harison Toshiba Lighting Corp Led light source unit and lighting device
JP2012186277A (en) * 2011-03-04 2012-09-27 Mitsubishi Electric Corp Led selection apparatus, led selection program and method for selecting led

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081546B (en) * 2012-01-31 2016-12-21 夏普株式会社 LED sorting technique, LED sorter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103094A (en) * 1997-09-29 1999-04-13 Unitec:Kk Light-emitting diode measuring selecting device
JP2011504605A (en) * 2007-11-15 2011-02-10 クリー インコーポレイテッド Apparatus and method for selecting a light emitter for a transmissive display
JP2009158903A (en) * 2007-12-05 2009-07-16 Toshiba Lighting & Technology Corp Led light emitting unit and light-emitting device
JP2012160534A (en) * 2011-01-31 2012-08-23 Harison Toshiba Lighting Corp Led light source unit and lighting device
JP2012186277A (en) * 2011-03-04 2012-09-27 Mitsubishi Electric Corp Led selection apparatus, led selection program and method for selecting led

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047852A (en) * 2018-09-20 2020-03-26 豊田合成株式会社 Light-emitting device

Also Published As

Publication number Publication date
CN104718631A (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6207826B2 (en) LED classification method, LED classification apparatus, LED classification program, and recording medium
JP5799212B2 (en) Light emitting module, backlight device and display device
RU2443006C1 (en) Display device
US8109650B2 (en) Illuminant system using high color temperature light emitting diode and manufacture method thereof
US7901102B2 (en) Backlight unit and liquid crystal display apparatus employing the same
JP6151753B2 (en) Light emitting device and display device including the same
US20100321414A1 (en) Display device
JP2011119242A (en) Backlight device, light source for backlight device, and display device using the same
JP2005115372A (en) Lcd backlight using two-dimensional array of led
JP2007273998A (en) White led for backlight with phosphor plates
JP2008205133A (en) Backlight device and color temperature adjustment method
JP2007240858A (en) Lighting device, video display device, and video signal control method
TWI390496B (en) Method of controlling backlight module, backlight controller and display device using the same
TW201426114A (en) Liquid crystal display
JP2005056842A (en) Backlight assembly and liquid crystal display device equipped with the same
JP2007265716A (en) Planar light source and liquid crystal display device
JP2018092082A (en) Information processing device, display device and information processing method
WO2015027528A1 (en) Screening method suitable for fluorescent-powder optical film of backlight module, and backlight module
WO2014061513A1 (en) Led classification method, led classification device, led classification program, recording medium, and liquid-crystal display device
JP2007036041A (en) Light-emitting apparatus and optical apparatus
TWI580004B (en) Panel display device and backlighting method using the same
JP2007025285A (en) Back light for liquid crystal
US10976609B2 (en) Lighting device and liquid crystal display apparatus
US8212468B2 (en) Display apparatus
JP5426734B2 (en) LIGHTING DEVICE, VIDEO DISPLAY DEVICE, AND VIDEO SIGNAL CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14435334

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847534

Country of ref document: EP

Kind code of ref document: A1