Nothing Special   »   [go: up one dir, main page]

WO2014058290A1 - Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato - Google Patents

Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato Download PDF

Info

Publication number
WO2014058290A1
WO2014058290A1 PCT/MX2013/000127 MX2013000127W WO2014058290A1 WO 2014058290 A1 WO2014058290 A1 WO 2014058290A1 MX 2013000127 W MX2013000127 W MX 2013000127W WO 2014058290 A1 WO2014058290 A1 WO 2014058290A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
layer
substrate
solar control
depositing
Prior art date
Application number
PCT/MX2013/000127
Other languages
English (en)
French (fr)
Inventor
Mario MIKI YOSHIDA
Patricia AMÉZAGA MADRID
Pedro PIZÁ RUIZ
Wilber ANTÚNEZ FLORES
Oscar VEGA BECERRA
Sandra Viridiana FLORES ARÉVALO
Rosa Elena RAMIREZ GARCÍA
Zoulfia NAGAMEDIANOVA
Miguel Arroyo Ortega
Original Assignee
Vitro Vidrio Y Cristal, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitro Vidrio Y Cristal, S.A. De C.V. filed Critical Vitro Vidrio Y Cristal, S.A. De C.V.
Priority to BR112015008235A priority Critical patent/BR112015008235A2/pt
Priority to US14/435,252 priority patent/US10597324B2/en
Priority to EP13846160.3A priority patent/EP2915784A4/en
Publication of WO2014058290A1 publication Critical patent/WO2014058290A1/es
Priority to US16/802,743 priority patent/US11479502B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD

Definitions

  • the present invention relates to coatings with solar control properties deposited on architectural, automotive, monolithic or laminated glass; and to a method and system for depositing said coating by the aerosol-assisted chemical vapor deposition (AACVD) technique.
  • AACVD aerosol-assisted chemical vapor deposition
  • the glass used in buildings and vehicles protects us in general from the environment (rain, wind, noise, etc.), allowing more pleasant conditions inside.
  • common glass does not protect us from solar radiation, since it only absorbs part of the UV radiation, reflecting a total of about 7% and transmits a large part of the entire solar spectrum.
  • windshields (front) of greater area and more inclined (towards the horizontal) increasing considerably the amount of solar radiation that enters, reaching up to about 35% of the total heat that penetrates to the vehicle, which corresponds to -50% heat input only by the windshield.
  • Solar control refers to the ability to modify the amount of solar radiation transmitted or reflected, in the near ultraviolet (UV; 300 - 380 nm), visible (VIS; 380 - 780 nm) and infrared (IR; 780) spectral intervals. - 2500 nm).
  • UV near ultraviolet
  • VIS visible
  • IR infrared
  • VIS visible
  • IR infrared
  • the glass and its coating must have other properties, such as: high transmittance in the visible (> 70%), high mechanical resistance, chemical and weather resistance, must be able to undergo heat treatments (tempered , folded), it must have a neutral color without iridescence, low dispersion (haze) and low cost.
  • high transmittance in the visible (> 70%) high mechanical resistance
  • chemical and weather resistance must be able to undergo heat treatments (tempered , folded), it must have a neutral color without iridescence, low dispersion (haze) and low cost.
  • haze low dispersion
  • US Patent No. 5,242,560 Heat treatable sputter-coated glass of Guardian Industries Corp. discloses a sputtering coated glass that can be heat treated consisting of a layer of alloyed Ni with one or two layers of oxide Sn, and optionally an intermediate Al layer.
  • a glass substrate that reflects heat energy and transmits visible light which comprises a composed of a layer of metallic oxide (Ti0 2 , Ta 2 0 5 , W0 3 , Zr0 2 , Nb 2 0 5 , Th0 2 , Sn0 2 ) with an index greater than glass, in which microscopic particles of Pd or Metallic au.
  • the proposed method is similar to Sol-gel.
  • AACVD atomic layer deposition
  • This technique allows to obtain coatings with several advantages: a) controllable composition, even by changing the composition of a precursor solution during the deposition in order to obtain materials with a concentration gradient, b) with good adhesion, c) uniform and controllable thickness in a wide range, d) ease of i producing composite materials or multilayer, e) can be applied to deposit coatings on planar substrates or the inner or outer pipe, f) finally the properties of the materials obtained are comparable to those of materials deposited by other more sophisticated techniques, such as reactive sputtering, reactive evaporation, PLD, etc., which require expensive high vacuum systems, radio frequency sources, gas control, power lasers, etc.
  • the AACVD method is a physical-chemical hybrid process for obtaining coatings. It consists of producing a cloud of micrometric drops, from a solution made up of organometallic precursors or inorganic compounds, dissolved in a particular solvent for each type of compound (water, alcohol, acetone, acetylacetone, etc.).
  • the aerosol can be generated by pneumatic, electrostatic or ultrasonic methods.
  • the precursor solution spray must be transported to the deposit area by means of a carrier gas. In the deposit zone, there is the glass substrate, which is heated to a specific temperature depending on the material to be deposited, or the precursors used.
  • the deposit zone As the cloud approaches the substrate, it is warming up, initially evaporating the solvent, melting, evaporation or eventual sublimation, or thermal decomposition of the precursor compound, its diffusion towards the glass surface; where the process continues with the adsorption of the reactants, the chemical reaction, and their evacuation away from the surface.
  • the article discusses the influence of various synthesis conditions, such as: concentration of the precursor solution, substrate temperature, flow of entrainment gas, etc., on the rapidity of growth of the coating.
  • concentration of the precursor solution such as: concentration of the precursor solution, substrate temperature, flow of entrainment gas, etc.
  • the multilayer structure obtained due to the repetitive process used allows modulating the refractive index, modifying the reflection of the coating.
  • US Patent No. 7,011, 711 B2 presents a vertical system that uses the chemical vapor deposition method to manufacture a thin film on one or more flat substrates.
  • the system has a reactor that includes a vertical tube and a reaction chamber located inside the tube. He Flat substrate is placed at the end of the reaction chamber. The feeding of the gases and their exit is carried out vertically. Throughout the length of the tube, screen arrangements are arranged to direct the path of the reaction gases and for the evacuation of the gases produced after the reaction. In addition, heaters are connected to the vertical tube that allow controlling the temperature difference between the substrate and the reactor walls.
  • the present invention relates to a coating with solar control properties deposited on glass for architectural, automotive, monolithic or laminated use.
  • the coating is composed of several layers of different semiconductor metal oxides (Ti0 2 , ZnO, Zr0 2 , A10 x ), with different refractive index (n), and a layer of metal nanoparticles (Au, Ag).
  • the layer of metal nanoparticles increases the IR block.
  • the use of active metal-semiconductor junctions type n, above and below the nanoparticle layer, allows the injection of negative charges from the semiconductor to the metal (Schottky junction) protecting it from oxidation and also preventing its agglomeration, obtaining nanoparticles homogeneously deposited throughout the coating.
  • the component layers of the coating are superimposed in a pre-established order, such as: glass (VC) / diffusive barrier (BD) / dielectric 1 (DI) / semiconductor type n, adherent-protective (A) / metal nanoparticles (M) / semiconductor type n, protector (P) / dielectric 2 (D2) / mechanical resistance (R);
  • the thicknesses are selected so that the coating gives the glass the properties of solar control, especially a high near IR block (IRC) and a high transmittance in the VIS.
  • the number of layers of the The coating can vary with a minimum of three, consisting of two semiconductors type n, distributed below and above the layer of metal nanoparticles.
  • the method of aerosol-assisted chemical vapor deposition was used, in which precursor solutions consisting of a salt containing the element to be deposited are used, for example, titanyl acetylacetonate or aluminum acetylacetonate, and a appropriate solvent, such as methanol, ethanol, water or some other that completely dissolves the precursor salt.
  • a pneumatic, ultrasonic or electrostatic nebulizer converts the precursor solution into a cloud of micrometric droplets, which is carried by a carrier gas, usually air, to the surface of the glass that is at the reservoir temperature, between 100 and 600 ° C. The particular temperature required depends on the material to be deposited, that is to say the precursor used. The process is repeated successively with the different precursors to deposit all the layers of the coating.
  • AACVD aerosol-assisted chemical vapor deposition
  • a further objective of the present invention is to provide a coating with solar control properties and a method and apparatus for depositing said coating on glass substrates, wherein the coating is composed of active protective layers of type n semiconductors, deposited one by one. below and the other above the layer of metal nanoparticles.
  • Figure 1 shows the schematic diagram of a coating with solar control properties, composed of a substrate (1), 4 layers of metal oxides (2), (4), (5), (6) and a layer formed by nanoparticles evenly distributed metal (3).
  • FIG 2 shows the schematic diagram of a coating with solar control properties, composed of a substrate (7), six layers of metal oxides (8), (9) (10), (12) (13), (14) and a layer formed by uniformly distributed metal nanoparticles (11).
  • Figure 3 presents a diagram of the system used for depositing the different layers of the solar control coating of the present invention.
  • Figure 4 shows the cross section of a typical solar control coating, where the different component layers can be observed, in particular the uniform layer of metal nanoparticles surrounded, above and below, of the protective layer of the n-type semiconductor.
  • Figure 5 shows the spectra in percent transmittance (% T), reflectance (% R) and absorbance (% A) of a typical solar control coating, with the structure of example 2 (VC / Ti02 / A10 x / Ti0 2 / Nano-Au / Ti0 2 / A10 x / Ti0 2 ).
  • the position of the absorption peak in the IRC around 1000 nm is indicated by a vertical arrow.
  • Figure 6 shows the spectra in percent transmittance (% T), reflectance (% R) and absorbance (% A) of a typical solar control coating, with the structure of example 3 (VC / ZnO / Zr0 2 / AlO x / Ti0 2 / Nano- Ag / Ti0 2 / A10 x / Sn0 2 ) .
  • the position of the reflection peak around 800 nm is indicated by a vertical arrow.
  • the present invention describes coatings with solar control properties deposited on architectural, automotive, monolithic or laminated glass.
  • Solar control refers to the ability to modify the amount of solar radiation transmitted, reflected and absorbed, in the solar range between 300 and 2500 nm.
  • low transmittance in the UV and IRC intervals is pursued, while the transmittance in the VIS must be high (> 70%) to automotive applications or low in architectural applications.
  • the coating is composed of two or more layers of different semiconductor metal oxides (Ti0 2 , ZnO, Zr0 2 , Sn0 2 or A10 x ) and one or more layers of selected metal nanoparticles of Gold (Au), Silver (Ag), Platinum (Pt) and Palladium (Pd), evenly distributed over the entire surface of the coated substrate.
  • the solar control coating CS of the present invention is deposited on a surface of a glass substrate 1 by the technique of chemical aerosol assisted vapor deposition (AACVD).
  • the solar control coating CS is deposited on at least one of the surfaces of the substrate 1.
  • the term "solar control coating” refers to a coating that It comprises one or more layers or films that affect the solar properties of the coated article, but not limited to the amount of solar radiation, for example, visible, infrared, or ultraviolet radiation.
  • the CS solar control coating can block, absorb or filter selected portions of the solar spectrum, such as, IR, UV and / or visible spectrum.
  • FIG. 1 and 2 Examples of CS solar control structures are shown in Figures 1 and 2, which represent coatings of 5 and 7 layers, respectively.
  • the solar control coating CS is formed of 5 layers:
  • the substrate (1) is placed, on which the layer (2), composed of Ti0 2 or is deposited first ZnO, but mainly Ti0 2 . Its thickness must be between 10 and 70 nm.
  • This first layer also serves as a support for the metal nanoparticles (3) and additionally as an active protector, given its character of semiconductor type n, to prevent oxidation of nanoparticles, as well as, increase their adhesion.
  • the layer of metallic nanoparticles (3) is deposited so that the size of the nanoparticles is less than 30 nm, their distribution is uniform and covers a large part of the surface (> 80%).
  • the function of the metallic layer (3), including the Au and / or Ag metals, is to increase the IR block by absorption and / or reflection (see figures 5 and 6).
  • a second active protective layer (4), composed of Ti0 2 or ZnO, is deposited thereon, but mainly of Ti0 2 , whose thickness is similar to the first protective layer, that is between 10 and 70 nm; whose function is also to protect metal nanoparticles from oxidation.
  • the layer (5) corresponds to an oxide of Al (A10 x ); Its thickness should be between 10 - 150 nm.
  • the final layer (6) corresponds to a mechanically resistant material, for example Zr0 2 , Sn0 2 , Ti0 2 or a compound thereof, preferably including the most resistant material (Zr0 2 ).
  • FIG. 2 shows a glass substrate (7), on which the layer (8) is deposited, which corresponds to the diffusion barrier, that is to say Ti0 2 or ZnO of a thickness between 10 - 70 nm
  • the layer (9) corresponds to one or more dielectrics, for example Zr0 2 or A10 x , or both deposited sequentially, their thicknesses may be between 10-150 nm.
  • the support layer of the nanoparticles continues Metallic (10) that promotes the best adhesion of nanoparticles and also plays the role of active protector, given its character of semiconductor type n, to prevent oxidation of nanoparticles.
  • the layer of metal nanoparticles (11) is deposited so that the size of the nanoparticles is 8 to 30 nm, with a uniform distribution and covers a large part of the surface (> 80%).
  • the function of the metallic layer (11), including the Au and / or Ag metals, is to increase the IRC block, by absorption and / or reflection. This can be seen in Figure 5, where the spectra are shown in percent transmittance (% T), reflectance (% R) and absorbance (% A) of a typical solar control coating (structure of Example 2) where indicates by a vertical arrow the position of the absorption peak in the IRC.
  • the last dielectric layers are superimposed, whose function is mainly to increase the transmittance in the visible range. Therefore in Figure 2, the layer (13) corresponds to one or more dielectrics, for example AlO x , whose thickness is similar to that of the first AlO x layer, that is between 10-150 nm and can be added thereon another dielectric, such as Ti0 2 , whose thickness is between 10-120 nm.
  • the final layer (14) is abrasion resistant, for example Zr0 2 , Sn0 2 , Ti0 2 or a compound thereof, preferably including the most resistant material (Zr0 2 ).
  • Zr0 2 abrasion resistant
  • active metal-semiconductor junctions type n allows the injection of negative charges from the semiconductor to the metal (Schottky junction) protecting it from oxidation and also preventing its agglomeration; This allows to obtain uniform layers of metal nanoparticles homogeneously distributed over a large part of the intermediate surface of the solar-controlled coating.
  • the developed product has a high mechanical, thermal and chemical resistance, sufficient to withstand the manufacturing processes of tempered and / or laminated glass without presenting the changes that deteriorate the performance of solar control.
  • the coated products were subjected to several industrial tests to determine the possibility of tempering with fracture testing, rolling (Pummel tests and boiling under customer standards and ANSI / SAE Z26.1-1996) and chemical contact resistance of samples with solutions acidic
  • the coated glass successfully passed all these tests, confirming the feasibility of integrating the developed product into the manufacturing processes of tempered and laminated glass.
  • the aerosol-assisted CVD method is an economical, efficient and useful process for obtaining relatively thin coatings, maximum thicknesses of several micrometers. It consists of producing a cloud of micrometric drops, whose diameter is in the range of 1 to 20 ⁇ , from a solution consisting of organometallic precursors (acetates, acetylacetonates) or inorganic compounds (halides, nitrates), dissolved in a particular solvent for each type of compound (water, alcohol, acetone, acetylacetone, etc.).
  • the aerosol can be generated by pneumatic, electrostatic or ultrasonic methods.
  • ultrasonic nebulizers which generate droplets with dimensions of some micrometers and with a closed size distribution (FWHM ⁇ 10%).
  • the cloud of drops is produced by the vibrations (some MHz) of a piezoelectric crystal, whose ultrasonic waves are concentrated on the surface of the solution, which by cavitation generates the cloud of micrometric drops.
  • the size of the drop depends mainly on the frequency of the piezoelectric (in inverse relationship), on the surface tension and density of the solution.
  • the droplet size and essentially its size distribution decisively influence the conditions (substrate temperature, carrier gas flow) of the tank and the quality of the material obtained.
  • a very large drop size distribution prevents the optimization of the synthesis conditions, because a large drop needs conditions different from those of a small drop; resulting in a poorly homogeneous and poor quality coating.
  • the aerosol of the precursor solution must be transported to the deposit area by means of a carrier gas.
  • the deposit zone there is the glass substrate, which is heated to a specific temperature depending on the material to be deposited.
  • the substrate temperature is the fundamental parameter that controls the deposit of the material.
  • the optimum temperature of the process depends on the precursors used, consequently of the material to be deposited, however in a general way We can say that these are relatively low, between 373 K (100 ° C) and 873 K (600 ° C).
  • the growth of the film depends on: a) the process of transporting the reactant (s) to the immediate vicinity of the surface of the substrate; where as the cloud approaches the substrate it warms up, initially evaporating the solvent, melting, evaporation or eventual sublimation, or thermal decomposition of the precursor compound, and subsequently diffusing it towards the surface, b) by kinetic processes on the surface of the substrate, where the adsorption of the reactants, their diffusion and confluence on the surface of the substrate, the chemical reaction, the diffusion and desorption outside the surface of the products of the chemical reaction and their evacuation away from the surface are successively necessary, to avoid contamination of deposited material
  • FIG. 3 presents a schematic diagram of the system used in the process of the present invention.
  • the system consists of the following parts:
  • a heating plate or chamber (23) that allows the temperature of the glass substrate to be raised to the deposit temperature between 100 and 600 ° C.
  • the heating system consists of a temperature control (not shown in the figure) that allows it to be kept constant throughout the entire deposition process. In addition, the heating must be uniform over the entire surface of the glass.
  • a nebulizer (19) that can be of the pneumatic, electrostatic or ultrasonic type.
  • the nozzle translation system (21) allows the aerosol of the precursor solution to be distributed evenly over the entire surface of the substrate; in order to obtain uniform coatings.
  • the nozzle (20) is mounted on the nozzle translation system (21), with controlled movement (0.1-5 cm.) That allows the aerosol of the precursor solution to be distributed evenly over the entire surface of the substrate, in order to obtain uniform coatings.
  • Base T 0 2 and / or compound with oxides of: Al, Zn, Zr.
  • the precursors are mainly organometallic salts of the elements of interest and as solvent a suitable one was used for each salt, preferably they were aqueous or alcoholic solutions for their advantageous characteristics for spraying (methanol, ethanol, tri-distilled water), the concentrations that were They handled were from 0.001 to 0.2 mol / dm ⁇
  • the precursors for the introduction of dopants were also organometallic salts.
  • the concentration of the dopant will vary from 1% atomic to the limit of solubility of the dopant with respect to the base material, it can reach up to 10-40% atomic.
  • the complete dissolution of the precursor used must be ensured by means of adequate agitation, heating and / or ultrasound.
  • the synthesis begins with the preparation of the precursor solution containing an organic or inorganic salt which contains the element of interest, for example a Chloride, Nitrate, Acetate or Acetylacetonate, tin tetrachloride, zinc nitrate, zinc acetate, aluminum acetylacetonate, zirconium acetylacetonate; and an appropriate solvent, such as methanol, ethanol, acetone, water or a mixture thereof.
  • concentration of the solution is in the range of 0.001 to 1.0 mol.dm "3 .
  • the substrate (22) is attached to the heating plate (23).
  • the tank temperature is set between 100 and 600 ° C, and the substrate heating system (22) is turned on to stabilize its temperature.
  • the rest of the parts of the AACVD system are coupled: nebulizer (19) and nozzle (20).
  • the entrainment gas (16) is connected. It is important that the couplings are airtight, to avoid aerosol leaks.
  • the speed of displacement of the nozzle (20) is set between 0.1 to 5 cm / min, which allows varying the thicknesses of the coatings to be deposited. Its total displacement length is also fixed, depending on the portion of the substrate to be covered.
  • the gas extraction system (24) is also switched on to stabilize the temperature throughout the system.
  • the introduction of the entrainment gas (which can be air but which depending on the coating can be used argon, nitrogen or other similar gas).
  • the flow is set between 1 and 10 L min "1.
  • the particular value of the flow of the entrainment gas and the deposit temperature depends on the material to be deposited.
  • the precursor solution is introduced into the nebulizer (19). If necessary for long-term deposits, a greater amount of solution can be added during the deposit, by means of a peristaltic pump (15). In the tests performed, a commercial ultrasonic nebulizer (19) was used, which operates at 2.4 MHz high frequency.
  • the process continues by lighting the nebulizer (19), generating the aerosol cloud of the precursor solution; At the same time, displacement of the nozzle (20) is initiated by means of the nozzle translation system (21). The generated cloud enters the nozzle (21). In this, the mixture formed by the aerosol of the precursor solution and the entrainment gas raises its temperature between 50 and 150 ° C; This preheating, to a temperature lower than the synthesis temperature, ensures that the precursor reaches the surface of the substrate (22) in the reaction zone at the temperature required for thermal decomposition and the coating deposit is carried out under conditions optimal.
  • the optical properties in the solar range of this coating are summarized in the following table.
  • the transmittances in the ultraviolet (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) and visible (VIS 380 - 780 nm) intervals are presented.
  • UV 300 - 380 nm The ultraviolet (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) and visible (VIS 380 - 780 nm) ranges of this coating are:
  • Figure 5 shows the spectra in percent transmittance (% T), reflectance (% R) and absorbance (% A) of a typical solar control coating, with the structure of example 2 (VC / Ti0 2 / A10 x / Ti0 2 Nano-Au / Ti0 2 / A10 x / Ti0 2 ).
  • the position of the absorption peak in the IRC around 1000 nm is indicated by a vertical arrow.
  • Figure 4 shows the cross section of a typical solar control coating, with a structure similar to that of example 2, where the glass substrate is represented by the number 25; a first layer (26) that acts as an anti-diffusion barrier (ZnO, Zr0 2 ); a second layer (27) of a first dielectric ( ⁇ , Ti0 2 , Zr0 2 ); A third layer 28 of an adherent-protective type n semiconductor (ZnO, Ti0 2 ); a fourth layer (29) of metal nanoparticles (Ag, Au, Pt, Pd); a fifth layer (30) of a semiconductor type n, protector (ZnO, Ti0 2 ); a sixth layer (31) of a second dielectric of A10 x , Ti0 2 or Zr0 2 ; and, seventh layer of materials to increase the mechanical strength selected from Sn0 2 or Zr0 2 .
  • the different component layers can be observed, in particular the uniform layer of metal nanoparticles surrounded, above and below, by the protective layer of the semiconductor type
  • UV 300 - 380 nm The ultraviolet (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) and visible (VIS 380 - 780 nm) ranges of this coating are:
  • Figure 6 shows the spectra in percent transmittance (% T), reflectance (% R) and absorbance (% A) of a typical solar control coating, with the structure of example 3 (VC / ZnO / Zr0 2 / A10 x / Ti0 2 / Nano- Ag / Ti0 2 / A10 x / Sn0 2 ) .
  • the position of the reflection peak around 800 nm is indicated by a vertical arrow.
  • the coating applied on the 4mm clear glass was subjected to the tempering and bending process in an industrial tempering furnace in the maximum temperature range of 680-700 ° C and an abrupt cooling by ambient temperature air, without presenting changes in visual aspect, or solar control performance. Due to the tempering process in the samples, surface compression stresses (8,300 to 10,100 lb / in 2 ) and tension in center of the thickness of the sample (1, 200 to 1,800 lb / in 2 ) were generated that provide The tempered effect on safety glass. The stresses generated are within the automotive regulations, with acceptable values for compression> 8,000 lb / in and tension ⁇ 4,500 lb / in 2 . The fracture test applied to the tempered sample presented the positive results with the acceptable pattern according to the automotive standards, confirming the feasibility of integrating the new product into the tempering processes.
  • the coating was deposited in a 2mm clear glass and was laminated with a coated face inside the construction with another clear 2mm uncoated substrate with a polyvinyl butyral sheet between the two glass substrates, subjected to the conditions of the automotive industrial rolling process.
  • a high visual quality laminate product was obtained without air bubbles.
  • the laminated product was subjected to the adhesion test which consists of keeping the product at temperatures below 0 ° C for one hour, the test result was satisfactory.
  • the high temperature resistance test was performed and humidity according to ANSI / SAE Z26.1-1996, the sample passed the test satisfactorily.
  • the product developed is resistant to industrial automotive rolling processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

La presente invención se refiere a vidrios recubiertos de uso arquitectónico, automotriz, monolíticos o laminados que presentan propiedades de control solar. El recubrimiento está compuesto de varias capas de diferentes óxidos metálicos semiconductores (TiO2, ZnO, ZrO2, SnO2, A1Ox) y una capa de nanopartículas metálicas; las cuales al ser superpuestas en un orden preestablecido confieren al vidrio las propiedades de control solar. En particular al uso de capas protectoras de semiconductores tipo n alrededor de la capa de nanopartículas metálicas. También se refiere, al método para la obtención del recubrimiento por la técnica depósito químico de vapor asistido por aerosol, utilizando soluciones precursoras que contienen una sal orgánica o inorgánica (acetatos, acetilacetonatos, halogenuros, nitratos) de los elementos de aplicación y un solvente apropiado (agua, alcohol, acetona, acetilacetona, etc.). La síntesis se realiza a una temperatura entre 100 y 600 °C, dependiendo del material a. depositar. Se emplea un nebulizador que convierte la solución precursora en un aerosol el cual es arrastrado por un gas hasta la superficie del substrato, en donde debido a la temperatura ocurre la descomposición térmica del precursor y el depósito de cada capa del recubrimiento.

Description

UN RECUBRIMIENTO CON PROPIEDADES DE CONTROL SOLAR PARA UN SUBSTRATO Y, UN METODO Y SISTEMA PARA DEPOSITAR DICHO
RECUBRIMIENTO SOBRE EL SUBSTRATO.
CAMPO DE LA INVENCION
La presente invención se refiere a recubrimientos con propiedades de control solar depositados sobre vidrios de uso arquitectónico, automotriz, monolíticos o laminados; y a un método y sistema para su depositar dicho recubrimiento por la técnica de depósito químico de vapor asistido por aerosol (AACVD). ANTECEDENTES DE LA INVENCION
El vidrio usado en construcciones y vehículos, nos protege en general del medio (lluvia, viento, ruido, etc.), permitiendo tener condiciones más agradables al interior. Si embargo, el vidrio común no nos protege de la radiación solar, ya que únicamente absorbe parte de la radiación UV, reflejando en total cerca de un 7 % y trasmite gran parte de todo el espectro solar. En particular, en el caso de automóviles, la tendencia es utilizar parabrisas (delantero) de mayor área y más inclinados (hacia la horizontal) aumentando considerablemente la cantidad de radiación solar que ingresa, llegando hasta alrededor del 35% del total de calor que penetra al vehículo, lo que corresponde hasta -50% de aportación de calor sólo por el parabrisas. Esto hace necesario introducir mejoras en las propiedades del vidrio (por medio de recubrimientos) para reducir el ingreso de radiación infrarroja mejorando el confort del pasajero, incrementando la duración del interior del vehículo (consola, tapices, etc.) y reduciendo el uso del aire acondicionado con el consecuente ahorro de combustible; esto es lo que se conoce como control solar. El valor agregado en el vidrio u otros productos puede ser incrementado dependiendo de las propiedades funcionales que le confieren su superficie o algún recubrimiento depositado sobre ella. Muchos fenómenos que otorgan características funcionales a un material ocurren en la superficie o en una región cercana a ella. Por ello es posible recubrir substratos económicos (vidrio) con materiales funcionales en forma de capas delgadas. De esta manera, el producto obtenido tiene la propiedad funcional del recubrimiento y las características propias del substrato, en particular las del vidrio.
El control solar se refiere a la capacidad de modificar la cantidad de radiación solar transmitida o reflejada, en los intervalos espectrales del ultravioleta cercano (UV; 300 - 380 nm), visible (VIS; 380 - 780 nm) e infrarrojo (IR; 780 - 2500 nm). En general se persigue baja transmitancia en los intervalos UV e IR, mientras que la transmitancia en el VIS puede ser alta (>70%) o baja, dependiendo de la aplicación.
Adicionalmente al bloqueo de la radiación infrarroja, el vidrio y su recubrimiento deben tener otras propiedades, como son: alta transmitancia en el visible (> 70 %), alta resistencia mecánica, resistencia química y a la intemperie, debe poder someterse a tratamientos térmicos (templado, doblado), debe presentar un color neutro sin iridiscencia, baja dispersión (haze) y bajo costo. El conjunto de propiedades necesarias hace que el desarrollo de este tipo de recubrimientos sea un problema tecnológico complejo y de gran dificultad.
Existen muchas alternativas para conseguir propiedades de control solar. Esto se refleja en la infinidad de artículos científicos, patentes y solicitudes de patentes existentes sobre el tema. Por ejemplo, una publicación científica que se refiere a los recubrimientos con propiedades de control solar, es el trabajo "Solar heat reflective glass by nanostructured sol-gel multilayer coatings" escrito por Z. Nagamedianova y colaboradores, publicado por la revista Optical Materials en el año 2011, volumen N° 33, páginas 1999-2005, describe vidrios claros comerciales recubiertos por el método sol-gel con tres capas de óxidos, Ti02 - Si02 - Ti02, que tienen la propiedad de reflejar el IRC. Se reporta transmitancias en el VIS > 70 %, bloqueo UV alto (Tuv < 35%) y alta reflectividad (> 60 %) en el intervalo 800 - 950 nm.
En cuanto a patentes, la patente Norteamericana No. 5,242,560 "Heat treatable sputter-coated glass" de Guardian Industries Corp. describe un vidrio recubierto por sputtering que puede tratarse térmicamente que consiste de una capa de Ni aleado con una o dos capas de óxido de Sn, y opcionalmente una capa de Al intermedia.
La solicitud de patente norteamericana publicada No. 2011/0236715 Al está relacionada con un "Solar control coating with discontinuous metal layer" de PPG Industries Ohio, Inc. En dicha solicitud proponen un recubrimiento depositado sobre al menos una parte de un substrato, que comprende varias capas metálicas alternadas con varias capas dieléctricas, con al menos una de las capas metálicas comprendiendo una capa metálica discontinua.
En la Patente Inglesa (1971) N° 1241889 "Heat reflecting glass and method for manufacturing the same" de Asahi Glass Co., Ltd., se reivindica un substrato de vidrio que refleja la energía calorífica y transmite luz visible, el cual comprende un compuesto de una capa de óxido metálico (Ti02, Ta205, W03, Zr02, Nb205, Th02, Sn02) de índice mayor al vidrio, en la cual se tienen inmersas partículas microscópicas de Pd o Au metálico. El método propuesto es similar al Sol-gel. Por otro lado, existen varios métodos de síntesis de recubrimientos los cuales incluyen: sol-gel, depósito mediante láser pulsado, evaporación al vacío, haz de electrones, pulverización catódica, descarga plasmática y CVD, dentro del cual está la variante llamada AACVD. De estas técnicas de preparación, el método AACVD presenta algunas ventajas como son: su sencillez y bajo costo de implementación, ya que no necesita de equipos sofisticados, posibilidad de operar a presión atmosférica y además es escalable a nivel industrial. Esta técnica permite obtener recubrimientos con varias ventajas: a) composición controlable, incluso cambiando la composición de una solución precursora durante el depósito con la finalidad de obtener materiales con un gradiente de concentración, b) con buena adherencia, c) espesor uniforme y controlable en un amplio intervalo, d) facilidad para lai obtención de materiales compuestos o en multicapas, e) puede aplicarse para depositar recubrimientos en substratos planos o al interior o exterior de tubos, f) finalmente las propiedades de los materiales obtenidos son comparables a las de los materiales depositados por otras técnicas más sofisticadas, como pulverización catódica reactiva, evaporación reactiva, PLD, etc., las cuales requieren costosos sistemas de alto vacío, fuentes de radio frecuencia, control de gases, láser de potencia, etc.
El método AACVD es un proceso híbrido físico-químico para la obtención de recubrimientos. Consiste en producir una nube de gotas micrométricas, a partir de una solución conformada por precursores organometálicos o compuestos inorgánicos, disueltos en un solvente particular para cada tipo de compuesto (agua, alcohol, acetona, acetilacetona, etc.). El aerosol puede ser generado por métodos neumáticos, electrostáticos o ultrasónicos. El aerosol de la solución precursora, debe ser transportado hasta la zona de depósito mediante un gas portador. En la zona de depósito, se encuentra el substrato de vidrio, el cual es calentado hasta una temperatura específica dependiendo del material a depositar, o de los precursores utilizados. En la zona de depósito conforme la nube se acerca al substrato se va calentando produciéndose inicialmente la evaporación del solvente, la fusión, evaporación o eventual sublimación, o descomposición térmica del compuesto precursor, su difusión hacia la superficie de vidrio; donde el proceso continúa con la adsorción de los reactantes, la reacción química, y su evacuación lejos de la superficie.
Existen publicaciones científicas que se refieren a los sistemas para la producción de recubrimientos delgados por el método AACVD como son:
El artículo "Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics" escrito por Aloysius F. Hepp y colaboradores, publicado por National Aeronautics and Space Administration NASA/TM— 2006-214445 describe diferentes diseños de reactores a presión atmosférica y baja presión, analizando sus principales parámetros que determinan el depósito de recubrimientos delgados de semiconductores en base a sulfuros de In y Cu para aplicaciones foto voltaicas. El área de aplicación de estos recubrimientos difiere de los propuestos en la presente invención.
Otro reporte "Synthesis, structural characterization and optical properties of multilayered Yttria-stabilized Zr02 thin films obtained by aerosol assisted chemical vapour deposition" escrito por P. Amézaga-Madrid, W. Antúnez-Flores, I. Monárrez- García, J. González-Hernández, R. Martínez- Sánchez, M. Miki-Yoshida, publicado en la revista Thin Solid Films del año 2008 con el número 516, páginas 8282-8288, describe como obtener recubrimientos multicapas de zirconia estabilizada con ytria sobre substratos de vidrio borosilicato mediante el método AACVD. El artículo discute la influencia de varias condiciones de síntesis, tales como: concentración de la solución precursora, temperatura de substrato, flujo del gas de arrastre, etc., en la rapidez de crecimiento del recubrimiento. La estructura multicapas obtenida debido al proceso repetitivo utilizado permite modular el índice de refracción, modificando la reflexión del recubrimiento.
Existen también patentes que se refieren a los sistemas de CVD (Deposito químico de vapor) para la producción de películas delgadas en sustratos planos, por ejemplo, la patente Norteamericana No. 6,190,457 Bl describe un sistema horizontal de CVD para obtener películas delgadas de un compuesto semiconductor de dos o más componentes sobre la superficie de un sustrato plano. El sistema CVD tiene un reactor cilindrico y en su interior se coloca un substrato plano. El reactor tiene una sección de alimentación de gases y una sección para su evacuación. En el interior del reactor se tienen tres divisiones; en las dos primeras secciones se alimenta una mezcla de gases conformada por una que incluye los compuestos precursores y otro gas diluyente. En la tercera sección solo se alimenta un gas inerte que acarrea a las dos mezclas anteriores.
La patente Norteamericana No. 7,011 ,711 B2, presenta un sistema vertical que utiliza el método de depósito químico de vapor para la fabricación de una película delgada sobre uno o más sustratos planos. El sistema cuenta con un reactor que incluye un tubo vertical y una cámara de reacción localizada en el interior del tubo. El sustrato plano es colocado al final de la cámara de reacción. La alimentación de los gases y su salida se realiza de manera vertical. En toda la longitud del tubo están colocados arreglos de mamparas para el direccionar el trayecto de los gases de reacción y para la evacuación de los gases producidos después de la reacción. Además están conectados calentadores al tubo vertical que permiten controlar la diferencia de temperatura entre el sustrato y las paredes del reactor.
Considerando la técnica anterior, la presente invención se relaciona a un recubrimiento con propiedades de control solar depositados sobre vidrios para uso arquitectónico, automotriz, monolíticos o laminados. El recubrimiento está compuesto de varias capas de diferentes óxidos metálicos semiconductores (Ti02, ZnO, Zr02, A10x), con diferente índice de refracción (n), y una capa de nanopartículas metálicas (Au, Ag). La capa de nanopartículas metálicas incrementa el bloqueo IR. Adicionalmente, la utilización de uniones activas metal-semiconductor tipo n, por encima y debajo de la capa de nanopartículas, permite la inyección de cargas negativas del semiconductor al metal (unión Schottky) protegiéndolo de la oxidación y evitando además su aglomeración, obteniéndose nanopartículas homogéneamente depositadas en todo el recubrimiento. Las capas componentes del recubrimiento son superpuestas en un orden preestablecido, tal como: vidrio (VC) / barrera difusiva (BD) / dieléctricos 1 (DI) / semiconductor tipo n, adherente-protector (A) / nanopartículas metal (M) / semiconductor tipo n, protector (P) / dieléctricos 2 (D2) / resistencia mecánica (R); los espesores se seleccionan de manera que el recubrimiento confiere al vidrio las propiedades de control solar, en especial un alto bloqueo del IR cercano (IRC) y una alta transmitancia en el VIS. El número de capas del recubrimiento puede variar siendo como mínimo tres, compuestas por dos de semiconductores tipo n, distribuidas por debajo y encima de la capa de nanopartículas metálicas.
Para la obtención del recubrimiento se utilizó el método de depósito químico de vapor asistido por aerosol, en el cual se emplean soluciones precursoras compuestas de una sal que contenga al elemento que se desea depositar, por ejemplo acetilacetonato de titanilo o acetilacetonato de aluminio, y un solvente apropiado, como metanol, etanol, agua o algún otro que disuelva completamente a la sal precursora. Un nebulizador de tipo neumático, ultrasónico o electrostático, convierte a la solución precursora en una nube de gotas micrométricas, la cual es arrastrada por un gas portador, generalmente aire, hacia la superficie del vidrio que se encuentra a la temperatura de depósito, entre 100 y 600 °C. La temperatura particular necesaria depende del material a depositar, es decir del precursor utilizado. El proceso se repite sucesivamente con los diferentes precursores para depositar todas las capas del recubrimiento.
OBJETIVOS DE LA INVENCION
Es por lo tanto un primer objetivo de la presente invención, proveer un recubrimiento con propiedades de control solar y, un método y aparato para depositar dicho recubrimiento sobre substratos de vidrio, dicho recubrimiento incluyendo varias capas de diferentes óxidos metálicos semiconductores (Ti02, ZnO, Zr02, Sn02 o A10x), y al menos una capa de nanopartículas metálicas (Au y/o Ag, Pt, Pd) que proporcionan al substrato de vidrio las propiedades de control solar. Es un objetivo adicional de la presente invención, proveer un recubrimiento con propiedades de control solar y, un método y aparato para depositar dicho recubrimiento sobre substratos de vidrio, que utiliza, para depositar dicho recubrimiento, la técnica de depósito químico de vapor asistido por aerosol (AACVD).
Un objetivo adicional de la presente invención es, proveer un recubrimiento con propiedades de control solar y, un método y aparato para depositar dicho recubrimiento sobre substratos de vidrio, en donde el recubrimiento está compuesto de capas protectoras activas de semiconductores tipo n, depositadas una por debajo y la otra por encima de la capa de nanopartículas metálicas.
Estos y otros objetivos y ventajas del recubrimiento con propiedades de control solar, de la presente invención, serán evidentes a los expertos en el ramo, de la siguiente descripción detallada de la misma.
BREVE DESCRIPCIÓN DE LAS FIGURAS.
La Figura 1 muestra el diagrama esquemático de un recubrimiento con propiedades de control solar, compuesto de un substrato (1), 4 capas de óxidos metálicos (2), (4), (5), (6) y una capa conformada por nanopartículas metálicas distribuidas uniformemente (3).
La Figura 2 muestra el diagrama esquemático de un recubrimiento con propiedades de control solar, compuesto de un substrato (7), seis capas de óxidos metálicos (8), (9) (10), (12) (13), (14) y una capa conformada por nanopartículas metálicas distribuidas uniformemente (11). Figura 3 presenta un diagrama del sistema utilizado para el depósito de las diferentes capas del recubrimiento de control solar de la presente invención.
La figura 4 muestra la sección transversal de un recubrimiento de control solar típico, en donde se pueden observar las diferentes capas componentes, en particular la capa uniforme de nanopartículas metálicas rodeada, por encima y por debajo, de la capa protectora del semiconductor tipo n.
La figura 5 presenta los espectros en porcentaje de transmitancia (% T), reflectancia (% R) y absorbancia (% A) de un recubrimiento de control solar típico, con la estructura del ejemplo 2 (VC/Ti02/A10x/Ti02/Nano-Au/Ti02/A10x/Ti02). Se indica por una flecha vertical la posición del pico de absorción en el IRC alrededor de los 1000 nm.
La figura 6 presenta los espectros en porcentaje de transmitancia (% T), reflectancia (% R) y absorbancia (% A) de un recubrimiento de control solar típico, con la estructura del ejemplo 3 (VC/ZnO/Zr02/AlOx/Ti02/Nano- Ag/Ti02/A10x/Sn02).Se indica por una flecha vertical la posición del pico de reflexión alrededor de los 800 nm.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención describe recubrimientos con propiedades de control solar depositados sobre vidrios de uso arquitectónico, automotriz, monolíticos o laminados. El control solar se refiere a la capacidad de modificar la cantidad de radiación solar transmitida, reflejada y absorbida, en el intervalo solar comprendido entre los 300 y 2500 nm. En general se persigue baja transmitancia en los intervalos UV e IRC, mientras que la transmitancia en el VIS debe ser alta (> 70%) para aplicaciones automotrices o baja en aplicaciones arquitectónicas. El recubrimiento está compuesto de dos o más capas de diferentes óxidos metálicos semiconductores (Ti02, ZnO, Zr02, Sn02 o A10x) y una o varias capas de nanopartículas metálicas seleccionadas de Oro (Au), Plata (Ag), Platino (Pt) y Paladio (Pd), distribuidas uniformemente en toda la superficie del substrato recubierto.
Como se ejemplifica en la figura 1, el recubrimiento de control solar CS, de la presente invención, es depositado sobre una superficie de un substrato de vidrio 1 mediante la técnica de depósito químico de vapor asistido por aerosol (AACVD). En el ejemplo mostrado en la figura 1, el recubrimiento de control solar CS es depositado sobre al menos una de las superficies del substrato 1. Como se describe en la presente invención, el término "recubrimiento de control solar" se refiere a un recubrimiento que comprende una o más capas o películas que afectan las propiedades solares del artículo recubierto, pero no limitado a la cantidad de radiación solar, por ejemplo, visible, infrarrojo, o radiación ultravioleta. El recubrimiento de control solar CS puede bloquear, absorber o filtrar porciones seleccionadas del espectro solar, tales como, el IR, UV y/o espectro visible.
Ejemplos de estructuras de control solar CS se muestran en las figuras 1 y 2, que representan recubrimientos de 5 y 7 capas, respectivamente. En el caso del ejemplo ilustrado en la figura 1, el recubrimiento de control solar CS está formado de 5 capas: Se tiene el substrato (1), sobre el cual se deposita en primer término la capa (2), compuesta de Ti02 o ZnO, pero principalmente de Ti02. Su espesor debe estar comprendido entre 10 y 70 nm. Esta primera capa sirve también como soporte de las nanopartículas metálicas (3) y adicionalmente como protector activo, dado su carácter de semiconductor tipo n, para evitar la oxidación de las nanopartículas, así como, incrementar su adherencia. La capa de nanopartículas metálicas (3) se deposita de manera que el tamaño de las nanopartículas sea menor a 30 nm, su distribución sea uniforme y cubra una gran parte de la superficie (> 80%). La función de la capa metálica (3), incluyendo los metales Au y/o Ag, es la de incrementar el bloqueo IR por absorción y/o reflexión (ver figuras 5 y 6). Posteriormente, se deposita sobre ella una segunda capa protectora activa (4), compuesta de Ti02 o ZnO, pero principalmente de Ti02, cuyo espesor es similar a la primera capa protectora, esto es entre 10 y 70 nm; cuya función es también la de proteger a las nanopartículas metálicas de la oxidación. Luego se superponen una o más capas dieléctricas, con la finalidad de incrementar las propiedades de control solar, en particular aumentar la transmitancia en el intervalo visible. Por tanto, en la figura 1 la capa (5) corresponde a un óxido de Al (A10x); su espesor debe estar entre 10 - 150 nm. La capa final (6) corresponde a un material resistente mecánicamente, por ejemplo Zr02, Sn02, Ti02 o un compuesto de ellos, preferencialmente que incluya al material más resistente (Zr02).
En el ejemplo ilustrado en la figura 2, se muestra esquemáticamente un recubrimiento de control solar CS formado de 7 capas. En la figura 2 se muestra un substrato de vidrio (7), sobre el cual se deposita en primer término la capa (8), que corresponde a la barrera contra la difusión, es decir de Ti02 o ZnO de un espesor entre 10 - 70 nm. Posteriormente, la capa (9) corresponde a uno o más dieléctricos, por ejemplo Zr02 o A10x, o ambas depositadas secuencialmente, sus espesores pueden estar entre 10 - 150 nm. Luego, continúa la capa soporte de las nanopartículas metálicas (10) que promueve la mejor adherencia de las nanopartículas y también juega el papel de protector activo, dado su carácter de semiconductor tipo n, para evitar la oxidación de las nanopartículas. Puede estar compuesta de Ti02 o ZnO, pero principalmente de Ti02, su espesor debe estar comprendido entre 10 y 70 nm. La capa de nanopartículas metálicas (11) se deposita de manera que el tamaño de las nanopartículas sea de 8 a 30 nm, con una distribución uniforme y cubra una gran parte de la superficie (> 80%). La función de la capa metálica (11), incluyendo los metales Au y/o Ag, es la de incrementar el bloqueo IRC, por absorción y/o reflexión. Esto se puede comprobar en la figura 5, donde se muestran los espectros en porcentaje de transmitancia (%T), reflectancia (%R) y absorbancia (%A) de un recubrimiento de control solar típico (estructura del ejemplo 2) en donde se indica por una flecha vertical la posición del pico de absorción en el IRC. Luego, se deposita sobre ella una segunda capa protectora activa (12), compuesta de Ti02 o ZnO, pero principalmente de Ti02, cuyo espesor es similar a la de la primera capa protectora, esto es entre 10 y 70 nm. Luego se superponen las últimas capas dieléctricas, cuya función es principalmente incrementar la transmitancia en el intervalo visible. Por tanto en la figura 2, la capa (13) corresponde a uno o más dieléctricos, por ejemplo AlOx, cuyo espesor es similar a la de la primera capa de AlOx, es decir entre 10 - 150 nm y puede adicionarse sobre ella otro dieléctrico, tal como Ti02, cuyo espesor está entre 10 - 120 nm. La capa final (14) es la resistente a la abrasión, por ejemplo Zr02, Sn02, Ti02 o un compuesto de ellos, preferencialmente que incluya el material más resistente (Zr02). Estas estructuras depositadas adecuadamente, con el espesor requerido, confieren al vidrio propiedades de control solar, particularmente un adecuado bloqueo IR y una adecuada transmitancia en el VIS. En especial la utilización de uniones activas metal-semiconductor tipo n, permite la inyección de cargas negativas del semiconductor al metal (unión Schottky) protegiéndolo de la oxidación y evitando además su aglomeración; esto permite la obtención de capas uniformes de nanopartículas metálicas homogéneamente distribuidas en una gran parte de la superficie intermedia del recubrimiento con control solar.
Adicionalmente, se busca que el producto desarrollado tenga una alta resistencia mecánica, térmica y química, suficiente para soportar los procesos de fabricación de vidrio templado y/o laminado sin presentar los cambios que deterioren el desempeño de control solar. Los productos con recubrimiento fueron sometidos a varias pruebas industriales para determinar posibilidad de templado con prueba de fractura, laminado (pruebas de Pummel y hervido bajo normas de clientes y ANSI/SAE Z26.1-1996) y resistencia química de contacto de muestras con soluciones ácidas. Los vidrios recubiertos pasaron satisfactoriamente todas estas pruebas, confirmando la factibilidad de integración de producto desarrollado a los procesos de fabricación de vidrios templados y laminados.
MÉTODO DE OBTENCIÓN DE LOS VIDRIOS CON CONTROL SOLAR
El método CVD asistido por aerosol (AACVD) es un proceso económico, eficiente y útil para la obtención de recubrimientos relativamente delgados, espesores máximos de varios micrómetros. Consiste en producir una nube de gotas micrométricas, cuyo diámetro está en el intervalo de 1 a 20 μπι, a partir de una solución conformada por precursores organometálicos (acetatos, acetilacetonatos) o compuestos inorgánicos (halogenuros, nitratos), disueltos en un solvente particular para cada tipo de compuesto (agua, alcohol, acetona, acetilacetona, etc.). El aerosol puede ser generado por métodos neumáticos, electrostáticos o ultrasónicos. Entre los más eficientes se encuentran los nebulizadores ultrasónicos, que generan gotas con dimensiones de algunos micrómetros y con una distribución de tamaños cerrada (FWHM ~ 10 %). En estos nebulizadores, la nube de gotas es producida por las vibraciones (algunos MHz) de un cristal piezoeléctrico, cuyas ondas ultrasónicas son concentradas en la superficie de la solución, la que por cavitación genera la nube de gotas micrométricas. El tamaño de gota depende principalmente de la frecuencia del piezoeléctrico (en relación inversa), de la tensión superficial y densidad de la solución. El tamaño de gota y esencialmente su distribución de tamaños influye determinantemente en las condiciones (temperatura de substrato, flujo de gas portador) del depósito y en la calidad del material obtenido. Una distribución de tamaño de gota muy extendida impide la optimización de las condiciones de síntesis, debido a que una gota grande necesita condiciones diferentes a las de una gota pequeña; dando como resultado un recubrimiento poco homogéneo y de mala calidad. El aerosol de la solución precursora, debe ser transportado hasta la zona de depósito mediante un gas portador. En la zona de depósito, se encuentra el substrato de vidrio, el cual es calentado hasta una temperatura específica dependiendo del material a depositar. La temperatura del substrato es el parámetro fundamental que controla el depósito del material. La temperatura óptima del proceso depende de los precursores utilizados, consecuentemente del material a depositar, sin embargo de manera general podemos afirmar que éstas son relativamente bajas, entre 373 K (100° C) y 873 K (600°C). En la obtención de un recubrimiento, además de las condiciones termodinámicas necesarias se necesitan verificar las condiciones cinéticas del proceso. Ya que el crecimiento de la película depende de: a) el proceso de transporte del (o los) reactante(s) hasta las inmediaciones de la superficie del substrato; donde conforme la nube se acerca al substrato se va calentando produciéndose inicialmente la evaporación del solvente, la fusión, evaporación o eventual sublimación, o descomposición térmica del compuesto precursor, y posteriormente su difusión hacia la superficie, b) por procesos cinéticos sobre la superficie del substrato, en donde son necesarios sucesivamente la adsorción de los reactantes, su difusión y confluencia en la superficie del substrato, la reacción química, la difusión y desorción fuera de la superficie de los productos de la reacción química y su evacuación lejos de la superficie, para evitar la contaminación del material depositado
DESCRIPCIÓN DEL SISTEMA DE OBTENCIÓN:
La figura 3 presenta un diagrama esquemático del sistema utilizado en el proceso de la presente invención. El sistema consta de las siguientes partes:
a) Una placa o cámara de calentamiento (23) que permite elevar la temperatura del substrato de vidrio hasta la temperatura de depósito entre 100 y 600°C. El sistema de calentamiento consta de un control de temperatura (no mostrado en la figura) que permite mantenerla constante durante todo el proceso de depósito. Además, el calentamiento debe ser uniforme en toda la superficie del vidrio.
b) Un nebulizador (19) que puede ser del tipo neumático, electrostático o ultrasónico. El gas de arrastre (16), con su regulador de presión (17) y controlador de flujo (18) y finalmente la tobera de salida del aerosol (20) hacia la superficie del substrato (22).
c) El sistema de traslación de la tobera (21) permite distribuir uniformemente el aerosol de la solución precursora sobre toda la superficie del substrato; con la finalidad de obtener recubrimientos uniformes. La tobera (20) está montada sobre el sistema de traslación de tobera (21), con movimiento controlado (0.1-5 cm.) que permite distribuir uniformemente el aerosol de la solución precursora sobre toda la superficie del substrato, con la finalidad de obtener recubrimientos uniformes.
d) El sistema de extracción de gases (24) para evitar la contaminación del recubrimiento depositado.
APLICACIÓN DE LOS RECUBRIMIENTOS
A continuación se muestra de forma esquemática la metodología para la preparación de los substratos y el depósito de recubrimiento por la técnica AACVD.
Preparación de los substratos
Agua y jabón, acetona, metanol
Preparación de la solución precursora
Elección del precursor y solvente a utilizar (TGA). Disolución de sal precursora.
Preparación del sistema AACVD
Encendido del horno, colocación el substrato, colocar nebulizador y accesorios, fijar parámetros de depósito: temperatura del substrato, flujo de aire,
movimiento de tobera, intensidad de nebulización.
Depósito del recubrimiento
Barrera contra la difusión de Na. Base ZnO preferente ó T¡02, Zr02
Capa protectora de bloqueador IR
Base Ti02 y/o compuesto con óxidos de: Al, Zn, Zr.
Capa absorbente o reflectora IR
Base Ag, Au ó aleaciones
Capa protectora de bloqueador IR
Base T¡02 y/o compuesto con óxidos de: Al, Zn, Zr.
Depósito dieléctrico, antireflectivo, mecánicamente resistente
Base Ti02, Zr02, Sn02, AlOx.
Preparación de la solución precursora.
Los precursores son principalmente sales organometálicas de los elementos de interés y como solvente se utilizó uno adecuado a cada sal, de preferencia fueron soluciones acuosas o alcohólicas por sus características ventajosas para su aspersión (metanol, etanol, agua tri destilada), las concentraciones que se manejaron fueron de 0.001 a 0.2 mol/dm\ Los precursores para la introducción de dopantes fueron igualmente sales organometálicas. La concentración del dopante se variará desde 1% atómico hasta el límite de solubilidad del dopante respecto al material base, puede llegar hasta un 10 - 40 % atómico. Debe asegurarse la completa disolución del precursor utilizado por medio de una adecuada agitación, calentamiento y/o ultrasonido. MÉTODO DE APLICACIÓN
La síntesis inicia con la preparación de la solución precursora conteniendo una sal orgánica o inorgánica qüe contiene el elemento de interés, por ejemplo un Cloruro, Nitrato, Acetato o Acetilacetonato, tetracloruro de estaño, nitrato de zinc, acetato de zinc, acetilacetonato de aluminio, acetilacetonato de zirconio; y un solvente apropiado, como metanol, etanol, acetona, agua o una mezcla de ellos. La concentración de la solución está en el intervalo de 0.001 a 1.0 mol.dm"3.
Se sujeta el sustrato (22) a la placa de calentamiento (23). Se fija la temperatura de depósito entre 100 y 600 °C, y se enciende el sistema de calentamiento del substrato (22) para estabilizar su temperatura. Se acoplan el resto de las partes del sistema AACVD: nebulizador (19) y tobera (20). Se conecta el gas de arrastre (16). Es importante que los acoplamientos sean herméticos, para evitar fugas del aerosol. Adicionalmente se fija la velocidad de desplazamiento de la tobera (20) entre 0.1 a 5 cm/min, que permite variar los espesores de los recubrimientos a depositar. También se fija su longitud total de desplazamiento, dependiendo de la porción del substrato que se quiere cubrir. Asimismo se enciende el sistema de extracción de gases (24) para estabilizar la temperatura en todo el sistema.
Se inicia la introducción del gas de arrastre (que puede ser aire pero que dependiendo del recubrimiento se puede utilizar argón, nitrógeno u otro tipo de gas similar). Para su estabilización térmica, se fija el flujo entre 1 y 10 L min"1. El valor particular del flujo del gas de arrastre y de la temperatura de depósito depende del material que se quiere depositar. Adicionalmente, se introduce la solución precursora en el nebulizador (19). En caso necesario para depósitos de tiempos largos se puede agregar mayor cantidad de solución durante el depósito, por medio de una bomba peristáltica (15). En las pruebas realizadas se utilizó un nebulizador ultrasónico (19) comercial, que opera a alta frecuencia 2.4 MHz.
Una vez alcanzada la estabilidad térmica de todo el sistema, el proceso prosigue encendiendo el nebulizador (19), generándose la nube de aerosol de la solución precursora; simultáneamente se inicia desplazamiento de la tobera (20) por medio del sistema de traslación de la tobera (21). La nube generada ingresa a la tobera (21). En ésta, la mezcla conformada por el aerosol de la solución precursora y el gas de arrastre eleva su temperatura a entre 50 y 150°C; este precalentamiento, hasta una temperatura menor a la temperatura de síntesis, asegura que el precursor llegue a la superficie del substrato (22) en la zona de reacción a la temperatura requerida para su descomposición térmica y se lleve a cabo el depósito del recubrimiento en condiciones óptimas. En la superficie del substrato (22) se llevan a cabo las transformaciones físicas y descomposición química del precursor por acción de la temperatura, obteniéndose un recubrimiento bien adherido y de alta pureza en su superficie. La formación de la película delgada en la superficie del substrato ocurre a partir de la descomposición térmica del precursor, por tal motivo la temperatura de la superficie un papel muy importante para obtener el material de interés. Adicionalmente, cambiando la velocidad de traslación de la tobera nos permite obtener películas delgadas de diferentes espesores. Una vez que se produce la reacción química y se generan los gases producto de la reacción, éstos son evacuados mediante un sistema de extracción (24), para evitar la contaminación del material depositado y por tanto obtener recubrimientos con una alta pureza. El proceso se repite con cada precursor para depositar todas las diferentes capas del recubrimiento.
Ejemplos de substratos recubiertos.
Ejemplo 1
Utilizando un vidrio claro (VC) de 4 mm de espesor, se depositaron cinco capas de recubrimiento por el método AACVD, bajo la siguiente estructura:
Figure imgf000023_0001
Las propiedades ópticas en el rango solar de éste recubrimiento se resumen en la tabla siguiente. Se presentan las transmitancias en los intervalos ultravioleta (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) y visible (VIS 380 - 780 nm).
Figure imgf000023_0002
Ejemplo 2
Utilizando un vidrio claro de 4 mm de espesor, se depositaron siete capas de recubrimiento por el método AACVD, bajo la siguiente estructura:
Figure imgf000024_0001
Las transmitancias en los intervalos ultravioleta (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) y visible (VIS 380 - 780 nm) de este recubrimiento son:
Figure imgf000024_0002
La figura 5 presenta los espectros en porcentaje de transmitancia (% T), reflectancia (% R) y absorbancia (% A) de un recubrimiento de control solar típico, con la estructura del ejemplo 2 (VC/Ti02/A10x/Ti02 Nano-Au/Ti02/A10x/Ti02). Se indica por una flecha vertical la posición del pico de absorción en el IRC alrededor de los 1000 nm.
En la figura 4 se muestra la sección transversal de un recubrimiento de control solar típico, con una estructura similar a la del ejemplo 2, en donde el sustrato de vidrio está representado por el número 25; una primera capa (26) que actúa como barrera anti-difusión (ZnO, Zr02); una segunda capa (27) de un primer dieléctrico (ΑΙΟχ, Ti02, Zr02); Una tercera capa 28 de un semiconductor tipo n, adherente- protector (ZnO, Ti02); una cuarta capa (29) de nanopartículas metal (Ag, Au, Pt, Pd); una quinta capa (30) de un semiconductor tipo n, protector (ZnO, Ti02); una sexta capa (31) de un segundo dieléctrico de A10x, Ti02 o Zr02 ; y, séptima capa de materiales para incrementar la resistencia mecánica seleccionados de Sn02 o Zr02. En dicha figura 4 se pueden observar las diferentes capas componentes, en particular la capa uniforme de nanopartículas metálicas rodeada, por encima y por debajo, de la capa protectora del semiconductor tipo n.
Ejemplo 3
Utilizando un vidrio claro de 4 mm de espesor, se depositaron ocho capas de recubrimiento por el método AACVD, bajo la siguiente estructura:
Figure imgf000025_0001
Las transmitancias en los intervalos ultravioleta (UV 300 - 380 nm), solar (SOL 300 - 2500 nm) y visible (VIS 380 - 780 nm) de este recubrimiento son:
Figure imgf000025_0002
La figura 6 presenta los espectros en porcentaje de transmitancia (% T), reflectancia (% R) y absorbancia (% A) de un recubrimiento de control solar típico, con la estructura del ejemplo 3 (VC/ZnO/Zr02/A10x/Ti02/Nano- Ag/Ti02/A10x/Sn02).Se indica por una flecha vertical la posición del pico de reflexión alrededor de los 800 nm.
El recubrimiento aplicado en el vidrio claro de 4mm, fue sometido al proceso de templado y doblado en un horno industrial de templado en el intervalo de temperaturas máximas de 680-700°C y un enfriamiento brusco por aire de temperatura ambiente, sin presentar cambios en aspecto visual, ni desempeño control solar. Debido al proceso de templado en las muestras, se generaron los esfuerzos de compresión en superficie (8,300 a 10,100 lb/pulg2) y de tensión en centro del espesor de la muestra (de 1 ,200 a 1,800 lb/pulg2) que proporcionan el efecto de templado en vidrio de seguridad. Los esfuerzos generados están dentro de las normativas automotrices, con valores aceptables para compresión >8,000 lb/pulg y tensión < 4,500 lb/pulg2. La prueba de fractura aplicada a la muestra templada presentó los resultados positivos con el patrón aceptable de acuerdo a las normas automotrices, confirmando la factibilidad de integración del nuevo producto a los procesos de templado.
Por otro lado, el recubrimiento fue depositado en un vidrio claro de 2 mm y fue laminado con cara recubierta al interior de la construcción con otro sustrato claro sin recubrimiento de 2 mm con una hoja de butiral de polivinilo entre los dos sustratos de vidrio, sometidos a las condiciones del proceso industrial automotriz de laminado. Se obtuvo un producto laminado de alta calidad visual sin presentar burbujas de aire. El producto laminado se sometió a la prueba de adhesión la cual consiste en mantener el producto a temperaturas inferiores a 0°C durante una hora, el resultado de la prueba fue satisfactorio. Además se realizó la prueba de resistencia a alta temperatura y humedad de acuerdo a la norma ANSI/SAE Z26.1-1996, la muestra pasó la prueba satisfactoriamente. Como conclusión, el producto desarrollado es resistente a los procesos industriales de laminado automotriz.
Otra prueba muy importante para los vidrios que se usan en el exterior es la resistencia química al contacto con soluciones ácidas. Las probetas no presentaron cambios visuales después del contacto con los ácidos en las siguientes condiciones: a) 3,5% HC1 durante 15 min a 22°C;
b) 3.7% HC1 durante 5 min a 22°C.
De lo anterior, se ha descrito un recubrimiento con propiedades de control solar y método para depositar dicho recubrimiento sobre substratos de vidrio y, será aparente para los expertos en el ramo que se puedan realizar otros posibles avances o mejoras, las cuales pueden estar consideradas dentro del campo determinado por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. - Un recubrimiento con propiedades de control solar para un substrato, caracterizado porque comprende: al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor; y al menos una capa de nanopartículas metálicas, dicha capa de nanopartículas metálicas proporcionando al substrato propiedades de control solar, en donde las capas de recubrimiento de al menos un óxido metálico están depositadas una por debajo y otra por encima de la capa de nanopartículas metálicas.
2. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque la capa o capas de nanopartículas metálicas es distribuida uniforme y homogéneamente en la totalidad de la capa superficial del recubrimiento.
3. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque la capa de nanopartículas metálicas es de entre 8 y 30 nm.
4. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque la capa de recubrimiento formada por al menos un óxido metálico semiconductor es de un espesor de entre 10 y 150 nm.
5. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque los óxidos metálicos semiconductores comprenden Ti02, ZnO, Zr02, Sn02 o A10x.
6. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque la capa de nanopartículas metálicas es Oro (Au), Plata (Ag), Platino (Pt) o Paladio (Pd).
7. - El recubrimiento con propiedades de control solar de la reivindicación 1, en donde al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor tipo n; y la capa de nanopartículas metálicas forman la siguiente estructura: una primera capa que actúa como barrera anti-difusión seleccionado de ZnO o Zr02, formada sobre una de las superficies del substrato; una segunda capa de un primer dieléctrico seleccionado de A10x, Ti02 o Zr02, sobre la primera capa; una tercera capa de un semiconductor tipo n, adherente-protector seleccionado de ZnO o Ti02; una cuarta capa de nanopartículas de metal seleccionada de Ag, Au, Pt o Pd; una quinta capa de un semiconductor tipo n, protector seleccionado de ZnO o Ti02; una sexta capa de un segundo dieléctrico seleccionado de A10x, Ti02 o Zr02; y, una séptima capa con materiales para incrementar la resistencia mecánica seleccionada de Sn02 o Zr02.
8. - El recubrimiento con propiedades de control solar de la reivindicación 1, en donde al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor; y la capa de nanopartículas metálicas formando la siguiente estructura en forma de capas de ZnO/Zr02/A10x/Ti02 Nano-Ag/Ti02/A10x/Sn02.
9. - El recubrimiento con propiedades de control solar de la reivindicación 1 , en donde al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor; y la capa de nanopartículas metálicas formando la siguiente estructura en forma de capas ZnO o Ti02/Nano-Au y Nano Ag/ZnO o Ti02 /A10x/Sn02, Ti02 o Zr02.
10. - El recubrimiento con propiedades de control solar de la reivindicación 1, en donde al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor; y la capa de nanopartículas metálicas formando la siguiente estructura en forma de capas ZnO o Ti02/Nano-Au o Nano Ag/ZnO o Ti02 /A10x/Sn02, Ti02 o Zr02.
1 1. - El recubrimiento con propiedades de control solar de la reivindicación 1, en donde al menos una capa de un recubrimiento formado por al menos un óxido metálico semiconductor; y la capa de nanopartículas metálicas formando la siguiente estructura en forma de capas: Ti02/A10x/Ti02/Nano-Au/Ti02/A10x/Ti02.
12. - El recubrimiento con propiedades de control solar de la reivindicación 1, caracterizado porque la capa de recubrimiento está compuesto de una primera capa de un óxido sobre la superficie del substrato, la cual actúa como barrera contra la difusión de los componentes del vidrio hacia el recubrimiento con propiedades de control solar.
13. - El recubrimiento con propiedades de control solar de la reivindicación 12, caracterizado porque la primera capa de un óxido sobre la superficie del substrato comprende Ti02 o ZnO.
14. - Un método para depositar un recubrimiento para control solar sobre un substrato caracterizado por:
a) Colocar un substrato en un área de sujeción;
b) Calentar el substrato en una cámara de calentamiento a una temperatura predeterminada;
c) Preparar una mezcla de una solución precursora y un solvente;
d) Depositar la mezcla de solución precursora y solvente en la cámara de calentamiento para formar al menos una capa de recubrimiento sobre el substrato recién calentado, en donde, la temperatura en la cámara de calentamiento produce la evaporación del solvente y deposita la solución precursora sobre la superficie del substrato, formando una capa de recubrimiento de control solar sobre el substrato; y, e) retirar el substrato del área de sujeción una vez que se formado la capa de recubrimiento.
15. - Un método para depositar un recubrimiento para control solar sobre un substrato, de conformidad con la reivindicación 14, en donde la etapa de depositar la mezcla de solución precursora y solvente para formar al menos una capa de recubrimiento sobre el substrato comprende: producir una nube de gotas micrométricas o aerosol de la solución precursora sobre el substrato.
16. - El método para depositar un recubrimiento para control solar un substrato de conformidad con la reivindicación 14, caracterizado porque la solución precursora está caracterizada por precursores organometálicos o compuestos inorgánicos.
17. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 16, en donde los precursores organometálicos o compuestos inorgánicos son acetatos, acetilacetonatos, cloruros, nitratos o halogenuros.
18. - El método para depositar un recubrimiento para control solar sobre un substratos de conformidad con la reivindicación 14, caracterizado por que el solvente es agua, agua destilada, metanol, etanol, acetona o una mezcla de los mismos.
19. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 15, en donde la nube de gotas micrométricas es aplicada con un diámetro de entre 1 a 20 μη .
20. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 14, en donde la temperatura del substrato es de entre 100°C y 600°C.
21. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 14, en donde la concentración de la solución precursora es de 0.001 a 0.2 mol.dm"3.
22. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 14, en donde la etapa de depositar la mezcla de solución precursora y solvente de la etapa c), comprende: introducir dicha mezcla hacia la cámara de calentamiento a través de un gas de arrastre con un flujo de entre 1 y 10 L min"1.
23. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 22, en donde el gas de arrastre es aire argón, nitrógeno o gas similar.
24. - El método para depositar un recubrimiento para control solar sobre un substrato de conformidad con la reivindicación 14, en donde la etapa de depositar la mezcla de solución precursora y solvente se lleva a cabo mediante la técnica de depósito químico de vapor asistido por aerosol (AACVD).
25. - Un sistema para depositar un recubrimiento de control solar sobre un substrato que comprende:
a) medios de sujeción para retener el substrato;
b) medios de calentamiento para calentar el substrato; c) un nebulizador en relación conjunta con los medios de calentamiento, que incluye una tobera de salida de una solución precursora, para depositar la solución precursora sobre una superficie del substrato;
d) medios de traslación acoplados a la tobera de salida para trasladar la tobera de salida sobre el substrato, para depositar la solución precursora uniformemente sobre toda la superficie del substrato y depositar la solución precursora como un recubrimiento sobre dicha superficie del substrato; y,
e) medios de extracción de gases, dichos gases siendo producidos por el depósito de la solución precursora sobre el substrato y para evitar la contaminación del recubrimiento depositado.
26. - El sistema para depositar un recubrimiento de control solar sobre un substrato de conformidad con la reivindicación 25, en donde el nebulizador es del tipo neumático, electrostático o ultrasónico.
27. - El sistema para depositar un recubrimiento de control solar sobre un substrato de conformidad con la reivindicación 25, en donde la temperatura de los medios de calentamiento es entre 100 y 600 °C.
28. - El sistema para depositar un recubrimiento de control solar sobre un substrato de conformidad con la reivindicación 25, en donde los medios de traslación de la tobera se desplazan con una velocidad de entre 0.1 a 5 cm/min, que permite variar los espesores de los recubrimientos.
29. - El sistema para depositar un recubrimiento de control solar sobre un substrato de conformidad con la reivindicación 25, en donde el nebulizador incluye un conírolador de flujo y un regulador de presión para la introducción de un gas de arrastre mezclada con la solución precursora.
30.- Un sistema para depositar un recubrimiento de control solar sobre un substrato de conformidad con la reivindicación 25, en donde los medios de calentamiento para calentar el substrato es una placa o cámara de calentamiento.
PCT/MX2013/000127 2012-10-12 2013-10-11 Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato WO2014058290A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112015008235A BR112015008235A2 (pt) 2012-10-12 2013-10-11 um revestimento tendo propriedades de controle solar para um substrato e, um método e sistema para depositar o dito revestimento no substrato
US14/435,252 US10597324B2 (en) 2012-10-12 2013-10-11 Coating having solar control properties for a substrate, and method and system for depositing said coating on the substrate
EP13846160.3A EP2915784A4 (en) 2012-10-12 2013-10-11 COATING WITH SOLAR CONTROL PROPERTIES FOR A SUBSTRATE AND METHOD AND SYSTEM FOR APPLYING THE COATING ON THE SUBSTRATE
US16/802,743 US11479502B2 (en) 2012-10-12 2020-02-27 Coating having solar control properties for a substrate, and method and system for depositing said coating on the substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2012011948A MX2012011948A (es) 2012-10-12 2012-10-12 Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato.
MXMX/A/2012/011948 2012-10-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/435,252 A-371-Of-International US10597324B2 (en) 2012-10-12 2013-10-11 Coating having solar control properties for a substrate, and method and system for depositing said coating on the substrate
US16/802,743 Division US11479502B2 (en) 2012-10-12 2020-02-27 Coating having solar control properties for a substrate, and method and system for depositing said coating on the substrate

Publications (1)

Publication Number Publication Date
WO2014058290A1 true WO2014058290A1 (es) 2014-04-17

Family

ID=50477670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000127 WO2014058290A1 (es) 2012-10-12 2013-10-11 Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato

Country Status (5)

Country Link
US (3) US10597324B2 (es)
EP (1) EP2915784A4 (es)
BR (1) BR112015008235A2 (es)
MX (1) MX2012011948A (es)
WO (1) WO2014058290A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990503A1 (en) * 2014-08-29 2016-03-02 Flosfia Inc. Method of forming metal film
WO2017013399A1 (en) * 2015-07-17 2017-01-26 Pilkington Group Limited Metal oxide deposition
CN111630014A (zh) * 2018-06-12 2020-09-04 佳殿玻璃有限公司 具有超材料包含层的涂覆制品、具有超材料包含层的涂层和/或其制造方法
CN111704894A (zh) * 2020-06-04 2020-09-25 东华大学 一种高效太阳能加热表面的组装制备方法
WO2024211461A1 (en) 2023-04-05 2024-10-10 Vitro Flat Glass Llc Privacy glass

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487625B (zh) * 2013-08-22 2015-06-11 Ind Tech Res Inst 紅外光阻隔之金屬氧化物多層膜結構
WO2018019820A1 (en) 2016-07-29 2018-02-01 Basf Se Transparent electroconductive layer having a protective coating
US10830933B2 (en) * 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
US11437606B2 (en) 2019-02-26 2022-09-06 King Fahd University Of Petroleum And Minerals Fabrication of nanostructured palladium thin film for electrochemical detection of hydrazine
TW202106650A (zh) * 2019-04-10 2021-02-16 美商康寧公司 具有傳輸微波訊號並反射紅外線訊號的金屬層的窗
US11473193B2 (en) 2019-04-30 2022-10-18 King Fahd University Of Petroleum And Minerals Fabrication, characterization and photoelectrochemical properties of CeO2-TiO2 thin film electrodes
US11742151B2 (en) 2019-05-29 2023-08-29 King Fahd University Of Petroleum And Minerals Aerosol assisted chemical vapor deposition methods useful for making dye-sensitized solar cells with platinum dialkyldithiocarbamate complexes
CN110981215B (zh) * 2019-12-23 2021-06-22 厦门大学 一种提高铝掺杂氧化锌导电玻璃热稳定性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1241889A (en) 1968-06-25 1971-08-04 Asahi Glass Co Ltd Heat-reflecting glass and method for manufacturing the same
US5242560A (en) 1989-03-09 1993-09-07 Guardian Industries Corp. Heat treatable sputter-coated glass
US6190457B1 (en) 1996-03-22 2001-02-20 Nippon Sanso Corporation CVD system and CVD process
US7011711B2 (en) 2003-01-07 2006-03-14 Yury Georgievich Shreter Chemical vapor deposition reactor
WO2007051994A2 (en) * 2005-10-31 2007-05-10 Ucl Business Plc Nanoparticle and nanocomposite films
WO2008071770A1 (en) * 2006-12-14 2008-06-19 Nv Bekaert Sa A solar control film
US20110236715A1 (en) 2010-03-29 2011-09-29 Ppg Industries Ohio, Inc. Solar control coatings with discontinuous metal layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33301A (en) * 1861-09-17 Improvement in mills for grinding grain
DE102005039707B4 (de) * 2005-08-23 2009-12-03 Saint-Gobain Glass Deutschland Gmbh Thermisch hoch belastbares Low-E-Schichtsystem für transparente Substrate, insbesondere für Glasscheiben
KR100854328B1 (ko) 2006-07-07 2008-08-28 엘지전자 주식회사 발광 소자 패키지 및 그 제조방법
JP5518580B2 (ja) 2010-06-03 2014-06-11 富士フイルム株式会社 熱線遮蔽材
JP5570306B2 (ja) * 2010-06-03 2014-08-13 富士フイルム株式会社 熱線遮蔽材
CN104701398B (zh) 2013-12-04 2018-03-23 常州亚玛顿股份有限公司 高效率双玻太阳能电池模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1241889A (en) 1968-06-25 1971-08-04 Asahi Glass Co Ltd Heat-reflecting glass and method for manufacturing the same
US5242560A (en) 1989-03-09 1993-09-07 Guardian Industries Corp. Heat treatable sputter-coated glass
US6190457B1 (en) 1996-03-22 2001-02-20 Nippon Sanso Corporation CVD system and CVD process
US7011711B2 (en) 2003-01-07 2006-03-14 Yury Georgievich Shreter Chemical vapor deposition reactor
WO2007051994A2 (en) * 2005-10-31 2007-05-10 Ucl Business Plc Nanoparticle and nanocomposite films
WO2008071770A1 (en) * 2006-12-14 2008-06-19 Nv Bekaert Sa A solar control film
US20110236715A1 (en) 2010-03-29 2011-09-29 Ppg Industries Ohio, Inc. Solar control coatings with discontinuous metal layer
WO2011123402A1 (en) * 2010-03-29 2011-10-06 Ppg Industries Ohio, Inc. Solar control coatings with discontinuous metal layer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AMEZAGA-MADRID,P. ET AL.: "Synthesis, structural characterization and optical properties of multilayered yttria-stabilized Zr02 thin films obtained by aerosol assisted chemical vapour deposition", THIN SOLID FILMS, vol. 516, no. 23, 1 January 2008 (2008-01-01), pages 8282 - 8288, XP025347414, DOI: 10.1016/J.TSF.2008.03.022 *
LANSAKER, P. ET AL.: "Ti02/Au/Ti02 multilayer thin films: novel metal-based transparent conductors for electrochromic devices", THIN SOLID FILMS, vol. 518, no. 4, 15 December 2009 (2009-12-15), pages 1225 - 1229, XP026776928 *
P. ARNEZAGA-MADRID; W. ANTÚNEZ-FLORES; L MONARREZ- GARCIA; J. GONZÁLEZ-HERNÁNDEZ; R. MARTÍNEZ-SÁNCHEZ; M. MIKI-YOSHIDA: "Synthesis, structural characterization and optical properties of multilayered Yttria-stabilized Zr02 thin films obtained by aerosol assisted chemical vapour deposition", THIN SOLID FILMS, 2008, pages 8282 - 8288
SAELI, M. ET AL.: "Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide", POLYHEDRON, vol. 28, no. 11, 1 January 2009 (2009-01-01), pages 2233 - 2239, XP026185968, DOI: 10.1016/J.POLY.2009.03.025 *
See also references of EP2915784A4
WALTERS,G. ET AL.: "Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation", APPLIED SURFACE SCIENCE, vol. 255, no. 13-14, 1 January 2009 (2009-01-01), pages 6555 - 6560, XP026066268, DOI: 10.1016/J.APSUSC.2009.02.039 *
WANG, W. ET AL.: "Spray deposition of Au/Ti02 composite thin films using preformed nanoparticles, Nanotechnology in construction 3", PROCEEDINGS OF THE NICOM3, 2009, pages 395 - 401, XP008180103 *
Z. NAGAMEDIANOVA: "Solar heat reflective glass by sol-gel nanostructured multilayer coatings", JOURNAL OPTICAL MATERIALS, vol. 33, 2011, pages 1999 - 2005

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990503A1 (en) * 2014-08-29 2016-03-02 Flosfia Inc. Method of forming metal film
JP2016050357A (ja) * 2014-08-29 2016-04-11 株式会社Flosfia 金属膜形成方法
US9828694B2 (en) 2014-08-29 2017-11-28 Flosfia Inc. Method of forming metal film
CN110952077A (zh) * 2014-08-29 2020-04-03 株式会社Flosfia 金属膜形成方法
WO2017013399A1 (en) * 2015-07-17 2017-01-26 Pilkington Group Limited Metal oxide deposition
GB2557761A (en) * 2015-07-17 2018-06-27 Pilkington Group Ltd Metal oxide deposition
CN111630014A (zh) * 2018-06-12 2020-09-04 佳殿玻璃有限公司 具有超材料包含层的涂覆制品、具有超材料包含层的涂层和/或其制造方法
CN111704894A (zh) * 2020-06-04 2020-09-25 东华大学 一种高效太阳能加热表面的组装制备方法
CN111704894B (zh) * 2020-06-04 2021-07-20 东华大学 一种高效太阳能加热表面的组装制备方法
WO2024211461A1 (en) 2023-04-05 2024-10-10 Vitro Flat Glass Llc Privacy glass

Also Published As

Publication number Publication date
EP2915784A1 (en) 2015-09-09
MX2012011948A (es) 2014-04-24
US20160096770A1 (en) 2016-04-07
US20230038481A1 (en) 2023-02-09
EP2915784A4 (en) 2016-08-10
US10597324B2 (en) 2020-03-24
US11479502B2 (en) 2022-10-25
BR112015008235A2 (pt) 2017-07-04
US20200199016A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2014058290A1 (es) Un recubrimiento con propiedades de control solar para un substrato y, un metodo y sistema para depositar dicho recubrimiento sobre el substrato
EP1417158B1 (en) Photoactive coating, coated article, and method of making same
CN1541196B (zh) 可见光-响应光活性涂层,涂覆制品,及其制备方法
CA2434560C (en) Photo-induced hydrophilic article and method of making same
US7820295B2 (en) Fluorine-doped tin oxide transparent conductive film glass and method of fabricating the same
CN101070226B (zh) 一种低辐射自清洁复合功能玻璃的制备方法
AU2002320488A1 (en) Photoactive coating, coated article, and method of making same
AU2002316028A1 (en) Photo-induced hydrophilic article and method of making same
CZ78498A3 (cs) Substrát s fotokatalytickým povlakem a způsob jeho přípravy a aplikace
AU2002318321A1 (en) Visible-light responsive photoactive coating, coated article, and method of making same
KR101464061B1 (ko) 기재 상에 니오븀-도핑된 티타니아 필름을 침착시키는 방법 및 이로써 제조된 코팅된 기재
US20090084488A1 (en) Method of preparing colorless and transparent f-doped tin oxide conductive film using polymer post-treatment process
JPWO2008123553A1 (ja) 防汚性物品およびこれを用いる合わせガラス
CN106715351A (zh) 被提供有具有热性质和超化学计量中间层的堆叠体的基材
EP3347749B1 (en) Multilayered optical system and method for producing the same
JP2012207444A (ja) 網入り窓ガラスの日射調整方法
JPH0753241A (ja) 紫外線透過防止ガラス及びその製造方法
JP2006282402A (ja) 薄膜製造方法、透明電磁波遮蔽フィルム、光学フィルターおよびプラズマディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846160

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015008235

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2013846160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14435252

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112015008235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150413