WO2014051066A1 - 銀インク組成物、導電体及び通信機器 - Google Patents
銀インク組成物、導電体及び通信機器 Download PDFInfo
- Publication number
- WO2014051066A1 WO2014051066A1 PCT/JP2013/076295 JP2013076295W WO2014051066A1 WO 2014051066 A1 WO2014051066 A1 WO 2014051066A1 JP 2013076295 W JP2013076295 W JP 2013076295W WO 2014051066 A1 WO2014051066 A1 WO 2014051066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- silver
- ink composition
- carbon atoms
- silver ink
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/037—Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/105—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1105—Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1157—Using means for chemical reduction
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/12—Using specific substances
- H05K2203/121—Metallo-organic compounds
Definitions
- the present invention relates to a silver ink composition capable of forming metallic silver having sufficient conductivity without performing heat treatment at a high temperature, and a conductor and a communication device obtained using the silver ink composition.
- This application is filed in Japanese Patent Application No. 2012-218366 filed in Japan on September 28, 2012, Japanese Patent Application No. 2012-218368 filed in Japan on September 28, 2012, and in Japan on February 27, 2013.
- Japanese Patent Application No. 2013-37963 filed Japanese Patent Application No. 2013-184490 filed in Japan on September 5, 2013, and Japanese Patent Application No. 2013-184491 filed in Japan on September 5, 2013 Claim priority and incorporate their content here.
- Metallic silver is widely used as a recording material, a printing plate material, and a highly conductive material because of its excellent conductivity.
- a general method for producing metallic silver for example, a method using organic acid silver such as silver behenate, silver stearate, silver ⁇ -ketocarboxylate and silver ⁇ -ketocarboxylate has been disclosed.
- silver ⁇ -ketocarboxylate quickly forms metallic silver even when heat-treated at a low temperature of about 210 ° C. or lower (see Patent Document 1).
- a silver ink composition is prepared by dissolving silver ⁇ -ketocarboxylate in a solvent, this is printed on a substrate, and the obtained printed matter is heated (baked).
- a method of forming metallic silver is disclosed (see Patent Document 1).
- the present invention has been made in view of the above circumstances, and uses a silver ink composition capable of forming metallic silver having sufficient conductivity without performing heat treatment at a high temperature, and the silver ink composition. It is an object to provide a conductor and a communication device obtained in this way.
- the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid.
- a silver carboxylate having a group represented by the formula “—COOAg”
- an amine compound having a carbon number of 25 or less a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid.
- a silver ink composition is provided.
- R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
- the silver carboxylate is selected from the group consisting of silver ⁇ -ketocarboxylate represented by the following general formula (1) and silver carboxylate represented by the following general formula (4). It is preferable that it is 1 or more types.
- R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 2- ",” CY 3- “,” R 1 -CHY- “,” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY- “or” R 6 -C ( ⁇ O) —CY 2 — ”;
- Y is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
- R 1 is an aliphatic hydrocarbon group or phenyl group having 1 to 19 carbon atoms;
- R 2 is an aliphatic group having 1 to 20 carbon atoms
- R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
- R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1
- R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group or a group represented by the formula “—COOAg”, and when the aliphatic hydrocarbon group has a methylene group, The above methylene group may be substituted with a carbonyl group.
- the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionyl acetate, silver isobutyryl acetate, silver pivaloyl acetate, silver caproyl acetate, 2- Silver n-butylacetoacetate, silver 2-benzylacetoacetate, silver benzoylacetate, silver pivaloylacetoacetate, silver isobutyrylacetoacetate, silver acetonedicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, 2-ethyl It is preferably at least one selected from the group consisting of silver hexanoate, silver neodecanoate, silver oxalate and silver malonate.
- the reducing compound is selected from the group consisting of formic acid, methyl formate, ethyl formate, butyl formate, propanal, butanal, hexanal, formamide, N, N-dimethylformamide and oxalic acid. It is preferable that it is 1 or more types.
- the present invention also provides a conductor obtained by forming metallic silver using the silver ink composition. Further, the present invention includes a conductor obtained by forming metallic silver on a base material using the silver ink composition, and further includes the base material as a casing. I will provide a.
- the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid.
- Carbon dioxide is supplied to the first mixture in which one or more nitrogen-containing compounds selected from the group consisting of ammonium salts are blended, and the second mixture is added.
- a silver ink composition comprising one or more reducing compounds selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5).
- R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
- the silver carboxylate is selected from the group consisting of silver ⁇ -ketocarboxylate represented by the following general formula (1) and silver carboxylate represented by the following general formula (4). It is preferable that it is 1 or more types.
- R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 2- ",” CY 3- “,” R 1 -CHY- “,” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY- “or” R 6 -C ( ⁇ O) —CY 2 — ”;
- Y is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
- R 1 is an aliphatic hydrocarbon group or phenyl group having 1 to 19 carbon atoms;
- R 2 is an aliphatic group having 1 to 20 carbon atoms
- R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
- R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1
- R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group or a group represented by the formula “—COOAg”, and when the aliphatic hydrocarbon group has a methylene group, The above methylene group may be substituted with a carbonyl group.
- the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, 2-n-butylacetoacetate Silver, silver 2-benzylacetoacetate, silver benzoylacetate, silver pivaloylacetoacetate, silver isobutyrylacetoacetate, silver acetonedicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate It is preferably one or more selected from the group consisting of silver neodecanoate, silver oxalate and silver malonate.
- the reducing compound is selected from the group consisting of formic acid, methyl formate, ethyl formate, butyl formate, propanal, butanal, hexanal, formamide, N, N-dimethylformamide and oxalic acid. It is preferable that it is 1 or more types.
- the first mixture may further contain an acetylene alcohol represented by the following general formula (2).
- R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
- the present invention also provides a conductor obtained by forming metallic silver using the silver ink composition. Further, the present invention includes a conductor obtained by forming metallic silver on a base material using the silver ink composition, and further includes the base material as a casing. I will provide a.
- the silver ink composition which can form metallic silver which has sufficient electroconductivity, without performing heat processing at high temperature, and the conductor and communication apparatus which were obtained using this silver ink composition Is provided.
- the silver ink composition according to the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg” (hereinafter sometimes simply referred to as “silver carboxylate”) and an amine compound having 25 or less carbon atoms. And one or more nitrogen-containing compounds selected from the group consisting of quaternary ammonium salts, ammonia, and ammonium salts obtained by reacting the amine compound or ammonia with an acid (hereinafter simply abbreviated as “nitrogen-containing compounds”).
- reducing compound (5) selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”) (Hereinafter, sometimes simply abbreviated as “reducing compound”).
- compound (5) a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”) (Hereinafter, sometimes simply abbreviated as “reducing compound”).
- HC ( O) -R 21 (5) (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
- the silver ink composition can more easily form metallic silver, and can form, for example, metallic silver (conductor) having sufficient conductivity even by heat treatment at a low temperature.
- the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
- the number of groups represented by the formula “—COOAg” may be one, or two or more.
- the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
- the silver carboxylate may be used alone or in combination of two or more.
- the combination and ratio can be adjusted arbitrarily.
- the silver carboxylate is represented by the following general formula (1) ⁇ -ketocarboxylate silver (hereinafter sometimes abbreviated as “ ⁇ -ketocarboxylate (1)”) and the following general formula (4). It is preferably one or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)”).
- ⁇ -ketocarboxylate (1) ⁇ -ketocarboxylate (4)
- silver carboxylate (4) silver carboxylate (4)
- the simple description of “silver carboxylate” is not limited to “silver ⁇ -ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
- R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 2- ",” CY 3- “,” R 1 -CHY- “,” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY- “or” R 6 -C ( ⁇ O) —CY 2 — ”;
- Y is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
- R 1 is an aliphatic hydrocarbon group or phenyl group having 1 to 19 carbon atoms;
- R 2 is an aliphatic group having 1 to 20 carbon atoms
- R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
- R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1
- R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group or a group represented by the formula “—COOAg”, and when the aliphatic hydrocarbon group has a methylene group, The above methylene group may be substituted with a carbonyl group.
- the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
- R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 2 -”,” CY 3- “,” R 1 -CHY- ",” R 2 O- ",” R 5 R 4 N- ",” (R 3 O) 2 CY- "or” R 6 -C ( ⁇ O) —CY 2 — ”.
- the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
- Examples of the linear or branched alkyl group in R include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4- Methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group 1-ethyl-1-methylpropyl group,
- Examples of the cyclic alkyl group in R include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
- alkenyl group in R examples include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH).
- one single bond (C—C) between carbon atoms of the alkyl group in R such as ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), etc. ) Is substituted with a triple bond (C ⁇ C).
- one or more hydrogen atoms may be substituted with a substituent, and preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
- the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
- one or more hydrogen atoms may be substituted with a substituent.
- the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms.
- a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—), C 6 H 5 ) and the like can be exemplified, and the number and position of substituents are not particularly limited.
- the plural substituents may be the same as or different from each other.
- Examples of the aliphatic hydrocarbon group that is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
- Y in R each independently represents a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
- a plurality of Y may be the same or different from each other. Good.
- R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —), and the aliphatic hydrocarbon group in R 1 has 1 to 19 carbon atoms. Except for this point, the same aliphatic hydrocarbon groups as those in R can be exemplified.
- R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R.
- R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R except that the carbon number is 1 to 16.
- R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same as or different from each other, and examples thereof are the same as the aliphatic hydrocarbon group for R except that the number of carbon atoms is 1 to 18.
- R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”. The aliphatic hydrocarbon group in R 6 has 1 to Except for being 19, the same aliphatic hydrocarbon groups as those described above for R can be exemplified.
- R is preferably a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 2 —”, a hydroxyl group or a phenyl group.
- R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
- each X independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or benzyl A group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 It is a group represented by “O—”, “R 7 S—”, “R 7 —C ( ⁇ O) —” or “R 7 —C ( ⁇ O) —O—”.
- Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X include those similar to the aliphatic hydrocarbon group in R.
- halogen atom in X examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- substituents include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), nitro Examples include a group (—NO 2 ), and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
- R 7 in X represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), or a phenyl group or diphenyl in which one or more hydrogen atoms may be substituted with a substituent. group (biphenyl group, C 6 H 5 -C 6 H 4 -) it is.
- Examples of the aliphatic hydrocarbon group for R 7 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 10 carbon atoms.
- examples of the substituent of the phenyl group and a diphenyl group in R 7, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) can be exemplified the like, the number and position of the substituent is not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
- R 7 is a thienyl group or a diphenyl group
- the bonding position of these with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X is not particularly limited.
- the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
- two Xs may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
- a group represented by “ ⁇ CH—C 6 H 4 —NO 2 ” can be exemplified.
- X is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —”. It is preferable that at least one X is a hydrogen atom.
- ⁇ -ketocarboxylate (1) can further reduce the concentration of the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment.
- post-treatment such as drying treatment or heating (firing) treatment.
- the ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. It is possible to form metallic silver. And by using together with reducing agents, such as the said reducing compound, it decomposes
- silver ⁇ -ketocarboxylate (1) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
- the silver carboxylate (4) is represented by the general formula (4).
- R 8 is represented by an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH) or the formula “—COOAg”. Group.
- Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
- the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —)
- one or more of the methylene groups may be substituted with a carbonyl group.
- the number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group.
- the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
- Silver carboxylate (4) includes silver pyruvate (CH 3 —C ( ⁇ O) —C ( ⁇ O) —OAg), silver acetate (CH 3 —C ( ⁇ O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C ( ⁇ O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C ( ⁇ O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C ( ⁇ O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C ( ⁇ O) —OAg), Shu It is preferably silver oxide (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) or silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg).
- silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) and silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
- silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg)
- silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
- —COOAg one of the groups represented by the formula “—COOH” (HO—C ( ⁇ O) —C ( ⁇ O) —OAg, HO)
- —C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg is —COOH
- the silver carboxylate (4) is also used for the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment.
- the concentration can be further reduced.
- reducing agents such as the said reducing compound, it decomposes
- the silver carboxylate (4) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
- the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferably at least one selected from the group consisting of silver oxide and silver malonate.
- silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with a nitrogen-containing compound (particularly an amine compound) described later, and are particularly suitable for increasing the concentration of silver ink compositions. It is mentioned as a thing.
- the nitrogen-containing compound is an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter abbreviated as “quaternary ammonium salt”).
- Ammonia an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid.
- ammonium salts an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid
- ammonium salt derived from an amine compound an acid
- ammonium salts derived from ammonia One or more selected from the group consisting of ammonium salts (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”). That is, the nitrogen-containing compound to be blended may be only one kind, or two or more kinds. When two
- the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
- the quaternary ammonium salt has 4 to 25 carbon atoms.
- the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
- Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
- the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples thereof are the same as the alkyl group in R, and are linear or branched having 1 to 19 carbon atoms. It is preferably a chain alkyl group or a cyclic alkyl group having 3 to 7 carbon atoms.
- preferable monoalkylamine examples include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3 Examples include -methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, and 1,2-dimethyl-n-propylamine.
- aryl group constituting the monoarylamine examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and preferably has 6 to 10 carbon atoms.
- the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton, and the heteroatom includes a nitrogen atom, a sulfur atom, an oxygen atom, and a boron atom. Can be illustrated.
- the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
- the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
- Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, tetrazolyl group A pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, and a piperazinyl group, which are preferably 3- to 8-membered rings, and more preferably 5- to 6-membered rings.
- Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
- Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
- Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
- it is a 5- to 6-membered ring.
- the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, and a thiazolidinyl group, and is a 3- to 8-membered ring.
- a 5- to 6-membered ring is preferable.
- Examples of the polyaryl having 1 to 5 nitrogen atoms as the heteroaryl group include indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group, tetra Examples thereof include a zolopyridyl group, a tetrazolopyridazinyl group, and a dihydrotriazolopyridazinyl group, preferably a 7-12 membered ring, and more preferably a 9-10 membered ring.
- Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithiaphthalenyl group and a benzothiophenyl group, preferably a 7 to 12 membered ring, preferably a 9 to 10 membered ring. More preferably, it is a ring.
- Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzooxadiazolyl group. Preferably, it is a 9 to 10 membered ring.
- Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group and a benzothiadiazolyl group, and is a 7 to 12 membered ring. Preferably, it is a 9 to 10 membered ring.
- the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
- the preferred diamine in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group.
- the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane.
- secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
- the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
- a cyclic alkyl group is preferred.
- Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
- Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
- the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
- the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
- Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
- tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
- the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
- the cyclic alkyl group is preferably.
- the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
- Preferable examples of the trialkylamine include N, N-dimethyl-n-octadecylamine and N, N-dimethylcyclohexylamine.
- the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
- the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
- examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
- the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
- the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
- halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine and iodine.
- Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
- the chain amine compound and the quaternary organic ammonium salt have been mainly described.
- the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
- the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, a pyridine can be illustrated as a preferable thing.
- the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
- the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
- the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
- Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
- examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the alkyl group constituting the monoalkylamine has a substituent
- the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
- a cyclic alkyl group having 3 to 7 carbon atoms having an alkyl group having 1 to 5 carbon atoms is preferable, and a monoalkylamine having such a substituent is specifically 2-phenylethylamine. , Benzylamine, and 2,3-dimethylcyclohexylamine.
- aryl group and the alkyl group which are substituents may further have one or more hydrogen atoms substituted with halogen atoms, and as monoalkylamines having such substituents substituted with halogen atoms, And 2-bromobenzylamine.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the aryl group constituting the monoarylamine has a substituent
- the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as the substituent, and the monoaryl having such a substituent
- Specific examples of the amine include bromophenylamine.
- examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the alkyl group constituting the dialkylamine has a substituent
- the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent.
- Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
- the amine compound is n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methyl.
- 2-ethylhexylamine is excellent in compatibility with the above-mentioned silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition, and further reducing the surface roughness of the conductor described later.
- the ammonium salt derived from the amine compound is an ammonium salt obtained by reacting the amine compound with an acid
- the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as acetic acid.
- the type of acid is not particularly limited.
- the ammonium salt derived from the amine compound include, but are not limited to, n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride and the like. .
- ammonium salt derived from ammonia is an ammonium salt formed by reacting ammonia with an acid, and examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
- examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
- the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used singly or in combination of two or more. .
- the combination and ratio can be adjusted arbitrarily.
- you may use individually by 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from an amine compound, and ammonium salt derived from ammonia More than one species may be used in combination.
- the combination and ratio can be adjusted arbitrarily.
- the compounding amount of the nitrogen-containing compound is preferably 0.2 to 15 mol, more preferably 0.3 to 5 mol per mol of the carboxylate silver. Particularly preferred is 0.3 to 2.5 mol.
- the silver ink composition can form a conductor (metallic silver) more stably without performing a heat treatment at a high temperature.
- the resulting mixture (silver ink composition)
- the resulting mixture (silver ink composition)
- the resulting mixture at least a part of the silver carboxylate is used.
- formation of metallic silver is started, and metallic silver may be deposited.
- the smaller the compounding amount of the nitrogen-containing compound the higher the viscosity of the mixture (silver ink composition), the aggregation of the precipitated metallic silver is suppressed, and the metallic silver in the obtained silver ink composition is suppressed. Dispersibility is improved.
- a conductor obtained by forming metallic silver by a method described later using such a silver ink composition has a low viscosity, that is, when a silver ink composition having a large amount of a nitrogen-containing compound is used. It has higher conductivity (lower volume resistivity), lower surface roughness, and more favorable characteristics than a conductor.
- the reducing compound is at least one selected from the group consisting of oxalic acid (HOOC—COOH), hydrazine (H 2 N—NH 2 ) and the compound represented by the general formula (5) (compound (5)). belongs to. That is, the reducing compound to be blended may be only one kind, or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
- R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, an N, N-dialkylamino group, a hydroxyl group or an amino group.
- the alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic, and is the same as the alkyl group in R in the general formula (1) The thing can be illustrated.
- the alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms, and examples thereof include monovalent groups in which the alkyl group in R 21 is bonded to an oxygen atom.
- the N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. Each alkyl group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
- the alkyl group bonded to the nitrogen atom may be linear, branched or cyclic, respectively, and the alkyl group in R of the general formula (1) except that it has 1 to 19 carbon atoms. The thing similar to group can be illustrated.
- hydrazine may be monohydrate (H 2 N—NH 2 .H 2 O).
- the reducing compound includes formic acid (HC ( ⁇ O) —OH), methyl formate (HC— ⁇ O) —OCH 3 ), ethyl formate (HC— ⁇ O) —OCH 2 CH 3 ). , Butyl formate (HC ( ⁇ O) —O (CH 2 ) 3 CH 3 ), propanal (HC ( ⁇ O) —CH 2 CH 3 ), butanal (HC ( ⁇ O) — ( CH 2 ) 2 CH 3 ), hexanal (HC ( ⁇ O) — (CH 2 ) 4 CH 3 ), formamide (HC ( ⁇ O) —NH 2 ), N, N-dimethylformamide (H—) C ( ⁇ O) —N (CH 3 ) 2 ) or oxalic acid is preferred.
- the compounding amount of the reducing compound is such that the number of moles of the carbonyl group (—C ( ⁇ O) —) in the reducing compound is represented by the formula “—COOAg” in the silver carboxylate.
- the number of moles of the group represented is preferably 0.16 to 3 times, more preferably 0.2 to 2.4 times, still more preferably 0.24 to 2 times, particularly preferably 0.5 to 2 times.
- the ratio of the number of moles of the carbonyl group in the blended reducing compound to the number of moles of the group represented by the formula “—COOAg” in the blended silver carboxylate ([reducing property The number of moles of carbonyl group in the compound] / [number of moles of group represented by the formula “—COOAg” in silver carboxylate], molar ratio) is preferably 0.16 to 3, more preferably 0.2. To 2.4, more preferably 0.24 to 2, particularly preferably 0.5 to 2.
- the compounding amount of the reducing compound is changed to silver carboxylate.
- the silver ink composition can form a conductor (metal silver) more stably without performing a heat treatment at a high temperature.
- the one where there is much compounding quantity of the said reducing compound improves the storage stability of a silver ink composition, and the electroconductivity of the conductor mentioned later becomes higher.
- the compounding amount of the reducing compound is larger, when the compounding is performed while dropping the reducing compound as described later, fluctuations in the dropping rate can be easily suppressed.
- the reducing compound is an acidic compound such as formic acid or oxalic acid
- the means for adhering the silver ink composition such as a printing plate or a printing press to the substrate is corroded.
- the amount of the nitrogen-containing compound, which is usually basic is small, it is preferable to adjust so that the amount of the reducing compound is not excessive.
- the silver ink composition may further include other components that do not fall within the scope of the effects of the present invention.
- the other components are not particularly limited, and can be arbitrarily selected according to the purpose. One kind may be used alone, or two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
- Preferred examples of the other components include alcohol and solvents other than alcohol.
- the alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
- R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
- R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
- the alkyl group having 1 to 20 carbon atoms in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ′′ are the same as the alkyl group in R of the general formula (1).
- Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic carbon Examples thereof include a monovalent group formed by bonding a hydrogen group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like, and the hydrogen atom of the phenyl group in R may be substituted. This is the same as the substituent. And the number and position of a substituent are not specifically limited, When there are two or more substituents, these several substituents may mutually be same or different.
- R ′ and R ′′ are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
- Examples of preferable acetylene alcohol (2) include 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, and 3-methyl-1-pentyn-3-ol.
- the blending amount of acetylene alcohol (2) is preferably 0.03 to 0.7 mole, and 0.05 to 0.3 mole per mole of the above-mentioned silver carboxylate. It is more preferable. By setting it as such a range, stability of the mixture before the said reduction
- solvent is other than the alcohol, and can be arbitrarily selected according to the type and amount of the compounding components.
- the ratio of the blended amount of the other components to the total amount of the blended components is preferably 10% by mass or less, more preferably 5% by mass or less, and 0% by mass, that is, other. Even if the component is not blended, the silver ink composition exhibits its effect sufficiently.
- the silver ink composition can be obtained by blending the silver carboxylate, the nitrogen-containing compound, the reducing compound, and, if necessary, the other components. After the blending of each component, the resulting product may be used as it is as a silver ink composition, or a product obtained by performing a known purification operation as necessary may be used as a silver ink composition.
- impurities that inhibit conductivity are not generated, or the amount of such impurities generated can be suppressed to an extremely small amount, so that it is not necessary to perform a purification operation.
- a conductive material having excellent conductivity can be obtained.
- the mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
- all of the compounding components may be dissolved, or a part of the components may be dispersed without dissolving, but it is preferable that all of the compounding components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed. In the case of uniformly dispersing the undissolved component, for example, it is preferable to apply a method of dispersing using the above-described three-roll, kneader or bead mill.
- the temperature at the time of blending is not particularly limited as long as each blended component does not deteriorate, but is preferably ⁇ 5 to 60 ° C. And the temperature at the time of mixing
- the resulting mixture (silver ink composition) is relatively easy to generate heat. And, when the temperature at the time of blending these is high, this mixture will be in the same state as at the time of heat treatment of the silver ink composition to be described later, so by the decomposition promoting action of the silver carboxylate by the reducing compound, It is speculated that the formation of metallic silver may be initiated in at least part of the silver carboxylate.
- Such a silver ink composition containing metallic silver is subjected to a post-treatment under milder conditions than the silver ink composition not containing metallic silver during the production of the electric conductor described later. ) May be formed.
- the conductor may be formed by performing post-treatment under the same mild conditions.
- the conductor can be obtained by post-treatment, by heat treatment at a lower temperature, or only by drying at room temperature without performing heat treatment. Sometimes it can be formed.
- the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
- the reducing compound is blended to produce the silver ink composition, the dripping of the reducing compound is blended.
- the surface roughness of the conductor described later tends to be further reduced by suppressing the fluctuation of the dropping speed.
- the conductor according to the present invention is obtained by forming metallic silver using the silver ink composition, and is composed mainly of metallic silver.
- “having metallic silver as a main component” means that the ratio of metallic silver is sufficiently high so that it can be regarded as being composed solely of metallic silver.
- the ratio of metallic silver in a conductor Is preferably 99% by mass or more.
- the conductor can be produced, for example, by attaching a silver ink composition on a substrate and appropriately performing post-treatment such as drying or heating (firing).
- the heat treatment may be performed also as a drying treatment.
- the substrate is preferably in the form of a film or a sheet, and preferably has a thickness of 10 to 5000 ⁇ m.
- the material of the base material may be appropriately selected according to the purpose and is not particularly limited, but specific examples of preferable materials include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), polyvinyl acetate (PVAc), acrylic resin such as polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide , Polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PES), polyetherketone (PEK), polyetheretherketone (PEEK), poly
- the substrate may be composed of a single layer, or may be composed of two or more layers.
- a base material consists of multiple layers
- these multiple layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different. And when several layers differ from each other, the combination of these several layers is not specifically limited.
- the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
- a base material consists of multiple layers, it is good to make it the total thickness of each layer be the thickness of said preferable base material.
- a silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply
- the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, gravure printing method, gravure offset printing method, pad printing method and the like.
- the coating method include spin coaters, air knife coaters, curtain coaters, die coaters, blade coaters, roll coaters, gate roll coaters, bar coaters, rod coaters, gravure coaters, and other methods such as wire bars. It can be illustrated.
- the silver ink composition may be dried by a known method.
- the silver ink composition may be dried under normal pressure, reduced pressure, or air blowing conditions, and may be performed in the air or in an inert gas atmosphere. Good.
- the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
- the temperature during the heat treatment is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
- the lower limit of the temperature at the time of heat processing is not specifically limited as long as metallic silver can be formed efficiently, it is preferable that it is 50 degreeC.
- the heating time may be appropriately adjusted according to the heating temperature, and may be, for example, 0.1 to 6 hours.
- the conductor may be sufficiently formed of metallic silver and have high conductivity, that is, low volume resistivity.
- the volume resistivity is preferably 2500 ⁇ ⁇ cm or less, more preferably 1000 ⁇ ⁇ cm.
- it is particularly preferably set to 300 ⁇ ⁇ cm.
- the conductor can sufficiently reduce the surface roughness, and is preferably 600 nm or less, more preferably 300 nm or less, further preferably 250 nm or less, particularly preferably 200 nm or less, and most preferably 100 nm or less.
- surface roughness means arithmetic average roughness (Ra), and only the reference length is extracted from the roughness curve in the direction of the average line, and the direction of the average line of the extracted portion.
- this surface roughness may be referred to as “surface roughness Ra”.
- a communication device includes a conductor obtained by forming metallic silver on a base material using the silver ink composition, and further includes the base material as a casing. .
- An intermediate layer such as an ink receiving layer may be provided between the substrate and the conductor.
- Such a communication device can have the same configuration as that of a known communication device, for example, except that the conductor having a predetermined pattern is used as an antenna and the casing is formed of the base material.
- a mobile phone can be configured by combining a voice input unit, a voice output unit, an operation switch, a display unit, and the like in addition to a laminated structure in which a conductor is formed on a base material.
- the communication device can be further reduced in weight and thickness as compared with the prior art.
- the conductor can be formed at a low temperature, and since a wide range of materials such as a base material can be selected, the degree of freedom in design can be dramatically improved and a more rational structure can be obtained. .
- Example 1 ⁇ Manufacture of silver ink composition and conductor, and evaluation of conductor> [Example 1]
- 2-methylacetoacetic acid silver (19.0 g) to 2-ethylhexylamine (11.0 g) in a beaker so that the liquid temperature is 50 ° C. or less, and stirring for 15 minutes using a mechanical stirrer.
- a liquid product was obtained.
- Formic acid (1.22 g) was added dropwise to this liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition.
- Table 1 shows the type and amount of each component.
- nitrogen-containing compound (molar ratio) means the compounding amount (number of moles) of 2-ethylhexylamine (nitrogen-containing compound) per mol of compounding silver 2-methylacetoacetate (silver carboxylate). ) ([Number of moles of nitrogen-containing compound] / [number of moles of silver carboxylate]).
- the “reducing compound (molar ratio)” refers to the blended formic acid (reduced) relative to the number of moles of the group represented by the formula “—COOAg” in the blended silver 2-methylacetoacetate (silver carboxylate).
- Ratio of the number of moles of the carbonyl group in the functional compound ([number of moles of the carbonyl group in the reducing compound] / [number of moles of the group represented by the formula “—COOAg” in the silver carboxylate]) .
- a polyethylene terephthalate (PET) film (“Lumirror S10” manufactured by Toray Industries, Inc., thickness 100 ⁇ m).
- PET polyethylene terephthalate
- As the screen plate a 500-mesh stainless steel plate was used, and a pattern with a line width of 0.5 mm and a line length of 30 mm was printed under the condition of an emulsion thickness of 10 ⁇ m.
- the obtained printed pattern was post-treated by baking (heat treatment) at 80 ° C. for 1 hour to form a conductor (metal silver) pattern.
- the line resistance value R was measured using a digital multimeter (“PC5000a” manufactured by Sanwa Denki Keiki Co., Ltd.), and the cross-sectional area A was measured using a shape measurement laser microscope (“VK-X100” manufactured by Keyence Corporation). did.
- Example 2 A silver ink composition was produced in the same manner as in Example 1 except that the amount of formic acid was changed to 1.26 g instead of 1.22 g so that the molar ratio shown in Table 1 was obtained, and further a conductor was produced. And evaluated. The results are shown in Table 2.
- Example 3 A silver ink composition was produced in the same manner as in Example 1 except that the amount of formic acid was changed to 1.25 g to be 3.15 g so that the molar ratio shown in Table 1 was obtained, and further a conductor was produced. And evaluated. The results are shown in Table 2.
- Example 4 A silver ink composition was produced in the same manner as in Example 1 except that the amount of formic acid was changed to 1.24 g so that the molar ratio shown in Table 1 was replaced with 1.22 g, and a conductor was further produced. And evaluated. The results are shown in Table 2.
- Example 5 In order to achieve the molar ratio shown in Table 1, the amount of 2-ethylhexylamine was changed to 14.4 g instead of 11.0 g, and the amount of silver 2-methylacetoacetate was changed to 15.6 g instead of 19.0 g. A silver ink composition was produced in the same manner as in Example 1 except that the amount of formic acid was changed to 1.21 g instead of 1.22 g, and a conductor was produced and evaluated. The results are shown in Table 2.
- Example 6 A silver ink composition was produced in the same manner as in Example 5 except that the amount of formic acid was changed to 1.21 g to be 3.18 g so that the molar ratio shown in Table 1 was obtained, and further a conductor was produced. And evaluated. The results are shown in Table 2.
- Example 7 The amount of 2-ethylhexylamine was changed to 16.0 g instead of 11.0 g, and the amount of silver 2-methylacetoacetate was changed to 13.8 g instead of 19.0 g so that the molar ratio shown in Table 1 was obtained.
- a silver ink composition was produced in the same manner as in Example 1 except that the amount of formic acid was changed to 1.21 g instead of 1.22 g, and a conductor was produced and evaluated. The results are shown in Table 2.
- Example 8 The amount of 2-ethylhexylamine was changed to 17.4 g instead of 11.0 g, and the amount of silver 2-methylacetoacetate was changed to 12.5 g instead of 19.0 g so that the molar ratio shown in Table 1 was obtained. Except for this, a silver ink composition was produced in the same manner as in Example 1, and a conductor was produced and evaluated. The results are shown in Table 2.
- Example 9 A silver ink composition was produced in the same manner as in Example 8 except that the amount of formic acid was changed to 1.25 g so that the molar ratio shown in Table 1 was replaced with 1.22 g, and a conductor was further produced. And evaluated. The results are shown in Table 2.
- Example 1 A silver ink composition was produced in the same manner as in Example 1 except that formic acid was not blended, and further, production and evaluation of a conductor were attempted. The results are shown in Table 2.
- Example 2 A silver ink composition was produced in the same manner as in Example 5 except that formic acid was not blended, and production and evaluation of a conductor were further attempted. The results are shown in Table 2.
- Example 3 A silver ink composition was produced in the same manner as in Example 7 except that formic acid was not blended, and further, production and evaluation of a conductor were attempted. The results are shown in Table 2.
- Example 4 A silver ink composition was produced in the same manner as in Example 8 except that formic acid was not blended, and further, production and evaluation of a conductor were attempted. The results are shown in Table 2.
- the silver ink compositions of Examples 1 to 9 were blended with formic acid (reducing compound), so that even when the heating temperature was as low as 80 ° C., the silver ink composition had sufficient conductivity by heat treatment. I was able to form a body pattern. Further, the conductor pattern had a small surface roughness.
- the silver ink compositions of Comparative Examples 1 to 4 did not contain formic acid, so that at a heating temperature as low as 80 ° C., metal silver was not sufficiently formed by the heat treatment, so that The pattern was overloaded because the line resistance value was too large, and the volume resistivity could not be calculated (the volume resistivity was greater than 1 ⁇ 10 7 ⁇ ⁇ cm), and the pattern was not conductive.
- Example 10 As shown in Tables 3 and 4, Example 4 was used except that the printed pattern was baked at 50 ° C. instead of being baked (heat treatment) at 80 ° C. to form a conductor (metal silver) pattern. A silver ink composition was produced in the same manner as described above, and a conductor was produced and evaluated. The results are shown in Table 4.
- Example 11 As shown in Tables 3 and 4, instead of firing the printed pattern at 80 ° C. for 1 hour (heat treatment), it was fired at 50 ° C. for 2 hours to form a conductor (metal silver) pattern. A silver ink composition was produced in the same manner as in Example 4, and a conductor was produced and evaluated. The results are shown in Table 4.
- Example 12 As shown in Tables 3 and 4, instead of firing the printed pattern at 80 ° C. for 1 hour (heat treatment), it was fired at 50 ° C. for 3 hours to form a conductor (metal silver) pattern. A silver ink composition was produced in the same manner as in Example 4, and a conductor was produced and evaluated. The results are shown in Table 4.
- Example 13 As shown in Tables 3 and 4, instead of firing the printed pattern at 80 ° C. for 1 hour (heat treatment), the printed pattern was left to stand at room temperature (23 to 25 ° C.) for 24 hours and dried. A silver ink composition was produced in the same manner as in Example 3 except that a pattern of (metal silver) was formed, and a conductor was produced and evaluated. The results are shown in Table 4.
- Example 13 a conductor pattern having sufficient conductivity could be formed only by drying the printed pattern without heating. This is because during the production of the silver ink composition, the formation of metallic silver is started by the temperature increase at the time of blending formic acid and the promotion of decomposition of silver carboxylate by formic acid, and the silver ink composition after production is subjected to heat treatment.
- Example 14 By adding silver acetoacetate (17.8 g) to 2-ethylhexylamine (16.5 g) in a beaker so that the liquid temperature becomes 50 ° C. or less, the mixture is stirred for 1 hour using a mechanical stirrer to I got a thing. To this liquid, formic acid (3.15 g) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. Table 5 shows the type and amount of each component. Next, a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 6.
- Example 15 A silver ink composition was produced in the same manner as in Example 14 except that the amount of 2-ethylhexylamine was changed to 11.0 g instead of 16.5 g so that the molar ratio shown in Table 5 was obtained. The body was manufactured and evaluated. The results are shown in Table 6.
- Example 16 As shown in Table 5, a silver ink composition was produced in the same manner as in Example 14 except that silver isobutyryl acetate (20.2 g) was used instead of silver acetoacetate (17.8 g). Were manufactured and evaluated. The results are shown in Table 6.
- Example 17 As shown in Table 5, silver pivaloyl acetate (21.4 g) was used instead of silver acetoacetate (17.8 g), the amount of 2-ethylhexylamine was changed to 22.0 g instead of 16.5 g, and 2 A silver ink composition was produced in the same manner as in Example 14 except that the stirring time after addition of ethylhexylamine was changed to 1 hour instead of 1 hour, and a conductor was produced and evaluated. The results are shown in Table 6.
- Example 18 By adding 2-ethylhexylamine (11.0 g) to silver 2-methylacetoacetate (19.0 g) in a beaker so that the liquid temperature is 50 ° C. or lower, and stirring for 15 minutes using a mechanical stirrer. A liquid product was obtained. To this liquid, formic acid (3.15 g) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. Table 5 shows the type and amount of each component. Next, a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 6.
- Example 19 By adding silver 2-methylacetoacetate (19.0 g) to 2-ethylhexylamine (7.7 g) in a beaker so that the liquid temperature is 50 ° C. or lower, and stirring for 15 minutes using a mechanical stirrer. A liquid product was obtained.
- Formic acid (2.75 g) was added dropwise to this liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition.
- Table 5 shows the type and amount of each component.
- a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 6.
- Example 20 As shown in Table 5, Example 19 except that the amount of 2-ethylhexylamine was changed to 4.4 g instead of 7.7 g and the amount of formic acid was changed to 3.15 g instead of 2.75 g. Similarly, a silver ink composition was produced, and further a conductor was produced and evaluated. The results are shown in Table 6.
- Example 21 As shown in Table 5, Example 19 except that the amount of 2-ethylhexylamine was changed to 4.4 g instead of 7.7 g and the amount of formic acid was changed to 2.36 g instead of 2.75 g. Similarly, a silver ink composition was produced, and further a conductor was produced and evaluated. The results are shown in Table 6.
- Example 22 Add 2-methylacetoacetate silver to 2-heptylamine (0.4 times molar amount relative to 2-methylacetoacetate silver described later) in a beaker so that the liquid temperature is 50 ° C. or less, and The mixture was stirred for 15 minutes to obtain a liquid material.
- formic acid 0.7-fold molar amount with respect to silver 2-methylacetoacetate
- Table 7 shows the type and amount of each compounding component.
- a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 8.
- Example 23 As shown in Table 7, instead of 2-heptylamine (0.4 times mole amount with respect to silver 2-methylacetoacetate), 2-aminooctane (0.4 times mole amount with respect to silver 2-methylacetoacetate) A silver ink composition was produced in the same manner as in Example 22 except that was used, and a conductor was produced and evaluated. The results are shown in Table 8.
- Example 24 Add silver acetoacetate to 2-ethylhexylamine (0.6 times molar amount relative to silver acetoacetate described later) in a beaker so that the liquid temperature is 50 ° C. or less, and use a mechanical stirrer for 15 minutes. By stirring, a liquid material was obtained. To this liquid, formic acid (0.8 molar amount relative to silver acetoacetate) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. Table 7 shows the type and amount of each compounding component. Next, a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 8.
- Example 25 Add caproyl silver acetate to 2-ethylhexylamine (2.0 times the molar amount of silver caproyl acetate described later) in a beaker so that the liquid temperature is 50 ° C. or less, and use a mechanical stirrer for 15 minutes. By stirring, a liquid material was obtained. To this liquid, formic acid (a 1.0-fold molar amount with respect to silver caproyl acetate) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. Table 7 shows the type and amount of each compounding component. Next, a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 8. In addition, the caproyl silver acetate was manufactured by the method shown below.
- caproyl silver acetate Manufacture of caproyl silver acetate
- methyl caproyl acetate methyl 3-oxooctanoate, manufactured by Nippon Seika Co., Ltd.
- 10% sodium hydroxide aqueous solution 70.0g was dripped here over 5 minutes. During this time, the liquid temperature was set to 20 ° C. or lower. Distilled water (70.0 g) was further added thereto, and the mixture was stirred for 24 hours in an incubator adjusted to 20 ° C.
- reaction solution was cooled to 10 ° C. or lower, and 5% nitric acid (22.1 g) was added to adjust the pH of the reaction solution to 5.5.
- a 5% silver nitrate aqueous solution 476.6 g was added to a beaker having a capacity of 1000 mL, and the reaction solution having a pH of 5.5 was added dropwise over 9 minutes while stirring at a stirring speed of 350 rpm. During this time, the liquid temperature was 11 to 12 ° C.
- Example 26 Add 2-methylacetoacetic acid silver to 2-ethylhexylamine (0.5-fold molar amount with respect to 2-methylacetoacetate silver described later) in a beaker so that the liquid temperature is 50 ° C. or less. And a liquid was obtained by stirring for 15 minutes. To this liquid, formic acid (0.6-fold molar amount with respect to silver 2-methylacetoacetate) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After completion of the formic acid addition, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. Table 7 shows the type and amount of each compounding component. Subsequently, a conductor was produced and evaluated in the same manner as in Example 1 using this silver ink composition. The results are shown in Table 8.
- Example 27 As shown in Table 7, the amount of formic acid was the same as that of Example 26 except that the amount of formic acid was changed to 0.7 times the molar amount instead of 0.6 times the molar amount of silver 2-methylacetoacetate. In addition, a silver ink composition was produced, and further a conductor was produced and evaluated. The results are shown in Table 8.
- Example 28 As shown in Table 7, the amount of formic acid was the same as in Example 26 except that the amount of formic acid was changed to 0.8-fold molar amount instead of 0.6-fold molar amount with respect to silver 2-methylacetoacetate. In addition, a silver ink composition was produced, and further a conductor was produced and evaluated. The results are shown in Table 8.
- the silver ink compositions of Examples 22 to 28 were reduced even when the types of silver carboxylate and nitrogen-containing compound and the compounding ratio of nitrogen-containing compound and reducing compound (formic acid) were changed.
- a conductive pattern having sufficient conductivity could be formed by heat treatment even at a heating temperature as low as 80 ° C. Further, the conductor pattern had a small surface roughness.
- the silver ink composition according to the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg” (hereinafter sometimes simply referred to as “silver carboxylate”) and an amine compound having 25 or less carbon atoms. And one or more nitrogen-containing compounds selected from the group consisting of quaternary ammonium salts, ammonia, and ammonium salts obtained by reacting the amine compound or ammonia with an acid (hereinafter simply abbreviated as “nitrogen-containing compounds”). And carbon dioxide is supplied to the first mixture in which the first mixture is blended to form the second mixture.
- —COOAg silver carboxylate
- nitrogen-containing compounds selected from the group consisting of quaternary ammonium salts, ammonia, and ammonium salts obtained by reacting the amine compound or ammonia with an acid
- the second mixture is further fed with oxalic acid, hydrazine and the following general formula (5).
- One or more reducing compounds selected from the group consisting of the compounds represented (hereinafter sometimes abbreviated as “compound (5)”) (hereinafter sometimes simply abbreviated as “reducing compounds”). There characterized by comprising blended.
- HC ( O) -R 21 (5) (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
- the silver ink composition can more easily form metallic silver, and can form, for example, metallic silver (conductor) having sufficient conductivity even by heat treatment at a low temperature.
- the first mixture is a mixture of the silver carboxylate and the nitrogen-containing compound.
- the silver carboxylate and the nitrogen-containing compound will be described.
- the compounding amount of the nitrogen-containing compound is preferably 0.4 to 15 mol, and preferably 0.8 to 5 mol per mol of the silver carboxylate. More preferred.
- the silver ink composition can form a conductor (metallic silver) more stably without performing a heat treatment at a high temperature.
- the first mixture may further be blended with other components that do not fall within the scope of the effects of the present invention.
- the other components are not particularly limited, and can be arbitrarily selected according to the purpose. One kind may be used alone, or two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
- Preferred examples of the other components include alcohol and solvents other than alcohol.
- solvent is other than the alcohol, and can be arbitrarily selected according to the type and amount of the compounding components.
- the first mixture can be obtained by blending the silver carboxylate, the nitrogen-containing compound, and, if necessary, the other components. At the time of blending each component, all the components may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially. Good.
- the mixing method is not particularly limited, and may be appropriately selected from known methods such as a method of mixing by rotating a stirrer or a stirring blade, a method of mixing using a mixer, a method of adding ultrasonic waves, and the like. .
- the first mixture may have all of the compounding components dissolved, or may be in a state of being dispersed without dissolving some of the components, but preferably all of the compounding components are dissolved and dissolved. It is preferable that the components not dispersed are uniformly dispersed.
- the temperature at the time of blending is not particularly limited as long as each blended component does not deteriorate, but is preferably ⁇ 5 to 30 ° C.
- the blending time may be appropriately adjusted according to the type of blending component and the temperature at the time of blending.
- the second mixture is obtained by supplying carbon dioxide to the first mixture.
- Carbon dioxide (CO 2 ) to be supplied may be either gaseous or solid (dry ice), or both gaseous and solid.
- the carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in the first mixture, the other end is connected to a carbon dioxide gas supply source, and the carbon dioxide gas is supplied to the first mixture through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
- the supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture.
- the viscosity at 20 to 25 ° C. of the silver ink composition has been described here, the temperature at the time of using the silver ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected.
- the flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the first mixture, and is 1 mL / min or more. It is more preferable that The upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the mixture in consideration of handling properties and the like.
- the carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
- the temperature of the first mixture at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C, more preferably 7 to 60 ° C, and particularly preferably 10 to 50 ° C.
- the flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
- the carbon dioxide gas is preferably supplied while stirring the first mixture. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the first mixture, and carbon dioxide can be supplied more efficiently.
- the stirring method at this time may be the same as the mixing method at the time of preparing the first mixture.
- the supply of dry ice may be performed by adding dry ice to the first mixture.
- the total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed). What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
- the first mixture is preferably stirred, and for example, it is preferably stirred in the same manner as in the production of the first mixture. By doing in this way, carbon dioxide can be supplied efficiently.
- the temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas. Moreover, what is necessary is just to adjust stirring time suitably according to stirring temperature.
- the viscosity of the second mixture may be appropriately adjusted according to the purpose, such as a method for handling the silver ink composition or the second mixture, and is not particularly limited.
- the viscosity of the second mixture at 20 to 25 ° C. is 3 Pa ⁇ s or more. It is preferable.
- the viscosity of the second mixture at 20 to 25 ° C. has been described, but the temperature at the time of use of the second mixture is not limited to 20 to 25 ° C. and can be arbitrarily selected.
- ⁇ Silver ink composition> The silver ink composition is obtained by blending the reducing compound with the second mixture. Next, the reducing compound will be described.
- the compounding amount of the reducing compound is such that the number of moles of the carbonyl group (—C ( ⁇ O) —) in the reducing compound is the formula “—COOAg in the silver carboxylate.
- the number of moles of the group represented by “ is preferably 0.04 to 3.5 times, more preferably 0.06 to 2.5 times, and particularly preferably 0.08 to 1.5 times. Adjust.
- the ratio of the number of moles of the carbonyl group in the blended reducing compound to the number of moles of the group represented by the formula “—COOAg” in the blended silver carboxylate ([reducing property The number of moles of carbonyl group in the compound] / [number of moles of group represented by the formula “—COOAg” in silver carboxylate], the mole ratio) is preferably 0.04 to 3.5, more preferably 0. 0.06 to 2.5, particularly preferably 0.08 to 1.5.
- the compounding amount of the reducing compound is changed to silver carboxylate.
- the amount is preferably 0.04 to 3.5 times mol, more preferably 0.06 to 2.5 times mol, and particularly preferably 0.08 to 1.5 times mol.
- the amount of the reducing compound is set to The amount is preferably 0.02 to 1.75 times mol, more preferably 0.03 to 1.25 times mol, and particularly preferably 0.04 to 0.75 times mol with respect to the amount of silver acid. .
- the silver ink composition can form a conductor (metal silver) more stably without performing a heat treatment at a high temperature.
- the compounding amount of the reducing compound is larger, when the compounding is performed while dropping the reducing compound as described later, fluctuations in the dropping rate can be easily suppressed.
- the silver ink composition may be further blended with other components that do not fall within the scope of the effects of the present invention.
- the other components are not particularly limited, and can be arbitrarily selected according to the purpose. One kind may be used alone, or two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
- Preferred examples of the other components include those similar to the other components used during the production of the first mixture.
- the alcohol may be blended only before the carbon dioxide supply, that is, only when the first mixture is manufactured, or after the carbon dioxide supply, that is, only when the silver ink composition is manufactured. It may be blended both before and after the supply of carbon dioxide.
- the viscosity of the silver ink composition can be approximately the same as that of the second mixture.
- the silver ink composition is applied to a printing method using a high-viscosity ink such as a screen printing method or a flexographic printing method.
- the viscosity at 20 to 25 ° C. can be preferably 1 Pa ⁇ s or more.
- the silver ink composition can be obtained by blending the second mixture, the reducing compound, and, if necessary, the other components. After the blending of each component, the resulting product may be used as it is as a silver ink composition, or a product obtained by performing a known purification operation as necessary may be used as a silver ink composition.
- impurities that inhibit conductivity are not generated, or the amount of such impurities generated can be suppressed to an extremely small amount, so that it is not necessary to perform a purification operation.
- a conductive material having excellent conductivity can be obtained.
- the mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
- all of the compounding components may be dissolved, or a part of the components may be dispersed without dissolving, but it is preferable that all of the compounding components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed. In the case of uniformly dispersing the undissolved component, for example, it is preferable to apply a method of dispersing using the above-described three-roll, kneader or bead mill.
- the temperature at the time of blending is not particularly limited as long as each blended component does not deteriorate, but is preferably ⁇ 5 to 60 ° C. And the temperature at the time of mixing
- the blending time may be appropriately adjusted according to the type of blending component and the temperature at the time of blending, but is preferably 0.5 to 12 hours, for example.
- the other components may be blended during the production of either the first mixture or the second mixture, or may be blended during the production of both.
- the ratio of the blending amount of the other components in the total amount of the blending components other than carbon dioxide is preferably 10% by mass or less, and preferably 5% by mass or less. It is more preferable that the silver ink composition exhibits its effect sufficiently even when 0 mass, that is, no other components are blended.
- the resulting mixture (silver ink composition) tends to generate heat relatively easily. And when the temperature at the time of the compounding of the reducing compound is high, this mixture is in a state similar to that at the time of heat treatment of the silver ink composition described later, so the decomposition promoting action of the silver carboxylate by the reducing compound Therefore, it is presumed that formation of metallic silver may be started in at least a part of the silver carboxylate.
- Such a silver ink composition containing metallic silver is subjected to a post-treatment under milder conditions than the silver ink composition not containing metallic silver during the production of the electric conductor described later. ) May be formed.
- the conductor may be formed by performing post-treatment under the same mild conditions.
- the conductor can be obtained by post-treatment, by heat treatment at a lower temperature, or only by drying at room temperature without performing heat treatment. Sometimes it can be formed.
- the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
- the reducing compound is preferably added while dropping, and the surface roughness of the conductor described later tends to be further reduced by suppressing fluctuations in the dropping speed.
- the second mixture in the present invention has a higher viscosity than usual due to the supply of carbon dioxide as described above.
- the reducing compound into the second mixture depending on the type of the second mixture or reducing compound, formation of metallic silver is started in at least a part of the silver carboxylate as described above.
- Metallic silver may precipitate.
- a conductor obtained by forming metallic silver by a method described later using such a silver ink composition has a low viscosity, that is, obtained by blending a reducing compound in a mixture to which carbon dioxide is not supplied. It has higher conductivity (lower volume resistivity), lower surface roughness, and more favorable characteristics than the conductor when the obtained silver ink composition is used.
- a silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply
- the printing method include screen printing, flexographic printing, offset printing, dip printing, ink jet printing, dispenser printing, gravure printing, gravure offset printing, pad printing, and the like. Screen printing and flexographic printing are preferred.
- the coating method include spin coaters, air knife coaters, curtain coaters, die coaters, blade coaters, roll coaters, gate roll coaters, bar coaters, rod coaters, gravure coaters, and other methods such as wire bars. It can be illustrated.
- the silver ink composition may be dried by a known method.
- the silver ink composition may be dried under normal pressure, reduced pressure, or air blowing conditions, and may be performed in the air or in an inert gas atmosphere. Good.
- the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
- the temperature during the heat treatment is preferably 140 ° C. or lower, more preferably 130 ° C.
- the lower limit of the temperature at the time of heat processing is not specifically limited as long as metallic silver can be formed efficiently, it is preferable that it is 50 degreeC.
- the heating time may be appropriately adjusted according to the heating temperature, and may be, for example, 0.1 to 6 hours.
- the conductor may be sufficiently formed of metallic silver and have high conductivity, that is, low volume resistivity.
- the volume resistivity is preferably 3000 ⁇ ⁇ cm or less, more preferably 2500 ⁇ ⁇ cm. You can:
- the said conductor can fully reduce surface roughness, Preferably it is 300 nm or less, More preferably, it is 250 nm or less, More preferably, it is 200 nm or less, Most preferably, it can be 100 nm or less.
- this surface roughness may be referred to as “surface roughness Ra”.
- a communication device includes a conductor obtained by forming metallic silver on a base material using the silver ink composition, and further includes the base material as a casing. .
- An intermediate layer such as an ink receiving layer may be provided between the substrate and the conductor.
- Such a communication device can have the same configuration as that of a known communication device, for example, except that the conductor having a predetermined pattern is used as an antenna and the casing is formed of the base material.
- a mobile phone can be configured by combining a voice input unit, a voice output unit, an operation switch, a display unit, and the like in addition to a laminated structure in which a conductor is formed on a base material.
- the communication device can be further reduced in weight and thickness as compared with the prior art.
- the conductor can be formed at a low temperature, and since a wide range of materials such as a base material can be selected, the degree of freedom in design can be dramatically improved and a more rational structure can be obtained.
- nitrogen-containing compound (molar ratio) means the compounding amount (mole number) of nitrogen-containing compound (2-ethylhexylamine) per mol of silver carboxylate (silver 2-methylacetoacetate). ) ([Number of moles of nitrogen-containing compound] / [number of moles of silver carboxylate]).
- reducing compound (molar ratio) means a compounded reducing compound with respect to the number of moles of the group represented by the formula “—COOAg” in the compounded silver carboxylate (silver 2-methylacetoacetate).
- the obtained printed pattern was post-treated by baking (heat treatment) at 80 ° C. for 1 hour to form a conductor (metal silver) pattern.
- the line resistance value R was measured using a digital multimeter (“PC5000a” manufactured by Sanwa Denki Keiki Co., Ltd.), and the cross-sectional area A was measured using a shape measurement laser microscope (“VK-X100” manufactured by Keyence Corporation). did. The results are shown in Table 11.
- Example 30 to 39 A silver ink composition was produced in the same manner as in Example 29 except that the blending amount of formic acid was changed so that the molar ratio shown in Table 9 was obtained, and a conductor was produced and evaluated. The results are shown in Table 11.
- Example 40 In a beaker, 2-ethylhexylamine (290.3 g) and 3,5-dimethyl-1-hexyn-3-ol (“Surfinol 61” manufactured by Air Products Japan Co., Ltd. may be abbreviated as “DMHO”). ) (10.0 g), and then silver 2-methylacetoacetate (210.0 g) was added thereto so as to keep the temperature at 25 ° C. or lower under ice-cooling. A solution was obtained by stirring for minutes. Furthermore, after stirring for 1 hour as it is, carbon dioxide gas was supplied to the obtained yellow transparent reaction liquid (first mixture) at a flow rate of 900 mL / min for 6 hours while stirring at 20 ° C.
- DMHO 3,5-dimethyl-1-hexyn-3-ol
- a mixture (second mixture) in which the liquid was thickened was obtained.
- the viscosity of this mixture was measured in the same manner as in Example 29, it was 10 Pa ⁇ s.
- formic acid 1.8 g is added to the resulting mixture (30.0 g) under ice cooling so that the temperature of the reaction solution is 50 ° C. or lower, and the mixture is stirred at 25 ° C. for 1.5 hours.
- Table 9 shows the types and amounts of each component.
- Example 41 A silver ink composition was produced in the same manner as in Example 40 except that the blending amount of formic acid was changed so that the molar ratio shown in Table 9 was obtained, and a conductor was produced and evaluated. The results are shown in Table 11.
- Example 42 A conductor was produced and evaluated in the same manner as in Example 29, except that the temperature at which the printed pattern was baked (heat treatment) was 100 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 43 A conductor was produced and evaluated in the same manner as in Example 30 except that the temperature when firing (heating treatment) the printed pattern was changed to 100 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 44 A conductor was produced and evaluated in the same manner as in Example 31 except that the temperature at which the printed pattern was baked (heat treatment) was 100 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 45 A conductor was produced and evaluated in the same manner as in Example 29, except that the temperature at which the printed pattern was baked (heat treatment) was 120 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 46 A conductor was produced and evaluated in the same manner as in Example 30 except that the temperature when firing (heating treatment) the printed pattern was changed to 120 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 47 A conductor was produced and evaluated in the same manner as in Example 31 except that the temperature at which the printed pattern was baked (heat treatment) was 120 ° C. instead of 80 ° C. The results are shown in Table 11.
- Example 32 to 39 the surface roughness (arithmetic average surface) of the formed conductor (metal silver) pattern was further measured using a shape measurement laser microscope (“VK-X100” manufactured by Keyence Corporation). The roughness Ra) was measured. The results are shown in Table 11.
- Example 5 As shown in Table 10, a silver ink composition was produced in the same manner as in Example 29 except that formic acid was not blended, and further production and evaluation of a conductor were attempted. The results are shown in Table 11.
- a silver ink composition was prepared by adding silver 2-methylacetoacetate (19.0 g) to 2-ethylhexylamine (11.0 g) in a beaker under ice cooling and stirring for 30 minutes using a mechanical stirrer. Obtained. Table 10 shows the type and amount of each compounding component. Using the obtained silver ink composition, an attempt was made to produce and evaluate a conductor in the same manner as in Example 29. The results are shown in Table 11.
- the silver ink compositions of Examples 29 to 47 were blended with formic acid, so that a pattern of a conductor having sufficient conductivity by heat treatment even at a low heating temperature of 80 to 120 ° C. could be formed. Further, the conductor pattern had a small surface roughness.
- the silver ink compositions of Comparative Examples 5 to 9 did not contain formic acid, and therefore, at a heating temperature as low as 80 ° C., metal silver was not sufficiently formed by the heat treatment, and the heat treatment product The pattern was overloaded because the line resistance value was too large, and the volume resistivity could not be calculated (the volume resistivity was greater than 1 ⁇ 10 7 ⁇ ⁇ cm), and the pattern was not conductive.
- the conductor pattern of Example 37 is the same in the silver ink composition, the nitrogen-containing compound type and molar ratio, and the reducing compound type are the same, and the reducing compound molar ratio is substantially the same.
- the conductor pattern of Reference Example 1 in which carbon dioxide gas was not supplied that is, the viscosity was low
- the volume resistivity was lower, the surface roughness was smaller, and the characteristics were more favorable.
- Example 48 As shown in Table 12, a silver ink composition was produced in the same manner as in Example 29 except that silver acetoacetate was used instead of silver 2-methylacetoacetate and the amount of formic acid was changed. Were manufactured and evaluated. The results are shown in Table 13.
- nitrogen-containing compound (molar ratio) means the compounding amount (number of moles) of nitrogen-containing compound per mole of silver carboxylate ([number of moles of nitrogen-containing compound] / [carvone] Number of moles of acid silver]).
- reducing compound (molar ratio) means the number of moles of carbonyl groups in the blended reducing compound relative to the number of moles of the group represented by the formula “—COOAg” in the blended silver carboxylate. ([Number of moles of carbonyl group in the reducing compound] / [number of moles of group represented by the formula “—COOAg” in silver carboxylate]).
- “-” means that the component is not blended.
- Example 49 As shown in Table 12, a silver ink composition was produced in the same manner as in Example 29 except that silver isobutyryl acetate was used instead of silver 2-methylacetoacetate and the amount of formic acid was changed. Were manufactured and evaluated. The results are shown in Table 13.
- Example 50 As shown in Table 12, a silver ink composition was produced in the same manner as in Example 29 except that silver pivaloyl acetate was used instead of silver 2-methylacetoacetate, and the blending amount of formic acid was changed. Were manufactured and evaluated. The results are shown in Table 13.
- the silver ink compositions of Examples 48 to 50 were formed by adding formic acid to form a conductor pattern having sufficient conductivity by heat treatment even at a heating temperature as low as 80 ° C. did it. Further, the conductor pattern had a small surface roughness. Thus, even when silver carboxylate other than silver 2-methylacetoacetate was used (Examples 48 to 50), as in the case of using silver 2-methylacetoacetate (Examples 29 to 47), A conductor pattern having sufficient conductivity could be formed even by heat treatment at a low heating temperature.
- the present invention can be used for pattern formation of highly conductive metallic silver such as a conductive circuit to which a printing method is applied.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本願は、2012年9月28日に日本に出願された特願2012-218366号、2012年9月28日に日本に出願された特願2012-218368号、2013年2月27日に日本に出願された特願2013-37963号、2013年9月5日に日本に出願された特願2013-184490号、および2013年9月5日に日本に出願された特願2013-184491号に基づき優先権を主張し、それらの内容をここに援用する。
これまでに金属銀の一般的な製造方法としては、例えば、ベヘン酸銀、ステアリン酸銀、α-ケトカルボン酸銀、β-ケトカルボン酸銀等の有機酸銀を用いる方法が開示されている。例えば、β-ケトカルボン酸銀は、約210℃以下の低温で加熱処理しても速やかに金属銀を形成する(特許文献1参照)。このような優れた特性を生かして、β-ケトカルボン酸銀を溶媒に溶解させて銀インク組成物を調製し、これを基材上に印刷して、得られた印刷物を加熱(焼成)処理することで、金属銀を形成する方法が開示されている(特許文献1参照)。
これに対して、ギ酸銀とアミン化合物が配合されてなる液状組成物を基材上に塗工して、90℃で加熱処理を行うことにより、金属銀被膜を形成する方法が開示されている(特許文献2参照)。
本発明は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される一種以上の還元性化合物と、が配合されてなることを特徴とする銀インク組成物を提供する。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;R1は炭素数1~19の脂肪族炭化水素基又はフェニル基であり;R2は炭素数1~20の脂肪族炭化水素基であり;R3は炭素数1~16の脂肪族炭化水素基であり;R4及びR5はそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;R6は炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「R7O-」、「R7S-」、「R7-C(=O)-」若しくは「R7-C(=O)-O-」で表される基であり;
R7は、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
本発明の銀インク組成物においては、前記還元性化合物が、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸ブチル、プロパナール、ブタナール、ヘキサナール、ホルムアミド、N,N-ジメチルホルムアミド及びシュウ酸からなる群から選択される一種以上であることが好ましい。
また、本発明は、前記銀インク組成物を用いて、基材上に金属銀を形成して得られた導電体を備え、さらに前記基材を筐体として備えたことを特徴とする通信機器を提供する。
本発明は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物と、が配合されてなる第一の混合物に、二酸化炭素が供給されて第二の混合物とされ、前記第二の混合物に、さらに、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される一種以上の還元性化合物が配合されてなることを特徴とする銀インク組成物を提供する。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;R1は炭素数1~19の脂肪族炭化水素基又はフェニル基であり;R2は炭素数1~20の脂肪族炭化水素基であり;R3は炭素数1~16の脂肪族炭化水素基であり;R4及びR5はそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;R6は炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「R7O-」、「R7S-」、「R7-C(=O)-」若しくは「R7-C(=O)-O-」で表される基であり;
R7は、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
本発明の銀インク組成物においては、前記還元性化合物が、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸ブチル、プロパナール、ブタナール、ヘキサナール、ホルムアミド、N,N-ジメチルホルムアミド及びシュウ酸からなる群から選択される一種以上であることが好ましい。
本発明の銀インク組成物においては、前記第一の混合物が、さらに、下記一般式(2)で表わされるアセチレンアルコール類が配合されてなるものでもよい。
また、本発明は、前記銀インク組成物を用いて、基材上に金属銀を形成して得られた導電体を備え、さらに前記基材を筐体として備えたことを特徴とする通信機器を提供する。
<銀インク組成物>
本発明に係る銀インク組成物は、式「-COOAg」で表される基を有するカルボン酸銀(以下、単に「カルボン酸銀」と略記することがある)と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物(以下、単に「含窒素化合物」と略記することがある)と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される一種以上の還元性化合物(以下、単に「還元性化合物」と略記することがある)と、が配合されてなることを特徴とする。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
前記カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。
なお、本明細書においては、単なる「カルボン酸銀」との記載は、特に断りの無い限り、「β-ケトカルボン酸銀(1)」及び「カルボン酸銀(4)」だけではなく、これらを包括する、「式「-COOAg」で表される基を有するカルボン酸銀」を意味するものとする。
Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;R1は炭素数1~19の脂肪族炭化水素基又はフェニル基であり;R2は炭素数1~20の脂肪族炭化水素基であり;R3は炭素数1~16の脂肪族炭化水素基であり;R4及びR5はそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;R6は炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「R7O-」、「R7S-」、「R7-C(=O)-」若しくは「R7-C(=O)-O-」で表される基であり;
R7は、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R1-CY2-」、「CY3-」、「R1-CHY-」、「R2O-」、「R5R4N-」、「(R3O)2CY-」若しくは「R6-C(=O)-CY2-」で表される基である。
Rにおける環状の前記アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示できる。
Rにおける前記アルキニル基としては、エチニル基(-C≡CH)、プロパルギル基(-CH2-C≡CH)等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基が例示できる。
置換基である前記脂肪族炭化水素基としては、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるR2は、炭素数1~20の脂肪族炭化水素基であり、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるR3は、炭素数1~16の脂肪族炭化水素基であり、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるR4及びR5は、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R4及びR5は、互いに同一でも異なっていてもよく、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
RにおけるR6は、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり、R6における前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
Xにおける炭素数1~20の脂肪族炭化水素基としては、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
Xにおけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO2)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
R7がチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
カルボン酸銀(4)は、前記一般式(4)で表される
式中、R8は炭素数1~19の脂肪族炭化水素基、カルボキシ基(-COOH)又は式「-COOAg」で表される基である。
R8における前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。ただし、R8における前記脂肪族炭化水素基は、炭素数が1~15であることが好ましく、1~10であることがより好ましい。
そして、これらカルボン酸銀の中でも、2-メチルアセト酢酸銀及びアセト酢酸銀は、後述する含窒素化合物(なかでもアミン化合物)との相溶性に優れ、銀インク組成物の高濃度化に、特に適したものとして挙げられる。
前記含窒素化合物は、炭素数25以下のアミン化合物(以下、「アミン化合物」と略記することがある)、炭素数25以下の第4級アンモニウム塩(以下、「第4級アンモニウム塩」と略記することがある)、アンモニア、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩(以下、「アミン化合物由来のアンモニウム塩」と略記することがある)、及びアンモニアが酸と反応してなるアンモニウム塩(以下、「アンモニア由来のアンモニウム塩」と略記することがある)からなる群から選択される一種以上のものである。すなわち、配合される含窒素化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
本発明において、前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH2)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
好ましい前記モノアルキルアミンとして、具体的には、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン(2-アミノヘプタン)、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミンが例示できる。
前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、フラニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、チエニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、チアゾリル基、チアジアゾリル基、チアゾリジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、ジチアナフタレニル基、ベンゾチオフェニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾチアゾリル基、ベンゾチアジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしてはエチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタンが例示できる。
好ましい前記ジアルキルアミンとして、具体的には、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミンが例示できる。
好ましい前記トリアルキルアミンとして、具体的には、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミンが例示できる。
前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。
また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示できる。
好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、ドデシルトリメチルアンモニウムブロミドが例示できる。
環状アミンであれば、好ましいものとして、ピリジンが例示できる。
また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよく、このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、2-ブロモベンジルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
そして、これらアミン化合物の中でも、2-エチルヘキシルアミンは、前記カルボン酸銀との相溶性に優れ、銀インク組成物の高濃度化に特に適しており、さらに後述する導電体の表面粗さの低減に特に適したものとして挙げられる。
本発明において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩であり、前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。
前記アミン化合物由来のアンモニウム塩としては、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が例示できるが、これらに限定されない。
本発明において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩であり、ここで酸としては、前記アミン化合物由来のアンモニウム塩の場合と同じものが例示できる。
前記アンモニア由来のアンモニウム塩としては、塩化アンモニウム等が例示できるが、これに限定されない。
そして、前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記含窒素化合物の配合量を上記のように規定することで、銀インク組成物は、高温による加熱処理を行わなくても、より安定して導電体(金属銀)を形成できる。
前記還元性化合物は、シュウ酸(HOOC-COOH)、ヒドラジン(H2N-NH2)及び前記一般式(5)で表される化合物(化合物(5))からなる群から選択される一種以上のものである。すなわち、配合される還元性化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
R21における炭素数20以下のアルキル基は、炭素数が1~20であり、直鎖状、分岐鎖状及び環状のいずれでもよく、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
窒素原子に結合している前記アルキル基は、それぞれ直鎖状、分岐鎖状及び環状のいずれでもよく、炭素数が1~19である点以外は、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
また、例えば、還元性化合物がカルボニル基を2個有するもので、カルボン酸銀が式「-COOAg」で表される基を1個有するものである場合には、還元性化合物の配合量をカルボン酸銀の配合量に対して、好ましくは0.08~1.5倍モル、より好ましくは0.1~1.2倍モル、さらに好ましくは0.12~1倍モル、特に好ましくは0.25~1倍モルとすればよい。
前記還元性化合物の配合量を上記のように規定することで、銀インク組成物は、高温による加熱処理を行わなくても、より安定して導電体(金属銀)を形成できる。なかでも、前記還元性化合物の配合量が多い方が、銀インク組成物の保存安定性が向上し、後述する導電体の導電性がより高くなる。また、前記還元性化合物の配合量が多い方が、後述するように前記還元性化合物を滴下しながら配合する場合に、その滴下速度の変動を容易に抑制できる。なお、前記還元性化合物がギ酸、シュウ酸等の酸性化合物である場合には、その配合量が過多になると、刷版や印刷機等の銀インク組成物を基材へ付着させる手段を腐食させることがある。そこで、通常は塩基性である前記含窒素化合物の配合量が少ない場合には、前記還元性化合物の配合量が過多とならないように調節することが好ましい。
前記銀インク組成物は、前記カルボン酸銀、含窒素化合物及び還元性化合物以外に、本発明の効果を損なわない範囲内において、これらに該当しないその他の成分がさらに配合されてなるものでもよい。
前記その他の成分は特に限定されず、目的に応じて任意に選択でき、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記その他の成分で好ましいものとしては、アルコール及びアルコール以外の溶媒が例示できる。
前記アルコールは、下記一般式(2)で表されるアセチレンアルコール類(以下、「アセチレンアルコール(2)」と略記することがある)であることが好ましい。
R’及びR’’における炭素数1~20のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。R’及びR’’における前記アルキル基としては、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
前記溶媒は、前記アルコール以外のものであり、配合成分の種類や量に応じて任意に選択できる。
前記銀インク組成物は、前記カルボン酸銀、含窒素化合物及び還元性化合物、並びに必要に応じて前記その他の成分を配合することで得られる。各成分の配合後は、得られたものをそのまま銀インク組成物としてもよいし、必要に応じて引き続き公知の精製操作を行って得られたものを銀インク組成物としてもよい。本発明においては、上記の各成分の配合時において、導電性を阻害する不純物が生成しないか、又はこのような不純物の生成量を極めて少ない量に抑制できるため、精製操作を行わなくても十分な導電性を有する導電体が得られる。
混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
また、配合時間も、各配合成分が劣化しない限り特に限定されないが、10分~36時間であることが好ましい。
本発明に係る導電体は、前記銀インク組成物を用いて、金属銀を形成して得られたことを特徴とし、金属銀を主成分とするものである。ここで、「金属銀を主成分とする」とは、金属銀の比率が、見かけ上金属銀だけからなるとみなし得る程度に十分に高いことを意味し、例えば、導電体中の金属銀の比率は99質量%以上であることが好ましい。
基材は、フィルム状又はシート状であることが好ましく、厚さが10~5000μmであることが好ましい。
また、基材の材質としては、上記以外にも、ガラス、シリコン等のセラミックスや、紙が例示できる。
また、基材は、ガラスエポキシ樹脂等の、二種以上の材質からなるものでもよい。
なお、基材が複数層からなる場合には、各層の合計の厚さが、上記の好ましい基材の厚さとなるようにするとよい。
前記印刷法としては、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が例示できる。
前記塗布法としては、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法が例示できる。
また、加熱時間は、加熱温度に応じて適宜調節すればよく、例えば、0.1~6時間とすることができる。
なお、本明細書において「表面粗さ」とは、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、以下の式によって求められた値をナノメートル(nm)単位で表示したものである。以下、この表面粗さを「表面粗さRa」と記載することがある。
本発明に係る通信機器は、前記銀インク組成物を用いて、基材上に金属銀を形成して得られた導電体を備え、さらに前記基材を筐体として備えたことを特徴とする。前記基材及び導電体間には、インク受容層等の中間層を備えていてもよい。
かかる通信機器は、例えば、所定のパターンを形成した前記導電体をアンテナとし、前記基材で筐体を構成したこと以外は、公知の通信機器と同様の構成とすることができる。
例えば、基材上に導電体が形成された積層構造に加え、音声入力部、音声出力部、操作スイッチ、表示部等を組み合わせることにより、携帯電話機を構成できる。
前記通信機器は、従来よりもさらなる軽量化及び薄層化が容易なものである。また、前記導電体を低温で形成することも可能であり、基材等の材質を幅広く選択できるので、設計の自由度が飛躍的に向上し、より合理的な構造とすることも可能である。
[実施例1]
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(11.0g)に2-メチルアセト酢酸銀(19.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(1.22g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表1に示す。
形成したパターンについて、線抵抗値R(Ω)、断面積A(cm2)、及び線長L(cm)を測定し、式「ρ=R×A/L」により、パターンの体積抵抗率ρ(Ω・cm)を算出した。なお、線抵抗値Rはデジタルマルチメータ(三和電気計器社製「PC5000a」)を用いて測定し、断面積Aは形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて測定した。さらに、形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて、形成したパターンの表面粗さ(算術平均表面粗さRa)を測定した。このとき、表面粗さは、JISB0601:2001(ISO4287、1997)に従い、λc(輪郭曲線フィルタ)=0.08mmでカットオフして測定した。
これらの結果を表2に示す。
表1に示すモル比となるように、ギ酸の配合量を1.22gに代えて2.36gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、ギ酸の配合量を1.22gに代えて3.15gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、ギ酸の配合量を1.22gに代えて3.94gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて14.4gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて15.6gとし、ギ酸の配合量を1.22gに代えて1.21gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、ギ酸の配合量を1.21gに代えて3.18gとしたこと以外は、実施例5と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて16.0gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて13.8gとし、ギ酸の配合量を1.22gに代えて1.21gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて17.4gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて12.5gとしたこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
表1に示すモル比となるように、ギ酸の配合量を1.22gに代えて2.35gとしたこと以外は、実施例8と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表2に示す。
ギ酸を配合しなかったこと以外は、実施例1と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表2に示す。
ギ酸を配合しなかったこと以外は、実施例5と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表2に示す。
ギ酸を配合しなかったこと以外は、実施例7と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表2に示す。
ギ酸を配合しなかったこと以外は、実施例8と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表2に示す。
これに対して、比較例1~4の銀インク組成物は、ギ酸を配合しなかったことにより、80℃という低い加熱温度では、加熱処理により金属銀が十分に形成されず、加熱処理物のパターンは線抵抗値が大き過ぎてオーバーロードとなり、体積抵抗率を算出できず(体積抵抗率は1×107μΩ・cmよりも大きく)、導電性を有していなかった。
表3及び4に示すように、印刷パターンを80℃で焼成(加熱処理)するのに代えて、50℃で焼成し、導電体(金属銀)のパターンを形成したこと以外は、実施例4と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表4に示す。
表3及び4に示すように、印刷パターンを80℃で1時間焼成(加熱処理)するのに代えて、50℃で2時間焼成し、導電体(金属銀)のパターンを形成したこと以外は、実施例4と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表4に示す。
表3及び4に示すように、印刷パターンを80℃で1時間焼成(加熱処理)するのに代えて、50℃で3時間焼成し、導電体(金属銀)のパターンを形成したこと以外は、実施例4と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表4に示す。
表3及び4に示すように、印刷パターンを80℃で1時間焼成(加熱処理)するのに代えて、室温(23~25℃)で24時間静置して乾燥させることにより、導電体(金属銀)のパターンを形成したこと以外は、実施例3と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表4に示す。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(16.5g)にアセト酢酸銀(17.8g)を添加して、メカニカルスターラーを用いて1時間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(3.15g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表5に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表6に示す。
表5に示すモル比となるように、2-エチルヘキシルアミンの配合量を16.5gに代えて11.0gとしたこと以外は、実施例14と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表6に示す。
表5に示すように、アセト酢酸銀(17.8g)に代えてイソブチリル酢酸銀(20.2g)を用いたこと以外は、実施例14と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表6に示す。
表5に示すように、アセト酢酸銀(17.8g)に代えてピバロイル酢酸銀(21.4g)を用い、2-エチルヘキシルアミンの配合量を16.5gに代えて22.0gとし、さらに2-エチルヘキシルアミン添加後の撹拌時間を1時間に代えて24時間としたこと以外は、実施例14と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表6に示す。
液温が50℃以下となるように、ビーカー中で2-メチルアセト酢酸銀(19.0g)に2-エチルヘキシルアミン(11.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(3.15g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表5に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表6に示す。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(7.7g)に2-メチルアセト酢酸銀(19.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(2.75g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表5に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表6に示す。
表5に示すように、2-エチルヘキシルアミンの配合量を7.7gに代えて4.4gとし、ギ酸の配合量を2.75gに代えて3.15gとしたこと以外は、実施例19と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表6に示す。
表5に示すように、2-エチルヘキシルアミンの配合量を7.7gに代えて4.4gとし、ギ酸の配合量を2.75gに代えて2.36gとしたこと以外は、実施例19と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表6に示す。
液温が50℃以下となるように、ビーカー中で2-ヘプチルアミン(後述する2-メチルアセト酢酸銀に対して0.4倍モル量)に2-メチルアセト酢酸銀を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(2-メチルアセト酢酸銀に対して0.7倍モル量)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表7に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表8に示す。
表7に示すように、2-ヘプチルアミン(2-メチルアセト酢酸銀に対して0.4倍モル量)に代えて2-アミノオクタン(2-メチルアセト酢酸銀に対して0.4倍モル量)を用いたこと以外は、実施例22と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表8に示す。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(後述するアセト酢酸銀に対して0.6倍モル量)にアセト酢酸銀を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(アセト酢酸銀に対して0.8倍モル量)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表7に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表8に示す。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(後述するカプロイル酢酸銀に対して2.0倍モル量)にカプロイル酢酸銀を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(カプロイル酢酸銀に対して1.0倍モル量)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表7に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表8に示す。
なお、カプロイル酢酸銀は以下に示す方法で製造した。
容量が500mLのビーカーに、カプロイル酢酸メチル(3-オキソオクタン酸メチル、日本精化社製)を添加し、氷水浴(浴温3~5℃)で冷却しながら、マグネチックスターラーで撹拌した。ここへ、10%水酸化ナトリウム水溶液(70.0g)を5分間かけて滴下した。この間、液温は20℃以下となるようにした。ここへさらに、蒸留水(70.0g)を添加し、20℃に温度調節したインキュベーター内で24時間撹拌した。次いで、得られた反応液を10℃以下に冷却し、5%硝酸(22.1g)を添加して、反応液のpHを5.5とした。次いで、容量1000mLのビーカーに5%硝酸銀水溶液(476.6g)を添加し、撹拌速度350rpmで撹拌しながら、ここへ上記のpH5.5の反応液を9分間かけて滴下した。この間、液温は11~12℃であった。次いで、得られた反応液から、この反応で生成した沈殿を遠心分離し、この沈殿を水(100mL)で1回洗浄した後、エタノール(100mL)で3回洗浄し、5時間減圧乾燥させることで、白色粉末としてカプロイル酢酸銀(3-オキソオクタン酸銀)を得た(30.1g)。
得られたカプロイル酢酸銀について、元素分析(Elementar社製「varioELIII」)を行った結果、C:36.3%(理論値36.3%)、H:4.9%(理論値4.9%)であり、TG/DTA(示差熱熱重量同時測定)によって300℃で加熱後の加熱残分を測定した結果、41.3%(理論値40.7%)であったことから、その構造を特定した。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して0.5倍モル量)に2-メチルアセト酢酸銀を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(2-メチルアセト酢酸銀に対して0.6倍モル量)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表7に示す。
次いで、この銀インク組成物を用いて、実施例1と同様に導電体を製造及び評価した。
結果を表8に示す。
表7に示すように、ギ酸の配合量を、2-メチルアセト酢酸銀に対して0.6倍モル量とするのに代えて0.7倍モル量としたこと以外は、実施例26と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表8に示す。
表7に示すように、ギ酸の配合量を、2-メチルアセト酢酸銀に対して0.6倍モル量とするのに代えて0.8倍モル量としたこと以外は、実施例26と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表8に示す。
<<銀インク組成物>>
本発明に係る銀インク組成物は、式「-COOAg」で表される基を有するカルボン酸銀(以下、単に「カルボン酸銀」と略記することがある)と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物(以下、単に「含窒素化合物」と略記することがある)と、が配合されてなる第一の混合物に、二酸化炭素が供給されて第二の混合物とされ、前記第二の混合物に、さらに、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される一種以上の還元性化合物(以下、単に「還元性化合物」と略記することがある)が配合されてなることを特徴とする。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
本発明において、前記第一の混合物は、前記カルボン酸銀及び含窒素化合物が配合されてなるものである。次に、前記カルボン酸銀及び含窒素化合物について説明する。
カルボン酸銀については、前記第一の実施形態に準ずる。
含窒素化合物については、前記第一の実施形態に準ずる。
前記含窒素化合物の配合量を上記のように規定することで、銀インク組成物は、高温による加熱処理を行わなくても、より安定して導電体(金属銀)を形成できる。
前記第一の混合物は、前記カルボン酸銀及び含窒素化合物以外に、本発明の効果を損なわない範囲内において、これらに該当しないその他の成分がさらに配合されてなるものでもよい。
前記その他の成分は特に限定されず、目的に応じて任意に選択でき、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記その他の成分で好ましいものとしては、アルコール及びアルコール以外の溶媒が例示できる。
アルコールについては、前記第一の実施形態に準ずる。
前記溶媒は、前記アルコール以外のものであり、配合成分の種類や量に応じて任意に選択できる。
前記第一の混合物は、前記カルボン酸銀、含窒素化合物、及び必要に応じて前記その他の成分を配合することで得られる。
各成分の配合時には、すべての成分を添加してからこれらを混合してもよいし、一部の成分を順次添加しながら混合してもよく、すべての成分を順次添加しながら混合してもよい。
混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法、ミキサーを使用して混合する方法、超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
本発明において、前記第二の混合物は、前記第一の混合物に二酸化炭素が供給されてなるものである。
供給される二酸化炭素(CO2)は、ガス状及び固形状(ドライアイス)のいずれでもよく、ガス状及び固形状の両方でもよい。二酸化炭素が供給されることにより、この二酸化炭素が第一の混合物に溶け込み、第一の混合物中の成分に作用することで、得られる第二の混合物の粘度が上昇すると推測される。
そして、二酸化炭素ガスの供給時間は、必要とされる二酸化炭素ガスの供給量や、流量を考慮して適宜調節すればよい。
この時の撹拌方法は、第一の混合物調製時の前記混合方法と同様でよい。
ドライアイスの使用量は、上記の二酸化炭素ガスの供給量を考慮して調節すればよい。
ドライアイスの添加中及び添加後は、第一の混合物を撹拌することが好ましく、例えば、第一の混合物の製造時と同様の方法で撹拌することが好ましい。このようにすることで、効率的に二酸化炭素を供給できる。
撹拌時の温度は、二酸化炭素ガス供給時と同様でよい。また、撹拌時間は、撹拌温度に応じて適宜調節すればよい。
前記銀インク組成物は、前記第二の混合物に、前記還元性化合物が配合されてなるものである。次に、還元性化合物について説明する。
還元性化合物については、前記第一の実施形態に準ずる。
前記還元性化合物の配合量を上記のように規定することで、銀インク組成物は、高温による加熱処理を行わなくても、より安定して導電体(金属銀)を形成できる。また、前記還元性化合物の配合量が多い方が、後述するように前記還元性化合物を滴下しながら配合する場合に、その滴下速度の変動を容易に抑制できる。
前記銀インク組成物は、前記第二の混合物及び還元性化合物以外に、本発明の効果を損なわない範囲内において、これらに該当しないその他の成分がさらに配合されてなるものでもよい。
前記その他の成分は特に限定されず、目的に応じて任意に選択でき、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
前記その他の成分で好ましいものとしては、第一の混合物製造時に用いるその他の成分と同様のものが例示できる。例えば、前記アルコールは、二酸化炭素の供給前、すなわち、第一の混合物の製造時のみに配合されてもよいし、二酸化炭素の供給後、すなわち、銀インク組成物の製造時のみに配合されてもよく、二酸化炭素の供給前及び供給後の両方で配合されてもよい。
前記銀インク組成物は、前記第二の混合物、還元性化合物、及び必要に応じて前記その他の成分を配合することで得られる。各成分の配合後は、得られたものをそのまま銀インク組成物としてもよいし、必要に応じて引き続き公知の精製操作を行って得られたものを銀インク組成物としてもよい。本発明においては、上記の各成分の配合時において、導電性を阻害する不純物が生成しないか、又はこのような不純物の生成量を極めて少ない量に抑制できるため、精製操作を行わなくても十分な導電性を有する導電体が得られる。
混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
また、配合時間は、配合成分の種類や配合時の温度に応じて適宜調節すればよいが、例えば、0.5~12時間であることが好ましい。
前記銀インク組成物において、すなわち、第一の混合物及び第二の混合物を経て銀インク組成物を製造する過程において、二酸化炭素以外の配合成分の総量に占める前記その他の成分の配合量の比率([その他の成分(質量)]/[前記カルボン酸銀、含窒素化合物、還元性化合物、及びその他の成分(質量)]×100)は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量、すなわちその他の成分を配合しなくても、銀インク組成物は十分にその効果を発現する。
導電体及びその製造方法については、前記第一の実施形態に準ずる。
前記印刷法としては、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が例示でき、スクリーン印刷法、フレキソ印刷法が好ましい。
前記塗布法としては、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法が例示できる。
また、加熱時間は、加熱温度に応じて適宜調節すればよく、例えば、0.1~6時間とすることができる。
なお、本明細書において「表面粗さ」とは、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、以下の式によって求められた値をナノメートル(nm)単位で表示したものである。以下、この表面粗さを「表面粗さRa」と記載することがある。
本発明に係る通信機器は、前記銀インク組成物を用いて、基材上に金属銀を形成して得られた導電体を備え、さらに前記基材を筐体として備えたことを特徴とする。前記基材及び導電体間には、インク受容層等の中間層を備えていてもよい。
かかる通信機器は、例えば、所定のパターンを形成した前記導電体をアンテナとし、前記基材で筐体を構成したこと以外は、公知の通信機器と同様の構成とすることができる。
例えば、基材上に導電体が形成された積層構造に加え、音声入力部、音声出力部、操作スイッチ、表示部等を組み合わせることにより、携帯電話機を構成できる。
前記通信機器は、従来よりもさらなる軽量化及び薄層化が容易なものである。また、前記導電体を低温で形成することも可能であり、基材等の材質を幅広く選択できるので、設計の自由度が飛躍的に向上し、より合理的な構造とすることも可能である。
[実施例]
[実施例29]
氷冷下、ビーカー中で2-エチルヘキシルアミン(290.3g)に、25℃以下を保つように2-メチルアセト酢酸銀(210.0g)を添加し、添加終了後、メカニカルスターラーを用いて30分間撹拌することにより、溶液を得た。さらに、このまま1時間撹拌した後、得られた黄色透明の反応液(第一の混合物)に、これを20℃で撹拌しながら、二酸化炭素ガスを900mL/分の流量で7時間供給し、反応液を増粘させた混合物(第二の混合物)を得た。この混合物の粘度を下記方法で測定したところ、15Pa・sであった。
次いで、氷冷下、得られた混合物(30.0g)に、反応液の温度が50℃以下となるように、ギ酸(0.31g)を添加し、25℃で1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表9に示す。
測定対象物(5g)について、温度23℃の環境下で、超音波振動式粘度計(CBC社製「VISCOMATE VM-10A」)のセンサー(振動体)を挿入して、粘度を測定した。
形成したパターンについて、線抵抗値R(Ω)、断面積A(cm2)、及び線長L(cm)を測定し、式「ρ=R×A/L」により、パターンの体積抵抗率ρ(Ω・cm)を算出した。なお、線抵抗値Rはデジタルマルチメータ(三和電気計器社製「PC5000a」)を用いて測定し、断面積Aは形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて測定した。結果を表11に示す。
表9に示すモル比となるように、ギ酸の配合量を変えたこと以外は、実施例29と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表11に示す。
ビーカー中で2-エチルヘキシルアミン(290.3g)と、3,5-ジメチル-1-ヘキシン-3-オール(エアープロダクツジャパン社製「サーフィノール61」、以下、「DMHO」と略記することがある)(10.0g)と、を混合した後、ここに氷冷下、25℃以下を保つように2-メチルアセト酢酸銀(210.0g)を添加し、添加終了後、メカニカルスターラーを用いて30分間撹拌することにより、溶液を得た。さらに、このまま1時間撹拌した後、得られた黄色透明の反応液(第一の混合物)に、これを20℃で撹拌しながら、二酸化炭素ガスを900mL/分の流量で6時間供給し、反応液を増粘させた混合物(第二の混合物)を得た。この混合物の粘度を実施例29と同様の方法で測定したところ、10Pa・sであった。
次いで、氷冷下、得られた混合物(30.0g)に、反応液の温度が50℃以下となるように、ギ酸(1.8g)を添加し、25℃で1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表9に示す。
表9に示すモル比となるように、ギ酸の配合量を変えたこと以外は、実施例40と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて100℃としたこと以外は、実施例29と同様に導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて100℃としたこと以外は、実施例30と同様に導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて100℃としたこと以外は、実施例31と同様に導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて120℃としたこと以外は、実施例29と同様に導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて120℃としたこと以外は、実施例30と同様に導電体を製造及び評価した。結果を表11に示す。
印刷パターンを焼成(加熱処理)するときの温度を、80℃に代えて120℃としたこと以外は、実施例31と同様に導電体を製造及び評価した。結果を表11に示す。
表10に示すように、ギ酸を配合しなかったこと以外は、実施例29と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表11に示す。
氷冷下、ビーカー中で2-エチルヘキシルアミン(11.0g)に、2-メチルアセト酢酸銀(19.0g)を添加して、メカニカルスターラーを用いて30分間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表10に示す。
得られた銀インク組成物を使用して、実施例29と同様に導電体の製造及び評価を試みた。結果を表11に示す。
表10に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて14.4gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて15.6gとしたこと以外は、比較例6と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表11に示す。
表10に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて16.0gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて13.8gとしたこと以外は、比較例6と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表11に示す。
表10に示すモル比となるように、2-エチルヘキシルアミンの配合量を11.0gに代えて17.4gとし、2-メチルアセト酢酸銀の配合量を19.0gに代えて12.5gとしたこと以外は、比較例6と同様に銀インク組成物を製造し、さらに導電体の製造及び評価を試みた。結果を表11に示す。
液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(11.0g)に2-メチルアセト酢酸銀(19.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。この液状物に、反応液の温度が50℃以下となるように、ギ酸(2.35g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。各配合成分の種類と使用量を表10に示す。
次いで、得られた銀インク組成物を使用して、実施例29と同様に導電体を製造及び評価した。結果を表11に示す。
これに対して、比較例5~9の銀インク組成物は、ギ酸を配合しなかったことにより、80℃という低い加熱温度では、加熱処理により金属銀が十分に形成されず、加熱処理物のパターンは線抵抗値が大き過ぎてオーバーロードとなり、体積抵抗率を算出できず(体積抵抗率は1×107μΩ・cmよりも大きく)、導電性を有していなかった。
なお、実施例37の導電体のパターンは、銀インク組成物において、含窒素化合物の種類及びモル比、並びに還元性化合物の種類が同じで、還元性化合物のモル比がほぼ同じであり、ただし二酸化炭素ガスを供給しなかった(すなわち、粘度が低かった)参考例1の導電体のパターンよりも、体積抵抗率が低く、表面粗さも小さく、より好ましい特性を有していた。
表12に示すように、2-メチルアセト酢酸銀に代えてアセト酢酸銀を用い、さらにギ酸の配合量を変えたこと以外は、実施例29と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表13に示す。
また、表12中、「-」は、その成分が未配合であることを意味する。
表12に示すように、2-メチルアセト酢酸銀に代えてイソブチリル酢酸銀を用い、さらにギ酸の配合量を変えたこと以外は、実施例29と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表13に示す。
表12に示すように、2-メチルアセト酢酸銀に代えてピバロイル酢酸銀を用い、さらにギ酸の配合量を変えたこと以外は、実施例29と同様に銀インク組成物を製造し、さらに導電体を製造及び評価した。結果を表13に示す。
Claims (8)
- 式「-COOAg」で表される基を有するカルボン酸銀と、
炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物と、
シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される一種以上の還元性化合物と、が配合されてなることを特徴とする銀インク組成物。
H-C(=O)-R21 ・・・・(5)
(式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。) - 前記還元性化合物は、前記カルボン酸銀と前記窒素化合物を配合した第一混合物に二酸化炭素を供給した第二の混合物に配合されていることを特徴とする 請求項1の銀インク組成物。
- 前記カルボン酸銀が、下記一般式(1)で表わされるβ-ケトカルボン酸銀及び下記一般式(4)で表されるカルボン酸銀からなる群から選択される一種以上であることを特徴とする請求項1または2に記載の銀インク組成物。
Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;R1は炭素数1~19の脂肪族炭化水素基又はフェニル基であり;R2は炭素数1~20の脂肪族炭化水素基であり;R3は炭素数1~16の脂肪族炭化水素基であり;R4及びR5はそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;R6は炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「R7O-」、「R7S-」、「R7-C(=O)-」若しくは「R7-C(=O)-O-」で表される基であり;
R7は、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
- 前記カルボン酸銀が、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、カプロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、アセトンジカルボン酸銀、ピルビン酸銀、酢酸銀、酪酸銀、イソ酪酸銀、2-エチルへキサン酸銀、ネオデカン酸銀、シュウ酸銀及びマロン酸銀からなる群から選択される一種以上であることを特徴とする請求項1~3のいずれかに記載の銀インク組成物。
- 前記還元性化合物が、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸ブチル、プロパナール、ブタナール、ヘキサナール、ホルムアミド、N,N-ジメチルホルムアミド及びシュウ酸からなる群から選択される一種以上であることを特徴とする請求項1~4のいずれか一項に記載の銀インク組成物。
- 請求項1~6のいずれか一項に記載の銀インク組成物を用いて、金属銀を形成して得られたことを特徴とする導電体。
- 請求項1~7のいずれか一項に記載の銀インク組成物を用いて、基材上に金属銀を形成して得られた導電体を備え、さらに前記基材を筐体として備えたことを特徴とする通信機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380050122.5A CN104662109B (zh) | 2012-09-28 | 2013-09-27 | 银油墨组合物、导电体以及通信设备 |
KR1020157006152A KR102059805B1 (ko) | 2012-09-28 | 2013-09-27 | 은 잉크 조성물, 도전체 및 통신 기기 |
US14/431,092 US10040960B2 (en) | 2012-09-28 | 2013-09-27 | Silver ink composition, conductor and communication device |
HK15111611.9A HK1210799A1 (en) | 2012-09-28 | 2015-11-25 | Silver ink composition, conductor and communication device |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-218366 | 2012-09-28 | ||
JP2012218366 | 2012-09-28 | ||
JP2012-218368 | 2012-09-28 | ||
JP2012218368 | 2012-09-28 | ||
JP2013-037963 | 2013-02-27 | ||
JP2013037963 | 2013-02-27 | ||
JP2013184491A JP6289841B2 (ja) | 2012-09-28 | 2013-09-05 | 銀インク組成物の製造方法 |
JP2013184490A JP6289840B2 (ja) | 2012-09-28 | 2013-09-05 | 銀インク組成物、導電体及び通信機器 |
JP2013-184491 | 2013-09-05 | ||
JP2013-184490 | 2013-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014051066A1 true WO2014051066A1 (ja) | 2014-04-03 |
Family
ID=50388459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076295 WO2014051066A1 (ja) | 2012-09-28 | 2013-09-27 | 銀インク組成物、導電体及び通信機器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014051066A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147124A1 (ja) * | 2014-03-28 | 2015-10-01 | トッパン・フォームズ株式会社 | 積層体 |
JP2015209498A (ja) * | 2014-04-25 | 2015-11-24 | トッパン・フォームズ株式会社 | 銀インク組成物及びその製造方法並びに導電体 |
JP2016027203A (ja) * | 2014-06-30 | 2016-02-18 | トッパン・フォームズ株式会社 | 金属銀 |
WO2016052043A1 (ja) * | 2014-10-03 | 2016-04-07 | 株式会社コムラテック | 電子回路基板の製造方法およびそれにより得られた電子回路基板 |
WO2016052292A1 (ja) * | 2014-09-29 | 2016-04-07 | トッパン・フォームズ株式会社 | 金属銀、金属銀の製造方法及び積層体 |
JP2016069484A (ja) * | 2014-09-29 | 2016-05-09 | トッパン・フォームズ株式会社 | 銀インク組成物の製造方法 |
WO2016159174A1 (ja) * | 2015-03-31 | 2016-10-06 | トッパン・フォームズ株式会社 | 金属インク組成物、配線板及び配線の形成方法 |
JP2016194047A (ja) * | 2015-03-31 | 2016-11-17 | トッパン・フォームズ株式会社 | 金属インク組成物、配線板及び配線の形成方法 |
JP2016195243A (ja) * | 2015-03-31 | 2016-11-17 | トッパン・フォームズ株式会社 | 配線板 |
WO2017057188A1 (ja) * | 2015-09-29 | 2017-04-06 | トッパン・フォームズ株式会社 | 銀インク組成物、その製造方法及び積層体 |
JP2017115090A (ja) * | 2015-12-25 | 2017-06-29 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017179151A (ja) * | 2016-03-30 | 2017-10-05 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017226796A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017226797A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物の処理方法 |
JP2017226798A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008531810A (ja) * | 2005-03-04 | 2008-08-14 | インクテック カンパニー リミテッド | 導電性インク組成物及びこの製造方法 |
JP2009114232A (ja) * | 2007-11-01 | 2009-05-28 | Osaka Industrial Promotion Organization | β−ケトカルボン酸銀を含有するインク |
JP2009197133A (ja) * | 2008-02-21 | 2009-09-03 | Osaka Industrial Promotion Organization | β−ケトカルボン酸銀を含有するインク |
WO2012014933A1 (ja) * | 2010-07-30 | 2012-02-02 | トッパン・フォームズ株式会社 | 銀インク組成物及び基材 |
WO2012144610A1 (ja) * | 2011-04-22 | 2012-10-26 | トッパン・フォームズ株式会社 | 銀インク組成物 |
-
2013
- 2013-09-27 WO PCT/JP2013/076295 patent/WO2014051066A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008531810A (ja) * | 2005-03-04 | 2008-08-14 | インクテック カンパニー リミテッド | 導電性インク組成物及びこの製造方法 |
JP2009114232A (ja) * | 2007-11-01 | 2009-05-28 | Osaka Industrial Promotion Organization | β−ケトカルボン酸銀を含有するインク |
JP2009197133A (ja) * | 2008-02-21 | 2009-09-03 | Osaka Industrial Promotion Organization | β−ケトカルボン酸銀を含有するインク |
WO2012014933A1 (ja) * | 2010-07-30 | 2012-02-02 | トッパン・フォームズ株式会社 | 銀インク組成物及び基材 |
WO2012144610A1 (ja) * | 2011-04-22 | 2012-10-26 | トッパン・フォームズ株式会社 | 銀インク組成物 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147124A1 (ja) * | 2014-03-28 | 2015-10-01 | トッパン・フォームズ株式会社 | 積層体 |
JP2015209498A (ja) * | 2014-04-25 | 2015-11-24 | トッパン・フォームズ株式会社 | 銀インク組成物及びその製造方法並びに導電体 |
JP2016027203A (ja) * | 2014-06-30 | 2016-02-18 | トッパン・フォームズ株式会社 | 金属銀 |
JPWO2016052292A1 (ja) * | 2014-09-29 | 2017-07-13 | トッパン・フォームズ株式会社 | 金属銀、金属銀の製造方法及び積層体 |
WO2016052292A1 (ja) * | 2014-09-29 | 2016-04-07 | トッパン・フォームズ株式会社 | 金属銀、金属銀の製造方法及び積層体 |
JP2016069484A (ja) * | 2014-09-29 | 2016-05-09 | トッパン・フォームズ株式会社 | 銀インク組成物の製造方法 |
JP2016076538A (ja) * | 2014-10-03 | 2016-05-12 | 株式会社コムラテック | 電子回路基板の製造方法およびそれにより得られた電子回路基板 |
CN107079585B (zh) * | 2014-10-03 | 2019-12-20 | 株式会社小村技术 | 电子电路基板的制造方法和利用该制造方法得到的电子电路基板 |
TWI716359B (zh) * | 2014-10-03 | 2021-01-21 | 日商小村科技股份有限公司 | 電子電路基板之製造方法及依該製造方法得到之電子電路基板 |
WO2016052043A1 (ja) * | 2014-10-03 | 2016-04-07 | 株式会社コムラテック | 電子回路基板の製造方法およびそれにより得られた電子回路基板 |
CN107079585A (zh) * | 2014-10-03 | 2017-08-18 | 株式会社小村技术 | 电子电路基板的制造方法和利用该制造方法得到的电子电路基板 |
WO2016159174A1 (ja) * | 2015-03-31 | 2016-10-06 | トッパン・フォームズ株式会社 | 金属インク組成物、配線板及び配線の形成方法 |
JP2016194047A (ja) * | 2015-03-31 | 2016-11-17 | トッパン・フォームズ株式会社 | 金属インク組成物、配線板及び配線の形成方法 |
JP2016195243A (ja) * | 2015-03-31 | 2016-11-17 | トッパン・フォームズ株式会社 | 配線板 |
WO2017057188A1 (ja) * | 2015-09-29 | 2017-04-06 | トッパン・フォームズ株式会社 | 銀インク組成物、その製造方法及び積層体 |
JPWO2017057188A1 (ja) * | 2015-09-29 | 2018-07-12 | トッパン・フォームズ株式会社 | 銀インク組成物、その製造方法及び積層体 |
JP2017115090A (ja) * | 2015-12-25 | 2017-06-29 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017179151A (ja) * | 2016-03-30 | 2017-10-05 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017226796A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物 |
JP2017226797A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物の処理方法 |
JP2017226798A (ja) * | 2016-06-24 | 2017-12-28 | トッパン・フォームズ株式会社 | 銀インク組成物 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014051066A1 (ja) | 銀インク組成物、導電体及び通信機器 | |
US10040960B2 (en) | Silver ink composition, conductor and communication device | |
WO2015111715A1 (ja) | 配線板 | |
JP6289841B2 (ja) | 銀インク組成物の製造方法 | |
JP2014189680A (ja) | 銀インク組成物及び導電体 | |
JP6278659B2 (ja) | 銀インク組成物、導電体及び電子機器 | |
JP6289840B2 (ja) | 銀インク組成物、導電体及び通信機器 | |
WO2015147124A1 (ja) | 積層体 | |
JP2014110514A (ja) | アンテナ構造体、通信機器及びアンテナ構造体の製造方法 | |
JP6604468B2 (ja) | 金属銀の製造方法 | |
JP6270587B2 (ja) | 銀インク組成物及びその製造方法 | |
WO2014051083A1 (ja) | 銀インク組成物及び加熱処理物 | |
JP6346486B2 (ja) | 積層体、データ受送信体、通信機器及び透明導電膜 | |
JP6117567B2 (ja) | 銀インク組成物及び導電体 | |
JP6802798B2 (ja) | 銀インク組成物、その製造方法及び積層体 | |
JP6081120B2 (ja) | 積層体、データ受送信体及び通信機器 | |
JP6289988B2 (ja) | 銀インク組成物の製造方法 | |
JP6678475B2 (ja) | 金属インク組成物、配線板及び配線の形成方法 | |
JP6468776B2 (ja) | 銀インク組成物の製造方法 | |
JP6314012B2 (ja) | 銀インク組成物の製造方法 | |
JP6230781B2 (ja) | 積層体、データ受送信体、通信機器及び積層体の製造方法 | |
JP2014089926A (ja) | 銀膜 | |
JP6393951B2 (ja) | 金属銀の製造方法 | |
JP2016195243A (ja) | 配線板 | |
JP2014192206A (ja) | 配線の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13840472 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157006152 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14431092 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13840472 Country of ref document: EP Kind code of ref document: A1 |