WO2014050740A1 - スイッチング素子 - Google Patents
スイッチング素子 Download PDFInfo
- Publication number
- WO2014050740A1 WO2014050740A1 PCT/JP2013/075481 JP2013075481W WO2014050740A1 WO 2014050740 A1 WO2014050740 A1 WO 2014050740A1 JP 2013075481 W JP2013075481 W JP 2013075481W WO 2014050740 A1 WO2014050740 A1 WO 2014050740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- semiconductor layer
- electrode
- switching element
- carrier
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 118
- 239000012535 impurity Substances 0.000 claims abstract description 53
- 239000012159 carrier gas Substances 0.000 claims abstract description 35
- 239000000969 carrier Substances 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 21
- 239000010410 layer Substances 0.000 description 264
- 239000000758 substrate Substances 0.000 description 21
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 14
- 229910002601 GaN Inorganic materials 0.000 description 13
- 238000002161 passivation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 230000005533 two-dimensional electron gas Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- -1 SiO x Chemical class 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
- H01L29/152—Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
- H01L29/155—Comprising only semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Definitions
- the present invention relates to a switching element typified by HEMT (High Electron Mobility Transistor) and the like.
- HEMT High Electron Mobility Transistor
- nitride semiconductors which are III-V group compound semiconductors represented by GaN (gallium nitride), are expected to be applied to switching elements. This is because a nitride semiconductor has a band gap as large as about 3.4 eV, a dielectric breakdown electric field is 10 times higher, an electron saturation speed is 2.5 times larger, and the like than a semiconductor using conventional silicon (Si). This is because it has characteristics suitable for power devices.
- a switching element in which a GaN / AlGaN heterostructure is provided on a substrate such as silicon carbide (SiC) or sapphire has been proposed.
- a switching element in addition to spontaneous polarization due to the asymmetric structure in the c-axis direction of the crystal structure of GaN (wurtzite type), polarization due to the piezoelectric effect due to lattice mismatch between AlGaN and GaN results in 1 ⁇ 10 13.
- a two-dimensional electron gas layer having a high concentration of about cm ⁇ 2 is generated at the GaN / AlGaN interface.
- the electron density of the two-dimensional electron gas layer is controlled to switch between a state in which predetermined electrodes are electrically connected (on state) and a state in which predetermined electrodes are not electrically connected (off state). Thus, it can be used as a switching element.
- a switching element 100 having a conventional configuration shown in FIG. 11 includes a substrate 101, a buffer layer 102 formed on the upper surface of the substrate 101, a carrier traveling layer 103 made of undoped GaN formed on the upper surface of the buffer layer 102, and a carrier traveling layer 103.
- the carrier supply layer 104 made of AlGaN formed on the upper surface of the source electrode 105, the source electrode 105 and the drain electrode 106 formed on the upper surface of the carrier supply layer 104, and the source electrode 105 and the drain electrode formed on the upper surface of the carrier supply layer 104.
- a gate electrode 107 formed between the electrodes 106 is provided.
- a gate insulating film 110 is provided between the gate electrode 107 and the carrier supply layer 104 to suppress gate leakage.
- the switching element 100 described above is a normally-on type element, and even when the potential of the gate electrode 107 is the same potential (0 V) as that of the source electrode 105, or when the voltage is not applied to the gate electrode 107. Even in this case, the two-dimensional electron gas layer 108 is generated at the interface of the carrier traveling layer 103 in contact with the carrier supply layer 104 and is turned on. By making the potential of the drain electrode 106 higher than the potential of the source electrode 105, a current flows between the drain electrode 106 and the source electrode 105.
- the potential of the gate electrode 107 is set to a negative potential lower than the threshold voltage with reference to the potential of the source electrode 105, the two-dimensional structure is formed below the gate electrode 107 at the interface in contact with the carrier supply layer 104 of the carrier traveling layer 103.
- the electron gas layer 108 is not generated and is turned off. In this state, no current flows between the drain electrode 106 and the source electrode 105.
- FIG. 12 is a cross-sectional view schematically showing a main part of the switching element 100 in the off state.
- a depletion region 111 is formed below the gate electrode 107 as shown in FIG.
- a high potential difference for example, about several hundred volts corresponding to the power supply voltage
- a high electric field 112 is generated on the drain electrode 106 side of the depletion region 111 below the gate electrode 107, and in the worst case, the device may be destroyed.
- a method in which the gate electrode 107 is extended at least to the drain electrode side (field plate structure) and the electric field generated below the gate electrode 107 on the drain electrode 106 side is relaxed is generally used.
- the gate electrode 107 is extended at least to the drain electrode side (field plate structure) and the electric field generated below the gate electrode 107 on the drain electrode 106 side is relaxed.
- the switching element 200 includes a substrate 201, a buffer layer 202 formed on the upper surface of the substrate 201, a carrier traveling layer 203 made of undoped GaN formed on the upper surface of the buffer layer 202, and a carrier traveling layer 203.
- the high electric field 212 generated in the vicinity of the gate electrode 207 when a voltage of several hundred volts is applied between the source and the drain cannot be sufficiently relaxed. .
- the switching element 200 continues to be turned off, the switching element 200 is exposed to a high electric field for a long time. Destroyed.
- an electric field relaxation (RESURF: Reduced SURface Field) region doped with impurities is provided in the carrier traveling layer as in the GaN-based MOSFET described in Patent Document 1. Conceivable.
- RESURF Reduced SURface Field
- the electric field relaxation region is formed over a wide range from the lower portion of the drain side end of the gate electrode to the N + contact region on the drain side, and the sheet carrier concentration is 1 ⁇ 10 12 cm ⁇ . It is doped at a relatively high concentration of 2 to 5 ⁇ 10 13 cm ⁇ 2 . For this reason, the decrease in mobility due to impurity scattering in the carrier traveling layer, particularly the two-dimensional electron gas layer, is remarkable. As a result, there is a possibility that a sufficient drain current cannot be obtained in the ON state.
- an object of the present invention is to provide a switching element that is difficult to be destroyed even when a high voltage is applied to the element in the off state and that can obtain a sufficient drain current in the on state.
- the switching element provides: A first semiconductor layer; A second semiconductor layer formed on an upper surface of the first semiconductor layer and having a band gap larger than that of the first semiconductor layer and heterojunction with the first semiconductor layer; A first electrode electrically connected to the first semiconductor layer; A second electrode electrically connected to the first semiconductor layer and formed apart from the first electrode in a direction parallel to a surface of the first semiconductor layer; A control electrode formed between the first electrode and the second electrode when viewed from a direction perpendicular to the surface, formed on an upper layer of the second semiconductor layer; Depending on the potential of the control electrode, An ON state in which the first electrode and the second electrode are electrically connected by a two-dimensional carrier gas layer generated at a junction interface between the first semiconductor layer and the second semiconductor layer; Since the two-dimensional carrier gas layer does not occur at least at the junction interface between the first semiconductor layer and the second semiconductor layer below the control electrode, the electrical connection between the first electrode and the second electrode is interrupted.
- a switching element that can be switched off and A third semiconductor layer doped with an impurity having the same conductivity type as the carrier constituting the two-dimensional carrier gas layer is formed in a predetermined first region on the upper surface of the first semiconductor layer;
- the first feature is that the second electrode is electrically connected to the first semiconductor layer through the third semiconductor layer.
- the switching element of the first feature further includes: When a voltage is applied between the second electrode and the first electrode, and in the off state, The majority carriers in the third semiconductor layer move to the interface side with the second electrode, and the majority carriers in the vicinity of the interface with the first semiconductor layer are depleted, and a high resistance is generated in the third semiconductor layer.
- a second feature is that the region is formed.
- the switching element of the first or second feature further includes: The third semiconductor layer is formed on a recess of the first semiconductor layer; The third feature is that the third semiconductor layer is in contact with the two-dimensional carrier gas layer on its side surface.
- the switching element of the third feature is further provided with:
- a fourth feature is that a fourth semiconductor layer having a larger band gap than the first semiconductor layer is provided between the lower surface of the third semiconductor layer and the upper surface of the first semiconductor layer.
- the switching element having the first to fourth characteristics further includes:
- the third semiconductor layer is formed in a second region spaced from the first region on the upper surface of the first semiconductor layer so as to be separated from the third semiconductor layer formed on the first region.
- the first electrode is electrically connected to the first semiconductor layer via the third semiconductor layer formed on the second region.
- the switching element having any one of the first to fourth features further includes:
- a fifth feature is that the second electrode is formed on a part of a formation region of the third semiconductor layer when viewed from a direction perpendicular to the surface.
- the switching element having any one of the first to fifth features further includes:
- the third semiconductor layer is a high-resistance doped low-resistance n-type semiconductor layer;
- a sixth feature is that the two-dimensional carrier gas layer is a two-dimensional electron gas.
- the switching element of the sixth feature further includes: Each of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer is made of a nitride semiconductor,
- the third semiconductor layer preferably contains at least one element of C, Si, Ge, Sn, Te, O, and Se as an impurity.
- the switching element of the sixth feature further includes:
- the first semiconductor layer is made of In X Ga 1-X N (where 0 ⁇ X ⁇ 1); It said second semiconductor layer is composed of In Y Al Z Ga 1-Y -Z N (where, 0 ⁇ Y ⁇ 1,0 ⁇ Z ⁇ 1), It said third semiconductor layer, In U Al V Ga 1- U-V N ( where, 0 ⁇ U ⁇ 1,0 ⁇ V ⁇ 1) is preferably formed by doping impurities.
- the switching element having any one of the first to sixth characteristics is first configured by a two-dimensional carrier gas layer formed at a junction interface between the first semiconductor layer (carrier traveling layer) and the second semiconductor layer (carrier supply layer).
- a switching element having a HEMT structure in which on / off is controlled between an electrode (source) and a second electrode (drain), and a third semiconductor layer doped with impurities is interposed between the first semiconductor layer and the second electrode.
- the present invention generates a depletion region having a high resistance in the third semiconductor layer only in the off state of the switching element to disperse the electric field in the vicinity of the control electrode. It is what balances on-resistance.
- the present invention by providing the impurity-doped third semiconductor layer between the first semiconductor layer and the second electrode, even when a high voltage is applied to the element in the off state, the element is not easily destroyed. A switching element that can obtain a sufficient drain current in a state can be realized.
- Structural sectional drawing which shows the structure of the switching element which concerns on 1st Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 1st Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 2nd Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 2nd Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 3rd Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 3rd Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 4th Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on 4th Embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on another embodiment of this invention.
- Structural sectional drawing which shows the structure of the switching element which concerns on another embodiment of this invention.
- Structural sectional view showing the configuration of a conventional switching element Schematic diagram for explaining problems in the off state in a conventional switching element
- Cross-sectional view showing the structure of a conventional switching element that uses a field plate structure for the gate electrode
- each switching element according to each embodiment described below is only one of the embodiments of the present invention, and the present invention is not limited to these embodiments.
- the switching elements according to each embodiment can be implemented by combining a part or all of them within a consistent range.
- FIGS. 1 and 2 are structural sectional views in a plane perpendicular to the substrate of the element 1 of the present invention.
- FIG. 1 schematically shows a state when the element 1 of the present invention is in an on state
- FIG. 2 schematically shows a state when the element 1 of the present invention is in an off state.
- the same components are denoted by the same reference numerals, and the names and functions are also the same, so the same description will not be repeated.
- the cross-sectional views shown in FIGS. 1 and 2 the main parts are appropriately emphasized, and the dimensional ratios of the respective components on the drawings do not necessarily match the actual dimensional ratios. The same applies to the cross-sectional views shown below.
- the element 1 of the present invention includes a substrate 11, a buffer layer 12 formed on the upper surface of the substrate 11, and a carrier traveling layer (first semiconductor layer) 13 formed on the upper surface of the buffer layer 12.
- the carrier supply layer (second semiconductor layer) 14 formed on the upper surface of the carrier running layer 13, the source electrode (first electrode) 15 electrically connected to the carrier running layer 13, and the carrier running layer 13 electrically connected
- a drain electrode (second electrode) 16 formed away from the source electrode 15 in a direction parallel to the surface of the carrier traveling layer 13, and the source electrode 15 and the drain viewed from a direction perpendicular to the surface of the carrier traveling layer 13.
- a gate electrode (control electrode) 17 disposed between the electrodes 16 and an upper surface of the carrier supply layer 14 are formed so as to fill between the source electrode 15, the drain electrode 16, and the gate electrode 17.
- Sshibeshon layer 19 the impurity-doped layer (third semiconductor layer) 20, and a gate insulating film 21.
- the substrate 11 is selected from, for example, silicon, silicon carbide (SiC), sapphire, gallium nitride (GaN), zinc oxide (ZnO), gallium arsenide (GaAs), and the like.
- the carrier traveling layer 13 is made of undoped GaN having a thickness of 1 ⁇ m to 5 ⁇ m, for example.
- Carrier supply layer 14 is, for example, the thickness is less 100nm or 10nm Al Z Ga 1-Z N (where, 0 ⁇ Z ⁇ 1) consists. 0.1 ⁇ Z ⁇ 0.3 is more preferable. Alternatively, In Y Al Z Ga 1- Y-Z N (where, 0 ⁇ Y ⁇ 1,0 ⁇ Z ⁇ 1) may be.
- the band gap of the carrier supply layer 14 is larger than the band gap of the carrier running layer 13, and the carrier running layer 13 and the carrier supply layer 14 are heterojunctioned.
- a two-dimensional carrier gas layer 18 is generated in the vicinity of the heterojunction interface. In the element 1 of the present invention, the two-dimensional carrier gas layer 18 corresponds to a channel.
- the source electrode 15, the drain electrode 16, and the gate electrode 17 are respectively composed of metal elements such as Ti, Al, Cu, Au, Pt, W, Ta, Ru, Ir, Pd, and Hf, and among these metal elements It consists of an alloy containing at least two kinds, or a nitride containing at least one of these metal elements.
- Each of the source electrode 15, the drain electrode 16, and the gate electrode 17 may be a single layer, or may have a stacked structure in which the composition of each layer is different. However, the source electrode 15 and the drain electrode 16 are in ohmic contact with the carrier traveling layer 13, and the gate electrode 17 is Schottky with respect to the carrier traveling layer 13 and the carrier supply layer 14 when the gate insulating film 21 is not provided. Join.
- the gate electrode 17 has a field plate structure, is connected to the carrier supply layer 14 directly or via the gate insulating film 21, and extends on the passivation layer 19 toward the source electrode 15 and the drain electrode 16. Although the gate electrode 17 is disposed between the source electrode 15 and the drain electrode 16, it is disposed so as to be offset toward the source electrode 15 side.
- the gate insulating film 21 is made of, for example, a highly insulating oxide or nitride such as SiO x , AlO x , HfO x , LaO x , ZrO x , YO x , SiN, and AlN, and the gate electrode 17 as necessary. It is formed on the lower surface.
- the impurity doped layer 20 is formed below the drain electrode 16 in a predetermined region on the upper surface of the carrier traveling layer 13.
- the impurity doped layer 20 is a semiconductor layer in which impurities having the same conductivity type as the carriers constituting the two-dimensional carrier gas layer 18 are doped at a high concentration. That is, the impurity doped layer 20 is an n-type semiconductor layer if the carriers constituting the two-dimensional carrier gas layer 18 are electrons, and a p-type semiconductor layer if the carriers are holes.
- Examples of the impurity-doped layer 20 include In U Al V Ga 1- UV N (where 0 ⁇ U ⁇ 1, 0 ⁇ V ⁇ 1) doped with impurities.
- the impurity to be doped is not limited as long as carriers can be introduced into the impurity doped layer 20, but when the carrier is an electron, C, Si, Ge, Sn, Te, O, Se, etc. Is preferred.
- the impurity doped layer 20 is GaN having a thickness of 100 nm or more and 10 ⁇ m or less, an element such as C, Si, Ge, Sn, Te, O, or Se is used, and the sheet carrier concentration is 1 ⁇ 10 12 cm ⁇ . It is preferable to include within the range of 2 to 5 ⁇ 10 14 cm ⁇ 2 (in the range of 1 ⁇ 10 18 cm ⁇ 3 to 1.2 ⁇ 10 22 cm ⁇ 3 in volume density).
- the element 1 of the present invention switches between an on state and an off state according to the voltage application state of the gate electrode 17.
- a two-dimensional carrier gas layer 18 is formed at the heterojunction interface between the carrier traveling layer 13 and the carrier supply layer 14, and the two-dimensional carrier gas layer 18 and the impurity doped layer 20 are Thus, the source electrode 15 and the drain electrode 16 are in a conductive state.
- the depletion layer 22 is in the carrier travel layer 13 below the gate electrode 17.
- the two-dimensional carrier gas layer 18 is not formed at the heterojunction interface between the carrier traveling layer 13 and the carrier supply layer 14 in the depletion layer 22, and the connection between the source electrode 15 and the drain electrode 16 is cut off.
- the potential of the drain electrode 16 reaches a high voltage of about several hundred volts (for example, 600 volts). At this time, carriers in the two-dimensional carrier gas layer 18 move into the impurity doped layer 20, and carriers in the impurity doped layer 20 below the drain electrode 16 are attracted to the vicinity of the upper drain electrode 16.
- the two-dimensional carrier gas layer 20 is interrupted in the depletion layer 22 formed by the gate electrode 17, and there is almost no supply of electrons from the source electrode 15 to the impurity doped layer 20. Therefore, in the impurity doped layer 20, an accumulation region 23a in which carriers are accumulated is formed in the upper portion, and a depletion region 23b in which carriers are depleted and increased in resistance is formed in the lower portion.
- the two-dimensional carrier gas layer 18 is interposed. Since electrons are supplied from the source electrode 15 to the impurity doped layer 20, no depletion region is generated in the impurity doped layer 22.
- the element 1 of the present invention can relax the electric field in the vicinity of the gate electrode 17 in the off state by providing the impurity doped layer 20, and can suppress the destruction of the element for a long time.
- a buffer layer 12, a carrier traveling layer 13, and a carrier supply layer 14 are formed in this order on a substrate 11, (2) a passivation layer 19 is deposited, and (3) predetermined In this region, a first opening having a depth reaching the carrier traveling layer 13 is formed, an impurity doped layer 20 is formed in the first opening, and (4) the carrier traveling layer 13 is formed in a predetermined region.
- a second opening having a depth reaching, and a third opening having a depth reaching the carrier supply layer 14 (or the gate insulating film 21 on the carrier supply layer 14), and (5) a second The source electrode 15, the gate electrode 16, and the drain electrode are formed in the opening, the third opening, and the impurity doped layer 20, respectively.
- the buffer layer 12, the carrier traveling layer 13, the carrier supply layer 14, and the impurity doped layer 20 are formed by various film forming methods such as MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method and MBE (Molecular-Beam Epitaxy) method. Can be formed.
- MOCVD Metal-Organic-Chemical-Vapor-Deposition
- MBE Molecular-Beam Epitaxy
- Second Embodiment 3 and 4 show a configuration example of the switching element 2 according to an embodiment of the present invention (hereinafter referred to as “the present invention element 2” as appropriate).
- 3 and 4 are structural cross-sectional views in a plane perpendicular to the substrate of the element 2 of the present invention.
- FIG. 3 schematically shows a state when the element 2 of the present invention is turned on
- FIG. 4 schematically shows a state when the element 2 of the present invention 2 is turned off.
- the inventive element 2 is similar to the inventive element 1 in the first embodiment in that the substrate 11, the buffer layer 12, the carrier traveling layer (first semiconductor layer) 13, the carrier supply layer ( Second semiconductor layer) 14, source electrode (first electrode) 15, drain electrode (second electrode) 16, gate electrode (control electrode) 17, passivation layer 19, impurity doped layer (third semiconductor layer) 20, and A gate insulating film 21 is provided.
- the carrier traveling layer 13 located immediately below the drain electrode 16 and the impurity doped layer 20 is processed into a concave shape in a predetermined region by etching or the like.
- the impurity doped layer 20 is in direct contact with the two-dimensional carrier gas layer 18 on the side surface.
- the element 2 of the present invention is the same as the element 1 of the present invention shown in FIG. 1 and FIG. 2, and detailed description of the overlapping parts is omitted.
- the impurity doped layer 20 comes into contact with the two-dimensional carrier gas layer 18, the on-resistance in the on-state can be further suppressed, and a sufficient drain current can be secured. Furthermore, since the two-dimensional carrier gas layer 18 is in direct contact with the depletion region 23b in the impurity doped layer 20 in the off state, a part of the electric field concentrated in the vicinity of the gate electrode 17 can be handled and dispersed.
- FIG. 5 and FIG. 6 show a configuration example of the switching element 3 according to an embodiment of the present invention (hereinafter referred to as “the present element 3” as appropriate).
- 5 and 6 are structural cross-sectional views in a plane perpendicular to the substrate of the element 3 of the present invention.
- FIG. 5 schematically shows a state when the element 3 of the present invention is in an on state
- FIG. 6 schematically shows a state when the element 3 of the present invention is in an off state.
- the inventive element 3 is similar to the inventive element 1 in the first embodiment and the inventive element 2 in the second embodiment.
- 1 semiconductor layer) 13 carrier supply layer (second semiconductor layer) 14
- source electrode (first electrode) 15 drain electrode (second electrode) 16
- gate electrode (control electrode) 17 passivation layer 19
- impurity doped layer (Third semiconductor layer) 20 and a gate insulating film 21 are provided.
- the present element 3 is arranged so that the impurity doped layer 20 includes the projection of the upper drain electrode 16 in addition to the configuration of the present element 1.
- the drain electrode 16 is formed on a part of the formation region of the impurity doped layer 20 when viewed from the direction perpendicular to the surface of the substrate 11. Except this point, it is the same as the element 1 of the present invention shown in FIG. 1 and FIG.
- the depletion region 23b having a high resistance in the impurity doped layer 20 generated in the off state also extends in the impurity doped layer 20 in a direction parallel to the substrate. 14, the leakage layer 19, and the leakage current via the two-dimensional carrier gas 18 are suppressed.
- ⁇ Fourth embodiment> 7 and 8 show a configuration example of the switching element 4 according to an embodiment of the present invention (hereinafter referred to as “the present invention element 4” as appropriate).
- 7 and 8 are sectional views of the structure of the element 4 of the present invention in a plane perpendicular to the substrate.
- FIG. 7 schematically shows a state when the element 4 of the present invention is in an on state
- FIG. 8 schematically shows a state when the element 4 of the present invention is in an off state.
- the inventive element 3 is a substrate similar to the inventive element 1 in the first embodiment, the inventive element 2 in the second embodiment, and the inventive element 3 in the third embodiment. 11, buffer layer 12, carrier traveling layer (first semiconductor layer) 13, carrier supply layer (second semiconductor layer) 14, source electrode (first electrode) 15, drain electrode (second electrode) 16, gate electrode (control) Electrode) 17, passivation layer 19, impurity doped layer (third semiconductor layer) 20, and gate insulating film 21.
- the present invention element 4 has a barrier layer (first layer) having a larger band gap than the carrier running layer 13 between the lower surface of the impurity doped layer 20 and the upper surface of the carrier running layer 13. 4 semiconductor layers) 24. Except for this point, it is the same as the element 2 of the present invention shown in FIG. 3 and FIG.
- the barrier layer 24 for example, when the carrier traveling layer 13 is In X Ga 1-X N (where 0 ⁇ X ⁇ 1), In S Al T Ga 1- STN (where 0 ⁇ S ⁇ 1, 0 ⁇ T ⁇ 1).
- the leakage current between the drain electrode 16 and the carrier traveling layer 13 can be suppressed due to the presence of the barrier layer 24.
- the supply of carriers from the carrier traveling layer 13 to the impurity doped layer 20 is suppressed in the off state, depletion of the impurity doped layer 20 proceeds even when the drain electrode 16 is relatively small, A depletion region 23b having a high resistance is generated, and the electric field of the gate electrode 17 is easily relaxed.
- the impurity doped layer 20 is provided between the carrier traveling layer 13 (first semiconductor layer) and the drain electrode 16.
- the carrier constituting the two-dimensional carrier gas layer 18 is an electron.
- the present invention is not limited to this, and the two-dimensional carrier gas layer 18 is The present invention can also be applied to the case where the carriers to be configured are holes.
- the carriers constituting the two-dimensional carrier gas layer 18 are electrons.
- the present invention elements 1 to 4 are normally-on type switching elements.
- the present invention is not limited to this, and a normally-off type switching element is used.
- the present invention can also be applied to this.
- the present invention elements 1 to 4 include the impurity doped layer 20 between the drain electrode 16 and the carrier traveling layer 13.
- An impurity doped layer 20 may be provided between them.
- the switching element according to the present invention shown in FIGS. 9 and 10 (hereinafter referred to as “the present element 5” as appropriate) is an impurity doped layer between the source electrode 15 and the carrier traveling layer 13 in the present element 1. 20 (20a) is interposed.
- FIG. 9 schematically shows a state when the element 5 of the present invention is turned on
- FIG. 10 schematically shows a state when the element 5 of the present invention is turned off.
- the impurity doped layer 20 is separated and formed into an impurity doped layer 20 a formed between the source electrode 15 and the carrier traveling layer 13 and an impurity doped layer 20 b formed between the drain electrode 16 and the carrier traveling layer 13. Yes.
- the depletion region 23b in which the carrier is depleted and the resistance is increased is formed in the impurity doped layer 20b connected to the drain electrode 16 in the off state.
- the element 5 of the present invention can be manufactured by using the same mask in the manufacturing process, the impurity doped layer 20 (20a, 20b) and the source electrode 15 and the drain electrode 16 can be formed.
- a mask for forming 20 becomes unnecessary, and it is possible to manufacture a switching element that can obtain a large drain current with the above-mentioned high breakdown voltage at low cost.
- the present invention can be used for a switching element, and is particularly suitable for a switching element applied to a power device.
- Switching element according to the present invention (element of the present invention) 11, 101, 201: Substrate 12, 102, 202: Buffer layer 13, 103, 203: Carrier traveling layer (first semiconductor layer) 14, 104, 204: Carrier supply layer (second semiconductor layer) 15, 105, 205: Source electrode (first electrode) 16, 106, 206: Drain electrode (second electrode) 17, 107, 207: Gate electrode (control electrode) 18, 108, 208: Two-dimensional carrier gas layer 19, 209: Passivation layer (insulating layer) 20, 20a, 20b: Impurity doped layer (third semiconductor layer) 23a: Storage region 23b: Depletion region 21, 110, 210: Gate insulating film 22, 111, 211: Depletion region 24: Barrier layer (fourth semiconductor layer) 100, 200: Conventionally configured switching element 112, 212: Electric field
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Junction Field-Effect Transistors (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
第1半導体層と、
前記第1半導体層の上面に形成され、バンドギャップが前記第1半導体層より大きく前記第1半導体層とヘテロ接合する第2半導体層と、
前記第1半導体層と電気的に接続する第1電極と、
前記第1半導体層と電気的に接続し、前記第1半導体層の表面に平行な方向に前記第1電極と離間して形成される第2電極と、
前記第2半導体層の上層に形成された、前記表面に垂直な方向から見て前記第1電極と前記第2電極の間に位置する制御電極と、を備え、
前記制御電極の電位に応じて、
前記第1半導体層と前記第2半導体層との接合界面に生じる二次元キャリアガス層により、前記第1電極と前記第2電極が電気的に接続されるオン状態と、
少なくとも前記制御電極下方の前記第1半導体層と前記第2半導体層との接合界面において前記二次元キャリアガス層が生じないことにより、前記第1電極と前記第2電極の電気的接続が遮断されるオフ状態とが切り替えられるスイッチング素子であって、
前記第1半導体層の上面上の所定の第1領域に、前記二次元キャリアガス層を構成するキャリアと同導電型の不純物がドープされた第3半導体層が形成され、
前記第2電極が、前記第3半導体層を介して前記第1半導体層と電気的に接続することを第1の特徴とする。
前記第2電極と前記第1電極の間に電圧が印加され、且つ前記オフ状態であるとき、
前記第3半導体層内の多数キャリアが前記第2電極との界面側に移動するとともに、前記第1半導体層との界面付近の多数キャリアが空乏化して、前記第3半導体層内に高抵抗の領域が形成されることを第2の特徴とする。
前記第3半導体層が、前記第1半導体層の凹部上に形成され、
前記第3半導体層が、その側面において前記二次元キャリアガス層と接することを第3の特徴とする。
前記第3半導体層の下面と前記第1半導体層の上面との間に、前記第1半導体層よりもバンドギャップの大きな第4半導体層を備えることを第4の特徴とする。
前記第3半導体層が、前記第1半導体層の上面上の前記第1領域と離間した第2領域に、前記第1領域上に形成された前記第3半導体層と分離されるように形成され、
前記第1電極が、前記第2領域上に形成された前記第3半導体層を介して前記第1半導体層と電気的に接続することが好ましい。
前記第2電極が、前記表面に垂直な方向から見て、前記第3半導体層の形成領域の一部上に形成されていることを第5の特徴とする。
前記第3半導体層が、高濃度にドープされた低抵抗のn型半導体層であり、
前記二次元キャリアガス層が二次元電子ガスであることを第6の特徴とする。
前記第1半導体層、前記第2半導体層、及び、前記第3半導体層の夫々が、窒化物半導体で構成され、
前記第3半導体層が、C、Si、Ge、Sn、Te、O、Seの少なくとも何れかの元素を不純物として含むことが好ましい。
前記第1半導体層が、InXGa1-XN(但し、0≦X≦1)からなり、
前記第2半導体層が、InYAlZGa1-Y-ZN(但し、0≦Y≦1、0<Z≦1)からなり、
前記第3半導体層が、InUAlVGa1-U-VN(但し、0≦U≦1、0≦V≦1)に不純物をドープしてなることが好ましい。
本発明の一実施形態に係るスイッチング素子1(以降、適宜「本発明素子1」と称する)の構成例を図1及び図2に示す。図1及び図2は、本発明素子1の基板に垂直な面における構造断面図である。図1が本発明素子1のオン状態時の様子を、図2が本発明素子1のオフ状態時の様子を、夫々、模式的に示している。尚、以降の実施形態の説明に用いる図では、同一の構成要素には同一の符号を付すこととし、また、名称及び機能も同一であるので、同様の説明を繰り返すことはしない。また、図1及び図2に示される断面図では、適宜、要部が強調して示されており、図面上の各構成部分の寸法比と実際の寸法比とは必ずしも一致するものではない。これは以降に示す断面図について同様とする。
本発明の一実施形態に係るスイッチング素子2(以降、適宜「本発明素子2」と称する)の構成例を図3及び図4に示す。図3及び図4は、本発明素子2の基板に垂直な面における構造断面図である。図3が本発明素子2のオン状態時の様子を、図4が本発明素子2のオフ状態時の様子を、夫々、模式的に示している。
本発明の一実施形態に係るスイッチング素子3(以降、適宜「本発明素子3」と称する)の構成例を図5及び図6に示す。図5及び図6は、本発明素子3の基板に垂直な面における構造断面図である。図5が本発明素子3のオン状態時の様子を、図6が本発明素子3のオフ状態時の様子を、夫々、模式的に示している。
本発明の一実施形態に係るスイッチング素子4(以降、適宜「本発明素子4」と称する)の構成例を図7及び図8に示す。図7及び図8は、本発明素子4の基板に垂直な面における構造断面図である。図7が本発明素子4のオン状態時の様子を、図8が本発明素子4のオフ状態時の様子を、夫々、模式的に示している。
以下に、別実施形態について説明する。
11、101、201: 基板
12、102、202: バッファ層
13、103、203: キャリア走行層(第1半導体層)
14、104、204: キャリア供給層(第2半導体層)
15、105、205: ソース電極(第1電極)
16、106、206: ドレイン電極(第2電極)
17、107、207: ゲート電極(制御電極)
18、108、208: 二次元キャリアガス層
19、209: パッシベーション層(絶縁層)
20、20a、20b: 不純物ドープ層(第3半導体層)
23a: 蓄積領域
23b: 空乏領域
21、110、210: ゲート絶縁膜
22、111、211: 空乏領域
24: バリア層(第4半導体層)
100、200: 従来構成のスイッチング素子
112、212: 電界
Claims (6)
- 第1半導体層と、
前記第1半導体層の上面に形成され、バンドギャップが前記第1半導体層より大きく前記第1半導体層とヘテロ接合する第2半導体層と、
前記第1半導体層と電気的に接続する第1電極と、
前記第1半導体層と電気的に接続し、前記第1半導体層の表面に平行な方向に前記第1電極と離間して形成される第2電極と、
前記第2半導体層の上層に形成された、前記表面に垂直な方向から見て前記第1電極と前記第2電極の間に位置する制御電極と、を備え、
前記制御電極の電位に応じて、
前記第1半導体層と前記第2半導体層との接合界面に生じる二次元キャリアガス層により、前記第1電極と前記第2電極が電気的に接続されるオン状態と、
少なくとも前記制御電極下方の前記第1半導体層と前記第2半導体層との接合界面において前記二次元キャリアガス層が生じないことにより、前記第1電極と前記第2電極の電気的接続が遮断されるオフ状態とが切り替えられるスイッチング素子であって、
前記第1半導体層の上面上の所定の第1領域に、前記二次元キャリアガス層を構成するキャリアと同導電型の不純物がドープされた第3半導体層が形成され、
前記第2電極が、前記第3半導体層を介して前記第1半導体層と電気的に接続することを特徴とするスイッチング素子。 - 前記第2電極と前記第1電極の間に電圧が印加され、且つ前記オフ状態であるとき、
前記第3半導体層内の多数キャリアが前記第2電極との界面側に移動するとともに、前記第1半導体層との界面付近の多数キャリアが空乏化して、前記第3半導体層内に高抵抗の領域が形成されることを特徴とする請求項1に記載のスイッチング素子。 - 前記第3半導体層が、前記第1半導体層の凹部上に形成され、
前記第3半導体層が、その側面において前記二次元キャリアガス層と接することを特徴とする請求項1又は2に記載のスイッチング素子。 - 前記第3半導体層の下面と前記第1半導体層の上面との間に、前記第1半導体層よりもバンドギャップの大きな第4半導体層を備えることを特徴とする請求項3に記載のスイッチング素子。
- 前記第3半導体層が、前記第1半導体層の上面上の前記第1領域と離間した第2領域に、前記第1領域上に形成された前記第3半導体層と分離されるように形成され、
前記第1電極が、前記第2領域上に形成された前記第3半導体層を介して前記第1半導体層と電気的に接続することを特徴とする請求項1~4の何れか一項に記載のスイッチング素子。 - 前記第2電極が、前記表面に垂直な方向から見て、前記第3半導体層の形成領域の一部上に形成されていることを特徴とする請求項1~5の何れか一項に記載のスイッチング素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380050679.9A CN104704615B (zh) | 2012-09-28 | 2013-09-20 | 开关元件 |
US14/425,359 US9219136B2 (en) | 2012-09-28 | 2013-09-20 | Switching element |
JP2014538465A JP5779284B2 (ja) | 2012-09-28 | 2013-09-20 | スイッチング素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012218175 | 2012-09-28 | ||
JP2012-218175 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050740A1 true WO2014050740A1 (ja) | 2014-04-03 |
Family
ID=50388144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075481 WO2014050740A1 (ja) | 2012-09-28 | 2013-09-20 | スイッチング素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9219136B2 (ja) |
JP (1) | JP5779284B2 (ja) |
CN (1) | CN104704615B (ja) |
WO (1) | WO2014050740A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742360A (zh) * | 2014-12-26 | 2016-07-06 | 瑞萨电子株式会社 | 半导体器件及其制造方法 |
JP2019516244A (ja) * | 2016-04-15 | 2019-06-13 | メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド | 高電圧GaN高電子移動度トランジスタ |
US11923462B2 (en) | 2016-04-15 | 2024-03-05 | Macom Technology Solutions Holdings, Inc. | Lateral Schottky diode |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10530360B2 (en) * | 2016-02-29 | 2020-01-07 | Infineon Technologies Austria Ag | Double gate transistor device and method of operating |
WO2017190643A1 (zh) * | 2016-05-06 | 2017-11-09 | 杭州电子科技大学 | 一种新型iii-v异质结场效应晶体管 |
CN112242441A (zh) * | 2019-07-16 | 2021-01-19 | 联华电子股份有限公司 | 高电子迁移率晶体管 |
CN110993688A (zh) * | 2019-12-03 | 2020-04-10 | 广东省半导体产业技术研究院 | 一种三端半导体器件及其制作方法 |
CN112599412A (zh) * | 2020-11-24 | 2021-04-02 | 上海工程技术大学 | 一种防击穿的氮化镓基功率器件制备方法 |
US20230078017A1 (en) * | 2021-09-16 | 2023-03-16 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006093683A (ja) * | 2004-08-24 | 2006-04-06 | Toshiba Corp | 半導体基板、半導体素子、及び半導体発光素子 |
JP2006222160A (ja) * | 2005-02-08 | 2006-08-24 | Nec Corp | 電界効果トランジスタ及びその製造方法 |
JP2007317794A (ja) * | 2006-05-24 | 2007-12-06 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7339255B2 (en) * | 2004-08-24 | 2008-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes |
JP5114947B2 (ja) * | 2006-12-28 | 2013-01-09 | 富士通株式会社 | 窒化物半導体装置とその製造方法 |
JP2008306130A (ja) * | 2007-06-11 | 2008-12-18 | Sanken Electric Co Ltd | 電界効果型半導体装置及びその製造方法 |
JP5245305B2 (ja) * | 2007-07-06 | 2013-07-24 | サンケン電気株式会社 | 電界効果半導体装置及びその製造方法 |
US7795642B2 (en) * | 2007-09-14 | 2010-09-14 | Transphorm, Inc. | III-nitride devices with recessed gates |
JP2009088081A (ja) | 2007-09-28 | 2009-04-23 | Furukawa Electric Co Ltd:The | Iii族窒化物半導体を用いた電界効果トランジスタ |
JP5751404B2 (ja) * | 2010-08-23 | 2015-07-22 | サンケン電気株式会社 | 半導体装置 |
CN103582938A (zh) * | 2011-06-03 | 2014-02-12 | 住友电气工业株式会社 | 氮化物电子器件、氮化物电子器件的制作方法 |
US8969881B2 (en) * | 2012-02-17 | 2015-03-03 | International Rectifier Corporation | Power transistor having segmented gate |
US20130320349A1 (en) * | 2012-05-30 | 2013-12-05 | Triquint Semiconductor, Inc. | In-situ barrier oxidation techniques and configurations |
-
2013
- 2013-09-20 WO PCT/JP2013/075481 patent/WO2014050740A1/ja active Application Filing
- 2013-09-20 CN CN201380050679.9A patent/CN104704615B/zh active Active
- 2013-09-20 JP JP2014538465A patent/JP5779284B2/ja active Active
- 2013-09-20 US US14/425,359 patent/US9219136B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006093683A (ja) * | 2004-08-24 | 2006-04-06 | Toshiba Corp | 半導体基板、半導体素子、及び半導体発光素子 |
JP2006222160A (ja) * | 2005-02-08 | 2006-08-24 | Nec Corp | 電界効果トランジスタ及びその製造方法 |
JP2007317794A (ja) * | 2006-05-24 | 2007-12-06 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742360A (zh) * | 2014-12-26 | 2016-07-06 | 瑞萨电子株式会社 | 半导体器件及其制造方法 |
JP2019516244A (ja) * | 2016-04-15 | 2019-06-13 | メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド | 高電圧GaN高電子移動度トランジスタ |
JP7073271B2 (ja) | 2016-04-15 | 2022-05-23 | メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド | 高電圧GaN高電子移動度トランジスタ |
US11923462B2 (en) | 2016-04-15 | 2024-03-05 | Macom Technology Solutions Holdings, Inc. | Lateral Schottky diode |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014050740A1 (ja) | 2016-08-22 |
JP5779284B2 (ja) | 2015-09-16 |
US20150228773A1 (en) | 2015-08-13 |
CN104704615A (zh) | 2015-06-10 |
CN104704615B (zh) | 2017-04-05 |
US9219136B2 (en) | 2015-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5779284B2 (ja) | スイッチング素子 | |
US9196614B2 (en) | Inverted III-nitride P-channel field effect transistor with hole carriers in the channel | |
JP5147197B2 (ja) | トランジスタ | |
JP5595685B2 (ja) | 半導体装置 | |
US8148752B2 (en) | Field effect transistor | |
US8390029B2 (en) | Semiconductor device for reducing and/or preventing current collapse | |
US9171945B2 (en) | Switching element utilizing recombination | |
EP2747145B1 (en) | Field-effect transistor | |
US8519439B2 (en) | Nitride semiconductor element with N-face semiconductor crystal layer | |
US8164117B2 (en) | Nitride semiconductor device | |
US8890210B2 (en) | Field effect transistor | |
US8772836B2 (en) | Semiconductor device | |
JP5841417B2 (ja) | 窒化物半導体ダイオード | |
US9680001B2 (en) | Nitride semiconductor device | |
JP2008034438A (ja) | 半導体装置 | |
US20150263155A1 (en) | Semiconductor device | |
WO2020158394A1 (ja) | 窒化物半導体装置 | |
JPWO2010016213A1 (ja) | 電界効果トランジスタ | |
JP2015056413A (ja) | 窒化物半導体装置 | |
JP2016134563A (ja) | 半導体装置 | |
US20240014094A1 (en) | Nitride semiconductor device | |
JP2013074128A (ja) | スイッチング素子 | |
KR102113253B1 (ko) | 질화물계 반도체 소자 | |
JP2014078555A (ja) | 電界効果トランジスタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842806 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014538465 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14425359 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13842806 Country of ref document: EP Kind code of ref document: A1 |