Nothing Special   »   [go: up one dir, main page]

WO2014045396A1 - Operation management device of self-propelled mining equipment - Google Patents

Operation management device of self-propelled mining equipment Download PDF

Info

Publication number
WO2014045396A1
WO2014045396A1 PCT/JP2012/074208 JP2012074208W WO2014045396A1 WO 2014045396 A1 WO2014045396 A1 WO 2014045396A1 JP 2012074208 W JP2012074208 W JP 2012074208W WO 2014045396 A1 WO2014045396 A1 WO 2014045396A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
graph
screen
sign
sensors
Prior art date
Application number
PCT/JP2012/074208
Other languages
French (fr)
Japanese (ja)
Inventor
庄平 山形
力也 田尻
原 有希
笠井 嘉
大脇 従道
裕 吉川
内田 貴之
亮 上野
廣渡 信芳
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2012/074208 priority Critical patent/WO2014045396A1/en
Publication of WO2014045396A1 publication Critical patent/WO2014045396A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station

Definitions

  • the present invention relates to an operation management device for a self-propelled mining machine that manages the operation of a mining machine of a hydraulic or electric shovel, a dump truck, or a mining machine.
  • the main operations in the mine are mining and beneficiation.
  • Mining is for mining ores containing useful minerals from mines, and beneficiation is for selectively extracting useful minerals from mined minerals.
  • Mining is for digging out of the mine where veins exist, and beneficiary is not conducted at the drilling site, but an independent beneficiary yard is installed. Various facilities necessary for beneficiary are installed in this beneficiary yard.
  • a waste disposal site is also set up.
  • a digging machine consisting of a loader type or backhoe type shovel is used for mining, and an electric type or hydraulic type is used as a power source. Also, in consideration of work efficiency, super-large-sized digging machines are used.
  • a dump truck as a transport machine is used to transport minerals from a mining site to a beneficiary yard, and also to transport waste rock and the like to a disposal site.
  • a plurality of dump trucks are used for one drilling machine. Depending on the distance from the mining site to the mining yard etc., it is usual that 3 to 5 dump trucks take charge of transportation for one drilling machine.
  • each mining machine is provided with sensors at various places, and the various sensors are configured to detect the operating state of each operating place. When these sensors detect that there is an excessive load and a severe operating condition is detected, a warning may be issued to the operator because there is a possibility of failure.
  • a management center is installed at a predetermined position in the mine.
  • the mining machine is equipped with a wireless communication device, and data measured by various sensors are wirelessly communicated to the management center. In this way, each mining machine operating at the mining site is managed.
  • Patent Document 1 discloses that a server of a management unit that performs wireless communication with a work machine manages the work machine.
  • the hydraulic output measurement data is accumulated in the server of the management unit, thereby saving labor and improving efficiency of the performance decrease diagnosis operation of the hydraulic output performance.
  • data wirelessly communicated from each mining machine is data indicating the operation status of the mining machine in time series.
  • the management center is equipped with a computer, and the operation status of the mining machine is displayed by displaying data wirelessly communicated from the mining machine on a display connected to the computer.
  • Maintenance personnel and engineers hereinafter, maintenance personnel etc. visually analyze the data displayed on the display and analyze the state of each part of the mining machine.
  • a graph based on the measurement value of the sensor can be displayed on the display of the control center, and the maintenance personnel can visually recognize this graph to analyze the state of the mining machine.
  • detailed analysis can not be performed only by displaying the graph.
  • Parts of the mining machine are related to each other because they are affected by the conditions of other parts. Therefore, even if there is no particular problem in the graph displayed on the display, if there is an abnormality in the related part, it will be affected.
  • an object of the present invention is to make it possible to analyze in detail the state of each mining machine at a control center at a position separated from the site where a plurality of mining machines operate.
  • the operation management apparatus for a self-propelled mining machine of the present invention is an operation management for a self-propelled mining machine that manages the mining machine based on information wirelessly communicated from a plurality of mining machines.
  • the apparatus is a wireless reception unit that wirelessly receives numerical information measured by a plurality of sensors provided in the mining machine, and indicates a measurement value of any one of the sensors based on the numerical information.
  • a graph generation unit for generating a time-series graph showing time-series graphs and measurement values of one or more other sensors affecting measurement values of the one sensor, and the one corresponding to the same time axis
  • a screen creation unit creates a machine state screen on which one graph and the other graph are displayed, and a display device displays the machine state screen.
  • the measured value of the one sensor when the measured value of the one sensor is within the appropriate range, the measured value of the one sensor becomes abnormal in the future based on the numerical information of the one sensor and the numerical information of the other sensor.
  • an icon generation unit for generating an icon indicating the precursor when the precursor judgment unit predicts the precursor, and the screen generation unit The icon may be displayed corresponding to the same time axis.
  • the information processing apparatus further includes an association degree information storage unit that stores association degrees of sensors associated with the plurality of sensors with respect to each of the plurality of sensors, and the sign determination unit refers to the association degree information storage unit.
  • the sign may be predicted based on numerical information of the other sensor related to the sensor and the degree of association.
  • the screen creation unit may change the background of the machine state screen in a predetermined time range before and after the indication icon.
  • the screen creation unit may change the color or tone of the background of the machine state screen stepwise according to the predictive level when the predictive alarm is divided into a plurality of predictive levels. Good.
  • the screen creation unit may display the other graph in correspondence with the same time axis in order from the other graph having the largest change rate of the numerical information.
  • the screen creation unit may display the other graph in correspondence with the same time axis in order from the other graph having the highest degree of association.
  • the present invention not only displays the graph of the sensor to be analyzed, but also the graph of one or more other sensors that affect the measured value of the sensor, on the display device of the control center, corresponding to the same time axis.
  • By displaying it is possible to analyze in detail the site measured by the sensor.
  • an alarm icon which is one of the alarms, it is possible to grasp at a glance that, even if the current graph is appropriate, there may be a possibility that a failure or failure may occur in the future. .
  • FIG. 1 shows an example of a mine work site.
  • a drilling machine 1 and a dump truck 2 are shown as mining machines.
  • the electric or hydraulic drilling machine 1 is disposed at the ore mining site 3, and drilling of the mining site 3 is performed by the drilling machine 1.
  • the ore mined by the drilling machine 1 at the mining site 3 is unloaded from the mining site 3 by the dump truck 2. Unwanted soil is discarded to the disposal site 4, and useful ore is transported to the beneficiary yard 5 and beneficiated.
  • Mineral processing is an operation to classify mineral production into useful mineral and unnecessary mineral, and the equipment necessary for mineral processing, such as a crusher etc., is installed in the mineral processing yard 5.
  • a plurality of dump trucks 2 are allocated to one excavating machine 1 to configure a unit unit.
  • four dump trucks 2 are assigned to one drilling machine 1.
  • An example of the configuration of the dump truck 2 is shown in FIG.
  • the dump truck 2 has a vehicle body frame 11, a cab 12, a vessel 13, a dump cylinder 14 and a suspension cylinder 15.
  • the vehicle body frame 11 constitutes a basic framework of the dump truck 2 and is equipped with a cab 12 and a vessel 13.
  • the vessel 13 is loaded with the excavated material by the excavating machine 1.
  • the dump truck 2 is disposed at the mining site 3, and the excavated material by the excavating machine 1 is mounted on the vessel 13.
  • the dump truck 2 loaded with the excavated material travels to the beneficiary yard 5 (wasteland 4 if the excavated material is unnecessary soil) through a predetermined route, and inclines the vessel 13 rearward. Discharge the load. This is a so-called dump operation. Thereafter, the vessel 13 is returned to the horizontal state, and the dump truck 2 is run to return to the mining site 3. By repeatedly performing the above operation, useful minerals are taken out of the mining site 3 and sent to the beneficiary yard 5.
  • the dumping operation described above is performed by driving the dumping cylinder 14. Further, in the dump truck 2, four suspension cylinders 15 are interposed between the vehicle body frame 11 and the axles in the front and rear direction and in the right and left direction.
  • the dump truck 2 is equipped with a wireless communication device for performing wireless communication.
  • FIG. 3 shows an example of the configuration of the dump truck 2 and the management center 6.
  • a large number of dump trucks 2 are in operation, and a unique machine identification number (identifier) for identifying each dump truck 2 is attached.
  • the dump truck 2 shown in FIG. 3 has a machine identification number "A".
  • the dump truck 2 of the machine identification number "A” is referred to as a dump truck 2A.
  • the machine identification number is also assigned to the drilling machine 1.
  • the dump truck 2A includes a plurality of sensors 20 (sensors 20a, 20b, 20c, ...), a sensor data processing unit 21, an abnormality determination unit 22, an alarm unit 23, and a wireless transmission unit 24. And are configured. Further, the management center 6 is configured to have a wireless reception unit 31, a display control unit 32, and a display 33.
  • the sensor 20 is a sensor provided on the dump truck 2A, and measures a target portion to obtain a numerical value.
  • a temperature sensor for measuring the temperature of the traveling motor or the outside air temperature
  • a load sensor for measuring the engine load
  • an ammeter for measuring the motor current
  • a speed sensor for measuring the traveling speed
  • a rotation number sensor for measuring the number of rotations of the engine
  • a load sensor a pressure sensor, a flow velocity sensor, a voltmeter, or the like that detects the weight of a load or the like can be used as the sensor 20.
  • Each sensor 20 is connected to the sensor data processing unit 21.
  • the sensor data processing unit 21 acquires numerical values (such as temperature and current value) measured by the sensors 20 as numerical information.
  • the time when the numerical value information is measured is indivisiblely linked to the numerical value information as the time information.
  • the sensor data processing unit 21 receives numerical information from each of the sensors 20, and recognizes from which sensor 20 numerical information is input (sensor identification information).
  • the sensor data processing unit 21 associates numerical information with sensor identification information.
  • the numerical information acquired by the sensor data processing unit 21 is output to the abnormality determination unit 22.
  • the abnormality determination unit 22 outputs that effect to the alarm unit 23.
  • the alarm unit 23 causes the operator to acknowledge an abnormality by generating an alarm.
  • the alarm unit 23 may employ any means, and for example, a monitor (not shown) provided on the dump truck 2 may display a message to that effect.
  • the wireless transmission unit 24 transmits information to the management center 6 by wireless communication.
  • at least machine identification information, sensor identification information, numerical information, and time information are wirelessly communicated. Of course, information other than these may be wirelessly transmitted.
  • Various information communicated by wireless communication is received by the wireless reception unit 31 of the management center 6. Then, the received various information is output to the display control unit 32.
  • the management center 6 is provided with a display 33 as a display device, and the display control unit 32 is a GUI (Graphical User Interface) that generates a screen to be displayed on the display 33 and enables operation of the generated screen.
  • GUI Graphic User Interface
  • the display control unit 32 includes a graph creation unit 41, a sign determination unit 42, a degree of association information storage unit 43, an icon generation unit 44, and a screen creation unit 45.
  • the display control unit 32 can be realized as software that can be executed by a computer.
  • the wireless reception unit 31 receives the machine identification information, the sensor identification information, the numerical information, and the time information from the dump truck 2.
  • the graph creation unit 41 inputs numerical information and time information of the sensor 20 specified by the machine identification information and the sensor specification information, and acquires the numerical value measured by the sensor 20 at each time. Then, by plotting numerical values along the time axis, a graph G based on the numerical values measured by the sensor 20 is created. The graph G created over time is output to the screen creation unit 45.
  • the sensor 20a is an analysis target.
  • a graph G1 is created based on the measurement value of the sensor 20a.
  • the sensor 20a includes one or more other sensors 20 that affect the measurement value of the sensor 20a.
  • the other sensors 20 are 20b, 20c, and 20d. That is, the sensor 20a is associated with the other sensors 20b, 20c, 20d.
  • graphs G2 (sensor 20b), G3 (sensor 20c) and G4 (sensor 20d) are created based on the measurement values of the sensors 20b, 20c and 20d.
  • Information of the other related sensors 20 refers to the association degree information storage unit 43 to specify the sensors 20 b, 20 c, and 20 d.
  • the sign determination unit 42 determines a sign indicating whether there is a possibility that an abnormality such as a defect or a failure may occur in the future in the sensor 20 to be analyzed.
  • the sensor 20a to be analyzed has one or more associated sensors 20b, 20c, 20d, and although the measurement value of the sensor 20a to be analyzed is appropriate, it is related to the sensor 20a If the measured values of the other sensors 20b, 20c, 20d are abnormal, the measured values of the sensor 20a to be analyzed may be abnormal in the future.
  • the sign determination unit 42 determines that an abnormality is to occur in the future in the region measured by the sensor 20a to be analyzed, based on the association degree information storage unit 43 and the numerical information of the other sensors 20b, 20c, 20d. If so, determine the sign of abnormality.
  • the association degree information storage unit 43 stores, for each of the plurality of sensors 20, the degree of association with other sensors 20.
  • the degree of association indicates the degree to which one or more other sensors 20 affect one sensor 20 (weight).
  • the other sensors 20 related to the sensor 20a are the sensors 20b, 20c and 20d
  • the sensor 20b is 0.1
  • the sensor 20c is 0.2
  • the sensor 20d is 0 .5 information is stored as related information.
  • the graph creation unit 41 recognizes from the association degree information storage unit 43 that the other sensors 20 related to the sensor 20a are the sensors 20b, 20c and 20d, and creates not only the graph G1 but also the graphs G2, G3 and G4. Do.
  • the sign determination unit 42 determines a sign based on the value of the numerical information of the sensor 20a and the degree of association of the sensors 20b, 20c, and 20d stored in the degree of association information storage unit 43.
  • the icon generation unit 44 generates an icon when the sign determination unit 42 determines a sign. Let this be a sign icon P.
  • the precursor icon P can adopt any shape, here, the precursor icon P adopts an exclamation mark drawn in a downward triangle.
  • the screen creation unit 45 creates various screens displayed on the display 33.
  • the screen creation unit 45 inputs a plurality of graphs G created by the graph creation unit 41 and performs screen display. Further, the sign icon P is input from the icon generation unit 44. The sign icon P is associated with time information and input to the screen creation unit 45. Then, the screen display of the sign icon P is performed.
  • the screen created by the screen creation unit 45 is displayed on the display 33 and becomes a GUI screen that can be operated by the operation unit 46.
  • the operation unit 46 can use any means capable of screen operation, and is here a mouse. Of course, a keyboard or the like can also be used as the operation unit 46.
  • the screen generation unit 45 generates various screens, two screens will be described here.
  • One is a machine list screen 50 shown in FIG. 5, and the other is a machine status screen 60 shown in FIG.
  • the machine list screen 50 shows a list of mining machines managed by the management center 6, that is, mining machines operating at the mining site.
  • the machine list screen 50 is in the form of a table, and is composed of four items "Model”, “Status”, “Alarm (Error code)” and “View data”.
  • Model indicates machine identification information.
  • Status indicates whether or not the mining machine specified by “Model” is in operation, and if it is in operation, "Service” is displayed.
  • Alarm (Error code) displays a brief summary of the mining machine identified by "Model” when an alarm occurs. An alarm (prediction alarm) also occurs when the prognostic judgment unit 42 judges a precaution.
  • the predictive alarm is also displayed on the machine list screen 50.
  • simple information is displayed together with the sign icon P.
  • a plurality of other types of icons are displayed.
  • "View data" has a detail display button 51 for displaying detailed information on an alarm that has occurred.
  • Scroll bars 52 are displayed for this purpose. By placing the mouse pointer 53 and performing a drag operation on the scroll bar 52, it is possible to display information on mining machines not displayed on the machine list screen 50. Further, when the detail display button 51 is clicked by the mouse pointer 53, transition to the machine state screen 60 is made.
  • FIG. 6 shows an example of the machine status screen 60.
  • the machine state screen 60 has a time axis display area 61, an icon display area 62, and a graph display area 63. Further, information “Model: A” for identifying a mining machine based on the machine identification information is displayed at the top of the screen.
  • the machine status screen 60 is also capable of displaying other information.
  • the time axis display area 61 displays a time axis.
  • each time from “15:10” to “15:50” is displayed on a time-axis.
  • Display time change buttons 61B and 61F are respectively provided at both ends of the time axis display area 61, and when the mouse pointer 53 is placed on the display time change button 61B and clicked, the time before the displayed time is the same. In the example of the figure, the time before "15:10" can be displayed. Further, when the display time change button 41F is clicked, it is possible to display a time after the displayed time, that is, a time after “15:50” in the example of FIG. By changing the time to be displayed, the icon displayed in the icon display area 62 and the graph G displayed in the graph display area 63 also change to the corresponding time.
  • An icon display area 62 is provided immediately below the time axis of the time axis display area 61, and a sign icon P is displayed corresponding to the time indicated by the time axis. As described above, the sign icon P is associated with time information. Therefore, the sign icon P is displayed immediately below the corresponding time of the time axis of the time axis display area 61.
  • the graph display area 63 is located immediately below the icon display area 62, and displays the graph G to be analyzed and one or more other graphs G related to the graph G.
  • the graph G1 to be analyzed and the graphs G2 and G3 among the three graphs G2, G3 and G4 related to the graph G1 are displayed.
  • the graph G4 can also be displayed using a scroll bar 65 described later.
  • graph specifying information 64A to 64D for specifying which sensor of the dump truck 2A the graph G (G1 to G4) to be displayed is displayed.
  • the sensor 20a is a sensor that measures the traveling motor temperature
  • the analysis target is the traveling motor temperature.
  • “Motor sensor” is displayed, which indicates that the graph of the analysis target being displayed is the sensor 20a of the traveling motor temperature.
  • the graph identification information 64B indicates that the sensor 20b associated with the sensor 20a is a motor current. In the figure, “Motor current” is displayed.
  • the graph identification information 64C indicates that the sensor 20c associated with the sensor 20a is an engine load. In the figure, “Engine load” is displayed.
  • the graph identification information 64D displays information indicating that the sensor 20d associated with the sensor 20a is the outside air temperature.
  • a scroll bar 65 is provided to scroll the screen display.
  • the graph G4 of the sensor 20d not displayed in FIG. 6, that is, the graph G4 of the outside air temperature can be displayed.
  • the three graphs G1 to G3 are displayed on one screen, and the graph G4 is displayed by scrolling the screen.
  • four graphs G1 to G4 are displayed on one screen. You may do it.
  • a numerical value display area 66 for displaying numerical information is provided.
  • the numerical value display area 66 displays the numerical values indicated by the graphs G1 to G4 at a predetermined time.
  • the traveling motor temperature, the motor current, and the engine load at 15:36 are displayed.
  • the outside temperature can be displayed.
  • the time change bar 67 can be moved by dragging with the operation unit 46 (mouse), and can be moved to the time change bar 67 at a desired time.
  • the numerical value display area 66 displays the numerical values of the graphs G1 to G4 at the time when the time change bar 67 is positioned.
  • a scale change bar 68 is provided at a position adjacent to the time axis display area 61 and the icon display area 62.
  • the scale change bar 68 can change the scale of the time displayed in the time axis display area 61.
  • the graphs G1 to G4 are displayed on the scale of 50 minutes, but when displaying on different scales, the scale is adjusted by the scale change bar 68.
  • the sensor 20a measures the traveling motor temperature of the dump truck 2A
  • the sensor 20b measures the motor current
  • the sensor 20c measures the engine load
  • the sensor 20d measures the outside air temperature.
  • various sensors 20 other than these are measuring the part which becomes object of dump truck 2A.
  • the sensor data processing unit 21 processes the numerical values measured by the sensors 20.
  • the numerical value information processed by the sensor data processing unit 21 is determined by the abnormality determination unit 22 whether or not an abnormality has occurred. If it is determined that an abnormality has occurred, the alarm unit 23 generates an alarm. The alarm unit 23 does not generate an alarm unless it determines the abnormality.
  • the sensor data processing unit 21 associates the numerical information, the sensor identification information, and the time information with the value measured by each sensor 20 as numerical information, and outputs the value to the wireless transmission unit 24.
  • the wireless transmission unit 24 wirelessly transmits numerical information, time information, sensor identification information, and machine identification information to the management center 6 in a predetermined cycle. Each piece of information wirelessly transmitted is received by the wireless reception unit 31 and input to the display control unit 32.
  • the graph creation unit 41 of the display control unit 32 creates a graph G based on time information and numerical information.
  • the analysis target is the sensor 20a that measures the motor temperature
  • a graph G1 is created based on the numerical information of the sensor 20a.
  • the graph creating unit 41 refers to the association degree information storage unit 43 and recognizes that the sensor 20 associated with the sensor 20a is the sensors 20b, 20c and 20d. Therefore, the graph creation unit 41 creates the graphs G2, G3 and G4 together with the graph G1. Since each of the graphs G1 to G4 is created based on information periodically received wirelessly from the dump truck 2A, the graphs G1 to G4 created over time are input to the screen creation unit 45 and displayed on the display 33 Be done.
  • the sign determination unit 42 determines a defect or failure in the future based on the sensors 20b, 20c, 20d related to the sensor 20a to be analyzed. If it is predicted that there is a possibility of occurrence, a sign of abnormality is determined. To this end, the sign determination unit 42 acquires numerical information of the sensors 20 b, 20 c, and 20 d from the wireless reception unit 31 and refers to the association degree information in the association degree information storage unit 43. For example, when the current value of the motor current is excessively high or the engine load is excessively large, even if the measured value of the sensor 20a at a certain time is normal, it may become an abnormal value in the future. is there. This is judged as a sign.
  • the weight of the numerical information stored in the association degree information storage unit 43 is 0.5 for the sensor 20b for measuring the motor current, 0.2 for the sensor 20c for measuring the engine load, and 20d for the outside air temperature. Is 0.1, the sign determination unit determines the sign in consideration of these values. For example, even if the degree of abnormality of the numerical information of the sensor 20d becomes high, since the weight is low, it is not likely to be judged as a sign of abnormality. On the other hand, when the degree of abnormality of the numerical information of the motor current becomes high, since the weight is high, it tends to be judged as a sign of abnormality.
  • a threshold is set in advance in the sign determination unit 42, and whether the numerical value obtained by multiplying the above-mentioned weight by the abnormality degree of the measured value of the sensors 20b, 20c, 20d exceeds the above-mentioned threshold or not Predictive signs can be determined. If it is exceeded, it is judged to be a sign, and if it is not exceeded, it is not judged to be a sign.
  • the sign determination unit 42 may use any other method to determine a sign.
  • the sign determination unit 42 determines a sign
  • that effect is output to the icon generation unit 44.
  • the icon generation unit 44 generates the indication icon P and outputs the indication icon P and time information to the screen generation unit 45.
  • the screen creation unit 45 displays the sign icon P in the icon display area 62 corresponding to the time indicated by the time axis of the time axis display area 61 based on the time information.
  • the sign icon P is displayed at 15:34.
  • the graph G1 of the sensor 20a and the graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a are input from the graph creating unit 41, and the time indicated by the time axis of the time axis display area 61 is shown. Is displayed in the graph display area 63 corresponding to. As described above, in the example of FIG. 6, the graphs G1 to G3 are displayed on one screen, and the graph G4 can be displayed by operating the scroll bar 65.
  • the graph G1 of the sensor 20a to be analyzed is not changed significantly, and the numerical value indicated by the graph G1 is within the appropriate range. Therefore, the maintenance personnel or the like can not determine whether the sensor 20a generates an abnormality such as a failure or a failure in the future only by the graph G1 displayed on the display 33.
  • the graph creation unit 41 creates graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a. Then, the screen creation unit 45 creates a screen on which the graphs G2, G3, and G4 are displayed on the same time axis as the graph G1. Then, display is performed on the display 33 (note that the graph G4 is displayed by operating the scroll bar 65).
  • the graph G2 based on the numerical information of the sensor 20b, that is, the graph G2 showing the current value of the motor current has an excessively low current value, and changes rapidly to a high current value. Accordingly, it is recognized that the current value of the motor current is not within the proper range, but is an abnormal numerical value and a rapid change rate. If the current value of the motor current becomes abnormal, it is likely that the traveling motor temperature will also become abnormal in the future.
  • the graph G3 indicating the engine load and the graph G4 indicating the outside air temperature although not shown are assumed to be within an appropriate range.
  • the graph creating unit 41 creates not only the graph G1 to be analyzed but also the graphs G2, G3 and G4, and the screen creating unit 45 displays the respective graphs G1 to G4 corresponding to the same time axis. ing.
  • the graph G1 to be analyzed indicates the appropriate range, it is recognized that the graph G2 of the related sensor 20b is an abnormal value, so the graph G1 is appropriate at the present time Even if it is, it can be recognized that the traveling motor temperature measured by the sensor 20a may become abnormal in the future. Thereby, detailed analysis of sensor 20a can be performed.
  • the graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a it is possible to recognize that the sensor 20b related to the sensor 20a is abnormal.
  • the sign icon P By displaying the sign icon P, the sign of abnormality can be visually recognized by maintenance personnel or the like.
  • the measured values of the sensors 20b, 20c and 20d are respectively within the appropriate range, if they are close to the upper limit value or the lower limit value of the appropriate range, it is possible to cause an abnormality in the sensor 20a in the future It may be highly sexual.
  • the graphs G2 to G4 are within the appropriate range, it is difficult for maintenance personnel etc. to judge the sign of abnormality of the sensor 20a only from the graphs G2 to G4.
  • the sign determination unit 42 determines the sign on the basis of the numerical information and the association degree information in the association degree information storage unit 43, and the sign icon P is displayed. Can easily recognize the sign of abnormality of the sensor 20a.
  • the screen creating unit 45 draws the gradation 69 in a predetermined time range before and after that.
  • the gradation 69 is displayed as a background from the icon display area 62 to the lower part of the screen.
  • the gradation 69 changes gradation gradually.
  • the sign indicates that the traveling motor temperature may become abnormal in the future, but there are also stages.
  • the numerical value obtained by multiplying the degree of association information of the sensors 20b, 20c, and 20d and the degree of abnormality can level the possibility of becoming an abnormality in stages. Let this be a sign level.
  • the screen creation unit 45 changes the gradation of the gradation 69 in accordance with the sign level. When the sign level is low, the color is light, and when it is high, the color is dark.
  • the maintenance personnel etc. visually recognize the machine state screen 60 displayed on the display 33, and if the predictive alarm is generated, the traveling motor temperature becomes abnormal in the future with what possibility. It can be recognized.
  • the time range for displaying the gradation 69 can be set arbitrarily. That is, it is possible to set a predetermined fixed time range before and after the occurrence time of the sign icon P as a reference. Also, the time range to be displayed can be made variable.
  • the gradation 69 may be displayed from the time when the predictive level is the lowest to the time when it is the highest. In FIG. 6, the gradation 69 is not displayed after a predetermined time after the precursor icon P is displayed, but the gradation 69 may be displayed until the precursor determination unit 42 no longer determines the precursor.
  • the gradation of gradation 69 is changed according to the sign level, it is sufficient that the color tone including not only the gradation of color but also light and dark, intensity and the like is changed. Also, not the color tone but the color itself may be changed.
  • the gradation 65 may be changed stepwise from blue to green and then to red. Further, it may be displayed that the predictive level is changing by three-dimensional display or the like. In the case where the sign level is not determined or the like, monochrome display may be performed without changing the shade or shade of the time range in which the gradation 69 is displayed.
  • the machine state screen 60 is provided with a numerical value display area 66, and the time change bar 67 can be changed by the mouse pointer 53 before and after the time axis.
  • the numerical value indicated by the graph G at an arbitrary time can be specifically displayed in the numerical value display area 66.
  • the maintenance personnel or the like can recognize the traveling motor temperature in more detail by moving the time change bar 67 to a desired time point.
  • the graphs G1, G2, G3, and G4 are displayed in the order corresponding to the same time axis, but the screen generation unit 45 can control the display order.
  • the graph G1 to be analyzed may be displayed in the top row, and may be displayed in order from the next row in which the rate of change in numerical information is large. Thereby, the graph G of the sensor 20 in which the abnormality has occurred can be displayed with priority, which can contribute to detailed analysis of maintenance personnel and the like.
  • the screen generation unit 45 may display the graph G1 of the sensor 20a to be analyzed at the top level, and may display the graph in the order of the largest weight of the degree of association from the next level.
  • the greater the weight of the degree of association the greater the influence on the sensor 20a to be analyzed. Therefore, by preferentially displaying the graph G2 of the sensor 20b having a large weight of the degree of association, it is possible to contribute to detailed analysis of maintenance personnel and the like.
  • three sensors 20b, 20c, and 20d are associated with the sensor 20a to be analyzed.
  • more sensors 20 may be associated.
  • the plurality of graphs G may be superimposed and displayed on a region where one graph G is displayed.
  • the exhaust gas temperature of each system is the same unit, and the appropriate range is also the same.
  • the graphs G of the respective systems can be superimposed and displayed on the area where one graph G is displayed.
  • one graph G is displayed in the area where one graph G is displayed.
  • three graphs G1, G2, and G3 are displayed in the area for displaying each of them, and when displaying the graph G4, the scroll bar 65 is operated to be displayed.
  • the graph G of exhaust gas temperatures of a plurality of systems individually, it may be displayed by operating the scroll bar 65, but the graph G of the exhaust gas temperatures of each system is overlapped
  • Many graphs G can be displayed on one screen by displaying them separately.
  • the screen generation unit 45 performs control so as to display the graph G1 of the sensor 20a to be analyzed and the graphs G2, G3, and G4 of the other sensors 20b, 20c, and 20d related to the sensor 20a.
  • the graph G1 may be displayed on the screen.
  • the graphs G2, G3, and G4 are not displayed, but when the sign determination unit 42 determines a sign, the icon generation unit 44 generates the sign icon P, whereby the sign icon P is displayed on the screen. Is displayed. Thereby, even if the graph G1 is appropriate, the maintenance personnel etc. can recognize that there is a possibility that an abnormality may occur in the future based on the sign icon P.
  • a gradation 69 may be displayed. Since the gradation 69 displays the sign in stages, maintenance personnel etc. recognize the sign without displaying the other graphs G2, G3 and G4 by displaying the gradation 69 on the background of the screen can do.
  • the management center 6 manages a large number of mining machines operating at a mining site. Therefore, listing the status of each mining machine is useful for managing the mining machine.
  • the machine list screen 50 displays machine identification information of each mining machine, whether or not it is in operation, and a brief description of an alarm generated for each mining machine. By visually recognizing the machine list screen 50, maintenance personnel and the like can comprehensively manage simple situations of a plurality of mining machines.
  • Alarms displayed on the machine list screen 50 include a machine alarm that is actually abnormal and a sign alarm that indicates the sign described above.
  • the machine alarm indicates that the measurement value of the sensor 20 is abnormal.
  • there are two types of machine alarms one indicating "Failure”, which is a high-risk alarm.
  • the other is "Warning", which indicates a low risk alarm.
  • the predictive alarm is shown as "predeictive alaram", which indicates that the predictive level is level 3.
  • the precursor alarm occurs when the precursor determination unit 42 determines a precursor, and is displayed on the machine list screen 50.
  • the maintenance personnel can make a transition to the machine state screen 60 shown in FIG. 6 by clicking the detail display button 51 in accordance with the mouse pointer 53.
  • the sensor 20a to be analyzed is identified, and the detailed state of the sensor 20a can be analyzed on the machine state screen 60. Note that any method can be used to specify the sensor 20 to be analyzed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The purpose of the present invention is to enable detailed analysis of the state of each of multiple pieces of mining equipment in a management center at a location remote from the site where the mining equipment operates. This operation management device of self-propelled mining equipment is provided with a wireless receiving unit (31) which wirelessly receives numerical value information measured by multiple sensors (20) provided on the mining equipment, and time information of the times of measurement; a graph creation unit (41) which, on the basis of the numerical value information and the time information, creates a time-series graph (G) showing the measured values of one of the sensors (20), and a time-series graph showing the measured values of one or multiple other sensors (20) relating to the one sensor (20); a screen generation unit (45) which creates an equipment state screen (60) displaying the one graph (G) and the other graph (G) adapted to the same time axis; and a display (33) which displays the equipment state screen (60).

Description

自走式鉱山機械の稼動管理装置Operation management device of self-propelled mining machine
 本発明は、油圧または電動式ショベルやダンプトラック、鉱山機械の鉱山機械の運用を管理する自走式鉱山機械の稼動管理装置に関するものである。 The present invention relates to an operation management device for a self-propelled mining machine that manages the operation of a mining machine of a hydraulic or electric shovel, a dump truck, or a mining machine.
 例えば、鉱山における主な作業は、採鉱および選鉱がある。採鉱は鉱山から有用鉱物を含む鉱石を採掘するものであり、選鉱は採鉱した鉱物から有用鉱物を選択的に取り出すものである。採鉱は鉱山のうち鉱脈が存在する場所を掘削するものであり、選鉱は掘削現場で行うのではなく、独立した選鉱ヤードが設置されている。この選鉱ヤードには選鉱に必要な各種の設備等が設置されている。また、鉱脈を覆っている土砂には有用鉱物が存在していないために、土砂の廃棄場も設置される。 For example, the main operations in the mine are mining and beneficiation. Mining is for mining ores containing useful minerals from mines, and beneficiation is for selectively extracting useful minerals from mined minerals. Mining is for digging out of the mine where veins exist, and beneficiary is not conducted at the drilling site, but an independent beneficiary yard is installed. Various facilities necessary for beneficiary are installed in this beneficiary yard. In addition, since there is no useful mineral in the sediment covering the veins, a waste disposal site is also set up.
 採掘にはローダ式やバックホー式のショベル等からなる掘削機械が用いられ、その動力源としては電動式または油圧式が用いられる。また、作業効率を勘案すると、超大型の掘削機械が用いられる。一方、採掘現場から選鉱ヤードへの鉱物の搬送のために、また不要岩石等の廃棄場への搬送を行うためにも、運搬機械としてのダンプトラックが用いられる。1台の掘削機械に対して、複数のダンプトラックが用いられている。採掘現場か選鉱ヤード等までの距離にもよるが、1台の掘削機械に対して3~5台のダンプトラックが搬送を担うのが通常である。 A digging machine consisting of a loader type or backhoe type shovel is used for mining, and an electric type or hydraulic type is used as a power source. Also, in consideration of work efficiency, super-large-sized digging machines are used. On the other hand, a dump truck as a transport machine is used to transport minerals from a mining site to a beneficiary yard, and also to transport waste rock and the like to a disposal site. A plurality of dump trucks are used for one drilling machine. Depending on the distance from the mining site to the mining yard etc., it is usual that 3 to 5 dump trucks take charge of transportation for one drilling machine.
 鉱山現場での作業は、通常、1日24時間、365日休みなく行われるものであり、掘削機械やダンプトラックといった鉱山機械は、可能な限り故障しないように且つ効率的に稼動させる必要がある。このために、各鉱山機械には、様々な箇所にセンサを設けて、各種センサにより稼動各所の稼動状態を検出するように構成している。そして、これらセンサにより過大な負荷があったことが検出され、過酷な稼動状態であることが検出されたときには、故障に至るおそれがあることから、オペレータに警報を発することになる。 Work at the mine site is usually performed 24 hours a day, 365 days a week, and mining machines such as drilling machines and dump trucks need to be operated as efficiently as possible without failure . For this purpose, each mining machine is provided with sensors at various places, and the various sensors are configured to detect the operating state of each operating place. When these sensors detect that there is an excessive load and a severe operating condition is detected, a warning may be issued to the operator because there is a possibility of failure.
 前述したように、鉱山機械にあっては、稼働時間が過密である等といったことから、保守・点検等といったメンテナンス作業を頻繁に行うことができない。また、メンテナンス作業を行うとしても、短時間で効率的に行う必要がある。このために、鉱山における所定の位置に管理センタを設置している。鉱山機械は無線通信機を備えており、各種センサが測定したデータは管理センタに対して無線通信される。これにより、鉱山現場で稼動している各鉱山機械の管理を行う。 As described above, in the case of mining machines, since the operation time is excessive, maintenance operations such as maintenance and inspection can not be performed frequently. In addition, even if maintenance work is performed, it is necessary to carry out efficiently in a short time. For this purpose, a management center is installed at a predetermined position in the mine. The mining machine is equipped with a wireless communication device, and data measured by various sensors are wirelessly communicated to the management center. In this way, each mining machine operating at the mining site is managed.
 この種の技術として、作業機械と無線通信を行う管理部のサーバで作業機械の管理を行っているものが特許文献1に開示されている。この特許文献1の技術では、管理部のサーバに油圧出力計測データを蓄積していることで、油圧出力性能の性能低下診断作業の省力化および効率化を図っている。 As a technology of this type, Patent Document 1 discloses that a server of a management unit that performs wireless communication with a work machine manages the work machine. In the technology of Patent Document 1, the hydraulic output measurement data is accumulated in the server of the management unit, thereby saving labor and improving efficiency of the performance decrease diagnosis operation of the hydraulic output performance.
特開2011-38273号公報JP, 2011-38273, A
 ところで、各鉱山機械から無線通信されるデータは時系列的な鉱山機械の稼動状態を示すデータになる。管理センタにはコンピュータが備えられており、鉱山機械から無線通信されるデータをコンピュータに接続されるディスプレイに表示することにより、鉱山機械の稼動状態が表示される。メンテナンス要員やエンジニア等(以下、メンテナンス要員等)は、ディスプレイに表示されるデータを視認して、鉱山機械の各部の状態の分析を行う。 By the way, data wirelessly communicated from each mining machine is data indicating the operation status of the mining machine in time series. The management center is equipped with a computer, and the operation status of the mining machine is displayed by displaying data wirelessly communicated from the mining machine on a display connected to the computer. Maintenance personnel and engineers (hereinafter, maintenance personnel etc.) visually analyze the data displayed on the display and analyze the state of each part of the mining machine.
 管理センタのディスプレイにセンサの測定値に基づくグラフを表示して、このグラフをメンテナンス要員等が視認して、鉱山機械の状態分析を行うことができる。ただし、当該グラフを表示しているのみでは、詳細な分析を行うことはできない。鉱山機械の各部はそれぞれ他の部位の状態の影響を受けるため、相互に関連している。従って、ディスプレイに表示されているグラフに格別の問題が見られないとしても、関連している部位に異常が発生した場合には、その影響を受ける。 A graph based on the measurement value of the sensor can be displayed on the display of the control center, and the maintenance personnel can visually recognize this graph to analyze the state of the mining machine. However, detailed analysis can not be performed only by displaying the graph. Parts of the mining machine are related to each other because they are affected by the conditions of other parts. Therefore, even if there is no particular problem in the graph displayed on the display, if there is an abnormality in the related part, it will be affected.
 この場合には、現状でグラフの数値に問題が見られないとしても、将来的に不具合や故障等を発生する事態に発展する可能性がある。単にディスプレイに分析対象となっている部位の測定値に基づくグラフを表示しているだけでは、メンテナンス要員等はそのことを認識することができない。 In this case, even if there is no problem with the numerical values of the graph at present, there is a possibility that the situation may develop into a failure or failure in the future. Maintenance personnel etc. can not recognize that by simply displaying a graph based on the measurement value of the region to be analyzed on the display.
 そこで、本発明は、複数の鉱山機械が稼動する現場から離間した位置の管理センタで各鉱山機械の状態を詳細に分析可能にすることを目的とする。 Therefore, an object of the present invention is to make it possible to analyze in detail the state of each mining machine at a control center at a position separated from the site where a plurality of mining machines operate.
 以上の課題を解決するため、本発明の自走式鉱山機械の稼動管理装置は、複数の鉱山機械から無線通信される情報に基づいて前記鉱山機械の管理を行う自走式鉱山機械の稼動管理装置であって、前記鉱山機械に備えられる複数のセンサが計測する数値情報を無線により受信する無線受信部と、前記数値情報に基づいて、前記センサのうち何れか1つのセンサの測定値を示す時系列のグラフおよび前記1つのセンサの測定値に影響を与える1または複数の他のセンサの測定値を示す時系列のグラフを作成するグラフ作成部と、同一の時間軸に対応して前記1つのグラフと前記他のグラフとを表示した機械状態画面を作成する画面作成部と、前記機械状態画面を表示する表示装置と、を備えている。 In order to solve the above problems, the operation management apparatus for a self-propelled mining machine of the present invention is an operation management for a self-propelled mining machine that manages the mining machine based on information wirelessly communicated from a plurality of mining machines. The apparatus is a wireless reception unit that wirelessly receives numerical information measured by a plurality of sensors provided in the mining machine, and indicates a measurement value of any one of the sensors based on the numerical information. A graph generation unit for generating a time-series graph showing time-series graphs and measurement values of one or more other sensors affecting measurement values of the one sensor, and the one corresponding to the same time axis A screen creation unit creates a machine state screen on which one graph and the other graph are displayed, and a display device displays the machine state screen.
 また、前記1つのセンサの測定値が適正範囲内のときに、前記1つのセンサの数値情報と前記他のセンサの数値情報とに基づいて、前記1つのセンサの測定値が将来的に異常になる可能性があるか否かを予兆として予測する予兆判定部と、前記予兆判定部が前記予兆を予測したときに前記予兆を示すアイコンを生成するアイコン生成部と、を備え、前記画面作成部は、前記同一の時間軸に対応して前記アイコンを表示するようにしてもよい。 In addition, when the measured value of the one sensor is within the appropriate range, the measured value of the one sensor becomes abnormal in the future based on the numerical information of the one sensor and the numerical information of the other sensor. And an icon generation unit for generating an icon indicating the precursor when the precursor judgment unit predicts the precursor, and the screen generation unit The icon may be displayed corresponding to the same time axis.
 また、前記複数のセンサのそれぞれについて、当該センサに関連するセンサの関連度を記憶する関連度情報記憶部を備え、前記予兆判定部は、前記関連度情報記憶部を参照して、前記1つのセンサに関連する前記他のセンサの数値情報と前記関連度とに基づいて、前記予兆を予測するようにしてもよい。 Further, the information processing apparatus further includes an association degree information storage unit that stores association degrees of sensors associated with the plurality of sensors with respect to each of the plurality of sensors, and the sign determination unit refers to the association degree information storage unit. The sign may be predicted based on numerical information of the other sensor related to the sensor and the degree of association.
 また、前記画面作成部は、前記予兆アイコンの前後の所定の時間範囲の前記機械状態画面の背景を変化させるようにしてもよい。 The screen creation unit may change the background of the machine state screen in a predetermined time range before and after the indication icon.
 また、前記画面作成部は、前記予兆アラームが複数段階の予兆レベルに分けられているときには、前記予兆レベルに応じて前記機械状態画面の背景の色または色調を段階的に変化させるようにしてもよい。 In addition, the screen creation unit may change the color or tone of the background of the machine state screen stepwise according to the predictive level when the predictive alarm is divided into a plurality of predictive levels. Good.
 また、前記画面作成部は、前記他のグラフのうち数値情報の変化率が最も大きいものから順番に前記他のグラフを前記同一の時間軸に対応して表示するようにしてもよい。 Further, the screen creation unit may display the other graph in correspondence with the same time axis in order from the other graph having the largest change rate of the numerical information.
 また、前記画面作成部は、前記他のグラフのうち前記関連度が最も大きいものから順番に前記他のグラフを前記同一の時間軸に対応して表示するようにしてもよい。 Further, the screen creation unit may display the other graph in correspondence with the same time axis in order from the other graph having the highest degree of association.
 本発明は、管理センタの表示装置に、同一の時間軸に対応して、分析対象となるセンサのグラフだけでなく、当該センサの測定値に影響を与える1または複数の他のセンサのグラフを表示することで、センサが測定している部位を詳細に分析することができる。また、アラームの1つである予兆アイコンを表示することで、現状のグラフが適正であっても、将来的に不具合や故障等を発生する可能性があることを一見して把握することができる。 The present invention not only displays the graph of the sensor to be analyzed, but also the graph of one or more other sensors that affect the measured value of the sensor, on the display device of the control center, corresponding to the same time axis. By displaying, it is possible to analyze in detail the site measured by the sensor. In addition, by displaying an alarm icon, which is one of the alarms, it is possible to grasp at a glance that, even if the current graph is appropriate, there may be a possibility that a failure or failure may occur in the future. .
鉱山における鉱石の採掘を行う現場の一例を示す説明図である。It is explanatory drawing which shows an example of the site which mines the ore in a mine. 鉱山機械の一例としてのダンプトラックの側面図である。It is a side view of a dump truck as an example of a mining machine. ダンプトラックと管理センタとの構成を示すブロック図である。It is a block diagram which shows the structure of a dump truck and a management center. 表示制御部の構成を示すブロック図である。It is a block diagram showing composition of a display control part. 機械一覧画面の一例を示す図である。It is a figure which shows an example of a machine list screen. 機械状態画面の一例を示す図である。It is a figure which shows an example of a machine state screen.
 以下、図面を参照して、本発明の実施形態について説明する。以下において、鉱山機械を用いて行う作業を行う作業現場を鉱山現場として、鉱山機械の一例として掘削機械(油圧ショベル)とダンプトラックとを適用した例について説明するが、これら以外の機械も鉱山機械とすることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, an example in which a digging machine (hydraulic shovel) and a dump truck are applied as an example of a mining machine will be described, where the working site where work is performed using the mining machine is a mining site. It can be done.
 図1は鉱山の作業現場の一例を示している。図中において、鉱山機械として掘削機械1とダンプトラック2とが示されている。電動式や油圧式等の掘削機械1は、鉱石の採鉱場3に配置され、掘削機械1で採鉱場3の掘削が行われる。採鉱場3で掘削機械1により採掘された鉱石は、ダンプトラック2により採鉱場3から搬出される。不用土砂は廃棄場4に廃棄され、有用鉱石は選鉱ヤード5に搬送されて選鉱される。選鉱は採鉱物を有用鉱物と不用鉱物とに分類する作業であり、選鉱ヤード5には選鉱に必要な設備、例えばクラッシャ等が設置されている。 FIG. 1 shows an example of a mine work site. In the figure, a drilling machine 1 and a dump truck 2 are shown as mining machines. The electric or hydraulic drilling machine 1 is disposed at the ore mining site 3, and drilling of the mining site 3 is performed by the drilling machine 1. The ore mined by the drilling machine 1 at the mining site 3 is unloaded from the mining site 3 by the dump truck 2. Unwanted soil is discarded to the disposal site 4, and useful ore is transported to the beneficiary yard 5 and beneficiated. Mineral processing is an operation to classify mineral production into useful mineral and unnecessary mineral, and the equipment necessary for mineral processing, such as a crusher etc., is installed in the mineral processing yard 5.
 1台の掘削機械1には複数台のダンプトラック2を割り当てることで、単位ユニットを構成する。図1の例では、1台の掘削機械1に対して4台のダンプトラック2が割り当てられている。図2にダンプトラック2の構成の一例を示す。同図に示すように、ダンプトラック2は車体フレーム11と運転室12とベッセル13とダンプ用シリンダ14とサスペンションシリンダ15とを有している。車体フレーム11はダンプトラック2の基本的な枠組みを構成しており、運転室12を装着すると共にベッセル13を設けている。ベッセル13は掘削機械1による掘削物が積載される。 A plurality of dump trucks 2 are allocated to one excavating machine 1 to configure a unit unit. In the example of FIG. 1, four dump trucks 2 are assigned to one drilling machine 1. An example of the configuration of the dump truck 2 is shown in FIG. As shown in the figure, the dump truck 2 has a vehicle body frame 11, a cab 12, a vessel 13, a dump cylinder 14 and a suspension cylinder 15. The vehicle body frame 11 constitutes a basic framework of the dump truck 2 and is equipped with a cab 12 and a vessel 13. The vessel 13 is loaded with the excavated material by the excavating machine 1.
 ダンプトラック2は採鉱場3に配置されて、掘削機械1による掘削物がベッセル13に搭載される。掘削物を搭載したダンプトラック2は、所定のルートを通って選鉱ヤード5(掘削物が不用土砂である場合には廃棄場4)まで走行して、ベッセル13を後方に向けて傾斜させることにより積載物を排出する。これは、所謂ダンプ動作である。その後、ベッセル13を水平状態に戻してダンプトラック2を走行させて、採鉱場3に帰還させる。以上の動作を繰り返し行うことにより、採鉱場3から有用鉱物が取り出されて、選鉱ヤード5に送り込まれる。 The dump truck 2 is disposed at the mining site 3, and the excavated material by the excavating machine 1 is mounted on the vessel 13. The dump truck 2 loaded with the excavated material travels to the beneficiary yard 5 (wasteland 4 if the excavated material is unnecessary soil) through a predetermined route, and inclines the vessel 13 rearward. Discharge the load. This is a so-called dump operation. Thereafter, the vessel 13 is returned to the horizontal state, and the dump truck 2 is run to return to the mining site 3. By repeatedly performing the above operation, useful minerals are taken out of the mining site 3 and sent to the beneficiary yard 5.
 前述したダンプ動作は、ダンプ用シリンダ14を駆動することにより行われるものである。また、ダンプトラック2には、車体フレーム11と車軸との間に前後および左右に4本のサスペンションシリンダ15が介装されている。そして、ダンプトラック2には無線通信を行うための無線通信機が搭載されている。 The dumping operation described above is performed by driving the dumping cylinder 14. Further, in the dump truck 2, four suspension cylinders 15 are interposed between the vehicle body frame 11 and the axles in the front and rear direction and in the right and left direction. The dump truck 2 is equipped with a wireless communication device for performing wireless communication.
 図3はダンプトラック2および管理センタ6の構成の一例を示している。鉱山現場では多数のダンプトラック2が稼動しており、各ダンプトラック2を識別するための固有の機械識別番号(識別子)が付されている。図3に示したダンプトラック2は「A」という機械識別番号を有している。以下、機械識別番号「A」のダンプトラック2をダンプトラック2Aとする。勿論、機械識別番号は掘削機械1にも付されている。 FIG. 3 shows an example of the configuration of the dump truck 2 and the management center 6. At the mining site, a large number of dump trucks 2 are in operation, and a unique machine identification number (identifier) for identifying each dump truck 2 is attached. The dump truck 2 shown in FIG. 3 has a machine identification number "A". Hereinafter, the dump truck 2 of the machine identification number "A" is referred to as a dump truck 2A. Of course, the machine identification number is also assigned to the drilling machine 1.
 同図に示すように、ダンプトラック2Aには複数のセンサ20(センサ20a、センサ20b、センサ20c、・・・)とセンサデータ処理部21と異常判定部22と警報部23と無線送信部24とを有して構成している。また、管理センタ6は無線受信部31と表示制御部32とディスプレイ33とを有して構成している。 As shown in the figure, the dump truck 2A includes a plurality of sensors 20 ( sensors 20a, 20b, 20c, ...), a sensor data processing unit 21, an abnormality determination unit 22, an alarm unit 23, and a wireless transmission unit 24. And are configured. Further, the management center 6 is configured to have a wireless reception unit 31, a display control unit 32, and a display 33.
 センサ20はダンプトラック2Aに設けられたセンサであり、対象となる部位を測定して、数値を得る。例えば、走行モータの温度や外気温を測定する温度センサ、エンジン負荷を測定する負荷センサ、モータ電流を測定する電流計、走行速度を測定する速度センサ、エンジンの回転数を測定する回転数センサ、積荷等の重量を検出する荷重センサ、圧力センサ、流速センサ、電圧計等をセンサ20として用いることができる。 The sensor 20 is a sensor provided on the dump truck 2A, and measures a target portion to obtain a numerical value. For example, a temperature sensor for measuring the temperature of the traveling motor or the outside air temperature, a load sensor for measuring the engine load, an ammeter for measuring the motor current, a speed sensor for measuring the traveling speed, a rotation number sensor for measuring the number of rotations of the engine, A load sensor, a pressure sensor, a flow velocity sensor, a voltmeter, or the like that detects the weight of a load or the like can be used as the sensor 20.
 各センサ20はセンサデータ処理部21に接続されている。センサデータ処理部21は各センサ20が測定している数値(温度や電流値等)を数値情報として取得する。この数値情報には当該数値情報を測定したときの時刻が時刻情報として不可分に紐付けされている。センサデータ処理部21は各センサ20から数値情報を入力しており、数値情報が何れのセンサ20から入力したかを特定する(センサ特定情報)を認識している。センサデータ処理部21はセンサ特定情報に数値情報を関連付ける。 Each sensor 20 is connected to the sensor data processing unit 21. The sensor data processing unit 21 acquires numerical values (such as temperature and current value) measured by the sensors 20 as numerical information. The time when the numerical value information is measured is indivisiblely linked to the numerical value information as the time information. The sensor data processing unit 21 receives numerical information from each of the sensors 20, and recognizes from which sensor 20 numerical information is input (sensor identification information). The sensor data processing unit 21 associates numerical information with sensor identification information.
 センサデータ処理部21が取得した数値情報は異常判定部22に出力される。異常判定部22は取得した数値情報が異常な数値である場合には、警報部23にその旨を出力する。警報部23は警報を発生することにより、オペレータに異常を了知させる。警報部23は任意の手段を採用することができ、例えばダンプトラック2に備えられるモニタ(図示せず)にその旨の表示をしてもよい。 The numerical information acquired by the sensor data processing unit 21 is output to the abnormality determination unit 22. When the acquired numerical information is an abnormal numerical value, the abnormality determination unit 22 outputs that effect to the alarm unit 23. The alarm unit 23 causes the operator to acknowledge an abnormality by generating an alarm. The alarm unit 23 may employ any means, and for example, a monitor (not shown) provided on the dump truck 2 may display a message to that effect.
 無線送信部24は管理センタ6に無線通信により情報を送信する。ここでは、少なくとも機械識別情報とセンサ特定情報と数値情報と時刻情報とを無線通信する。勿論、これら以外の情報を無線送信してもよい。無線通信された各種情報は管理センタ6の無線受信部31により受信される。そして、受信した各種情報が表示制御部32に出力される。管理センタ6には表示装置としてのディスプレイ33が備えられており、表示制御部32はディスプレイ33に表示する画面を生成して、生成した画面を操作可能にするGUI(Graphical User Interface)である。 The wireless transmission unit 24 transmits information to the management center 6 by wireless communication. Here, at least machine identification information, sensor identification information, numerical information, and time information are wirelessly communicated. Of course, information other than these may be wirelessly transmitted. Various information communicated by wireless communication is received by the wireless reception unit 31 of the management center 6. Then, the received various information is output to the display control unit 32. The management center 6 is provided with a display 33 as a display device, and the display control unit 32 is a GUI (Graphical User Interface) that generates a screen to be displayed on the display 33 and enables operation of the generated screen.
 次に、図4を参照して、表示制御部32の詳細について説明する。表示制御部32は、グラフ作成部41と予兆判定部42と関連度情報記憶部43とアイコン生成部44と画面作成部45とを備えて構成している。表示制御部32はコンピュータで実行可能なソフトウェアとして実現することができる。 Next, the details of the display control unit 32 will be described with reference to FIG. The display control unit 32 includes a graph creation unit 41, a sign determination unit 42, a degree of association information storage unit 43, an icon generation unit 44, and a screen creation unit 45. The display control unit 32 can be realized as software that can be executed by a computer.
 前述したように、無線受信部31はダンプトラック2から機械識別情報とセンサ特定情報と数値情報と時刻情報とを受信する。グラフ作成部41は、機械識別情報とセンサ特定情報とにより特定されるセンサ20の数値情報と時刻情報とを入力し、各時刻におけるセンサ20が測定した数値を取得する。そして、時間軸に沿って数値をプロットする等して、センサ20が測定した数値に基づくグラフGを作成していく。経時的に作成されるグラフGは画面作成部45に出力される。 As described above, the wireless reception unit 31 receives the machine identification information, the sensor identification information, the numerical information, and the time information from the dump truck 2. The graph creation unit 41 inputs numerical information and time information of the sensor 20 specified by the machine identification information and the sensor specification information, and acquires the numerical value measured by the sensor 20 at each time. Then, by plotting numerical values along the time axis, a graph G based on the numerical values measured by the sensor 20 is created. The graph G created over time is output to the screen creation unit 45.
 ここでは、複数のセンサ20のうちセンサ20aを分析対象とする。このセンサ20aの測定値に基づいてグラフG1が作成される。一方、センサ20aには、当該センサ20aの測定値に影響を与える1または複数の他のセンサ20が存在する。ここでは、他のセンサ20が20b、20c、20dとあるものとする。つまり、センサ20aと他のセンサ20b、20c、20dとは関連している。そして、センサ20b、20c、20dの測定値に基づくグラフG2(センサ20b)、G3(センサ20c)、G4(センサ20d)が作成される。関連する他のセンサ20の情報は関連度情報記憶部43を参照して、センサ20b、20c、20dを特定する。 Here, among the plurality of sensors 20, the sensor 20a is an analysis target. A graph G1 is created based on the measurement value of the sensor 20a. On the other hand, the sensor 20a includes one or more other sensors 20 that affect the measurement value of the sensor 20a. Here, it is assumed that the other sensors 20 are 20b, 20c, and 20d. That is, the sensor 20a is associated with the other sensors 20b, 20c, 20d. Then, graphs G2 (sensor 20b), G3 (sensor 20c) and G4 (sensor 20d) are created based on the measurement values of the sensors 20b, 20c and 20d. Information of the other related sensors 20 refers to the association degree information storage unit 43 to specify the sensors 20 b, 20 c, and 20 d.
 予兆判定部42は分析対象となるセンサ20に将来的に不具合や故障等の異常を生じる可能性があるか否かを示す予兆を判定する。前述したように、分析対象となるセンサ20aには関連する1または複数のセンサ20b、20c、20dが存在し、分析対象となるセンサ20aの測定値は適正であるが、当該センサ20aに関連する他のセンサ20b、20c、20dの測定値に異常を生じている場合には、将来的には分析対象となるセンサ20aの測定値にも異常を生じる可能性がある。予兆判定部42は関連度情報記憶部43と他のセンサ20b、20c、20dの数値情報とに基づいて、分析対象となるセンサ20aが測定している部位に将来的に異常を生じると判定した場合には、異常の予兆を判定する。 The sign determination unit 42 determines a sign indicating whether there is a possibility that an abnormality such as a defect or a failure may occur in the future in the sensor 20 to be analyzed. As described above, the sensor 20a to be analyzed has one or more associated sensors 20b, 20c, 20d, and although the measurement value of the sensor 20a to be analyzed is appropriate, it is related to the sensor 20a If the measured values of the other sensors 20b, 20c, 20d are abnormal, the measured values of the sensor 20a to be analyzed may be abnormal in the future. The sign determination unit 42 determines that an abnormality is to occur in the future in the region measured by the sensor 20a to be analyzed, based on the association degree information storage unit 43 and the numerical information of the other sensors 20b, 20c, 20d. If so, determine the sign of abnormality.
 関連度情報記憶部43は複数のセンサ20のそれぞれについて、他のセンサ20との関連度を記憶する。関連度は1つのセンサ20について1または複数の他のセンサ20が影響を与える度合い(重み)を示す。例えば、センサ20aに関連する関連度情報としては、センサ20aに関連する他のセンサ20はセンサ20b、20c、20dであり、センサ20bが0.1、センサ20cが0.2、センサ20dが0.5等の情報が関連情報として記憶される。 The association degree information storage unit 43 stores, for each of the plurality of sensors 20, the degree of association with other sensors 20. The degree of association indicates the degree to which one or more other sensors 20 affect one sensor 20 (weight). For example, as association degree information related to the sensor 20a, the other sensors 20 related to the sensor 20a are the sensors 20b, 20c and 20d, the sensor 20b is 0.1, the sensor 20c is 0.2, and the sensor 20d is 0 .5 information is stored as related information.
 グラフ作成部41は、関連度情報記憶部43からセンサ20aに関連する他のセンサ20がセンサ20b、20c、20dであることを認識して、グラフG1だけでなくグラフG2、G3、G4を作成する。また、予兆判定部42はセンサ20aの数値情報の値と関連度情報記憶部43に記憶されているセンサ20b、20c、20dの関連度とに基づいて、予兆を判定する。 The graph creation unit 41 recognizes from the association degree information storage unit 43 that the other sensors 20 related to the sensor 20a are the sensors 20b, 20c and 20d, and creates not only the graph G1 but also the graphs G2, G3 and G4. Do. The sign determination unit 42 determines a sign based on the value of the numerical information of the sensor 20a and the degree of association of the sensors 20b, 20c, and 20d stored in the degree of association information storage unit 43.
 アイコン生成部44は、予兆判定部42が予兆を判定したときにアイコンを生成する。これを予兆アイコンPとする。予兆アイコンPは任意の形状を採用することができるが、ここでは、予兆アイコンPは下向きの三角形の中にエクスクラメーションマークを描画したものを採用している。 The icon generation unit 44 generates an icon when the sign determination unit 42 determines a sign. Let this be a sign icon P. Although the precursor icon P can adopt any shape, here, the precursor icon P adopts an exclamation mark drawn in a downward triangle.
 画面作成部45はディスプレイ33に表示される種々の画面を作成する。画面作成部45はグラフ作成部41が作成する複数のグラフGを入力して画面表示を行う。また、アイコン生成部44から予兆アイコンPを入力する。予兆アイコンPは時刻情報と関連付けられて画面作成部45に入力される。そして、予兆アイコンPの画面表示を行う。 The screen creation unit 45 creates various screens displayed on the display 33. The screen creation unit 45 inputs a plurality of graphs G created by the graph creation unit 41 and performs screen display. Further, the sign icon P is input from the icon generation unit 44. The sign icon P is associated with time information and input to the screen creation unit 45. Then, the screen display of the sign icon P is performed.
 画面作成部45が作成する画面はディスプレイ33に表示されると共に、操作部46により操作可能なGUI画面となる。操作部46は画面操作をできる任意の手段を用いることができ、ここではマウスとする。勿論、キーボード等も操作部46として用いることができる。 The screen created by the screen creation unit 45 is displayed on the display 33 and becomes a GUI screen that can be operated by the operation unit 46. The operation unit 46 can use any means capable of screen operation, and is here a mouse. Of course, a keyboard or the like can also be used as the operation unit 46.
 画面作成部45は種々の画面を作成するが、ここでは2つの画面について説明する。1つは図5に示す機械一覧画面50であり、もう1つは図6に示す機械状態画面60である。まず、機械一覧画面50について説明する。機械一覧画面50は管理センタ6が管理している鉱山機械、つまり鉱山現場で稼動している鉱山機械の一覧を示している。 Although the screen generation unit 45 generates various screens, two screens will be described here. One is a machine list screen 50 shown in FIG. 5, and the other is a machine status screen 60 shown in FIG. First, the machine list screen 50 will be described. The machine list screen 50 shows a list of mining machines managed by the management center 6, that is, mining machines operating at the mining site.
 図5に示すように、機械一覧画面50はテーブル形式になっており、「Model」、「Status」、「Alarm(Error code)」および「View data」の4つの項目から構成されている。「Model」は機械識別情報を示している。「Status」は「Model」で特定される鉱山機械が稼働中か否かを示し、稼働中の場合は「Service」と表示する。「Alarm(Error code)」は「Model」で特定される鉱山機械にアラームが生じている場合には、その簡単な概要を表示する。予兆判定部42が予兆を判定したときもアラーム(予兆アラーム)となる。 As shown in FIG. 5, the machine list screen 50 is in the form of a table, and is composed of four items "Model", "Status", "Alarm (Error code)" and "View data". "Model" indicates machine identification information. "Status" indicates whether or not the mining machine specified by "Model" is in operation, and if it is in operation, "Service" is displayed. "Alarm (Error code)" displays a brief summary of the mining machine identified by "Model" when an alarm occurs. An alarm (prediction alarm) also occurs when the prognostic judgment unit 42 judges a precaution.
 従って、予兆アラームも機械一覧画面50に表示される。図5の例では、予兆アイコンPと共に簡単な情報が表示されている。なお、図5の例では、他に複数種類のアイコンが表示される。「View data」は発生しているアラームに関する詳細な情報を表示するための詳細表示ボタン51を有している。 Therefore, the predictive alarm is also displayed on the machine list screen 50. In the example of FIG. 5, simple information is displayed together with the sign icon P. In addition, in the example of FIG. 5, a plurality of other types of icons are displayed. "View data" has a detail display button 51 for displaying detailed information on an alarm that has occurred.
 鉱山現場には多数の鉱山機械が運用されており、1画面では全ての鉱山機械に関する情報を表示できない場合がある。このために、スクロールバー52が表示されている。マウスポインタ53を合わせてスクロールバー52のドラッグ操作を行うことで、機械一覧画面50に表示されていない鉱山機械に関する情報を表示することができる。また、マウスポインタ53により詳細表示ボタン51をクリックすることで機械状態画面60に遷移させる。 A large number of mining machines are operated at a mining site, and one screen may not be able to display information on all the mining machines. Scroll bars 52 are displayed for this purpose. By placing the mouse pointer 53 and performing a drag operation on the scroll bar 52, it is possible to display information on mining machines not displayed on the machine list screen 50. Further, when the detail display button 51 is clicked by the mouse pointer 53, transition to the machine state screen 60 is made.
 次に、機械状態画面60について説明する。図6は機械状態画面60の一例を示している。同図に示すように、機械状態画面60は、時間軸表示領域61とアイコン表示領域62とグラフ表示領域63とを有している。また、画面上部には、機械識別情報に基づいて鉱山機械を特定する情報「Model:A」が表示される。機械状態画面60は他の情報を表示することも可能になっている。 Next, the machine status screen 60 will be described. FIG. 6 shows an example of the machine status screen 60. As shown in the figure, the machine state screen 60 has a time axis display area 61, an icon display area 62, and a graph display area 63. Further, information “Model: A” for identifying a mining machine based on the machine identification information is displayed at the top of the screen. The machine status screen 60 is also capable of displaying other information.
 時間軸表示領域61は時間軸を表示する。同図の例では、「15時10分」から「15時50分」までの各時刻を時間軸で表示している。時間軸表示領域61の両端にはそれぞれ表示時間変更ボタン61B、61Fが設けられており、表示時間変更ボタン61Bにマウスポインタ53を合わせてクリックすると、表示されている時間よりも前の時間、同図の例では「15時10分」以前の時刻を表示することができる。また、表示時間変更ボタン41Fをクリックすると、表示されている時間よりも後の時間、同図の例では「15時50分」以降の時刻を表示することができる。なお、表示する時刻を変更することにより、アイコン表示領域62に表示されるアイコン、グラフ表示領域63に表示されるグラフGも対応した時刻のものに変化する。 The time axis display area 61 displays a time axis. In the example of the figure, each time from "15:10" to "15:50" is displayed on a time-axis. Display time change buttons 61B and 61F are respectively provided at both ends of the time axis display area 61, and when the mouse pointer 53 is placed on the display time change button 61B and clicked, the time before the displayed time is the same. In the example of the figure, the time before "15:10" can be displayed. Further, when the display time change button 41F is clicked, it is possible to display a time after the displayed time, that is, a time after “15:50” in the example of FIG. By changing the time to be displayed, the icon displayed in the icon display area 62 and the graph G displayed in the graph display area 63 also change to the corresponding time.
 時間軸表示領域61の時間軸の直下には、アイコン表示領域62が設けられており、時間軸が示す時刻に対応して予兆アイコンPが表示される。前述したように、予兆アイコンPは時刻情報と関連付けられている。従って、予兆アイコンPは時間軸表示領域61の時間軸の対応する時刻の直下に表示される。 An icon display area 62 is provided immediately below the time axis of the time axis display area 61, and a sign icon P is displayed corresponding to the time indicated by the time axis. As described above, the sign icon P is associated with time information. Therefore, the sign icon P is displayed immediately below the corresponding time of the time axis of the time axis display area 61.
 グラフ表示領域63はアイコン表示領域62の直下にあり、分析対象となるグラフGおよび当該グラフGに関連する1または複数の他のグラフGを表示する。ここでは、分析対象となるグラフG1および当該グラフG1に関連する3つのグラフG2、G3、G4のうちグラフG2およびG3が表示されている。グラフG4についても後述するスクロールバー65を用いて表示することが可能になっている。 The graph display area 63 is located immediately below the icon display area 62, and displays the graph G to be analyzed and one or more other graphs G related to the graph G. Here, the graph G1 to be analyzed and the graphs G2 and G3 among the three graphs G2, G3 and G4 related to the graph G1 are displayed. The graph G4 can also be displayed using a scroll bar 65 described later.
 グラフ表示領域63には、表示されるグラフG(G1~G4)がダンプトラック2Aの何れのセンサであるかを特定するグラフ特定情報64A~64Dが表示される。ここでは、センサ20aは走行モータ温度を測定するセンサであり、分析対象としているのは走行モータ温度である。グラフ特定情報64Aには表示している分析対象のグラフが走行モータ温度のセンサ20aであることを示す「Motor sensor」が表示されている。 In the graph display area 63, graph specifying information 64A to 64D for specifying which sensor of the dump truck 2A the graph G (G1 to G4) to be displayed is displayed. Here, the sensor 20a is a sensor that measures the traveling motor temperature, and the analysis target is the traveling motor temperature. In the graph identification information 64A, “Motor sensor” is displayed, which indicates that the graph of the analysis target being displayed is the sensor 20a of the traveling motor temperature.
 グラフ特定情報64Bにはセンサ20aに関連するセンサ20bがモータ電流であることを表示している。図中では「Motor current」が表示されている。グラフ特定情報64Cにはセンサ20aに関連するセンサ20cがエンジン負荷であることを表示している。図中では「Engine load」が表示されている。なお、図中には示してないが、グラフ特定情報64Dにはセンサ20aに関連するセンサ20dが外気温であることを示す情報が表示される。 The graph identification information 64B indicates that the sensor 20b associated with the sensor 20a is a motor current. In the figure, "Motor current" is displayed. The graph identification information 64C indicates that the sensor 20c associated with the sensor 20a is an engine load. In the figure, "Engine load" is displayed. Although not shown in the drawing, the graph identification information 64D displays information indicating that the sensor 20d associated with the sensor 20a is the outside air temperature.
 スクロールバー65は画面表示をスクロールさせるために設けている。マウスポインタ53をスクロールバー65に合わせてドラッグ操作を行うことで、図6では表示されていないセンサ20dのグラフG4、すなわち外気温のグラフG4を表示することができる。なお、図6の例では、3つのグラフG1~G3を1画面で表示し、画面のスクロールを行うことにより、グラフG4を表示するようにしたが、1画面で4つのグラフG1~G4を表示するようにしてもよい。 A scroll bar 65 is provided to scroll the screen display. By moving the mouse pointer 53 to the scroll bar 65 and performing a drag operation, the graph G4 of the sensor 20d not displayed in FIG. 6, that is, the graph G4 of the outside air temperature can be displayed. In the example of FIG. 6, the three graphs G1 to G3 are displayed on one screen, and the graph G4 is displayed by scrolling the screen. However, four graphs G1 to G4 are displayed on one screen. You may do it.
 グラフ表示領域63に隣接した領域に数値情報を表示する数値表示領域66を設けている。数値表示領域66は所定の時刻におけるグラフG1~G4が示す数値を表示する。図6の例では、15時36分における走行モータ温度、モータ電流、エンジン負荷が表示されている。勿論、画面スクロールすることにより、外気温を表示することができる。時刻変更バー67は操作部46(マウス)でドラッグして移動することが可能であり、所望の時刻に時刻変更バー67まで移動させることができる。数値表示領域66は時刻変更バー67が位置している時刻における各グラフG1~G4の数値を表示する。 In an area adjacent to the graph display area 63, a numerical value display area 66 for displaying numerical information is provided. The numerical value display area 66 displays the numerical values indicated by the graphs G1 to G4 at a predetermined time. In the example of FIG. 6, the traveling motor temperature, the motor current, and the engine load at 15:36 are displayed. Of course, by scrolling the screen, the outside temperature can be displayed. The time change bar 67 can be moved by dragging with the operation unit 46 (mouse), and can be moved to the time change bar 67 at a desired time. The numerical value display area 66 displays the numerical values of the graphs G1 to G4 at the time when the time change bar 67 is positioned.
 時間軸表示領域61およびアイコン表示領域62に隣接した箇所にはスケール変更バー68が設けられている。スケール変更バー68は時間軸表示領域61で表示する時間のスケールを変更することができる。図6の場合は、50分間のスケールでグラフG1~G4を表示しているが、異なるスケールで表示を行う場合には、スケール変更バー68でスケールの調整を行う。 A scale change bar 68 is provided at a position adjacent to the time axis display area 61 and the icon display area 62. The scale change bar 68 can change the scale of the time displayed in the time axis display area 61. In the case of FIG. 6, the graphs G1 to G4 are displayed on the scale of 50 minutes, but when displaying on different scales, the scale is adjusted by the scale change bar 68.
 次に、以上の構成を用いた動作について説明する。前述したように、ダンプトラック2Aの走行モータ温度をセンサ20aが測定し、モータ電流をセンサ20bが測定し、エンジン負荷をセンサ20cが測定し、センサ20dが外気温を測定しているものとする。勿論、これら以外にも各種のセンサ20がダンプトラック2Aの対象となる部位を測定している。 Next, an operation using the above configuration will be described. As described above, it is assumed that the sensor 20a measures the traveling motor temperature of the dump truck 2A, the sensor 20b measures the motor current, the sensor 20c measures the engine load, and the sensor 20d measures the outside air temperature. . Of course, various sensors 20 other than these are measuring the part which becomes object of dump truck 2A.
 センサデータ処理部21は各センサ20が測定している数値をデータ処理する。センサデータ処理部21が処理した数値情報は異常判定部22で異常が発生しているか否かが判定される。異常が発生していると判定されれば、警報部23が警報を発生する。異常を判定しない限りは、警報部23は警報を発生しない。 The sensor data processing unit 21 processes the numerical values measured by the sensors 20. The numerical value information processed by the sensor data processing unit 21 is determined by the abnormality determination unit 22 whether or not an abnormality has occurred. If it is determined that an abnormality has occurred, the alarm unit 23 generates an alarm. The alarm unit 23 does not generate an alarm unless it determines the abnormality.
 センサデータ処理部21は各センサ20が測定した値を数値情報として、数値情報とセンサ特定情報と時刻情報とを関連付けて無線送信部24に出力する。無線送信部24は、数値情報、時刻情報、センサ特定情報および機械識別情報を所定周期で管理センタ6に無線送信している。無線送信された各情報は無線受信部31が受信して、表示制御部32に入力される。 The sensor data processing unit 21 associates the numerical information, the sensor identification information, and the time information with the value measured by each sensor 20 as numerical information, and outputs the value to the wireless transmission unit 24. The wireless transmission unit 24 wirelessly transmits numerical information, time information, sensor identification information, and machine identification information to the management center 6 in a predetermined cycle. Each piece of information wirelessly transmitted is received by the wireless reception unit 31 and input to the display control unit 32.
 表示制御部32のグラフ作成部41は時刻情報と数値情報とに基づいてグラフGを作成する。ここでは、分析対象はモータ温度を測定するセンサ20aとしているため、センサ20aの数値情報に基づくグラフG1が作成される。これと共に、グラフ作成部41は関連度情報記憶部43を参照して、センサ20aに関連しているセンサ20がセンサ20b、20c、20dであることを認識する。よって、グラフ作成部41はグラフG1と共にグラフG2、G3、G4を作成する。各グラフG1~G4はダンプトラック2Aから周期的に無線受信する情報に基づいて作成されるため、経時的に作成されていくグラフG1~G4が画面作成部45に入力されて、ディスプレイ33に表示される。 The graph creation unit 41 of the display control unit 32 creates a graph G based on time information and numerical information. Here, since the analysis target is the sensor 20a that measures the motor temperature, a graph G1 is created based on the numerical information of the sensor 20a. At the same time, the graph creating unit 41 refers to the association degree information storage unit 43 and recognizes that the sensor 20 associated with the sensor 20a is the sensors 20b, 20c and 20d. Therefore, the graph creation unit 41 creates the graphs G2, G3 and G4 together with the graph G1. Since each of the graphs G1 to G4 is created based on information periodically received wirelessly from the dump truck 2A, the graphs G1 to G4 created over time are input to the screen creation unit 45 and displayed on the display 33 Be done.
 予兆判定部42は、センサ20aのグラフG1の数値情報が適正な範囲であっても、分析対象となるセンサ20aに関連するセンサ20b、20c、20dに基づいて、将来的に不具合や故障等を発生する可能性があると予測される場合には、異常の予兆を判定する。このために、予兆判定部42はセンサ20b、20c、20dの数値情報を無線受信部31から取得し、関連度情報記憶部43の関連度情報を参照する。例えば、モータ電流の電流値が過剰に高い場合やエンジン負荷が過剰に大きい場合には、ある時刻におけるセンサ20aの測定値が正常であったとしても、将来的に異常な値になる可能性がある。これを予兆として判定する。 Even if the numerical value information of the graph G1 of the sensor 20a is in the appropriate range, the sign determination unit 42 determines a defect or failure in the future based on the sensors 20b, 20c, 20d related to the sensor 20a to be analyzed. If it is predicted that there is a possibility of occurrence, a sign of abnormality is determined. To this end, the sign determination unit 42 acquires numerical information of the sensors 20 b, 20 c, and 20 d from the wireless reception unit 31 and refers to the association degree information in the association degree information storage unit 43. For example, when the current value of the motor current is excessively high or the engine load is excessively large, even if the measured value of the sensor 20a at a certain time is normal, it may become an abnormal value in the future. is there. This is judged as a sign.
 例えば、関連度情報記憶部43に記憶されている数値情報の重みが、モータ電流を測定するセンサ20bが0.5、エンジン負荷を測定するセンサ20cが0.2、外気温を測定するセンサ20dが0.1の場合、予兆判定部はこれらの値を考慮して、予兆を判定する。例えば、センサ20dの数値情報の異常度が高くなったとしても、重みが低いため、異常の予兆とは判定されない傾向になる。一方、モータ電流の数値情報の異常度が高くなったときには、重みが高いため、異常の予兆と判定される傾向になる。 For example, the weight of the numerical information stored in the association degree information storage unit 43 is 0.5 for the sensor 20b for measuring the motor current, 0.2 for the sensor 20c for measuring the engine load, and 20d for the outside air temperature. Is 0.1, the sign determination unit determines the sign in consideration of these values. For example, even if the degree of abnormality of the numerical information of the sensor 20d becomes high, since the weight is low, it is not likely to be judged as a sign of abnormality. On the other hand, when the degree of abnormality of the numerical information of the motor current becomes high, since the weight is high, it tends to be judged as a sign of abnormality.
 予兆判定部42には予め閾値が設定されており、センサ20b、20c、20dの測定値の異常度と前記の重みとを乗算して得られる数値が前記の閾値を超過しているか否かで予兆を判定することができる。超過している場合には予兆と判定され、超過していない場合には予兆とは判定されない。勿論、予兆判定部42はこれ以外の手法を用いて予兆を判定するものであってもよい。 A threshold is set in advance in the sign determination unit 42, and whether the numerical value obtained by multiplying the above-mentioned weight by the abnormality degree of the measured value of the sensors 20b, 20c, 20d exceeds the above-mentioned threshold or not Predictive signs can be determined. If it is exceeded, it is judged to be a sign, and if it is not exceeded, it is not judged to be a sign. Of course, the sign determination unit 42 may use any other method to determine a sign.
 予兆判定部42が予兆を判定したときには、その旨がアイコン生成部44に出力される。アイコン生成部44は予兆アイコンPを生成して、予兆アイコンPと時刻情報とを画面作成部45に出力する。そして、画面作成部45は時刻情報に基づいて、時間軸表示領域61の時間軸が示す時刻に対応するアイコン表示領域62に予兆アイコンPを表示する。図6の例では、15時34分に予兆アイコンPが表示されている。 When the sign determination unit 42 determines a sign, that effect is output to the icon generation unit 44. The icon generation unit 44 generates the indication icon P and outputs the indication icon P and time information to the screen generation unit 45. Then, the screen creation unit 45 displays the sign icon P in the icon display area 62 corresponding to the time indicated by the time axis of the time axis display area 61 based on the time information. In the example of FIG. 6, the sign icon P is displayed at 15:34.
 また、グラフ作成部41からは、センサ20aのグラフG1、そしてセンサ20aに関連するセンサ20b、20c、20dのグラフG2、G3、G4が入力されて、時間軸表示領域61の時間軸が示す時刻に対応するグラフ表示領域63に表示される。前述したように、図6の例では、グラフG1~G3が1画面で表示されており、スクロールバー65を操作することで、グラフG4を表示することが可能になっている。 In addition, the graph G1 of the sensor 20a and the graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a are input from the graph creating unit 41, and the time indicated by the time axis of the time axis display area 61 is shown. Is displayed in the graph display area 63 corresponding to. As described above, in the example of FIG. 6, the graphs G1 to G3 are displayed on one screen, and the graph G4 can be displayed by operating the scroll bar 65.
 図6に示すように、分析対象となるセンサ20aのグラフG1には大きな変化は生じておらず、グラフG1が示す数値は適正な範囲内となっている。従って、メンテナンス要員等はディスプレイ33に表示されているグラフG1だけでは、センサ20aが将来的に不具合や故障等の異常を発生するか否かを判定することはできない。 As shown in FIG. 6, the graph G1 of the sensor 20a to be analyzed is not changed significantly, and the numerical value indicated by the graph G1 is within the appropriate range. Therefore, the maintenance personnel or the like can not determine whether the sensor 20a generates an abnormality such as a failure or a failure in the future only by the graph G1 displayed on the display 33.
 そこで、グラフ作成部41は、センサ20aに関連するセンサ20b、20c、20dのグラフG2、G3、G4を作成している。そして、画面作成部45はグラフG1と同一の時間軸でグラフG2、G3、G4を表示する画面を作成している。そして、ディスプレイ33に表示を行っている(なお、グラフG4はスクロールバー65を操作することにより表示される)。 Therefore, the graph creation unit 41 creates graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a. Then, the screen creation unit 45 creates a screen on which the graphs G2, G3, and G4 are displayed on the same time axis as the graph G1. Then, display is performed on the display 33 (note that the graph G4 is displayed by operating the scroll bar 65).
 同図に示すように、センサ20bの数値情報に基づくグラフG2、すなわちモータ電流の電流値を示すグラフG2は過剰に低い電流値になり、急激に高い電流値に変化している。従って、モータ電流の電流値が適正な範囲内でなく、異常な数値且つ急激な変化率であることが認識される。モータ電流の電流値が異常になると、将来的に走行モータ温度も異常になる可能性が高い。なお、エンジン負荷を示すグラフG3、図示はしていないが外気温を示すグラフG4は適正な範囲内となっているものとする。 As shown in the figure, the graph G2 based on the numerical information of the sensor 20b, that is, the graph G2 showing the current value of the motor current has an excessively low current value, and changes rapidly to a high current value. Accordingly, it is recognized that the current value of the motor current is not within the proper range, but is an abnormal numerical value and a rapid change rate. If the current value of the motor current becomes abnormal, it is likely that the traveling motor temperature will also become abnormal in the future. The graph G3 indicating the engine load and the graph G4 indicating the outside air temperature although not shown are assumed to be within an appropriate range.
 従って、グラフ作成部41は、分析対象となるグラフG1だけでなく、グラフG2、G3、G4も作成して、画面作成部45が同一の時間軸に対応して各グラフG1~G4を表示している。これにより、分析対象となるグラフG1が適正な範囲を示しているとしても、関連するセンサ20bのグラフG2が異常な数値になっていることが認識されるため、現在時点ではグラフG1が適正であったとしても、将来的にセンサ20aが測定する走行モータ温度が異常になる可能性があることを認識できる。これにより、センサ20aの詳細な分析を行うことができる。 Therefore, the graph creating unit 41 creates not only the graph G1 to be analyzed but also the graphs G2, G3 and G4, and the screen creating unit 45 displays the respective graphs G1 to G4 corresponding to the same time axis. ing. As a result, even if the graph G1 to be analyzed indicates the appropriate range, it is recognized that the graph G2 of the related sensor 20b is an abnormal value, so the graph G1 is appropriate at the present time Even if it is, it can be recognized that the traveling motor temperature measured by the sensor 20a may become abnormal in the future. Thereby, detailed analysis of sensor 20a can be performed.
 以上のように、センサ20aに関連するセンサ20b、20c、20dのグラフG2、G3、G4も表示することで、センサ20aに関連するセンサ20bに異常を生じていることを認識することができるが、予兆アイコンPを表示することで、視覚的に異常の予兆をメンテナンス要員等に認識させることができる。 As described above, by displaying the graphs G2, G3, and G4 of the sensors 20b, 20c, and 20d related to the sensor 20a, it is possible to recognize that the sensor 20b related to the sensor 20a is abnormal. By displaying the sign icon P, the sign of abnormality can be visually recognized by maintenance personnel or the like.
 前述したように、関連度の重みが高いセンサ20bに異常が生じた場合には、将来的にセンサ20aの測定値(つまり、走行モータ温度)に異常を生じる可能性が高くなるが、関連度の重みが低いセンサ20dに異常が生じたとしても、将来的にセンサ20aの測定値に異常を生じる可能性は低い。これをグラフG1~G4から判断することも可能ではあるが、予兆アイコンPを表示することで、一見して容易にメンテナンス要員等は予兆を認識できる。 As described above, when an abnormality occurs in the sensor 20b having a high degree of association weight, there is a high possibility that an abnormality will occur in the measurement value of the sensor 20a (that is, the traveling motor temperature) in the future. Even if an abnormality occurs in the sensor 20d having a low weight, it is unlikely that the measurement value of the sensor 20a will become abnormal in the future. Although it is possible to judge this from the graphs G1 to G4, by displaying the sign icon P, the maintenance personnel etc. can recognize the sign easily at first glance.
 また、センサ20b、20c、20dの測定値がそれぞれ適正な範囲内ではあるが、適正範囲の上限値または下限値に近い場合、総合的に考慮して、将来的にセンサ20aに異常を生じる可能性が高い場合がある。この場合、グラフG2~G4は適正範囲内であるため、グラフG2~G4のみからメンテナンス要員等がセンサ20aの異常の予兆を判断することは難しい。ただし、このような場合でも、予兆判定部42は数値情報と関連度情報記憶部43の関連度情報とに基づいて、予兆を判定して、予兆アイコンPが表示されることから、メンテナンス要員等はセンサ20aの異常の予兆を容易に認識することができる。 In addition, although the measured values of the sensors 20b, 20c and 20d are respectively within the appropriate range, if they are close to the upper limit value or the lower limit value of the appropriate range, it is possible to cause an abnormality in the sensor 20a in the future It may be highly sexual. In this case, since the graphs G2 to G4 are within the appropriate range, it is difficult for maintenance personnel etc. to judge the sign of abnormality of the sensor 20a only from the graphs G2 to G4. However, even in such a case, the sign determination unit 42 determines the sign on the basis of the numerical information and the association degree information in the association degree information storage unit 43, and the sign icon P is displayed. Can easily recognize the sign of abnormality of the sensor 20a.
 ところで、画面作成部45は、予兆アイコンPが発生したときには、その前後の所定の時間範囲にグラデーション69を描画する。図6に示すように、グラデーション69はアイコン表示領域62から画面下部までに背景として表示される。このグラデーション69は濃淡が段階的に変化する。 By the way, when the predictive icon P is generated, the screen creating unit 45 draws the gradation 69 in a predetermined time range before and after that. As shown in FIG. 6, the gradation 69 is displayed as a background from the icon display area 62 to the lower part of the screen. The gradation 69 changes gradation gradually.
 予兆は、走行モータ温度が将来的に異常になる可能性があることを示しているが、その可能性にも段階がある。前述したように、センサ20b、20c、20dの関連度情報と異常度とを乗算して得られる数値によって、異常となる可能性を段階的にレベル分けすることができる。これを予兆レベルとする。画面作成部45は予兆レベルに応じてグラデーション69の濃淡を変化させる。予兆レベルが低いときには薄い色とし、高いときには濃い色とする。 The sign indicates that the traveling motor temperature may become abnormal in the future, but there are also stages. As described above, the numerical value obtained by multiplying the degree of association information of the sensors 20b, 20c, and 20d and the degree of abnormality can level the possibility of becoming an abnormality in stages. Let this be a sign level. The screen creation unit 45 changes the gradation of the gradation 69 in accordance with the sign level. When the sign level is low, the color is light, and when it is high, the color is dark.
 これにより、メンテナンス要員等は、ディスプレイ33に表示されている機械状態画面60を視認することにより、予兆アラームが発生している場合に、どの程度の可能性で将来的に走行モータ温度が異常となるかを認識することができる。 As a result, the maintenance personnel etc. visually recognize the machine state screen 60 displayed on the display 33, and if the predictive alarm is generated, the traveling motor temperature becomes abnormal in the future with what possibility. It can be recognized.
 グラデーション69を表示する時間範囲は任意に設定することができる。つまり、予兆アイコンPが発生した時刻を基準として、その前後の所定の固定された時間範囲を設定することができる。また、表示する時間範囲を可変にすることもできる。予兆レベルが最低のときの時刻から最高となるときの時刻までグラデーション69を表示してもよい。図6では、予兆アイコンPが表示されてから所定時間後にグラデーション69の表示をなくしているが、予兆判定部42が予兆を判定しなくなるまで、グラデーション69を表示してもよい。 The time range for displaying the gradation 69 can be set arbitrarily. That is, it is possible to set a predetermined fixed time range before and after the occurrence time of the sign icon P as a reference. Also, the time range to be displayed can be made variable. The gradation 69 may be displayed from the time when the predictive level is the lowest to the time when it is the highest. In FIG. 6, the gradation 69 is not displayed after a predetermined time after the precursor icon P is displayed, but the gradation 69 may be displayed until the precursor determination unit 42 no longer determines the precursor.
 また、図6では、予兆レベルに応じてグラデーション69の濃淡を変化させたが、色の濃淡だけでなく、明暗や強弱等を含む色調を変化させるものであればよい。また、色調ではなく、色そのものを変化させてもよい。例えば、グラデーション65を青色から緑色、そして赤色に段階的に変化させるようなものであってもよい。また、3次元表示等により予兆レベルが変化していることを表示してもよい。予兆レベルを判定しない場合等においては、グラデーション69を表示する時間範囲の濃淡や色合いを変化させず、単色表示してもよい。 Further, in FIG. 6, although the gradation of gradation 69 is changed according to the sign level, it is sufficient that the color tone including not only the gradation of color but also light and dark, intensity and the like is changed. Also, not the color tone but the color itself may be changed. For example, the gradation 65 may be changed stepwise from blue to green and then to red. Further, it may be displayed that the predictive level is changing by three-dimensional display or the like. In the case where the sign level is not determined or the like, monochrome display may be performed without changing the shade or shade of the time range in which the gradation 69 is displayed.
 また、図6に示すように、機械状態画面60には数値表示領域66が設けられており、時刻変更バー67をマウスポインタ53により時間軸の前後に変更することが可能になっている。これにより、任意の時刻におけるグラフGが示す数値を具体的に数値表示領域66に表示することができる。メンテナンス要員等は、所望の時刻の箇所に時刻変更バー67を移動させることで、より詳細な走行モータ温度を認識することができる。 Further, as shown in FIG. 6, the machine state screen 60 is provided with a numerical value display area 66, and the time change bar 67 can be changed by the mouse pointer 53 before and after the time axis. Thus, the numerical value indicated by the graph G at an arbitrary time can be specifically displayed in the numerical value display area 66. The maintenance personnel or the like can recognize the traveling motor temperature in more detail by moving the time change bar 67 to a desired time point.
 また、図6の例では、グラフG1、G2、G3、G4の順番で同一時間軸に対応して表示しているが、画面作成部45は表示する順番を制御することができる。分析対象となるグラフG1は最上段に表示するとして、次段からは数値情報の変化率が大きい順番に表示するようにしてもよい。これにより、異常を生じているセンサ20のグラフGを優先的に表示することができ、メンテナンス要員等の詳細な分析に寄与することができる。 Further, in the example of FIG. 6, the graphs G1, G2, G3, and G4 are displayed in the order corresponding to the same time axis, but the screen generation unit 45 can control the display order. The graph G1 to be analyzed may be displayed in the top row, and may be displayed in order from the next row in which the rate of change in numerical information is large. Thereby, the graph G of the sensor 20 in which the abnormality has occurred can be displayed with priority, which can contribute to detailed analysis of maintenance personnel and the like.
 また、画面作成部45は、分析対象となるセンサ20aのグラフG1を最上段に表示して、次段からは関連度の重みが大きい順番に表示するようにしてもよい。関連度の重みが大きければ、それだけ分析対象となるセンサ20aに対して大きな影響を与えることになる。そこで、関連度の重みが大きいセンサ20bのグラフG2を優先的に表示することで、メンテナンス要員等の詳細な分析に寄与することができる。 In addition, the screen generation unit 45 may display the graph G1 of the sensor 20a to be analyzed at the top level, and may display the graph in the order of the largest weight of the degree of association from the next level. The greater the weight of the degree of association, the greater the influence on the sensor 20a to be analyzed. Therefore, by preferentially displaying the graph G2 of the sensor 20b having a large weight of the degree of association, it is possible to contribute to detailed analysis of maintenance personnel and the like.
 また、前述した例では、分析対象となるセンサ20aと関連するセンサ20はセンサ20b、20c、20dの3つとしたが、さらに多くのセンサ20が関連する場合がある。例えば、複数系統の排出ガス温度が関連する場合、1つのグラフGを表示する領域に複数のグラフGを重ねて表示するようにしてもよい。各系統の排出ガス温度は同じ単位であり、しかも適正範囲も同程度である。このような場合には、1つのグラフGを表示する領域に各系統のグラフGを重ねて表示することができる。 Further, in the above-described example, three sensors 20b, 20c, and 20d are associated with the sensor 20a to be analyzed. However, more sensors 20 may be associated. For example, in the case where exhaust gas temperatures of a plurality of systems are related, the plurality of graphs G may be superimposed and displayed on a region where one graph G is displayed. The exhaust gas temperature of each system is the same unit, and the appropriate range is also the same. In such a case, the graphs G of the respective systems can be superimposed and displayed on the area where one graph G is displayed.
 基本的には、1つのグラフGを表示する領域には1つのグラフGが表示される。図6の例では、3つのグラフG1、G2、G3がそれぞれを表示する領域に表示されており、グラフG4を表示する場合には、スクロールバー65を操作して表示するようにしていた。勿論、複数系統の排出ガス温度のグラフGを表示する場合に個別的に表示するようにして、スクロールバー65を操作して表示してもよいが、各系統の排出ガス温度のグラフGを重ねて表示することで、1画面に多くのグラフGを表示することができる。 Basically, one graph G is displayed in the area where one graph G is displayed. In the example of FIG. 6, three graphs G1, G2, and G3 are displayed in the area for displaying each of them, and when displaying the graph G4, the scroll bar 65 is operated to be displayed. Of course, when displaying the graph G of exhaust gas temperatures of a plurality of systems individually, it may be displayed by operating the scroll bar 65, but the graph G of the exhaust gas temperatures of each system is overlapped Many graphs G can be displayed on one screen by displaying them separately.
 また、本実施形態では、分析対象となるセンサ20aのグラフG1およびセンサ20aに関連する他のセンサ20b、20c、20dのグラフG2、G3、G4を表示するように画面作成部45が制御を行っているが、画面上にグラフG1のみを表示するようにしてもよい。この場合には、グラフG2、G3、G4が表示されないが、予兆判定部42が予兆を判定したときに、アイコン生成部44が予兆アイコンPを生成することで、画面上には予兆アイコンPが表示される。これにより、メンテナンス要員等はグラフG1が適正であっても、予兆アイコンPに基づいて、将来的に異常を生じる可能性があることを認識することができる。 In the present embodiment, the screen generation unit 45 performs control so as to display the graph G1 of the sensor 20a to be analyzed and the graphs G2, G3, and G4 of the other sensors 20b, 20c, and 20d related to the sensor 20a. However, only the graph G1 may be displayed on the screen. In this case, the graphs G2, G3, and G4 are not displayed, but when the sign determination unit 42 determines a sign, the icon generation unit 44 generates the sign icon P, whereby the sign icon P is displayed on the screen. Is displayed. Thereby, even if the graph G1 is appropriate, the maintenance personnel etc. can recognize that there is a possibility that an abnormality may occur in the future based on the sign icon P.
 また、予兆アイコンPではなく、グラデーション69を表示してもよい。グラデーション69は予兆を段階的に表示しているものであるため、画面の背景にグラデーション69を表示することによって、他のグラフG2、G3、G4を表示することなく、メンテナンス要員等は予兆を認識することができる。 Also, instead of the sign icon P, a gradation 69 may be displayed. Since the gradation 69 displays the sign in stages, maintenance personnel etc. recognize the sign without displaying the other graphs G2, G3 and G4 by displaying the gradation 69 on the background of the screen can do.
 ところで、前述したように、管理センタ6は鉱山現場で稼動する多数の鉱山機械を管理する。従って、各鉱山機械の状態の一覧表示をすることは鉱山機械の管理に有用である。図5に示すように、機械一覧画面50には、各鉱山機械の機械識別情報、稼働中か否か、および鉱山機械ごとに発生しているアラームに関する簡単な説明を表示している。メンテナンス要員等は機械一覧画面50を視認することで、複数の鉱山機械の簡単な状況を統括的に管理することができる。 By the way, as mentioned above, the management center 6 manages a large number of mining machines operating at a mining site. Therefore, listing the status of each mining machine is useful for managing the mining machine. As shown in FIG. 5, the machine list screen 50 displays machine identification information of each mining machine, whether or not it is in operation, and a brief description of an alarm generated for each mining machine. By visually recognizing the machine list screen 50, maintenance personnel and the like can comprehensively manage simple situations of a plurality of mining machines.
 機械一覧画面50に表示するアラームとしては、実際に異常を生じている機械アラームと前述してきた予兆を示す予兆アラームとがある。機械アラームはセンサ20の測定値が異常になっていることを示している。同図に示すように、機械アラームには2種類があり、1つは「Failure」であり危険度の高いアラームであることを示している。もう1つは「Warning」であり危険度が低いアラームであることを示している。 Alarms displayed on the machine list screen 50 include a machine alarm that is actually abnormal and a sign alarm that indicates the sign described above. The machine alarm indicates that the measurement value of the sensor 20 is abnormal. As shown in the figure, there are two types of machine alarms, one indicating "Failure", which is a high-risk alarm. The other is "Warning", which indicates a low risk alarm.
 そして、予兆アラームは「Predeictive Alaram」として示しており、予兆レベルがレベル3であることを示している。予兆アラームは予兆判定部42が予兆を判定したときに発生し、機械一覧画面50に表示する。メンテナンス要員等は、詳細表示ボタン51にマウスポインタ53に合わせてクリックすることで、図6に示した機械状態画面60に遷移させることができる。これにより、分析対象となるセンサ20aが特定され、機械状態画面60において、詳細なセンサ20aの状態を分析することができる。なお、分析対象となるセンサ20の特定には任意の手法を用いることができる。 And, the predictive alarm is shown as "predeictive alaram", which indicates that the predictive level is level 3. The precursor alarm occurs when the precursor determination unit 42 determines a precursor, and is displayed on the machine list screen 50. The maintenance personnel can make a transition to the machine state screen 60 shown in FIG. 6 by clicking the detail display button 51 in accordance with the mouse pointer 53. As a result, the sensor 20a to be analyzed is identified, and the detailed state of the sensor 20a can be analyzed on the machine state screen 60. Note that any method can be used to specify the sensor 20 to be analyzed.
1  掘削機械
2  ダンプトラック
20  センサ
21  センサデータ処理部
24  無線送信部
31  無線受信部
32  表示制御部
33  ディスプレイ
41  グラフ作成部
42  予兆判定部
43  関連度情報記憶部
44  アイコン生成部
45  画面作成部
50  機械一覧画面
60  機械状態画面
61  時間軸表示領域
62  アイコン表示領域
63  グラフ表示領域
69  グラデーション
G  グラフ
P  予兆アイコン
DESCRIPTION OF SYMBOLS 1 Drilling machine 2 Dump truck 20 Sensor 21 Sensor data processing unit 24 Wireless transmission unit 31 Wireless reception unit 32 Display control unit 33 Display 41 Graph creation unit 42 Predictive decision unit 43 Relevance degree information storage unit 44 Icon creation unit 45 Screen creation unit 50 Machine list screen 60 Machine status screen 61 Time axis display area 62 Icon display area 63 Graph display area 69 Gradation G Graph P Predictive icon

Claims (7)

  1.  複数の鉱山機械から無線通信される情報に基づいて前記鉱山機械の管理を行う自走式鉱山機械の稼動管理装置であって、
     前記鉱山機械に備えられる複数のセンサが計測する数値情報を無線により受信する無線受信部と、
     前記数値情報に基づいて、前記センサのうち何れか1つのセンサの測定値を示す時系列のグラフおよび前記1つのセンサの測定値に影響を与える1または複数の他のセンサの測定値を示す時系列のグラフを作成するグラフ作成部と、
     同一の時間軸に対応して前記1つのグラフと前記他のグラフとを表示した機械状態画面を作成する画面作成部と、
     前記機械状態画面を表示する表示装置と、
     を備えた自走式鉱山機械の稼動管理装置。
    An operation management apparatus for a self-propelled mining machine that manages the mining machine based on information wirelessly communicated from a plurality of mining machines, comprising:
    A wireless reception unit that wirelessly receives numerical information measured by a plurality of sensors provided in the mining machine;
    When showing the time series graph showing the measurement value of any one of the sensors based on the numerical information and the measurement values of one or more other sensors that affect the measurement value of the one sensor A graph creation unit that creates a series of graphs,
    A screen creation unit for creating a machine state screen on which the one graph and the other graph are displayed corresponding to the same time axis;
    A display device for displaying the machine status screen;
    Operation management device of a self-propelled mining machine equipped with
  2.  前記1つのセンサの測定値が適正範囲内のときに、前記1つのセンサの数値情報と前記他のセンサの数値情報とに基づいて、前記1つのセンサの測定値が将来的に異常になる可能性があるか否かを予兆として予測する予兆判定部と、
     前記予兆判定部が前記予兆を予測したときに前記予兆を示すアイコンを生成するアイコン生成部と、
     を備え、
     前記画面作成部は、前記同一の時間軸に対応して前記アイコンを表示する
     請求項1記載の自走式鉱山機械の稼動管理装置。
    When the measured value of the one sensor is within the appropriate range, the measured value of the one sensor may become abnormal in the future based on the numerical information of the one sensor and the numerical information of the other sensor A sign determination unit that predicts the presence or absence of a sign as a sign;
    An icon generation unit that generates an icon indicating the sign when the sign determination unit predicts the sign;
    Equipped with
    The operation management device for a self-propelled mining machine according to claim 1, wherein the screen creation unit displays the icon corresponding to the same time axis.
  3.  前記複数のセンサのそれぞれについて、当該センサに関連するセンサの関連度を記憶する関連度情報記憶部を備え、
     前記予兆判定部は、前記関連度情報記憶部を参照して、前記1つのセンサに関連する前記他のセンサの数値情報と前記関連度とに基づいて、前記予兆を予測する
     請求項2記載の自走式鉱山機械の稼動管理装置。
    For each of the plurality of sensors, an association degree information storage unit that stores the association degree of the sensor associated with the sensor;
    The prediction determination unit predicts the prediction based on numerical information of the other sensor associated with the one sensor and the association degree with reference to the association degree information storage unit. Operation management device of self-propelled mining machine.
  4.  前記画面作成部は、前記予兆アイコンの前後の所定の時間範囲の前記機械状態画面の背景を変化させる
     請求項3記載の自走式鉱山機械の稼動管理装置。
    The operation management device for a self-propelled mining machine according to claim 3, wherein the screen creation unit changes the background of the machine status screen in a predetermined time range before and after the precursor icon.
  5.  前記画面作成部は、前記予兆アラームが複数段階の予兆レベルに分けられているときには、前記予兆レベルに応じて前記機械状態画面の背景の色または色調を段階的に変化させる
     請求項4記載の自走式鉱山機械の稼動管理装置。
    The screen creation unit changes the color or tone of the background of the machine status screen in stages according to the indication level when the indication alarm is divided into a plurality of indication levels. Operation management device for mobile mining machines.
  6.  前記画面作成部は、前記他のグラフのうち数値情報の変化率が最も大きいものから順番に前記他のグラフを前記同一の時間軸に対応して表示する
     請求項3記載の自走式鉱山機械の稼動管理装置。
    The self-propelled mining machine according to claim 3, wherein the screen creation unit displays the other graph in order from the other graph having the largest change rate of the numerical information in correspondence with the same time axis. Operation management device.
  7.  前記画面作成部は、前記他のグラフのうち前記関連度が最も大きいものから順番に前記他のグラフを前記同一の時間軸に対応して表示する
     請求項3記載の自走式鉱山機械の稼動管理装置。
    The said screen preparation part displays the said other graph corresponding to the said same time axis in an order from the thing with the largest said correlation among the said other graphs. Management device.
PCT/JP2012/074208 2012-09-21 2012-09-21 Operation management device of self-propelled mining equipment WO2014045396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074208 WO2014045396A1 (en) 2012-09-21 2012-09-21 Operation management device of self-propelled mining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074208 WO2014045396A1 (en) 2012-09-21 2012-09-21 Operation management device of self-propelled mining equipment

Publications (1)

Publication Number Publication Date
WO2014045396A1 true WO2014045396A1 (en) 2014-03-27

Family

ID=50340749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074208 WO2014045396A1 (en) 2012-09-21 2012-09-21 Operation management device of self-propelled mining equipment

Country Status (1)

Country Link
WO (1) WO2014045396A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181186A (en) * 1988-01-13 1989-07-19 Nec Corp Quality deterioration supervising system
JPH06266634A (en) * 1993-03-12 1994-09-22 Omron Corp Maintenance system for information processor
JP2000297443A (en) * 1999-04-15 2000-10-24 Komatsu Ltd Information control device for construction machine
JP2001266200A (en) * 2000-03-17 2001-09-28 Komatsu Ltd Work report producing device and charging device for mobile object
JP2010156152A (en) * 2008-12-26 2010-07-15 Hitachi Constr Mach Co Ltd Diagnostic information providing device of construction machinery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181186A (en) * 1988-01-13 1989-07-19 Nec Corp Quality deterioration supervising system
JPH06266634A (en) * 1993-03-12 1994-09-22 Omron Corp Maintenance system for information processor
JP2000297443A (en) * 1999-04-15 2000-10-24 Komatsu Ltd Information control device for construction machine
JP2001266200A (en) * 2000-03-17 2001-09-28 Komatsu Ltd Work report producing device and charging device for mobile object
JP2010156152A (en) * 2008-12-26 2010-07-15 Hitachi Constr Mach Co Ltd Diagnostic information providing device of construction machinery

Similar Documents

Publication Publication Date Title
US10929820B2 (en) Predictive replacement for heavy machinery
JP5913603B2 (en) Self-propelled mining machine operation management device
US20160342915A1 (en) Autonomous Fleet Size Management
JP5416148B2 (en) Construction machine maintenance method and maintenance system
US8660738B2 (en) Equipment performance monitoring system and method
JP5913602B2 (en) Operation management device for self-propelled mining equipment
JP2014186631A (en) Diagnosis processing system, terminal equipment and server
JP6906209B2 (en) Construction machine operation status management system and management method
US20230333549A1 (en) Component Service Life Prediction System and Maintenance Assistance System
JP2017045215A (en) Diagnostic device
US10430057B2 (en) Operator interface for wireless sensing and system and method thereof
WO2014045399A1 (en) Operation management device of self-propelled mining equipment
WO2013143801A1 (en) A method for visualizing material flow of raw or semi-processed material in a process control system
WO2014045396A1 (en) Operation management device of self-propelled mining equipment
CN112334963B (en) Terminal, operation information acquisition system, operation information acquisition method, and recording medium
CA2869360C (en) Investigating the activities being performed by a machine in a mining process
AU2021221812A1 (en) Methods and systems for mining
KR102229329B1 (en) Method and apparatus for providing information for vehicle monitoring
CA3180418A1 (en) Role-based asset tagging for quantification and reporting of asset performance
JP2020016986A (en) Abnormality management system of construction machine
Vasquez Coronado et al. Developing a context-based alert system for haulage cycle optimization.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP