Nothing Special   »   [go: up one dir, main page]

WO2014044722A1 - Azadibenzofurans for electronic applications - Google Patents

Azadibenzofurans for electronic applications Download PDF

Info

Publication number
WO2014044722A1
WO2014044722A1 PCT/EP2013/069403 EP2013069403W WO2014044722A1 WO 2014044722 A1 WO2014044722 A1 WO 2014044722A1 EP 2013069403 W EP2013069403 W EP 2013069403W WO 2014044722 A1 WO2014044722 A1 WO 2014044722A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
xlln
xlllb
xllw
Prior art date
Application number
PCT/EP2013/069403
Other languages
French (fr)
Inventor
Annemarie Wolleb
Thomas Schäfer
Heinz Wolleb
Ute HEINEMEYER
Nicolle Langer
Christian Lennartz
Gerhard Wagenblast
Soichi Watanabe
Flavio Luiz Benedito
Heinz HOTTINGER
Oliver Dosenbach
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Priority to JP2015532398A priority Critical patent/JP6333262B2/en
Priority to EP13765708.6A priority patent/EP2897959B1/en
Priority to CN201380048768.XA priority patent/CN104662023B/en
Priority to EP17207679.6A priority patent/EP3318566B1/en
Priority to KR1020157009777A priority patent/KR102127406B1/en
Priority to KR1020207018021A priority patent/KR102164639B1/en
Priority to US14/427,134 priority patent/US10249827B2/en
Publication of WO2014044722A1 publication Critical patent/WO2014044722A1/en
Priority to US16/227,006 priority patent/US20190131547A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0814Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to compounds of formula I, a process for their production and their use in electronic devices, especially electroluminescent devices.
  • the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electrolumi- nescent devices.
  • WO201 1160757 relates to an electronic device comprising an anode, cathode and at least
  • WO2012/130709 relates to 4H-lmidazo[1 ,2-a]imidazoles
  • WO2013/068376 describes 4H-imidazo[1 ,2-a]imidazoles of formula
  • PCT/EP2013/064395 relates to compounds of formula (
  • the 2,5-disubstituted benzimidazo[1 ,2-a]benzimidazole derivatives are suitable hole transporting materials, or host materials for phosphorescent emitters.
  • US20090134784 provides carbazole-containing compounds.
  • the compounds are oligocarbazole-containing compounds having an unsymmetrical structure.
  • the compounds may be substituted by azadibenzofuranyl and are useful as hosts in the emissive layer of organic light emitting devices. organic light emitting devices.
  • US20100187984 discloses a process for making an aza-dibenzothiophene compound or an aza-dibenzofuran compound, comprising:
  • X2 is carb or O, with tBuONO to produce an aza complex having the
  • Ri and R2 may represent mono, di, tri, or tetra substitutions; wherein Ri is selected from the group consisting of hydrogen, alkyl, aryl, het- eroaryl and halide; and wherein R2 is selected from the group consisting of hydrogen, alkyl, aryl and halide.
  • the aza-dibenzothiophene and aza-dibenzofuran compounds disclosed in US20100187984 are used as hosts in OLEDs.
  • the present invention provides further materials suitable for use in OLEDs and further applications in organ- ic electronics. More particularly, it should be possible to provide hole transport materials, electron/exciton blocker materials and matrix materials for use in OLEDs.
  • the materials should be suitable especially for OLEDs which comprise at least one phosphorescence emitter, especially at least one green emitter or at least one blue emitter.
  • the materials should be suitable for providing OLEDs which ensure good efficiencies, good operative lifetimes and a high stability to thermal stress, and a low use and operating voltage of the OLEDs.
  • Certain aza-dibenzofuran derivatives substituted with a benzimidazo[1 ,2-a]benzimidazo-5- yl group and/or a benzimidazo[1 ,2-a]benzimidazo-2,5-ylene group are found to be suitable for use in organo-electroluminescent devices.
  • said derivatives are suitable hole transporting materials, or host materials for phosphorescent emitters with good efficiency and durability.
  • R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 and R 88 are independently of each other H, a Ci-C 25 alkyl group, which can optionally be substituted by E and or interupted by D; a C6-C2 4 aryl group, which can optionally be substituted by G, a C2-C3oheteroaryl group, which can optionally be substituted by G; or a group of formula— (A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16 ,
  • o 0, or 1
  • p is 0, or 1
  • q is 0, or 1
  • r is 0, or 1
  • a 1 , A 2 , A 3 and A 4 are independently of each other a C6-C2 4 arylen group, which can optionally be substituted by G, or a C2-C3oheteroarylen group, which can optionally be substituted by G;
  • R 16 is -NR 10 R 11 , or -Si(R 12 )(R 13 )(R 14 ), a C 6 -C 2 4aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
  • R 10 and R 11 are independently of each other a C6-C2 4 aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
  • R 12 , R 13 and R 14 are independently of each other a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D;
  • C6-C2 4 aryl group which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
  • G is E, or a d-dsalkyl group, a C6-C2 4 aryl group, a C6-C2 4 aryl group, which is substituted by F, Ci-Ci8alkyl, or C-i-C-isalkyl which is interrupted by O; a C2-C3oheteroaryl group, or a C2-C3oheteroaryl group, which is substituted by F, C-i-C-isalkyl, or C-i-C-isalkyl which is interrupted by O;
  • R 63 and R 64 are independently of each other H, C6-Cisaryl; C6-Cisaryl which is substituted by Ci-Ci8alkyl, or C-i-dsalkoxy; C-i-C-isalkyl; or C-i-C-isalkyl which is interrupted by -0-;
  • R 65 and R 66 are independently of each other a C6-Cisaryl group; a C6-Cisaryl which is substituted by Ci-Ci8alkyl, or Ci-Cisalkoxy; a C-i-C-isalkyl group; or a Ci-Cisalkyl group, which is interrupted by -0-; or
  • R 65 and R 66 together form a five or six membered ring
  • R 67 is a C6-Ciearyl group; a C6-Cisaryl group, which is substituted by C-i-C-isalkyl, or Ci- Ciealkoxy; a C-i-C-isalkyl group; or a C-i-C-isalkyl group, which is interrupted by -O-, R 68 is H; a C6-Cisaryl group; a C6-Cisaryl group, which is substituted by C-i-C-isalkyl, or Ci- Ciealkoxy; a Ci-Cisalkyl group; or a C-i-C-isalkyl group, which is interrupted by -O-, R 69 is a C6-Cisaryl; a C6-Cisaryl, which is substituted by C-i-C-isalkyl, or Ci-Cisalkoxy; a Ci- C-iealkyl group; or a Ci-Cisalkoxy; a Ci
  • R 70 and R 71 are independently of each other a C-i-C-isalkyl group, a C6-Cisaryl group, or a Ce-Cisaryl group, which is substituted by C-i-C-isalkyl, and
  • R 72 is a Ci-Cisalkyl group, a C6-Cisaryl group, or a C6-Cisaryl group, which is substituted by Ci-Cisalkyl, with the proviso that
  • At least one of the substituents B , B 2 , B 3 , B 4 , B 5 , B 6 , B 7 and B 8 represents N;
  • R 8 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 and R 88 represent a group of formula -(A 1 ) 0 -(A 2 )p-(A 3 )q-(A 4 ) r R 16 , wherein R 16 represents a benzimidazo[1 ,2-a]benzimidazo-5-yl group, which can optionally be substituted by G;
  • Certain compounds of the present invention have a LUMO-Level of 2.0 - 2.5 eV and show, when used as host in combination with phosphorescent emitters, excellent power efficiencies, in particular, electroluminescent (EL) devices comprising the compounds of the present invention exhibit reduced drive voltage while maintaining excellent luminance properties.
  • EL electroluminescent
  • the compounds of the present invention may be used for electrophotographic photoreceptors, photoelectric converters, organic solar cells (organic photovoltaics), switching elements, such as organic transistors, for example, organic FETs and organic TFTs, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices, such as, for example, organic light-emitting diodes (OLEDs).
  • organic photoreceptors organic solar cells
  • organic photovoltaics organic solar cells
  • switching elements such as organic transistors, for example, organic FETs and organic TFTs, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices, such as, for example, organic light-emitting diodes (OLEDs).
  • a further subject of the present invention is directed to an electronic device, comprising a compound according to the present invention.
  • the electronic device is prefer- ably an electroluminescent device.
  • the compounds of formula I can in principal be used in any layer of an EL device, but are preferably used as host, hole transport and electron blocking material. Particularly, the compounds of formula I are used as host material for blue light emitting phosphorescent emitters.
  • a further subject of the present invention is directed to an hole transport layer, comprising a compound of formula I according to the present invention.
  • a further subject of the present invention is directed to an emitting layer, comprising a compound of formula I according to the present invention.
  • a compound of formula I is preferably used as host material in combination with a phosphorescent emitter.
  • the compounds of formula I have preferably a molecular weight below 1500 g/mol.
  • a further subject of the present invention is directed to an electron blocking layer, comprising a compound of formula I according to the present invention.
  • D is preferably -CO-, -COO-, -S-, -SO-, -SO2-, -0-, -NR 65 -, wherein R 65 is Ci-Ci 8 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, or sec-butyl, or C6-Ci 4 aryl, such as phenyl, tolyl, naphthyl, or biphenylyl, or C2-C3oheteroaryl, such as, for example, benzimid-
  • carbazolyl dibenzofuranyl, which can be unsubstituted or substituted especially by C6-Cioaryl, or C6-Cioaryl, which is substituted by Ci-C 4 alkyl; or
  • E is preferably -OR 69 ; -SR 69 ; -N RssRss; -COR 68 ; -COOR 67 ; -CON RssRss; or -CN; wherein R 65 , R 67 , R 68 and R 69 are independently of each other Ci-Cisalkyl, such as methyl, ethyl, n- propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or C6-Ci 4 aryl, such as phenyl, tolyl, naphthyl, or biphenylyl.
  • Ci-Cisalkyl such as methyl, ethyl, n- propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, hexyl, oc
  • R 16' may be a C6-C2 4 aryl group, which can optionally be substituted by G, or a C2- C3oheteroaryl group, which can optionally be substituted by G.
  • the C6-C2 4 aryl group which optionally can be substituted by G, is typically phenyl, 4- methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted.
  • the C2-C3oheteroaryl group R 16' (R 16 ), which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated ⁇ -electrons such as 9H-pyrido[2,3-b]indolyl, benzofu- ro [2, 3- b] yridyl, benzothiopheno[2,3-b]pyridyl, 9H-pyrido[2,3-c]indolyl, benzofuro[2,3- c]pyridyl, benzothiopheno[2,3-c]pyridyl, furo[3,2-b:4,5-b']dipyridyl, pyrrolo[3,2-b:4,5- b']dipyridyl, thieno[
  • the C6-C2 4 aryl and C2-C3oheteroaryl groups may be substituted by G.
  • G has the same preferences as E, or is Ci-Cisalkyl, such as methyl, ethyl, n-propyl, iso- propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or is Ci-Ci8perfluoroalkyl, such, for example, -CF3.
  • Prefered C2-C3oheteroaryl groups are pyridyl, triazinyl, pyrimidinyl, especially 9H-pyrido[2,3- b]indolyl, benzofuro[2,3-b]pyridyl, benzothiopheno[2,3-b]pyridyl, 9H-pyrido[2,3-c]indolyl, benzofuro[2,3-c]pyridyl, benzothiopheno[2,3-c]pyridyl, furo[3,2-b:4,5-b']dipyridyl, pyr- rolo[3,2-b:4,5-b']dipyridyl, thieno[3,2-b:4,5-b']dipyridyl, benzimidazo[1 ,2-a]benzimidazo-5-yl
  • benzimidazo[1 ,2-a]benzimidazo-2-yl ( ), carba- zolyl, dibenzofuranyl, and dibenzothiophenyl, which can be unsubstituted or substituted especially by C6-Cioaryl, or C6-Cioaryl, which is substituted by Ci-C 4 alkyl; or C2-Ci 4 heteroaryl.
  • one of the groups A 1 , A 2 , A 3 and A 4 respresent a group of formula R 6' i preferably H, or a group of the formula -Si(R 2 )(R 13 )(R 14 ), especially
  • R 2 , R 13 and R 14 are independently of each other a phenyl group, which can optionally be substituted by one, or more Ci-Cisalkyl groups;
  • R2i and R 21 ' are independently of each other H, a phenyl group, or a Ci-Cisalkyl group; re independently of each other H , or a group of the formula
  • X is O, S, or R 24 ,
  • R 24 is a C6-C24aryl group, or a C2-C3oheteroaryl group, which can optionally be substituted by G, wherein G is as defined in above;
  • a 1 , A 2 , A 3 and A 4 are independently of each other a C6-C2 4 arylen group, which can optionally be substituted by G, or a C2-C3oheteroarylen group, which can optionally be substituted by G.
  • the C6-C2 4 arylen groups A 1 , A 2 , A 3 and A 4 which optionally can be substituted by G, are typically phenylene, 4-methylphenylene, 4-methoxyphenylene, naphthylene, especially 1 -naphthylene, or 2-naphthylene, biphenylylene, terphenylylene, pyrenylene, 2- or 9- fluorenylene, phenanthrylene, or anthrylene, which may be unsubstituted or substituted.
  • the C2-C3oheteroarylen groups A 1 , A 2 , A 3 and A 4 which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated -electrons such as benzofuro[2,3- e (
  • zothiophenylene phenoxythienylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazi- nylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, chinolylene, isochinolylene, phthalazinylene, naphthyridinylene, chinoxalinylene, chinazoli- nylene, cinnolinylene, pteridinylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, pyrimidinylene, phenanthrolinylene, phenazinylene, iso- , furazanylene, carbazo
  • C6-C2 4 arylen groups are 1 ,3-phenylene, 3,3'-biphenylylene, 3,3'-m-terphenylene, 2- or 9-fluorenylene, phenanthrylene, which may be unsubstituted or substituted, especially by C6-Cioaryl, C6-Cioaryl which is substituted by Ci-C 4 alkyl; or C2-Ci 4 heteroaryl.
  • Preferred C2-C3oheteroarylen groups are pyridylene, triazinylene, pyrimidinylene, especially benzofuro[2,3-b]pyridylene, benzothiopheno[2,3-b]pyridylene , pyrido[2,3-b]indolylene , benzofuro[2,3-c]pyridylene, benzothiopheno[2,3-c]pyridylene , pyrido[2,3-c]indolylene fu- ro[3,2-b:4,5-b']dipyridylene, thieno[3,2-b:4,5-b']dipyridylene, pyrrolo[3,2-b:4,5- b']dipyridylene, dibenzofuranylene, dibenzothiophenylene , carbazolylene and benzimid- azo[1 ,2-a]benzimidazo-2,5-ylene , which can be un
  • Benzimidazo[1 ,2-a]benzimidazo-5-yl, benzimidazo[1 ,2-a]benzimidazo-2-yl, carbazolyl and dibenzofuranyl are examples of a C2-Ci 4 heteroaryl group.
  • Phenyl, 1-naphthyl and 2- naphthyl are examples of a C6-Cioaryl group.
  • the C6-C2 4 arylen and C2-C3oheteroarylen groups may be substituted by G.
  • a 1 , A 2 , A 3 and A 4 are preferably a group of the formula
  • R 89 and X are as defined below.
  • X is preferably O.
  • the aza-dibenzofuran derivatives of the present invention are characterized in that they are substituted with at least one benzimidazo[1 ,2-a]benzimidazo-5-yl group and/or at least one benzimidazo[1 ,2-a]benzimidazo-2,5-ylene group.
  • the aza-dibenzofuran derivatives of the present invention are characterized in that at least one of the substituents R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 and R 88 is a group of
  • the present invention is directed to compounds of formula (la), (lb), (lc), (Id), (le), (If), (Ig), (Ih), (li), (Ij), (Ik), (II), (Im), (In) and (lo), wherein
  • R 83 is a group of the formula -(AV(A 2 )p-(A 3 ) q -(A 4 ) r R 16 ;
  • R 87 is H, or a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16' ; or
  • R 83 is H, or a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16' ;
  • R 87 is a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16 ; in the compounds of formula (lb)
  • R 82 is a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16 ;
  • R 87 is H, or a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16' ; or
  • R 82 is H, or a group of the formula -(A i ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16' ; and R 87 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (lc)
  • Res is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; and R 87 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; and R 87 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Id)
  • R 81 is a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 85 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; or R 81 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (le)
  • R 83 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; and R 87 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 83 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 87 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (If)
  • R 83 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; and R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 83 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Ig)
  • R 82 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; and R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 82 is H, or a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Ih)
  • R 81 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; and R 87 is H, or a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; or R 81 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; and R 87 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (li)
  • R 83 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ;
  • R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 83 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Ij)
  • R83 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 85 is H, or a group of the formula -(A- i ) 0 -(A 2 ) P -(A 3 )q-(A 4 )rR 16' ; or R 83 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Ik)
  • R 81 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 81 is H, or a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ' ; and R 85 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (II)
  • R 85 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 87 is H, or a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ' ; or R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; and R 87 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (Im)
  • R 83 is a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 85 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 83 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 85 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ; in the compounds of formula (In)
  • R 83 is a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • R 87 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or R 83 is H, or a group of the formula -(Ai) 0 -(A 2 ) P -(A 3 ) q -(A4) r Ri 6 '; and R 87 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 .
  • R 82 is a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ;
  • R 86 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 '; or
  • R 82 is H, or a group of the formula -(Ai) 0 -(A2) p -(A 3 ) q -(A4) r Ri 6 ';
  • R 86 is a group of the formula -(AV(A 2 ) P -(A 3 ) q -(A4) r Ri 6 ;
  • a 1 , A 2 , A 3 and A 4 are independently of each other a group of the formula
  • one of the groups A 1 , A 2 , A 3 and A 4 respresent a group of formula
  • ' is H, or a group of the formula -Si(R 2 )(R 3 )(R 14 ),
  • R 12 , R 13 and R 14 are independently of each other a phenyl group, which can optionally be substituted by one, or more alkyl groups, especially Ci-Cisalkyl groups;
  • R 21 and R 21 ' are independently of each other H, a phenyl group, or a Ci-Cisalkyl group;
  • X is O, S, or NR 24 ,
  • R 24 is a C6-C2 4 aryl group, or a C2-C3oheteroaryl group, which can optionally be substituted by G, wherein G is as defined in above;
  • R 16 is a group of the formula st
  • one of the groups A 1 , A 2 , A 3 and A 4 respresent a group of formula
  • X is preferably O.
  • the group of the formula -(A 1 ) 0 -(A 2 )p-(A 3 )q-(A 4 ) r R 16 is preferably a group of formula
  • the group of the formula -(A 1 ) 0 -(A 2 )p-(A 3 ) q -(A 4 ) r R 16' is preferably H, or a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf), or (Xlllg), as defined above; or a group of for-
  • the present invention is directed to compounds of formula (la), wherein R ⁇ is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), (XIII), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa
  • the present invention is directed to compounds of formula (lb), wherein R 82 is a group of formula (XI la), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 82 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa
  • the present invention is directed to compounds of formula (lc), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; and
  • Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw),
  • R 85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (
  • the present invention is directed to compounds of formula (Id), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; and
  • R 8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 81 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa),
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and R 8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (X
  • the present invention is directed to compounds of formula (le), wherein R ⁇ is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr),
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa),
  • R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (
  • the present invention is directed to compounds of formula (If), wherein R 88 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 88 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa),
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • the present invention is directed to compounds of formula (Ij), wherein R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr),
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa),
  • R 85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (
  • the present invention is directed to compounds of formula (II), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (
  • the present invention is directed to compounds of formula (In), wherein R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as above, and R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (X
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx), (XIVz), (XVa), (
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • Examples of preferred compounds are compounds A-1 to A-65, B-1 to B-8, C-1 to C-65, D- 1 to D-8, E-1 to E-65, F-1 to F-65 and G-1 shown in claim 9.
  • the present invention is directed to
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • R 83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • R 87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
  • R 83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa),
  • Compounds, such as, for example, (E-57) can advantageously be used as host and/or hole transport material.
  • Compounds, such as, for example, (G-1 ) are particularly suitable as electron transport material.
  • Ci-C25alkyl (Ci-Cisalkyl) is typically linear or branched, where possible. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3- pentyl, 2,2-dimethylpropyl, 1 ,1 ,3,3-tetramethylpentyl, n-hexyl, 1-methylhexyl, 1 ,1 ,3,3,5,5- hexa methyl hexyl, n-heptyl, isoheptyl, 1 ,1 ,3,3-tetramethylbutyl, 1-methylheptyl, 3-methyl- heptyl, n-octyl, 1 ,1 ,3,3-tetramethylbutyl, 1-methylheptyl, 3-methyl- heptyl
  • d-Csalkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethyl-propyl, n-hexyl, n-heptyl, n-octyl, 1 ,1 ,3,3-tetramethylbutyl and 2- ethylhexyl.
  • Ci-C4alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl.
  • Ci-C25alkoxy groups are straight-chain or branched alkoxy groups, e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, amyloxy, isoamyloxy or tert-amyloxy, heptyloxy, octyloxy, isooctyloxy, nonyloxy, decyloxy, un- decyloxy, dodecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy and octadecyloxy.
  • Examples of d-Csalkoxy are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert.-butoxy, n-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2,2- dimethylpropoxy, n-hexyloxy, n-heptyloxy, n-octyloxy, 1 ,1 ,3,3-tetramethylbutoxy and 2- ethylhexyloxy, preferably Ci-C4alkoxy such as typically methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert.-butoxy.
  • Ci-Ci8perfluoroalkyl is a branched or unbranched radical such as for example -CF 3 , -CF 2 CF 3 , -CF 2 CF 2 CF 3 , -CF(CF 3 ) 2 , -(CF 2 ) 3 CF 3 , and -C(CF 3 ) 3 .
  • cycloalkyl group is typically C4-Ci8cycloalkyl, especially C5-Ci2cycloalkyl, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, preferably cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, which may be unsubstituted or substituted.
  • C6-C2 4 aryl which optionally can be substituted, is typically phenyl, 4- methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted.
  • Phenyl, 1-naphthyl and 2-naphthyl are examples of a C6-Cioaryl group.
  • C2-C3oheteroaryl represents a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated ⁇ -electrons such as thienyl, benzothiophenyl, dibenzothiophenyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzo- furanyl, isobenzofuranyl, dibenzofuranyl, phenoxythienyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl,
  • Benzimidazo[1 ,2- a]benzimidazo-5-yl, benzimidazo[1 ,2-a]benzimidazo-2-yl, carbazolyl and dibenzofuranyl are examples of a C2-Ci 4 heteroaryl group.
  • C6-C2 4 arylen groups which optionally can be substituted by G, are typically phenylene, 4- methylphenylene, 4-methoxyphenylene, naphthylene, especially 1-naphthylene, or 2- naphthylene, biphenylylene, terphenylylene, pyrenylene, 2- or 9-fluorenylene, phenan- thrylene, or anthrylene, which may be unsubstituted or substituted.
  • Preferred C6-C2 4 arylen groups are 1 ,3-phenylene, 3,3'-biphenylylene, 3,3'-m-terphenylene, 2- or 9-fluorenylene, phenanthrylene, which may be unsubstituted or substituted.
  • C2-C3oheteroarylen groups which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated -electrons such as thienylene, benzothiophenylene, dibenzothio- phenylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, isoben- zofuranylene, dibenzofuranylene, phenoxythienylene, pyrrolylene, imidazolylene, pyrazol- ylene, pyridylene, bipyridylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indoly
  • C2-C3oheteroarylen groups are pyridylene, triazinylene, pyrimidinylene, carbazol- ylene, dibenzofuranylene and benzimidazo[1 ,2-a]benzimidazo-2,5-ylene
  • Ci-C4alkyl which is substituted by Ci-C4alkyl; or C2-Ci4heteroaryl.
  • Possible substituents of the above-mentioned groups are d-Csalkyl, a hydroxyl group, a mercapto group, d-Csalkoxy, d-Csalkylthio, halogen, halo-d-Csalkyl, or a cyano group.
  • the C6-C24aryl (di-dsaryl) and C2-C3oheteroaryl groups are preferably substituted by one, or more d-Csalkyl groups.
  • a substituent occurs more than one time in a group, it can be different in each occurrence.
  • substituted by G means that one, or more, especially one to three substituents G might be present.
  • the aforementioned groups may be substituted by E and/or, if desired, interrupted by D. Interruptions are of course possible only in the case of groups containing at least 2 carbon atoms connected to one another by single bonds; C6-dsaryl is not interrupted; interrupted arylalkyl contains the unit D in the alkyl moiety, d-dsalkyl substituted by one or more E and/or interrupted by one or more units D is, for example, (Ch Ch C i-g- Rx, where R* is H or d-doalkyl or d-doalkanoyl (e.g.
  • d-C 8 alkylene-COO-R z e.g. CH 2 COOR z , CH(CH 3 )COOR z , C(CH 3 ) 2 COOR z , where R z is H, d-dsalkyl, (CH2CH20)i-9-R x , and R x embraces the definitions indicated above;
  • the halogenation can be performed by methods known to those skilled in the art. Preference is given to brominating or iodinating in the 3 and 6 positions (dibromination) or in the 3 or 6 positions (monobromination) of the base skeleton of the formula (II) 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole).
  • Optionally substituted dibenzofurans, dibenzothiophenes and carbazoles can be dibromin- ated in the 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole) with bromine or NBS in glacial acetic acid or in chloroform.
  • the bromination with Br2 can be effected in glacial acetic acid or chloroform at low temperatures, e.g. 0°C.
  • Dibenzofuran (dibenzothiophene) can be monobrominated in the 3 position by a sequence known to those skilled in the art, comprising a nitration, reduction and subsequent Sandmeyer reaction.
  • Monobromination in the 2 position of dibenzofuran or dibenzothiophene and monobromination in the 3 position of carbazole are effected analogously to the dibromination, with the exception that only one equivalent of bromine or NBS is added.
  • the introduction of the group is performed in the presence of a base.
  • Suitable bases are known to those skilled in the art and are preferably selected from the group consisting of alkali metal and alkaline earth metal hydroxides such as NaOH, KOH, Ca(OH)2, alkali metal hydrides such as NaH, KH, alkali metal amides such as NaNH2, alkali metal or alkaline earth metal carbonates such as K2CO3 or CS2CO3, and alkali metal alkox- ides such as NaOMe, NaOEt.
  • alkali metal and alkaline earth metal hydroxides such as NaOH, KOH, Ca(OH)2
  • alkali metal hydrides such as NaH, KH
  • alkali metal amides such as NaNH2
  • alkali metal or alkaline earth metal carbonates such as K2CO3 or CS2CO3
  • alkali metal alkox- ides such as NaOMe, NaOEt.
  • mixtures of the aforementioned bases are suitable. Particular preference is given to NaOH, KOH, NaH
  • n be effected, for example, by copper-catalyzed coupling of
  • the N-arylation was, for example, disclosed in H. Gilman and D. A. Shirley, J. Am. Chem. Soc. 66 (1944) 888; D. Li et al., Dyes and Pigments 49 (2001 ) 181 - 186 and Eur. J. Org. Chem. (2007) 2147-2151.
  • the reaction can be performed in solvent or in a melt.
  • Suitable solvents are, for example, (polar) aprotic solvents such as dimethyl sulfoxide, dimethylfor- mamide, NMP, tridecane or alcohols.
  • Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and car- apeloles can be readily prepared by an increasing number of routes.
  • An overview of the synthetic routes is, for example, given in Angew. Chem. Int. Ed. 48 (2009) 9240 - 9261.
  • diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes, and carbazoles can be obtained by reacting halogenated dibenzofurans,
  • Y 1 is independently in each occurrence a Ci-Ci8alkylgroup and Y 2 is independently in each occurrence a C2-Cioalkylene group, such as -CY 3 Y 4 -CY 5 Y 6 -, or -CY 7 Y 8 -CY 9 Y 10 - CY Y 12 -, wherein Y 3 , Y 4 , Ys, ⁇ ⁇ , ⁇ ?, ⁇ ⁇ _ ⁇ ⁇ .
  • ⁇ and Y ⁇ are inde- pendently of each other hydrogen, or a Ci-Ci8alkylgroup, especially -C(CH3)2C(CH3)2-, - C(CH3)2CH 2 C(CH 3 )2-, or -CH 2 C(CH 3 )2CH 2 -, and Y 13 and Y 14 are independently of each other hydrogen, or a Ci-Ci8alkylgroup.
  • Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and car- apeloles can also be prepared by reacting halogenated dibenzofurans, dibenzothiophenes and carbazoles with alkyl lithium reagents, such as, for example, n-butyl lithium, or t-buthyl lithium, followed nic esters, such as, for example, B(isopropoxy)3,
  • Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and carbazoles can also be prepared by reacting dibenzofurans, dibenzothiophenes and carbazoles with lithium amides, such as, for example, lithium diisopropylamide (LDA) followed by esters such as, for example, B(isopropoxy)3, B(methoxy)3, or
  • lithium amides such as, for example, lithium diisopropylamide (LDA) followed by esters such as, for example, B(isopropoxy)3, B(methoxy)3, or
  • the Suzuki reaction is carried out in the presence of an organic solvent, such as an aromatic hydrocarbon or a usual polar organic solvent, such as benzene, toluene, xylene, tetrahydrofurane, or dioxane, or mixtures thereof, most preferred toluene.
  • an organic solvent such as an aromatic hydrocarbon or a usual polar organic solvent, such as benzene, toluene, xylene, tetrahydrofurane, or dioxane, or mixtures thereof, most preferred toluene.
  • the amount of the solvent is chosen in the range of from 1 to 10 I per mol of boronic acid derivative.
  • the reaction is carried out under an inert atmosphere such as nitrogen, or argon. Further, it is preferred to carry out the reaction in the presence of an aqueous base, such as an alkali metal hydroxide or carbonate such as NaOH, KOH, Na2C03, K2CO3, Cs2C03 and the like, preferably an aqueous K2CO3 solution is chosen.
  • an aqueous base such as an alkali metal hydroxide or carbonate such as NaOH, KOH, Na2C03, K2CO3, Cs2C03 and the like, preferably an aqueous K2CO3 solution is chosen.
  • the molar ratio of the base to boronic acid or boronic ester derivative is chosen in the range of from 0.5: 1 to 50:1 , very especially 1 :1.
  • the reaction temperature is chosen in the range of from 40 to 180°C, preferably under reflux conditions.
  • the reaction time is chosen in the range of from 1 to 80 hours, more preferably from 20 to 72 hours.
  • a usual catalyst for coupling reactions or for polycondensation reactions is used, preferably Pd-based, which is described in WO2007/101820.
  • the palladium compound is added in a ratio of from 1 :10000 to 1 :50, preferably from 1 :5000 to 1 :200, based on the number of bonds to be closed. Preference is given, for example, to the use of palla- dium(ll) salts such as PdAc2 or Pd2dba3 d from the
  • the ligand is added in a ratio of from 1 : 1 to 1 :10, based on Pd.
  • the catalyst is added as in solution or suspension.
  • an appropriate organic solvent such as the ones described above, preferably benzene, toluene, xylene, THF, dioxane, more preferably toluene, or mixtures thereof, is used.
  • the amount of solvent usually is chosen in the range of from 1 to 10 I per mol of boronic acid derivative.
  • Organic bases such as, for example, tetraalkylammonium hydroxide, and phase transfer catalysts, such as, for example TBAB, can promote the activity of the boron (see, for example, Lead- beater & Marco; Angew.
  • JP2011084531 describes, for example, the synthesis of benzofuro[3,2-b]pyridine in two steps starting from 2-bromopyridin-3-ol using a base catalyzed cyclisation. The brominated compound is received by bromination with bromine in the presence of silver sulfate.
  • US2010/0187984 describes, for example, the synthesis of 3,6-dichloro-benzofuro[2,3- b]pyridine in three steps starting from 2-amino-5-chloropyridine using a cyclisation of a dia- zoniumion salt.
  • JP2002284862 describes the syntheses of 2,7-dibromo-furo[3,2-b:4,5-b]dipyridine starting from 2-(3-amino-5-bromo-2-pyridyl)-5-bromo-pyridin-3-amine using an acid catalyzed cyclisation of a diazoniumion salt.
  • the synthesis of the starting material is described by Y. Fort, Tetrahedron 50 (41),1 1893 (1994).
  • halogen/metal exchange is done with nBuLi/THF at -78°C, or tBuLi/THF at -78°C.
  • Ref- erence is made to WO2010/079051 , where the synthesis of such compounds is described.
  • B 2 is N, or CR 82 ,
  • B 3 is N, or CR 83 , B 4 is N , or CR 84 ,
  • B 5 is N , or CR 85 ,
  • B 6 is N , or CR 86 ,
  • B 7 is N , or CR 87 ,
  • B 8 is N , or CR 88 , wherein R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 and R 88 are independently of each other H , a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D; a C6-C2 4 aryl group, which can optionally be substituted by G, a C2-C3oheteroaryl group, which can optionally be substituted by G; a group of formula— (A 1 ) 0 -(A 2 )p-(A 3 )q-(A 4 ) r R 16 , or -(A 1 )o-(A2) p -(A 3 ) q -(A 4 )rX ,
  • o 0, or 1
  • p is 0, or 1
  • q is 0, or 1
  • r is 0, or 1
  • At least one of the substituents R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 and R 88 represents a group of formula -(Ai) 0 -(A 2 ) p -(A 3 ) q -(A 4 ) r X 1 ; wherein
  • X 1 is CI , Br, or I , ⁇ 2 , Xi 2 is a halogen atom; -SnR 2 o 7 R 2 o8R2tra wherein R 2 ° 7 , R 2 °8 and R 209 are identical or different and are H or d-Csalkyl, wherein two radicals optionally form a are optionally branched or unbranched; -B(OH)2, -B(OY 1 )2, -BF 4 Na, or -BF 4 K, wherein Y 1 is independently in each occurrence a Ci-Cisalkyl group and Y 2 is independently in each occurrence a C2- C-ioalkylene group, and Y 13 and Y 14 are independently of each other hydrogen, or a Ci- Cisalkyl group, and o, p, q, r, G, A 1 , A 2 , A 3 , A 4 , R 81 , R 82 , R 83 , R
  • R 81 , R 82 , R 83 , R 84 , R 85 , R 86 , R 87 , R 88 A 1 , A 2 , A 3 , A 4 and R 16 are in principal the same as in case of the compounds of formula (I). If X 1 is CI, Br, or I, p is 0, q is 0 and r is 0; o in the at least one group of formula -(A 1 ) 0 -(A 2 ) P - are preferred, wherein X 1
  • R 87 have the meanings given above.
  • one of the substituents R 81 , R 82 , R 83 , R 85 , Rse and R 87 in the compounds of formula ( ⁇ ), (II"), (II'"), (II"") and (II ) is a group of formula -(Ai)o-(A2)p-(A3) q -(A4) r Xi .
  • two of the substituents R 81 , R 82 , R 83 , R 85 , Rse and R 87 in the compounds of formula ( ⁇ '), (II"), ( ⁇ ), ( ⁇ ") and (II ) are a group of formula -(AV(A 2 )p-(A 3 ) q -(A4) r X i .
  • one of the substituents R 81 , R 82 , R 83 , R 85 , Rse and R 87 in the compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llg), (llh), (IN), (llj), (Ilk), (III), (Mm), (lln) and (No) is a group of formula -(A i ) 0 -(A 2 ) p -(A 3 ) q -(A4) r X i .
  • two of the substituents R 81 , R 82 , R 83 , R 85 , R 86 and R 87 in the compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llg), (llh), (IN), (llj), (Ilk), (III), (Mm), (lln) and (Mo) are a group of formula -(A i ) 0 -(A 2 ) p -(A 3 ) q -(A4) r X i .
  • Compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (IN), (llj), (III) and (lln) are preferred.
  • Compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llj) and (lln) are especially preferred.
  • the bromination of the azadibenzofurans can be carried out in analogy to the bromination of carbazole, which is, for example, described in J. Mater. Chem. 18 (2008) 1296-1301.
  • bromination methods are, for example, described in Helvetica Chimica Acta 89 (2006) 1123 and SYNLETT 17 (2006) 2841-2845. 10.206
  • Halogenation agents are, for example, N-chlorosuccinimide (NCS) (Synlett 18 (2005) 2837-2842); Br 2 (Synthesis 10 (2005) 1619-1624), N-bromosuccinimide (NBS)(Organic Letters 12 (2010) 2194-2197; Synlett (2006) 2841-2845), 1 ,3-dibromo-5,5- dimethylhydantoin (DBH) (Organic Process Research & Development 10 (2006) 822-828, US2002/0151456), CuBr 2 (Synthetic Communications 37 (2007) 1381-1388); R 4 NBr 3 (Can.
  • solvents which can be used in the halogenation, are dimethylformamide (DMF), CH2CI2, CHC , CCI4, ethanol (EtOH), acetic acid (AcOH), H 2 S0 4 , C 6 H 5 CI and mix- tures thereof.
  • the halogenation can be done in the presence of acids and lewis acids, respectively, such as, for example, H 2 S0 4 , ZrCI 4 , TiCI 4 , AlC , HfCI 4 and AlC (Synlett 18 (2005) 2837-2842).
  • a catalyst such as, for example, [1 ,1'-bis(diphenylphosphino)ferrocene]dichloro- palladium(ll), complex (Pd(CI)2(dppf)), and a base, such as, for example, potassium acetate, in a solvent, such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene (cf. Prasad Appukkuttan et al., Synlett 8 (2003) 1204).
  • a solvent such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene (cf. Prasad Appukkuttan et al., Synlett 8 (2003) 1204).
  • Diboronic acid or diboronate intermediates (II) can also be prepared by reacting halogenat- ed intermediates (II) with alkyl lithium reagents, such as, for example, n-butyl lithium, or t- buthyl lithium, followed by reaction with boronic esters, such as, for example,
  • the compounds of formula (I) can be obtained starting from the intermediates and suitable co-reactants, for example, by Suzuki-, Stille-, or Negishi-coupling reactions.
  • halogenated intermediates wherein X 1 is CI, Br, or I, such as for example,
  • (N-2) can, for example, be transformed to a compound of formula (I) by reacting intermediate (N-2) with X 2 -(A 1 )o-(A 2 ) P -(A 3 )q-(A4) r Ri6 , wherein X 2 is ( ⁇ 0) 2 ⁇ -,
  • a catalyst such as, for example,
  • a solvent such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene
  • the compounds of the formula I are particularly suitable for use in applications in which charge carrier conductivity is required, especially for use in organic electronics applications, for example selected from switching elements such as organic transistors, e.g. organic FETs and organic TFTs, organic solar cells and organic light- emitting diodes (OLEDs), the compounds of the formula I being particularly suitable in OLEDs for use as matrix material in a light-emitting layer and/or as hole and/or exciton blocker material and/or as electron and/or exciton blocker material, especially in combination with a phosphorescence emitter.
  • switching elements such as organic transistors, e.g. organic FETs and organic TFTs, organic solar cells and organic light- emitting diodes (OLEDs)
  • OLEDs organic light- emitting diodes
  • inventive compounds of the formula I In the case of use of the inventive compounds of the formula I in OLEDs, OLEDs which have good efficiencies and a long lifetime and which can be operated especially at a low use and operating voltage are obtained.
  • inventive compounds of the formula I are suitable especially for use as matrix and/or hole/exciton blocker materials for blue and green emitters, for example light blue or deep blue emitters, these being especially phosphorescence emitters.
  • the compounds of the for- mula I can be used as conductor/complementary materials in organic electronics applications selected from switching elements and organic solar cells.
  • the compounds of the formula I can be used as matrix material and/or hole/exciton blocker material and/or electron/exciton blocker material and/or hole injection material and/or electron injection material and/or hole conductor material (hole transport material) and/or electron conductor material (electron transport material), preferably as matrix material and/or electron/exciton blocker and/or hole transporting material in organic electronics applications, especially in OLEDs.
  • the inventive compounds of the formula I are more preferably used as matrix materials in organic electronics applications, especially in OLEDs.
  • an emitter material with a matrix material of the compound of the formula I and a fur- ther matrix material which has, for example, a good hole conductor (hole transport) property. This achieves a high quantum efficiency of this emission layer.
  • Certain compounds of formula I such as, for example, G-1 , have a ionisation potential of greater than 6 eV and, hence, suited as electron transport material.
  • a compound of the formula I is used as matrix material in an emission layer and additionally as hole/exciton blocker material and/or electron/exciton blocker material, owing to the chemical identity or similarity of the materials, an improved interface between the emission layer and the adjacent hole/exciton blocker material and/or electron/exciton blocker material is obtained, which can lead to a decrease in the voltage with equal luminance and to an extension of the lifetime of the OLED.
  • the use of the same material for hole/exciton blocker material and/or electron/exciton blocker material and for the matrix of an emission layer allows the production process of an OLED to be simplified, since the same source can be used for the vapor deposition process of the material of one of the compounds of the formula I.
  • the organic transistor generally includes a semiconductor layer formed from an organic layer with hole transport capacity and/or electron transport capacity; a gate electrode formed from a conductive layer; and an insulating layer introduced between the semiconductor layer and the conductive layer.
  • a source electrode and a drain electrode are mounted on this arrangement in order thus to produce the transistor element.
  • further layers known to those skilled in the art may be present in the organic transistor.
  • the organic solar cell generally comprises an organic layer present between two plate-type electrodes arranged in parallel.
  • the organic layer may be configured on a comb-type electrode.
  • at least one electrode is preferably formed from a transparent electrode, for example an ITO electrode or a fluorine-doped tin oxide electrode.
  • the organic layer is formed from two sublayers, i.e. a layer with p-type semiconductor properties or hole transport capacity, and a layer formed with n-type semiconductor properties or electron transport capacity.
  • the layer with hole transport capacity may comprise the compounds of formula I. It is likewise possible that the compounds of the formula I are present both in the light- emitting layer (preferably as matrix material) and in the blocking layer for electrons (as elec- tron/exciton blockers).
  • the present invention further provides an organic light-emitting diode comprising an anode An and a cathode Ka and a light-emitting layer E arranged between the anode An and the cathode Ka, and if appropriate at least one further layer selected from the group consisting of at least one blocking layer for holes/excitons, at least one blocking layer for elec- trons/excitons, at least one hole injection layer, at least one hole conductor layer, at least one electron injection layer and at least one electron conductor layer, wherein the at least one compound of the formula I is present in the light-emitting layer E and/or in at least one of the further layers.
  • the at least one compound of the formula I is preferably present in the light-emitting layer and/or the blocking layer for holes.
  • the present application further relates to a light-emitting layer comprising at least one com- pound of the formula I, especially a compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D- 8, E-1 to E-65, or F-1 to F-65.
  • a light-emitting layer comprising at least one com- pound of the formula I, especially a compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D- 8, E-1 to E-65, or F-1 to F-65.
  • the inventive organic light-emitting diode thus generally has the following structure:
  • the inventive OLED may, for example - in a preferred embodiment - be formed from the following layers:
  • Cathode Layer sequences different than the aforementioned structure are also possible, and are known to those skilled in the art.
  • the OLED does not have all of the layers mentioned; for example, an OLED with layers (1) (anode), (3) (light-emitting layer) and (6) (cathode) is likewise suitable, in which case the functions of the layers (2) (hole conductor layer) and (4) (blocking layer for holes/excitons) and (5) (electron conductor layer) are assumed by the adjacent layers.
  • OLEDs which have layers (1), (2), (3) and (6), or layers (1), (3), (4), (5) and (6), are likewise suitable.
  • the OLEDs may have a blocking layer for electrons/excitons between the hole conductor layer (2) and the Light-emitting layer (3).
  • a plurality of the aforementioned functions are combined in one layer and are assumed, for example, by a single material present in this layer.
  • a material used in the hole conductor layer, in one em- bodiment may simultaneously block excitons and/or electrons.
  • the individual layers of the OLED among those specified above may in turn be formed from two or more layers.
  • the hole conductor layer may be formed from a layer into which holes are injected from the electrode, and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron conduction layer may likewise consist of a plurality of layers, for example a layer in which electrons are injected by the electrode, and a layer which receives electrons from the electron injection layer and transports them into the light-emitting layer. These layers mentioned are each selected according to factors such as energy level, thermal resistance and charge carrier mobility, and also energy difference of the layers specified with the organic layers or the metal electrodes.
  • the person skilled in the art is capable of selecting the structure of the OLEDs such that it is matched optimally to the organic compounds used as emitter substances in accordance with the invention.
  • the HOMO (highest occupied molecular orbital) of the hole conductor layer should be matched to the work function of the anode
  • the LUMO (lowest unoccupied molecular orbital) of the electron conductor layer should be matched to the work function of the cathode, provided that the aforementioned layers are present in the inventive OLEDs.
  • the anode (1) is an electrode which provides positive charge carriers. It may be formed, for example, from materials which comprise a metal, a mixture of various metals, a metal alloy, a metal oxide or a mixture of various metal oxides. Alternatively, the anode may be a conductive polymer. Suitable metals comprise metals and alloys of the metals of the main groups, transition metals and of the lanthanoids, especially the metals of groups lb, IVa, Va and Via of the periodic table of the elements, and the transition metals of group Villa. When the anode is to be transparent, generally mixed metal oxides of groups lib, 1Mb and IVb of the periodic table of the elements (lUPAC version) are used, for example indium tin oxide (ITO).
  • ITO indium tin oxide
  • the anode (1) comprises an organic material, for example polyaniline, as described, for example, in Nature, Vol. 357, pages 477 to 479 (June 1 1 , 1992). At least either the anode or the cathode should be at least partly transparent in order to be able to emit the light formed.
  • the material used for the anode (1) is preferably ITO.
  • Suitable hole conductor materials for layer (2) of the inventive OLEDs are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, Vol. 18, pages 837 to 860, 1996. Both hole-transporting molecules and polymers can be used as the hole transport material.
  • Hole-transporting molecules typically used are selected from the group consisting of tris[N-(1-naphthyl)-N-(phenylamino)]triphenylamine (1-NaphDATA), 4,4'-bis[N- (1-naphthyl)-N-phenylamino]biphenyl (a-NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)- [1 ,1 '-biphenyl]-4,4'-diamine (TPD), 1 ,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), N,N'-bis(4-methylphenyl)-N,N'-bis(4-ethylphenyl)-[1 ,1 '-(3,3'-dimethyl)biphenyl]-4,4'-diamine (ETPD), tetrakis(3-
  • DPFL-TPD N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-9,9-diphenylfluorene
  • Spiro-TAD 2,2',7,7'-tetrakis(N,N-diphenylamino)-9,9'-spirobifluorene
  • BPAPF 9,9-bis[4-(N,N- bis(biphenyl-4-yl)amino)phenyl]-9H-fluorene
  • NPAPF 9,9-bis[4-(N,N-bis(naphthalen-2- yl)amino)phenyl]-9H-fluorene
  • NPBAPF 9,9-bis[4-(N,N-bis(naphthalen-2-yl)-N,N'- bisphenylamino)phenyl]-9H-fluorene
  • NPBAPF 2,2',7,7'-tetraki
  • Hole-transporting polymers typically used are selected from the group consisting of polyvinylcarbazoles, (phenylmethyl)polysilanes and polyani- lines. It is likewise possible to obtain hole-transporting polymers by doping hole- transporting molecules into polymers such as polystyrene and polycarbonate. Suitable hole-transporting molecules are the molecules already mentioned above.
  • carbene complexes as hole conductor materials, the band gap of the at least one hole conductor material generally being greater than the band gap of the emitter material used.
  • band gap is understood to mean the triplet energy.
  • Suitable carbene complexes are, for example, carbene complexes as described in WO 2005/019373 A2, WO 2006/056418 A2, WO 2005/113704, WO 2007/1 15970, WO 2007/1 15981 and WO 2008/000727.
  • One excarbene complex is lr(dpbic)3 with the formula:
  • the hole conductor layer comprises at least one compound of the formula I as hole conductor material, especially a compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65.
  • the hole-transporting layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device.
  • Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, 2003, 359 (p-doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No.
  • mixtures may, for example, be the following mixtures: mixtures of the abovementioned hole transport materials with at least one metal oxide, for example M0O2, M0O3, WO x , Re03 and/or V2O5, preferably M0O3 and/or Re03, more preferably M0O3, or mixtures comprising the aforementioned hole transport materials and one or more compounds selected from 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6- tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), 2,5-bis(2-hydroxyethoxy)-7,7,8,8- tetracyanoquinodimethane, bis(tetra-n-butylammonium)tetracyanodiphenoquinodimethane, 2,5-dimethyl-7,7,8,8-tetracyanoquinodimethane, tetracyanoethylene, 1 1 ,11 ,12,12
  • the hole transport layer comprises from 0.1 to 10 wt % of M0O3 and 90 to 99.9 wt % carbene complex, especially of the carbene complex HTM-1 , wherein the total amount of the M0O3 and the carbene complex is 100 wt %.
  • the light-emitting layer (3) comprises at least one emitter material.
  • it may be a fluorescence or phosphorescence emitter, suitable emitter materials being known to those skilled in the art.
  • the at least one emitter material is preferably a phosphorescence emitter.
  • the phosphorescence emitter compounds used with preference are based on metal complexes, and especially the complexes of the metals Ru, Rh, Ir, Pd and Pt, in particular the complexes of Ir, have gained significance.
  • the compounds of the formula I can be used as the matrix in the light-emitting layer.
  • Suitable metal complexes for use in the inventive OLEDs are described, for example, in documents WO02/60910A1 , US2001/0015432A1 , US2001/0019782A1 ,
  • metal complexes are the commercially available metal complexes tris(2- phenylpyridine)iridium(lll), iridium(lll) tris(2-(4-tolyl)pyridinato-N,C 2 '), bis(2- phenylpyridine)(acetylacetonato)iridium(lll), iridium(lll) tris(l-phenylisoquinoline), iridium(lll) bis(2,2'-benzothienyl)pyridinato-N,C 3 ')(acetylacetonate), tris(2-phenylquinoline)iridium(lll), iridium(lll) bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, iridium(lll) bis(1- phenylisoquinoline)(acetylacetonate), bis(2-phenylquinoline)(acett
  • Preferred phosphorescence emitters are carbene complexes. Suitable phosphorescent blue emitters are specified in the following publications: WO2006/056418A2,
  • the light emitting layer comprises preferably a compound of the formula
  • M is a metal atom selected from the group consisting of Co, Rh, Ir, Nb, Pd, Pt, Fe, Ru, Os, Cr, Mo, W, Mn, Tc, Re, Cu, Ag and Au in any oxidation state possible for the respective metal atom;
  • Carbene is a carbene ligand which may be uncharged or monoanionic and monodentate, bidentate or tridentate, with the carbene ligand also being able to be a biscarbene or triscarbene ligand;
  • L is a monoanionic or dianionic ligand, which may be monodentate or bidentate;
  • K is an uncharged monodentate or bidentate ligand selected from the group consisting of phosphines; phosphonates and derivatives thereof, arsenates and derivatives thereof; phosphites; CO; pyridines; nitriles and conjugated dienes which form a ⁇ complex with M 1 ; n1 is the number of carbene ligands, where n1 is at least 1 and when n1 > 1 the carbene ligands in the complex of the formula (IX) can be identical or different;
  • ml is the number of ligands L, where ml can be 0 or ⁇ 1 and when ml > 1 the ligands L can be identical or different;
  • o1 is the number of ligands K, where o1 can be 0 or ⁇ 1 and when o1 > 1 the ligands K can be identical or different;
  • n1 + ml + o1 is dependent on the oxidation state and coordination number of the metal atom and on the denticity of the ligands carbene, L and K and also on the charge on the ligands, carbene and L, with the proviso that n1 is at least 1.
  • Carbene complexes which are suitable triplet emitters are described, for example, i WO 2006/056418 A2, WO 2005/1 13704, WO 2007/1 15970, WO 2007/1 15981 and
  • M, n1 , Y, A 2 ', A* A A* R51 , R52, RSS, R54, RSS, Rse, R57, R58 R59 K, L, ml and o1 are each defined as follows:
  • M is Ir, or Pt
  • n1 is an integer selected from 1 , 2 and 3,
  • Y is N R 51 , O, S or C(R25) 2 ,
  • R 51 is a linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyi radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms,
  • R 52 , R 53 , R 54 and R 55 are each, if A 2' , A 3' , A 4' and/or A 5' is N, a free electron pair, or, if A 2' , A 3' , A 4' and/or A 5' is C, each independently hydrogen, linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyi radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms, group with donor or acceptor action, or
  • R 53 and R 54 together with A 3' and A 4' form an optionally substituted, unsaturated ring op- tionally interrupted by at least one further heteroatom and having a total of 5 to 18 carbon atoms and/or heteroatoms,
  • R 56 , R 57 , R 58 and R 59 are each independently hydrogen, linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, cycloheteroalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms, group with donor or acceptor action, or
  • R 56 and R 57 , R 57 and R 58 or R 58 and R 59 together with the carbon atoms to which they are bonded, form a saturated, unsaturated or aromatic, optionally substituted ring optionally interrupted by at least one heteroatom and having a total of 5 to 18 carbon atoms and/or heteroatoms, and/or
  • R 55 and R 56 together form a saturated or unsaturated, linear or branched bridge optionally comprising heteroatoms, an aromatic unit, heteroaromatic unit and/or functional groups and having a total of 1 to 30 carbon atoms and/or heteroatoms, to which is optional- ly fused a substituted or unsubstituted, five- to eight-membered ring comprising carbon atoms and/or heteroatoms,
  • R 25 is independently a linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms,
  • K is an uncharged mono- or bidentate ligand
  • L is a mono- or dianionic ligand, preferably monoanionic ligand, which may be mono- or bidentate,
  • ml is 0, 1 or 2, where, when ml is 2, the K ligands may be the same or different, o1 is 0, 1 or 2, where, when o1 is 2, the L ligands may be the same or different.
  • the compound of formula IX is preferably a compound of the formula: 66
  • the most preferred phosphorescent blue emitters are compounds of formula
  • the homoleptic metal-carbene complexes may be present in the form of facial or meridional isomers, preference being given to the facial isomers.
  • the light-emitting layer may comprise further components in addition to the emitter material.
  • a fluroescent dye may be present in the light-emitting layer in order to alter the emission color of the emitter material.
  • a matrix material can be used.
  • This matrix material may be a polymer, for example poly(N- vinylcarbazole) or polysilane.
  • TCTA tertiary aromatic amines
  • at least one compound of the formula I is used as matrix material.
  • the light-emitting layer is formed from 2 to 40% by weight, preferably 5 to 35% by weight, of at least one of the aforementioned emitter materials and 60 to 98% by weight, preferably 75 to 95% by weight, of at least one of the aforementioned matrix materials - in one embodiment at least one compound of the formula I - where the sum total of the emitter material and of the matrix material adds up to 100% by weight.
  • the compound of the formula I is especially a compound of formula (la), (lb), (Ic), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a cvompound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65.
  • mula I such as, for example, two
  • the light-emitting layer is formed from 2 to 40% by weight, preferably 5 to
  • Suitable metal complexes for use together with the compounds of the formula I as matrix material and/or hole/exciton blocker material and/or electron/exciton blocker material and/or hole injection material and/or electron injection material and/or hole conductor material and/or electron conductor material, preferably as matrix material and/or hole/exciton blocker material, in OLEDs are thus, for example, also carbene complexes as described in WO 2005/019373 A2, WO 2006/056418 A2, WO 2005/1 13704, WO 2007/115970,
  • the compounds of the present invention can also be used as host for phosphorescent green emitters.
  • Suitable phosphorescent green emitters are, for example, specified in the following publications: WO2006014599, WO20080220265, WO2009073245, WO2010027583, WO2010028151 , US20110227049, WO201 1090535, WO2012/08881 , WO20100056669, WO20100118029, WO20100244004, WO2011 109042, WO2012166608, US20120292600, EP2551933A1 ; US6687266, US20070190359, US20070190359, US20060008670; WO2006098460, US20110210316, WO 2012053627; US6921915, US20090039776; and JP2007123392.
  • a blocking layer for holes is present - hole blocker materials typically used in OLEDs, are, for example, as 2,6-bis(N-carbazolyl)pyridine (mCPy), 2,9-dimethyl-4,7-diphenyl-1 , 10- phenanthroline (bathocuproin, (BCP)), bis(2-methyl-8-quinolinato)-4- phenylphenylato)aluminum(lll) (BAIq), phenothiazine S,S-dioxide derivates and 1 ,3,5- tris(N-phenyl-2-benzylimidazolyl)benzene) (TPBI), TPBI also being suitable as electron- conducting material.
  • mCPy 2,6-bis(N-carbazolyl)pyridine
  • BCP 2,9-dimethyl-4,7-diphenyl-1 , 10- phenanthroline
  • BAIq bis(2-methyl-8-quinolinato)-4- phenylphenylato)
  • hole blockers and/or electron conductor materials are 2,2',2"-(1 ,3,5-benzenetriyl)tris(1-phenyl-1-H-benzimidazole), 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1 ,3,4-oxadiazole, 8-hydroxyquinolinolatolithium, 4-(naphthalen-1-yl)-3,5- diphenyl-4H-1 ,2,4-triazole, 1 ,3-bis[2-(2,2'-bipyridin-6-yl)-1 ,3,4-oxadiazo-5-yl]benzene, 4,7- diphenyl-1 , 10-phenanthroline, 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1 ,2,4-triazole, 6,6'-bis[5-(biphenyl-4-yl)-1 ,3,4-o
  • disilyl compounds selected from the group consisting of disilylcarbazoles, disilylbenzofurans, disilylbenzothiophenes, dis- ilylbenzophospholes, disilylbenzothiophene S-oxides and disilylbenzothiophene S,S- dioxides, as specified, for example, in WO2009/003919 and WO2009003898 and disilyl compounds as disclosed in WO2008/034758, as a blocking layer for holes/excitons (4) or as matrix materials in the light-emitting layer (3).
  • the layer (5) may serve both to facilitate electron transport and as a buffer layer or barrier layer in order to prevent quenching of the exciton at the interfaces of the layers of the OLED.
  • the layer (5) preferably improves the mobility of the electrons and reduces quenching of the exciton.
  • TPBI is used as the electron conductor material.
  • BCP is used as the electron conductor material.
  • the electron conductor layer comprises at least one compound of the formula I as electron conductor material.
  • the electron-transport layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device.
  • Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, No. 1 , 1 July 2003 (p- doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No.
  • n-Doping is achieved by the addition of reducing materials.
  • mixtures may, for example, be mixtures of the abovementioned electron transport materials with alkali/alkaline earth metals or alkali/alkaline earth metal salts, for example Li, Cs, Ca, Sr, CS2CO3, with alkali metal complexes, for example 8-hydroxyquinolatolithium (Liq), and with Y, Ce, Sm, Gd, Tb, Er, Tm, Yb, Li 3 N, Rb 2 C0 3 , dipotassium phthalate, W(hpp) 4 from EP1786050, or with compounds described in EP1837926B1 , EP1837927, EP2246862 and WO2010132236.
  • alkali/alkaline earth metals or alkali/alkaline earth metal salts for example Li, Cs, Ca, Sr, CS2CO3, with alkali metal complexes, for example 8-hydroxyquinolatolithium (Liq)
  • the electron-transport layer comprises Liq in an amount of 99 to 1 % by weight, preferably 75 to 25% by weight, more preferably about 50% by weight, where the amount of Liq and the amount of the dibenzofuran compound(s), especially ETM-1 , adds up to a total of 100% by weight.
  • the electron-transport layer comprises a compound described in WO2012/11 621 , such as, for example, a
  • hole conductor materials and electron conductor materials some may fulfil several functions.
  • some of the electron-conducting materials are simultaneously hole-blocking materials when they have a low-lying HOMO. These can be used, for example, in the blocking layer for holes/excitons (4).
  • the function as a hole/exciton blocker is also adopted by the layer (5), such that the layer (4) can be dispensed with.
  • the charge transport layers can also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device.
  • the hole conductor materials can be doped with electron acceptors; for example, phthalocyanines or arylamines such as TPD or TDTA can be doped with tetrafluorotetracyanquinodimethane (F4-TCNQ) or with M0O3 or WO3.
  • the electron conductor materials can be doped, for example, with alkali metals, for exam- pie Alq3 with lithium.
  • electron conductors can be doped with salts such as
  • the hole conductor layer may, in addition to a carbene complex, e.g.
  • the cathode (6) is an electrode which serves to introduce electrons or negative charge carriers.
  • Suitable materials for the cathode are selected from the group consisting of alkali metals of group la, for example Li, Cs, alkaline earth metals of group lla, for example calcium, barium or magnesium, metals of group lib of the periodic table of the elements (old lUPAC version), comprising the lanthanides and actinides, for example samarium.
  • metals such as aluminum or indium, and combinations of all metals mentioned.
  • alkali metal especially lithium-comprising organometallic compounds, or alkali metal fluorides, such as, for example, LiF, CsF, or KF can be applied between the organic layer and the cathode in order to reduce the operating voltage.
  • alkali metal fluorides such as, for example, LiF, CsF, or KF
  • the OLED according to the present invention may additionally comprise further layers which are known to those skilled in the art.
  • a layer which facilitates the transport of the positive charge and/or matches the band gaps of the layers to one another may be applied between the layer (2) and the light-emitting layer (3).
  • this fur- ther layer may serve as a protective layer.
  • additional layers may be present between the light-emitting layer (3) and the layer (4) in order to facilitate the transport of negative charge and/or to match the band gaps between the layers to one another.
  • this layer may serve as a protective layer.
  • the inventive OLED in addition to layers (1) to (6), comprises at least one of the following layers mentioned below:
  • a hole injection layer between the anode (1) and the hole-transporting layer (2) having a thickness of 2 to 100 nm, prefreably 5 to 50 nm;
  • Materials for a hole injection layer may be selected from copper phthalocyanine, 4, 4', 4"- tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), 4,4',4"-tris(N-(2- naphthyl)-N-phenylamino)triphenylamine (2T-NATA), 4,4',4"-tris(N-(1-naphthyl)-N- phenylamino)triphenylamine (1T-NATA), 4,4',4"-tris(N,N-diphenylamino)triphenylamine (NATA), titanium oxide phthalocyanine, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino- dimethane (F4-TCNQ), pyrazino[2,3-f][1 ,10]phenanthroline-2,3-dicarbonitrile (PPDN), N,N,N',N'
  • the hole injection layer comprises at least one compound of the formula I as hole injection material.
  • polymeric hole- injection materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, self-doping polymers, such as, for example, sulfonated
  • poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-diyl) Plexcore ® OC Conducting Inks commercially available from Plextronics
  • copolymers such as poly(3,4- ethylenedioxythiophene)/poly(4-styrenesulfonate) also called PEDOT/PSS.
  • the compound of formula I especially the compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65 can be used as electron/exciton blocker material .
  • Suitable metal complexes for use as electron/exciton blocker material are, for example, carbene complexes as described in WO2005/019373A2, WO2006/056418A2,
  • WO2005/1 13704 WO2007/1 15970, WO2007/1 15981 and WO2008/000727.
  • One example of a suitable carbene complex is compound HTM-1.
  • the electron injection layer comprises at least one compound of the formula I as electron injection material.
  • Suitable materials for the individual layers are known to those skilled in the art and are disclosed, for example, in WO 00/70655.
  • the selection of the materials for each of the layers mentioned is preferably determined by obtaining an OLED with a high efficiency and lifetime.
  • the inventive OLED can be produced by methods known to those skilled in the art. In general, the inventive OLED is produced by successive vapor deposition of the individual layers onto a suitable substrate. Suitable substrates are, for example, glass, inorganic semiconductors or polymer films.
  • the organic layers of the OLED can be applied from solutions or dispersions in suitable solvents, employing coating techniques known to those skilled in the art.
  • the different layers have the following thicknesses: anode (1 ) 50 to 500 nm, preferably 100 to 200 nm; hole-conducting layer (2) 5 to 100 nm, preferably 20 to 80 nm, light-emitting layer (3) 1 to 100 nm, preferably 10 to 80 nm, blocking layer for holes/excitons (4) 2 to 100 nm, preferably 5 to 50 nm, electron-conducting layer (5) 5 to 100 nm, preferably 20 to 80 nm, cathode (6) 20 to 1000 nm, preferably 30 to 500 nm.
  • the relative position of the recombination zone of holes and electrons in the inventive OLED in relation to the cathode and hence the emission spectrum of the OLED can be influenced, among other factors, by the relative thickness of each layer.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to those skilled in the art. It is possible that the electron-conducting layer and/or the hole-conducting layer have greater thicknesses than the layer thicknesses specified when they are electrically doped.
  • the compounds of the formula I in at least one layer of the OLED preferably in the light-emitting layer (preferably as a matrix material) and/or in the blocking layer for holes/excitons makes it possible to obtain OLEDs with high efficiency and with low use and operating voltage.
  • the OLEDs obtained by the use of the compounds of the formula I additionally have high lifetimes.
  • the efficiency of the OLEDs can additionally be improved by optimizing the other layers of the OLEDs.
  • high-efficiency cathodes such as Ca or Ba, if appropriate in combination with an intermediate layer of LiF, can be used.
  • Shaped substrates and novel hole-transporting materials which bring about a reduction in the operating voltage or an increase in the quantum efficiency are likewise usa- ble in the inventive OLEDs.
  • additional layers may be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
  • the OLEDs may further comprise at least one second light-emitting layer.
  • the overall emission of the OLEDs may be composed of the emission of the at least two light-emitting layers and may also comprise white light.
  • the OLEDs can be used in all apparatus in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile visual display units and illumination units. Stationary visual display units are, for example, visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations and information panels. Mobile visual display units are, for example, visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains. Further devices in which the inventive OLEDs can be used are, for example, keyboards; items of clothing; furniture; wallpaper.
  • the present invention relates to a device selected from the group consisting of stationary visual display units such as visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations, information panels, and mobile visual display units such as visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains; illumi- nation units; keyboards; items of clothing; furniture; wallpaper, comprising at least one inventive organic light-emitting diode or at least one inventive light-emitting layer.
  • stationary visual display units such as visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations, information panels
  • mobile visual display units such as visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains
  • illumi- nation units keyboards
  • items of clothing furniture
  • wallpaper comprising at least one inventive organic light-emitting diode or at least one inventive light-emitting layer.
  • the reaction mixture is heated to 65°C and stirred for 3.5 hours, then cooled to room temperature and the solvent is removed at reduced pressure.
  • the residue is solved in 120 ml of water and 120 ml of tert-butyl methyl ether (TBME), stirred for a few minutes and filtered.
  • the phases are separated and the H2O phase is extracted with TBME.
  • the organic phases are dried and evaporated and then stirred with 50 ml of hot isopropanol for 15 minutes.
  • the suspension is filtered, the residue washed with isopropanol and dried to yield 2.29 g.
  • the filtrate is evaporated and crystallized in isopropanol to yield 319 mg. Total yield: 2.61 g (65%).
  • the phases are separated and the aqueous phase extracted twice with toluene (200 ml each).
  • the combined organic phases are washed three times with water (100 ml each), dried with magnesium sulfate, filtered and the solvent is evaporated on the rotavap.
  • the crude product (16.07 g) is purified by flash chromatography using hexane/ethyl acetate as eluent yielding 10.94 g (83.2%) of 4-(4- bromo-2-methoxy-phenyl)-3-chloro-pyridine as a colorless oil that solidifies on standing.
  • the reaction mixture is stirred for 20 h at 60°C, cooled to room temperature and then evaporated at reduced pressure.
  • 50 ml of water, 50 ml of TBME and 3 ml of a solution of 1 % NaCN in water are added, the mixture stirred for 30 minutes, filtered and washed with 100 ml of ethyl ace- tate.
  • the phases are separated, the water phase extracted with ethyl acetate and the organic phases are dried and evaporated. Yield: 0.8 g (72%)
  • the phases are separated and the aqueous phase extracted twice with toluene (250 ml each).
  • the combined organic phases are washed three times with water (100 ml each), dried with magnesium sulfate, filtered and the solvent is evaporated on the rota- vap.
  • the crude product (16.8 g) is purified by flash chromatography using heptane/ethyl acetate as eluent yielding 12.4 g (74%) of 5-bromo-3-(5-bromo-2-methoxyphenyl)pyridine- 2-amine.
  • the ITO substrate used as the anode is first cleaned with an acetone/isopropanol mixture in an ultrasound bath. To eliminate any possible organic residues, the substrate is exposed to a continuous ozone flow in an ozone oven for further 25 minutes. This treatment also improves the hole injection properties of the ITO. Then Plexcore ® OC AJ20-1000 (commercially available from Plextronics Inc.) is spin-coated and dried to form a hole injection layer (-40 nm). Thereafter, the organic materials specified below are applied by vapor deposition to the clean substrate at a rate of approx. 0.5-5 nm/min at about 10- 7 - 10- 9 mbar. As a hole
  • transport and exciton blocker is applied to the substrate with a thickness of 20 nm, wherein the first 10 nm are doped with MoO x (-10%) to improve the conductivity.
  • compound (E-57) 90% by weight compound (E-57) is applied by vapor deposition in a thickness of 40 nm. Compound (E-57) is deposited then with 5 nm thickness as the blocker. Thereafter, a 20 nm thick electron transport layer is deposited consisting of 50% by
  • a 2 nm KF layer serves as an electron injection layer and a 100 nm-thick Al electrode completes the device.
  • electroluminescence spectra are recorded at various currents and voltages.
  • the current-voltage characteristic is measured in combination with the light output emitted.
  • the light output can be converted to photometric parameters by calibration with a photometer.
  • EQE External quantum efficiency
  • the PL spectrum and the PL quantum efficiency are measured using an absolute quantum- yield measurement system "Quantaurus" (from Hamamatsu, Japan) at room temperature at an excitation wavelength of 370 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The present invention relates to compounds of formula (I), which are characterized in that they substituted by benzimidazo[1,2-a]benzimidazo-5-yl and/or benzimidazo[1,2-a]benzimidazo-2,5-ylene groups and in that at least one of the substituents B1, B2, B3, B4, B5, B6, B7 and B8 represents N; a process for their production and their use in electronic devices, especially electroluminescent devices. When used as host material for phosphorescent emitters in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.

Description

Azadibenzofurans for electronic applications Description
The present invention relates to compounds of formula I, a process for their production and their use in electronic devices, especially electroluminescent devices. When used as hole transport material in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electrolumi- nescent devices.
Khan, Misbahul Ain; Ribeiro, Vera Lucia Teixeira, Pakistan Journal of Scientific and Industrial Research 43 (2 describes the synthesis of benzimidazo[1 ,2-
Figure imgf000002_0001
a]benzimadozoles (R = H, Me, Et) by trialkyl phosphite-induced deoxy- genation and thermolysis of l-(o-nitrophenyl)- and 1-(o-azidophenyl)benzimidazoles.
Pedro Molina et al. Tetrahedron (1994) 10029-10036 reports that aza Wittig-type reaction of bis(iminophosphoranes), derived from bis(2-aminophenyl)amine with two equivalents of isocyanate directly provided benzimidazo[1 ,2,a]benzimidazole derivatives.
Figure imgf000002_0002
propyl and R' = ethyl)
Kolesnikova, I. V.; Zhurnal Organicheskoi Khimii 25 (1989) 1689-95 describes the synthesis of 5H-benzimidazo[1 ,2-a]benzimidazole 1 ,2,3,4,7,8,9, 10-octafluoro-5-(2,3,4,5,6-
Achour, Reddouane; Zniber, Rachid, Bulletin des Societes Chimiques Beiges 96 (1987)
Figure imgf000003_0001
787-92 describes the synthesis of benzimidazobenzimidazoles (R = H, -CH(CH3) 2) which were prepared from benzimidazolinone derivatives.
Hubert, Andre J.; Reimlinger, Hans, Chem 103 (1970) 2828-35 describes the
Figure imgf000003_0002
synthesis of benzimidazobenzimidazoles (R = H, CH3, )
WO201 1160757 relates to an electronic device comprising an anode, cathode and at least
one organic layer which contains a compound of formulae
Figure imgf000003_0003
(I),
Figure imgf000003_0004
(IV), wherein X may be a single bond and L may be a divalent group. The following 4H-lmidazo[1 ,2-a]imidazole compounds are explicitly disclosed:
Figure imgf000003_0005
Figure imgf000004_0001
X. Wang et al. Org. Lett. 14 (2012) 452-455 discloses a highly efficient copper-catalyzed
Figure imgf000004_0002
synthesis for compounds of formula , wherein compounds of for-
Figure imgf000004_0003
mula are reacted in the presence of copper acetate
(Cu(OAc)2)/PPh3/1 ,10-phenathroline/sodium acetate and oxygen in m-xylene (1 atm) at elevated temperature [published on web: December 29, 2011]. Among others the following compounds can be prepared by the described synthesis method:
Figure imgf000004_0004
WO2012/130709 relates to 4H-lmidazo[1 ,2-a]imidazoles,
Figure imgf000005_0001
Figure imgf000005_0002
such as, for example, , a process for their duction and their use in electronic devices, especially electrolumine
WO2013/068376 describes 4H-imidazo[1 ,2-a]imidazoles of formula
Figure imgf000005_0003
wherein X6 is -N= and X7 is -NR6-, or X7 is =N- and X6 is -NR6-, R6 is a group of formula
, such as, for example,
Figure imgf000005_0004
; a process for their production and their use in electronic devices, especially electroluminescent devices.
PCT/EP2013/064395 relates to compounds of formula
Figure imgf000005_0005
(|), a process for their production and their use in electronic devices, especially electrolumines- cent devices. The 2,5-disubstituted benzimidazo[1 ,2-a]benzimidazole derivatives are suitable hole transporting materials, or host materials for phosphorescent emitters.
US20090134784 provides carbazole-containing compounds. In particular, the compounds are oligocarbazole-containing compounds having an unsymmetrical structure. The compounds may be substituted by azadibenzofuranyl and are useful as hosts in the emissive layer of organic light emitting devices. organic light emitting devices. The follow-
Figure imgf000006_0001
is used as host and exciton blocking material.
US20100187984 discloses a process for making an aza-dibenzothiophene compound or an aza-dibenzofuran compound, comprising:
tre ution of an amino-arylthio pyridine intermediate having the formu
Figure imgf000006_0002
la , wherein one of Xi and X2 is nitrogen and the other of Xi and
X2 is carb or O, with tBuONO to produce an aza complex having the
Figure imgf000006_0003
formula , wherein Ri and R2 may represent mono, di, tri, or tetra substitutions; wherein Ri is selected from the group consisting of hydrogen, alkyl, aryl, het- eroaryl and halide; and wherein R2 is selected from the group consisting of hydrogen, alkyl, aryl and halide. The aza-dibenzothiophene and aza-dibenzofuran compounds disclosed in US20100187984 are used as hosts in OLEDs.
In addition, reference is made to WO2012090967, WO2011 137072, WO2010090077, WO2009060780, WO2009060757, JP2011084531 and JP2008074939 with respect to dibenzofuranyl substituted compounds and their use in OLEDs. None of the above references disclose benzimidazo[1 ,2-a]benzimidazo-5-yl substituted aza-dibenzofuran compounds.
Notwithstanding these developments, there remains a need for organic light emitting devic- es comprising new hole transport materials to provide improved efficiency, stability, manu- facturability, and/or spectral characteristics of electroluminescent devices.
Accordingly, it is an object of the present invention, with respect to the aforementioned prior art, to provide further materials suitable for use in OLEDs and further applications in organ- ic electronics. More particularly, it should be possible to provide hole transport materials, electron/exciton blocker materials and matrix materials for use in OLEDs. The materials should be suitable especially for OLEDs which comprise at least one phosphorescence emitter, especially at least one green emitter or at least one blue emitter. Furthermore, the materials should be suitable for providing OLEDs which ensure good efficiencies, good operative lifetimes and a high stability to thermal stress, and a low use and operating voltage of the OLEDs.
Certain aza-dibenzofuran derivatives substituted with a benzimidazo[1 ,2-a]benzimidazo-5- yl group and/or a benzimidazo[1 ,2-a]benzimidazo-2,5-ylene group are found to be suitable for use in organo-electroluminescent devices. In particular, said derivatives are suitable hole transporting materials, or host materials for phosphorescent emitters with good efficiency and durability.
Figure imgf000007_0001
Said object has been solved by compounds of the formula (I), wherein
B1 s N, or CR8
B2 s N, or CR82
B3 s N, or CR83
B4 s N, or CR84
Figure imgf000007_0002
B6 s N, or CR86
B7 s N, or CR87
B8 s N, or CR88
R81, R82, R83, R84, R85 , R86, R87 and R88 are independently of each other H, a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D; a C6-C24aryl group, which can optionally be substituted by G, a C2-C3oheteroaryl group, which can optionally be substituted by G; or a group of formula— (Ai)0-(A2)p-(A3)q-(A4)rR16,
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ,
A1, A2, A3 and A4 are independently of each other a C6-C24arylen group, which can optionally be substituted by G, or a C2-C3oheteroarylen group, which can optionally be substituted by G; R16 is -NR10R11, or -Si(R12)(R13)(R14), a C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
R10 and R11 are independently of each other a C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G; R12, R13 and R14 are independently of each other a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D; C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
D is -CO-, -COO-, -S-, -SO-, -SO2-, -0-, -NR65-, -SiR70R71-, -POR72-, -CR63=CR64-, or -C≡C- E is -OR69, -SR69, -NR65R66, -COR68, -COOR67, -CONR65R66, -CN, or F,
G is E, or a d-dsalkyl group, a C6-C24aryl group, a C6-C24aryl group, which is substituted by F, Ci-Ci8alkyl, or C-i-C-isalkyl which is interrupted by O; a C2-C3oheteroaryl group, or a C2-C3oheteroaryl group, which is substituted by F, C-i-C-isalkyl, or C-i-C-isalkyl which is interrupted by O;
R63 and R64 are independently of each other H, C6-Cisaryl; C6-Cisaryl which is substituted by Ci-Ci8alkyl, or C-i-dsalkoxy; C-i-C-isalkyl; or C-i-C-isalkyl which is interrupted by -0-; R65 and R66 are independently of each other a C6-Cisaryl group; a C6-Cisaryl which is substituted by Ci-Ci8alkyl, or Ci-Cisalkoxy; a C-i-C-isalkyl group; or a Ci-Cisalkyl group, which is interrupted by -0-; or
R65 and R66 together form a five or six membered ring,
R67 is a C6-Ciearyl group; a C6-Cisaryl group, which is substituted by C-i-C-isalkyl, or Ci- Ciealkoxy; a C-i-C-isalkyl group; or a C-i-C-isalkyl group, which is interrupted by -O-, R68 is H; a C6-Cisaryl group; a C6-Cisaryl group, which is substituted by C-i-C-isalkyl, or Ci- Ciealkoxy; a Ci-Cisalkyl group; or a C-i-C-isalkyl group, which is interrupted by -O-, R69 is a C6-Cisaryl; a C6-Cisaryl, which is substituted by C-i-C-isalkyl, or Ci-Cisalkoxy; a Ci- C-iealkyl group; or a Ci-Cisalkyl group, which is interrupted by -O-,
R70 and R71 are independently of each other a C-i-C-isalkyl group, a C6-Cisaryl group, or a Ce-Cisaryl group, which is substituted by C-i-C-isalkyl, and
R72 is a Ci-Cisalkyl group, a C6-Cisaryl group, or a C6-Cisaryl group, which is substituted by Ci-Cisalkyl, with the proviso that
at least one of the substituents B , B2, B3, B4, B5, B6, B7 and B8 represents N;
not more than two of the groups B1, B2, B3 and B4 represent N; and
not more than two of the groups B5, B6, B7 and B8 represent N; and
with the further proviso that at least one of the substituents R8 , R82, R83, R84, R85, R86, R87 and R88 represent a group of formula -(A1)0-(A2)p-(A3)q-(A4)rR16, wherein R16 represents a benzimidazo[1 ,2-a]benzimidazo-5-yl group, which can optionally be substituted by G;
and/or at least one of the groups A1 , A2, A3 and A4 respresents a benzimidazo[1 ,2- a]benzimidazo-2,5-ylene group, which can optionally be substituted by G. Certain compounds of the present invention have a LUMO-Level of 2.0 - 2.5 eV and show, when used as host in combination with phosphorescent emitters, excellent power efficiencies, in particular, electroluminescent (EL) devices comprising the compounds of the present invention exhibit reduced drive voltage while maintaining excellent luminance properties. The compounds of the present invention may be used for electrophotographic photoreceptors, photoelectric converters, organic solar cells (organic photovoltaics), switching elements, such as organic transistors, for example, organic FETs and organic TFTs, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices, such as, for example, organic light-emitting diodes (OLEDs).
Accordingly, a further subject of the present invention is directed to an electronic device, comprising a compound according to the present invention. The electronic device is prefer- ably an electroluminescent device.
The compounds of formula I can in principal be used in any layer of an EL device, but are preferably used as host, hole transport and electron blocking material. Particularly, the compounds of formula I are used as host material for blue light emitting phosphorescent emitters.
Hence, a further subject of the present invention is directed to an hole transport layer, comprising a compound of formula I according to the present invention. A further subject of the present invention is directed to an emitting layer, comprising a compound of formula I according to the present invention. In said embodiment a compound of formula I is preferably used as host material in combination with a phosphorescent emitter.
The compounds of formula I have preferably a molecular weight below 1500 g/mol.
A further subject of the present invention is directed to an electron blocking layer, comprising a compound of formula I according to the present invention.
D is preferably -CO-, -COO-, -S-, -SO-, -SO2-, -0-, -NR65-, wherein R65 is Ci-Ci8alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, or sec-butyl, or C6-Ci4aryl, such as phenyl, tolyl, naphthyl, or biphenylyl, or C2-C3oheteroaryl, such as, for example, benzimid-
Figure imgf000009_0001
azo[1 ,2-a]benzimidazo-5-yl ( ), benzimidazo[1 ,2-a]benzimidazo-2-yl
H
Figure imgf000009_0002
carbazolyl, dibenzofuranyl, which can be unsubstituted or substituted especially by C6-Cioaryl, or C6-Cioaryl, which is substituted by Ci-C4alkyl; or
C2-Ci4heteroaryl. E is preferably -OR69; -SR69; -N RssRss; -COR68; -COOR67; -CON RssRss; or -CN; wherein R65, R67, R68 and R69 are independently of each other Ci-Cisalkyl, such as methyl, ethyl, n- propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or C6-Ci4aryl, such as phenyl, tolyl, naphthyl, or biphenylyl.
A
Figure imgf000010_0001
(I , = lo) are preferred, where R81 , R82, R83, Rss, R86 and R87 have the (preferred) meanings given above and below, respectively.
In a preferred embodiment the present invention is directed to compounds of formula
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000011_0001
(lo), wherein R81 , R82, R83, R85, R86 and R87 are as defined above.
Compounds of formula (la), (lb), (Ic), (Id), (le), (If), (li), (Ij), (II) and (In) are preferred. Compounds of formula (la), (lb), (Ic), (Id), (le), (If), (Ij) and (In) are especially preferred.
R16' (R16) may be a C6-C24aryl group, which can optionally be substituted by G, or a C2- C3oheteroaryl group, which can optionally be substituted by G.
The C6-C24aryl group, which optionally can be substituted by G, is typically phenyl, 4- methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted.
The C2-C3oheteroaryl group R16' (R16), which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated π-electrons such as 9H-pyrido[2,3-b]indolyl, benzofu- ro [2, 3- b] yridyl, benzothiopheno[2,3-b]pyridyl, 9H-pyrido[2,3-c]indolyl, benzofuro[2,3- c]pyridyl, benzothiopheno[2,3-c]pyridyl, furo[3,2-b:4,5-b']dipyridyl, pyrrolo[3,2-b:4,5- b']dipyridyl, thieno[3,2-b:4,5-b']dipyridyl, thienyl, benzothiophenyl, dibenzothiophenyl, thi- anthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, phe- noxythienyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, chinolyl, isochinolyl, phthalazinyl, naphthyridinyl, chinoxalinyl, chinazolinyl, cinnolinyl, pteridinyl, carbolinyl, ben- zotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazi- nyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, benzimidazo[1 ,2-a]benzimidazo-5-yl, benzimidazo[1 ,2-a]benzimidazo-2-yl, carbazolyl, or phenoxazinyl, which can be unsubstituted or substituted.
The C6-C24aryl and C2-C3oheteroaryl groups may be substituted by G. G has the same preferences as E, or is Ci-Cisalkyl, such as methyl, ethyl, n-propyl, iso- propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or is Ci-Ci8perfluoroalkyl, such, for example, -CF3.
Prefered C2-C3oheteroaryl groups are pyridyl, triazinyl, pyrimidinyl, especially 9H-pyrido[2,3- b]indolyl, benzofuro[2,3-b]pyridyl, benzothiopheno[2,3-b]pyridyl, 9H-pyrido[2,3-c]indolyl, benzofuro[2,3-c]pyridyl, benzothiopheno[2,3-c]pyridyl, furo[3,2-b:4,5-b']dipyridyl, pyr- rolo[3,2-b:4,5-b']dipyridyl, thieno[3,2-b:4,5-b']dipyridyl, benzimidazo[1 ,2-a]benzimidazo-5-yl
Figure imgf000012_0001
), benzimidazo[1 ,2-a]benzimidazo-2-yl ( ), carba- zolyl, dibenzofuranyl, and dibenzothiophenyl, which can be unsubstituted or substituted especially by C6-Cioaryl, or C6-Cioaryl, which is substituted by Ci-C4alkyl; or C2-Ci4heteroaryl.
is a group of the formula t least
Figure imgf000012_0002
one of the groups A1, A2, A3 and A4 respresent a group of formula R 6' i preferably H, or a group of the formula -Si(R 2)(R13)(R14), especially
Figure imgf000013_0001
R 2, R13 and R14 are independently of each other a phenyl group, which can optionally be substituted by one, or more Ci-Cisalkyl groups;
R2i and R21' are independently of each other H, a phenyl group, or a Ci-Cisalkyl group; re independently of each other H , or a group of the formula
Figure imgf000014_0001
, or , especially ;
X is O, S, or R24,
R24 is a C6-C24aryl group, or a C2-C3oheteroaryl group, which can optionally be substituted by G, wherein G is as defined in above; and
Figure imgf000014_0002
or A1, A2, A3 and A4 are independently of each other a C6-C24arylen group, which can optionally be substituted by G, or a C2-C3oheteroarylen group, which can optionally be substituted by G. The C6-C24arylen groups A1, A2, A3 and A4 which optionally can be substituted by G, are typically phenylene, 4-methylphenylene, 4-methoxyphenylene, naphthylene, especially 1 -naphthylene, or 2-naphthylene, biphenylylene, terphenylylene, pyrenylene, 2- or 9- fluorenylene, phenanthrylene, or anthrylene, which may be unsubstituted or substituted.
The C2-C3oheteroarylen groups A1, A2, A3 and A4, which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated -electrons such as benzofuro[2,3- e (
Figure imgf000015_0001
-b]indolylene ( ), benzofuro[2,3-
Figure imgf000015_0002
benzothiopheno[2,3-c]pyridylene
24
R
Figure imgf000015_0003
-c]indolylene ( ), furo[3,2-b:4,5-
Figure imgf000015_0004
b'Jdipyridylene ( ), thieno[3,2-b:4,5-b']dipyridylene
24
R
Figure imgf000015_0005
), pyrrolo[3,2-b:4,5-b']dipyridylene ( ), thienylene benzothiophenylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, is ), diben-
Figure imgf000016_0001
zothiophenylene ( ), phenoxythienylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazi- nylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, chinolylene, isochinolylene, phthalazinylene, naphthyridinylene, chinoxalinylene, chinazoli- nylene, cinnolinylene, pteridinylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, pyrimidinylene, phenanthrolinylene, phenazinylene, iso- , furazanylene, carbazolylene
), benzimidazo[1 ,2-a]benzimidazo-2,5-ylene
( ), or phenoxazinylene, which can be unsubstituted or substituted.
Preferred C6-C24arylen groups are 1 ,3-phenylene, 3,3'-biphenylylene, 3,3'-m-terphenylene, 2- or 9-fluorenylene, phenanthrylene, which may be unsubstituted or substituted, especially by C6-Cioaryl, C6-Cioaryl which is substituted by Ci-C4alkyl; or C2-Ci4heteroaryl.
Preferred C2-C3oheteroarylen groups are pyridylene, triazinylene, pyrimidinylene, especially benzofuro[2,3-b]pyridylene, benzothiopheno[2,3-b]pyridylene , pyrido[2,3-b]indolylene , benzofuro[2,3-c]pyridylene, benzothiopheno[2,3-c]pyridylene , pyrido[2,3-c]indolylene fu- ro[3,2-b:4,5-b']dipyridylene, thieno[3,2-b:4,5-b']dipyridylene, pyrrolo[3,2-b:4,5- b']dipyridylene, dibenzofuranylene, dibenzothiophenylene , carbazolylene and benzimid- azo[1 ,2-a]benzimidazo-2,5-ylene , which can be unsubstituted or substituted, especially by C6-Cioaryl, C6-Cioaryl which is substituted by Ci-C4alkyl; or C2-Ci4heteroaryl.
Benzimidazo[1 ,2-a]benzimidazo-5-yl, benzimidazo[1 ,2-a]benzimidazo-2-yl, carbazolyl and dibenzofuranyl are examples of a C2-Ci4heteroaryl group. Phenyl, 1-naphthyl and 2- naphthyl are examples of a C6-Cioaryl group.
The C6-C24arylen and C2-C3oheteroarylen groups may be substituted by G. A1, A2, A3 and A4 are preferably a group of the formula
Figure imgf000017_0001
, or , wherein R89 and X are as defined below. X is preferably O.
The aza-dibenzofuran derivatives of the present invention are characterized in that they are substituted with at least one benzimidazo[1 ,2-a]benzimidazo-5-yl group and/or at least one benzimidazo[1 ,2-a]benzimidazo-2,5-ylene group. In particular, the aza-dibenzofuran derivatives of the present invention are characterized in that at least one of the substituents R81 , R82, R83, R84, R85 , R86, R87 and R88 is a group of
formula— (A )0-(A2)p-(A3)q-(A4)rR16, wherein R16 is a group of the formula
Figure imgf000017_0002
; and/or at least one of the substituents R8 , R82, R83, R84, R85 , R86, R87 and R88 is a group of formula -(A )0-(A2)p-(A3)q-(A ) ', wherein at least one of the groups A1, A2, A3 and A4
Figure imgf000017_0003
represent a group of formula
In a preferred embodiment the present invention is directed to compounds of formula (la), (lb), (lc), (Id), (le), (If), (Ig), (Ih), (li), (Ij), (Ik), (II), (Im), (In) and (lo), wherein
in the compounds of formula (la)
R83 is a group of the formula -(AV(A2)p-(A3)q-(A4)rR16; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16'; or
R83 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16'; and
R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16; in the compounds of formula (lb)
R82 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16'; or
R82 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rR16'; and R87 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (lc)
Res is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (Id)
R81 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; or R81 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (le)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (If)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (Ig)
R82 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R82 is H, or a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (Ih)
R81 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6'; or R81 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (li)
R83 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (Ij)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(A-i)0-(A2)P-(A3)q-(A4)rR16'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (Ik)
R81 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R81 is H, or a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; in the compounds of formula (II)
R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R87 is H, or a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6'; or R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (Im)
R83 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (In)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6.
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ; in the compounds of formula (lo)
R82 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and
R86 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or
R82 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and
R86 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6;
A1 , A2, A3 and A4 are independently of each other a group of the formula
Figure imgf000019_0001
st
Figure imgf000020_0001
one of the groups A1, A2, A3 and A4 respresent a group of formula
Figure imgf000020_0002
' is H, or a group of the formula -Si(R2)(R3)(R14),
Figure imgf000020_0003
Figure imgf000021_0001
, especially ;
R12, R13 and R14 are independently of each other a phenyl group, which can optionally be substituted by one, or more alkyl groups, especially Ci-Cisalkyl groups;
R21 and R21 ' are independently of each other H, a phenyl group, or a Ci-Cisalkyl group;
Figure imgf000021_0002
are independently of each other H, or a group of the formula
Figure imgf000021_0003
, or , especially
X is O, S, or NR24,
R24 is a C6-C24aryl group, or a C2-C3oheteroaryl group, which can optionally be substituted by G, wherein G is as defined in above; and
Figure imgf000021_0004
Figure imgf000022_0001
R16 is a group of the formula st
Figure imgf000023_0001
one of the groups A1, A2, A3 and A4 respresent a group of formula
Figure imgf000023_0002
, wherein X is O, S, or NR24,
Figure imgf000024_0001
is preferably . X is preferably O.
The group of the formula -(A1)0-(A2)p-(A3)q-(A4)rR16 is preferably a group of formula
Figure imgf000024_0002
Figure imgf000025_0001
Figure imgf000026_0001
(Xlllb),
Figure imgf000027_0001
Figure imgf000027_0002
The group of the formula -(A1)0-(A2)p-(A3)q-(A4)rR16' is preferably H, or a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf), or (Xlllg), as defined above; or a group of for-
Figure imgf000027_0003
Figure imgf000028_0001
(XlVq), (XlVr),
Figure imgf000028_0002
(XIVs), (XIVu),
Figure imgf000028_0003

Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
In a preferred embodiment the present invention is directed to compounds of formula (la), wherein R∞ is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), (XIII), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XI Vu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
a compound of formula (la), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XI Vu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (la), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (la), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred. In a preferred embodiment the present invention is directed to compounds of formula (lb), wherein R82 is a group of formula (XI la), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XI Vu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (lb), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XI Vu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (lb), wherein R82 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (lb), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
In a preferred embodiment the present invention is directed to compounds of formula (lc), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
(Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XI Vu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (lc), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (lc), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb),
(XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (lc), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw),
(Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
In a preferred embodiment the present invention is directed to compounds of formula (Id), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (Id), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above; and
R8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (Id), wherein R81 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (Id), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and R8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
In a preferred embodiment the present invention is directed to compounds of formula (le), wherein R∞ is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (le), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (le), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or compounds of formula (le), wherein R^ is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred. In a preferred embodiment the present invention is directed to compounds of formula (If), wherein R88 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (If), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R88 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (If), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or compounds of formula (If), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
In a preferred embodiment the present invention is directed to compounds of formula (Ij), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (Ij), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
(Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula compounds of formula (Ij), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (Ij), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
In a preferred embodiment the present invention is directed to compounds of formula (II), wherein is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv)
(Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (II), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above. In a preferred embodiment the present invention is directed to compounds of formula (In), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xlln), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as above, and R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (In), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XI Vq), (XI Vr), (XIVs), (XI Vt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined above.
In said embodiment compounds of formula (In), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
compounds of formula (In), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; are more preferred.
Examples of preferred compounds are compounds A-1 to A-65, B-1 to B-8, C-1 to C-65, D- 1 to D-8, E-1 to E-65, F-1 to F-65 and G-1 shown in claim 9. In a particularly preferred embodiment the present invention is directed to
compounds of formula (la), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
to compounds of formula (la), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; such as, for example, compound (A-4).
In another particularly preferred embodiment the present invention is directed
to compounds of formula (le), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; or
to compounds of formula (le), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined above, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined above; such as, for example,
compound
Figure imgf000042_0001
(E-57).
Compounds, such as, for example, (E-57) can advantageously be used as host and/or hole transport material.
Compounds, such as, for example,
Figure imgf000042_0002
(G-1 ) are particularly suitable as electron transport material.
Halogen is fluorine, chlorine, bromine and iodine. Ci-C25alkyl (Ci-Cisalkyl) is typically linear or branched, where possible. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3- pentyl, 2,2-dimethylpropyl, 1 ,1 ,3,3-tetramethylpentyl, n-hexyl, 1-methylhexyl, 1 ,1 ,3,3,5,5- hexa methyl hexyl, n-heptyl, isoheptyl, 1 ,1 ,3,3-tetramethylbutyl, 1-methylheptyl, 3-methyl- heptyl, n-octyl, 1 ,1 ,3,3-tetramethylbutyl and 2-ethylhexyl, n-nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, or octadecyl. d-Csalkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethyl-propyl, n-hexyl, n-heptyl, n-octyl, 1 ,1 ,3,3-tetramethylbutyl and 2- ethylhexyl. Ci-C4alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert.-butyl.
Ci-C25alkoxy groups (Ci-Cisalkoxy groups) are straight-chain or branched alkoxy groups, e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, amyloxy, isoamyloxy or tert-amyloxy, heptyloxy, octyloxy, isooctyloxy, nonyloxy, decyloxy, un- decyloxy, dodecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy and octadecyloxy. Examples of d-Csalkoxy are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert.-butoxy, n-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2,2- dimethylpropoxy, n-hexyloxy, n-heptyloxy, n-octyloxy, 1 ,1 ,3,3-tetramethylbutoxy and 2- ethylhexyloxy, preferably Ci-C4alkoxy such as typically methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert.-butoxy.
Ci-Ci8perfluoroalkyl, especially Ci-C4perfluoroalkyl, is a branched or unbranched radical such as for example -CF3, -CF2CF3, -CF2CF2CF3, -CF(CF3)2, -(CF2)3CF3, and -C(CF3)3. The term "cycloalkyl group" is typically C4-Ci8cycloalkyl, especially C5-Ci2cycloalkyl, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, preferably cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, which may be unsubstituted or substituted.
C6-C24aryl (C6-Cisaryl), which optionally can be substituted, is typically phenyl, 4- methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted. Phenyl, 1-naphthyl and 2-naphthyl are examples of a C6-Cioaryl group.
C2-C3oheteroaryl represents a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated π-electrons such as thienyl, benzothiophenyl, dibenzothiophenyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzo- furanyl, isobenzofuranyl, dibenzofuranyl, phenoxythienyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, chinolyl, isochinolyl, phthalazinyl, naphthyridinyl, chinoxalinyl, chinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phe- nanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, 4-imidazo[1 ,2-a]benzimidazoyl, 5-benzimidazo[1 ,2-a]benzimidazoyl, carbazolyl, or phenoxazinyl, which can be unsubstituted or substituted. Benzimidazo[1 ,2- a]benzimidazo-5-yl, benzimidazo[1 ,2-a]benzimidazo-2-yl, carbazolyl and dibenzofuranyl are examples of a C2-Ci4heteroaryl group.
C6-C24arylen groups, which optionally can be substituted by G, are typically phenylene, 4- methylphenylene, 4-methoxyphenylene, naphthylene, especially 1-naphthylene, or 2- naphthylene, biphenylylene, terphenylylene, pyrenylene, 2- or 9-fluorenylene, phenan- thrylene, or anthrylene, which may be unsubstituted or substituted. Preferred C6-C24arylen groups are 1 ,3-phenylene, 3,3'-biphenylylene, 3,3'-m-terphenylene, 2- or 9-fluorenylene, phenanthrylene, which may be unsubstituted or substituted.
C2-C3oheteroarylen groups, which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated -electrons such as thienylene, benzothiophenylene, dibenzothio- phenylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, isoben- zofuranylene, dibenzofuranylene, phenoxythienylene, pyrrolylene, imidazolylene, pyrazol- ylene, pyridylene, bipyridylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, chinol- ylene, isochinolylene, phthalazinylene, naphthyridinylene, chinoxalinylene, chinazolinylene, cinnolinylene, pteridinylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenan- thridinylene, acridinylene, pyrimidinylene, phenanthrolinylene, phenazinylene, isothiazol- ylene, phenothiazinylene, isoxazolylene, furazanylene, carbazolylene, benzimidazo[1 ,2- a]benzimidazo-2,5-ylene, or phenoxazinylene, which can be unsubstituted or substituted. Preferred C2-C3oheteroarylen groups are pyridylene, triazinylene, pyrimidinylene, carbazol- ylene, dibenzofuranylene and benzimidazo[1 ,2-a]benzimidazo-2,5-ylene
Figure imgf000044_0001
), which can be unsubstituted or substituted, especially by C6-doaryl,
C6-Cioaryl which is substituted by Ci-C4alkyl; or C2-Ci4heteroaryl.
Possible substituents of the above-mentioned groups are d-Csalkyl, a hydroxyl group, a mercapto group, d-Csalkoxy, d-Csalkylthio, halogen, halo-d-Csalkyl, or a cyano group. The C6-C24aryl (di-dsaryl) and C2-C3oheteroaryl groups are preferably substituted by one, or more d-Csalkyl groups.
If a substituent occurs more than one time in a group, it can be different in each occurrence.
The wording "substituted by G" means that one, or more, especially one to three substituents G might be present.
As described above, the aforementioned groups may be substituted by E and/or, if desired, interrupted by D. Interruptions are of course possible only in the case of groups containing at least 2 carbon atoms connected to one another by single bonds; C6-dsaryl is not interrupted; interrupted arylalkyl contains the unit D in the alkyl moiety, d-dsalkyl substituted by one or more E and/or interrupted by one or more units D is, for example, (Ch Ch C i-g- Rx, where R* is H or d-doalkyl or d-doalkanoyl (e.g. CO-CH(dH5)dH9), CH2-CH(ORy')- CH2-0-Ry, where Ry is d-dsalkyl, d-Ci2cycloalkyl, phenyl, C7-d5phenylalkyl, and Ry' embraces the same definitions as Ry or is H;
d-C8alkylene-COO-Rz, e.g. CH2COORz, CH(CH3)COORz, C(CH3)2COORz, where Rz is H, d-dsalkyl, (CH2CH20)i-9-Rx, and Rx embraces the definitions indicated above;
Figure imgf000044_0002
Figure imgf000044_0003
described, for example, in Achour, Reddouane;
Zniber, Rachid, Bulletin des Societes Chimiques Beiges 96 (1987) 787-92.
Figure imgf000045_0001
(especially in the cases when X is S, O, NH), or can be obtained by processes known to those skilled in the art. Reference is made to WO2010079051 and EP1885818.
The halogenation can be performed by methods known to those skilled in the art. Preference is given to brominating or iodinating in the 3 and 6 positions (dibromination) or in the 3 or 6 positions (monobromination) of the base skeleton of the formula (II) 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole).
Optionally substituted dibenzofurans, dibenzothiophenes and carbazoles can be dibromin- ated in the 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole) with bromine or NBS in glacial acetic acid or in chloroform. For example, the bromination with Br2 can be effected in glacial acetic acid or chloroform at low temperatures, e.g. 0°C. Suitable processes are described, for example, in M. Park, J.R. Buck, C.J. Rizzo, Tetrahedron, 54 (1998) 12707-12714 for X= NPh, and in W. Yang et al., J. Mater. Chem. 13 (2003) 1351 for X= S. In addition, 3,6-dibromocarbazole, 3,6-dibromo-9-phenylcarbazole, 2,8- dibromodibenzothiophene, 2,8-dibromodibenzofuran, 2-bromocarbazole, 3- bromodibenzothiophene, 3-bromodibenzofuran, 3-bromocarbazole, 2- bromodibenzothiophene and 2-bromodibenzofuran are commercially available.
Monobromination in the 4 position of dibenzofuran (and analogously for dibenzothiophene) is described, for example, in J. Am. Chem. Soc. 1984, 106, 7150. Dibenzofuran (dibenzothiophene) can be monobrominated in the 3 position by a sequence known to those skilled in the art, comprising a nitration, reduction and subsequent Sandmeyer reaction.
Monobromination in the 2 position of dibenzofuran or dibenzothiophene and monobromination in the 3 position of carbazole are effected analogously to the dibromination, with the exception that only one equivalent of bromine or NBS is added. Alternatively, it is also possible to utilize iodinated dibenzofurans, dibenzothiophenes and carbazoles. The preparation is described, inter alia, in Tetrahedron. Lett. 47 (2006) 6957- 6960, Eur. J. Inorg. Chem. 24 (2005) 4976-4984, J. Heterocyclic Chem. 39 (2002) 933-941 , J. Am. Chem. Soc. 124 (2002) 11900-11907, J. Heterocyclic Chem, 38 (2001) 77-87.
For the nucleophilic substitution, CI- or F-substituted dibenzofurans, dibenzothiophenes and carbazoles are required. The chlorination is described, inter alia, in J. Heterocyclic Chemistry, 34 (1997) 891-900, Org. Lett., 6 (2004) 3501-3504; J. Chem. Soc. [Section] C: Organic, 16 (1971) 2775-7, Tetrahedron Lett. 25 (1984) 5363-6, J. Org. Chem. 69 (2004) 8177-8182. The fluorination is described in J. Org. Chem. 63 (1998) 878-880 and J. Chem. Soc, Perkin Trans. 2, 5 (2002)
Figure imgf000046_0001
The introduction of the group is performed in the presence of a base.
Suitable bases are known to those skilled in the art and are preferably selected from the group consisting of alkali metal and alkaline earth metal hydroxides such as NaOH, KOH, Ca(OH)2, alkali metal hydrides such as NaH, KH, alkali metal amides such as NaNH2, alkali metal or alkaline earth metal carbonates such as K2CO3 or CS2CO3, and alkali metal alkox- ides such as NaOMe, NaOEt. In addition, mixtures of the aforementioned bases are suitable. Particular preference is given to NaOH, KOH, NaH or K2CO3.
n be effected, for example, by copper-catalyzed coupling of
Figure imgf000046_0002
to a halogenated compound of the formula
(Ullmann reaction).
The N-arylation was, for example, disclosed in H. Gilman and D. A. Shirley, J. Am. Chem. Soc. 66 (1944) 888; D. Li et al., Dyes and Pigments 49 (2001 ) 181 - 186 and Eur. J. Org. Chem. (2007) 2147-2151. The reaction can be performed in solvent or in a melt. Suitable solvents are, for example, (polar) aprotic solvents such as dimethyl sulfoxide, dimethylfor- mamide, NMP, tridecane or alcohols.
Figure imgf000046_0003
The synthesis of 9-(8-bromodibenzofuran-2-yl)carbazole, , is de O2010079051. The synthesis of 2-bromo-8-iodo-dibenzofurane,
Figure imgf000046_0004
, is described in EP 1885818.
Figure imgf000047_0001
A possible synthesis route for the compound of formula is shown in the following scheme:
Figure imgf000047_0002
Reference is made to Angew. Chem. Int. Ed. 46 (2007)1627-1629 and Synthesis 20 (2009) 3493.
Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and car- bazoles can be readily prepared by an increasing number of routes. An overview of the synthetic routes is, for example, given in Angew. Chem. Int. Ed. 48 (2009) 9240 - 9261.
By one common route diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes, and carbazoles can be obtained by reacting halogenated dibenzofurans,
Figure imgf000047_0003
bis(diphenylphosphino)ferrocene]dichloropalladium(ll), complex (Pd(CI)2(dppf)), and a base, such as, for example, potassium acetate, in a solvent, such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene (cf. Prasad Appukkuttan et al., Syn- lett 8 (2003) 1204), wherein Y1 is independently in each occurrence a Ci-Ci8alkylgroup and Y2 is independently in each occurrence a C2-Cioalkylene group, such as -CY3Y4-CY5Y6-, or -CY7Y8-CY9Y10- CY Y12-, wherein Y3, Y4, Ys, γβ, γ?, γβ_ γθ γιο. γιι and Y^ are inde- pendently of each other hydrogen, or a Ci-Ci8alkylgroup, especially -C(CH3)2C(CH3)2-, - C(CH3)2CH2C(CH3)2-, or -CH2C(CH3)2CH2-, and Y13 and Y14 are independently of each other hydrogen, or a Ci-Ci8alkylgroup.
Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and car- bazoles can also be prepared by reacting halogenated dibenzofurans, dibenzothiophenes and carbazoles with alkyl lithium reagents, such as, for example, n-butyl lithium, or t-buthyl lithium, followed nic esters, such as, for example, B(isopropoxy)3,
B(methoxy)3, or
Figure imgf000048_0001
(cf. Synthesis (2000) 442-446).
Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and carbazoles can also be prepared by reacting dibenzofurans, dibenzothiophenes and carbazoles with lithium amides, such as, for example, lithium diisopropylamide (LDA) followed by esters such as, for example, B(isopropoxy)3, B(methoxy)3, or
Figure imgf000048_0002
(J. Org. Chem. 73 (2008) 2176-2181).
Diboronic acid or diboronate group containing dibenzofurans, dibenzothiophenes and car-
Figure imgf000048_0003
bazoles, such as, for example, , can be reacted with equimolar amounts of halogenated dibenzofurans, dibenzothiophenes, carbazoles and 4H-
Figure imgf000048_0004
imidazo[1 ,2-a]imidazoles, such as, for example, , in a solvent and in the presence of a catalyst. The catalyst may be one of the μ-ηΒΐο Νεορκ^ΙρΓΐοβρΐΊίηβΧη3- allyl)palladium(ll) type (see for example W099/47474). Preferably, the Suzuki reaction is carried out in the presence of an organic solvent, such as an aromatic hydrocarbon or a usual polar organic solvent, such as benzene, toluene, xylene, tetrahydrofurane, or dioxane, or mixtures thereof, most preferred toluene. Usually, the amount of the solvent is chosen in the range of from 1 to 10 I per mol of boronic acid derivative. Also preferred, the reaction is carried out under an inert atmosphere such as nitrogen, or argon. Further, it is preferred to carry out the reaction in the presence of an aqueous base, such as an alkali metal hydroxide or carbonate such as NaOH, KOH, Na2C03, K2CO3, Cs2C03 and the like, preferably an aqueous K2CO3 solution is chosen. Usually, the molar ratio of the base to boronic acid or boronic ester derivative is chosen in the range of from 0.5: 1 to 50:1 , very especially 1 :1. Generally, the reaction temperature is chosen in the range of from 40 to 180°C, preferably under reflux conditions. Preferred, the reaction time is chosen in the range of from 1 to 80 hours, more preferably from 20 to 72 hours. In a preferred embodiment a usual catalyst for coupling reactions or for polycondensation reactions is used, preferably Pd-based, which is described in WO2007/101820. The palladium compound is added in a ratio of from 1 :10000 to 1 :50, preferably from 1 :5000 to 1 :200, based on the number of bonds to be closed. Preference is given, for example, to the use of palla- dium(ll) salts such as PdAc2 or Pd2dba3 d from the
Figure imgf000049_0001
group consisting of wherein
Figure imgf000049_0002
The ligand is added in a ratio of from 1 : 1 to 1 :10, based on Pd. Also preferred, the catalyst is added as in solution or suspension. Preferably, an appropriate organic solvent such as the ones described above, preferably benzene, toluene, xylene, THF, dioxane, more preferably toluene, or mixtures thereof, is used. The amount of solvent usually is chosen in the range of from 1 to 10 I per mol of boronic acid derivative. Organic bases, such as, for example, tetraalkylammonium hydroxide, and phase transfer catalysts, such as, for example TBAB, can promote the activity of the boron (see, for example, Lead- beater & Marco; Angew. Chem. Int. Ed. Eng. 42 (2003) 1407 and references cited therein). Other variations of reaction conditions are given by T. I. Wallow and B. M. Novak in J. Org. Chem. 59 (1994) 5034-5037; and M. Remmers, M. Schulze, G. Wegner in Macromol. Rapid Commun. 17 (1996) 239-252 and G. A. Molander und B. Canturk, Angew. Chem. , 121 (2009) 9404 - 9425.
The synthesis of aza- and diaza-dibenzofuran starting materials is known in the literature, or can be done in analogy to known procedures.
JP2011084531 describes, for example, the synthesis of benzofuro[3,2-b]pyridine in two steps starting from 2-bromopyridin-3-ol using a base catalyzed cyclisation. The brominated compound is received by bromination with bromine in the presence of silver sulfate.
Figure imgf000050_0001
US2010/0187984 describes, for example, the synthesis of 3,6-dichloro-benzofuro[2,3- b]pyridine in three steps starting from 2-amino-5-chloropyridine using a cyclisation of a dia- zoniumion salt.
Figure imgf000050_0002
L. Kaczmarek, Polish Journal of Chemistry 59 (1985) 1141 describes the synthesis of fu- ro[3,2-b:4,5-b]dipyridine starting from 2-(3-amino-2-pyridyl)pyridin-3-amine using an acid
Figure imgf000050_0003
JP2002284862 describes the syntheses of 2,7-dibromo-furo[3,2-b:4,5-b]dipyridine starting from 2-(3-amino-5-bromo-2-pyridyl)-5-bromo-pyridin-3-amine using an acid catalyzed cyclisation of a diazoniumion salt. The synthesis of the starting material is described by Y. Fort, Tetrahedron 50 (41),1 1893 (1994).
Figure imgf000051_0001
J. Liu, J. Org. Chem. 73, 2951 (2008) describes e.g. the synthesis of benzofuro[2,3- cjpyridine using a copper catalyzed cyclisation step.
Figure imgf000051_0002
A possible synthetic route for compound E-57 is shown in the reaction scheme below:
Figure imgf000051_0003
The halogen/metal exchange is done with nBuLi/THF at -78°C, or tBuLi/THF at -78°C. Ref- erence is made to WO2010/079051 , where the synthesis of such compounds is described.
Figure imgf000051_0004
Compounds of formula (II) are new, intermediates in the production of compounds of formula (I) and form a further subject of the present invention. Bi is N, or CR8 ,
B2 is N, or CR82,
B3 is N, or CR83, B4 is N , or CR84,
B5 is N , or CR85,
B6 is N , or CR86,
B7 is N , or CR87,
B8 is N , or CR88, wherein R81 , R82, R83, R84, R85 , R86, R87 and R88 are independently of each other H , a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D; a C6-C24aryl group, which can optionally be substituted by G, a C2-C3oheteroaryl group, which can optionally be substituted by G; a group of formula— (A1)0-(A2)p-(A3)q-(A4)rR16, or -(A1)o-(A2)p-(A3)q-(A4)rX ,
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ,
at least one of the substituents R81 , R82, R83, R84, R85, R86, R87 and R88 represents a group of formula -(Ai)0-(A2)p-(A3)q-(A4)rX1 ; wherein
X1 is CI , Br, or I , ΖηΧΐ2, Xi2 is a halogen atom; -SnR2o7R2o8R2tra wherein R2°7, R2°8 and R209 are identical or different and are H or d-Csalkyl, wherein two radicals optionally form a are optionally branched or unbranched; -B(OH)2, -B(OY1)2,
Figure imgf000052_0001
-BF4Na, or -BF4K, wherein Y1 is independently in each occurrence a Ci-Cisalkyl group and Y2 is independently in each occurrence a C2- C-ioalkylene group, and Y13 and Y14 are independently of each other hydrogen, or a Ci- Cisalkyl group, and o, p, q, r, G, A1 , A2, A3, A4, R81 , R82, R83, R84, R85, R86, R87 and R88 are as defined above. The following compounds are known from the prior art and are excluded:
Figure imgf000052_0002
Figure imgf000053_0001
are excluded.
The preferences for R81, R82, R83, R84, R85, R86, R87, R88 A1, A2, A3, A4 and R16 are in principal the same as in case of the compounds of formula (I). If X1 is CI, Br, or I, p is 0, q is 0 and r is 0; o in the at least one group of formula -(A1)0-(A2)P- are preferred, wherein X1
Figure imgf000053_0002
Among the compounds of formula (II) compounds of formula
Figure imgf000053_0003
Figure imgf000054_0001
(II ) are preferred, where R81, R82, R88, RSS, RS6 ANC| R87 have the meanings given above. In a preferred embodiment of the present invention one of the substituents R81, R82, R83, R85, Rse and R87 in the compounds of formula (ΙΓ), (II"), (II'"), (II"") and (II ) is a group of formula -(Ai)o-(A2)p-(A3)q-(A4)rXi .
In another preferred embodiment of the present invention two of the substituents R81 , R82, R83, R85, Rse and R87 in the compounds of formula (ΙΙ'), (II"), (ΙΓ), (ΙΓ") and (II ) are a group of formula -(AV(A2)p-(A3)q-(A4)rXi .
In a preferred embodiment the present invention is directed to compounds of formula
Figure imgf000054_0002
Figure imgf000054_0003
Figure imgf000055_0001
(No), wherein R81 , R82, R83, R85, R86 and R87 are as de- fined above.
In a preferred embodiment of the present invention one of the substituents R81 , R82, R83, R85, Rse and R87 in the compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llg), (llh), (IN), (llj), (Ilk), (III), (Mm), (lln) and (No) is a group of formula -(Ai)0-(A2)p-(A3)q-(A4)rXi .
In another preferred embodiment of the present invention two of the substituents R81 , R82, R83, R85, R86 and R87 in the compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llg), (llh), (IN), (llj), (Ilk), (III), (Mm), (lln) and (Mo) are a group of formula -(Ai)0-(A2)p-(A3)q-(A4)r Xi .
Compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (IN), (llj), (III) and (lln) are preferred. Compounds of formula (lla), (lib), (lie), (lid), (lie), (llf), (llj) and (lln) are especially preferred.
Examples of the intermediates are shown below: (N-3), and
Figure imgf000056_0001
(N-4).
The bromination of the azadibenzofurans can be carried out in analogy to the bromination of carbazole, which is, for example, described in J. Mater. Chem. 18 (2008) 1296-1301.
Other bromination methods are, for example, described in Helvetica Chimica Acta 89 (2006) 1123 and SYNLETT 17 (2006) 2841-2845. 10.206
Selective halogenation of (III) with a halogenation agent results in the compounds of formu- la (II). Halogenation agents are, for example, N-chlorosuccinimide (NCS) (Synlett 18 (2005) 2837-2842); Br2 (Synthesis 10 (2005) 1619-1624), N-bromosuccinimide (NBS)(Organic Letters 12 (2010) 2194-2197; Synlett (2006) 2841-2845), 1 ,3-dibromo-5,5- dimethylhydantoin (DBH) (Organic Process Research & Development 10 (2006) 822-828, US2002/0151456), CuBr2 (Synthetic Communications 37 (2007) 1381-1388); R4NBr3 (Can. J. Chem. 67 (1989) 2062), N-iodosuccinimide (NIS) (Synthesis 12 (2001) 1794-1799, J. Heterocyclic Chem. 39 (2002) 933), KI/KI03( Org. Lett. 9 (2007) 797, Macromolecules 44 (2011) 1405-1413), Nal04/l2/H2S04 or Nal04/KI/H2S04 (J. Heterocyclic Chem. 38 (2001) 77; J. Org. Chem. 75 (2010) 2578-2588); iodine monochloride (ICI; Synthesis (2008) 221- 224). Additional methods are described in J. Org. Chem. 74 (2009) 3341-3349; J. Org. Chem. 71 (2006) 7422-7432, Eur. J. Org. Chem. (2008) 1065-1071 , Chem. Asian J. 5 (2010) 2162 - 2167, Synthetic. Commun. 28 (1998) 3225.
Examples of solvents, which can be used in the halogenation, are dimethylformamide (DMF), CH2CI2, CHC , CCI4, ethanol (EtOH), acetic acid (AcOH), H2S04, C6H5CI and mix- tures thereof. The halogenation can be done in the presence of acids and lewis acids, respectively, such as, for example, H2S04, ZrCI4, TiCI4, AlC , HfCI4 and AlC (Synlett 18 (2005) 2837-2842).
The halogenated intermediates (II), wherein X3 is CI, Br, or I, can be transformed to the
I) with
Figure imgf000056_0002
in the presence of a catalyst, such as, for example, [1 ,1'-bis(diphenylphosphino)ferrocene]dichloro- palladium(ll), complex (Pd(CI)2(dppf)), and a base, such as, for example, potassium acetate, in a solvent, such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene (cf. Prasad Appukkuttan et al., Synlett 8 (2003) 1204). An overview of the preparation of boronic reagents is given in Angew. Chem. 121 (2009) 9404 - 9425, Chem. Rev. 95 (Ί995) 2457-2483, Angew. Chem. Int. Ed. 41 (2002) 4176- 421 1 , Tetrahedron 66 (2010) 8121- 8136.
Diboronic acid or diboronate intermediates (II) can also be prepared by reacting halogenat- ed intermediates (II) with alkyl lithium reagents, such as, for example, n-butyl lithium, or t- buthyl lithium, followed by reaction with boronic esters, such as, for example,
B(isopropoxy)3, B(methoxy)3, or
Figure imgf000057_0001
(cf. Synthesis (2000) 442-446).
The compounds of formula (I) can be obtained starting from the intermediates and suitable co-reactants, for example, by Suzuki-, Stille-, or Negishi-coupling reactions.
The halogenated intermediates, wherein X1 is CI, Br, or I, such as for example,
Figure imgf000057_0002
(N-2), can, for example, be transformed to a compound of formula (I) by reacting intermediate (N-2) with X2-(A1)o-(A2)P-(A3)q-(A4)rRi6 , wherein X2 is (Υ 0)2Β-,
Figure imgf000057_0003
in the presence of a catalyst, such as, for example,
[1 ,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(ll), complex (Pd(CI)2(dppf)), and a base, such as, for example, potassium acetate, in a solvent, such as, for example, dimethyl formamide, dimethyl sulfoxide, dioxane and/or toluene (cf. Prasad Appukkuttan et al., Syn- Iett 8 (2003) 1204).
It has been found that the compounds of the formula I are particularly suitable for use in applications in which charge carrier conductivity is required, especially for use in organic electronics applications, for example selected from switching elements such as organic transistors, e.g. organic FETs and organic TFTs, organic solar cells and organic light- emitting diodes (OLEDs), the compounds of the formula I being particularly suitable in OLEDs for use as matrix material in a light-emitting layer and/or as hole and/or exciton blocker material and/or as electron and/or exciton blocker material, especially in combination with a phosphorescence emitter. In the case of use of the inventive compounds of the formula I in OLEDs, OLEDs which have good efficiencies and a long lifetime and which can be operated especially at a low use and operating voltage are obtained. The inventive compounds of the formula I are suitable especially for use as matrix and/or hole/exciton blocker materials for blue and green emitters, for example light blue or deep blue emitters, these being especially phosphorescence emitters. Furthermore, the compounds of the for- mula I can be used as conductor/complementary materials in organic electronics applications selected from switching elements and organic solar cells.
The compounds of the formula I, especially of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II) and (In), can be used as matrix material and/or hole/exciton blocker material and/or electron/exciton blocker material and/or hole injection material and/or electron injection material and/or hole conductor material (hole transport material) and/or electron conductor material (electron transport material), preferably as matrix material and/or electron/exciton blocker and/or hole transporting material in organic electronics applications, especially in OLEDs. The inventive compounds of the formula I are more preferably used as matrix materials in organic electronics applications, especially in OLEDs.
In the emission layer or one of the emission layers of an OLED, it is also possible to combine an emitter material with a matrix material of the compound of the formula I and a fur- ther matrix material which has, for example, a good hole conductor (hole transport) property. This achieves a high quantum efficiency of this emission layer.
Certain compounds of formula I, such as, for example, G-1 , have a ionisation potential of greater than 6 eV and, hence, suited as electron transport material.
When a compound of the formula I is used as matrix material in an emission layer and additionally as hole/exciton blocker material and/or electron/exciton blocker material, owing to the chemical identity or similarity of the materials, an improved interface between the emission layer and the adjacent hole/exciton blocker material and/or electron/exciton blocker material is obtained, which can lead to a decrease in the voltage with equal luminance and to an extension of the lifetime of the OLED. Moreover, the use of the same material for hole/exciton blocker material and/or electron/exciton blocker material and for the matrix of an emission layer allows the production process of an OLED to be simplified, since the same source can be used for the vapor deposition process of the material of one of the compounds of the formula I.
Suitable structures of organic electronic devices are known to those skilled in the art and are specified below. The organic transistor generally includes a semiconductor layer formed from an organic layer with hole transport capacity and/or electron transport capacity; a gate electrode formed from a conductive layer; and an insulating layer introduced between the semiconductor layer and the conductive layer. A source electrode and a drain electrode are mounted on this arrangement in order thus to produce the transistor element. In addition, further layers known to those skilled in the art may be present in the organic transistor.
The organic solar cell (photoelectric conversion element) generally comprises an organic layer present between two plate-type electrodes arranged in parallel. The organic layer may be configured on a comb-type electrode. There is no particular restriction regarding the site of the or- ganic layer and there is no particular restriction regarding the material of the electrodes. When, however, plate-type electrodes arranged in parallel are used, at least one electrode is preferably formed from a transparent electrode, for example an ITO electrode or a fluorine-doped tin oxide electrode. The organic layer is formed from two sublayers, i.e. a layer with p-type semiconductor properties or hole transport capacity, and a layer formed with n-type semiconductor properties or electron transport capacity. In addition, it is possible for further layers known to those skilled in the art to be present in the organic solar cell. The layer with hole transport capacity may comprise the compounds of formula I. It is likewise possible that the compounds of the formula I are present both in the light- emitting layer (preferably as matrix material) and in the blocking layer for electrons (as elec- tron/exciton blockers).
The present invention further provides an organic light-emitting diode comprising an anode An and a cathode Ka and a light-emitting layer E arranged between the anode An and the cathode Ka, and if appropriate at least one further layer selected from the group consisting of at least one blocking layer for holes/excitons, at least one blocking layer for elec- trons/excitons, at least one hole injection layer, at least one hole conductor layer, at least one electron injection layer and at least one electron conductor layer, wherein the at least one compound of the formula I is present in the light-emitting layer E and/or in at least one of the further layers. The at least one compound of the formula I is preferably present in the light-emitting layer and/or the blocking layer for holes.
The present application further relates to a light-emitting layer comprising at least one com- pound of the formula I, especially a compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D- 8, E-1 to E-65, or F-1 to F-65.
Structure of the inventive OLED
The inventive organic light-emitting diode (OLED) thus generally has the following structure:
an anode (An) and a cathode (Ka) and a light-emitting layer E arranged between the anode (An) and the cathode (Ka).
The inventive OLED may, for example - in a preferred embodiment - be formed from the following layers:
1. Anode
2. Hole conductor layer
3. Light-emitting layer
4. Blocking layer for holes/excitons
5. Electron conductor layer
6. Cathode Layer sequences different than the aforementioned structure are also possible, and are known to those skilled in the art. For example, it is possible that the OLED does not have all of the layers mentioned; for example, an OLED with layers (1) (anode), (3) (light-emitting layer) and (6) (cathode) is likewise suitable, in which case the functions of the layers (2) (hole conductor layer) and (4) (blocking layer for holes/excitons) and (5) (electron conductor layer) are assumed by the adjacent layers. OLEDs which have layers (1), (2), (3) and (6), or layers (1), (3), (4), (5) and (6), are likewise suitable. In addition, the OLEDs may have a blocking layer for electrons/excitons between the hole conductor layer (2) and the Light-emitting layer (3).
It is additionally possible that a plurality of the aforementioned functions (electron/exciton blocker, hole/exciton blocker, hole injection, hole conduction, electron injection, electron conduction) are combined in one layer and are assumed, for example, by a single material present in this layer. For example, a material used in the hole conductor layer, in one em- bodiment, may simultaneously block excitons and/or electrons.
Furthermore, the individual layers of the OLED among those specified above may in turn be formed from two or more layers. For example, the hole conductor layer may be formed from a layer into which holes are injected from the electrode, and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer. The electron conduction layer may likewise consist of a plurality of layers, for example a layer in which electrons are injected by the electrode, and a layer which receives electrons from the electron injection layer and transports them into the light-emitting layer. These layers mentioned are each selected according to factors such as energy level, thermal resistance and charge carrier mobility, and also energy difference of the layers specified with the organic layers or the metal electrodes. The person skilled in the art is capable of selecting the structure of the OLEDs such that it is matched optimally to the organic compounds used as emitter substances in accordance with the invention. In order to obtain particularly efficient OLEDs, for example, the HOMO (highest occupied molecular orbital) of the hole conductor layer should be matched to the work function of the anode, and the LUMO (lowest unoccupied molecular orbital) of the electron conductor layer should be matched to the work function of the cathode, provided that the aforementioned layers are present in the inventive OLEDs.
The anode (1) is an electrode which provides positive charge carriers. It may be formed, for example, from materials which comprise a metal, a mixture of various metals, a metal alloy, a metal oxide or a mixture of various metal oxides. Alternatively, the anode may be a conductive polymer. Suitable metals comprise metals and alloys of the metals of the main groups, transition metals and of the lanthanoids, especially the metals of groups lb, IVa, Va and Via of the periodic table of the elements, and the transition metals of group Villa. When the anode is to be transparent, generally mixed metal oxides of groups lib, 1Mb and IVb of the periodic table of the elements (lUPAC version) are used, for example indium tin oxide (ITO). It is likewise possible that the anode (1) comprises an organic material, for example polyaniline, as described, for example, in Nature, Vol. 357, pages 477 to 479 (June 1 1 , 1992). At least either the anode or the cathode should be at least partly transparent in order to be able to emit the light formed. The material used for the anode (1) is preferably ITO. Suitable hole conductor materials for layer (2) of the inventive OLEDs are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, Vol. 18, pages 837 to 860, 1996. Both hole-transporting molecules and polymers can be used as the hole transport material. Hole-transporting molecules typically used are selected from the group consisting of tris[N-(1-naphthyl)-N-(phenylamino)]triphenylamine (1-NaphDATA), 4,4'-bis[N- (1-naphthyl)-N-phenylamino]biphenyl (a-NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)- [1 ,1 '-biphenyl]-4,4'-diamine (TPD), 1 ,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), N,N'-bis(4-methylphenyl)-N,N'-bis(4-ethylphenyl)-[1 ,1 '-(3,3'-dimethyl)biphenyl]-4,4'-diamine (ETPD), tetrakis(3-methylphenyl)-N,N,N',N'-2,5-phenylenediamine (PDA), a-phenyl-4-Ν,Ν- diphenylaminostyrene (TPS), p-(diethylamino)benzaldehyde diphenylhydrazone (DEH), triphenylamine (TPA), bis[4-(N,N-diethylamino)-2-methylphenyl)(4-methylphenyl)methane (MPMP), 1-phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazoline (PPR or DEASP), 1 ,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB), N,N,N',N'-tetrakis(4- methylphenyl)-(1 ,1 '-biphenyl)-4,4'-diamine (TTB), 4,4',4"-tris(N,N- diphenylamino)triphenylamine (TDTA), 4,4',4"-tris(N-carbazolyl)triphenylamine (TCTA), N,N'-bis(naphthalen-2-yl)-N,N'-bis(phenyl)benzidine (β-ΝΡΒ), N,N'-bis(3-methylphenyl)- N,N'-bis(phenyl)-9,9-spirobifluorene (Spiro-TPD), N,N'-bis(naphthalen-1-yl)-N,N'- bis(phenyl)-9,9-spirobifluorene (Spiro-NPB), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9- dimethylfluorene (DMFL-TPD), di[4-(N,N-ditolylamino)phenyl]cyclohexane, Ν,Ν'- bis(naphthalen-1-yl)-N,N'-bis(phenyl)-9,9-dimethylfluorene, N,N'-bis(naphthalen-1-yl)-N,N'- bis(phenyl)-2,2-dimethylbenzidine, N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine, N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine, 2,3,5,6-tetrafluoro-7,7,8,8- tetracyanoquinodimethane (F4-TCNQ), 4,4',4"-tris(N-3-methylphenyl-N- phenylamino)triphenylamine, 4,4',4"-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine, pyrazino[2,3-f][1 ,10]phenanthroline-2,3-dicarbonitrile (PPDN), N,N,N',N'-tetrakis(4- methoxyphenyl)benzidine (MeO-TPD), 2,7-bis[N,N-bis(4-methoxyphenyl)amino]-9,9- spirobifluorene (MeO-Spiro-TPD), 2,2'-bis[N,N-bis(4-methoxyphenyl)amino]-9,9- spirobifluorene (2,2'-MeO-Spiro-TPD), N,N'-diphenyl-N,N'-di[4-(N,N- ditolylamino)phenyl]benzidine (NTNPB), N,N'-diphenyl-N,N'-di[4-(N,N- diphenylamino)phenyl]benzidine (NPNPB), N,N'-di(naphthalen-2-yl)-N,N'-diphenylbenzene- 1 ,4-diamine (β-ΝΡΡ), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-9,9-diphenylfluorene
(DPFL-TPD), N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-9,9-diphenylfluorene (DPFL-NPB), 2,2',7,7'-tetrakis(N,N-diphenylamino)-9,9'-spirobifluorene (Spiro-TAD), 9,9-bis[4-(N,N- bis(biphenyl-4-yl)amino)phenyl]-9H-fluorene (BPAPF), 9,9-bis[4-(N,N-bis(naphthalen-2- yl)amino)phenyl]-9H-fluorene (NPAPF), 9,9-bis[4-(N,N-bis(naphthalen-2-yl)-N,N'- bisphenylamino)phenyl]-9H-fluorene (NPBAPF), 2,2',7,7'-tetrakis[N- naphthalenyl(phenyl)amino]-9,9'-spirobifluorene (Spiro-2NPB), N,N'-bis(phenanthren-9-yl)- N,N'-bis(phenyl)benzidine (PAPB), 2,7-bis[N,N-bis(9,9-spirobifluoren-2-yl)amino]-9,9- spirobifluorene (Spiro-5), 2,2'-bis[N,N-bis(biphenyl-4-yl)amino]-9,9-spirobifluorene (2,2 - Spiro-DBP), 2,2'-bis(N,N-diphenylamino)-9.9-spirobifluorene (Spiro-BPA), 2,2', 7, 7'- tetra(N,N-ditolyl)aminospirobifluorene (Spiro-TTB), N,N,N',N'-tetranaphthalen-2-ylbenzidine (TNB), porphyrin compounds and phthalocyanines such as copper phthalocyanines and titanium oxide phthalocyanines. Hole-transporting polymers typically used are selected from the group consisting of polyvinylcarbazoles, (phenylmethyl)polysilanes and polyani- lines. It is likewise possible to obtain hole-transporting polymers by doping hole- transporting molecules into polymers such as polystyrene and polycarbonate. Suitable hole-transporting molecules are the molecules already mentioned above.
In addition - in one embodiment - it is possible to use carbene complexes as hole conductor materials, the band gap of the at least one hole conductor material generally being greater than the band gap of the emitter material used. In the context of the present application, "band gap" is understood to mean the triplet energy. Suitable carbene complexes are, for example, carbene complexes as described in WO 2005/019373 A2, WO 2006/056418 A2, WO 2005/113704, WO 2007/1 15970, WO 2007/1 15981 and WO 2008/000727. One excarbene complex is lr(dpbic)3 with the formula:
Figure imgf000062_0001
(HTM-1),
which is disclosed, for example, in WO2005/019373. In principle, it is possible that the hole conductor layer comprises at least one compound of the formula I as hole conductor material, especially a compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65.
The hole-transporting layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device. Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, 2003, 359 (p-doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No. 25, 2003, 4495 and Pfeiffer et al., Organic Electronics 2003, 4, 89 - 103 and K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Soc. Rev. 2007, 107, 1233. For example it is possible to use mixtures in the hole-transporting layer, in particular mixtures which lead to electrical p-doping of the hole-transporting layer. p-Doping is achieved by the addition of oxidizing materials. These mixtures may, for example, be the following mixtures: mixtures of the abovementioned hole transport materials with at least one metal oxide, for example M0O2, M0O3, WOx, Re03 and/or V2O5, preferably M0O3 and/or Re03, more preferably M0O3, or mixtures comprising the aforementioned hole transport materials and one or more compounds selected from 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6- tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), 2,5-bis(2-hydroxyethoxy)-7,7,8,8- tetracyanoquinodimethane, bis(tetra-n-butylammonium)tetracyanodiphenoquinodimethane, 2,5-dimethyl-7,7,8,8-tetracyanoquinodimethane, tetracyanoethylene, 1 1 ,11 ,12,12- tetracyanonaphtho2,6-quinodimethane, 2-fluoro-7,7,8,8-tetracyanoquino-dimethane, 2,5- difluoro-7,7,8,8etracyanoquinodimethane, dicyanomethylene-1 ,3,4,5,7,8-hexafluoro-6H- naphthalen-2-ylidene)malononitrile (Fe-ΤΝΑΡ), Mo(tfd)3 (from Kahn et al., J. Am. Chem. Soc. 2009, 131 (35), 12530-12531 ), compounds as described in EP1988587,
US2008265216, EP2180029, US20100102709, WO2010132236, EP2180029 and quinone compounds as mentioned in EP2401254. Preferred mixtures comprise the aforementioned carbene complexes, such as, for example, the carbene complex HTM-1 , and M0O3 and/or Re03, especially M0O3. In a particularly preferred embodiment the hole transport layer comprises from 0.1 to 10 wt % of M0O3 and 90 to 99.9 wt % carbene complex, especially of the carbene complex HTM-1 , wherein the total amount of the M0O3 and the carbene complex is 100 wt %.
The light-emitting layer (3) comprises at least one emitter material. In principle, it may be a fluorescence or phosphorescence emitter, suitable emitter materials being known to those skilled in the art. The at least one emitter material is preferably a phosphorescence emitter. The phosphorescence emitter compounds used with preference are based on metal complexes, and especially the complexes of the metals Ru, Rh, Ir, Pd and Pt, in particular the complexes of Ir, have gained significance. The compounds of the formula I can be used as the matrix in the light-emitting layer.
Suitable metal complexes for use in the inventive OLEDs are described, for example, in documents WO02/60910A1 , US2001/0015432A1 , US2001/0019782A1 ,
US2002/0055014A1 , US2002/0024293A1 , US2002/0048689A1 , EP1191612A2,
EP1 191613A2, EP1211257A2, US2002/0094453A1 , WO02/02714A2, WO00/70655A2, WO01/41512A1 , WO02/15645A1 , WO2005/019373A2, WO2005/113704A2,
WO2006/115301A1 , WO2006/067074A1 , WO2006/056418, WO2006121811A1 ,
WO2007095118A2, WO2007/115970, WO2007/1 15981 , WO2008/000727,
WO2010129323, WO2010056669, WO10086089, , US201 1/0057559, WO201 1/106344, US201 1/0233528, WO2012/048266 and WO2012/172482.
Further suitable metal complexes are the commercially available metal complexes tris(2- phenylpyridine)iridium(lll), iridium(lll) tris(2-(4-tolyl)pyridinato-N,C2'), bis(2- phenylpyridine)(acetylacetonato)iridium(lll), iridium(lll) tris(l-phenylisoquinoline), iridium(lll) bis(2,2'-benzothienyl)pyridinato-N,C3')(acetylacetonate), tris(2-phenylquinoline)iridium(lll), iridium(lll) bis(2-(4,6-difluorophenyl)pyridinato-N,C2)picolinate, iridium(lll) bis(1- phenylisoquinoline)(acetylacetonate), bis(2-phenylquinoline)(acetylacetonato)iridium(lll), iridium(lll) bis(di-benzo[f,h]quinoxaline)(acetylacetonate), iridium(lll) bis(2-methyldi- benzo[f,h]quinoxaline)(acetylacetonate) and tris(3-methyl-1-phenyl-4-trimethylacetyl-5- pyrazolino)terbium(lll), bis[1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinoline](acetyl- acetonato)iridium(lll), bis(2-phenylbenzothiazolato)(acetylacetonato)iridium(lll), bis(2-(9,9- dihexylfluorenyl)-1-pyridine)(acetylacetonato)iridium(lll), bis(2-benzo[b]thiophen-2-yl- pyridine)(acetylacetonato)iridium(lll). In addition, the following commercially available materials are suitable:
tris(dibenzoylacetonato)mono(phenanthroline)europium(lll), tris(dibenzoylmethane)- mono(phenanthroline)europium(lll), tris(dibenzoylmethane)mono(5-aminophenanthroline)- europium(lll), tris(di-2-naphthoylmethane)mono(phenanthroline)europium(lll), tris(4- bromobenzoylmethane)mono(phenanthroline)europium(lll), tris(di(biphenyl)methane)- mono(phenanthroline)europium(lll), tris(dibenzoylmethane)mono(4,7-diphenyl- phenanthroline)europium(lll), tris(dibenzoylmethane)mono(4,7-di-methyl- phenanthroline)europium(lll), tris(dibenzoylmethane)mono(4,7-dimethylphenan- throlinedisulfonic acid)europium(lll) disodium salt, tris[di(4-(2-(2-ethoxyethoxy)ethoxy)- benzoylmethane)]mono(phenanthroline)europium(lll) and tris[di[4-(2-(2-ethoxy- ethoxy)ethoxy)benzoylmethane)]mono(5-aminophenanthroline)europium(lll), osmium(ll) bis(3-(trifluoromethyl)-5-(4-tert-butylpyridyl)-1 ,2,4-triazolato)diphenylmethylphosphine, os- mium(ll) bis(3-(trifluoromethyl)-5-(2-pyridyl)-1 ,2,4-triazole)dimethylphenylphosphine, osmi- um(ll) bis(3-(trifluoromethyl)-5-(4-tert-butylpyridyl)-1 ,2,4- triazolato)dimethylphenylphosphine, osmium(ll) bis(3-(trifluoromethyl)-5-(2-pyridyl)- pyrazolato)dimethylphenylphosphine, tris[4,4'-di-tert-butyl(2,2')-bipyridine]ruthenium(lll), osmium(ll) bis(2-(9,9-dibutylfluorenyl)-1-isoquinoline(acetylacetonate).
Preferred phosphorescence emitters are carbene complexes. Suitable phosphorescent blue emitters are specified in the following publications: WO2006/056418A2,
WO2005/113704, WO2007/115970, WO2007/115981 , WO2008/000727, WO2009050281 , WO2009050290, WO2011051404, US2011/057559 WO2011/073149, WO2012/121936A2, US2012/0305894A1 , WO2012/170571 , WO2012/170461 , WO2012/170463,
WO2006/12181 1 , WO2007/095118, WO2008/156879, WO2008/156879, WO2010/068876, US201 1/0057559, WO2011/106344, US2011/0233528, WO2012/048266 and
WO2012/172482.
The light emitting layer comprises preferably a compound of the formula
[L]mi[K]oiM[carbene]ni (IX), which are described in WO 2005/019373A2, wherein the symbols have the following meanings:
M is a metal atom selected from the group consisting of Co, Rh, Ir, Nb, Pd, Pt, Fe, Ru, Os, Cr, Mo, W, Mn, Tc, Re, Cu, Ag and Au in any oxidation state possible for the respective metal atom;
Carbene is a carbene ligand which may be uncharged or monoanionic and monodentate, bidentate or tridentate, with the carbene ligand also being able to be a biscarbene or triscarbene ligand;
L is a monoanionic or dianionic ligand, which may be monodentate or bidentate;
K is an uncharged monodentate or bidentate ligand selected from the group consisting of phosphines; phosphonates and derivatives thereof, arsenates and derivatives thereof; phosphites; CO; pyridines; nitriles and conjugated dienes which form a π complex with M1; n1 is the number of carbene ligands, where n1 is at least 1 and when n1 > 1 the carbene ligands in the complex of the formula (IX) can be identical or different;
ml is the number of ligands L, where ml can be 0 or≥ 1 and when ml > 1 the ligands L can be identical or different; o1 is the number of ligands K, where o1 can be 0 or≥ 1 and when o1 > 1 the ligands K can be identical or different;
where the sum n1 + ml + o1 is dependent on the oxidation state and coordination number of the metal atom and on the denticity of the ligands carbene, L and K and also on the charge on the ligands, carbene and L, with the proviso that n1 is at least 1.
Carbene complexes which are suitable triplet emitters are described, for example, i WO 2006/056418 A2, WO 2005/1 13704, WO 2007/1 15970, WO 2007/1 15981 and
WO 2008/000727, WO2009050281 , WO2009050290, WO2011051404 and
WO2011073149. exes of the general formula
Figure imgf000065_0001
IXa), which are described in U.S. patent applications no. 61/286046, 61/323885 and Europen patent application 10187176.2
(PCT/EP2010/069541), where M, n1 , Y, A2', A* A A* R51 , R52, RSS, R54, RSS, Rse, R57, R58 R59 K, L, ml and o1 are each defined as follows:
M is Ir, or Pt,
n1 is an integer selected from 1 , 2 and 3,
Y is N R51 , O, S or C(R25)2,
A2', A3', A4', and A5'are each independently N or C, where 2 A = nitrogen atoms and at least one carbon atom is present between two nitrogen atoms in the ring,
R51 is a linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyi radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms,
R52, R53, R54 and R55 are each, if A2', A3', A4' and/or A5' is N, a free electron pair, or, if A2', A3', A4' and/or A5' is C, each independently hydrogen, linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyi radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms, group with donor or acceptor action, or
R53 and R54 together with A3' and A4' form an optionally substituted, unsaturated ring op- tionally interrupted by at least one further heteroatom and having a total of 5 to 18 carbon atoms and/or heteroatoms,
R56, R57, R58 and R59 are each independently hydrogen, linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, cycloheteroalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms, group with donor or acceptor action, or
R56 and R57, R57 and R58 or R58 and R59, together with the carbon atoms to which they are bonded, form a saturated, unsaturated or aromatic, optionally substituted ring optionally interrupted by at least one heteroatom and having a total of 5 to 18 carbon atoms and/or heteroatoms, and/or
if A5' is C, R55 and R56 together form a saturated or unsaturated, linear or branched bridge optionally comprising heteroatoms, an aromatic unit, heteroaromatic unit and/or functional groups and having a total of 1 to 30 carbon atoms and/or heteroatoms, to which is optional- ly fused a substituted or unsubstituted, five- to eight-membered ring comprising carbon atoms and/or heteroatoms,
R25 is independently a linear or branched alkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 1 to 20 carbon atoms, cycloalkyl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical optionally interrupted by at least one heteroatom, optionally bearing at least one functional group and having a total of 5 to 18 carbon atoms and/or heteroatoms,
K is an uncharged mono- or bidentate ligand,
L is a mono- or dianionic ligand, preferably monoanionic ligand, which may be mono- or bidentate,
ml is 0, 1 or 2, where, when ml is 2, the K ligands may be the same or different, o1 is 0, 1 or 2, where, when o1 is 2, the L ligands may be the same or different.
The compound of formula IX is preferably a compound of the formula: 66
Figure imgf000067_0001

Figure imgf000068_0001

Figure imgf000069_0001

Figure imgf000070_0001
70
Figure imgf000071_0001
71
Figure imgf000072_0001
72
Figure imgf000073_0001
73
Figure imgf000074_0001
Figure imgf000075_0001
. The most preferred phosphorescent blue emitters are compounds of formula
Figure imgf000075_0002
The homoleptic metal-carbene complexes may be present in the form of facial or meridional isomers, preference being given to the facial isomers.
In the case of the heteroleptic metal-carbene complexes, four different isomers may be present, preference being given to the pseudo-facial isomers.
The light-emitting layer may comprise further components in addition to the emitter material. For example, a fluroescent dye may be present in the light-emitting layer in order to alter the emission color of the emitter material. In addition - in a preferred embodiment - a matrix material can be used. This matrix material may be a polymer, for example poly(N- vinylcarbazole) or polysilane. The matrix material may, however, be a small molecule, for example 4,4'-N,N'-dicarbazolebiphenyl (CDP=CBP) or tertiary aromatic amines, for example TCTA. In a preferred embodiment of the present invention, at least one compound of the formula I is used as matrix material.
In a preferred embodiment, the light-emitting layer is formed from 2 to 40% by weight, preferably 5 to 35% by weight, of at least one of the aforementioned emitter materials and 60 to 98% by weight, preferably 75 to 95% by weight, of at least one of the aforementioned matrix materials - in one embodiment at least one compound of the formula I - where the sum total of the emitter material and of the matrix material adds up to 100% by weight. The compound of the formula I is especially a compound of formula (la), (lb), (Ic), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a cvompound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65.
In particularly preferred embodi for-
mula I, such as, for example, two
Figure imgf000076_0001
carbene complexes, preferably of formula and . In said embodiment, the light-emitting layer is formed from 2 to 40% by weight, preferably 5 to
35% by weight, of ht, preferably 65 to 95% by
Figure imgf000076_0002
weight, of a compound of the formula I and , where the sum total of the carben complexes and of the compound of formula I adds up to 100% by weight. Suitable metal complexes for use together with the compounds of the formula I as matrix material and/or hole/exciton blocker material and/or electron/exciton blocker material and/or hole injection material and/or electron injection material and/or hole conductor material and/or electron conductor material, preferably as matrix material and/or hole/exciton blocker material, in OLEDs are thus, for example, also carbene complexes as described in WO 2005/019373 A2, WO 2006/056418 A2, WO 2005/1 13704, WO 2007/115970,
WO 2007/115981 and WO 2008/000727. Explicit reference is made here to the disclosure of the WO applications cited, and these disclosures shall be considered to be incorporated into the content of the present application.
The compounds of the present invention can also be used as host for phosphorescent green emitters. Suitable phosphorescent green emitters are, for example, specified in the following publications: WO2006014599, WO20080220265, WO2009073245, WO2010027583, WO2010028151 , US20110227049, WO201 1090535, WO2012/08881 , WO20100056669, WO20100118029, WO20100244004, WO2011 109042, WO2012166608, US20120292600, EP2551933A1 ; US6687266, US20070190359, US20070190359, US20060008670; WO2006098460, US20110210316, WO 2012053627; US6921915, US20090039776; and JP2007123392.
Figure imgf000077_0001
77
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
If a blocking layer for holes is present - hole blocker materials typically used in OLEDs, are, for example, as 2,6-bis(N-carbazolyl)pyridine (mCPy), 2,9-dimethyl-4,7-diphenyl-1 , 10- phenanthroline (bathocuproin, (BCP)), bis(2-methyl-8-quinolinato)-4- phenylphenylato)aluminum(lll) (BAIq), phenothiazine S,S-dioxide derivates and 1 ,3,5- tris(N-phenyl-2-benzylimidazolyl)benzene) (TPBI), TPBI also being suitable as electron- conducting material. Further suitable hole blockers and/or electron conductor materials are 2,2',2"-(1 ,3,5-benzenetriyl)tris(1-phenyl-1-H-benzimidazole), 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1 ,3,4-oxadiazole, 8-hydroxyquinolinolatolithium, 4-(naphthalen-1-yl)-3,5- diphenyl-4H-1 ,2,4-triazole, 1 ,3-bis[2-(2,2'-bipyridin-6-yl)-1 ,3,4-oxadiazo-5-yl]benzene, 4,7- diphenyl-1 , 10-phenanthroline, 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1 ,2,4-triazole, 6,6'-bis[5-(biphenyl-4-yl)-1 ,3,4-oxadiazo-2-yl]-2,2'-bipyridyl, 2-phenyl-9, 10-di(naphthalene- 2-yl)anthracene, 2,7-bis[2-(2,2'-bipyridin-6-yl)-1 ,3,4-oxadiazo-5-yl]-9,9-dimethylfluorene, 1 ,3-bis[2-(4-tert-butylphenyl)-1 ,3,4-oxadiazo-5-yl]benzene, 2-(naphthalene-2-yl)-4,7- diphenyl-1 , 10-phenanthroline, tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane, 2,9- bis(naphthalene-2-yl)-4,7-diphenyl-1 , 10-phenanthroline, 1-methyl-2-(4-(naphthalene-2- yl)phenyl)-1 H-imidazo[4,5-f][1 ,10]phenanthroline. In a further embodiment, it is possible to use compounds which comprise aromatic or heteroaromatic rings joined via groups comprising carbonyl groups, as disclosed in WO2006/100298, disilyl compounds selected from the group consisting of disilylcarbazoles, disilylbenzofurans, disilylbenzothiophenes, dis- ilylbenzophospholes, disilylbenzothiophene S-oxides and disilylbenzothiophene S,S- dioxides, as specified, for example, in WO2009/003919 and WO2009003898 and disilyl compounds as disclosed in WO2008/034758, as a blocking layer for holes/excitons (4) or as matrix materials in the light-emitting layer (3).
Suitable electron conductor materials for the layer (5) of the inventive OLEDs comprise metals chelated to oxinoid compounds, such as 2,2',2"-(1 ,3,5-phenylene)tris[1-phenyl-1 H- benzimidazole] (TPBI), tris(8-quinolinolato)aluminum (Alq3), compounds based on phenan- throline, such as 2,9-dimethyl-4,7-diphenyl-1 , 10-phenanthroline (DDPA = BCP) or 4,7- diphenyl-1 , 10-phenanthroline (DPA), and azole compounds such as 2-(4-biphenylyl)-5-(4-t- butylphenyl)-1 ,3,4-oxadiazole (PBD) and 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)- 1 ,2,4-triazole (TAZ), 8-hydroxyquinolinolatolithium (Liq), 4,7-diphenyl-1 , 10-phenanthroline (BPhen), bis(2-methyl-8-quinolinolato)-4-(phenylphenolato)aluminum (BAIq), 1 ,3-bis[2-(2,2'- bipyridin-6-yl)-1 ,3,4-oxadiazo-5-yl]benzene (Bpy-OXD), 6,6'-bis[5-(biphenyl-4-yl)-1 ,3,4- oxadiazo-2-yl]-2,2'-bipyridyl (BP-OXD-Bpy), 4-(naphthalen-1-yl)-3,5-diphenyl-4H-1 ,2,4- triazole (NTAZ), 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1 ,10-phenanthroline (NBphen), 2,7- bis[2-(2,2'-bipyridin-6-yl)-1 ,3,4-oxadiazo-5-yl]-9,9-dimethylfluorene (Bby-FOXD), 1 ,3-bis[2- (4-tert-butylphenyl)-1 ,3,4-oxadiazo-5-yl]benzene (OXD-7), tris(2,4,6-trimethyl-3-(pyridin-3- yl)phenyl)borane (3TPYMB), 1-methyl-2-(4-(naphthalen-2-yl)phenyl)-1 H-imidazo[4,5- f][1 ,10]phenanthroline (2-NPIP), 2-phenyl-9,10-di(naphthalen-2-yl)anthracene (PADN), 2- (naphthalen-2-yl)-4,7-diphenyl-1 ,10-phenanthroline (HNBphen). The layer (5) may serve both to facilitate electron transport and as a buffer layer or barrier layer in order to prevent quenching of the exciton at the interfaces of the layers of the OLED. The layer (5) preferably improves the mobility of the electrons and reduces quenching of the exciton. In a preferred embodiment, TPBI is used as the electron conductor material. In another preferred embodiment, BCP is used as the electron conductor material. In principle, it is possible that the electron conductor layer comprises at least one compound of the formula I as electron conductor material.
The electron-transport layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device. Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, No. 1 , 1 July 2003 (p- doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No. 25, 23 June 2003 and Pfeiffer et al., Organic Electronics 2003, 4, 89 - 103 and K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Soc. Rev. 2007, 107, 1233. For example, it is possible to use mixtures which lead to electrical n-doping of the electron- transport layer. n-Doping is achieved by the addition of reducing materials. These mixtures may, for example, be mixtures of the abovementioned electron transport materials with alkali/alkaline earth metals or alkali/alkaline earth metal salts, for example Li, Cs, Ca, Sr, CS2CO3, with alkali metal complexes, for example 8-hydroxyquinolatolithium (Liq), and with Y, Ce, Sm, Gd, Tb, Er, Tm, Yb, Li3N, Rb2C03, dipotassium phthalate, W(hpp)4 from EP1786050, or with compounds described in EP1837926B1 , EP1837927, EP2246862 and WO2010132236.
It is likewise possible to use mixtures of alkali metal hydroxyquinolate complexes, preferably Liq, and dibenzofuran compounds in the electron-transport layer. Reference is made to WO2011/157790. Dibenzofuran compounds A-1 to A-36 and B-1 to B-22 described in WO201 1/157790 are preferred, wherein dibenzofuran compound
Figure imgf000082_0001
(A-10; = ETM-1) is most preferred.
In a preferred embodiment, the electron-transport layer comprises Liq in an amount of 99 to 1 % by weight, preferably 75 to 25% by weight, more preferably about 50% by weight, where the amount of Liq and the amount of the dibenzofuran compound(s), especially ETM-1 , adds up to a total of 100% by weight.
It is likewise possible to use mixtures of alkali metal hydroxyquinolate complexes, preferably Liq, and pyridine compounds in the electron-transport layer. Reference is made to is given to a pyridine compound of the formula
Figure imgf000082_0002
In a further preferred embodiment, the electron-transport layer comprises a compound described in WO2012/11 621 , such as, for example, a
Figure imgf000082_0003
compound of formula (ETM-3), US2012/0261654, such as, for example, a compound of formula
), and WO2012/115034, such as la
Figure imgf000083_0001
(ETM-5).
Among the materials mentioned above as hole conductor materials and electron conductor materials, some may fulfil several functions. For example, some of the electron-conducting materials are simultaneously hole-blocking materials when they have a low-lying HOMO. These can be used, for example, in the blocking layer for holes/excitons (4). However, it is likewise possible that the function as a hole/exciton blocker is also adopted by the layer (5), such that the layer (4) can be dispensed with.
The charge transport layers can also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device. For example, the hole conductor materials can be doped with electron acceptors; for example, phthalocyanines or arylamines such as TPD or TDTA can be doped with tetrafluorotetracyanquinodimethane (F4-TCNQ) or with M0O3 or WO3. The electron conductor materials can be doped, for example, with alkali metals, for exam- pie Alq3 with lithium. In addition, electron conductors can be doped with salts such as
CS2CO3, or 8-hydroxyquinolatolithium (Liq). Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, No. 1 , 1 July 2003 (p-doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo. Appl. Phys. Lett., Vol. 82, No. 25, 23 June 2003 and Pfeiffer et al., Organic Electronics 2003, 4, 89 - 103. For example, the hole conductor layer may, in addition to a carbene complex, e.g. Ir(dpbic)3, be doped with M0O3 or WO3. For example, the electron conductor layer may comprise BCP doped with CS2CO3. The cathode (6) is an electrode which serves to introduce electrons or negative charge carriers. Suitable materials for the cathode are selected from the group consisting of alkali metals of group la, for example Li, Cs, alkaline earth metals of group lla, for example calcium, barium or magnesium, metals of group lib of the periodic table of the elements (old lUPAC version), comprising the lanthanides and actinides, for example samarium. In addition, it is also possible to use metals such as aluminum or indium, and combinations of all metals mentioned. In addition, alkali metal, especially lithium-comprising organometallic compounds, or alkali metal fluorides, such as, for example, LiF, CsF, or KF can be applied between the organic layer and the cathode in order to reduce the operating voltage.
The OLED according to the present invention may additionally comprise further layers which are known to those skilled in the art. For example, a layer which facilitates the transport of the positive charge and/or matches the band gaps of the layers to one another may be applied between the layer (2) and the light-emitting layer (3). Alternatively, this fur- ther layer may serve as a protective layer. In an analogous manner, additional layers may be present between the light-emitting layer (3) and the layer (4) in order to facilitate the transport of negative charge and/or to match the band gaps between the layers to one another. Alternatively, this layer may serve as a protective layer. In a preferred embodiment, the inventive OLED, in addition to layers (1) to (6), comprises at least one of the following layers mentioned below:
a hole injection layer between the anode (1) and the hole-transporting layer (2) having a thickness of 2 to 100 nm, prefreably 5 to 50 nm;
a blocking layer for electrons between the hole-transporting layer (2) and the light- emitting layer (3);
an electron injection layer between the electron-transporting layer (5) and the cathode (6).
Materials for a hole injection layer may be selected from copper phthalocyanine, 4, 4', 4"- tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), 4,4',4"-tris(N-(2- naphthyl)-N-phenylamino)triphenylamine (2T-NATA), 4,4',4"-tris(N-(1-naphthyl)-N- phenylamino)triphenylamine (1T-NATA), 4,4',4"-tris(N,N-diphenylamino)triphenylamine (NATA), titanium oxide phthalocyanine, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino- dimethane (F4-TCNQ), pyrazino[2,3-f][1 ,10]phenanthroline-2,3-dicarbonitrile (PPDN), N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine (MeO-TPD), 2,7-bis[N,N-bis(4-methoxy- phenyl)amino]-9,9-spirobifluorene (MeO-Spiro-TPD), 2,2'-bis[N,N-bis(4-methoxy- phenyl)amino]-9,9-spirobifluorene (2,2'-MeO-Spiro-TPD), N,N'-diphenyl-N,N'-di-[4-(N,N- ditolylamino)phenyl]benzidine (NTNPB), N,N'-diphenyl-N,N'-di-[4-(N,N-diphenyl- amino)phenyl]benzidine (NPNPB), N,N'-di(naphthalen-2-yl)-N,N'-diphenylbenzene-1 ,4- diamine (a-NPP). In principle, it is possible that the hole injection layer comprises at least one compound of the formula I as hole injection material. In addition, polymeric hole- injection materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, self-doping polymers, such as, for example, sulfonated
poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-diyl) (Plexcore® OC Conducting Inks commercially available from Plextronics), and copolymers such as poly(3,4- ethylenedioxythiophene)/poly(4-styrenesulfonate) also called PEDOT/PSS.
The compound of formula I, especially the compound of formula (la), (lb), (lc), (Id), (le), (If), (li), (Ij), (II), or (In), very especially a compound A-1 to A-65, B-1 to B-8, C-1 to C-65, D-1 to D-8, E-1 to E-65, or F-1 to F-65 can be used as electron/exciton blocker material .
Suitable metal complexes for use as electron/exciton blocker material are, for example, carbene complexes as described in WO2005/019373A2, WO2006/056418A2,
WO2005/1 13704, WO2007/1 15970, WO2007/1 15981 and WO2008/000727. One example of a suitable carbene complex is compound HTM-1.
As a material for the electron injection layer, LiF, for example, can be selected. In principle, it is possible that the electron injection layer comprises at least one compound of the formula I as electron injection material.
The person skilled in the art is aware (for example on the basis of electrochemical studies) of how suitable materials have to be selected. Suitable materials for the individual layers are known to those skilled in the art and are disclosed, for example, in WO 00/70655. In addition, it is possible that some of the layers used in the inventive OLED have been surface-treated in order to increase the efficiency of charge carrier transport. The selection of the materials for each of the layers mentioned is preferably determined by obtaining an OLED with a high efficiency and lifetime. The inventive OLED can be produced by methods known to those skilled in the art. In general, the inventive OLED is produced by successive vapor deposition of the individual layers onto a suitable substrate. Suitable substrates are, for example, glass, inorganic semiconductors or polymer films. For vapor deposition, it is possible to use customary techniques, such as thermal evaporation, chemical vapor deposition (CVD), physical vapor deposition (PVD) and others. In an alternative process, the organic layers of the OLED can be applied from solutions or dispersions in suitable solvents, employing coating techniques known to those skilled in the art.
In general, the different layers have the following thicknesses: anode (1 ) 50 to 500 nm, preferably 100 to 200 nm; hole-conducting layer (2) 5 to 100 nm, preferably 20 to 80 nm, light-emitting layer (3) 1 to 100 nm, preferably 10 to 80 nm, blocking layer for holes/excitons (4) 2 to 100 nm, preferably 5 to 50 nm, electron-conducting layer (5) 5 to 100 nm, preferably 20 to 80 nm, cathode (6) 20 to 1000 nm, preferably 30 to 500 nm. The relative position of the recombination zone of holes and electrons in the inventive OLED in relation to the cathode and hence the emission spectrum of the OLED can be influenced, among other factors, by the relative thickness of each layer. This means that the thickness of the electron transport layer should preferably be selected such that the position of the recombination zone is matched to the optical resonator property of the diode and hence to the emission wavelength of the emitter. The ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to those skilled in the art. It is possible that the electron-conducting layer and/or the hole-conducting layer have greater thicknesses than the layer thicknesses specified when they are electrically doped.
Use of the compounds of the formula I in at least one layer of the OLED, preferably in the light-emitting layer (preferably as a matrix material) and/or in the blocking layer for holes/excitons makes it possible to obtain OLEDs with high efficiency and with low use and operating voltage. Frequently, the OLEDs obtained by the use of the compounds of the formula I additionally have high lifetimes. The efficiency of the OLEDs can additionally be improved by optimizing the other layers of the OLEDs. For example, high-efficiency cathodes such as Ca or Ba, if appropriate in combination with an intermediate layer of LiF, can be used. Shaped substrates and novel hole-transporting materials which bring about a reduction in the operating voltage or an increase in the quantum efficiency are likewise usa- ble in the inventive OLEDs. Moreover, additional layers may be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
The OLEDs may further comprise at least one second light-emitting layer. The overall emission of the OLEDs may be composed of the emission of the at least two light-emitting layers and may also comprise white light.
The OLEDs can be used in all apparatus in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile visual display units and illumination units. Stationary visual display units are, for example, visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations and information panels. Mobile visual display units are, for example, visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains. Further devices in which the inventive OLEDs can be used are, for example, keyboards; items of clothing; furniture; wallpaper. In addition, the present invention relates to a device selected from the group consisting of stationary visual display units such as visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations, information panels, and mobile visual display units such as visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains; illumi- nation units; keyboards; items of clothing; furniture; wallpaper, comprising at least one inventive organic light-emitting diode or at least one inventive light-emitting layer.
The following examples are included for illustrative purposes only and do not limit the scope of the claims. Unless otherwise stated, all parts and percentages are by weight.
Examples
Example 1
Figure imgf000087_0001
a) 20.0 g (78.8 mmol) of 1 ,3-dibromo-5-fluoro-benzene, 16.3 g (78.8 mmol) of 6H- benzimidazolo[1 ,2-a]benzimidazole and 43.5 g (0.315 mmol) of potassium carbonate in 200 ml of DMF are stirred for 17 h at 170 °C. The reaction mixture is filtered hot and the precipi- tate from the mother liquor is filtered after cooling. The product is washed with water and ethanol and decocted with diethyl ether and ethanol. Yield 21.2 g (61 %).
1H NMR (400 MHz, CDCb): δ 8.00 (s, 2H); 7.90 - 7.80 (m, 3H); 7.77 (s, 1 H); 7.60 (d, J = 7.6 Hz, 1 H); 7.45 - 7.30 (m, 4H).
Figure imgf000087_0002
b) A mixture of 3.31 g (7.5 mmol) of the product of example 1a), 4.76 g (18.75 mmol) of 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-1 ,3,2-dioxaborolane and 5.89 g (60 mmol) of potassium acetate is evacuated and flushed with argon 5 times. 40 ml of DMF are added and the mixture is evacuated and flushed. 428.7 mg (0.525 mmol) of 1 ,1'-bis(diphenylphosphino) ferrocene)dichloropalladium(ll) are added under argon. The reaction mixture is heated to 65°C and stirred for 3.5 hours, then cooled to room temperature and the solvent is removed at reduced pressure. The residue is solved in 120 ml of water and 120 ml of tert-butyl methyl ether (TBME), stirred for a few minutes and filtered. The phases are separated and the H2O phase is extracted with TBME. The organic phases are dried and evaporated and then stirred with 50 ml of hot isopropanol for 15 minutes. The suspension is filtered, the residue washed with isopropanol and dried to yield 2.29 g. The filtrate is evaporated and crystallized in isopropanol to yield 319 mg. Total yield: 2.61 g (65%).
1H NMR (400 MHz, CDCb): δ 8.38 (s, 1 H); 8.26 (s, 2H); 7.89 - 7.77 (m, 3H); 7.43 -7.28 (m, 5H); 1.37 (s,12 H); 12 H).
Figure imgf000087_0003
c) 3-chloro-4-iodo-pyridine is prepared starting from 3-chloro-pyridine in analogy to the procedure described by T. Jensen in Angew. Chem. Int. Ed. 47 (2008) 888 (yield: 52.9%). 1H NMR (400 MHz, CDCb): δ 8.56 (s, 1 H); 8.07 (d, J = 4.8 Hz, 1 H); 7.80 (d, J = 4.8 Hz, 1 H). Br
Figure imgf000088_0001
of 3-chloro-4-iodo-pyridine, 10.17 g (44.03 mmol) of 5-bromo-2-methoxy-phenylboronic acid, 32.67 g (236.39 mmol) of potassium carbonate, 350 ml of toluene, 160 ml of ethanol and 88 ml of water are mixed and evacuated and flushed with argon four times. Then 2.68 g (2.31 mmol) of tetrakis triphenyl phosphine palladium are added and again evacuated and flushed with argon four times. The resulting clear mixture is heated to reflux for 3 h while stirring, then cooled to room temperature. The phases are separated and the aqueous phase extracted twice with toluene (200 ml each). The combined organic phases are washed three times with water (100 ml each), dried with magnesium sulfate, filtered and the solvent is evaporated on the rotavap. The crude product (16.07 g) is purified by flash chromatography using hexane/ethyl acetate as eluent yielding 10.94 g (83.2%) of 4-(4- bromo-2-methoxy-phenyl)-3-chloro-pyridine as a colorless oil that solidifies on standing. 1 H NMR (400 MHz, CDC ): δ 8.66 (s, 1 H); 8.51 (d, J = 4.8 Hz, 1 H); 7.52 (dxd, Ji = 8.8 Hz, J2 = 2.4 Hz,1 H); 7.30 (d, J = 2.4 Hz, 1 H); 7.22 (d, J = 4.8 Hz, 1 H); 6.88 (d, J = 8.8 Hz, 1 H);
Figure imgf000088_0002
e) 10.94 g (36.64 mmol) of 4-(4-bromo-2-methoxy-phenyl)-3-chloro-pyridine are dissolved in 200 ml of dry dichloromethane. Within 20 min 145.9 ml (145.9 mmol) of a 1 M boron tri- bromide solution in dichloromethane are added with a syringe while keeping the temperature at room temperature with a water bath. The cooling is removed and the solution stirred at room temperature for 18 h. Then 500 ml of water are added drop by drop. An exothermic reaction occurs and the mixture starts to reflux. The mixture is stirred for 30 minutes and then added to 200 ml of a buffer solution pH = 7. 2N NaOH solution is added until the pH reaches 7. Then 500 ml of ethyl acetate are added. The phases are separated and the aqueous phase extracted twice with ethyl acetate (250 ml each). The combined organic phases are washed three times with water (100 ml each), dried with magnesium sulfate, filtered and the solvent is evaporated on the rotavap to a volume of 100 ml. The suspension is cooled to 0°C with an ice bath, filtered and the residue is washed three times with ice cold ethyl acetate (5 ml each). The product is dried at 50°C / 125 mbar overnight, yielding 8.99 g (86.2%) of 5-bromo-2-(3-chloro-4-pyridyl)phenol.
1 H NMR (400 MHz, DMSO): δ 10.09 (s, 1 H); 8.67 (s, 1 H); 8.52 (d, J = 4.8 Hz, 1 H); 7.44 (d, J = 2.8 Hz, 1 H); 7.42 (d, J = 2.8 Hz, 1 H); 7.40 (d, J = 4.8 Hz, 1 H); 7.31 (d, J = 2.8 Hz, 1 H); 6.91 (d, J = 8.8 Hz, 1 H). Br
Figure imgf000089_0001
f) 7.85 g (27.59 mmol) of 5-bromo-2-(3-chloro-4-pyridyl)phenol are cyclized to 6-bromo- 4a,4b,8a,9a-tetrahydrobenzofuro[2,3-c]pyridine using copper(l)-thiophene-2-carboxylate (CuTC) in analogy to the procedure described by J. Liu in J. Org. Chem. 73 (7), 2951 (2008) in 54.1 % yield after flash chromatography using hexane /ethyl acetate 2:1 as eluent.
1 H NMR (400 MHz, CDCI3): δ 9.00 (s, 1 H); 8.61 (d, J = 5.2 Hz, 1 H); 8.16 (d, J = 2.0 Hz, 1 H); 7.85 (d, J = 5.2 Hz, 1 H); 7.71 (dxd, Ji = 8.8 Hz, J2 = 2.0 Hz, 1 H); 7.54 (d, J = 8.8 Hz, 1 H).
Figure imgf000089_0002
g) A mixture of 401.4 mg (0.75 mmol) of the product of example 1 b) and 465.1 mg (1.875 mmol) of the product of example 1f) is evacuated and flushed with argon 3 times. 6 ml of tetrahydrofuran (THF) are added. 955.2 mg (4.5 mmol) of K3PO4 and 25 ml of water are bubbled with argon for 25 minutes in a separate flask. 13.1 mg (0.045 mmol) of tris t- butylphosphonium tetrafluoroborat and 20.6 mg (0.023 mmol) of Pd2(dba)3 are added to the mixture of the starting materials in THF, bubbled with argon for 3 minutes and then heated to 50°C. The K3PO4 solution is added in one portion with a syringe and the reaction mixture is heated at a bath temperature of 75°C for 4 hours. The reaction mixture is cooled to room temperature and 20 ml of water are added. THF is evaporated, the reaction mixture is filtered, the residue washed with water and methanol and dried. The crude product is stirred in 100 ml of CHCI3 for 30 minutes, filtered through Hyflo and washed with CHCI3. The filtrate is evaporated and then stirred in 8 ml of hot CHCI3, filtered, the residue washed with CHCI3 and dried. Yield: 407.6 mg (88%)
1 H NMR (400 MHz, CDCb): δ 9.05 (s, 2H); 8.63 (d, J = 5.2 Hz, 2H); 8.37 (s, 2H); 8.15 (s, 2H); 8.03 - 7.98 (m, 3H); 7.94 (d, J = 5.2 Hz, 2H); 7.89 (d, J = 7.6 Hz, 2H); 7.82 - 7.75 (m, 3H); 7.66 (d, J = 8 Hz, 1 H); 7.46 - 7.32 (m, 4H)
Example 2
Figure imgf000090_0001
a) 7.78 g (25.0 mmol) of 1-bromo-3-iodo-benzene, 16.3 g ( 50.0 mmol) of caesium carbonate, 1.24 g (6.50 mmol) of copper(l) iodide and 1.50 g (13.0 mmol) of L-proline are added to 5.18 g (25.0 mmol) of 5H-benzimidazo[1 ,2-a]benzimidazole in 100 ml of dimethyl- sulfoxide (DMSO) under nitrogen. The reaction mixture is stirred for 18 h at 100 °C and then poured into water. The water phase is extracted with dichloromethane and dried with magnesium sulfate. The solvent is distilled off. Column chromatography on silica gel with toluene gives the product in a yield of 8.35 g (92%).
1 H NMR (400 MHz, CDC ): δ 8.25 (s, 1 H); 8.05-7.90 (m, 3H); 7.71 (d, J=7.9 Hz, 1 H); 7.65 (
Figure imgf000090_0002
b) 1.0 g (2.73 mmol) of product of example 2a), 831.2 mg (3.27 mmol) of 4,4,5,5- tetramethyl-2-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-1 ,3,2-dioxaborolane, 1.61 g (16 mmol) of potassium acetate and 25 ml of DMF are evacuated and flushed with argon 5 times. 11 1.4 mg (0.136 mmol) of 1 , 1'-bis(diphenylphosphino) ferrocene)dichlorpalladium(ll) are added, the reaction mixture is evacuated and flushed with argon 5 times. The reaction mixture is stirred for 20 h at 60°C, cooled to room temperature and then evaporated at reduced pressure. 50 ml of water, 50 ml of TBME and 3 ml of a solution of 1 % NaCN in water are added, the mixture stirred for 30 minutes, filtered and washed with 100 ml of ethyl ace- tate. The phases are separated, the water phase extracted with ethyl acetate and the organic phases are dried and evaporated. Yield: 0.8 g (72%)
1 H NMR (400 MHz, THF-d8): δ 8.26 (s, 1 H), 8.10 - 8.09 (m, 1 H), 8.09 - 8.07 (m, 2H), 7.86 ( 3H), 7.42 - 7.28 (m, 4H), 1.39 (s, 12H).
Figure imgf000090_0003
c) 13.92 g (46.56 mmol) of 2-amino-3-iodo-5-bromopyridine, 11.71 g (50.75 mmol) of 5- bromo-2-methoxy-phenylboronic acid, 32.82 g (237.44 mmol) of potassium carbonate, 700 ml of toluene, 280 ml of ethanol and 175 ml of water are mixed and evacuated and flushed with argon four times. Then 5.38 g (4.66 mmol) of tetrakis triphenyl phosphine palladium are added. The mixture is heated to reflux for 2.5 hours while stirring, then cooled to room temperature. The phases are separated and the aqueous phase extracted twice with toluene (250 ml each). The combined organic phases are washed three times with water (100 ml each), dried with magnesium sulfate, filtered and the solvent is evaporated on the rota- vap. The crude product (16.8 g) is purified by flash chromatography using heptane/ethyl acetate as eluent yielding 12.4 g (74%) of 5-bromo-3-(5-bromo-2-methoxyphenyl)pyridine- 2-amine.
1 H NMR (400 MHz, CDCb): δ 8.07 (s, 1 H); 7.54 - 7.51 (m, 2H); 7.36 (s, 1 H); 6.90 (d, J = 8.8
2H); 3.82 (s, 3H)
Figure imgf000091_0001
d) A solution of 12.4 g (35 mmol) of 5-bromo-3-(5-bromo-2-methoxyphenyl)pyridine-2- amine in 170 ml of THF and 430 ml of glacial acetic acid is cooled to 0°C and 7.14 g (69 mmol) of tert-butyl nitrite is added tropwise. The reaction mixture is stirred over night at 0°C, warmed to room temperature, poured on 800 ml of ice water and stirred for one hour. The yellow suspension is filtered, washed with ice water and dried to yield 8.5 g (75 %) of pure product.
1 H NMR (400 MHz, CDCb): δ 8.55 (s, 1 H); 8.40 (s, 1 H); 8.10 (s, 1 H); 7.70 (d, J = 8.7 Hz, 1
Figure imgf000091_0002
e) A mixture of 267.3 mg (0.818 mmol) of the product of example 2d), 702.7 mg (1.72 mmol) of the product of example 2b), 576.2 mg (4.17 mmol) of K2CO3, 50 ml of toluene, 25 ml of ethanol and 1 1 ml of water is evacuated and flushed with argon 5 times. 47.2 mg (0.041 mmol) of tetrakis triphenyl phosphine palladium are added and the reaction mixture is heated to reflux for 18 hours. 10 ml of a solution of 2% of NaCN in water are added and the reaction mixture is cooled to room temperature. 50 ml of water and 50 ml of toluene are added, the suspension stirred for 15 minutes, filtered, washed with toluene/water and dried. Yield: 330 mg (55 %) of yellow crystals.
1 H NMR (400 MHz, DMSO): δ 9.15 (d, J = 3.2 Hz, 1 H); 8.93 (d, J = 3.2 Hz, 1 H); 8.73 (d, J = 2.0 Hz, 1 H); 8.40 - 8.14 (m, 6H); 8.10 - 7.56 (m, 12H); 7.53 -7.13 (m, 8H).
Application Example 1
The ITO substrate used as the anode is first cleaned with an acetone/isopropanol mixture in an ultrasound bath. To eliminate any possible organic residues, the substrate is exposed to a continuous ozone flow in an ozone oven for further 25 minutes. This treatment also improves the hole injection properties of the ITO. Then Plexcore® OC AJ20-1000 (commercially available from Plextronics Inc.) is spin-coated and dried to form a hole injection layer (-40 nm). Thereafter, the organic materials specified below are applied by vapor deposition to the clean substrate at a rate of approx. 0.5-5 nm/min at about 10-7 - 10-9 mbar. As a hole
Figure imgf000092_0001
transport and exciton blocker, , is applied to the substrate with a thickness of 20 nm, wherein the first 10 nm are doped with MoOx (-10%) to improve the conductivity.
Figure imgf000092_0002
Subsequently, a mixture of 10% by weight of emitter compound, and
Figure imgf000092_0003
90% by weight compound (E-57) is applied by vapor deposition in a thickness of 40 nm. Compound (E-57) is deposited then with 5 nm thickness as the blocker. Thereafter, a 20 nm thick electron transport layer is deposited consisting of 50% by
Figure imgf000092_0004
, and of 50% of (Liq)- Finally a 2 nm KF layer serves as an electron injection layer and a 100 nm-thick Al electrode completes the device.
All fabricated parts are sealed with a glass lid and a getter in an inert nitrogen atmosphere.
To characterize the OLED, electroluminescence spectra are recorded at various currents and voltages. In addition, the current-voltage characteristic is measured in combination with the light output emitted. The light output can be converted to photometric parameters by calibration with a photometer.
Figure imgf000093_0002
1) External quantum efficiency (EQE) is # of generated photons escaped from a substance or a device / # of electrons flowing through it.
(A-4) and 8% by weight
Figure imgf000093_0001
to a quartz substrate at a rate of approx. 0.5-5 nm/min at about 10-7 -10-9 mbar with a thickness of 80 nm.
The PL spectrum and the PL quantum efficiency are measured using an absolute quantum- yield measurement system "Quantaurus" (from Hamamatsu, Japan) at room temperature at an excitation wavelength of 370 nm.
PLQE [%] CIE
Appl. Ex. 2 54.0 % 0.17/0.37

Claims

Claims
Figure imgf000094_0001
(I), wherein
Bi is N, or CR8 ,
B2 is N, or CR82,
B3 is N, or CR83,
B4 is N, or CR84,
B5 is N, or CR85,
B6 is N, or CR86,
B7 is N, or CR87,
B8 is N, or CR88,
R81 , R82, R83, R84, R85 , R86, R87 and R88 are independently of each other H, a Ci- C25alkyl group, which can optionally be substituted by E and or interupted by D; a C6-
C24aryl group, which can optionally be substituted by G, a C2-C3oheteroaryl group, which can optionally be substituted by G; or a group of formula— (A1)0-(A2)p-(A3)q-
(A4)rR16,
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ,
A1, A2, A3 and A4 are independently of each other a C6-C24arylen group, which can optionally be substituted by G, or a C2-C3oheteroarylen group, which can optionally be substituted by G;
R16 is -NR10R11 , or -Si(R 2)(R 3)(R14), a C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
R10 and R11 are independently of each other a C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
R12, R13 and R14 are independently of each other a Ci-C2salkyl group, which can op- tionally be substituted by E and or interupted by D; C6-C24aryl group, which can optionally be substituted by G; or a C2-C3oheteroaryl group, which can optionally be substituted by G;
D is -CO-, -COO-, -S-, -SO-, -SO2-, -0-, -NR65-, -SiR70R71-, -POR72-, -CR63=CR64-, or -C≡C-,
E is -OR69, -SR69, -NR65R66, -COR68, -COOR67, -CONR65R66, -CN, or F,
G is E, or a d-dsalkyl group, a C6-C24aryl group, a C6-C24aryl group, which is substituted by F, Ci-Ci8alkyl, or C-i-C-isalkyl which is interrupted by O; a C2-C3oheteroaryl group, or a C2-C3oheteroaryl group, which is substituted by F, C-i-C-isalkyl, or Ci- Ciealkyl which is interrupted by O; R63 and R64 are independently of each other H, C6-Cisaryl; C6-Cisaryl which is substituted by Ci-Ci8alkyl, or Ci-Cisalkoxy; Ci-Cisalkyl; or Ci-Cisalkyl which is interrupted by -0-;
R65 and R66 are independently of each other a C6-Cisaryl group; a C6-Cisaryl which is substituted by Ci-Cisalkyl, or Ci-Cisalkoxy; a Ci-Cisalkyl group; or a Ci-Cisalkyl group, which is interrupted by -O-; or
R65 and R66 together form a five or six membered ring,
R67 is a C6-Ciearyl group; a C6-Cisaryl group, which is substituted by Ci-Cisalkyl, or Ci-Cisalkoxy; a Ci-Cisalkyl group; or a Ci-Cisalkyl group, which is interrupted by -O-
R68 is H; a C6-Cisaryl group; a C6-Cisaryl group, which is substituted by Ci-Cisalkyl, or Ci-Cisalkoxy; a Ci-Cisalkyl group; or a Ci-Cisalkyl group, which is interrupted by - 0-,
R69 is a C6-Ciearyl; a C6-Cisaryl, which is substituted by Ci-Cisalkyl, or Ci-Cisalkoxy; a Ci-Cisalkyl group; or a Ci-Cisalkyl group, which is interrupted by -0-,
R70 and R71 are independently of each other a Ci-Cisalkyl group, a C6-Cisaryl group, or a C6-Ci8aryl group, which is substituted by Ci-Cisalkyl, and
R72 is a Ci-Cisalkyl group, a C6-Cisaryl group, or a C6-Cisaryl group, which is substituted by Ci-Cisalkyl, with the proviso that
at least one of the substituents B , B2, B3, B4, B5, B6, B7 and B8 represents N;
not more than two of the groups B1, B2, B3 and B4 represent N; and
not more than two of the groups B5, B6, B7 and B8 represent N; and
with the further proviso that at least one of the substituents R81, R82, R83, R84, R85, R86, R87 and R88 represent a group of formula -(A )0-(A )p-(A3)q-(A )rR16, wherein R16 represents a benzimidazo[1 ,2-a]benzimidazo-5-yl group, which can optionally be substituted by G; and/or at least one of the groups A1, A2, A3 and A4 respresents a benzimidazo[1 ,2-a]benzimidazo-2,5-ylene group, which can optionally be substituted by G.
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
do),
wherein R81 , R82, R83, R85, R86 and R87 are as defined in claim 1.
The compound according to claim 2, wherein
in the compounds of formula (la)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (lb)
R82 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R82 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; in the compounds of formula (lc)
Res is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(A-i)0-(A2)P-(A3)q-(A4)rR16'; or R85 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and
R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (Id)
R81 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or
R81 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6;
in the compounds of formula (le)
R83 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (If)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6;
in the compounds of formula (Ig)
R82 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R82 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6;
in the compounds of formula (Ih)
R81 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R81 is H, or a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6'; and
R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (li)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and R85 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; or
R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (Ij) R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(A-i)0-(A2)P-(A3)q-(A4)rR16'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6;
in the compounds of formula (Ik)
R81 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R81 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (II)
R85 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R85 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6;
in the compounds of formula (Im)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R85 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R85 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6;
in the compounds of formula (In)
R83 is a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6; and
R87 is H, or a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6'; or R83 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R87 is a group of the formula -(A )0-(A2)p-(A3)q-(A4)rRi6; wherein in the compounds of formula (lo)
R82 is a group of the formula -(Ai)0-(A2)p-(A3)q-(A4)rRi6; and
R86 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; or R82 is H, or a group of the formula -(Ai)0-(A2)P-(A3)q-(A4)rRi6'; and R86 is a group of the formula -(AV(A2)P-(A3)q-(A4)rRi6;
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ;
A1, A2, A3 and A4 are independently of each other a group of the formula
Figure imgf000099_0001
R
Figure imgf000100_0001
is a group of the formula , or R16 has the meaning of R16', if at le a
Figure imgf000100_0002
R16' is H, or a group of the ormula - i R2 R3 ,
Figure imgf000100_0003
R2, R13 and R14 are independently of each other a phenyl group, which can optionally be substituted by one, or more alkyl groups;
R2 and R21' are independently of each other H, a phenyl group, or a Ci-Cisalkyl group; R22 and R23 are independently of each other H , or a group of the formula
Figure imgf000101_0001
X is O, S, or N R24
R24 is a C6-C24aryl group, or a C2-C3oheteroaryl group, which can optionally be substi
Figure imgf000101_0002
The compound according to claims 2, or 3, wherein
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ,
A1, A2, A3 and A4 are independently of each other a group of the formula
Figure imgf000101_0003
Figure imgf000102_0001
Figure imgf000103_0001
89 is H, a group of formula
Figure imgf000103_0002
or NR24, wherein
Figure imgf000103_0003
5. The compound according to any of claims 2 to 4, wherein the group of the formula
Figure imgf000103_0004
(Ai)o-(A2)p-(A3)q-(A4)rRi6 js a group of formula (XI la),
Figure imgf000103_0005
(XI lb), (XI lc),
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000106_0002
Figure imgf000107_0001
6. The compound according to any of claims 2 to 5, wherein the group of the formula - (A (A2)p-(A3)q-(A4)rRi6' is H, or a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp),
(Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf), or (Xlllg), as defined in claim 5; or a group of formula
Figure imgf000107_0002
Figure imgf000108_0001
(XlVp), (XlVq), (XI Vr),
Figure imgf000108_0002
108
Figure imgf000109_0001
109
Figure imgf000110_0001
Figure imgf000110_0002
Figure imgf000111_0001
7. The compound according to any of claims 2 to 6, which is
a compound of formula (la), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (la), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv),
(XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (lb), wherein R82 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh),
(Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg),
(XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (lb), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo),
(Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs),
(XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (lc), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo),
(Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (lc), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5; and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv),
(XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (Id), wherein R81 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh),
(Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5; or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (Id), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc),
(Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5; and
R8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt),
(Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs),
(XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (le), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo),
(Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (le), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv),
(XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (If), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv),
(XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (If), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc),
(Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt),
(Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs),
(XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (li), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo),
(Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (li), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (Ij), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla),
(Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe),
(XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (Ij), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh),
(Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg),
(XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; a compound of formula (II), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc),
(Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv),
(XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (II), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc),
(Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
Res is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt),
(Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs),
(XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (In), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo),
(Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or
(Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (In), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllh), (Xlli), (Xllj), (Xllk), ((XIII)), (Xllm), (Xlln), (Xllo), (Xllp), (Xllq), (Xllr), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XlVh), (XIVo), (XIVp), (XlVq), (XlVr), (XIVs), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVy), (XIVz), (XVa), (XVb), (XVc), (XVd), (XVe), (XVf), (XVg), (XVh), (XVi), (XVj), (XVk), (XVI), (XVm), (XVn), (XVo), (XVp), (XVq), (XVr), (XVs), (XVt), (XVu), (XVv), (XVw), (XVx), (XVy), (XVz), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6.
The compound according to any of claims 2 to 7, which is
a compound of formula (la), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (la), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; a compound of formula (lb), wherein R82 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XI Vx), (XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (lb), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R82 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; a compound of formula (lc), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj),
(Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (lc), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk),
(XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (Id), wherein R81 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv),
(Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (Id), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R8i is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj),
(Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; a compound of formula (le), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq),
(XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (le), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv),
(Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; a compound of formula (If), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj),
(Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (If), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq),
(XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (Ij), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc),
(Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R85 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz),
(Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (Ij), wherein R85 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj),
(Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or a compound of formula (In), wherein R83 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R87 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx).(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6; or
a compound of formula (In), wherein R87 is a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv), (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, and
R83 is H, a group of formula (Xlla), (Xllb), (Xllc), (Xlld), (Xlle), (Xllf), (Xllg), (Xllj), (Xllk), (Xlln), (Xllo), (Xllq), (Xlls), (Xllt), (Xllu), (Xllv) (Xllw), (Xllx), (Xlly), (Xllz), (Xllla), (Xlllb), (Xlllc), (Xllld), (Xllle), (Xlllf) or (Xlllg) as defined in claim 5, or a group of formula (XlVb), (XIVc), (XlVd), (XlVe), (XlVf), (XlVg), (XIVo), (XIVp), (XlVq), (XlVr), (XlVt), (XIVu), (XIVv), (XIVw), (XIVx),(XIVz), (XVa), (XVb), (XVc), (XVk), (XVI), (XVo), (XVp), (XVs), (XVw), (XVx), (XVy), (XVIa), (XVIb), (XVIc) or (XVId) as defined in claim 6.
Figure imgf000122_0001
Figure imgf000123_0001
A-10
A-11
A-12
A-13
A-14
A-15
Figure imgf000125_0001
A-23
<¾Cr
A-24
<¾Cr
A-25
A-26
A-27
A-28
A-29 A-30
A-31
A-32
A-33
A-34
A-35 H
A-36 H
6 A-37
A-38
A-39
A-40
A-41 H
A-42 H A-43
A-44
A-45
A-46
A-47 H
A-48 H A-49
A-50
A-51
A-52
A-53
A-54 A-55
A-56
A-57
A-58
A-59
A-60 131
Figure imgf000132_0001
132
Figure imgf000133_0001
133
Figure imgf000134_0001
Figure imgf000135_0001
C-12
C-13
C-14
C-15
C-16
C-17
Figure imgf000137_0001
C-25
C-26
C-27
C-28
C-29
C-30
C-31 C-32
C-33
C-34
C-35 H
C-36 H
C-37
C-38
6 C-39
C-40
C-41 H
C-42 H
C-43
C-44
6
Figure imgf000141_0001
C-51
C-52
C-53
C-54
C-55
C-56
Figure imgf000143_0001
143
Figure imgf000144_0001
Figure imgf000145_0001
Compound R83 R87 E-1
E-2
E-3
E-4
E-5 H
E-6 H
E-7 H
Figure imgf000147_0001
E-14
E-15
E-16
E-17
E-18
E-19
E-20 E-21
E-22
E-23
E-24
E-25
E-26
E-27 E-28
E-29
E-30
E-31
E-32
E-33
E-34
6 E-35 Η
E-36 H
E-37
E-38
E-39
E-40
E-41 H
E-42 H
E-43
E-44
E-45
E-46
Figure imgf000153_0001
Figure imgf000154_0001
Figure imgf000155_0001
155
Figure imgf000156_0001
Figure imgf000157_0001
F-12
F-13
F-14
F-15
F-16
F-17
Figure imgf000159_0001
F-25
F-26
F-27
F-28
F-29
F-30
F-31 F-32
F-33
F-34
F-35 H
F-36 H
F-37
F-38
6 F-39
F-40
F-41 H
F-42 H
F-43
F-44
6
Figure imgf000163_0001
F-51
F-52
F-53
F-54
F-55
F-56
Figure imgf000165_0001
Figure imgf000166_0001
Figure imgf000166_0002
10. An electronic device, comprising a compound according to any of claims 1 to 9. 11. The electronic device according to claim 10, which is an electroluminescent device.
12. A hole transport layer, or an emitting layer comprising a compound according to any of claims 1 to 9. 13. The emitting layer according to claim 12, comprising a compound according to any of claims 1 to 9 as host material in combination with a phosphorescent emitter.
14. An apparatus selected from the group consisting of stationary visual display units; mobile visual display units; illumination units; keyboards; items of clothing; furniture; wallpaper, comprising the organic electronic device according to claim 10, or 11 , or the hole transport layer, or the emitting layer according to claim 12.
15. Use of the compounds of formula I according to any of claims 1 to 9 for electrophotographic photoreceptors, photoelectric converters, organic solar cells, switching elements, organic light emitting field effect transistors, image sensors, dye lasers and electroluminescent devices.
16. A
Figure imgf000167_0001
Bi is N , or CR8 ,
B2 is N , or CR82,
B3 is N , or CR83,
B4 is N , or CR84,
B5 is N , or CR85,
B6 is N , or CR86,
B7 is N , or CR87,
B8 is N , or CR88, wherein R81 , R82, R83, R84, R85 , R86, R87 and R88 are independently of each other H, a Ci-C25alkyl group, which can optionally be substituted by E and or interupted by D; a C6-C24aryl group, which can optionally be substituted by G, a C2- C3oheteroaryl group, which can optionally be substituted by G; a group of formula— (Ai)o-(A2)p-(A3)q-(A4)rR16, or -(Ai)0-(A2)p-(A3)q-(A4)rX1,
o is 0, or 1 , p is 0, or 1 , q is 0, or 1 , r is 0, or 1 ,
at least one of the substituents R8 , R82, R83, R84, R85, R86, R87 and R88 represents a group of formula -(Ai)0-(A2)P-(A3)q-(A4)rX1; wherein
X1 is CI, Br, or I, ZnXi2, χΐ2 js a halogen atom; -SnR2o7R2osR2cra wherein R207, R208 and R209 are identical or different and are H or d-Csalkyl, wherein two radicals op
Figure imgf000167_0002
wherein Y1 is independently in each occurrence a Ci-Cisalkyl group and Y2 is independently in each occurrence a C2-Cioalkylene group, and Y13 and Y14 are independently of each other hydrogen, or a Ci-Cisalkyl group, and o, p, q, r, G, A1 , A2, A3, A4, R81 , R82, R83, R84, Res, R86, R87 anc| R88 are as defined in claim 1 , with the proviso that the following compounds are excluded:
Figure imgf000168_0001
are excluded.
PCT/EP2013/069403 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications WO2014044722A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015532398A JP6333262B2 (en) 2012-09-20 2013-09-18 Azadibenzofuran for electronic applications
EP13765708.6A EP2897959B1 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
CN201380048768.XA CN104662023B (en) 2012-09-20 2013-09-18 The azepine dibenzofurans of supplied for electronic application
EP17207679.6A EP3318566B1 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
KR1020157009777A KR102127406B1 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
KR1020207018021A KR102164639B1 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
US14/427,134 US10249827B2 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
US16/227,006 US20190131547A1 (en) 2012-09-20 2018-12-20 Azadibenzofurans for electronic applications

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261703289P 2012-09-20 2012-09-20
EP12185230 2012-09-20
EP12185230.5 2012-09-20
US61/703,289 2012-09-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/427,134 A-371-Of-International US10249827B2 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications
US16/227,006 Continuation US20190131547A1 (en) 2012-09-20 2018-12-20 Azadibenzofurans for electronic applications

Publications (1)

Publication Number Publication Date
WO2014044722A1 true WO2014044722A1 (en) 2014-03-27

Family

ID=46963525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/069403 WO2014044722A1 (en) 2012-09-20 2013-09-18 Azadibenzofurans for electronic applications

Country Status (7)

Country Link
US (2) US10249827B2 (en)
EP (2) EP2897959B1 (en)
JP (2) JP6333262B2 (en)
KR (1) KR102127406B1 (en)
CN (3) CN104662023B (en)
TW (1) TWI623539B (en)
WO (1) WO2014044722A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063046A1 (en) 2013-10-31 2015-05-07 Basf Se Azadibenzothiophenes for electronic applications
WO2015114102A1 (en) * 2014-02-03 2015-08-06 Basf Se Silyl substituted azadibenzofurans and azadibenzothiophenes
WO2015150234A1 (en) * 2014-03-31 2015-10-08 Idemitsu Kosan Co., Ltd. Silyl-benzimidazolo[1,2-a]benzimidazole as host for organic light emitting diodes
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016079667A1 (en) * 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) * 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
JP2016213470A (en) * 2015-05-12 2016-12-15 株式会社半導体エネルギー研究所 Compound, light-emitting element, light-emitting device, electronic device, and illuminating device
EP3133666A1 (en) * 2015-08-21 2017-02-22 Samsung Display Co., Ltd. Organic light-emitting device
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
EP3184534A1 (en) 2015-12-21 2017-06-28 UDC Ireland Limited Transition metal complexes with tripodal ligands and the use thereof in oleds
JP2017119866A (en) * 2015-12-28 2017-07-06 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
EP3200255A3 (en) * 2016-01-06 2017-12-20 Konica Minolta, Inc. Organic electroluminescent element, method for producing organic electroluminescent element, display, and lighting device
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2018043761A1 (en) 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
EP3466957A1 (en) 2014-08-08 2019-04-10 UDC Ireland Limited Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes
JP2019099537A (en) * 2017-12-07 2019-06-24 コニカミノルタ株式会社 Method for producing nitrogen-containing heterocyclic compound
JP2019206550A (en) * 2014-05-19 2019-12-05 ユー・ディー・シー アイルランド リミテッド Fluorescent organic light-emitting element having high efficiency
US10570136B2 (en) 2015-07-28 2020-02-25 Udc Ireland Limited Process for the preparation of benzimidazo[1,2-a] benzimidazoles
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10968229B2 (en) 2016-04-12 2021-04-06 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806270B2 (en) 2011-03-25 2017-10-31 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
CN108440531B (en) 2011-11-10 2021-11-02 Udc 爱尔兰有限责任公司 4H-imidazo [1,2-a ] imidazoles for electronic applications
JP6231561B2 (en) 2012-07-10 2017-11-15 ユー・ディー・シー アイルランド リミテッド Benzimidazo [1,2-a] benzimidazole derivatives for electronic applications
KR20160038052A (en) 2013-08-05 2016-04-06 바스프 에스이 Cyanated naphthalenebenzimidazole compounds
JP6538504B2 (en) * 2014-09-30 2019-07-03 株式会社半導体エネルギー研究所 Organometallic complex, light emitting element, light emitting device, electronic device, and lighting device
US10593892B2 (en) * 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
KR20180133376A (en) * 2016-04-11 2018-12-14 메르크 파텐트 게엠베하 A heterocyclic compound comprising a dibenzofuran and / or a dibenzothiophene structure
WO2017221999A1 (en) * 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
KR102688056B1 (en) 2016-09-22 2024-07-25 삼성전자주식회사 Condensed cyclic compound and organic light emitting device including the same
CN106543205B (en) * 2016-11-08 2019-01-08 江苏三月光电科技有限公司 A kind of compound containing benzimidazole and its application on OLED
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
CN110785422A (en) 2017-06-23 2020-02-11 株式会社半导体能源研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10608188B2 (en) 2017-09-11 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
CN109928961B (en) * 2017-12-15 2021-06-15 广东阿格蕾雅光电材料有限公司 Photoelectric material containing 4-sulfosulfonyl aryl dibenzofuran and application thereof
US11515489B2 (en) * 2018-11-28 2022-11-29 Universal Display Corporation Host materials for electroluminescent devices
KR20210037061A (en) 2019-09-26 2021-04-06 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device including the same
CN117143108B (en) * 2023-08-31 2024-03-19 蒲城欧得新材料有限公司 8-bromo-2-methylbenzofuran [2,3-b ] pyridine and synthetic method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028262A1 (en) * 2008-09-04 2010-03-11 Universal Display Corporation White phosphorescent organic light emitting devices
DE102010024542A1 (en) * 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1300928A (en) 1969-05-09 1972-12-29 Glaxo Lab Ltd 0-aza-9-oxafluorenes
BE759337A (en) * 1969-11-24 1971-05-24 Lilly Co Eli BENZIMIDAZOL (2,1-B) -QUINAZOLIN (6H) ONES WHICH ARE IMMUNO DEPRESSANTS, AND NEW BENZIMIDAZO (2,1-B) QUINAZOLIN-12- (6H) ONES
US3663559A (en) 1969-12-03 1972-05-16 Union Carbide Corp Preparation of oxo-furo-pyridines from furylvinyl isocyanates
US3706747A (en) 1970-06-05 1972-12-19 Pfizer Benzothieno(3,2-d)- and benzofuro(3,2-d)pyrimidines
FR2625201B1 (en) 1987-12-24 1990-06-15 Sanofi Sa NOVEL TRICYCLIC DERIVATIVES AGONISING CHOLINERGIC RECEPTORS AND MEDICAMENTS CONTAINING THEM
CA2321791A1 (en) 1998-03-18 1999-09-23 Ciba Specialty Chemicals Holding Inc. Coupling reactions with palladium catalysts
JP3907142B2 (en) * 1998-08-18 2007-04-18 富士フイルム株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
EP1729327B2 (en) 1999-05-13 2022-08-10 The Trustees Of Princeton University Use of a phosphorescent iridium compound as emissive molecule in an organic light emitting device
EP2270895A3 (en) 1999-12-01 2011-03-30 The Trustees of Princeton University Complexes for OLEDs
US6821645B2 (en) 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US6565994B2 (en) 2000-02-10 2003-05-20 Fuji Photo Film Co., Ltd. Light emitting device material comprising iridium complex and light emitting device using same material
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7306856B2 (en) 2000-07-17 2007-12-11 Fujifilm Corporation Light-emitting element and iridium complex
EP2566302B1 (en) 2000-08-11 2015-12-16 The Trustees of Princeton University Organometallic compounds and emission-shifting organic electrophosphorence
JP4344494B2 (en) 2000-08-24 2009-10-14 富士フイルム株式会社 Light emitting device and novel polymer element
JP4067286B2 (en) 2000-09-21 2008-03-26 富士フイルム株式会社 Light emitting device and iridium complex
JP4154138B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element, display device and metal coordination compound
JP4154139B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element
JP4086499B2 (en) 2000-11-29 2008-05-14 キヤノン株式会社 Metal coordination compound, light emitting device and display device
JP4154145B2 (en) 2000-12-01 2008-09-24 キヤノン株式会社 Metal coordination compound, light emitting device and display device
US6924291B2 (en) 2001-01-23 2005-08-02 Merck & Co., Inc. Process for making spiro isobenzofuranone compounds
DE10104426A1 (en) 2001-02-01 2002-08-08 Covion Organic Semiconductors Process for the production of high-purity, tris-ortho-metallated organo-iridium compounds
JP4307000B2 (en) 2001-03-08 2009-08-05 キヤノン株式会社 Metal coordination compound, electroluminescent element and display device
JP4956862B2 (en) 2001-03-23 2012-06-20 Tdk株式会社 Polymer compounds and methods for producing and using the same
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
US20050064576A1 (en) * 2003-04-22 2005-03-24 Fennell Donna E. Methods for remediating materials contaminated with halogenated aromatic compounds
DE10338550A1 (en) 2003-08-19 2005-03-31 Basf Ag Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs)
DE102004007358B4 (en) * 2004-02-16 2017-10-12 Chiron As Congeners, chlorinated, brominated and / or iodinated fluorinated aromatic compounds containing two benzene rings in their basic structure, process for their preparation and their use
WO2005113704A2 (en) 2004-05-18 2005-12-01 The University Of Southern California Luminescent compounds with carbene ligands
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
TWI479008B (en) 2004-07-07 2015-04-01 Universal Display Corp Stable and efficient electroluminescent materials
WO2006010567A1 (en) * 2004-07-23 2006-02-02 Curacyte Discovery Gmbh Substituted pyrido[3', 2': 4, 5]thieno[3,2-d]pyrimidines and pyrido[3', 2': 4, 5]furo[3, 2, d]pyrimidines used as inhibitors of the pde-4 and/or the release of tnf$g(a)
DE102004057072A1 (en) 2004-11-25 2006-06-01 Basf Ag Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs)
DE602005014391D1 (en) 2004-12-23 2009-06-18 Ciba Holding Inc ELECTROLUMINESCENT METAL COMPLEXES WITH NUCLEOPHILIC CARBON LIGANDS
US8889266B2 (en) 2005-03-17 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element, light-emitting device and electronic-device using the organometallic complex
DE102005014284A1 (en) 2005-03-24 2006-09-28 Basf Ag Use of compounds containing aromatic or heteroaromatic rings containing groups via carbonyl groups as matrix materials in organic light-emitting diodes
TWI418606B (en) 2005-04-25 2013-12-11 Udc Ireland Ltd Organic electroluminescent device
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP5107237B2 (en) 2005-05-30 2012-12-26 チバ ホールディング インコーポレーテッド Electroluminescent device
JP4887731B2 (en) 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
DE502005009802D1 (en) 2005-11-10 2010-08-05 Novaled Ag Doped organic semiconductor material
EP2399922B1 (en) 2006-02-10 2019-06-26 Universal Display Corporation Metal complexes of cyclometallated imidazo(1,2-f) phenanthridine and diimidazo(1,2-A;1',2'-C)quinazoline ligands and isoelectronic and benzannulated analogs therof
US8142909B2 (en) 2006-02-10 2012-03-27 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
WO2007101820A1 (en) 2006-03-08 2007-09-13 Ciba Holding Inc. Palladium catalyzed polymerization reaction
EP1837927A1 (en) 2006-03-22 2007-09-26 Novaled AG Use of heterocyclic radicals for doping of organic semiconductors
DE502006000749D1 (en) 2006-03-21 2008-06-19 Novaled Ag Heterocyclic radical or diradical, their dimers, oligomers, polymers, dispiro compounds and polycycles, their use, organic semiconducting material and electronic component
US8383828B2 (en) 2006-04-04 2013-02-26 Basf Aktiengesellschaft Transition metal complexes comprising one noncarbene ligand and one or two carbene ligands and their use in OLEDs
ATE550342T1 (en) 2006-04-05 2012-04-15 Basf Se HETEROLEPTIC TRANSITION METAL-CARBEN COMPLEXES AND THEIR USE IN ORGANIC LIGHT-LIGHT DIODES (OLEDS)
EP2035526B1 (en) 2006-06-26 2021-11-17 UDC Ireland Limited Use in oleds of transition metal carbene complexes that contain no cyclometallation via non-carbenes
KR101069302B1 (en) 2006-09-21 2011-10-05 바스프 에스이 Oled display with prolonged lifetime
JP5589251B2 (en) 2006-09-21 2014-09-17 コニカミノルタ株式会社 Organic electroluminescence element material
JP5476660B2 (en) * 2006-09-26 2014-04-23 住友化学株式会社 Organic photoelectric conversion device and polymer useful for production thereof
EP2085371B1 (en) * 2006-11-15 2015-10-07 Idemitsu Kosan Co., Ltd. Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
EP1988587B1 (en) 2007-04-30 2016-12-07 Novaled GmbH Oxocarbon, pseudo oxocarbon and radialene compounds and their use
WO2009003898A1 (en) 2007-07-05 2009-01-08 Basf Se Organic light-emitting diodes containing carbene transition metal complex emitters and at least one compound selected from disilylcarbazoles, disilyldibenzofurans, disilyldibenzothiophenes, disilyldibenzophospholes, disilyldibenzothiophene s-oxides and disilyldibenzothiophene s,s-dioxides
EP2173834B1 (en) 2007-07-05 2018-02-14 UDC Ireland Limited ORGANIC LIGHT-EMITTING DIODES COMPRISING AT LEAST ONE DISILYL COMPOUND SELECTED FROM DISILYLCARBAZOLES, DISILYLDIBENZOFURANS and DISILYLDIBENZOTHIOPHENES
JP2009040728A (en) 2007-08-09 2009-02-26 Canon Inc Organometallic complex and organic light-emitting element using the same
WO2009035668A1 (en) * 2007-09-14 2009-03-19 Janssen Pharmaceutica N.V. Facile assembly of fused benzofuro-heterocycles
KR101612135B1 (en) 2007-10-17 2016-04-12 바스프 에스이 Transition metal complexes with bridged carbene ligands and use thereof in oleds
EP2203461B1 (en) 2007-10-17 2011-08-10 Basf Se Transition metal complexes having bridged carbene ligands and the use thereof in oleds
JP5593696B2 (en) 2007-11-08 2014-09-24 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence device
JP5691170B2 (en) 2007-11-08 2015-04-01 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence element
US20090153034A1 (en) 2007-12-13 2009-06-18 Universal Display Corporation Carbazole-containing materials in phosphorescent light emittinig diodes
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
US8057712B2 (en) 2008-04-29 2011-11-15 Novaled Ag Radialene compounds and their use
EP2123733B1 (en) 2008-05-13 2013-07-24 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US8049411B2 (en) * 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
EP2303893B1 (en) 2008-06-13 2016-12-07 Merck Sharp & Dohme Corp. Tricyclic indole derivatives
WO2010027583A1 (en) 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
ES2370120T3 (en) 2008-10-23 2011-12-12 Novaled Ag RADIALENE COMPOUND AND ITS USE.
GB2465405A (en) 2008-11-10 2010-05-19 Univ Basel Triazine, pyrimidine and pyridine analogues and their use in therapy
US8367223B2 (en) 2008-11-11 2013-02-05 Universal Display Corporation Heteroleptic phosphorescent emitters
US8815415B2 (en) 2008-12-12 2014-08-26 Universal Display Corporation Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes
KR101693903B1 (en) 2009-01-07 2017-01-06 바스프 에스이 Silyl- and heteroatom-substituted compounds selected from carbazoles, dibenzofurans, dibenzothiophenes and dibenzophospholes, and use thereof in organic electronics
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
DE102009007038A1 (en) 2009-02-02 2010-08-05 Merck Patent Gmbh metal complexes
EP2395573B1 (en) 2009-02-06 2019-02-27 Konica Minolta Holdings, Inc. Organic electroluminescent element, and illumination device and display device each comprising the element
KR101705213B1 (en) 2009-02-26 2017-02-09 노발레드 게엠베하 Quinone compounds as dopants in organic electronics
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8722205B2 (en) 2009-03-23 2014-05-13 Universal Display Corporation Heteroleptic iridium complex
JP5355171B2 (en) * 2009-03-25 2013-11-27 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
CN102449107B (en) 2009-04-06 2016-05-18 通用显示公司 The metal complex that comprises new ligand structure
EP2246862A1 (en) 2009-04-27 2010-11-03 Novaled AG Organic electronic device comprising an organic semiconducting material
US8557400B2 (en) 2009-04-28 2013-10-15 Universal Display Corporation Iridium complex with methyl-D3 substitution
US8603642B2 (en) 2009-05-13 2013-12-10 Global Oled Technology Llc Internal connector for organic electronic devices
WO2011004639A1 (en) * 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 Organic electroluminescent element, novel compound, lighting device and display device
IN2012DN01325A (en) 2009-08-20 2015-06-05 Karus Therapeutics Ltd
HUE030402T2 (en) 2009-09-15 2017-05-29 Taigen Biotechnology Co Ltd Hcv protease inhibitors
JP5573066B2 (en) * 2009-09-24 2014-08-20 コニカミノルタ株式会社 Organic photoelectric conversion element, solar cell and optical sensor array using the same
JP5604848B2 (en) 2009-10-19 2014-10-15 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
EP2493906B1 (en) 2009-10-28 2015-10-21 Basf Se Heteroleptic carben complexes and their use in organig electronics
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
US20120319091A1 (en) * 2010-01-21 2012-12-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same
US9156870B2 (en) 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
EP2363398B1 (en) 2010-03-01 2017-10-18 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9175211B2 (en) 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
JP2011184362A (en) 2010-03-09 2011-09-22 Canon Inc Pyrene compound and organic el element using the same
US8334545B2 (en) 2010-03-24 2012-12-18 Universal Display Corporation OLED display architecture
US10570113B2 (en) 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
CN102234286A (en) 2010-04-23 2011-11-09 上海艾力斯医药科技有限公司 Condensed heteroaryl derivatives
US8227801B2 (en) 2010-04-26 2012-07-24 Universal Display Corporation Bicarbzole containing compounds for OLEDs
WO2011157790A1 (en) 2010-06-18 2011-12-22 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
EP2582768B1 (en) 2010-06-18 2014-06-25 Basf Se Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
RU2452872C2 (en) 2010-07-15 2012-06-10 Андрей Леонидович Кузнецов Piezoelectric pump
JP6007467B2 (en) * 2010-07-27 2016-10-12 コニカミノルタ株式会社 Organic electroluminescence element material, organic electroluminescence element,
JP5741581B2 (en) 2010-07-29 2015-07-01 コニカミノルタ株式会社 Transparent conductive film and organic electroluminescence element
US8932734B2 (en) 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
US20120096381A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment
DE112011103544B4 (en) 2010-10-22 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex
JP2012146968A (en) * 2010-12-21 2012-08-02 Sumitomo Chemical Co Ltd Organic light-emitting element and conjugated polymer compound
EP2660890A4 (en) * 2010-12-28 2014-05-21 Idemitsu Kosan Co Material for organic electroluminescent elements, and organic electroluminescent element using same
US8415031B2 (en) * 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
WO2012111462A1 (en) 2011-02-15 2012-08-23 コニカミノルタホールディングス株式会社 Organic electroluminescence element and illumination device
JP5839027B2 (en) 2011-02-22 2016-01-06 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
US9806270B2 (en) * 2011-03-25 2017-10-31 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
KR102393687B1 (en) * 2011-03-25 2022-05-04 유디씨 아일랜드 리미티드 4h-imidazo[1,2-a]imidazoles for electronic applications
JP5821951B2 (en) 2011-04-26 2015-11-24 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
WO2012153780A1 (en) * 2011-05-11 2012-11-15 出光興産株式会社 Novel compound, material for organic electroluminescence device, and organic electroluminescence device
US9212197B2 (en) 2011-05-19 2015-12-15 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants
US10079349B2 (en) 2011-05-27 2018-09-18 Universal Display Corporation Organic electroluminescent materials and devices
KR20120135363A (en) 2011-06-01 2012-12-13 엘지디스플레이 주식회사 Blue phosphorescent compound and organic electroluminescence device using the same
KR102119353B1 (en) 2011-06-08 2020-06-29 유니버셜 디스플레이 코포레이션 Heteroleptic iridium carbene complexes and light emitting device using them
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
CN108440531B (en) * 2011-11-10 2021-11-02 Udc 爱尔兰有限责任公司 4H-imidazo [1,2-a ] imidazoles for electronic applications
TW201410085A (en) 2012-05-02 2014-03-01 Ceramtec Gmbh Method for producing ceramic circuit boards from ceramic substrates having metal-filled vias
JP6231561B2 (en) 2012-07-10 2017-11-15 ユー・ディー・シー アイルランド リミテッド Benzimidazo [1,2-a] benzimidazole derivatives for electronic applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028262A1 (en) * 2008-09-04 2010-03-11 Universal Display Corporation White phosphorescent organic light emitting devices
DE102010024542A1 (en) * 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRUG M ET AL: "Discovery and selectivity-profiling of 4-benzylamino 1-aza-9-oxafluorene derivatives as lead structures for IGF-1R inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, GB, vol. 20, no. 23, 1 December 2010 (2010-12-01), pages 6915 - 6919, XP027459326, ISSN: 0960-894X, [retrieved on 20101027], DOI: 10.1016/J.BMCL.2010.10.004 *
S. SHIOTANI, H. MORITA: "Furopyridines. X. Synthesis of tricyclic heterocycles.", J. HETEROCYCLIC CHEM., vol. 27, 1990, pages 637 - 642, XP002716145 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063046A1 (en) 2013-10-31 2015-05-07 Basf Se Azadibenzothiophenes for electronic applications
WO2015114102A1 (en) * 2014-02-03 2015-08-06 Basf Se Silyl substituted azadibenzofurans and azadibenzothiophenes
WO2015150234A1 (en) * 2014-03-31 2015-10-08 Idemitsu Kosan Co., Ltd. Silyl-benzimidazolo[1,2-a]benzimidazole as host for organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
JP2019206550A (en) * 2014-05-19 2019-12-05 ユー・ディー・シー アイルランド リミテッド Fluorescent organic light-emitting element having high efficiency
US11706978B2 (en) 2014-05-19 2023-07-18 Udc Ireland Limited Fluorescent organic light emitting elements having high efficiency
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP3466957A1 (en) 2014-08-08 2019-04-10 UDC Ireland Limited Oled comprising an electroluminescent imidazo-quinoxaline carbene metal complexes
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) * 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
US10584126B2 (en) 2014-12-15 2020-03-10 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) * 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
US10689385B2 (en) 2015-03-31 2020-06-23 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-A]benzimidazole carrying aryl- or arylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
JP2016213470A (en) * 2015-05-12 2016-12-15 株式会社半導体エネルギー研究所 Compound, light-emitting element, light-emitting device, electronic device, and illuminating device
US10570136B2 (en) 2015-07-28 2020-02-25 Udc Ireland Limited Process for the preparation of benzimidazo[1,2-a] benzimidazoles
US11672173B2 (en) 2015-08-21 2023-06-06 Samsung Display Co., Ltd. Organic light-emitting device
US9960361B2 (en) 2015-08-21 2018-05-01 Samsung Display Co., Ltd. Organic light-emitting device
EP3133666A1 (en) * 2015-08-21 2017-02-22 Samsung Display Co., Ltd. Organic light-emitting device
US11968890B2 (en) 2015-08-21 2024-04-23 Samsung Display Co., Ltd. Organic light-emitting device
CN106469790B (en) * 2015-08-21 2019-12-06 三星显示有限公司 Organic light emitting device
CN106469790A (en) * 2015-08-21 2017-03-01 三星显示有限公司 Organic light emitting apparatus
US11211564B2 (en) 2015-08-21 2021-12-28 Samsung Display Co., Ltd. Organic light-emitting device
JP2017041636A (en) * 2015-08-21 2017-02-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting element
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US11174258B2 (en) 2015-12-04 2021-11-16 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
EP3184534A1 (en) 2015-12-21 2017-06-28 UDC Ireland Limited Transition metal complexes with tripodal ligands and the use thereof in oleds
US10490754B2 (en) 2015-12-21 2019-11-26 Udc Ireland Limited Transition metal complexes with tripodal ligands and the use thereof in OLEDs
JP2017119866A (en) * 2015-12-28 2017-07-06 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP2023015131A (en) * 2015-12-28 2023-01-31 株式会社半導体エネルギー研究所 Light-emitting material and light-emitting element
EP3200255A3 (en) * 2016-01-06 2017-12-20 Konica Minolta, Inc. Organic electroluminescent element, method for producing organic electroluminescent element, display, and lighting device
US10483471B2 (en) 2016-01-06 2019-11-19 Konica Minolta, Inc. Organic electroluminescent element, method for producing organic electroluminescent element, display, and lighting device
US10968229B2 (en) 2016-04-12 2021-04-06 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
WO2018043761A1 (en) 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US11279709B2 (en) 2016-09-05 2022-03-22 Idemitsu Kosan Co., Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
JP2019099537A (en) * 2017-12-07 2019-06-24 コニカミノルタ株式会社 Method for producing nitrogen-containing heterocyclic compound
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11758807B2 (en) 2019-02-22 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
KR102127406B1 (en) 2020-06-29
JP2018135362A (en) 2018-08-30
EP3318566A1 (en) 2018-05-09
EP3318566B1 (en) 2020-06-24
JP6333262B2 (en) 2018-05-30
TW201412747A (en) 2014-04-01
US20190131547A1 (en) 2019-05-02
EP2897959A1 (en) 2015-07-29
CN104662023A (en) 2015-05-27
US10249827B2 (en) 2019-04-02
TWI623539B (en) 2018-05-11
CN104662023B (en) 2017-08-18
CN107573363A (en) 2018-01-12
US20150243907A1 (en) 2015-08-27
EP2897959B1 (en) 2017-12-20
JP2015530396A (en) 2015-10-15
KR20150056829A (en) 2015-05-27
CN113943306A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
EP2897959B1 (en) Azadibenzofurans for electronic applications
JP6730470B2 (en) 4H-imidazo[1,2-a]imidazole for electronics applications
EP2872512B1 (en) Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
EP2776443B1 (en) 4h-imidazo[1,2-a]imidazoles for electronic applications
EP3063153B1 (en) Azadibenzothiophenes for electronic applications
WO2015014791A1 (en) Benzimidazolo[2,1-b][1,3]benzothiazoles for electronic applications
EP3356368B1 (en) Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2016016791A1 (en) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP3034506A1 (en) 4-functionalized carbazole derivatives for electronic applications
WO2016079667A1 (en) Indole derivatives for electronic applications
WO2016067261A1 (en) 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
KR102164639B1 (en) Azadibenzofurans for electronic applications
KR20210011515A (en) Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427134

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009777

Country of ref document: KR

Kind code of ref document: A