Nothing Special   »   [go: up one dir, main page]

WO2013136983A1 - 機械構造部品および焼結歯車、ならびにこれらの製造方法 - Google Patents

機械構造部品および焼結歯車、ならびにこれらの製造方法 Download PDF

Info

Publication number
WO2013136983A1
WO2013136983A1 PCT/JP2013/055136 JP2013055136W WO2013136983A1 WO 2013136983 A1 WO2013136983 A1 WO 2013136983A1 JP 2013055136 W JP2013055136 W JP 2013055136W WO 2013136983 A1 WO2013136983 A1 WO 2013136983A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
sintered
density
density region
tooth
Prior art date
Application number
PCT/JP2013/055136
Other languages
English (en)
French (fr)
Inventor
孝洋 奥野
島津 英一郎
洸 片柳
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012054643A external-priority patent/JP2013189658A/ja
Priority claimed from JP2012132820A external-priority patent/JP5969273B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201380013924.9A priority Critical patent/CN104159687A/zh
Priority to EP13761893.0A priority patent/EP2826577A4/en
Priority to US14/384,664 priority patent/US20150033894A1/en
Publication of WO2013136983A1 publication Critical patent/WO2013136983A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F3/168Local deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/30Carburising atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/11Gradients other than composition gradients, e.g. size gradients
    • B22F2207/17Gradients other than composition gradients, e.g. size gradients density or porosity gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies

Definitions

  • the present invention relates to mechanical structural parts and sintered gears, and methods for manufacturing the same, and more particularly, to mechanical structural parts made of a sintered body, sintered gears made of a metal sintered body, and methods for manufacturing the same. It is.
  • gears have been used as mechanical structural parts for transmitting power.
  • the gear is manufactured using a melted material or the like.
  • a gear cutting method using a hob or a rack cutter is known.
  • a material (gear blank) having a disk shape is prepared.
  • portions other than the teeth are processed in advance.
  • a gear having a desired shape is obtained by performing a process of scraping the tooth groove on the gear blank.
  • a desired gear shape is obtained by cutting a gear blank, so that a long time is required for the cutting process, and chip loss is likely to occur, resulting in an increase in material loss.
  • powder metallurgy is used instead of gear cutting.
  • a powder press molding method is often used.
  • the powder press molding method raw material powder is filled in a mold. By pressing the raw material powder using a mold, the raw material powder is formed into a predetermined shape. Then, the gear which has a desired shape is obtained by sintering the shape
  • the powder press molding method can shorten the production time and reduce material loss.
  • the powder press molding method in which the raw metal powder is press-molded using a mold into the shape of the target machine part can be cited as one of the methods for manufacturing a machine structural part made of a sintered body.
  • Mechanical structural parts made of a sintered body produced using a powder press molding method usually have a relative density (ratio of the density of the sintered body to the true density of the melted material) of about 85 to 92%, and many empty parts. Holes remain inside the sintered body.
  • the vacancies in the sintered body behave like cracks in the molten material when stress is applied. That is, vacancies become a source of stress concentration and reduce not only static strength such as tensile strength, compressive strength and bending strength, but also impact strength (toughness) and fatigue strength.
  • 2P2S two-molding twice-sintering
  • This method is a method of obtaining a high-density sintered body by compression-molding a pre-sintered temporarily fired body once again in a mold and then performing main sintering.
  • Another technique for obtaining a high-density sintered body is a sintering forging method in which post-processing is performed after sintering (see, for example, Japanese Patent Laid-Open No. 58-133301 (Patent Document 2)).
  • This method is a method in which hot forging is performed in a state where the sintered body is placed in a mold, and a sintered body closer to the true density can be obtained.
  • Patent Document 3 a technique for improving bending strength and wear resistance by densifying a sintered body by rolling has been proposed (for example, see International Publication No. 92/05897 (Patent Document 3)).
  • Patent Document 4 a technique for densifying the surface of the sintered gear by rolling has also been proposed (see, for example, JP-T-06-501988 (Patent Document 4) and JP-A-2004-255387 (Patent Document 5)).
  • Patent Document 4 rolling is performed using a rolling die arranged so as to have a parallel shaft gear pair relationship with respect to the gear blank.
  • Patent Document 5 rolling is performed using a rolling die having a shape like a hob.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to achieve an improvement in static strength, toughness, and fatigue strength while suppressing a decrease in dimensional accuracy. It is to provide a possible mechanical structural component and a method of manufacturing the same. Another object of the present invention is to provide a sintered gear capable of exhibiting high fatigue accuracy and high shape accuracy, and a method for manufacturing the same.
  • the mechanical structural part according to the present invention is a mechanical structural part made of a sintered metal.
  • This mechanical structural component includes a base region and a maximum stress position where maximum tensile stress or maximum shear stress is applied, and is formed to include a surface, and has a high density with a lower porosity than the base region. And the area. And in the area
  • the mechanical structural component of the present invention since the vacancies near the surface including the maximum stress position are reduced, the stress concentration source during stress loading is reduced. For this reason, the generation and propagation of cracks in the mechanical structural part, which is a sintered body, is slowed down, and the static strength, toughness, and fatigue strength are improved. Further, in the mechanical structure component of the present invention, a high density region having a porosity smaller than that of the base region is formed only near the surface including the maximum stress position, and it is necessary to increase the density of the entire mechanical structure component. There is no. Therefore, it is not necessary to adopt the 2P2S method for densifying the entire mechanical structural component or the method for performing hot forging after sintering, so that high dimensional accuracy can be ensured.
  • the mechanical structural component of the present invention it is possible to provide a mechanical structural component capable of achieving improvement in static strength, toughness, and fatigue strength while suppressing a decrease in dimensional accuracy.
  • the porosity can be measured as follows, for example. First, a machine structural component is cut in a cross section perpendicular to the surface. Next, the cut surface is polished, and the polished cut surface is observed with an optical microscope to obtain image data (or a photograph). The acquired image data (or photograph) is binarized so that, for example, the hole portion is black and the area other than the hole portion is white. And the ratio (area ratio) of a black area
  • region is calculated as a porosity.
  • the maximum stress position means a position where a maximum tensile stress or a maximum shear stress that is a direct cause of breakage is applied when a mechanical structural component is normally used. And the maximum shear stress area below the contact surface of a rolling contact member (such as a cam). Furthermore, it is preferable that the surface included in the high-density region includes a surface region that is the maximum stress position or a surface region that is closest to the maximum stress position.
  • the thickness of the surface hardened layer may be smaller than the thickness of the high-density region in the cross section perpendicular to the surface.
  • the hardening process may be a carburizing and quenching process.
  • a carburizing and quenching process that can be performed relatively easily is suitable for forming the surface hardened layer.
  • the thickness of the high density region may be 100 ⁇ m or more in a cross section perpendicular to the surface.
  • the thickness of the high-density region may be 700 ⁇ m or less in a cross section perpendicular to the surface.
  • the crack sensitivity becomes high and the fatigue strength may be reduced. The occurrence of such a problem can be suppressed by setting the thickness of the high-density region to 700 ⁇ m or less.
  • the porosity in the high density region may be less than 2%. Thereby, static strength, toughness, and fatigue strength can be improved more reliably.
  • the porosity of the base region may be 2% or more and 15% or less.
  • the porosity of the base region By setting the porosity of the base region to 2% or more, the base region can be easily formed without using the 2P2S method or the method of performing hot forging after sintering.
  • the porosity of the base region is 15% or less, the strength required for the base region can be easily ensured.
  • the hardness of the surface may be HRA75 or higher. Thereby, it is possible to impart high strength to the surface.
  • the high-density region may be formed by performing cold working. Thereby, since a high-density area
  • the cold work may be a cold rolling process.
  • Cold rolling is suitable for forming the high-density region.
  • the metal sintered body may be mainly composed of iron.
  • the said metal sintered compact may contain 80 mass% or more of iron.
  • the metal sintered compact which has iron as a main component is suitable as a material of the machine structural component of this invention.
  • the above mechanical structural component may be used as a power transmission component.
  • the mechanical structural component of the present invention in which static strength, toughness, and fatigue strength are improved while suppressing a decrease in dimensional accuracy can be used for a power transmission component that requires high dimensional accuracy and durability.
  • the fatigue strength is preferably 300 MPa or more.
  • the metal sintered body having high fatigue strength is suitable as a material for the machine structural component of the present invention.
  • the said fatigue strength can be investigated by the method as described in the below-mentioned Example.
  • the sintered gear according to the present invention comprises the mechanical structural component according to the present invention.
  • This sintered gear includes a tooth root region, a meshing region located on the tooth tip surface side with respect to the tooth root region, and a tooth tip region located on the tooth tip surface side with respect to the meshing region.
  • the high-density region having a higher density than the meshing region and the tooth tip region so that the tooth base region includes a dangerous cross section obtained by the surface of the tooth base region and Hofer's 30 ° tangent method. Is formed.
  • a surface hardened layer is formed on the surface of the high density region.
  • the porosity of the high-density region may be 2% or less.
  • the said surface hardening layer may be formed by performing a carburizing quenching tempering process.
  • the surface hardness of the high-density region may be HRA75 or higher.
  • the high-density region may be formed by performing cold working.
  • the high-density region may be formed by the cold working using a rolling die that rolls only a portion corresponding to the surface of the tooth root region of the sintered metal body.
  • the high-density region is only a portion corresponding to the surface of the tooth root region of the metal sintered body while synchronizing the rotation of the rolling die having a hob shape and the rotation of the metal sintered body. May be formed by the cold working described above.
  • the high-density region may be formed by the cold working using the rolling die having, as a blade shape, a root portion formed in a cylindrical shape and a tip portion formed in a hemispherical shape.
  • the method of manufacturing a mechanical structural component according to the present invention includes a step of preparing a raw material powder made of metal, a step of producing a metal sintered body by sintering the raw material powder, and a maximum tensile stress or a maximum shear stress.
  • a step of forming a high density region having a lower porosity than other regions so as to include the maximum stress position which is an added position and the surface, and a region including the surface are subjected to a curing process.
  • a step of forming a hardened surface layer thereby, the machine structural component of the present invention can be manufactured.
  • the high density region in the step of forming the high density region, may be formed by performing cold working on the surface. Thereby, a high-density area can be easily formed while maintaining dimensional accuracy.
  • a metal sintered body having a relative density of 93% or more in the step of producing the metal sintered body, a metal sintered body having a relative density of 93% or more may be produced.
  • the metal sintered compact whose average hole diameter is 100 micrometers or less in the process of producing a metal sintered compact, the metal sintered compact whose average hole diameter is 100 micrometers or less may be produced.
  • a raw material powder having a particle size of 100 ⁇ m or less may be prepared in D50.
  • hole of a metal sintered compact can be suppressed.
  • a raw material powder having a particle size of 5 ⁇ m or more may be prepared in D50. If the particle size of the raw material powder becomes too fine, friction between the powders or between the powder and the mold increases and the formability deteriorates. As a result, the density of the green compact produced may be lowered, and the number of pores in the sintered metal body may increase.
  • a raw material powder having a particle size of 5 ⁇ m or more in D50 such deterioration of moldability can be suppressed.
  • the method for manufacturing a sintered gear according to the present invention is a method for manufacturing a sintered gear using the method for manufacturing a mechanical structural component according to the present invention.
  • the step of forming the high density region includes a dangerous cross section obtained by a surface of the tooth root region and Hofer's 30 ° tangent method in the tooth root region of the sintered metal body.
  • region which has a higher density than any of the meshing area
  • the surface hardened layer is formed on the surface of the high density region.
  • the surface hardened layer in the step of forming the surface hardened layer, may be formed by performing a carburizing quenching and tempering process. In the step of forming the high-density region, the high-density region may be formed by performing cold working. Further, in the step of producing the metal sintered body, the metal sintered body having a relative density of 93% or more may be produced.
  • the raw material powder having an average particle size of 100 ⁇ m or less at D50 may be prepared.
  • the root diameter of the sintered metal body before the high-density region is formed is larger in the range of 100 ⁇ m to 800 ⁇ m than the diameter of the root circle of the sintered gear obtained as a finished product. May be.
  • the machine structural component and the manufacturing method thereof of the present invention it is possible to achieve an improvement in static strength, toughness, and fatigue strength while suppressing a decrease in dimensional accuracy.
  • a structural component and a method for manufacturing the same can be provided.
  • the sintered gear of this invention and its manufacturing method the sintered gear which has high shape accuracy and can exhibit a high fatigue characteristic, and its manufacturing method can be provided.
  • a sintered gear 1 that is a power transmission component includes a main body portion 11 having a disk shape and a plurality of teeth 12 projecting radially from the main body portion 11.
  • the sintered gear 1 is made of a metal sintered body. This metal sintered body may contain iron as a main component, and more specifically, may contain 80% by mass or more of iron.
  • the sintered gear 1 when used normally, the maximum tensile stress that can directly cause damage is added to the tooth root portion. That is, in the sintered gear 1, the tooth root surface is the maximum stress position 17.
  • the sintered gear 1 is formed so as to include a base region 13, a maximum stress position 17, and a surface 15, and a high-density region (high-density tooth root region) 14 having a lower porosity than the base region 13. And. More specifically, the high density region 14 is formed so as to include the roots of the teeth 12.
  • a surface hardened layer 16 is formed in a region including the surface 15.
  • the surface hardened layer 16 is a carburized layer formed by, for example, carburizing and quenching.
  • the stress concentration source at the time of stress loading is reduced. is doing. More specifically, in this embodiment, the high-density region 14 is formed near the tooth base that is likely to be damaged due to the generation and propagation of cracks from the surface, and the pores that are the stress concentration source are reduced. . Therefore, the progress of cracks in the sintered gear 1 that is a sintered body is slowed, and the static strength, toughness, and fatigue strength are improved. In the sintered gear 1, the high density region 14 is formed only in the vicinity of the surface 15 including the maximum stress position 17 instead of increasing the density of the entire sintered gear 1.
  • the high-density region 14 can be formed by using, for example, cold working such as cold rolling without using hot forging for forming the high-density region 14. Therefore, high dimensional accuracy of the sintered gear 1 can be achieved. Further, since the surface hardened layer 16 is formed in the region including the surface 15, the static strength and fatigue strength of the surface 15 are further improved. As described above, the sintered gear 1 according to the present embodiment is a mechanical structural component in which improvement in static strength, toughness, and fatigue strength is achieved while suppressing a decrease in dimensional accuracy.
  • the thickness of the surface hardened layer 16 is preferably smaller than the thickness of the high-density region 14 in a cross section perpendicular to the surface 15.
  • the thickness of the high density region 14 refers to the distance between the surface and the farthest region from the surface in the high density region 14.
  • the thickness of the high-density region 14 can be, for example, the thickness of the region where the porosity is reduced by 10% or more with respect to the base region 13.
  • the thickness of the high-density region 14 is preferably 100 ⁇ m or more in a cross section perpendicular to the surface 15. Thereby, static strength, toughness, and fatigue strength can be improved more reliably.
  • the thickness of the high density region 14 is preferably 700 ⁇ m or less, preferably 300 ⁇ m or less, and more preferably 250 ⁇ m or less. Thereby, it can suppress that crack sensitivity becomes high and can ensure high fatigue strength.
  • the porosity of the high density region 14 is preferably less than 2%. Thereby, static strength, toughness, and fatigue strength can be improved more reliably.
  • the porosity of the base region 13 can be 2% or more and 15% or less.
  • the hardness of the surface 15 is preferably HRA75 or higher. Thereby, high strength can be imparted to the surface 15.
  • the high-density region 14 is formed by performing cold working such as cold rolling. Thereby, since the high-density area
  • the fatigue strength is preferably 300 MPa or more. Thereby, the high fatigue strength of the sintered gear 1 is securable.
  • the holes 24 may have a flat shape extending along the outer periphery of the sintered gear 1 (see FIG. 1). preferable. More specifically, a hole 24 existing below the root surface corresponding to a portion called a dangerous cross section where the maximum bending stress acts in the 30 ° tangent method of Hofer, and the longitudinal direction of the hole 24 is perpendicular to the dangerous cross section. It is preferable to orient so as to be. As a result, the width of the holes 24 in the crack propagation direction is reduced, and the effect of promoting the crack propagation of the holes 24 is suppressed, so that the fatigue strength is improved.
  • the teeth 12 are formed so as to protrude toward the addendum surface 19 from the bottom surface 18 which is the outer edge of the base region 13 corresponding to the main body portion 11 (see FIG. 1).
  • the tooth 12 includes a tooth root region 21 located on the tooth bottom surface 18 side, a meshing region 22 located on the tooth tip surface 19 side of the tooth root region 21, and a tooth located on the tooth tip surface 19 side of the meshing region 22. And the destination area 23.
  • the tooth 12 of the sintered gear 1 is formed with a dangerous cross section 20 determined by Hofer's 30 ° tangent method.
  • FIG. 4 is a cross-sectional view for explaining a dangerous cross section 20 obtained by Hofer's 30 ° tangent method formed on the tooth 12.
  • the teeth 12 in FIG. 4 include a high-density tooth root region 14 (details will be described later with reference to FIG. 2) and a hardened surface layer 16 (details will be described later with reference to FIG. 2). None of these are shown.
  • the dangerous cross section 20 obtained by Hofer's 30 ° tangent method formed on the tooth 12 is a straight line that intersects the tooth profile center line CC of the tooth 12 at angles ⁇ 1 and ⁇ 2 of 30 °, respectively.
  • L1 and L2 are virtual cross sections formed when connecting positions (two points) inscribed in the tooth profile curve of the tooth base of the tooth 12. When a load is applied to the teeth 12 of the sintered gear 1, the dangerous cross section 20 is more likely to be damaged than the surrounding parts.
  • a high-density region 14 is formed in the root region 21 of the tooth 12.
  • the high density region 14 is formed so as to cover substantially the entire surface 21S of the tooth root region 21, and is formed so as to include portions near both ends of the dangerous cross section 20 determined by Hofer's 30 ° tangent method. .
  • the density of the high density region 14 is higher than the density of the meshing region 22 and higher than the density of the tooth tip region 23.
  • the porosity of the high-density region 14 is smaller than the porosity of the meshing region 22 and smaller than the porosity of the tooth tip region 23.
  • the porosity of the high density region 14 is preferably 2% or less. According to this structure, static strength, toughness, and fatigue strength can be further improved.
  • the hardness of the surface 14S of the high density region 14 is preferably 75 or more in terms of HRA (Rockwell hardness A scale). According to this configuration, it is possible to impart high strength to the surface 14S of the high-density region 14.
  • the porosity of the high-density region 14 can be measured, for example, as follows. First, the teeth 12 of the sintered gear 1 are cut in a cross section perpendicular to the surface 14S of the high density region 14. Next, the cut surface is polished, and the polished cut surface is observed with an optical microscope to obtain image data (or a photograph). The acquired image data (or photograph) is binarized, and for example, the hole portion is set to be black, and the region other than the hole portion is set to be white. The ratio (area ratio) of the black area to the white area can be calculated as the porosity.
  • a surface hardened layer 16 is formed on the surface 14S of the high density region 14.
  • the surface of the root surface 18, the surface 21S of the tooth root region 21, the surface 22S of the meshing region 22, the surface 23S of the tooth tip region 23, and the surface of the tooth tip surface 19 are all present.
  • a surface hardened layer 16 is formed so as to extend.
  • the surface hardened layer 16 is formed so as to include the entire surface 14 ⁇ / b> S of the high-density region 14.
  • the surface hardened layer 16 can be easily formed as a carburized layer by performing a hardening process such as a carburizing and quenching process or a nitriding process.
  • the high-density region 14 may be formed by performing cold working. Since cold working can form the high-density region 14 without applying heat, it is possible to suppress changes in the metal structure and a decrease in dimensional accuracy.
  • a rolling die 30 is prepared in advance, and the rolling process is performed on the metal sintered body 1A.
  • the metal sintered body 1A is a basic material for producing the sintered gear 1 (see FIG. 1), and is obtained by press-molding a raw material powder containing a metal. The sintered metal body 1A is driven to rotate around the rotation axis 2 in the direction of the arrow AR1.
  • the rolling die 30 includes a main body portion 32 supported by a rotating shaft 31 and a plurality of blades 33 provided so as to protrude from the outer periphery of the main body portion 32, and has a hob shape (a screw shape like a hob) as a whole. )have.
  • the blade 33 of the rolling die 30 is formed so as to come into contact with the tooth root region 21.
  • the blade 33 has a root portion 34 formed in a cylindrical shape and a tip portion 35 formed in a hemispherical shape as a blade shape.
  • the rolling die 30 is driven to rotate around the rotation shaft 31 in the direction of the arrow AR30.
  • the sintered metal body 1A and the rolling die 30 are arranged in a so-called staggered shaft shape in which the rotating shaft 2 and the rotating shaft 31 do not intersect with each other and are not in a parallel positional relationship.
  • the metal sintered body 1A and the rolling die 30 are synchronized with each other while the rolling die 30 moves relative to the metal sintered body 1A in the direction of the arrow AR31.
  • the rolling die 30 is produced from a portion corresponding to the surface of the tooth root region of the metal sintered body 1A (the metal sintered body 1A) in a state where the rolling die 30 and the metal sintered body 1A are in contact with each other. Rolling is performed by applying pressure only to a portion corresponding to the surface 21S of the tooth root region 21 of the sintered gear 1.
  • a sintered gear 1 (see FIG. 1) having a high density region 14 (see FIG. 2) is obtained.
  • this rolling process (cold working) is performed in a step after the sintering and before the surface hardening treatment. Thereby, a comparatively big deformation
  • transformation can be given with a weak processing force.
  • the rolling die 30 a large surface pressure is applied to the tooth root region (refer to the tooth root forming region 7 in FIG. 10) of the sintered metal body 1 ⁇ / b> A during rolling while suppressing slippage during rolling. Can do.
  • the rolling die 30 it is possible to obtain a larger pressing amount with a small pressing load while preventing the shape of other regions from being damaged.
  • the radius of the tip 35 formed in the hemispherical shape of the rolling die 30 the amount of slip is reduced according to the rotational speed of the rolling die 30 and the moving speed of the rolling die 30. You can also.
  • the high-density region 14 is partially formed, and voids near the dangerous cross section 20 (tooth root portion) obtained by Hofer's 30 ° tangent method are reduced.
  • the maximum tensile stress is likely to be generated in the tooth root portion near the dangerous cross section 20, but the stress concentration source is reduced near the dangerous cross section 20 of the sintered gear 1.
  • the occurrence of cracks in the sintered gear 1 that is a sintered body and the progress of cracks slow down, and the sintered gear 1 can improve static strength, toughness, and fatigue strength (dynamic strength). It has become.
  • the sintered gear 1 in the present embodiment the high-density region 14 is partially formed, and the entire sintered gear 1 is not densified.
  • 2P2S twice-molded twice-sintered
  • the sintered gear 1 of the present embodiment since the surface hardened layer 16 is formed on the surface 14S of the high-density region 14, the generation of cracks is suppressed, and the static strength and fatigue strength of the surface 14S are further increased. It has improved. By performing carburizing, quenching, and tempering, the toughness inside the sintered gear 1 is ensured, so that the progress of cracks can also be suppressed. As described above, the sintered gear 1 of the present embodiment can exhibit improved static strength, improved toughness, and high fatigue characteristics while ensuring high dimensional accuracy.
  • cam 3 in the present embodiment is made of a sintered metal.
  • the cam 3 has a contact surface 36 that is formed on the outer peripheral surface and contacts other parts such as a rocker arm and a push rod in the engine, and a through hole 37 into which the cam shaft is inserted. .
  • a region where a maximum shear stress that can directly cause damage is formed under the contact surface 36. That is, the maximum shear stress region is the maximum stress position in the cam 3.
  • the cam 3 (see FIG. 6) is formed to include a base region 39, a maximum stress position 38, and a contact surface 36, and has a lower porosity than the base region 39.
  • Density region 40 More specifically, the high density region 40 is formed so as to include the entire area of the contact surface 36 that is the outer peripheral surface. And in the area
  • a raw material powder preparation step is performed as a step (S10).
  • this step (S10) for example, iron-based powders such as P1064 to 1084 and P3074 to 3106 in JIS Z 2550 are prepared as the metal powder that is the raw material powder of the sintered body.
  • the particle size of the prepared metal powder can be 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less in D50.
  • step (S20) the raw material powder prepared in step (S10) is filled in a mold and molded. Thereby, the molded object which has a shape corresponding to the shape of a desired mechanical component is produced. At this time, a lubricant and a sintering aid can be added to the raw material powder as necessary.
  • a sintering step is performed as a step (S30).
  • the molded body produced in the step (S20) is sintered by being heated in an inert gas atmosphere such as argon.
  • an inert gas atmosphere such as argon.
  • a sintered body having a schematic shape of a desired mechanical structural component such as a gear and a cam can be obtained.
  • the metal sintered compact produced has an average hole diameter of 100 micrometers or less.
  • a cold plastic working step is performed as a step (S40).
  • cold plastic working such as cold rolling is performed on a desired portion of the sintered body obtained in step (S30). Specifically, for example, by performing cold rolling on the vicinity of the tooth root of the gear or the contact surface of the cam, the porosity is higher than other regions so as to include the maximum stress position and include the surface. A high density region with a small is formed.
  • a curing process is performed as a process (S50).
  • a surface hardened layer is formed by subjecting a region including the surface of the sintered body in which the high density region has been formed in step (S40) to a hardening process such as a carburizing and quenching process. At this time, it is preferable that the thickness of the surface hardened layer is formed smaller than the thickness of the high density region.
  • a finishing step is performed as a step (S60).
  • a finishing process such as polishing is performed on a desired region as necessary.
  • the manufacturing method of the sintered gear 1 in this Embodiment is a raw material powder preparation process (S10), a formation process (S20), a sintering process (S30), a high-density tooth root area
  • S10 raw material powder preparation process
  • S20 formation process
  • S30 sintering process
  • S40 a high-density tooth root area
  • S40 high-density tooth root area
  • S40 region formation process
  • S50 surface hardened layer forming step
  • finishing step S60
  • the raw material powder made of metal is prepared as a raw material of the sintered body.
  • an iron-based material for structural parts in JIS Z 2550 may be prepared.
  • the particle size of the raw material powder made of metal is preferably 5 ⁇ m or more and 100 ⁇ m or less at D50. More preferably, the particle size of the raw material powder made of metal is 10 ⁇ m or more and 50 ⁇ m or less at D50.
  • the raw material powder prepared in the raw material powder preparation step (S10) is filled in a mold and press-molded.
  • a formed body having a shape corresponding to the shape of the sintered gear 1 (or the sintered metal body 1A shown in FIG. 10) is produced.
  • a lubricant or a sintering aid may be added to the raw material powder as necessary.
  • the molded body produced in the molding step (S20) is sintered by being heated in an inert gas atmosphere such as argon.
  • a sintered metal body 1A (see FIG. 10) having a schematic shape of the sintered gear 1 (see FIG. 1) is obtained.
  • the sintered metal body 1A having a relative density of 93% or more is manufactured.
  • the average pore diameter of the sintered metal body 1A is preferably 100 ⁇ m or less. The whole void
  • the sintered metal body 1A obtained by the sintering step (S30) has a schematic shape of the sintered gear 1 (see FIG. 1), and a plurality of discs are formed around the disc-shaped main body. Teeth 4 are formed.
  • the tooth 4 is a part corresponding to the tooth 12 (see FIG. 1) in the sintered gear 1 (see FIG. 1).
  • the tooth 4 extends from the tooth bottom surface 5 toward the tooth tip surface 6, and includes a tooth root forming region 7 (tooth root region), a mesh forming region 8 (meshing region), and a tooth tip forming region 9 (tooth tip region). ) Is included.
  • the tooth bottom 5 is a part corresponding to the tooth bottom 18 (see FIG. 2) in the sintered gear 1 (see FIG. 1).
  • the root surface 5 forms a root circle 5A.
  • the tooth tip surface 6 is a portion corresponding to the tooth tip surface 19 in the sintered gear 1.
  • the tooth root formation region 7 is a portion corresponding to the tooth root region 21 in the sintered gear 1.
  • the mesh formation region 8 is a region corresponding to the mesh region 22 in the sintered gear 1.
  • the tooth tip formation region 9 is a region corresponding to the tooth tip region 23 in the sintered gear 1.
  • a high density region (high density tooth root region) 14 is formed.
  • the root circle diameter D9 of the sintered metal body 1A before the high-density region 14 is formed is preferably larger in the range of 100 ⁇ m to 800 ⁇ m than the root circle diameter of the sintered gear 1 obtained as a finished product. . According to the said structure, it becomes possible to ensure the surplus thickness for pushing into a tooth root area
  • the amount of pushing is less than the size of the top determined by the module.
  • the root diameter D9 of the sintered metal body 1A may be about 100 to 500 ⁇ m larger than the root diameter of the sintered gear 1 obtained as a finished product. preferable.
  • the high-density tooth root region forming step (S40) cold working is performed. Cooling is performed on the surface of the tooth root formation region 7 (in other words, the surface corresponding to the surface 21S of the tooth root region 21 of the sintered gear 1) in the sintered metal body 1A obtained in the sintering step (S30). Cold working such as hot rolling is performed.
  • the tooth root forming region 7 (tooth base region) of the sintered metal body 1A includes the surface of the tooth root forming region 7 and a dangerous cross section determined by Hofer's 30 ° tangent method.
  • a high density region 14 having a higher density than any of the mesh formation region 8 (mesh region) and the tooth tip formation region 9 (tooth region) located on the tooth tip surface 6 side of the original region) is formed.
  • a hardening process is performed.
  • the region including the surface 14S of the high-density region 14 of the sintered metal body 1A on which the high-density region 14 is formed in the high-density tooth root region forming step (S40) is subjected to a hardening process such as a carburizing quenching tempering process or a nitriding process.
  • a hardening process such as a carburizing quenching tempering process or a nitriding process.
  • a finishing step (S60) is performed.
  • a finishing process such as polishing is performed on a desired region as necessary.
  • the method for manufacturing the sintered gear 1 in the present embodiment is completed, and the sintered gear 1 as shown in FIG. 1 can be obtained.
  • the sintered gear 1 can exhibit improved static strength, improved toughness, and high fatigue characteristics while ensuring high dimensional accuracy.
  • the surface hardness measurement by the Rockwell hardness meter and the ring compression fatigue test were performed on the test piece obtained by the above procedure.
  • the fatigue test conditions were a stress ratio of 0.1 and a frequency of 20 Hz.
  • the results of surface hardness measurement and fatigue test are shown in Table 2.
  • the cross-sectional observation photograph of the test piece of Example 1, Example 3, and the comparative example 1 is shown to FIG. 11, 12, and 13, respectively.
  • region obtained from the result of the fatigue test and ring compression fatigue strength is shown in FIG.
  • the fatigue strength was measured based on JIS Z 2273.
  • the obtained fatigue strength is compared with the fatigue strength of a test piece of a comparative example made of the same material.
  • the improvement rate is 10% or more and less than 20%, C, and 20% or more and less than 30%. 30% or more was evaluated as A.
  • the test piece of FIGS. 11 and 12 subjected to the cold rolling process has a high density region 54 in which the number of holes 59 is extremely small in the region including the processed surface 51. It can be seen that it is formed. On the other hand, it is confirmed that the holes 59 exist in the vicinity of the surface on the unprocessed surface 52 side where the processing is not performed.
  • Examples 1 to 6 corresponding to the examples of the present invention all have surface hardness increased and fatigue strength improved by 10% or more as compared with the corresponding comparative examples. .
  • the fatigue strength of the corresponding Comparative Example 1 was 300 MPa, whereas the fatigue strength was 450 MPa, and a very remarkable effect that the improvement rate was 50% was confirmed. From the above experimental results, it was confirmed that according to the mechanical structural component of the present invention, a mechanical structural component having high fatigue strength can be provided.
  • the thickness of the high-density region is preferably about 700 ⁇ m or less.
  • This experimental example includes each experiment based on Examples 1 to 5 and Comparative Examples 1 to 3.
  • the experimental procedure is as follows.
  • a metal powder having three kinds of materials and three kinds of powder average particle diameters (D50) shown in Table 3 was prepared as a raw material powder.
  • Each raw material powder was press-molded at the molding pressure shown in Table 3 and sintered under the sintering conditions shown in Table 3.
  • a sintered body having an outer diameter of ⁇ 20 mm and a wall thickness of t7 mm was obtained.
  • the high density tooth root region formed in the sintered metal bodies of Examples 1 to 5 had a porosity as shown in Table 5. Since the sintered gears (metal sintered bodies) of Comparative Examples 1 to 3 do not have a high-density tooth root region, Comparative Examples 1 to 3 in Table 5 are the metal sintered bodies of Examples 1 to 5. The porosity of the area
  • region formed in is described.
  • carburizing quenching and tempering treatment was performed to form a hardened surface layer.
  • the carburizing and quenching conditions were controlled so that the carburization depth was about 200 ⁇ m, and the tempering conditions performed thereafter were set at a processing temperature of 150 ° C. and a processing time of 90 min.
  • sintered gears in Examples 1 to 5 and Comparative Examples 1 to 3 were obtained.
  • the surface hardness of each of the sintered gear specimens of Examples 1 to 5 and Comparative Examples 1 to 3 obtained according to the above procedure was measured using a Rockwell hardness tester, and the root bending fatigue strength was measured. The test was conducted. Under the conditions of the root bending fatigue strength test, the number of straddle teeth was set to two, the stress ratio was set to 0.1, and the frequency was set to 40 Hz.
  • Table 5 shows the results of the surface hardness measurement and the root bending fatigue strength test.
  • the value evaluated based on the improvement rate (stress amplitude) of the fatigue strength before and after rolling is described.
  • this improvement rate is 10% or more and less than 20%
  • B evaluation is given.
  • this improvement rate is 20% or more and less than 30%
  • a evaluation is given.
  • S evaluation is given.
  • gears and cams have been described as examples of mechanical structural parts of the present invention.
  • the scope of the present invention is not limited to this, and the present invention can be applied to shafts, sprockets, and the like. it can.
  • the mechanical structural component and sintered gear of the present invention, and the production method thereof, are mechanical structural components and sintered that are required to achieve improvement in static strength, toughness, and fatigue strength while suppressing a decrease in dimensional accuracy. It can be applied particularly advantageously to gears, as well as to their production methods.
  • Sintered gear 1A metal sintered body, 2,31 rotating shaft, 3, cam, 4,12 teeth, 5,18 tooth bottom, 5A tooth bottom circle, 6 tooth tip surface, 7 tooth root forming region, 8 meshing formation area, 9 tooth tip forming area, 11, 32 body part, 13, 39 base area, 14 high density area (high density tooth root area), 14S, 15, 21S, 22S, 23S surface, 16, 41 surface Hardened layer, 17, 38 Maximum stress position, 20 critical section, 22 meshing area, 23 tooth tip area, 24, 59 holes, 30 rolling dies, 33 blades, 34 root part, 35 tip part, 36 contact surface, 37 Through hole, 51 machined surface, 52 unmachined surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Gears, Cams (AREA)

Abstract

 機械構造部品である焼結歯車は、金属焼結体からなる機械構造部品であって、ベース領域(13)と、最大引張応力または最大せん断応力が付加される位置である最大応力位置(17)を含み、かつ表面(15)を含むように形成され、ベース領域(13)よりも空孔率が小さい高密度領域(14)とを備え、表面(15)を含む領域には、硬化処理が施されることにより表面硬化層(16)が形成されている。

Description

機械構造部品および焼結歯車、ならびにこれらの製造方法
 本発明は機械構造部品および焼結歯車、ならびにこれらの製造方法に関し、より特定的には、焼結体からなる機械構造部品および金属焼結体からなる焼結歯車、ならびにこれらの製造方法に関するものである。
 古くから、歯車は動力を伝達するための機械構造部品として用いられている。歯車は、溶製材などを用いて作製される。溶製材からなる歯車の代表的な作製方法としては、ホブまたはラックカッターなどを用いる歯切り法が知られている。歯切り法においては、円盤形状を有する材料(歯車ブランク)が準備される。この歯車ブランクは、歯以外の部分が予め加工されている。歯車ブランクに対して歯溝を削り取る加工が行われることにより、所望の形状を有する歯車が得られる。
 歯切り法は、歯車ブランクを切削することにより所望の歯車形状を得るため、切削工程に長い時間を要したり、切り粉が発生して材料ロスが増加したりしやすい。近年では、歯切り法に代わって粉末冶金法が用いられる。粉末冶金法の中でも、特に、粉末プレス成形法が多く用いられている。粉末プレス成形法においては、原料粉末が金型内に充填される。金型を用いて原料粉末がプレス成形されることにより、原料粉末は、所定の形状に成形される。その後、成形された材料を焼成処理により焼結させることで、所望の形状を有する歯車が得られる。粉末プレス成形法は、作製時間を短縮させたり、材料ロスを低減させたりすることができる。
 原料金属粉末を、金型を用いてプレス成形することで目的の機械部品の形状に成形する粉末プレス成形法は、焼結体からなる機械構造部品の製造方法の1つとして挙げられる。粉末プレス成形法を用いて作製した焼結体からなる機械構造部品は、通常、相対密度(溶製材の真密度に対する焼結体の密度の割合)が85~92%程度であり、多くの空孔が焼結体内部に残存している。焼結体中の空孔は、応力負荷時に溶製材におけるき裂のような振る舞いをする。すなわち、空孔は応力集中源となり、引張強度、圧縮強度、曲げ強度などの静的強度のほか、衝撃強度(靭性)や疲労強度をも低下させる。そのため、焼結体からなる歯車などの機械構造部品は、溶製材からなるものと比較して、同じ材質であっても静的強度、靭性および疲労強度において劣るものとなりやすい。その結果、焼結体からなる機械構造部品の用途は限定されてきた。
 応力集中源となる空孔を低減する、つまり焼結体の高密度化を図ることが、焼結体からなる機械構造部品の静的強度、靭性および疲労強度の向上につながる。
 高密度の焼結体を得る技術として、2回成形2回焼結(2P2S)法が挙げられる(たとえば、特開平1-312056号公報(特許文献1)参照)。この方法は、一旦仮焼結した仮焼成形体を再び金型内で圧縮成形し、その後本焼結を施すことで高密度焼結体を得る方法である。また、高密度の焼結体を得る他の技術として、焼結後に後加工を施す焼結鍛造法が挙げられる(たとえば、特開昭58-133301号公報(特許文献2)参照)。この方法は、焼結体を金型に入れた状態で熱間鍛造を施す方法で、より真密度に近い焼結体を得ることができる。
 しかしながら、これらの方法では静的強度、靭性および疲労強度は向上する代わりに、熱履歴を加えることで残留応力の開放などに起因した形状の乱れが生じ、寸法精度が低下してしまうという問題が生じる。特に、焼結鍛造法においては、熱間鍛造を施すことによる更なる寸法精度の低下が問題となる。また、上記特許文献1,2に開示された方法は、いずれも特殊な工程を含んでいるため、製造コストも増大しやすい。
 これに対し、転造によって焼結体を緻密化することで曲げ強さと耐摩耗性の向上を図った技術が提案されている(たとえば、国際公開第92/05897号(特許文献3)参照)。また、転造によって焼結歯車の表面を緻密化する技術も提案されている(たとえば、特表平06-501988号公報(特許文献4)および特開2004-255387号公報(特許文献5)参照)。上記特許文献4に開示された方法では、歯車ブランクに対して平行軸歯車対の関係になるように配置された転造ダイスを用いて転造が施される。上記特許文献5に開示された方法では、ホブのような形状を有する転造ダイスを用いて転造が施される。
特開平1-312056号公報 特開昭58-133301号公報 国際公開第92/05897号 特表平06-501988 特開2004-255387号公報
 しかしながら、焼結体からなる機械構造部品の適用範囲を広げるためには、寸法精度の低下を抑制しつつ、さらなる静的強度、靭性および疲労強度の向上が求められる。
 本発明は、上述のような問題を解決するためになされたものであり、その一の目的は、寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上を達成することが可能な機械構造部品およびその製造方法を提供することである。また、本発明の他の目的は、高い形状精度を有し高い疲労特性を発揮することが可能な焼結歯車およびその製造方法を提供することである。
 本発明に従った機械構造部品は、金属焼結体からなる機械構造部品である。この機械構造部品は、ベース領域と、最大引張応力または最大せん断応力が付加される位置である最大応力位置を含み、かつ表面を含むように形成され、ベース領域よりも空孔率が小さい高密度領域とを備えている。そして上記表面を含む領域には、硬化処理が施されることにより表面硬化層が形成されている。
 本発明の機械構造部品においては、最大応力位置を含む表面付近の空孔が低減されているため、応力負荷時における応力集中源が減少している。そのため、焼結体である機械構造部品内での亀裂の発生および進展が鈍化して、静的強度、靭性および疲労強度が向上する。また、本発明の機械構造部品においては、最大応力位置を含む表面付近に限定してベース領域よりも空孔率が小さい高密度領域が形成されており、機械構造部品全体を高密度化する必要がない。そのため、機械構造部品全体を高密度化する上記2P2S法や焼結後に熱間鍛造を施す方法を採用する必要がないため、高い寸法精度を確保することが可能となる。また、上記表面を含む領域には、表面硬化層が形成されているため、当該表面の静的強度および疲労強度がさらに向上している。このように、本発明の機械構造部品によれば、寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上を達成することが可能な機械構造部品を提供することができる。
 なお、空孔率は、たとえば以下のように測定することができる。まず、機械構造部品を上記表面に垂直な断面において切断する。次に、切断面を研磨し、研磨された切断面を光学顕微鏡で観察し、画像データ(あるいは写真)を取得する。取得した画像データ(あるいは写真)を二値化処理し、たとえば空孔部が黒色、空孔部以外の領域が白色となるようにする。そして、黒色の領域の割合(面積率)を空孔率として算出する。また、上記最大応力位置とは、機械構造部品が正常に使用される際に、破損の直接的原因となる最大引張応力または最大せん断応力が負荷される位置を意味するものであって、たとえば歯車やスプロケットの歯元、転がり接触部材(カムなど)の接触表面下の最大せん断応力領域などを意味する。さらに、高密度領域に含まれる上記表面は、最大応力位置である表面領域または最大応力位置に最も近い表面領域を含んでいることが好ましい。
 上記機械構造部品においては、上記表面に垂直な断面において、表面硬化層の厚みは高密度領域の厚みよりも小さくなっていてもよい。これにより、上記表面において発生した亀裂が表面硬化層を貫通した場合でも、空孔が少なく高靭性である高密度領域において亀裂の進展が鈍化する。その結果、機械構造部品の靭性および疲労強度を一層向上させることができる。
 上記機械構造部品においては、上記硬化処理は浸炭焼入処理であってもよい。比較的容易に実施可能な浸炭焼入処理は、上記表面硬化層の形成に好適である。
 上記機械構造部品においては、上記表面に垂直な断面において、高密度領域の厚みは100μm以上となっていてもよい。厚み100μm以上の高密度領域を形成することにより、静的強度、靭性および疲労強度をより確実に向上させることができる。
 上記機械構造部品においては、上記表面に垂直な断面において、高密度領域の厚みは700μm以下となっていてもよい。700μmを超える厚みの高密度領域を形成した場合、亀裂敏感性が高くなり、疲労強度が低下するおそれがある。高密度領域の厚みを700μm以下とすることにより、このような問題の発生を抑制することができる。
 上記機械構造部品においては、高密度領域の空孔率は2%未満であってもよい。これにより、静的強度、靭性および疲労強度をより確実に向上させることができる。
 上記機械構造部品においては、ベース領域の空孔率は2%以上15%以下であってもよい。ベース領域の空孔率を2%以上とすることにより、上記2P2S法や焼結後に熱間鍛造を実施する方法を用いることなく、容易にベース領域を形成することができる。一方、ベース領域の空孔率を15%以下とすることにより、ベース領域に必要な強度を容易に確保することができる。
 上記機械構造部品においては、上記表面の硬度はHRA75以上であってもよい。これにより、上記表面に高い強度を付与することが可能となる。
 上記機械構造部品においては、冷間加工が実施されることにより上記高密度領域が形成されていてもよい。これにより、熱を加えることなく高密度領域を形成できるため、寸法精度の低下を抑制することができる。
 上記機械構造部品においては、上記冷間加工は、冷間圧延加工であってもよい。冷間圧延加工は、上記高密度領域の形成に好適である。
 上記機械構造部品においては、上記金属焼結体は鉄が主成分であってもよい。また、上記金属焼結体は、80質量%以上の鉄を含有するものであってもよい。このように鉄を主成分とする金属焼結体は、本発明の機械構造部品の材料として好適である。
 上記機械構造部品は、動力伝達部品として用いられてもよい。寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上が達成された本発明の機械構造部品は、高い寸法精度および耐久性が求められる動力伝達部品に用いることができる。
 上記機械構造部品においては、上記金属焼結体からなる試験片を作製してリング圧縮疲労試験を実施した場合、疲労強度が300MPa以上となることが好ましい。このように、高い疲労強度を有する金属焼結体は、本発明の機械構造部品の材料として好適である。なお、上記疲労強度は、後述の実施例に記載の方法により調査することができる。
 本発明に従った焼結歯車は、上記本発明に従った機械構造部品からなる。この焼結歯車は、歯元領域と、上記歯元領域よりも歯先面側に位置するかみ合い領域と、上記かみ合い領域よりも上記歯先面側に位置する歯先領域とを備えている。上記歯元領域には、上記歯元領域の表面およびHoferの30°接線法によって求められる危険断面を含むように、上記かみ合い領域および上記歯先領域のいずれよりも高い密度を有する上記高密度領域が形成されている。上記高密度領域の表面には、表面硬化層が形成されている。
 上記高密度領域の空孔率は、2%以下であってもよい。上記表面硬化層は、浸炭焼入れ焼戻し処理が施されることにより形成されていてもよい。上記高密度領域の表面の硬度は、HRA75以上であってもよい。上記高密度領域は、冷間加工が実施されることにより形成されていてもよい。
 上記高密度領域は、上記金属焼結体のうちの上記歯元領域の表面に対応する部分のみを転造加工する転造ダイスを用いた上記冷間加工により形成されていてもよい。上記高密度領域は、ホブ形状を有する上記転造ダイスの回転と上記金属焼結体の回転とを相互に同期させながら上記金属焼結体のうちの上記歯元領域の表面に対応する部分のみを転造加工する上記冷間加工により形成されていてもよい。上記高密度領域は、円柱形状に形成された根元部と半球形状に形成された先端部とを刃形状として有する上記転造ダイスを用いた上記冷間加工により形成されていてもよい。
 本発明に従った機械構造部品の製造方法は、金属からなる原料粉末を準備する工程と、原料粉末を焼結することにより金属焼結体を作製する工程と、最大引張応力または最大せん断応力が付加される位置である最大応力位置を含み、かつ表面を含むように、他の領域よりも空孔率が小さい高密度領域を形成する工程と、上記表面を含む領域に、硬化処理を施すことにより表面硬化層を形成する工程とを備えている。これにより、上記本発明の機械構造部品を製造することができる。
 上記機械構造部品の製造方法においては、高密度領域を形成する工程では、上記表面に対して冷間加工が実施されることにより高密度領域が形成されてもよい。これにより、寸法精度を維持しつつ高密度領域を容易に形成することができる。
 上記機械構造部品の製造方法においては、金属焼結体を作製する工程では、相対密度が93%以上である金属焼結体が作製されてもよい。また、上記機械構造部品の製造方法においては、金属焼結体を作製する工程では、平均空孔径が100μm以下である金属焼結体が作製されてもよい。このようにすることにより、たとえば高密度領域が冷間加工にて形成される場合、少ない加工代で十分な緻密性を有する高密度領域を得ることができる。
 上記機械構造部品の製造方法においては、原料粉末を準備する工程では、D50において100μm以下の粒度の原料粉末が準備されてもよい。このようにすることにより、金属焼結体の空孔を抑制することができる。一方、原料粉末を準備する工程では、D50において5μm以上の粒度の原料粉末が準備されてもよい。原料粉末の粒径が細かくなりすぎると、粉末同士や粉末と金型との間における摩擦が大きくなって成形性が悪化する。その結果、作製される圧粉体の密度がかえって低下し、金属焼結体の空孔が多くなるおそれがある。D50において5μm以上の粒度の原料粉末を採用することにより、このような成形性の悪化を抑制することができる。
 本発明に従った焼結歯車の製造方法は、上記本発明に従った機械構造部品の製造方法を用いた焼結歯車の製造方法である。この焼結歯車の製造方法において、上記高密度領域を形成する工程では、上記金属焼結体の歯元領域に、上記歯元領域の表面およびHoferの30°接線法によって求められる危険断面を含み、且つ、上記歯元領域よりも歯先面側に位置するかみ合い領域および歯先領域のいずれよりも高い密度を有する上記高密度領域が形成される。また、上記表面硬化層を形成する工程では、上記高密度領域の表面に上記表面硬化層が形成される。
 上記焼結歯車の製造方法において、上記表面硬化層を形成する工程では、浸炭焼入れ焼戻し処理が施されることにより上記表面硬化層が形成されてもよい。また、上記高密度領域を形成する工程では、冷間加工が実施されることにより上記高密度領域が形成されてもよい。また、上記金属焼結体を作製する工程では、93%以上の相対密度を有する上記金属焼結体が作製されてもよい。
 また、上記焼結歯車の製造方法において、上記原料粉末を準備する工程では、平均粒径がD50において100μm以下の粒度を有する上記原料粉末が準備されてもよい。また、上記高密度領域が形成される前の上記金属焼結体の歯底円直径は、完成品として得られる上記焼結歯車の歯底円直径よりも、100μm~800μmの範囲で大きくなっていてもよい。
 以上の説明から明らかなように、本発明の機械構造部品およびその製造方法によれば、寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上を達成することが可能な機械構造部品およびその製造方法を提供することができる。また、本発明の焼結歯車およびその製造方法によれば、高い形状精度を有し高い疲労特性を発揮することが可能な焼結歯車およびその製造方法を提供することができる。
本発明の実施の形態における焼結歯車の構造を示す概略図である。 本発明の実施の形態における焼結歯車の内部構造を示す部分断面図である。 本発明の実施の形態における焼結歯車の歯元付近に存在する空孔を示す概略部分断面図である。 本発明の実施の形態における焼結歯車の歯に形成されたHoferの30°接線法によって求められる危険断面を説明するための断面図である。 本発明の実施の形態における焼結歯車の製造方法に用いられる転造ダイスを示す図である。 本発明の実施の形態におけるカムの構造を示す概略図である。 本発明の実施の形態におけるカムの内部構造を示す概略部分断面図である。 本発明の実施の形態における機械構造部品の製造方法の概略を示すフローチャートである。 本発明の実施の形態における焼結歯車の製造方法を示す図である。 本発明の実施の形態における焼結歯車の製造方法の焼結工程で得られる金属焼結体を示す図である。 本発明の実施例における試験片の断面写真である。 本発明の実施例における試験片の断面写真である。 本発明の実施例における試験片の断面写真である。 高密度領域の厚みとリング圧縮疲労強度との関係を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 まず、歯車を例として、本発明の機械構造部品の一実施の形態について説明する。図1を参照して、動力伝達部品である焼結歯車1(歯車)は、円盤状の形状を有する本体部11と、本体部11から径方向に突出する複数の歯12とを備えている。焼結歯車1は、金属焼結体からなっている。この金属焼結体は、鉄が主成分であってもよく、より具体的には80質量%以上の鉄を含有するものであってもよい。
 図1および図2を参照して、焼結歯車1が正常に使用される状態においては、歯元部分に破損の直接的な原因となり得る最大引張応力が付加される。すなわち、焼結歯車1においては、歯元表面が最大応力位置17である。この焼結歯車1は、ベース領域13と、最大応力位置17を含み、かつ表面15を含むように形成され、ベース領域13よりも空孔率が小さい高密度領域(高密度歯元領域)14とを備えている。より具体的には、高密度領域14は、歯12の歯元を含むように形成されている。そして、表面15を含む領域には、表面硬化層16が形成されている。この表面硬化層16は、たとえば浸炭焼入処理により形成された浸炭層である。
 本実施の形態における焼結歯車1においては、高密度領域14が形成されることにより最大応力位置17を含む表面15付近の空孔が低減されているため、応力負荷時における応力集中源が減少している。より具体的には、本実施の形態では、表面からの亀裂の発生および進展により破損の発生し易い歯元付近に高密度領域14が形成されて応力集中源である空孔が低減されている。そのため、焼結体である焼結歯車1内での亀裂の進展が鈍化し、静的強度、靭性および疲労強度が向上している。また、焼結歯車1においては、焼結歯車1全体を高密度化するのではなく、最大応力位置17を含む表面15付近に限定して高密度領域14が形成されている。そのため、高密度領域14の形成に熱間鍛造などを用いることなく、たとえば冷間圧延などの冷間加工を用いて高密度領域14を形成することができる。そのため、焼結歯車1の高い寸法精度を達成することができる。また、表面15を含む領域には、表面硬化層16が形成されているため、表面15の静的強度および疲労強度がさらに向上している。このように、本実施の形態における焼結歯車1は、寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上が達成された機械構造部品となっている。
 また、焼結歯車1においては、図2に示すように、表面15に垂直な断面において、表面硬化層16の厚みは高密度領域14の厚みよりも小さくなっていることが好ましい。これにより、表面15において発生した亀裂が表面硬化層16を貫通した場合でも、空孔が少なく高靭性である高密度領域14において亀裂の進展が鈍化する。その結果、焼結歯車1の靭性および疲労強度を一層向上させることができる。なお、高密度領域14の厚みとは、高密度領域14において表面と表面から最も遠い領域との距離をいう。また、高密度領域14の厚みは、たとえばベース領域13に対して空孔率が10%以上低減されている領域の厚みとすることができる。
 さらに、焼結歯車1においては、表面15に垂直な断面において、高密度領域14の厚みは100μm以上であることが好ましい。これにより、静的強度、靭性および疲労強度をより確実に向上させることができる。一方、上記高密度領域14の厚みは700μm以下であることが好ましく、300μm以下であることが好ましく、250μm以下であることがさらに好ましい。これにより、亀裂敏感性が高くなることを抑制し、高い疲労強度を確保することができる。
 また、焼結歯車1においては、高密度領域14の空孔率は2%未満であることが好ましい。これにより、静的強度、靭性および疲労強度をより確実に向上させることができる。一方、ベース領域13の空孔率は2%以上15%以下とすることができる。
 さらに、焼結歯車1においては、表面15の硬度はHRA75以上であることが好ましい。これにより、表面15に高い強度を付与することができる。
 また、焼結歯車1においては、冷間圧延加工などの冷間加工が実施されることにより上記高密度領域14が形成されることが好ましい。これにより、熱を加えることなく高密度領域14を形成できるため、寸法精度の低下を抑制することができる。
 さらに、焼結歯車1においては、焼結歯車1を構成する金属焼結体からなる試験片を作製してリング圧縮疲労試験を実施した場合、疲労強度が300MPa以上となることが好ましい。これにより、焼結歯車1の高い疲労強度を確保することができる。
 また、図3を参照して、高密度領域14内(図2参照)においては、空孔24が焼結歯車1(図1参照)の外周に沿って伸びる扁平形状を有していることが好ましい。より具体的には、Hoferの30°接線法における最大曲げ応力が作用する危険断面と呼ばれる部分に当たる歯元表面下に存在する空孔24を、危険断面に対して空孔24の長手方向が垂直になるように配向させることが好ましい。これにより、亀裂の進展方向における空孔24の幅が小さくなり、空孔24の亀裂進展促進効果が抑制されるため、疲労強度が向上する。
 次に、焼結歯車1の構造についてより詳細に説明する。図2を参照して、歯12は、本体部11(図1参照)に対応するベース領域13の外縁である歯底面18から、歯先面19に向かって突出するように形成されている。歯12は、歯底面18側に位置する歯元領域21と、歯元領域21よりも歯先面19側に位置するかみ合い領域22と、かみ合い領域22よりも歯先面19側に位置する歯先領域23とを含む。焼結歯車1の歯12には、Hoferの30°接線法によって求められる危険断面20が形成されている。
 図4は、歯12に形成されたHoferの30°接線法によって求められる危険断面20を説明するための断面図である。図示上の便宜のため、図4の中の歯12には、高密度歯元領域14(図2を参照して詳細は後述する)および表面硬化層16(図2を参照して詳細は後述する)のいずれも図示されていない。
 図4に示すように、歯12に形成されたHoferの30°接線法によって求められる危険断面20とは、歯12の歯形中心線CCに対してそれぞれ30°の角度θ1,θ2で交差する直線L1,L2が、歯12の歯元の歯形曲線に内接する位置(2点)を結んだ際に形成される仮想的な断面である。焼結歯車1の歯12に荷重が作用するとき、危険断面20は周囲の部位に比べて破損しやすい。
 図2を再び参照して、歯12の歯元領域21には、高密度領域14が形成されている。高密度領域14は、歯元領域21の表面21Sの略全体に及ぶように形成され、且つ、Hoferの30°接線法によって求められる危険断面20の両端寄りの部分を含むように形成されている。高密度領域14の密度は、かみ合い領域22の密度よりも高く、且つ、歯先領域23の密度よりも高い。
 換言すると、高密度領域14の空孔率は、かみ合い領域22の空孔率よりも小さく、かつ、歯先領域23の空孔率よりも小さい。高密度領域14の空孔率は、2%以下であるとよい。この構成によれば、静的強度、靭性および疲労強度をより向上させることができる。高密度領域14の表面14Sの硬度は、HRA(ロックウェル硬さAスケール)で75以上であるとよい。この構成によれば、高密度領域14の表面14Sに高い強度を付与することが可能となる。
 高密度領域14の空孔率は、たとえば以下のように測定することができる。まず、焼結歯車1の歯12を、高密度領域14の表面14Sに垂直な断面において切断する。次に、切断面を研磨し、研磨された切断面を光学顕微鏡で観察し、画像データ(あるいは写真)を取得する。取得した画像データ(あるいは写真)を二値化処理し、たとえば空孔部が黒色となるように設定し、空孔部以外の領域が白色となるように設定する。白色の領域に対する黒色の領域の割合(面積率)は、空孔率として算出されることができる。
 高密度領域14の表面14Sには、表面硬化層16が形成されている。本実施の形態の歯12においては、歯底面18の表面、歯元領域21の表面21S、かみ合い領域22の表面22S、歯先領域23の表面23S、および、歯先面19の表面の全部に及ぶように、表面硬化層16が形成されている。表面硬化層16は、高密度領域14の表面14Sの全部を含むように形成されている。表面硬化層16は、浸炭焼入れ処理または窒化処理などの硬化処理が施されることにより、浸炭層として容易に形成されることができる。
 図5を参照して、高密度領域14(図2参照)は、冷間加工が実施されることにより形成されているとよい。冷間加工は、熱を加えることなく高密度領域14を形成することができるため、金属組織の変化および寸法精度の低下を抑制することができる。たとえば、高密度領域14が形成される際には、転造ダイス30が予め準備され、金属焼結体1Aに対して転造加工が実施される。金属焼結体1Aは、焼結歯車1(図1参照)を作製するための基本材料であり、金属を含む原料粉末がプレス成形されることによって得られる。金属焼結体1Aは、回転軸2の周りに、矢印AR1方向に回転駆動される。
 転造ダイス30は、回転軸31によって支持された本体部32と、本体部32の外周から突出するように設けられた複数の刃33とを含み、全体としてホブ形状(ホブのようなネジ形状)を有している。転造ダイス30の刃33は、歯元領域21と接触するように形成される。刃33は、円柱形状に形成された根元部34と、半球形状に形成された先端部35とを、刃形状として有している。転造ダイス30は、回転軸31の周りに、矢印AR30方向に回転駆動される。
 金属焼結体1Aおよび転造ダイス30は、回転軸2および回転軸31同士が交差せず且つ平行な位置関係にもならない、いわゆる筋違い軸状に配置される。金属焼結体1Aおよび転造ダイス30は、転造ダイス30が金属焼結体1Aに対して矢印AR31方向に相対移動しながら、各々の回転が相互に同期される。転造ダイス30は、転造ダイス30および金属焼結体1A同士が接触した状態で、金属焼結体1Aのうちの歯元領域の表面に対応する部分(金属焼結体1Aから作製される焼結歯車1の歯元領域21の表面21Sに対応する部分)のみに圧力を付与して転造加工する。
 この転造加工によって、高密度領域14(図2参照)を有する焼結歯車1(図1参照)が得られる。詳細は後述されるが、この転造加工(冷間加工)は、焼結後で表面硬化処理が施される前の工程で行われる。これにより、弱い加工力で、比較的大きな変形を施すことができる。転造ダイス30によれば、転造時のすべりを抑制しつつ、転造時に金属焼結体1Aの歯元領域(図10における歯元形成領域7を参照)に大きな面圧を付与することができる。転造ダイス30によれば、他の領域の形状を損なうことを防止しつつ、少ない押付け荷重でより大きな押込み量を得ることができる。転造ダイス30の半球形状に形成された先端部35の半径の大きさを調整することで、転造ダイス30の回転数と転造ダイス30の移動速度とに応じて、滑り量を低減することもできる。
 本実施の形態における焼結歯車1では、高密度領域14が部分的に形成され、Hoferの30°接線法によって求められる危険断面20付近(歯元部分)の空孔が低減されている。焼結歯車1が使用される状態においては、危険断面20付近の歯元部分に最大引張応力が発生しやすいが、焼結歯車1の危険断面20付近においては応力集中源が減少している。焼結体である焼結歯車1の歯12の表面からの亀裂の発生および歯12の内部への亀裂の進展により破損が発生し易い歯元付近に高密度領域14が形成されていることにより、焼結体である焼結歯車1内での亀裂の発生および亀裂の進展が鈍化し、焼結歯車1は、静的強度、靭性および疲労強度(動的強度)を向上させることが可能となっている。
 冒頭で説明した特表平06-501988号公報(特許文献4)および特開2004-255387号公報(特許文献5)に開示された転造方法においては、歯先から歯元に向かって歯面全体に対して加工が施される。十分な転造押込み量を確保しつつ、且つ、かみ合い領域の形状精度を保つように加工を施すためには、歯面の肉の流れを考慮しなければならず、歯先部転造時に歯元に大きな曲げ応力がかかってしまい、歯元領域(特に危険断面)での割れまたは微小クラックが生じる恐れもある。歯面での転造ダイスの滑り量が大きくなりやすく、十分な転造押し込み量を確保しつつ、高精度の歯面形状をも確保することは、特許文献4,5の方法では困難である。
 これに対して本実施の形態における焼結歯車1では、高密度領域14が部分的に形成されており、焼結歯車1の全体が高密度化されてはいない。焼結歯車1の製造に際して、焼結歯車1の全体を高密度化する2回成形2回焼結(2P2S)法、および、焼結後に熱間鍛造を施す方法のいずれも採用される必要がない。高密度領域14を含む焼結歯車1は、冷間圧延処理などの冷間加工を用いて作製されることができるため、高い寸法精度を確保することが可能となる。
 本実施の形態の焼結歯車1においては、高密度領域14の表面14Sに表面硬化層16が形成されているため、き裂の発生が抑制され、表面14Sの静的強度および疲労強度がさらに向上している。浸炭焼入れ焼戻しを施すことで焼結歯車1の内部の靱性が確保されるため、き裂の進展も抑制されることができる。以上述べたように、本実施の形態の焼結歯車1は、高い寸法精度を確保しながら、静的強度の向上および靭性の向上、ならびに、高い疲労特性を発揮することができる。
 次に、本発明の他の実施の形態として、動力伝達部品であるカムに対して本願発明を適用した場合について説明する。この実施の形態におけるカムは、ベース領域、高密度領域、表面硬化層の構成において、上記焼結歯車と基本的には同様の構成を有し、同様の効果を奏する。図6を参照して、本実施の形態におけるカム3は、金属焼結体からなっている。そして、カム3には、外周面に形成され、エンジン内において他の部品であるロッカーアームやプッシュロッドなどに接触する接触面36と、カム軸が挿入される貫通孔37とが形成されている。カム3が正常に使用される状態においては、接触面36下に破損の直接的な原因となり得る最大せん断応力が作用する領域が形成される。すなわち、当該最大せん断応力領域がカム3における最大応力位置である。
 図7を参照して、カム3(図6参照)は、ベース領域39と、最大応力位置38を含み、かつ接触面36を含むように形成され、ベース領域39よりも空孔率が小さい高密度領域40とを備えている。より具体的には、高密度領域40は、外周面である接触面36の全域を含むように形成されている。そして、接触面36を含む領域には、硬化処理が施されることにより表面硬化層41が形成されている。また、本実施の形態においては、接触面36に垂直な断面において、表面硬化層41の厚みは高密度領域40の厚みよりも小さくなっている。
 次に、上記焼結歯車1およびカム3の製造方法の一例について説明する。図8を参照して、本実施の形態における機械構造部品の製造方法では、工程(S10)として原料粉末準備工程が実施される。この工程(S10)では、焼結体の原料粉末である金属粉末として、たとえばJIS Z 2550におけるP1064~1084やP3074~3106などの鉄系粉末が準備される。また、準備される金属粉末の粒度は、D50において5μm以上100μm以下、より好ましくは10μm以上50μm以下とすることができる。
 次に、工程(S20)では、工程(S10)において準備された原料粉末が金型に充填されて成形される。これにより、所望の機械部品の形状に対応する形状を有する成形体が作製される。このとき、必要に応じて原料粉末に潤滑剤や焼結助剤を添加することができる。
 次に、工程(S30)として焼結工程が実施される。この工程(S30)では、工程(S20)において作製された成形体が、たとえばアルゴンなどの不活性ガス雰囲気中において加熱されることにより、焼結される。これにより、歯車、カムなど所望の機械構造部品の概略形状を有する焼結体が得られる。このとき、相対密度が93%以上である金属焼結体が作製されることが好ましい。また、作製される金属焼結体は、平均空孔径が100μm以下であることが好ましい。
 次に、工程(S40)として冷間塑性加工工程が実施される。この工程(S40)では、工程(S30)において得られた焼結体の所望の部位に対して冷間圧延加工などの冷間塑性加工が施される。具体的には、たとえば歯車の歯元付近やカムの接触面に対して冷間圧延が施されることにより、最大応力位置を含み、かつ表面を含むように、他の領域よりも空孔率が小さい高密度領域が形成される。
 次に、工程(S50)として硬化処理工程が実施される。この工程(S50)では、工程(S40)において高密度領域が形成された焼結体の上記表面を含む領域に、たとえば浸炭焼入処理などの硬化処理を施すことにより表面硬化層を形成する。このとき、表面硬化層の厚みは、高密度領域の厚みよりも小さく形成されることが好ましい。
 次に、工程(S60)として、仕上げ工程が実施される。この工程では、必要に応じて所望の領域に研磨などの仕上げ加工が実施される。以上の手順により、本実施の形態における機械構造部品の製造方法は完了し、上記焼結歯車1、カム3などの機械構造部品が完成する。
 次に、上記焼結歯車1の製造方法についてより詳細に説明する。図9を参照して、本実施の形態における焼結歯車1の製造方法は、原料粉末準備工程(S10)、成形工程(S20)、焼結工程(S30)、高密度歯元領域形成工程(S40)、表面硬化層形成工程(S50)、および、仕上げ工程(S60)を備えている。これらの各工程(S10)~(S60)は、この順番で実施されることができる。
 原料粉末準備工程(S10)においては、上述のように、金属からなる原料粉末が、焼結体の原料として準備される。金属からなる原料粉末としては、JIS Z 2550における構造部品用鉄系材料が準備されるとよい。金属からなる原料粉末の粒度は、好ましくは、D50において5μm以上100μm以下である。より好ましくは、金属からなる原料粉末の粒度は、D50において10μm以上50μm以下である。
 成形工程(S20)においては、上述のように、原料粉末準備工程(S10)で準備された原料粉末が、金型に充填されてプレス成形される。焼結歯車1(若しくは、図10に示す金属焼結体1A)の形状に対応する形状を有する成形体が作製される。このとき、必要に応じて原料粉末に潤滑剤または焼結助剤が添加されてもよい。
 焼結工程(S30)においては、成形工程(S20)で作製された成形体が、たとえばアルゴンなどの不活性ガス雰囲気中において加熱されることにより、焼結される。焼結歯車1(図1参照)の概略形状を有する金属焼結体1A(図10参照)が得られる。このとき、相対密度が93%以上である金属焼結体1Aが作製されることが好ましい。たとえば高密度領域14が冷間加工によって形成される場合、少ない加工代で十分な緻密性を有する高密度領域14を得ることができる。金属焼結体1Aの平均空孔径は、100μm以下であることが好ましい。金属焼結体1Aの全体の空孔を抑制することができる。
 図10に示すように、焼結工程(S30)によって得られた金属焼結体1Aは、焼結歯車1(図1参照)の概略形状を有し、円盤状の本体部の周りに複数の歯4が形成されている。歯4は、焼結歯車1(図1参照)における歯12(図1参照)に対応する部位である。歯4は、歯底面5から歯先面6に向かって延びており、歯元形成領域7(歯元領域)、かみ合い形成領域8(かみ合い領域)、および、歯先形成領域9(歯先領域)を含んでいる。
 歯底面5は、焼結歯車1(図1参照)における歯底面18(図2参照)に対応する部位である。歯底面5は、歯底円5Aを形成している。歯先面6は、焼結歯車1における歯先面19に対応する部位である。歯元形成領域7は、焼結歯車1における歯元領域21に対応する部位である。かみ合い形成領域8は、焼結歯車1におけるかみ合い領域22に対応する領域である。歯先形成領域9は、焼結歯車1における歯先領域23に対応する領域である。
 次述する高密度歯元領域形成工程(S40)において、高密度領域(高密度歯元領域)14が形成される。高密度領域14が形成される前の金属焼結体1Aの歯底円直径D9は、完成品として得られる焼結歯車1の歯底円直径よりも、100μm~800μmの範囲で大きいことが好ましい。当該構成によれば、後に行われる冷間加工において、歯元領域(歯元形成領域7)に押し込むための余肉を確保することが可能となる。
 完成品としての焼結歯車1に高い形状精度を確保するためには、押し込み量をモジュールから決まる頂げきの大きさ以下にすることも好ましい。当該構成によれば、歯面のかみ合い領域を塑性加工することなく、歯元領域(歯元形成領域7)のみに対して塑性加工を実施することが可能になる。たとえばモジュールの焼結歯車1を作製する場合、金属焼結体1Aの歯底円直径D9は、完成品として得られる焼結歯車1の歯底円直径よりも、100~500μm程度大きくすることが好ましい。
 高密度歯元領域形成工程(S40)においては、冷間加工が実施される。焼結工程(S30)において得られた金属焼結体1Aのうちの歯元形成領域7の表面(換言すると、焼結歯車1の歯元領域21の表面21Sに対応する表面)に対して冷間圧延処理などの冷間加工が施される。金属焼結体1Aの歯元形成領域7(歯元領域)には、歯元形成領域7の表面およびHoferの30°接線法によって求められる危険断面を含み、且つ、歯元形成領域7(歯元領域)よりも歯先面6側に位置するかみ合い形成領域8(かみ合い領域)および歯先形成領域9(歯先領域)のいずれよりも高い密度を有する高密度領域14が形成される。
 図9を再び参照して、表面硬化層形成工程(S50)においては、硬化処理が実施される。高密度歯元領域形成工程(S40)において高密度領域14が形成された金属焼結体1Aの高密度領域14の表面14Sを含む領域に、たとえば浸炭焼入れ焼戻し処理または窒化処理などの硬化処理を施すことにより、表面硬化層16が形成される。
 次に、仕上げ工程(S60)が実施される。この工程では、必要に応じて所望の領域に研磨などの仕上げ加工が実施される。以上の手順により、本実施の形態における焼結歯車1の製造方法は完了し、図1に示すような焼結歯車1を得ることができる。上述のとおり、焼結歯車1は、高い寸法精度を確保しながら、静的強度の向上および靭性の向上、ならびに、高い疲労特性を発揮することができる。
 本発明の機械構造部品の優位性を確認する実験を行なった。実験の手順は以下のとおりである。まず、以下の表1に示す3種類の金属粉末を原料粉末として準備し、表1の条件で成形、焼結を行なった。得られた焼結体に、表2に示す加工代で冷間圧延加工を施した後、当該焼結体を浸炭雰囲気中において870℃に加熱し30分間保持することにより、厚み120μmの浸炭層を表面に形成した。その後、焼入硬化した上で、150℃に加熱し90分間保持することにより、焼戻処理を行なった。以上の手順により、外径φ24mm×内径φ18mm×高さ7mm(肉厚3mm)のリング状試験片を作製した。また、上記冷間圧延加工は、試験片の内周面に対して施した(実施例1~6)。また、比較のため、同様の手順において冷間圧延加工を省略した試験片も作製した(比較例1~3)。
Figure JPOXMLDOC01-appb-T000001
 上記手順で得られた試験片に対してロックウェル硬度計による表面硬度測定、およびリング圧縮疲労試験を実施した。疲労試験の条件は応力比0.1、周波数20Hzとした。表面硬度測定および疲労試験の結果を表2に示す。また、実施例1、実施例3および比較例1の試験片の断面観察写真を、それぞれ図11、12および13に示す。さらに、疲労試験の結果から得られた高密度領域の厚みとリング圧縮疲労強度との関係を図14に示す。なお、疲労強度はJIS Z 2273に基づいて測定した。また、得られた疲労強度を、同一材料からなる比較例の試験片の疲労強度と比較し、向上の割合が10%以上20%未満のものをC、20%以上30%未満のものをB、30%以上のものをAと評価した。
 図11~図13を参照して、冷間圧延加工を施された図11および図12の試験片には、加工面51を含む領域に空孔59の存在数が著しく少ない高密度領域54が形成されていることが分かる。一方、加工が実施されなかった未加工面52側には、表面付近にまで空孔59が存在していることが確認される。
 そして、表2を参照して、本発明の実施例に対応する実施例1~6は、いずれも対応する比較例に比べて表面硬度が上昇するとともに、疲労強度が10%以上向上している。特に、実施例2においては、対応する比較例1の疲労強度が300MPaであったのに対し、疲労強度が450MPaとなり、向上率が50%という極めて顕著な効果が確認された。以上の実験結果から、本発明の機械構造部品によれば、高い疲労強度を有する機械構造部品を提供できることが確認された。
 また、図14を参照して、高密度領域の厚みが大きくなりすぎると、かえって疲労強度が低下することが分かる。このことから、高密度領域の厚みは700μm以下程度にすることが好ましいといえる。
 次に、表3~表5を参照して、本発明に関する他の実施例について説明する。この実験例は、実施例1~5および比較例1~3に基づく各実験を含む。実験の手順は以下のとおりである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 まず、表3に示す3種類の材質および3種類の粉末平均粒径(D50)を有する金属粉末を原料粉末として準備した。それぞれの原料粉末を、表3に示される成形圧力でプレス成形し、表3に示される焼結条件で焼結した。外径φ20mm×肉厚t7mmの寸法を有する焼結素形体が得られた。
 実施例1~5および比較例1~3のそれぞれで得られた焼結素形体に対して、切削加工を実施した。表4に示される各歯車特性を有するように、実施例1~5および比較例1~3のそれぞれで得られた焼結素形体は加工された。実施例1~5で得られた金属焼結体の歯底部については、切削加工の後、表5に示されるそれぞれの圧下量で冷間加工を実施した。この冷間加工が実施されることにより、歯元領域の表面の略全体に及ぶように、且つ、Hoferの30°接線法によって求められる危険断面の両端寄りの部分を含むように、高密度歯元領域が形成された。
 実施例1~5の金属焼結体に形成された高密度歯元領域は表5に示されるような空孔率を有していた。比較例1~3の焼結歯車(金属焼結体)は高密度歯元領域を有していないため、表5中の比較例1~3については、実施例1~5の金属焼結体に形成された高密度歯元領域に対応する領域の空孔率が記載されている。
 高密度歯元領域の形成後、浸炭焼入れ焼戻し処理を実施し、表面硬化層を形成した。浸炭焼入れの条件は、浸炭深さが約200μmとなるように制御され、その後に行った焼戻し条件は、処理温度が150℃に設定され、処理時間が90minに設定された。以上のようにして、実施例1~5および比較例1~3のそれぞれにおける焼結歯車を得た。
 上記手順に沿って得られた実施例1~5および比較例1~3のそれぞれの焼結歯車の試験片に対して、ロックウェル硬度計を用いて表面硬度を測定し、歯元曲げ疲労強さ試験を実施した。歯元曲げ疲労強さ試験の条件では、またぎ歯数が2枚となるように設定され、応力比が0.1となるように設定され、周波数が40Hzとなるように設定された。
 表面硬度測定および歯元曲げ疲労強さ試験の結果は、表5に示されるとおりである。表5中の歯元曲げ疲労強さ試験の結果については、転造加工の前後での疲労強さの向上率(応力振幅)に基づき評価した値が記載されている。この向上率が10%以上20%未満の場合、B評価を付している。この向上率が20%以上30%未満の場合、A評価を付している。この向上率が30%以上の場合、S評価を付している。
 表5を参照して、実施例1~5は、いずれも対応する比較例に比べて表面の硬度が上昇するとともに、歯元曲げ疲労強さが10%以上向上している。特に、歯元曲げ疲労強さに関しては、実施例2の焼結歯車は対応する比較例1に対して、50%以上の向上率を有するという極めて顕著な効果が確認された。以上の実験結果から、実施例1~5に基づく焼結歯車は、高い疲労強度を有することが確認された。
 なお、上記実施の形態においては、本発明の機械構造部品の一例として歯車およびカムについて説明したが、本発明の範囲はこれに限られず、たとえばシャフトやスプロケットなどにも本発明を適用することができる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の機械構造部品および焼結歯車、ならびにこれらの製造方法は、寸法精度の低下を抑制しつつ、静的強度、靭性および疲労強度の向上を達成することが求められる機械構造部品および焼結歯車、ならびにこれらの製造方法に、特に有利に適用され得る。
 1 焼結歯車(歯車)、1A 金属焼結体、2,31 回転軸、3 カム、4,12 歯、5,18 歯底面、5A 歯底円、6 歯先面、7 歯元形成領域、8 かみ合い形成領域、9 歯先形成領域、11,32 本体部、13,39 ベース領域、14 高密度領域(高密度歯元領域)、14S,15,21S,22S,23S 表面、16,41 表面硬化層、17,38 最大応力位置、20 危険断面、22 かみ合い領域、23 歯先領域、24,59 空孔、30 転造ダイス、33 刃、34 根元部、35 先端部、36 接触面、37 貫通孔、51 加工面、52 未加工面。

Claims (22)

  1.  金属焼結体からなる機械構造部品であって、
     ベース領域と、
     最大引張応力または最大せん断応力が付加される位置である最大応力位置を含み、かつ表面を含むように形成され、前記ベース領域よりも空孔率が小さい高密度領域とを備え、
     前記表面を含む領域には、硬化処理が施されることにより表面硬化層が形成されている、機械構造部品。
  2.  前記表面に垂直な断面において、前記表面硬化層の厚みは前記高密度領域の厚みよりも小さい、請求項1に記載の機械構造部品。
  3.  前記表面に垂直な断面において、前記高密度領域の厚みは700μm以下となっている、請求項1に記載の機械構造部品。
  4.  前記高密度領域の空孔率は2%未満である、請求項1に記載の機械構造部品。
  5.  前記表面の硬度はHRA75以上である、請求項1に記載の機械構造部品。
  6.  冷間加工が実施されることにより前記高密度領域が形成されている、請求項1に記載の機械構造部品。
  7.  請求項1に記載の機械構造部品からなる焼結歯車であって、
     歯元領域と、
     前記歯元領域よりも歯先面側に位置するかみ合い領域と、
     前記かみ合い領域よりも前記歯先面側に位置する歯先領域とを備え、
     前記歯元領域には、前記歯元領域の表面およびHoferの30°接線法によって求められる危険断面を含むように、前記かみ合い領域および前記歯先領域のいずれよりも高い密度を有する前記高密度領域が形成されており、
     前記高密度領域の表面には、前記表面硬化層が形成されている、焼結歯車。
  8.  前記高密度領域の空孔率は、2%以下である、請求項7に記載の焼結歯車。
  9.  前記表面硬化層は、浸炭焼入れ焼戻し処理が施されることにより形成されている、請求項7に記載の焼結歯車。
  10.  前記高密度領域の表面の硬度は、HRA75以上である、請求項7に記載の焼結歯車。
  11.  前記高密度領域は、冷間加工が実施されることにより形成されている、請求項7に記載の焼結歯車。
  12.  前記高密度領域は、前記金属焼結体のうちの前記歯元領域の表面に対応する部分のみを転造加工する転造ダイスを用いた前記冷間加工により形成されている、請求項11に記載の焼結歯車。
  13.  前記高密度領域は、ホブ形状を有する前記転造ダイスの回転と前記金属焼結体の回転とを相互に同期させながら前記金属焼結体のうちの前記歯元領域の表面に対応する部分のみを転造加工する前記冷間加工により形成されている、請求項12に記載の焼結歯車。
  14.  前記高密度領域は、円柱形状に形成された根元部と半球形状に形成された先端部とを刃形状として有する前記転造ダイスを用いた前記冷間加工により形成されている、請求項12に記載の焼結歯車。
  15.  金属からなる原料粉末を準備する工程と、
     前記原料粉末を焼結することにより金属焼結体を作製する工程と、
     最大引張応力または最大せん断応力が付加される位置である最大応力位置を含み、かつ表面を含むように、他の領域よりも空孔率が小さい高密度領域を形成する工程と、
     前記表面を含む領域に、硬化処理を施すことにより表面硬化層を形成する工程とを備えた、機械構造部品の製造方法。
  16.  前記高密度領域を形成する工程では、前記表面に対して冷間加工が実施されることにより前記高密度領域が形成される、請求項15に記載の機械構造部品の製造方法。
  17.  請求項15に記載の機械構造部品の製造方法を用いた焼結歯車の製造方法であって、
     前記高密度領域を形成する工程では、前記金属焼結体の歯元領域に、前記歯元領域の表面およびHoferの30°接線法によって求められる危険断面を含み、且つ、前記歯元領域よりも歯先面側に位置するかみ合い領域および歯先領域のいずれよりも高い密度を有する前記高密度領域が形成され、
     前記表面硬化層を形成する工程では、前記高密度領域の表面に前記表面硬化層が形成される、焼結歯車の製造方法。
  18.  前記表面硬化層を形成する工程では、浸炭焼入れ焼戻し処理が施されることにより前記表面硬化層が形成される、請求項17に記載の焼結歯車の製造方法。
  19.  前記高密度領域を形成する工程では、冷間加工が実施されることにより前記高密度領域が形成される、請求項17に記載の焼結歯車の製造方法。
  20.  前記金属焼結体を作製する工程では、93%以上の相対密度を有する前記金属焼結体が作製される、請求項17に記載の焼結歯車の製造方法。
  21.  前記原料粉末を準備する工程では、平均粒径がD50において100μm以下の粒度を有する前記原料粉末が準備される、請求項17に記載の焼結歯車の製造方法。
  22.  前記高密度領域が形成される前の前記金属焼結体の歯底円直径は、完成品として得られる前記焼結歯車の歯底円直径よりも、100μm~800μmの範囲で大きい、請求項17に記載の焼結歯車の製造方法。
PCT/JP2013/055136 2012-03-12 2013-02-27 機械構造部品および焼結歯車、ならびにこれらの製造方法 WO2013136983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380013924.9A CN104159687A (zh) 2012-03-12 2013-02-27 机械结构部件、烧结齿轮及生产机械结构部件和烧结齿轮的方法
EP13761893.0A EP2826577A4 (en) 2012-03-12 2013-02-27 MECHANICAL STRUCTURE COMPONENT, SINTERED GEAR, AND METHODS OF MANUFACTURING THE SAME
US14/384,664 US20150033894A1 (en) 2012-03-12 2013-02-27 Mechanical structure component, sintered gear, and methods of manufacturing mechanical structure component and sintered gear

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-054643 2012-03-12
JP2012054643A JP2013189658A (ja) 2012-03-12 2012-03-12 機械構造部品およびその製造方法
JP2012-132820 2012-06-12
JP2012132820A JP5969273B2 (ja) 2012-06-12 2012-06-12 焼結歯車の製造方法

Publications (1)

Publication Number Publication Date
WO2013136983A1 true WO2013136983A1 (ja) 2013-09-19

Family

ID=49160899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055136 WO2013136983A1 (ja) 2012-03-12 2013-02-27 機械構造部品および焼結歯車、ならびにこれらの製造方法

Country Status (4)

Country Link
US (1) US20150033894A1 (ja)
EP (1) EP2826577A4 (ja)
CN (1) CN104159687A (ja)
WO (1) WO2013136983A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090592A1 (de) * 2013-12-18 2015-06-25 Pmg Asturias Powder Metal S.A.U. Pulvermetallurgisch hergestellte komponente

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160098700A (ko) * 2015-02-11 2016-08-19 삼성전자주식회사 멀티 터치 입력을 처리하기 위한 전자 장치 및 그 동작 방법
AT517488B1 (de) * 2015-07-20 2017-09-15 Miba Sinter Austria Gmbh Verfahren zum Herstellen eines ringförmigen Sinterbauteils
AT517751B1 (de) * 2015-09-29 2018-04-15 Miba Sinter Austria Gmbh Verfahren zur Herstellung eines Sinterzahnrades
JP6781608B2 (ja) * 2016-11-01 2020-11-04 Ntn株式会社 インホイールモータ駆動装置
CN111164334B (zh) * 2017-08-08 2023-06-13 株式会社三鹰电子 齿轮零件
JP7403525B2 (ja) * 2019-03-05 2023-12-22 住友電気工業株式会社 焼結体の製造方法
CN111720518A (zh) * 2019-03-19 2020-09-29 米巴精密零部件(中国)有限公司 齿轮
US11745261B2 (en) * 2019-08-30 2023-09-05 Sumitomo Electric Industries, Ltd. Sintered gear

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133301A (ja) 1982-02-01 1983-08-09 Toyota Motor Corp 焼結鍛造品の製造方法
JPH01312056A (ja) 1988-06-09 1989-12-15 Kawasaki Steel Corp 高密度高強度合金鋼焼結体の製造方法
WO1992005897A1 (en) 1990-10-08 1992-04-16 Formflo Limited Gear wheels rolled from powder metal blanks
JPH07112231A (ja) * 1993-10-15 1995-05-02 Toyota Motor Corp 焼結歯車の製造方法
JP2001294904A (ja) * 2000-04-11 2001-10-26 Nissan Motor Co Ltd 鉄系焼結部品の製造方法
JP2004502028A (ja) * 2000-06-28 2004-01-22 ホガナス アクチボラゲット 表面を緻密化した粉末金属部品の製造方法
JP2004255387A (ja) 2003-02-24 2004-09-16 Aisin Seiki Co Ltd 歯車の仕上げ転造加工用ダイス
JP2006523775A (ja) * 2003-03-18 2006-10-19 ザ ペン ステート リサーチ ファウンデーション オースフォーミングによって粉末金属製歯車を強靭にする方法および装置
JP2007537359A (ja) * 2004-05-12 2007-12-20 ホーガナス エービー 焼結金属部品とその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729822A (en) * 1996-05-24 1998-03-17 Stackpole Limited Gears
SE0401041D0 (sv) * 2004-04-21 2004-04-21 Hoeganaes Ab Sintered metal parts and method for the manufacturing thereof
DE102005027048A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Gesintertes Verzahnungselement mit lokal-selektiver Oberflächenverdichtung
DE102005027050B4 (de) * 2005-06-10 2021-12-30 Gkn Sinter Metals Gmbh Kraftfahrzeugbauteil mit Verzahnung
JP2007262536A (ja) * 2006-03-29 2007-10-11 Hitachi Powdered Metals Co Ltd 焼結歯車およびその製造方法
US7905018B2 (en) * 2006-03-29 2011-03-15 Hitachi Powdered Metals Co., Ltd. Production method for sintered gear
AT509456B1 (de) * 2010-08-31 2011-09-15 Miba Sinter Austria Gmbh Gesintertes zahnrad

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133301A (ja) 1982-02-01 1983-08-09 Toyota Motor Corp 焼結鍛造品の製造方法
JPH01312056A (ja) 1988-06-09 1989-12-15 Kawasaki Steel Corp 高密度高強度合金鋼焼結体の製造方法
WO1992005897A1 (en) 1990-10-08 1992-04-16 Formflo Limited Gear wheels rolled from powder metal blanks
JPH06501988A (ja) 1990-10-08 1994-03-03 フォームフロ リミテッド 粉末金属素材で製造された転造歯車
JPH07112231A (ja) * 1993-10-15 1995-05-02 Toyota Motor Corp 焼結歯車の製造方法
JP2001294904A (ja) * 2000-04-11 2001-10-26 Nissan Motor Co Ltd 鉄系焼結部品の製造方法
JP2004502028A (ja) * 2000-06-28 2004-01-22 ホガナス アクチボラゲット 表面を緻密化した粉末金属部品の製造方法
JP2004255387A (ja) 2003-02-24 2004-09-16 Aisin Seiki Co Ltd 歯車の仕上げ転造加工用ダイス
JP2006523775A (ja) * 2003-03-18 2006-10-19 ザ ペン ステート リサーチ ファウンデーション オースフォーミングによって粉末金属製歯車を強靭にする方法および装置
JP2007537359A (ja) * 2004-05-12 2007-12-20 ホーガナス エービー 焼結金属部品とその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826577A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090592A1 (de) * 2013-12-18 2015-06-25 Pmg Asturias Powder Metal S.A.U. Pulvermetallurgisch hergestellte komponente
CN106233017A (zh) * 2013-12-18 2016-12-14 Pmg 阿斯图里亚斯粉末金属公司 粉末冶金制造的组件

Also Published As

Publication number Publication date
EP2826577A1 (en) 2015-01-21
US20150033894A1 (en) 2015-02-05
EP2826577A4 (en) 2016-08-10
CN104159687A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2013136983A1 (ja) 機械構造部品および焼結歯車、ならびにこれらの製造方法
US8402659B2 (en) Sintered gear element featuring locally selective surface compression
US8307551B2 (en) Blank geometry of a gear
US8340806B2 (en) Surface compression of a toothed section
JP4160561B2 (ja) 焼結歯車
JP5969273B2 (ja) 焼結歯車の製造方法
US20080201951A1 (en) Work Piece Having Different Qualities
JP2007262536A (ja) 焼結歯車およびその製造方法
CN101444845A (zh) 粉末冶金齿套的制作方法
US20080209730A1 (en) Surface-Densified Toothed Section From A Sintered Material And Having Special Tolerances
TWI261005B (en) Method of flow forming a metal part
US20080152940A1 (en) Hardness and roughness of toothed section from a surface-densified sintered material
JP6395217B2 (ja) 焼結部品の製造方法
Bengtsson et al. Surface densified P/M transmission gear
JP5443358B2 (ja) 可変ケース深さの粉末金属歯車及びその製造方法
KR100502219B1 (ko) 냉간가동된분말금속에의한단조품형성방법
JP2010537048A (ja) 鍛造浸炭金属粉末部品の製造方法
KR101047889B1 (ko) 원웨이 클러치용 아웃터레이스의 제조방법
JP2013189658A (ja) 機械構造部品およびその製造方法
CN112639307B (zh) 曲轴及其制造方法
JP2005271102A (ja) 焼結歯車とその歯車の製造方法
KR20120102915A (ko) 온간다이 고 밀도 성형후 소결경화된 분말금속부품의 제조방법
KR101047888B1 (ko) 원웨이 클러치용 아웃터레이스의 제조방법
JP6573245B2 (ja) 焼結部品の製造方法、及び焼結部品
KR20230012500A (ko) 분말 금속 물품의 내부 표면 치밀화를 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14384664

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013761893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013761893

Country of ref document: EP