WO2013136506A1 - Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy - Google Patents
Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy Download PDFInfo
- Publication number
- WO2013136506A1 WO2013136506A1 PCT/JP2012/056832 JP2012056832W WO2013136506A1 WO 2013136506 A1 WO2013136506 A1 WO 2013136506A1 JP 2012056832 W JP2012056832 W JP 2012056832W WO 2013136506 A1 WO2013136506 A1 WO 2013136506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- mass
- phase
- temperature
- based alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- precipitation strengthening using a carbide or intermetallic compound phase in the ⁇ phase has a problem that ductility is reduced and embrittlement is caused.
- the ⁇ phase is the main component.
- the Co-based alloy used as a constituent phase also has a problem that high strength characteristics cannot be maintained in an intermediate temperature range.
- the stacking fault energy of the HCP structure is low in the middle temperature range of 500 ° C. to 800 ° C., so that stacking faults are easily formed on the bottom surface of the HCP structure. Slip and cross-slip activities can be suppressed. For this reason, the ⁇ phase of the HCP structure can be increased in strength, and high strength characteristics can be maintained particularly in the middle temperature range.
- the Co—Cr—Mo alloy according to the present invention can be strengthened regardless of precipitation strengthening by utilizing the temperature dependence of stacking fault energy, and the strength characteristics in the middle temperature range can be achieved. Are better.
- the Co—Cr—Mo alloy according to the present invention can provide a 0.2% yield strength at room temperature of 600 MPa or more and a 0.2% yield strength at 600 ° C. of 450 MPa or more.
- FIG. 2 shows the temperature dependence of 0.2% yield strength (“CCM ⁇ ” in FIG. 2) obtained by a tensile test on the manufactured Co-27Cr-5Mo alloy.
- FIG. 2 shows the same Co—Cr—Mo based alloy Co-33Cr-5Mo-1.3N ⁇ alloy having a ⁇ phase as a main phase, and a Co forged alloy already put into practical use as a heat-resistant Co-based alloy. The results of the strength characteristics of “Haynes 188” are also shown. As shown in FIG. 2, it was confirmed that even in the same Co—Cr—Mo-based alloy, the ⁇ phase showed significantly higher strength characteristics than the ⁇ phase. It was also confirmed that CCM ⁇ in the ⁇ phase exhibits higher strength characteristics than a heat-resistant Co-based alloy (Haynes 188) that has been put into practical use.
- CCM ⁇ 0.2% yield strength
- FIG. 4 is a graph showing the influence of additive elements on the HCP ⁇ FCC phase transformation temperature (Ms) of Co.
- the vertical axis indicates the solubility limit of the additive element (Solubility limit in FCC Co), and the horizontal axis indicates the temperature at which Ms changes per 1 at% of the additive element (Change in HCP to FCC transformation by 1.0% addition). ).
- FIG. 4 shows that the higher the temperature from 0 to minus, the more effective the FCC crystal is stabilized. Conversely, the higher the temperature from 0 to plus, the more stable the HCP crystal.
- the formation of the ⁇ phase of the intermetallic compound is suppressed as much as possible, and the HCP phase is stabilized to a high temperature as the main phase. Shows that Si is promising.
- the Co—Cr—Mo alloy according to the present invention is excellent in heat resistance and strength characteristics in a medium temperature range of 500 ° C. to 800 ° C., and therefore has a mold, an injection molding cylinder for resin products including glass fibers, and has heat resistance characteristics. It can be used as a material for required turbine disks, heat-resistant springs, aluminum die-casting sleeves, and friction stir welding (FSW) tools.
- FSW friction stir welding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
A Co-Cr-Mo-based alloy which is produced by heating a Co-Cr-Mo-based alloy containing 22 to 33 mass% inclusive of Cr and 3 to 7 mass% inclusive of Mo at a temperature of 1000˚C or higher, subjecting the heated alloy to a hot working at a height ratio of 50% or more and then gradually cooling the resultant product so that massive transformation of the product can occur, and which has a crystal structure that is an ε-phase having an HCP structure, a 0.2% proof stress of 600 MPa or more at room temperature and a 0.2% proof stress of 450 MPa or more at 600˚C, can exhibit improved strength regardless of whether the alloy is subjected to precipitation strengthening or not, and can have excellent strength properties in a medium temperature range; and a method for producing the Co-Cr-Mo-based alloy.
Description
本発明は、Co-Cr-Mo系合金およびCo-Cr-Mo系合金の製造方法に関する。
The present invention relates to a Co—Cr—Mo alloy and a method for producing a Co—Cr—Mo alloy.
Co-Cr-Mo系等のCo基合金は、耐食性、機械的特性および生体適合性に優れているため、人工膝・股関節などの生体材料として高い使用実績を有している。また、最近では金型、ガラス繊維を含む樹脂製品の射出成形シリンダー、さらには耐熱特性が要求されるタービンディスク材や摩擦攪拌接合(FSW)のツール材などの、一般産業への応用・実用化も期待されている。例えば、Al合金用のFSWの場合、反応性などの問題が懸念されるが、Co基合金はAlに対して優れた耐食性を示すため(例えば、非特許文献1参照)、Al合金用のFSWとしてCo基合金が適していると考えられる。
Co-based alloys such as Co—Cr—Mo are excellent in corrosion resistance, mechanical properties, and biocompatibility, and have a high record of use as biomaterials such as artificial knees and hip joints. Recently, application and practical application to general industries such as molds, injection molding cylinders for resin products containing glass fibers, and turbine disk materials and friction stir welding (FSW) tool materials that require heat resistance. Is also expected. For example, in the case of an FSW for an Al alloy, there are concerns about problems such as reactivity, but since a Co-based alloy exhibits excellent corrosion resistance against Al (see, for example, Non-Patent Document 1), an FSW for an Al alloy is used. It is considered that a Co-based alloy is suitable.
Co-Cr-Mo系等のCo基合金は、主要な構成相としてFCC構造のγ相、HCP構造のε相、および金属間化合物であるσ相が知られているが、加工性の観点から主要な構成相がγ相であるものを実用的に利用するケースがほとんどである(例えば、非特許文献2参照)。また、このγ相の高強度化には一般に、炭化物の微細分散による析出強化が利用され、最近ではγ’相(金属間化合物)による析出強化も報告されている(例えば、特許文献1、2、非特許文献3乃至5参照)。
Co-based alloys such as Co—Cr—Mo are known as main constituent phases of γ phase of FCC structure, ε phase of HCP structure, and σ phase which is an intermetallic compound, but from the viewpoint of workability. In most cases, the main constituent phase is a γ phase in practical use (see, for example, Non-Patent Document 2). Further, precipitation strengthening by fine dispersion of carbide is generally used for increasing the strength of the γ phase, and recently precipitation strengthening by a γ ′ phase (intermetallic compound) has been reported (for example, Patent Documents 1 and 2). Non-Patent Documents 3 to 5).
しかしながら、γ相における炭化物や金属間化合物相を利用した析出強化では、延性の低下や脆化を招いてしまうという課題があった。また、500℃~800℃のいわゆる中温域で耐熱性が要求される部材、例えばタービンディスク、耐熱ばね、アルミニウムのダイキャスト用スリーブ、FSW用のツールへの適用を考慮した場合、γ相を主要構成相とするCo基合金では、中温域での高強度特性を維持することができないという課題もあった。
However, precipitation strengthening using a carbide or intermetallic compound phase in the γ phase has a problem that ductility is reduced and embrittlement is caused. In consideration of application to members that require heat resistance in the so-called medium temperature range of 500 ° C to 800 ° C, such as turbine disks, heat-resistant springs, aluminum die-casting sleeves, and FSW tools, the γ phase is the main component. The Co-based alloy used as a constituent phase also has a problem that high strength characteristics cannot be maintained in an intermediate temperature range.
本発明は、このような課題に着目してなされたもので、析出強化によらず高強度化を図ることができ、中温域での強度特性に優れたCo-Cr-Mo系合金およびCo-Cr-Mo系合金の製造方法を提供することを目的としている。
The present invention has been made by paying attention to such a problem, and can increase the strength regardless of precipitation strengthening, and can provide a Co—Cr—Mo alloy and a Co— An object of the present invention is to provide a method for producing a Cr—Mo alloy.
上記目的を達成するために、本発明に係るCo-Cr-Mo合金は、Crを22質量%以上33質量%以下含有し、Moを3質量%以上7質量%以下含有し、主結晶構造がHCP構造のε相であることを特徴とする。
In order to achieve the above object, the Co—Cr—Mo alloy according to the present invention contains Cr in an amount of 22% by mass to 33% by mass, Mo in an amount of 3% by mass to 7% by mass, and has a main crystal structure. It is characterized by being the ε phase of the HCP structure.
本発明に係るCo-Cr-Mo合金は、500℃~800℃の中温域で、HCP構造の積層欠陥エネルギーが低くなるため、HCP構造の底面上で積層欠陥が形成されやすく、底面<a>すべりや交差すべりの活動を抑制することができる。このため、HCP構造のε相を高強度化することができ、特に中温域での高強度特性を維持することができる。このように、本発明に係るCo-Cr-Mo合金は、積層欠陥エネルギーの温度依存性を利用することにより、析出強化によらず高強度化を図ることができ、中温域での強度特性に優れている。具体的な一例では、本発明に係るCo-Cr-Mo合金は、室温での0.2%耐力として600MPa以上、600℃での0.2%耐力として450MPa以上を得ることができる。
In the Co—Cr—Mo alloy according to the present invention, the stacking fault energy of the HCP structure is low in the middle temperature range of 500 ° C. to 800 ° C., so that stacking faults are easily formed on the bottom surface of the HCP structure. Slip and cross-slip activities can be suppressed. For this reason, the ε phase of the HCP structure can be increased in strength, and high strength characteristics can be maintained particularly in the middle temperature range. As described above, the Co—Cr—Mo alloy according to the present invention can be strengthened regardless of precipitation strengthening by utilizing the temperature dependence of stacking fault energy, and the strength characteristics in the middle temperature range can be achieved. Are better. In a specific example, the Co—Cr—Mo alloy according to the present invention can provide a 0.2% yield strength at room temperature of 600 MPa or more and a 0.2% yield strength at 600 ° C. of 450 MPa or more.
本発明に係るCo-Cr-Mo合金は、Siを5質量%以下含有していてもよい。この場合、Siを添加することにより、HCP構造のε相の積層欠陥エネルギーがゼロになる温度を高温側にシフトさせることができるため、より高い温度での強度特性を向上させることができる。また、Siを添加することにより、金属間化合物のσ相の形成をより低温側まで抑制し、HCP構造のε相を主相としてより高い温度まで安定化させることができる。Siは、1質量%以上5質量%以下含有されていることが好ましい。
The Co—Cr—Mo alloy according to the present invention may contain 5% by mass or less of Si. In this case, by adding Si, the temperature at which the stacking fault energy of the ε phase of the HCP structure becomes zero can be shifted to the high temperature side, so that the strength characteristics at a higher temperature can be improved. Moreover, by adding Si, formation of the σ phase of the intermetallic compound can be suppressed to a lower temperature side, and the ε phase of the HCP structure can be stabilized to a higher temperature using the main phase. Si is preferably contained in an amount of 1% by mass to 5% by mass.
本発明に係るCo-Cr-Mo合金の製造方法は、Crを22質量%以上33質量%以下含有し、Moを3質量%以上7質量%以下含有するCo-Cr-Mo系合金を1000℃以上に加熱し、高さ比50%以上の熱間加工を施した後、マッシブ変態するよう徐冷することを特徴とする。本発明に係るCo-Cr-Mo合金の製造方法によれば、本発明に係るCo-Cr-Mo合金を製造することができる。
The method for producing a Co—Cr—Mo alloy according to the present invention comprises a Co—Cr—Mo alloy containing Cr in an amount of 22% by mass to 33% by mass and Mo in an amount of 3% by mass to 7% by mass at 1000 ° C. After heating as described above and performing hot working with a height ratio of 50% or more, it is gradually cooled so as to undergo massive transformation. According to the method for producing a Co—Cr—Mo alloy according to the present invention, the Co—Cr—Mo alloy according to the present invention can be produced.
本発明によれば、析出強化によらず高強度化を図ることができ、中温域での強度特性に優れたCo-Cr-Mo系合金およびCo-Cr-Mo系合金の製造方法を提供することができる。
According to the present invention, there are provided a Co—Cr—Mo alloy and a method for producing a Co—Cr—Mo alloy that can achieve high strength regardless of precipitation strengthening and have excellent strength characteristics in a middle temperature range. be able to.
高周波誘導溶解によりCo-27(質量%)Cr-5(質量%)Mo合金を溶製し、1250℃で6時間の均質化加熱処理を施した後、ε単相組織を得るために、1100℃で圧縮率70%以上の恒温鍛造を行い、室温まで炉冷した。このようにして製造されたCo-27Cr-5Mo合金の組織形態(EBSD像)およびXRDプロファイルを、図1に示す。図1に示すように、σ相生成を抑制しながらε変態(マッシブ変態)を促進させることで、平均結晶粒径42μmのε相が主相の組織が得られることが確認された。
In order to obtain a ε single-phase structure after melting a Co-27 (mass%) Cr-5 (mass%) Mo alloy by high frequency induction melting and subjecting it to homogenization heat treatment at 1250 ° C. for 6 hours, 1100 A constant temperature forging with a compression rate of 70% or more was performed at 0 ° C., and the furnace was cooled to room temperature. FIG. 1 shows the microstructure (EBSD image) and XRD profile of the Co-27Cr-5Mo alloy thus produced. As shown in FIG. 1, it was confirmed that the structure of the ε phase having an average crystal grain size of 42 μm as the main phase can be obtained by promoting the ε transformation (massive transformation) while suppressing the generation of the σ phase.
図2に、製造されたCo-27Cr-5Mo合金に対する引張試験により得られた、0.2%耐力の温度依存性(図2中の「CCMε」)を示す。図2には、γ相を主相とする同じCo-Cr-Mo系合金のCo-33Cr-5Mo-1.3Nγ合金、および、耐熱用Co基合金として既に実用化されているCo鍛造合金「Haynes188」の強度特性の結果も併せて示す。図2に示すように、同じCo-Cr-Mo系合金であっても、ε相はγ相より著しく高い強度特性を示すことが確認された。また、ε相のCCMεは、実用化されている耐熱用Co基合金(Haynes188)よりも高い強度特性を示すことも確認された。
FIG. 2 shows the temperature dependence of 0.2% yield strength (“CCMε” in FIG. 2) obtained by a tensile test on the manufactured Co-27Cr-5Mo alloy. FIG. 2 shows the same Co—Cr—Mo based alloy Co-33Cr-5Mo-1.3Nγ alloy having a γ phase as a main phase, and a Co forged alloy already put into practical use as a heat-resistant Co-based alloy. The results of the strength characteristics of “Haynes 188” are also shown. As shown in FIG. 2, it was confirmed that even in the same Co—Cr—Mo-based alloy, the ε phase showed significantly higher strength characteristics than the γ phase. It was also confirmed that CCMε in the ε phase exhibits higher strength characteristics than a heat-resistant Co-based alloy (Haynes 188) that has been put into practical use.
また、図2に示すように、ε相のCCMεは、700℃までは高強度を保っていることが確認された。これは、以下の理由によるものと考えられる。すなわち、ε相を主相とするCo-Cr-Mo合金の変形機構は、室温では、底面<a>すべりと柱面<a>すべりの活動で支配されている。一方で、温度が増加するに伴い、HCPの底面上で積層欠陥を生成し、底面上では分解転位の運動が活発に活動するために、柱面上への交差すべり、また柱面<a>転位の底面上への交差すべりが抑制される。このため、700℃以下の温度域においては高強度が維持される。この変形機構は、Co-Cr-Mo合金のHCP相、FCC相の積層欠陥エネルギーの温度依存性との関係で説明できる。
Further, as shown in FIG. 2, it was confirmed that CCMε in the ε phase kept high strength up to 700 ° C. This is considered to be due to the following reason. That is, the deformation mechanism of the Co—Cr—Mo alloy having the ε phase as the main phase is dominated by the activities of the bottom surface <a> slip and the column surface <a> slip at room temperature. On the other hand, as the temperature increases, stacking faults are generated on the bottom surface of the HCP, and the movement of decomposition dislocations is active on the bottom surface. Therefore, cross-slip to the column surface and column surface <a> Cross slip to the bottom of the dislocation is suppressed. For this reason, high strength is maintained in a temperature range of 700 ° C. or lower. This deformation mechanism can be explained by the relationship with the temperature dependence of the stacking fault energy of the HCP phase and FCC phase of the Co—Cr—Mo alloy.
図3に、Co-27質量%Cr-5質量%Mo合金における、Si添加量(質量%)を変えたときの積層欠陥エネルギー(Stacking fault energy)の温度依存性を示す。図3に示すように、Siが添加されていないCo-27Cr-5Mo-0Si合金、すなわち、図2に示すCCMεでは、温度の増加とともにHCPの積層欠陥エネルギーが減少し、820℃近傍でほぼ0の値を示し、それ以上の温度ではFCCの積層欠陥エネルギーが増加することが確認された。これは、820℃近傍までの温度の増加で、HCP相が構造不安定化され、820℃付近以上で平衡相としてγ相が安定化されることを意味している。
FIG. 3 shows the temperature dependence of stacking fault energy when the Si addition amount (mass%) is changed in the Co-27 mass% Cr-5 mass% Mo alloy. As shown in FIG. 3, in the Co-27Cr-5Mo-0Si alloy to which Si is not added, that is, CCMε shown in FIG. 2, the stacking fault energy of HCP decreases with increasing temperature, and is almost 0 at around 820 ° C. It was confirmed that the stacking fault energy of FCC increases at higher temperatures. This means that as the temperature increases to around 820 ° C., the HCP phase is structurally destabilized and above about 820 ° C., the γ phase is stabilized as an equilibrium phase.
図2および図3に示すように、CCMεでは、700℃までは高い強度が維持されていることから、積層欠陥エネルギーが0となる温度(820℃)から120℃以下の温度(700℃)では、高強度を維持できることがわかる。このことから、HCP相の積層欠陥エネルギーが0になる温度をより高温側にシフトして、高温までHCP相を安定化させるように合金化することにより、高温強度特性をさらに向上することができると考えられる。図2に示す例では、CCMεが大きく強度低下する温度(700℃~750℃)を、より高温側にシフトすることができると考えられる。
As shown in FIG. 2 and FIG. 3, in CCMε, high strength is maintained up to 700 ° C., so that the temperature at which stacking fault energy becomes 0 (820 ° C.) to 120 ° C. or lower (700 ° C.). It can be seen that high strength can be maintained. From this, it is possible to further improve the high-temperature strength characteristics by shifting the temperature at which the stacking fault energy of the HCP phase to 0 is shifted to a higher temperature side and alloying so as to stabilize the HCP phase to a high temperature. it is conceivable that. In the example shown in FIG. 2, it is considered that the temperature (700 ° C. to 750 ° C.) at which the strength of CCMε greatly decreases can be shifted to a higher temperature side.
図4に、CoのHCP→FCC相変態温度(Ms)に及ぼす添加元素の影響を示すグラフを示す。図4において、縦軸は添加元素の固溶限(Solubility limit in FCC Co)を示し、横軸は添加元素1at%当たりのMsの変化する温度(Change in HCP to FCC transformation by 1.0% addition)を示している。図4では、0からマイナスの温度が高いほど、FCC結晶を安定化する効果を有し、逆に0からプラスに温度が高くなるほど、HCP結晶が安定することを示している。図4に示すように、HCPを安定化させる元素としてCr,Mo,SiおよびWがあり、さらに金属間化合物のσ相の形成をできるだけ抑制して、HCP相を主相として高温まで安定化させるには、Siが有望であることがわかる。
FIG. 4 is a graph showing the influence of additive elements on the HCP → FCC phase transformation temperature (Ms) of Co. In FIG. 4, the vertical axis indicates the solubility limit of the additive element (Solubility limit in FCC Co), and the horizontal axis indicates the temperature at which Ms changes per 1 at% of the additive element (Change in HCP to FCC transformation by 1.0% addition). ). FIG. 4 shows that the higher the temperature from 0 to minus, the more effective the FCC crystal is stabilized. Conversely, the higher the temperature from 0 to plus, the more stable the HCP crystal. As shown in FIG. 4, there are Cr, Mo, Si, and W as elements that stabilize HCP. Further, the formation of the σ phase of the intermetallic compound is suppressed as much as possible, and the HCP phase is stabilized to a high temperature as the main phase. Shows that Si is promising.
図5に、Co-27Cr-5Mo合金の、Si添加量(質量%)を変化させたときの状態図を示す。図5に示すように、Siの添加によりσ相の形成を低温側にまで抑制することができ、さらにHCPを強く安定化させることができることがわかる。また、図3に示すように、Siの添加により、HCP相の積層欠陥エネルギーが0になる温度が高温側にシフトし、5重量%のSi添加で、80℃程度、高温側にシフトできることがわかる。さらに、Siは脆い金属化合物相であるσ相の形成を抑制できるため、HCP相を強く安定化させることができる。このように、Co-Cr-Mo系合金にSiを5重量%以下で添加することにより、高温強度を増加させることができる。
FIG. 5 shows a phase diagram of the Co-27Cr-5Mo alloy when the Si addition amount (mass%) is changed. As shown in FIG. 5, it can be seen that the addition of Si can suppress the formation of the σ phase to the low temperature side, and can further strongly stabilize the HCP. Moreover, as shown in FIG. 3, the temperature at which the stacking fault energy of the HCP phase becomes 0 is shifted to the high temperature side by adding Si, and can be shifted to the high temperature side by about 80 ° C. by adding 5 wt% Si. Recognize. Furthermore, since Si can suppress the formation of the σ phase, which is a brittle metal compound phase, the HCP phase can be strongly stabilized. Thus, the high temperature strength can be increased by adding Si to the Co—Cr—Mo alloy at 5 wt% or less.
本発明に係るCo-Cr-Mo合金は、500℃~800℃の中温域での耐熱性および強度特性に優れているため、金型、ガラス繊維を含む樹脂製品の射出成形シリンダー、耐熱特性が要求されるタービンディスク、耐熱ばね、アルミニウムのダイキャスト用スリーブ、摩擦攪拌接合(FSW)のツールの材料として利用することができる。
The Co—Cr—Mo alloy according to the present invention is excellent in heat resistance and strength characteristics in a medium temperature range of 500 ° C. to 800 ° C., and therefore has a mold, an injection molding cylinder for resin products including glass fibers, and has heat resistance characteristics. It can be used as a material for required turbine disks, heat-resistant springs, aluminum die-casting sleeves, and friction stir welding (FSW) tools.
The Co—Cr—Mo alloy according to the present invention is excellent in heat resistance and strength characteristics in a medium temperature range of 500 ° C. to 800 ° C., and therefore has a mold, an injection molding cylinder for resin products including glass fibers, and has heat resistance characteristics. It can be used as a material for required turbine disks, heat-resistant springs, aluminum die-casting sleeves, and friction stir welding (FSW) tools.
Claims (4)
- Crを22質量%以上33質量%以下含有し、Moを3質量%以上7質量%以下含有し、主結晶構造がHCP構造のε相であることを特徴とするCo-Cr-Mo合金。 A Co—Cr—Mo alloy containing Cr in an amount of 22% by mass to 33% by mass, Mo in an amount of 3% by mass to 7% by mass, and the main crystal structure being an ε phase of an HCP structure.
- 室温での0.2%耐力が600MPa以上、600℃での0.2%耐力が450MPa以上であることを特徴とする請求項1記載のCo-Cr-Mo系合金。 The Co-Cr-Mo alloy according to claim 1, wherein the 0.2% yield strength at room temperature is 600 MPa or more, and the 0.2% yield strength at 600 ° C is 450 MPa or more.
- Siを5質量%以下含有していることを特徴とする請求項1または2記載のCo-Cr-Mo系合金。 3. The Co—Cr—Mo based alloy according to claim 1 or 2, characterized by containing 5% by mass or less of Si.
- Crを22質量%以上33質量%以下含有し、Moを3質量%以上7質量%以下含有するCo-Cr-Mo系合金を1000℃以上に加熱し、高さ比50%以上の熱間加工を施した後、マッシブ変態するよう徐冷することを特徴とするCo-Cr-Mo系合金の製造方法。
A Co—Cr—Mo alloy containing 22 mass% to 33 mass% of Cr and 3 mass% to 7 mass% of Mo is heated to 1000 ° C. or more, and hot working with a height ratio of 50% or more. And a slow cooling so as to cause a massive transformation, a method for producing a Co—Cr—Mo alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/056832 WO2013136506A1 (en) | 2012-03-16 | 2012-03-16 | Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/056832 WO2013136506A1 (en) | 2012-03-16 | 2012-03-16 | Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136506A1 true WO2013136506A1 (en) | 2013-09-19 |
Family
ID=49160472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/056832 WO2013136506A1 (en) | 2012-03-16 | 2012-03-16 | Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013136506A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004269994A (en) * | 2003-03-11 | 2004-09-30 | Japan Science & Technology Agency | BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR |
JP2006265633A (en) * | 2005-03-24 | 2006-10-05 | Iwate Univ | Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD |
JP2010144184A (en) * | 2008-12-16 | 2010-07-01 | Japan Medical Materials Corp | Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint |
JP2011032530A (en) * | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Co-BASED CASTING ALLOY FOR BIOMEDICAL APPLICATION EXCELLENT IN CUTTING ABILITY AND METHOD FOR MANUFACTURING THE SAME |
-
2012
- 2012-03-16 WO PCT/JP2012/056832 patent/WO2013136506A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004269994A (en) * | 2003-03-11 | 2004-09-30 | Japan Science & Technology Agency | BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR |
JP2006265633A (en) * | 2005-03-24 | 2006-10-05 | Iwate Univ | Co-Cr-Mo ALLOY FOR LIVING BODY FOR DEALING WITH MRI, AND ITS PRODUCTION METHOD |
JP2010144184A (en) * | 2008-12-16 | 2010-07-01 | Japan Medical Materials Corp | Biomedical cast substrate of cobalt-chromium-based alloy superior in diffusion hardening treatability, biomedical sliding alloy member, and artificial joint |
JP2011032530A (en) * | 2009-07-31 | 2011-02-17 | Kobe Steel Ltd | Co-BASED CASTING ALLOY FOR BIOMEDICAL APPLICATION EXCELLENT IN CUTTING ABILITY AND METHOD FOR MANUFACTURING THE SAME |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6793689B2 (en) | Manufacturing method of Ni-based alloy member | |
EP2503013B1 (en) | Heat-resistant superalloy | |
JP4485747B2 (en) | Method for producing cast form of metal alloy | |
JP2011231403A (en) | Cobalt-nickel superalloy, and related article | |
US9631262B2 (en) | Cobalt alloys | |
US20170037498A1 (en) | Gamma - gamma prime strengthened tungsten free cobalt-based superalloy | |
CN111051548B (en) | Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom | |
JP6826235B2 (en) | Ni-based alloy softened powder and method for producing the softened powder | |
JP5323162B2 (en) | Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures | |
JP6378517B2 (en) | Precipitation hardening type stainless steel powder and sintered body thereof that have excellent anti-sintering cracking properties and high strength after sintering-aging treatment. | |
GU et al. | Research progress in a high performance cast & wrought superalloy for turbine disc applications | |
JP2011052239A (en) | Heat resistant orthorhombic titanium alloy and method for producing the same | |
JP5645054B2 (en) | Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins | |
JPWO2013011959A1 (en) | High temperature shape memory alloy and manufacturing method thereof | |
JP6602462B2 (en) | Chromium-based two-phase alloy and product using the two-phase alloy | |
JPWO2013136506A1 (en) | Co-Cr-Mo alloy and method for producing Co-Cr-Mo alloy | |
WO2013136506A1 (en) | Co-cr-mo-based alloy, and method for producing co-cr-mo-based alloy | |
WO2018066303A1 (en) | Cr-BASED TWO PHASE ALLOY PRODUCT AND PRODUCTION METHOD THEREFOR | |
JP5522998B2 (en) | Heat resistant alloy | |
WO2024101048A1 (en) | Nickel-cobalt-based alloy, nickel-cobalt-based alloy member using same, and method for manufacturing same | |
JP7237222B1 (en) | Cobalt-based alloy shaped article and method for manufacturing cobalt-based alloy product | |
KR20140123138A (en) | super heat resistant alloy and the manufacturing method thereof | |
JP6173956B2 (en) | Austenitic heat resistant steel and turbine parts | |
JP2012107269A (en) | Nickel-based heat-resistant superalloy and heat-resistant superalloy member | |
Krishna et al. | A Comparative Study of Aluminium Alloy and Titanium Alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12871360 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014504588 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12871360 Country of ref document: EP Kind code of ref document: A1 |