WO2013133451A1 - Laminate for transparent electroconductive film base material - Google Patents
Laminate for transparent electroconductive film base material Download PDFInfo
- Publication number
- WO2013133451A1 WO2013133451A1 PCT/JP2013/057108 JP2013057108W WO2013133451A1 WO 2013133451 A1 WO2013133451 A1 WO 2013133451A1 JP 2013057108 W JP2013057108 W JP 2013057108W WO 2013133451 A1 WO2013133451 A1 WO 2013133451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- easy
- mol
- refractive index
- adhesion layer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a laminate used as a substrate of a transparent conductive film having a patterned transparent conductive layer that can be used as a sensor electrode of a projected capacitive touch panel.
- a projected capacitive touch panel has been used as an input device for mobile devices such as mobile phones and smartphones.
- the projected capacitive touch panel has rapidly increased in mobile devices due to its ease of use through intuitive operations such as the multi-touch function that allows multiple fingers to operate simultaneously and the gesture input function.
- the capacitive touch panel has a configuration in which a capacitive touch sensor is arranged on a display device such as a liquid crystal display.
- a capacitive touch sensor detects an electric field disturbance due to a capacitance of a human finger.
- sensor base materials glass substrates and film substrates.
- the film base sensors can be continuously produced by roll-to-roll and are relatively inexpensive to manufacture.
- the capacitive touch sensor uses, as an electrode, a transparent conductive film having a transparent conductive layer patterned (patterned) into a thin line or a diamond shape for position detection. It is the structure which piled up facing each other. Patterning is performed by drawing a desired pattern by photolithography or screen printing, and then etching. At this time, there is a difference in the optical characteristics between the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is removed. A so-called “bone appearance” phenomenon occurs in which the pattern of the conductive layer is visually recognized.
- Patent Documents 1 to 10 In order to solve this problem of bone appearance, a so-called index matching technique is known in which an optical adjustment layer is formed by laminating thin films having different refractive indexes and the difference in optical characteristics is eliminated by utilizing the light interference effect.
- Patent Documents 1 to 10 By the way, as a base material of a transparent conductive film used for a touch panel, a biaxially oriented polyester film, particularly a biaxially oriented polyethylene terephthalate film, which has an excellent balance between various properties such as heat resistance, mechanical properties, and optical properties and a price has been conventionally used. Have been used.
- polyester films particularly uniaxial or biaxial stretched films of polyethylene terephthalate, are often used as various optical films such as protective films and antireflection films for flat panel displays in addition to the above-mentioned touch panel applications.
- a functional layer such as a hard coat layer for suppressing the generation of scratches on the film surface or an antireflection layer for suppressing light reflection, the surface has an affinity as described above.
- Patent Document 12 discloses that the easy-adhesion layer has a refractive index of 1.55 to 1.62 which is an intermediate between the refractive index of the stretched polyester film and the hard coat layer, and has a thickness of 50 to 150 nm. And a method of using a high glass transition temperature polyester having a 2,6-naphthalenedicarboxylic acid component and a low glass transition temperature polyester containing a trimellitic acid component as an easy-adhesion layer is described. .
- Patent Document 13 discloses a method of providing an easy-adhesion layer mainly composed of a copolyester containing a naphthalenedicarboxylic acid component and a glycol component having a bisphenol A skeleton
- Patent Document 14 discloses 2,6-naphthalene dicarboxylic acid.
- a method has been proposed in which a copolyester containing an acid component and an ethylene oxide adduct component of bisphenolfluorene is contained as one component, and an easy adhesion layer having a thickness of 50 to 200 nm is provided.
- an object of this invention is to provide the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible.
- the present inventors applied an easy-adhesion layer that satisfies the following characteristics, thereby suppressing the influence of optical interference caused by the easy-adhesion layer and providing a good bone appearance suppression effect. At the same time, it was found that sufficient adhesion was obtained, and the present invention was completed. That is, the laminate of the present invention adopts the following configuration. 1.
- the average refractive index in the plane direction of the polyester film is 1.60 to 1.70
- the optical adjustment layer is composed of a high refractive index layer disposed on the first easy adhesion layer side and a low refractive index layer thereon, 2.
- a transparent conductive film comprising a patterned transparent conductive layer having a refractive index of 1.9 to 2.3 on the optical adjustment layer in the laminate according to any one of 1 to 5 above. 7).
- Copolyester (A1) 60-90 mol% of naphthalenedicarboxylic acid component, (B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 Copolyester containing ⁇ 50 mol% and (C1) 5 mol% or more and less than 20 mol% of a glycol component having a fluorene structure represented by the following formula (I).
- Crosslinkable addition polymer (X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit, (Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less. (The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.) 9.
- the copolymerized polyester further contains (F1) a dicarboxylic acid component having a sulfonate group in an amount of 0.1 to 5 mol%.
- the laminated body of said 7 containing. 10.
- the refractive index is 1.58 to 1.64 on the other surface
- the swelling rate obtained by the following method is 130 to 200% in any solvent
- the thickness is 50 to 100 nm.
- UV curable composition Pentaerythritol acrylate: 45% by mass N-methylolacrylamide: 40% by mass N-vinylpyrrolidone: 10% by mass 1-hydroxycyclohexyl phenyl ketone: 5% by mass
- the laminated body of this invention is the structure which laminated
- the transparent conductive film of this invention is a structure which has the transparent conductive layer further patterned on the optical adjustment layer in the said laminated body.
- each component constituting the present invention will be described.
- the polyester constituting the polyester film is an aromatic dibasic acid or an ester-forming derivative thereof (which is an acid component in the polyester) and a diol or an ester-forming derivative thereof (which is a glycol component in the polyester).
- polyesters include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. Further, these copolymers, blends thereof, or blends of these with a small proportion of other resins may be used. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable because of a good balance between mechanical properties and optical properties.
- polyethylene terephthalate has a refractive index after biaxial stretching (average refractive index in the plane direction) close to 1.65, and thus the average refractive index in the plane direction of the polyester film is easily in the range of 1.60 to 1.70.
- the refractive index adjustment with the optical adjustment layer in the invention is easy to perform, and thereby a better bone appearance suppressing effect can be obtained, which is preferable.
- the polyester may be a homopolymer, but the copolymer component (copolymeric acid component or copolymer glycol component) does not impair its properties, for example, 5 mol% or less with respect to 100 mol% of the total acid component, Preferably, it may be a copolymer copolymerized at a ratio of 3 mol% or less.
- the copolymer acid component include aromatic dicarboxylic acid components such as a phthalic acid component, an isophthalic acid component, and a 2,6-naphthalenedicarboxylic acid component, an adipic acid component, an azelaic acid component, a sebacic acid component, and 1,10-decane.
- An aliphatic dicarboxylic acid component such as a dicarboxylic acid component can be exemplified, and examples of the copolymer glycol component include an aliphatic diol component such as a 1,4-butanediol component, a 1,6-hexanediol component, and a neopentyl glycol component, An alicyclic diol component such as 1,4-cyclohexanedimethanol component can be exemplified. These can also be used together. Further, as another copolymer component, a compound having two ester-forming functional groups in the molecule other than the above can be used.
- Examples of such compounds include oxalic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid.
- Components derived from dicarboxylic acids such as diphenyl ether dicarboxylic acid, components derived from oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid, or propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene Glycol, cyclohexanemethylene glycol, neopentyl glycol, ethylene oxide adduct of bisphenolsulfone, ethylene oxide adduct of bisphenol A, diethylene glycol, poly A component derived from a dihydric alcohol such as ethylene oxide glycol can be preferably used. These compounds may be used alone or in combination of two or more.
- the acid component is preferably a component derived from 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or p-oxybenzoic acid, and the glycol component is trimethylene glycol.
- the polyester constituting the polyester film is particularly preferably polyethylene terephthalate.
- Such polyethylene terephthalate may have a copolymer component as described above, but preferably has an ethylene terephthalate unit of 90 mol% or more, preferably 95% or more, more preferably 97% or more.
- the polyester in the present invention is a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol is a conventionally known transesterification catalyst. Obtained by a method in which a polymerization reaction is performed in the presence of a polymerization catalyst after reacting with one or more of compounds containing sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. Can do.
- antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.
- the polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.
- the intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, and more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. If it is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.
- the polyester film in the present invention preferably has an average refractive index in the plane direction of 1.60 to 1.70. Thereby, it is more excellent in a bone appearance suppression effect by the synergistic effect with the other layer which comprises the laminated body of this invention.
- the average refractive index in the plane direction is an average refractive index between a refractive index in an arbitrary direction and a refractive index in a direction perpendicular to the refractive index in the film plane, preferably the maximum refractive index in the film plane and the maximum
- the average refractive index of the refractive index in the direction perpendicular to the direction indicating the refractive index is shown. If the average refractive index in the plane direction is too low or too high, the effect of suppressing bone appearance is reduced. From this viewpoint, the range of the average refractive index in the plane direction of the polyester film is more preferably 1.62 or more, further preferably 1.63 or more, particularly preferably 1.64 or more, and most preferably 1.65 or more.
- the average refractive index in the plane direction is in this range, as described later, when a functional layer such as a hard coat layer is provided on the surface opposite to the optical adjustment layer of the polyester film, the second easy-adhesion layer is provided.
- the average refractive index in the plane direction is preferably 1.63 to 1.68, more preferably 1.64 to 1.67, and still more preferably 1.65 to 1.66.
- Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the average refractive index in the plane direction satisfies the above requirements. From the viewpoint, a biaxially oriented film is preferable.
- PET polyethylene terephthalate
- PET polyethylene terephthalate
- an oriented polyethylene terephthalate film is preferably used.
- the polyester constituting the oriented polyethylene terephthalate film is a polyester having an ethylene terephthalate unit of 95 mol% or more, preferably 98 mol% or more, based on all repeating units, and particularly preferably a homopolyester not using a copolymer component in combination. It is.
- a dicarboxylic acid component such as isophthalic acid or naphthalenedicarboxylic acid or a glycol component such as diethylene glycol, butanediol, or cyclohexanediol can be used as the copolymerization component.
- the polyester film can contain a slippery filler such as inert particles in order to ensure transportability.
- a capacitive touch sensor is formed by laminating a plurality of transparent films, and the haze of the film is integrated. Therefore, it is desired that the internal haze of each constituent film is as low as possible.
- the polyester film preferably contains no filler or substantially no filler (for example, 10 ppm or less, preferably 1 ppm or less).
- a small amount of filler may be included as a lubricant in order to prevent minute scratches in the manufacturing process and improve the film winding property.
- the filler for example, inert particles having an average particle diameter of 0.01 to 2 ⁇ m, further 0.05 to 1 ⁇ m, and particularly 0.1 to 0.3 ⁇ m may be used.
- the blending ratio is preferably 100 ppm or less, for example, based on the mass of the layer to be blended, and may be 10 ppm or less, particularly 1 ppm or less, which is a range that does not substantially contain.
- the polyester film can also contain a colorant, an antistatic agent, an antioxidant, an organic lubricant, and a catalyst.
- a polyester film having a first easy-adhesion layer and / or a second easy-adhesion layer described later may be referred to as a laminated polyester film.
- refractive index of the first easy-adhesion layer it is important that the refractive index of the first easy-adhesion layer is in the range of 1.60 to 1.65.
- the polyester film, the first easy-adhesion layer, and the optical adjustment layer preferably all have the same refractive index.
- the refractive index of the first easy-adhesion layer is preferably 1.61 to 1.64, more preferably 1.62 to 1.64.
- the difference between the refractive index of the first easy-adhesion layer and the refractive index of the high refractive index layer described later is preferably 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased.
- the refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
- the difference of the refractive index of a 1st easily bonding layer and the surface direction average refractive index of a polyester film is 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased.
- the refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
- the thickness of the first easy-adhesion layer is 8 to 30 nm. Thereby, it is excellent in adhesiveness. Moreover, while making the refractive index of a 1st easily bonding layer into the range mentioned above, and making thickness into the said range, there exists an outstanding bone-inhibition suppression effect by interaction with the other layer in the laminated body of this invention. be able to.
- the optical interference of the thin film depends on the product of the refractive index and the optical path length (film thickness).
- the optical adjustment layer or the high refractive index layer in the optical adjustment layer is in the refractive index range described later, and the first easy-adhesion layer is in the refractive index range.
- the film thickness of the first easy-adhesion layer within a very narrow range of 8 to 30 nm, excellent adhesiveness can be obtained while exhibiting an excellent bone appearance suppressing effect. If the thickness of the first easy-adhesion layer is too thick, the effect of suppressing bone appearance is reduced. On the other hand, if it is too thin, the adhesiveness decreases.
- the thickness of the first easy-adhesion layer is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 18 nm or more, and preferably 25 nm or less, more preferably 22 nm or less.
- the polyester resin occupies 50% by mass or more based on the mass of the first easy-adhesion layer. Thereby, it is excellent in adhesiveness.
- the content of the polyester resin is preferably 70% by mass or more, and more preferably 80% by mass or more.
- the upper limit of the content of the polyester resin in the first easy-adhesion layer is not particularly limited, but the polyester resin occupies the remaining part other than the components that can be preferably contained in the first easy-adhesion layer, which will be described later. What is necessary is just to be an aspect.
- a polyester resin is used as a binder component which forms a 1st easily bonding layer
- the glass transition temperature (Tg) of this polyester resin is 120 degrees C or less. Thereby, it is further excellent in adhesiveness. Moreover, it can be set as the 1st easily bonding layer excellent in extending
- Tg is 40 degreeC, and this is further excellent in adhesiveness, and is excellent in blocking resistance. From this viewpoint, Tg is more preferably 50 ° C. or higher, and particularly preferably 60 ° C. or higher.
- this polyester resin the polyester or copolymer polyester which consists of an acid component and a glycol component as shown below can be mentioned. In the present invention, a copolyester is preferable from the viewpoint of adhesiveness.
- the monomer component which comprises the polyester concerning the following is illustrated, it is not limited to these.
- Acid components include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, dimer acid, Examples include components derived from 5-sodium sulfoisophthalic acid and the like. It is preferable to use two or more of these acid components as a copolyester. Further, an unsaturated polybasic acid component such as maleic acid, itaconic acid and the like, and hydroxycarboxylic acid such as p-hydroxybenzoic acid, etc., can also be used in a slight amount.
- 2,6-naphthalenedicarboxylic acid is preferably used from the viewpoint of achieving a balance between the refractive index and the coating film strength.
- content of 2, 6- naphthalene dicarboxylic acid in a polyester resin 50 mol% or more is preferable with respect to 100 mol% of all the acid components, and 60 mol% or more is more preferable.
- 90 mol% or less is preferable, 80 mol% or less is more preferable, and 70 mol% or less is more preferable.
- this component it exists in the tendency for the film forming property of a 1st easily bonding layer to fall.
- glycol component examples include ethylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane, poly (ethylene oxide) glycol, poly The component derived from (tetramethylene oxide) glycol etc. can be mentioned. It is preferable to use two or more of these glycol components as a copolyester.
- a fluorene structure represented by the following formula (I) such as bis (4-hydroxyethoxyphenyl) fluorene component is preferably used.
- a compound having a conjugated system, such as a glycol component, is preferably used as the copolymer component.
- R 2 , R 3 , R 4 And R 5 Are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, which may be the same or different.
- a 2,6-naphthalenedicarboxylic acid component is adopted as the acid component, and at the same time, a glycol component having a fluorene structure, preferably a bis (4-hydroxyethoxyphenyl) fluorene component, is used as the glycol component.
- the embodiment adopted is preferred. Thereby, it becomes easier to set the refractive index of the first easy-adhesion layer within the range defined by the present invention, and at the same time, the mechanical properties are excellent, and the effect of improving adhesiveness can be enhanced.
- An embodiment in which these components are contained in the polyester resin at the above-described contents is preferable.
- a copolymer polyester resin constituting a second easy-adhesion layer described later can be employed as a polyester resin constituting the first easy-adhesion layer in the present invention based on the above idea.
- a copolymer polyester resin constituting a second easy-adhesion layer described later can be employed as a polyester resin constituting the first easy-adhesion layer in the present invention based on the above idea.
- a particularly preferred embodiment of the polyester resin constituting the first easy-adhesion layer in the present invention is that the total acid component is 100 mol%, the acid component is 2,6-naphthalenedicarboxylic acid 60 to 70 mol%, and isophthalic acid 25 ⁇ 30 mol%, 5-sodium sulfoisophthalic acid is 5-10 mol%, glycol component is 10-20 mol% bisphenol A, ethylene glycol is 35-60 mol%, trimethylene glycol is 25-35 mol% %, And bis (4-hydroxyethoxyphenyl) fluorene consists of 5 to 10 mol%.
- the polyester resin is preferably a polyester that is soluble or dispersible in water (which may contain some organic solvent), and it is easy to produce a coating liquid described later.
- Metal oxide particles In order to control the refractive index of the first easy-adhesion layer in the present invention, metal oxide particles having a refractive index of 1.7 to 3.0, preferably 1.8 to 2.2 may be added. preferable.
- TiO 2 (Refractive index 2.5), ZrO 2 (Refractive index 2.4), SnO 2 (Refractive index 2.0), Sb 2 O 3 (Refractive index 2.0) is exemplified, and in the present invention, it is preferable to use at least one metal oxide particle selected from the group consisting of these.
- the metal oxide particles are colorless and transparent and have a particle size sufficiently small with respect to the wavelength of light. (For example, 400 nm or less, preferably 100 nm or less) is preferable.
- a higher refractive index is preferable because the refractive index of the first easy-adhesion layer can be increased with a small amount, but high refractive index metal oxide particles having a refractive index exceeding 3.0 tend to be inferior in transparency.
- the manufacturing cost tends to increase.
- the metal oxide particles of the first easy-adhesion layer in the present invention particles made of titanium oxide and zirconium oxide are more preferable. From the viewpoint of specific gravity, titanium oxide particles having a high refractive index improving effect in a small amount. Particularly preferred.
- the addition amount of the metal oxide particles is preferably 2% by mass or more and 20% by mass or less based on the mass of the first easy-adhesion layer, and the refractive index can be efficiently maintained while maintaining transparency by making such a range. Can be high. If the amount is too large, the transparency tends to decrease. In addition, particle dropping or the like tends to occur, equipment wear occurs during coating, and stable coating tends to be difficult.
- the amount is more preferably 3% by mass or more, further 4% by mass or more, particularly preferably 5% by mass or more, more preferably 15% by mass or less, still more preferably 10% by mass or less, and further preferably 8% by mass or less. Is particularly preferred.
- a high refractive index filler such as metal oxide particles
- a method of increasing the refractive index of a polyester resin as a binder component means such as a method of adding a high refractive index filler such as metal oxide particles or a method of increasing the refractive index of a polyester resin as a binder component
- the use of metal oxide particles has a problem of equipment wear and is relatively difficult to add in a large amount.
- the 1st easily bonding layer in this invention contains the lubricant particle for providing lubricity other than the metal oxide particle of the said specific refractive index range.
- lubricant particles By containing the lubricant particles, it is possible to impart lubricity and scratch resistance to the film.
- lubricant particles include inorganic lubricant particles such as calcium carbonate, magnesium carbonate, calcium oxide, silicon oxide, sodium silicate, aluminum hydroxide, and carbon black, acrylic cross-linked polymers, styrene cross-linked polymers, and silicones.
- organic lubricant particles such as resin, fluororesin, benzoguanamine resin, phenol resin, and nylon resin. These may be used alone or in combination of two or more.
- the average particle diameter of the lubricant particles is preferably 10 to 180 nm, more preferably 20 to 150 nm.
- the thickness of the first easy-adhesion layer of the present invention is very thin with respect to 80 to 120 nm which is the thickness of the easy-adhesion layer in a normal optical film. If it is smaller than 10 nm, sufficient lubricity and scratch resistance may not be obtained.
- the content of the lubricant particles is preferably 0.1 to 10% by mass per 100% by mass of the first easy-adhesion layer. If it is less than 0.1% by mass, sufficient lubricity and scratch resistance cannot be obtained, and if it exceeds 10% by mass, the surface haze tends to increase, and the optical properties tend to deteriorate.
- the crosslinking agent is preferably a compound having an oxazoline group and a polyalkylene oxide chain, more preferably an acrylic resin having an oxazoline group and a polyalkylene oxide chain, from the viewpoint of improving the coating film strength and further improving the adhesiveness.
- An acrylic resin is preferable because it can easily copolymerize many kinds of functional groups.
- the acrylic resin having an oxazoline group and a polyalkylene oxide chain is preferably an acrylic resin that is soluble or dispersible in water (may contain some organic solvent).
- the acrylic resin having an oxazoline group and a polyalkylene oxide chain include those containing the following monomers as components.
- the monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline and 2-isopropenyl-5-methyl-2-oxazoline.
- the component is preferably contained in the acrylic resin in an amount of 10 to 50 mol%, more preferably 20 to 40 mol%, and even more preferably 25 to 35 mol%. .
- Examples of the monomer having a polyalkylene oxide chain include those obtained by adding polyalkylene oxide to an ester part of acrylic acid or methacrylic acid.
- Examples of the polyalkylene oxide chain include polymethylene oxide, polyethylene oxide, polypropylene oxide, and polybutylene oxide.
- the repeating unit of the polyalkylene oxide chain is preferably 3 to 100, more preferably 4 to 50, still more preferably 5 to 20. If the number of repeating units of the polyalkylene oxide chain is too small, the compatibility between the polyester resin and the acrylic resin tends to be poor, and the effect of improving the transparency of the first easy-adhesion layer tends to be low. On the other hand, if it is too large, the heat-and-moisture resistance of the first easy-adhesion layer tends to be low, and particularly the adhesiveness to the optical adjustment layer or the high refractive index layer tends to be low under high humidity and high temperature.
- alkyl acrylate preferably methyl acrylate or ethyl acrylate
- alkyl methacrylate preferably methyl methacrylate or ethyl methacrylate
- the content of the cross-linking agent in the first easy-adhesive layer is preferably 1 to 20% by mass, more preferably 2 to 15% with respect to 100% by mass of the total amount of the polyester resin and the cross-linking agent in the first easy-adhesive layer. % By mass, more preferably 8 to 15% by mass.
- the crosslinkable addition polymer which is a preferable crosslinking agent in the 2nd easily bonding layer mentioned later can be used as a crosslinking agent of a 1st easily bonding layer.
- adopts a crosslinkable addition polymer in a 2nd easily bonding layer can be provided to a 1st easily bonding layer.
- An optical adjustment layer is provided on the first easy-adhesion layer.
- the optical adjustment layer is a layer that has a function of suppressing the appearance of bone by matching the light reflection and transmission characteristics of the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is not present due to the interference effect.
- the optical adjustment layer is usually composed of at least one high refractive index layer and at least one low refractive index layer, which are appropriately combined.
- Each of the high refractive index layer and the low refractive index layer may have a plurality of layers. Usually, it becomes a lamination order of a polyester film, a high refractive index layer, and a low refractive index layer.
- a high refractive index layer / low refractive index layer comprising a high refractive index layer on the side close to the polyester film and a low refractive index layer on the opposite side of the polyester film of the high refractive index layer.
- An embodiment having a two-layer structure is preferable.
- the high refractive index layer is a layer having a refractive index of 1.60 to 1.80. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the effect of suppressing bone appearance tends to be low. From such a viewpoint, the refractive index of the high refractive index layer is preferably 1.60 or more, more preferably 1.62 or more, still more preferably 1.64 or more, and preferably 1.75 or less, more preferably 1.70 or less, more preferably 1.68 or less, particularly preferably 1.66 or less.
- the high refractive index layer is preferably a layer comprising a metal and / or metal oxide and optionally a binder resin. Especially, it is preferable that it is a layer which consists of a metal oxide and binder resin.
- a metal oxide is a metal oxide film obtained by a sol-gel method.
- the metal oxide film can be a high refractive index layer.
- the metal oxide film may optionally contain a binder resin.
- the metal oxide include metal oxide fine particles.
- the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
- the type of metal oxide forming the film and fine particles in the high refractive index layer is not particularly limited as long as the above refractive index is satisfied, but the strength of the obtained film can be increased.
- it should be at least one selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, indium-containing tin oxide, antimony-containing tin oxide and zinc antimonate. preferable.
- titanium oxide, antimony-containing tin oxide, and zirconium oxide are particularly preferable from the viewpoints of particularly high film strength and excellent dispersibility in the case of fine particles.
- These metal oxides may be used alone or in combination of two or more.
- the metal oxide film which consists of 2 or more types of metal oxides may be sufficient, and the aspect containing 2 or more types of metal oxide fine particles may be sufficient.
- the metal oxide forming the film and the metal oxide forming the fine particles may be the same or different.
- the binder resin in the high refractive index layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a high refractive index may be preferably used.
- the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like. Adhesiveness can be further improved by the binder resin.
- a particularly preferable embodiment of the high refractive index layer in the present invention is an embodiment in which a binder resin is contained in the metal oxide film, and an organosilane condensate is particularly preferably contained in the titanium oxide film. It is an aspect. Commercially available products can also be used as metal oxides preferably used for the high refractive index layer.
- zirconium oxide HXU-110JC (manufactured by Sumitomo Osaka Cement Co., Ltd.), titanium oxide: nanotech Ti-Tolu (Ci Kasei), zinc oxide: nanotech ZnO-Xylene (Ci Kasei), cerium oxide: Nidral (Taki Chemical) Indium-containing tin oxide: products manufactured by Mitsubishi Materials, antimony-containing tin oxide: SN-100D (manufactured by Ishihara Sangyo Co., Ltd.), zinc antimonate: Cellnax series (manufactured by Nissan Chemical Industries, Ltd.), etc. .
- the low refractive index layer is a layer having a refractive index of 1.40 to 1.60. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the bone appearance suppression effect tends to be low. From this viewpoint, the refractive index of the low refractive index layer is preferably 1.42 or more, more preferably 1.43 or more, further preferably 1.44 or more, and preferably 1.55 or less, more preferably 1.50 or less, more preferably 1.48 or less.
- the low refractive index layer is not particularly limited as long as it satisfies the above refractive index, and may be a layer made of a binder resin, a layer made of a metal oxide, or a binder resin and a metal. It may be a layer made of an oxide. In addition, organic particles having a low refractive index can be contained.
- An example of the metal oxide is a metal oxide film obtained by a sol-gel method. In this case, the metal oxide film can be a low refractive index layer.
- the metal oxide film may optionally contain a binder resin. Examples of the metal oxide include metal oxide fine particles.
- the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
- the kind of metal oxide forming the film and fine particles in the low refractive index layer is particularly preferably silica from the viewpoint of forming a layer having a suitable low refractive index.
- a more preferable low refractive index can be obtained by containing organic silane-based silicon compounds and low refractive index organic particles such as fluorine compounds as organic particles.
- the refractive index can be lowered by forming voids by including a void forming agent in the layer.
- the binder resin in the low refractive index layer examples include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a low refractive index may be preferably used. From the viewpoint of film strength, the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like.
- a particularly preferable embodiment of the low refractive index layer in the present invention is an embodiment comprising a metal oxide film, and a silica film formed by a sol-gel method is particularly preferable.
- the thickness is preferably 50 to 250 nm, more preferably 100 to 200 nm, and even more preferably 125 to 175 nm. Can be high.
- the thickness is preferably 5 to 50 nm, more preferably 10 to 45 nm, and even more preferably 20 to 40 nm. Can be high.
- the laminated body of this invention may have another layer in the range which does not inhibit the objective of this invention.
- you may have the adhesion layer for bonding with another optical member in the surface on the opposite side to the optical adjustment layer of a polyester film.
- a smoothing layer such as a hard coat layer may be provided on the first easy-adhesion layer, and an optical adjustment layer may be provided thereon.
- the smoothing layer exhibits suitable adhesiveness for both the first easy-adhesion layer and the optical adjustment layer (or the high refractive index layer) in the present invention.
- the second easy-adhesion layer is a layer for improving the adhesion between the polyester film and the functional layer when a functional layer such as a hard coat layer is laminated.
- the second easy-adhesion layer is 70% by mass or more based on the weight of the second easy-adhesion layer, preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
- the ratio of the copolyester resin is 70% by mass or more, the adhesion with a functional layer such as a hard coat layer is improved, and the refractive index of the second easy-adhesion layer can be within an appropriate range. Therefore, light interference spots can be suppressed.
- the glass transition temperature (Tg) of the second easy-adhesive layer is also in an appropriate range, and the film-forming property is improved, and the cracks of the second easy-adhesive layer are reduced, and the deterioration of the adhesiveness due to such cracks is suppressed. It can be excellent in adhesion.
- the average refractive index in the plane direction of the oriented polyethylene terephthalate film is usually about 1.66, and the refractive index of the acrylic resin hard coat layer usually used as the functional layer is about 1.52.
- the refractive index is preferably in the range of 1.57 to 1.62, more preferably in the range of 1.58 to 1.61, and particularly preferably in the range of 1.59 to 1.60. Such a refractive index can be easily achieved by employing a copolyester resin described later.
- the thickness of the second easy-adhesion layer is preferably 50 to 100 nm, more preferably 70 to 90 nm.
- the copolymer polyester resin used for the second easy-adhesion layer can be selected from the modes described below depending on the intended effect.
- Such a copolyester resin can also be used as the polyester resin of the first easy-adhesion layer as long as the purpose is not hindered, whereby the effect of adopting such a copolyester resin is applied to the first easy-adhesion layer. Can be granted.
- the first easy-adhesion layer and the second easy-adhesion layer may be collectively referred to as an easy-adhesion layer.
- a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied. Often used.
- in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied.
- a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied.
- it is presumed to be due to the cracking of the coating layer that occurs in the stretching process, but there may be cases where further improvement in adhesion is desired. found.
- This aspect is a particularly suitable copolymer polyester resin for the purpose of excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots (color spots) after the formation of the functional layer. It is an aspect.
- the copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester.
- a copolymer comprising 12 alkylene dicarboxylic acid components and 4 to 10 alkylene glycol components in a total amount of 15 to 50 mol%, and a glycol component having a fluorene structure represented by the formula (I) of 5 mol% or more and less than 20 mol%.
- Polyester When the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set to the above-mentioned preferable range, Interference spots can be suppressed. Moreover, the swelling resistance of the second easily adhesive layer with respect to the solvent is also good.
- the proportion of the naphthalenedicarboxylic acid component is less than the lower limit, the refractive index of the copolyester is lowered, and as a result, the refractive index of the second easy-adhesive layer is lowered and the effect of suppressing light interference spots is insufficient.
- the swelling with organic solvents increases (solvent resistance deteriorates), so it swells when it comes into contact with the organic solvent in the coating liquid for functional layers such as the hard coat layer, resulting from the uneven thickness of the second easy-adhesive layer This is not preferable because it causes not only interference spots to occur but also blocking resistance.
- the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can.
- the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high. It tends to decrease.
- the preferable lower limit of the content of the naphthalenedicarboxylic acid component is 65 mol%, and the preferable upper limit is 85 mol%, more preferably 80 mol%, and particularly preferably 70 mol%.
- examples of the naphthalenedicarboxylic acid component include 2,7-naphthalenedicarboxylic acid component, 2,6-naphthalenedicarboxylic acid component, 1,4-naphthalenedicarboxylic acid component, and the like, among which 2,6-naphthalenedicarboxylic acid component.
- Ingredients are preferred.
- based on the total acid component of the copolyester it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms.
- the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is contained in an amount of 0 to 40 mol% and the alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the alkylene dicarboxylic acid component and the alkylene glycol component are preferably contained.
- the total content is 15 to 50 mol%.
- Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low.
- even the in-line coating method often adopted when forming the second easy-adhesion layer on the oriented polyethylene terephthalate film is excellent in the film-forming property of the second easy-adhesion layer.
- the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
- alkylene dicarboxylic acid component having 6 to 12 carbon atoms examples include 1,4-butanedicarboxylic acid component, 1,6-hexanedicarboxylic acid component, Examples thereof include 1,4-cyclohexanedicarboxylic acid component, 1,8-octanedicarboxylic acid component, 1,10-decanedicarboxylic acid component, and the like.
- a dicarboxylic acid component having an alkylene group having 4 to 8 carbon atoms is preferable, and a dicarboxylic acid component having an alkylene group having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg is easily obtained.
- the alkylene glycol component having 4 to 10 carbon atoms preferably used include a 1,4-butanediol component, a 1,6-hexanediol component, a 1,4-cyclohexanediol component, a 1,8-octanediol component, Examples include 1,10-decanediol component.
- an alkylene glycol component having 4 to 8 carbon atoms is preferable, and an alkylene glycol component having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg can be easily obtained.
- the glycol component having the fluorene structure represented by the formula (I) is contained in an amount of 5 mol% or more and less than 20 mol% based on the total acid component of the copolymerized polyester, the Tg of the copolymerized polyester is appropriately low. While maintaining the temperature, the refractive index can be increased to a preferable range. When the content of the glycol component having the fluorene structure represented by the formula (I) is less than 5 mol%, it is difficult to make the refractive index of the copolymer polyester within a preferable range, and light interference spots cannot be suppressed. .
- the preferred lower limit is 3 mol%, more preferably 5%, and the preferred upper limit is 15 mol%, more preferably 10%.
- glycol component having a fluorene structure represented by the formula (I) preferably used examples include a 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene component and a 9,9-bis [4- (2 -Hydroxyethoxy) -2-methylphenyl] fluorene component.
- the copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. It is preferable that Tg can be within a more preferable range while maintaining the refractive index, and the adhesiveness is also improved.
- the average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
- terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain.
- an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
- the copolyester of this embodiment preferably contains 1 to 10 mol% of a dicarboxylic acid component having a sulfonate group based on the total acid component.
- or water dispersibility can be improved.
- the solvent resistance (swelling resistance) of the second easy-adhesion layer can be improved.
- the amount is too large, the water resistance and blocking resistance of the second easy-adhesion layer tend to be low, so the range of 2 to 8 mol% is particularly preferable.
- aromatic dicarboxylic acid component having a sulfonate group examples include a 5-sodium sulfoisophthalic acid component, a 5-potassium sulfoisophthalic acid component, a 5-lithium sulfoisophthalic acid component, and a 5-phosphonium sulfoisophthalic acid component.
- the 5-sodium sulfoisophthalic acid component is most preferable from the viewpoint of improving water dispersibility. The following can be illustrated as a specific aspect of the copolyester resin 1 preferably used.
- Naphthalene dicarboxylic acid component is 60 to 90 mol% (B2) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component being 15 ⁇ 50 mol% (C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and (D2) 5-25 mol% of bisphenol A ethylene oxide adduct component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
- Copolyester containing
- Naphthalene dicarboxylic acid component is 60 to 80 mol% (B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (D3) 5-25 mol% of bisphenol A ethylene oxide adduct component (E3) 20-40 mol% of terephthalic acid component and / or isophthalic acid component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- Naphthalene dicarboxylic acid component is 60 to 80 mol% (B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (E4) 20-40 mol% of terephthalic acid component and / or isophthalic acid component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- Naphthalenedicarboxylic acid component is 60 to 70 mol% (B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (D5) 5-25 mol% of bisphenol A ethylene oxide adduct component (E5) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component (F5) 6-8 mol% of dicarboxylic acid component having a sulfonate group (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable.
- the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect.
- a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
- the second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed.
- the second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film.
- Such a laminated polyester film includes the following embodiments. 1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer comprises 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer. Contains laminated polyester film.
- Copolyester (A1) 60-90 mol% of naphthalenedicarboxylic acid component, (B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 ⁇ 50 mol%, and (C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
- the copolyester is further (D2) 5-25 mol% of bisphenol A ethylene oxide adduct component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
- the copolymerized polyester is (A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%, (B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%, (E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component, (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) 3. The laminated polyester film as described in 1 or 2 above. 4). 4.
- Various solvents have come to be used as coating solutions for forming functional layers such as hard coat layers. Depending on the solvent, the easy-adhesion layer swells and dissolves, and the thickness varies, resulting in interference. There is a problem that the spots cannot be suppressed.
- Such a copolyester uses, for example, a component capable of increasing the refractive index such as a naphthalenedicarboxylic acid component or a glycol component having a fluorene structure and a component capable of adjusting the swelling ratio such as an aromatic dicarboxylic acid component having a sulfonate group.
- the refractive index and the swelling rate may be adjusted by adjusting the copolymerization amount.
- the copolymer polyester preferably used include, for example, an aromatic dicarboxylic acid component having 60 to 90 mol% of a naphthalenedicarboxylic acid component and a sulfonate group based on the total dicarboxylic acid component (100 mol%) of the copolymer polyester.
- Examples thereof include those containing 1 to 10 mol% and 5 to 25 mol% of bisphenol A ethylene oxide adduct.
- the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set in the above range, and interference spots can be prevented. Can be suppressed. Further, the swelling ratio of the second easy-adhesion layer can be easily set within a preferable range.
- the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can.
- the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high.
- the transparency of the film tends to decrease. Therefore, the content of the naphthalenedicarboxylic acid component is preferably 65 mol% or more, and 85 mol% or less, more preferably 80 mol% or less, and particularly preferably 70 mol% or less.
- a preferable naphthalene dicarboxylic acid component it is the same as that of the copolyester resin 1.
- the solubility or water dispersibility when the copolymer polyester is used as an aqueous coating liquid is improved. be able to.
- the swelling ratio of the second easy-adhesion layer can be easily within a preferable range.
- the content is preferably 2 to 8 mol%, particularly preferably 6 to 8 mol%.
- the aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1. .
- the Tg can be made a preferred range while maintaining the refractive index of the copolymer polyester,
- the film forming property of the second easy-adhesion layer is improved, and a film excellent in transparency can be obtained.
- the average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
- the copolymer polyester described above preferably contains 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) in addition to the above components.
- the refractive index can be within a preferred range.
- the refractive index of the copolyester tends to decrease, while when it increases, the Tg of the copolyester increases, and the film-forming property of the second easy-adhesive layer decreases and the transparency of the film is reduced. Tend to decrease, and the adhesiveness also tends to decrease.
- the preferable lower limit is 5 mol%
- the preferable upper limit is 15 mol%, and particularly preferably 10 mol%.
- the glycol component having a fluorene structure represented by the formula (I) preferably used is the same as that of the copolyester resin 1.
- the total amount of the components is 15 to 50 mol%.
- Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low.
- the polyester film is a polyethylene terephthalate film
- even the in-line coating method often adopted when forming the second easy-adhesion layer is excellent in the film-forming property of the second easy-adhesion layer, so that the transparency is improved.
- An excellent film is obtained.
- the simultaneous biaxial stretching method is used and the in-line coating method is used to form the second easy-adhesion layer
- the preheating / drying temperature tends to be relatively low. Largely preferred.
- the adhesive improvement effect can be enhanced and the blocking resistance is also excellent.
- the Tg of the copolyester is difficult to decrease, and the transparency of the resulting film may be reduced.
- the amount of the alkylene dicarboxylic acid component or the alkylene glycol component is increased or the sum of both is increased, the anti-blocking property is reduced, or the refractive index of the copolyester is reduced and the effect of suppressing interference spots is reduced. There is a case.
- the swelling rate of the second easy-adhesion layer may increase.
- the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
- the alkylene dicarboxylic acid component having 6 to 12 carbon atoms (dicarboxylic acid component having an alkylene group having 4 to 10 carbon atoms) and the alkylene glycol component having 4 to 10 carbon atoms that are preferably used include copolymer polyester resin 1 It is the same.
- the above-mentioned alkylene dicarboxylic acid component and the above-mentioned alkylene glycol can be easily added as an acid component and easily subjected to a polymerization reaction.
- the components it is more preferable to contain them as an alkylene glycol component.
- terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain.
- an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
- the following can be illustrated as a specific aspect of the copolyester resin 2 preferably used.
- (Preferred Embodiment 1 of Copolyester Resin 2 (Preferred Embodiment 2-1)] (A) 60-90 mol% of naphthalenedicarboxylic acid component (B) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and (C) 5-25 mol% of bisphenol A ethylene oxide adduct component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- the refractive index of the second easy-adhesion layer in this embodiment is preferably 1.58 to 1.64. More preferably, it is 1.58 to 1.62, more preferably 1.58 to 1.60, and particularly preferably 1.58 to 1.59.
- the refractive index of the second easy-adhesion layer is within this range, the average refractive index in the plane direction of a preferable polyester film, which will be described later, and the refractive index of a hard coat layer usually made of an acrylic resin (approximately 1.52) Since the refractive index is between, interference spots (color spots) when a hard coat layer made of such an acrylic resin is applied on the second easy-adhesion layer can be suppressed. If this refractive index is too high or too low, it becomes difficult to suppress interference spots. Moreover, it becomes easy to make a swelling rate into a preferable range by setting it as the 2nd easily bonding layer which consists of a component which becomes such a refractive index, Preferably the component mentioned above.
- the refractive index of each component constituting the second easy-adhesion layer may be adjusted.
- the refractive index of a 2nd easily bonding layer can be made high by using copolyester resin and particle
- the above-described copolymer polyester resin 2 may be employed.
- the thickness of the second easy-adhesion layer needs to be 50 to 100 nm, and preferably 70 to 90 nm.
- the thickness of the second easy-adhesion layer By setting the thickness of the second easy-adhesion layer within this range, interference spots (color spots) when a low refractive index layer such as a hard coat layer made of an acrylic resin is provided thereon can be suppressed. If this thickness is too thin, the adhesiveness tends to decrease, and if it is too thin or too thick, it becomes difficult to suppress interference spots.
- the swelling ratio obtained by the following method is 130 to 200% in any of the following solvents. Preferably it is 130 to 180%, more preferably 135 to 175%, still more preferably 139 to 165%.
- UV curable composition methyl ethyl ketone (MEK), ethyl acetate, toluene, isopropanol (IPA) and propylene, which are representative of the solvents usually used for forming hard coat layers and the like, are used.
- MEK methyl ethyl ketone
- IPA isopropanol
- propylene which are representative of the solvents usually used for forming hard coat layers and the like.
- Glycol monomethyl ether acetate (PGMEA) is used, and in any of these solvents, the swelling ratio of the second easy-adhesion layer needs to be in the above range.
- UV curable composition Pentaerythritol acrylate: 45% by mass N-methylolacrylamide: 40% by mass N-vinylpyrrolidone: 10% by mass 1-hydroxycyclohexyl phenyl ketone: 5% by mass
- the swelling ratio is less than 130%, the adhesion with the hard coat layer tends to be low.
- the swelling ratio exceeds 200%, the functional layer such as the hard coat layer is formed before and after the formation. Since the variation in the thickness of the second easy-adhesion layer is too large, it is difficult to suppress interference spots. Further, it is important that the swelling rate is within the above range in any of the above solvents.
- the swelling rate in any of the solvents is out of this range, such a solvent is used to form a hard coat layer or the like. This is because when the functional layer is formed, the adhesiveness is insufficient or it is difficult to suppress interference spots.
- the difference between the maximum swelling rate and the minimum swelling rate is 50% or less. It is preferable that it is 25% or less.
- the components used for the second easy-adhesion layer, particularly the copolymer component constituting the binder component may be adjusted to balance the lipophilicity and the hydrophilicity.
- the swelling rate can also be adjusted by using a crosslinking agent for the second easy-adhesion layer.
- the crosslinking agent tends to have a lower swelling ratio as the addition amount increases.
- the preferred polyester film according to this embodiment has a refractive index in the plane direction (average refractive index of a refractive index in any one direction and a refractive index in a direction perpendicular thereto in the film plane) of 1.63 to 1.68. Preferably, it is in the range of 1.64 to 1.67, particularly preferably 1.65 to 1.66.
- the film provided with the second easy-adhesion layer using the above-described copolymer polyester resin 2 has a low refractive index layer such as a hard coat layer formed thereon. Excellent in suppressing the occurrence of interference spots. Even if the surface direction refractive index is out of the above range and is too high or too low, the effect of suppressing the occurrence of interference spots tends to decrease.
- Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the plane direction refractive index satisfies the above requirements. To a biaxially oriented film.
- the second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed.
- the second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film.
- Such a laminated polyester film includes the following embodiments. 1. At least one surface of a polyester film having a surface direction refractive index of 1.63 to 1.68 has a refractive index of 1.58 to 1.64, and the swelling ratio required by the following method is 130 to 200% in any solvent, A laminated polyester film having a second easy adhesion layer having a thickness of 50 to 100 nm.
- UV curable composition Pentaerythritol acrylate: 45% by mass N-methylolacrylamide: 40% by mass N-vinylpyrrolidone: 10% by mass 1-hydroxycyclohexyl phenyl ketone: 5% by mass 2.
- Copolyester (A2) Naphthalenedicarboxylic acid component is 60 to 90 mol%, (B2) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and (C2) Copolyester containing 5 to 25 mol% of bisphenol A ethylene oxide adduct component. (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) 3.
- the copolyester is further (D3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) 3.
- a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied.
- in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied.
- in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied.
- the improvement of the adhesiveness (wet heat adhesiveness) especially in a wet heat environment is strongly requested
- This aspect is particularly suitable for the purpose of, for example, excellent adhesion with a functional layer such as a hard coat layer in a humid heat environment, and suppression of light interference spots (color spots) after the formation of the functional layer.
- a functional layer such as a hard coat layer in a humid heat environment
- suppression of light interference spots (color spots) after the formation of the functional layer is an embodiment of a polymerized polyester resin.
- the copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester.
- the preferred embodiment and effect of the naphthalenedicarboxylic acid component are the same as those of the copolyester resin 1.
- the preferable lower limit of the content of the naphthalene dicarboxylic acid component is 65 mol%, and the preferable upper limit is 85.
- it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
- the content is preferably 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms.
- an alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 to 50 mol%. .
- 5 mol% or more and less than 20 mol% of the glycol component which has the fluorene structure shown by said Formula (I) is included on the basis of all the acid components of copolyester.
- the content of the dicarboxylic acid component having a sulfonate group is 0.1 to 5 mol% based on the total acid component.
- the adhesiveness in a wet heat environment can be made high. If the amount is too large, the adhesiveness in a moist heat environment tends to be low, and the range of 0.1 to 4.5 mol% is particularly preferable.
- the effect of dispersing or dissolving in a solvent tends to be reduced, and uniform coating tends to be difficult. Adhesiveness tends to be low.
- the aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1.
- the copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. Preferably it is. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
- the Tg of the copolyester in order to keep the Tg of the copolyester in a more preferable range while maintaining the refractive index, 20 to 39.9 mol%, particularly 24 to 34, of terephthalic acid and / or isophthalic acid is used. It is preferable to contain mol%. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
- the following can be illustrated as a specific aspect of the copolyester resin 3 preferably used.
- Naphthalene dicarboxylic acid component is 60 to 90 mol% (B2) 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component 15 to 50 mol% (C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I) (D2) 5-25 mol% of bisphenol A ethylene oxide adduct component (F2) 0.1-5 mol% of dicarboxylic acid component having sulfonate group (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copo
- Naphthalene dicarboxylic acid component is 60 to 80 mol% (B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (D3) 5-25 mol% of bisphenol A ethylene oxide adduct component (E3) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component (F3) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- Naphthalene dicarboxylic acid component is 60 to 80 mol% (B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (E4) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component (F4) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- Naphthalene dicarboxylic acid component is 60 to 75.9 mol% (B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms (C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) (D5) 5-25 mol% of bisphenol A ethylene oxide adduct component (E5) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component (F5) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) Copolyester containing.
- the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable.
- the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect.
- a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
- the second easy-adhesion layer of this aspect is, for example, excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment and the suppression of light interference spots after the formation of the functional layer.
- a 2nd easily bonding layer can be provided in the one or both surfaces of a polyester film, without having 1 easily bonding layer, and it can be set as a laminated polyester film.
- Such a laminated polyester film includes the following embodiments. 1.
- Copolyester (A1) 60-90 mol% of naphthalenedicarboxylic acid component, (B1) 15 to 50 mol% of the total of alkylene dicarboxylic acid component having 6 to 12 carbon atoms and alkylene glycol component having 4 to 10 carbon atoms, (C1) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and (F1) Copolyester containing 0.1 to 5 mol% of a dicarboxylic acid component having a sulfonate group.
- the copolyester is further (D2) 5-25 mol% of bisphenol A ethylene oxide adduct component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
- the copolymerized polyester is (A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%, (B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%, (E3) containing 20 to 39.9 mol% of terephthalic acid and / or isophthalic acid component, (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) 3. The laminated polyester film as described in 1 or 2 above. 4). 4.
- the copolyester detailed above can be produced by a conventionally known polyester production technique.
- an acid component such as 2,6-naphthalenedicarboxylic acid or an ester-forming derivative thereof, isophthalic acid or an ester-forming derivative thereof and 5-sodium sulfoisophthalic acid or an ester-forming derivative thereof is converted to tetramethylene glycol, 9,9- It reacts with diol components such as bis [4- (2-hydroxyethoxy) phenyl] fluorene and bisphenol A ethylene oxide adduct components to form monomers or oligomers, and then polycondensates under vacuum to obtain a predetermined intrinsic viscosity. It can be produced by a method of making a copolyester.
- a catalyst for promoting the reaction for example, an esterification or transesterification catalyst or a polycondensation catalyst can be used, and various additives such as a stabilizer can be added.
- the copolymerized polyester is applied to at least one surface of the film as a coating liquid, but since the in-line coating method applied when forming the film is preferable, the copolymerized polyester is preferably used as an aqueous dispersion.
- the method for forming the aqueous dispersion is not particularly limited, and a conventionally known method may be adopted.
- the copolyester used for the second easy-adhesion layer may contain an acid component or diol component other than those described above, and examples of the acid component include phthalic acid and phthalic anhydride.
- examples of the diol component include ethylene glycol, diethylene glycol, dipropylene glycol, xylene glycol, and dimethylolpropane.
- unsaturated acid components such as maleic acid and itaconic acid
- polyfunctional acid components such as trimellitic acid and pyromellitic acid
- polyfunctional hydroxy components such as glycerin and trimethylolpropane
- poly (alkylene oxide) glycol components such as glycol and poly (tetramethylene oxide) glycol
- the diol component is preferably an embodiment in which the above-mentioned essential or preferred diol component is contained in an essential or preferred content and the other diol component is an ethylene glycol component.
- the range of preferable intrinsic viscosity (may be abbreviated as IV) of the copolyester of the second easy-adhesion layer is 0.2 to 0.8 dl / g, and the lower limit is further 0.3 dl / g, especially 0. .4 dl / g, and the upper limit is further preferably 0.7 dl / g, particularly preferably 0.6 dl / g.
- the intrinsic viscosity is a value measured at 35 ° C. using orthochlorophenol.
- the glass transition temperature (Tg) of the copolymerized polyester of the second easy-adhesion layer is 70 ° C.
- the refractive index of the copolyester makes it easy to suppress light interference spots (color spot feeling) by setting the refractive index of the second easy-adhesive layer to the above-mentioned preferred range, so that it is 1.58-1. It is preferably in the range of 65, more preferably in the range of 1.60 to 1.63, and particularly preferably in the range of 1.61 to 1.62.
- the above-described preferred copolyester resin embodiment may be employed.
- a crosslinking agent in addition to the above-mentioned copolymerized polyester resin.
- Preferred examples of the crosslinking agent include an epoxy crosslinking agent, an oxazoline crosslinking agent, a melamine crosslinking agent, and an isocyanate crosslinking agent, and these may be used alone or in combination of two or more. May be.
- Examples of the epoxy-based crosslinking agent include polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like.
- Examples of the polyepoxy compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether.
- oxazoline-based crosslinking agent a polymer containing an oxazoline group is preferable. It can be prepared by polymerization with addition polymerizable oxazoline group-containing monomers alone or with other monomers.
- Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used.
- the other monomer may be any monomer that can be copolymerized with an addition-polymerizable oxazoline group-containing monomer.
- alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n (Meth) acrylic acid esters such as butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene sulfone Unsaturated carboxylic acids such as acids and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); unsaturated nitriles such as acrylonitrile, methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkyl methacrylamide N, N-dialkylacrylamide, N, N-dialkyl methacrylate (alkyl groups include
- a compound obtained by reacting methyl alcohol melamine derivative obtained by condensing melamine and formaldehyde with methyl alcohol, ethyl alcohol, isopropyl alcohol or the like as a lower alcohol and a mixture thereof are preferable.
- the methylol melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine and the like.
- isocyanate-based crosslinking agent examples include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, metaxylylene diisocyanate, hexamethylene-1,6-diisocyanate, 1,6-diisocyanate hexane, tolylene diisocyanate and hexanetriol.
- Adduct adduct of tolylene diisocyanate and trimethylolpropane, polyol-modified diphenylmethane-4,4'-diisocyanate, carbodiimide-modified diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, 3,3 ' -Bitrylene-4,4 'diisocyanate, 3,3'dimethyldiphenylmethane-4,4'-diisocyanate, metaphenylene diisocyanate and the like.
- oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
- the solvent resistance (swelling resistance) and blocking resistance of the second easy-adhesive layer can be improved. Not only does the ratio decrease and the refractive index of the second easy-adhesive layer decreases, it becomes difficult to suppress light interference spots, but the second easy-adhesive layer tends to become harder and the adhesiveness tends to decrease.
- the content of the crosslinking agent is preferably in the range of 1 to 30% by mass, particularly preferably in the range of 5 to 10% by mass per 100% by mass of the second easy-adhesive layer.
- these cross-linking agents oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
- the swelling rate with respect to the solvent of a 2nd easily bonding layer is easily made into a suitable value by containing the crosslinking agent concerning a 2nd easily bonding layer.
- the amount is too large, the swelling rate tends to be too low and the adhesiveness tends to decrease.
- the content of the crosslinking agent is 1 to 30% by mass per 100% by mass of the second easy-adhesive layer.
- the range is preferably in the range of 5 to 10% by mass.
- ⁇ Crosslinkable addition polymer> As described above, there is a strong demand for improving adhesiveness (wet heat adhesiveness) particularly in a wet heat environment.
- This embodiment is a particularly suitable embodiment of a crosslinking agent for the purpose of excellent adhesion with a functional layer such as a hard coat layer in a wet heat environment. In a 2nd easily bonding layer, wet heat adhesiveness can be improved by employ
- the second easy-adhesion eyebrows are prepared by adding the following cross-linkable addition polymer in addition to the above-mentioned copolymer polyester resin (particularly preferably copolymer polyester resin 1), based on the mass of the second easy-adhesion layer. It is preferable to contain ⁇ 30% by mass.
- Crosslinkable addition polymer (X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit, (Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
- the above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.
- Examples of the addition polymerizable oxazoline group-containing monomer constituting the addition polymerizable oxazoline group-containing monomer unit include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl- 2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like can be mentioned. These 1 type, or 2 or more types of mixtures can also be used.
- the addition polymerizable group for exhibiting the addition polymerization property is not particularly limited, but particularly from the viewpoint of further improving the adhesion with a functional layer such as a hard coat layer and from the viewpoint of easily obtaining the target compound.
- Residues or methacrylic residues are preferred, that is, the monomer is preferably an oxazoline group-containing acrylic monomer or an oxazoline group-containing methacrylic monomer.
- 2-isopropenyl-2-oxazoline is particularly preferable because it is easily available industrially.
- the addition-polymerizable polyalkylene oxide group-containing monomer constituting the addition-polymerizable polyalkylene oxide group-containing monomer unit may have any addition-polymerizable group and polyalkylene oxide group, such as vinyl acetate, Preferable examples include vinyl esters such as those obtained by adding polyalkylene oxide to the ester portion of vinyl propionate, acrylic acid or methacrylic acid.
- the alkylene group in the polyalkylene oxide group is, for example, one having 2 to 30 carbon atoms, preferably an alkylene group having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably.
- the number of repeating alkylene groups in the polyalkylene oxide group (average) is, for example, 2 to 30, preferably 4 to 20, and more preferably 5 to 15. In the case of a polyalkylene oxide group comprising a plurality of types of alkylene groups, the total number of repetitions is preferably within the above range.
- the crosslinkable addition polymer in the present invention contains 10-80 mol% of monomer units composed of the above addition polymerizable oxazoline group-containing monomer in the polymer with respect to 100 mol% of all monomer units of the polymer.
- the content of the monomer unit composed of the addition-polymerizable polyalkylene oxide group-containing monomer as described above in the polymer is 5 mol% or less with respect to 100 mol% of all monomer units of the polymer. Is. By setting it as such a structure, the adhesiveness in a humid heat environment can be made high. If the content of the addition-polymerizable oxazoline group-containing monomer unit is too small, the adhesiveness in a moist heat environment is inferior. From this viewpoint, it is preferably 20 mol% or more, more preferably 30 mol% or more, still more preferably 40 mol% or more, and particularly preferably 50 mol% or more.
- the amount is preferably 75 mol% or less, more preferably 70 mol% or less.
- it is preferably 4 mol% or less, more preferably 3 mol% or less, and still more preferably 2 mol% or less.
- it is an embodiment that does not contain addition-polymerizable polyalkylene oxide group-containing monomer units.
- the crosslinkable addition polymer only needs to have a structure satisfying the requirements of the above (X1) and (Y1), and the other monomer units are addition polymerizable in a range that does not impair the purpose of this embodiment.
- Any monomer unit may be used as long as it is composed of any addition polymerizable monomer capable of addition polymerization with an oxazoline group-containing monomer and an addition polymerizable polyalkylene oxide group-containing monomer.
- Such optional addition polymerizable monomers include, for example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2 (Meth) acrylic acid esters such as ethylhexyl group and cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrenesulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt) Unsaturated nitriles such as acrylonitrile and methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N, N-dialkylacrylamide, N, N-dia Unsaturated amides such as kill methacrylate
- the content of the crosslinkable addition polymer in the second easy-adhesive layer is preferably 1 to 30% by mass based on the mass of the second easy-adhesive layer.
- the adhesiveness tends to decrease, and if it is less than the above lower limit, the adhesiveness in a moist heat environment is inferior.
- the content of the crosslinkable addition polymer is more preferably 2% by mass or more, and further preferably 3% by mass or more.
- the content is large, the refractive index of the second adhesive layer tends to be lowered. Therefore, when the upper limit is exceeded, the interference spots are inferior. From this viewpoint, it is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
- a crosslinking agent different from the above-mentioned crosslinkable addition polymer can be blended and used in combination in the second easy-adhesion layer within a range that does not impair the purpose of this embodiment.
- a crosslinking agent an epoxy-type crosslinking agent, a melamine-type crosslinking agent, an isocyanate-type crosslinking agent, etc. can be illustrated, These may use 1 type and may use 2 or more types together.
- the second easy-adhesion layer of the present embodiment adopting the above-mentioned crosslinkable polymer has excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment, and suppression of light interference spots after the functional layer is formed.
- the second easy-adhesion layer can be provided on one or both sides of the polyester film without having the first easy-adhesion layer to obtain a laminated polyester film.
- a laminated polyester film includes the following embodiments. 1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer is 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer, and A laminated polyester film containing 1 to 30% by mass of the following crosslinkable addition polymer.
- Copolyester (A1) 60-90 mol% of naphthalenedicarboxylic acid component, (B1) 15 to 50 mol% in total of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms and the alkylene glycol component having 4 to 10 carbon atoms, and (C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
- Crosslinkable addition polymer (X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit, (Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less. (The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.) 2.
- the copolyester is further (D2) 5-25 mol% of bisphenol A ethylene oxide adduct component (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
- the copolymerized polyester is (A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%, (B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%, (E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component, (However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.) 3. The laminated polyester film as described in 1 or 2 above. 4). 4. The laminated polyester film as described in any one of 1 to 3 above, which is used as an easily adhesive polyester film for optics.
- ⁇ Other ingredients> can be blended in the second easy-adhesion layer of the present invention within a range not impairing the object of the present invention.
- particles, waxes, surfactants, wetting modifiers, etc. may be added to improve film slipperiness, scratch resistance, wettability during coating, and other antistatic agents, UV absorbers, etc. Etc. may be blended.
- particles may be any of organic particles, inorganic particles, and organic-inorganic composite particles. From the viewpoint of improving scratch resistance while maintaining transparency, large particles (particles), It is preferable to contain both small particles (small particles).
- the average particle size of the large particles is suitably in the range of 80 to 1000 nm, more preferably in the range of 100 to 400 nm, and still more preferably in the range of 130 to 350 nm. Thereby, it is excellent in lubricity and scratch resistance.
- a large particle is easy to drop
- the content of the large particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the mass of the second easy-adhesion layer. The effect of adding is easier to obtain.
- the average particle size of the small particles is suitably in the range of 10 nm or more and less than 100 nm, more preferably 20 to 80 nm, still more preferably 30 to 60 nm. Thereby, it is excellent in blocking resistance.
- the small particles are preferably inorganic particles, and are preferably metal oxide particles.
- the metal oxide particles include silica particles, alumina particles, titania particles, and zirconia particles. Among these, silica particles and titania particles are preferable from the viewpoint of excellent cost.
- the content of the small particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass with respect to the mass of the second easy-adhesion layer, and the small particles are added.
- the effect is easier to obtain.
- the second easy-adhesion layer can contain a surfactant.
- a surfactant By containing a surfactant in the coating liquid for forming the second easy-adhesion layer, the coating properties of the coating liquid can be improved.
- a surfactant is not particularly limited as long as it has an effect of enhancing the coating property to a polyethylene terephthalate film.
- nonionic surfactants, cationic surfactants, anionic surfactants, amphoteric interfaces. Any activator can be used.
- nonionic surfactants are preferred from the viewpoint of particularly low foaming and good coatability.
- Preferred examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, and polyoxyethylene propylene copolymer alkyl ether.
- a surfactant it is preferable to use it in an amount of 20% by mass or less based on the mass of the second easy-adhesion layer. Thereby, there exists a tendency for the adhesive improvement effect to become high. From this viewpoint, it is more preferably 15% by mass or less, and further preferably 10% by mass or less.
- the lower limit of the addition amount is preferably 1% by mass, more preferably 3% by mass or more, and further preferably 5% by mass or more from the viewpoint of the coating property described above.
- ⁇ Method for producing polyester film> An example is given and demonstrated about the method for manufacturing the polyester film in this invention.
- the polyester film in this invention is not limited to this.
- the polyester film in the present invention is obtained by, for example, melt-extruding the above polyester into a film shape, cooling and solidifying with a casting drum to form an unstretched film, and this unstretched film is longitudinal (Tg + 60) ° C.
- the magnification is 3 to 5 times in the width direction (the direction perpendicular to the film forming machine axis direction and the thickness direction, sometimes referred to as the transverse direction or TD) at Tg ⁇ (Tg + 60) ° C. It is obtained by stretching, and if necessary, heat treatment at 180-230 ° C.
- the refractive index of the biaxially oriented polyester film can be adjusted by the draw ratio.
- the higher the draw ratio the higher the refractive index.
- the draw ratio is preferably in the range of 3.0 to 4.0 in the longitudinal direction and the width direction, more preferably 3.3 to 3. It is 8 times, more preferably 3.4 to 3.7 times.
- the sequential biaxial stretching method as described above can be adopted, but the simultaneous biaxial stretching method can also be adopted.
- the stretching conditions and the like are the same as those described above.
- the coating liquid for forming the easy-adhesion layer is applied to the unstretched film.
- the thickness of the polyester film used in the present invention is preferably in the range of 20 to 200 ⁇ m.
- it can be appropriately selected according to the characteristics of the controller IC in order to ensure a predetermined capacitance.
- the first easy-adhesion layer is coated with a coating liquid for forming the first easy-adhesion layer (hereinafter sometimes referred to as a first easy-adhesion coating liquid) on the polyester film, and is dried and necessary. It can form by hardening according to.
- a coating liquid for forming the first easy-adhesion layer hereinafter sometimes referred to as a first easy-adhesion coating liquid
- it is a so-called in-line coating method in which the first easy-adhesion coating liquid is applied during the production process of the polyester film to form the first easy-adhesion layer.
- the adhesiveness of a polyester film and a 1st easily bonding layer can be made high. Even if the thickness of the first easy-adhesion layer is very thin, the thickness can be controlled with high accuracy.
- the first easy-adhesive coating liquid can be obtained by mixing the components constituting the first easy-adhesive layer described above and diluting with a solvent as necessary.
- each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent.
- the concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
- a conventionally well-known method can be employ
- the high refractive index layer and the low refractive index layer can be formed by either a wet method or a dry method.
- An optical adjustment layer is formed by forming a high refractive index layer on the first easy-adhesion layer or further forming a low refractive index layer on the high refractive index layer by any suitable method. do it.
- a coating liquid for forming a high refractive index layer (hereinafter referred to as a high refractive index coating) is formed by a doctor method, a bar coater, a gravure roll coater, a curtain coater, a knife coater, a spin coater, a spray method, a dipping method, or the like.
- a coating liquid for forming a low refractive index layer (hereinafter sometimes referred to as a low refractive index coating liquid) is applied to the surface on which the layer is to be formed.
- the coating film is dried, and the coating film is dried and, if necessary, cured by heat, ultraviolet rays, an electron beam or the like, whereby a high refractive index layer and a low refractive index layer can be formed.
- a coating solution may be a sol, whereby a metal oxide film is obtained.
- the drying temperature is, for example, 50 to 100 ° C., preferably 60 to 90 ° C.
- the irradiation intensity of ultraviolet rays or electron beams in curing for example, 100 to 2000 mJ / m 2 It is.
- the solid content concentration of the coating liquid can also be appropriately selected depending on the intended coating amount and the coating method used. For example, it is 1 to 70% by mass.
- a layer containing metal oxide fine particles in a binder resin, a layer made of a metal oxide film by a sol-gel method, a metal oxide film containing metal oxide particles, organic particles, and a binder resin It is suitable for forming the layer which carries out.
- a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a printing method, a CVD method, or the like can be applied.
- the dry method is suitable for forming a layer made of metal or a layer made of a metal oxide film.
- a transparent conductive layer having a refractive index of 1.9 to 2.3 is formed on the optical adjustment layer of the laminate obtained above, in particular, on the low refractive index layer. Can be obtained.
- the transparent conductive layer is not particularly limited as long as it is within the above refractive index range, and examples thereof include a layer made of a crystalline metal or a crystalline metal compound. Examples of the component constituting the transparent conductive layer include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide.
- a crystalline layer mainly composed of indium oxide is preferable, and a layer made of crystalline ITO (Indium Tin Oxide) is particularly preferably used.
- the transparent conductive layer is a crystalline film, the environmental reliability required for the touch panel tends to be improved.
- the crystallization method is not particularly limited, and for example, crystallization can be performed by heat treatment at 120 to 160 ° C. for about 60 to 90 minutes.
- a layer made of a conductive polymer such as polyacetylene, polyparaphenylene, polythiophene, polyethylenedioxythiophene, polypyrrole, polyaniline, polyacene, polyphenylene vinylene, or the like can also be employed.
- the film thickness of the transparent conductive layer is preferably 5 to 50 nm from the viewpoints of transparency and conductivity. More preferably, it is 5 to 30 nm.
- the film thickness of the transparent conductive layer is less than 5 nm, the resistance stability with time tends to be inferior, and when it exceeds 50 nm, the surface resistance value tends to decrease. In addition, the color tone of the film becomes strong and the pattern tends to be emphasized.
- the surface resistance value of the transparent conductive layer at a thickness of 10 to 30 nm is more preferably 100 to 1000 ⁇ / ⁇ , more preferably due to reduction of power consumption of the touch panel and circuit processing.
- the transparent conductive layer can be formed by a known method.
- a physical formation method such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser deposition method
- PVD Physical Vapor Deposition
- the transparent conductive layer in this invention is patterned.
- patterning refers to an aspect in which a portion where the transparent conductive layer exists in a prescribed shape and a portion where the transparent conductive layer does not exist are formed. That is, the transparent conductive layer is formed on a part of the laminate of the present invention.
- the specified shape may be a known shape that can be used as an electrode of a capacitive touch panel. For example, there are fine wire and tiremond patterns.
- the patterning method is not particularly limited, and a conventionally known etching method can be used.
- the second easy-adhesion layer is coated with a coating liquid for forming the second easy-adhesion layer (hereinafter sometimes referred to as a second easy-adhesion coating liquid) on the polyester film, and then dried. It can form by hardening according to.
- a so-called in-line coating method is used in which the second easy-adhesion coating liquid is applied to form the second easy-adhesion layer during the production process of the polyester film.
- the second easy-adhesion coating solution is applied to the surface opposite to the surface to which the first easy-adhesion coating solution is applied, and the first easy-adhesion layer and the second easy-adhesion layer are formed simultaneously.
- a 2nd easily-adhesive coating liquid can mix and obtain the component which comprises the 2nd easily-adhesive layer mentioned above, and can obtain it by diluting with a solvent as needed.
- each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent.
- the concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
- a conventionally well-known method can be employ
- the second easy-adhesion layer can be formed before forming the first easy-adhesion layer.
- a 2nd easily bonding layer can also be formed on both surfaces of a polyester film depending on the objective. The following is a description of a particularly preferable manufacturing method for forming the second easily adhesive layer in such a case.
- the polyester film which has a 2nd easily bonding layer is manufactured through the film forming process which manufactures a biaxially-oriented polyester film, and the application
- the film forming step may be a sequential biaxial stretching method or a simultaneous biaxial stretching method, but if it is a simultaneous biaxial stretching method, the film surface is hardly damaged during film formation, Since it is suitable for manufacturing the film used for an optical use, it is preferable.
- the coating process may be after the film forming process (so-called off-line coating method) or in the film forming process (so-called in-line coating method). For example, a thin coating layer can be easily obtained uniformly, and a strong coating layer can be obtained. Furthermore, it is excellent in productivity.
- the effect of improving the easy-adhesive property by improving the film-forming property is to be applied to the unstretched film or the partially oriented film before completion of the orientation.
- the film forming method may be a sequential biaxial stretching method or a simultaneous biaxial stretching method.
- the simultaneous biaxial stretching method the second easy-adhesive layer is used to stretch the biaxial simultaneously.
- the embodiment using the above-described copolymer polyester resins 1 and 3 is particularly useful.
- a preferable method when polyethylene terephthalate is used as the polyester and the in-line coating method is adopted by the simultaneous biaxial stretching method will be described.
- sufficiently dried polyethylene terephthalate is melted at a temperature of Tm + 10 ° C. to Tm + 30 ° C. (where Tm is the melting point of polyethylene terephthalate), extruded into a sheet, and cooled with a cooling drum to form an unstretched film.
- a coating solution for forming the second easy-adhesion layer is applied to the surface of the unstretched film on the side where the second easy-adhesion layer is to be formed by using a roll coater to obtain an unstretched film having a coating film.
- coating is performed so that the thickness of the second easy-adhesion layer in the obtained film is preferably 50 to 100 nm, more preferably 70 to 90 nm.
- this was preheated at 90 to 110 ° C., and simultaneously in the biaxial direction with a simultaneous biaxial stretching machine at a temperature of Tg to Tg + 70 ° C.
- Tg is the glass transition temperature of polyethylene terephthalate
- longitudinal direction or MD Preferably in the machine axis direction, longitudinal direction or MD) 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, lateral direction (direction perpendicular to the film forming machine axis direction, width direction or TD) ) Is preferably 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, and then heat-fixed at a temperature of (Tg + 60 ° C.) to Tm, preferably adjusting the heat shrinkage rate. Therefore, a laminated film having a second easy-adhesion layer on the oriented polyethylene terephthalate film can be obtained by heat relaxation treatment.
- stretching temperature is 45 degreeC or more higher than the glass transition temperature of the copolyester in a 2nd easily bonding layer, More preferably, it is 50 degreeC or more, More preferably, it is 55 degreeC or more higher temperature. That is. Thereby, the film-forming property of the second easy-adhesion layer becomes more excellent, and the effect of improving the adhesiveness can be enhanced.
- the temperature is preferably 40 ° C. or higher than the glass transition temperature of the second easy-adhesion layer, more preferably 45 ° C. or higher, and even more preferably 53 ° C. or higher. The film forming property of the easy-adhesion layer is more excellent, and the effect of improving the adhesiveness can be increased.
- a polyethylene terephthalate film is preferably heat-set at a temperature in the range of 210 to 240 ° C. for 1 to 60 seconds.
- the coating film is dried by the heat applied in the above process, and is cured as necessary to become a second easy-adhesion layer.
- the coating liquid for forming a 2nd easily bonding layer mixes each component which comprises a 2nd easily bonding layer, and considers a viscosity, application
- the solvent used for dilution is preferably water, that is, the coating liquid is preferably aqueous.
- the solid concentration of the coating liquid is preferably 5 to 20% by mass, and a good coating appearance can be obtained.
- ⁇ Characteristics of laminated film> (Haze) The laminated film of the present invention preferably has a haze value measured according to JIS standard K7136 of 0% or more and 1.0% or less, more preferably 0.1% or more and 0.8% or less, particularly preferably 0. .1% or more and 0.5% or less. Haze is an important evaluation index for use in optical applications.
- haze is one of the indexes for evaluating the visibility of a display, and when haze exceeds 1.0%, Since the transparency of the film is lowered and the display screen of the display looks whitish, the contrast is lowered and the visibility may be lowered.
- the haze within such a range, in the polyester film and the easy-adhesion layer, particles are not used or even when used, the diameter and amount are within the above-mentioned range, and the polymer binder constituting the easy-adhesion layer is the above-mentioned.
- a preferable copolyester resin may be used.
- Refractive index of the second easy adhesion layer The coating liquid for forming the second easy-adhesion layer was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D-line 589 nm) to obtain the refractive index of the second easy-adhesion layer.
- the longitudinal direction of the polyester film is 90 °
- the width direction perpendicular to it is 0 °
- the refractive index is measured every 5 °
- the direction showing the maximum refractive index is specified
- the refraction in the direction perpendicular to the direction is determined.
- the average of these refractive indexes was taken as the average refractive index in the plane direction. This measurement method was used in the following examples and comparative examples. 2-2.
- Average refractive index in the plane direction of polyester film 2 The refractive index of each of the obtained biaxially stretched polyester film in the longitudinal direction (MD), the width direction (TD), and the film thickness direction (Z direction) was measured with an Abbe refractometer.
- the thickness of the easy-adhesion layer is thin, even if the easy-adhesion layer is formed on both sides, even if it is measured from above the easy-adhesion layer using an Abbe refractometer, it is affected by the refractive index of the easy-adhesion layer.
- the refractive index of the biaxially oriented polyester film can be obtained.
- Surface direction refractive index (longitudinal direction refractive index + width direction refractive index) / 2 This measurement method was used in the following Reference Examples and Reference Comparative Examples. (3) Refractive index of other layers and resin 3-1.
- Refractive index of polyester resin of high refractive index layer, low refractive index layer, first easy adhesion layer Using a laser refractometer prism coupler, model 2010, manufactured by Metricon, the dried product of the coating liquid for forming each layer was measured using a wavelength of 633 nm. In addition, the dried product of the coating liquid for forming each layer was prepared by drying the coating liquid in an oven at 80 ° C. for 24 hours under normal pressure.
- Refractive index of the copolyester resin of the second easy adhesion layer The solution or dispersion of the copolyester was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D line 589 nm). (4) Film thickness 4-1.
- Film thickness of first easy-adhesion layer, high refractive index layer, low refractive index layer, transparent conductive layer The film thickness of each layer was measured by observing the cross section of the film sample with a field emission type transmission electron microscope HF-3300 manufactured by Hitachi, Ltd. 4-2. Film thickness of the second easy adhesion layer The film is fixed with an embedding resin, the cross section is cut with a microtome, stained with 2% osmic acid at 60 ° C. for 2 hours, and the cross section is observed with a transmission electron microscope (JEM 2010 manufactured by JEOL). The thickness of the adhesive layer was measured. (5) Glass transition temperature 5-1. Glass transition temperature of copolyester.
- the adhesion between the easy adhesion layer and the high refractive index layer was evaluated according to the following criteria. ⁇ : Peeling area is less than 20% ... good adhesion ⁇ : Peeling area of 20% or more and less than 50%: Adhesive strength is slightly good X: Peeling area is 50% or more ... adhesive strength failure 6-2. Pattern visibility (evaluation of bone appearance) In the transparent conductive film having the patterned transparent conductive layer, the boundary between the portion where the transparent conductive layer exists and the portion where the transparent conductive layer does not exist was visually observed, and the visibility was evaluated according to the following criteria. ⁇ : The border is hardly visible ⁇ : The border is slightly conspicuous ⁇ : The boundary looks prominent (7) Evaluation of the second easily adhesive layer 7-1.
- Hard coat layer adhesion ((initial) adhesion) 1mm on the hard coat layer of the film on which the hard coat layer is formed 2 100 cross-cuts are put, cellophane tape (manufactured by Nichiban Co., Ltd.) is pasted on it, pressed firmly with fingers, peeled in the direction of 90 °, and evaluated as follows according to the number of remaining hard coat layers. went.
- Hard coat layer adhesion (wet heat adhesion)
- the film on which the hard coat layer was formed was immersed in 100 ° C. boiling water (ion-exchanged water) for 2 hours under normal pressure, and then evaluated for adhesiveness in the same manner as in 7-1 above. 7-3.
- Swelling rate The thickness of the second easy adhesion layer of the film after laminating the hard coat layer was measured in the same manner as in 4-2 above.
- Haze value of laminated film According to JIS K7136, the haze value of the film was measured using the haze measuring device (NDH-2000) by Nippon Denshoku Industries Co., Ltd. The irradiation surface was the second easily adhesive layer surface.
- the aspect of the crack on the surface of the second easy-adhesive layer can be evaluated by the height of the haze. If the conditions are the same, the higher the haze (surface haze), the more surface cracks, and preferably It is 0.8% or less, more preferably 0.7% or less, further preferably 0.6% or less, and particularly preferably 0.5% or less.
- Example 1-1 Manufacture of a polyester film having a first easy-adhesion layer
- PET polyethylene terephthalate
- the coating liquid A obtained by mixing so as to have the ratio shown as coating liquid A in Table 1-2 and diluting the coating liquid with ion-exchanged water so that the solid content concentration becomes 10% by mass is a gravure. It applied to one side using the roll coater. The coating thickness was adjusted to 15 nm after drying. Subsequently, the both ends of the film coated with the coating liquid were grasped with clips, preheated at 100 ° C.
- a biaxially oriented polyester film having one easy adhesion layer was obtained.
- the thickness of this polyester film was 125 ⁇ m.
- the maximum refractive index in the surface direction was 1.66, the refractive index in the direction orthogonal to the direction showing the maximum refractive index was 1.64, and the average refractive index in the surface direction was 1.65.
- a SiO2 sol obtained by dissolving tetraethylsilicate in ethanol, adding water and hydrochloric acid and hydrolyzing it is applied, heat-treated at 100 ° C. for 2 minutes, and having a thickness of 30 nm.
- a gel film (refractive index 1.45)) was formed as a low refractive index layer.
- an optical adjustment layer composed of two layers of a high refractive index layer and a low refractive index layer having different refractive indexes was formed, and a laminate was prepared.
- ITO layer (refractive index 2.1) is formed on the low refractive index layer in the laminate by sputtering using an indium oxide-tin oxide target having a composition of indium oxide and tin oxide of 95: 5 by weight and a packing density of 98%. Formed. The film thickness of the formed ITO layer was 40 nm.
- a photoresist patterned in stripes is applied and formed, dried and cured, and then immersed in 25 ° C., 5% hydrochloric acid (aqueous hydrogen chloride solution) for 1 minute. Etching of the ITO film was performed. Thereafter, the photoresist was removed. Further, heat treatment was performed at 150 ° C.
- Example 1-2 to 1-4, Comparative Examples 1-1 to 1-4 A laminated body in the same manner as in Example 1 except that the coating liquid shown in Table 1-3 was used and the thickness of the first easy-adhesion layer was changed to the thickness shown in Table 1-3 by adjusting the wet coating amount. And the transparent conductive film was obtained.
- the evaluation results are shown in Table 1-3. Below, the reference example which employ
- this coated film was preheated at a temperature of 100 ° C., dried, and stretched simultaneously in the longitudinal and transverse directions at a magnification of 3.2 times in the longitudinal direction and 3.7 times in the transverse direction at 120 ° C. in a simultaneous biaxial stretching machine. And heat-fixed for 60 seconds to obtain a laminated polyester film having a second easy-adhesion layer on both sides of a 125 ⁇ m thick biaxially oriented polyethylene terephthalate film.
- the characteristics of the obtained laminated polyester film are shown in Table 2-2.
- a UV curable composition having the following composition was diluted with methyl ethyl ketone so as to have a solid content concentration of 40% by mass, It was applied using a Meyer bar, immediately dried at 70 ° C. for 1 minute, and cured by irradiating with ultraviolet rays for 30 seconds with a high-pressure mercury lamp having an intensity of 80 W / cm to form a hard coat layer. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 ⁇ m.
- the UV curable composition in the reference example 2-1 mentioned above is methyl ethyl ketone (MEK), ethyl acetate, toluene, Prepare 5 types of solvents diluted with isopropanol (IPA) and propylene glycol monomethyl ether acetate (PGMEA) to a solid content concentration of 40% by mass, and apply each using a Meyer bar.
- MEK methyl ethyl ketone
- IPA isopropanol
- PMEA propylene glycol monomethyl ether acetate
- a hard coat layer was formed by irradiating with a high-pressure mercury lamp with an intensity of 80 W / cm for 30 seconds to cure with ultraviolet rays.
- Tables 4-1 and 4-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
- adopted the copolyester resin 3 as a copolyester resin of a 2nd easily bonding layer is shown.
- a roll coater is used so that the thickness of the second easy-adhesion layer obtained after stretching an aqueous coating liquid having a solid content of 10% by mass, comprising the composition shown in Tables 5-1 and 5-2, after stretching.
- a laminated polyester film having a second easy-adhesion layer on both sides of a 125 ⁇ m-thick biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 2-1, except that it was uniformly applied.
- the characteristics of the obtained laminated polyester film are shown in Tables 5-1 and 5-2.
- a hard coat layer was formed in the same manner as in Reference Example 2-1, using the obtained laminated film. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 ⁇ m.
- Tables 5-1 and 5-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
- NDCA 2,6-naphthalenedicarboxylic acid component
- TA terephthalic acid component
- IA is isophthalic acid component
- NSIA 5-sodium sulfoisophthalic acid component
- C4G is tetramethylene glycol component
- C8G is an octamethylene glycol component
- BPA-4 is a bisphenol A ethylene oxide 4-mol adduct component (New Paul BPE-40) manufactured by Sanyo Chemical Industries
- BPA-23P is a bisphenol A propylene oxide adduct manufactured by Sanyo Chemical Industries.
- the component (Newpol BPE-23), BPEF means 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene component, and EG means ethylene glycol.
- oxazoline crosslinking agent trade name Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd.
- silica acrylic composite fine particles average particle diameter: 250 nm
- Soriostar manufactured by Nippon Shokubai Co., Ltd.
- silica filler 50 nm
- lauryl ether trade name NAROACTY N-70, manufactured by Sanyo Chemical Industries, Ltd.
- Examples 6-1 to 6-4 In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending
- the laminated body and transparent conductive film used were obtained as Example 6-1.
- the liquid was apply
- Example 1-1 Evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, about the obtained laminated body, evaluation which concerns on a 2nd easily bonding layer was performed like reference Example 2-2.
- the hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 2-2. The evaluation results are shown in Table 6.
- Examples 7-1 to 7-4 In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As the liquid, an aqueous coating liquid having a solid content of 10% by mass having the composition shown in the coating liquid 3-1 in Table 3-2 is obtained as the second obtained after stretching in the same manner as in Reference Example 3-1. Except for uniformly coating with a roll coater so that the thickness of the easy-adhesion layer is 70 nm, as in Example 1-1, the first easy-adhesion layer is provided on one side and the second easy-adhesion layer is provided on the other side.
- a biaxially oriented polyester film, a laminate using the biaxially oriented polyester film, and a transparent conductive film were obtained as Example 7-1.
- evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1.
- the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 3-1.
- Example 7 shows the evaluation results.
- Examples 8-1 to 8-4 In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending
- the laminated body and transparent conductive film used were obtained as Example 8-1.
- the liquid was apply
- Example 1-1 Evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 4-2. In addition, the hard-coat layer was formed on the 2nd easily bonding layer like the reference example 4-2. The evaluation results are shown in Table 8.
- Example 9-1 to 9-4 In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending
- the laminated body and transparent conductive film used were obtained as Example 9-1.
- the liquid was apply
- Example 1-1 Evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 5-1.
- the hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 5-1. Table 9 shows the evaluation results.
- the invention's effect ADVANTAGE OF THE INVENTION According to this invention, the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible can be provided.
- the laminate of the present invention when adopted as a substrate of a transparent conductive film having a patterned transparent conductive layer, a good bone-inhibiting effect can be realized, and a polyester film and an optical adjustment layer Adhesiveness with (especially high refractive index layer) can be made excellent.
- the laminated polyester film which is a preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymer polyester such as the above-described copolymer polyester resin 1, so that even an in-line coating which is usually employed is stretched.
- the laminated film which is another preferred embodiment of the present invention, has the characteristics that the swelling ratio of the easy-adhesion layer is in a specific range, so that interference spots (color spots) hardly occur and the adhesiveness is excellent. Therefore, it can be suitably used as an easily adhesive film for optics.
- the laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific cross-linking agent such as a specific copolymer polyester and the above cross-linkable polymer, and is therefore usually used in-line. Even in coating, easy adhesion layer cracking in the stretching process is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet and heat environments, and light interference spots (color spots) ) Is also unlikely to occur. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
- the laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymerized polyester such as the above-described copolymerized polyester 3.
- the stretching step Easy-to-adhesive layer cracking is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet heat environments, and light interference spots (color spots) may also occur. It has the characteristics of wanting. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
- the laminate of the present invention can be suitably used as a substrate for a transparent conductive film having a patterned transparent conductive layer. Thereby, the electrode by which the bone appearance was suppressed can be obtained and the electrostatic capacitance type touch panel excellent in visibility can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The purpose of the present invention is to provide a laminate for a transparent, electroconductive film base material offering both excellent index matching properties and favorable adhesiveness. The present invention is a laminate for a transparent, electroconductive film base material, the laminate having a first readily adhered layer and an optical adjustment layer, in the stated order, on at least one side of a polyester film, wherein the first readily adhered layer contains 50 mass% or more of a polyester resin on the basis of the mass of the first readily adhered layer, the refractive index being 1.60-1.65 and the thickness being 8-30 nm.
Description
本発明は、投影型静電容量方式タッチパネルのセンサー電極等として用いることのできる、パターン化された透明導電層を有する透明導電性フィルムの基板として用いられる積層体に関する。
The present invention relates to a laminate used as a substrate of a transparent conductive film having a patterned transparent conductive layer that can be used as a sensor electrode of a projected capacitive touch panel.
近年、携帯電話やスマートフォンなどのモバイル機器の入力装置として、投影型静電容量方式のタッチパネルが使用されている。この投影型静電容量方式のタッチパネルは、複数の指で同時に操作するマルチタッチ機能や、ジェスチャー入力機能など直感的な操作による使いやすさから、近年急速にモバイル機器への搭載率が上昇している。
静電容量方式タッチパネルは、液晶ディスプレイ等の表示装置の上に、静電容量方式のタッチセンサーを配した構成である。かかる静電容量方式タッチセンサーは、人間の指の持つ静電容量による電界の乱れを検知する。そのセンサーの基材には、大きく分類してガラス基板とフィルム基板の2種類があるが、この内フィルム基材センサーは、ロールトゥロールによる連続生産が可能で製造コストが比較的安価であること、衝撃に強く割れにくいこと、軽量かつ薄型化が可能であることなど、モバイル機器用のセンサー基材として好ましい多くの特長を有しており、近年その適用範囲が拡大している。
静電容量方式タッチセンサーは、位置検出のために、細線やダイヤモンド形状などにパターン化(パターニング)された透明導電層を有する透明導電性フィルムを電極として用い、かかる電極2枚を、透明導電層を対向させて重ね合わせた構造となっている。パターニングは所望のパターンをフォトリソグラフィーやスクリーン印刷などで描いたあと、エッチングすることで形成するが、このとき、透明導電層が存在する部分と除去された部分の光学特性に差が生じて、透明導電層のパターンが視認されてしまう、いわゆる「骨見え」現象が生じる。
この骨見えの課題を解決するため、屈折率の異なる薄膜を積層した光学調整層を形成し、光の干渉効果を利用して光学特性の差を解消する、いわゆるインデックスマッチング技術が知られている(特許文献1~10)。
ところで、タッチパネルに用いられる透明導電性フィルムの基材としては、耐熱性、力学特性、光学特性などの諸特性と価格のバランスに優れた二軸配向ポリエステルフィルム、特に二軸配向ポリエチレンテレフタレートフィルムが従来使用されてきた。また、二軸配向ポリエステルフィルムの表面は、一般的に親和性に乏しいため、フィルム基材上に例えば上記のような屈折率の異なる薄膜を積層するにあたって、易接着成分を塗布し、易接着層を形成する技術が知られている(特許文献11)。
また、ポリエステルフィルム、特にポリエチレンテレフタレートの一軸または二軸の延伸フィルムは、上述のタッチパネル用途の他にも、例えばフラットパネルディスプレイの保護フィルムや反射防止フィルムなどの各種光学用フィルムとして多く用いられている。しかしながら、フィルム表面に傷が発生するのを抑制するためのハードコート層や、光反射を抑制するための反射防止層などの機能層を積層しようとしても、上述のようにその表面は親和性に乏しく、接着性に乏しいため、通常フィルム表面にインラインコーティングまたはオフラインコーティングで易接着層を設けた積層フィルムとするのが一般的である。この場合、ポリエステルフィルムおよび/または機能層の屈折率と、易接着層の屈折率との差が大きくなると、光の干渉斑による色斑感が発生するという問題がある。なお、この干渉斑は、太陽光や白熱灯よりも、三波長蛍光灯という特殊な蛍光灯下でより感知される。かかる問題を解消するために、易接着層の屈折率を高めてポリエステルフィルムと機能層の中間の屈折率にするとともに、厚みを調整することが提案されている。
例えば、特許文献12には、易接着層の屈折率を延伸ポリエステルフィルムの面方向屈折率とハードコート層の屈折率の中間である1.55~1.62とし、さらに厚みを50~150nmとする方法が提案され、易接着層として2,6−ナフタレンジカルボン酸成分を有する高ガラス転移温度のポリエステルとトリメリット酸成分を含有する低ガラス転移温度のポリエステルとを併用することが記載されている。また、特許文献13には、ナフタレンジカルボン酸成分とビスフェノールA骨格を有するグリコール成分を含む共重合ポリエステルを主成分とする易接着層を設ける方法、さらに特許文献14には、2,6−ナフタレンジカルボン酸成分とビスフェノールフルオレンのエチレンオキサイド付加体成分を含む共重合ポリエステルを1成分として含有し、厚みが50~200nmの易接着層を設ける方法が提案されている。
特開2011−142089号公報
特開2011−136562号公報
特開2011−134482号公報
特開2011−116128号公報
特開2011−084075号公報
特開2011−076932号公報
特開2011−044145号公報
特開2010−027294号公報
特開2010−023282号公報
特開2009−076432号公報
特開2002−155156号公報
特開2007−253512号公報
特開2009−126035号公報
特開2010−284943号公報
In recent years, a projected capacitive touch panel has been used as an input device for mobile devices such as mobile phones and smartphones. In recent years, the projected capacitive touch panel has rapidly increased in mobile devices due to its ease of use through intuitive operations such as the multi-touch function that allows multiple fingers to operate simultaneously and the gesture input function. Yes.
The capacitive touch panel has a configuration in which a capacitive touch sensor is arranged on a display device such as a liquid crystal display. Such a capacitive touch sensor detects an electric field disturbance due to a capacitance of a human finger. There are two types of sensor base materials: glass substrates and film substrates. The film base sensors can be continuously produced by roll-to-roll and are relatively inexpensive to manufacture. It has many features that are preferable as a sensor base material for mobile devices, such as being strong against impacts and being hard to break, and being light and thin, and its application range has expanded in recent years.
The capacitive touch sensor uses, as an electrode, a transparent conductive film having a transparent conductive layer patterned (patterned) into a thin line or a diamond shape for position detection. It is the structure which piled up facing each other. Patterning is performed by drawing a desired pattern by photolithography or screen printing, and then etching. At this time, there is a difference in the optical characteristics between the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is removed. A so-called “bone appearance” phenomenon occurs in which the pattern of the conductive layer is visually recognized.
In order to solve this problem of bone appearance, a so-called index matching technique is known in which an optical adjustment layer is formed by laminating thin films having different refractive indexes and the difference in optical characteristics is eliminated by utilizing the light interference effect. (Patent Documents 1 to 10).
By the way, as a base material of a transparent conductive film used for a touch panel, a biaxially oriented polyester film, particularly a biaxially oriented polyethylene terephthalate film, which has an excellent balance between various properties such as heat resistance, mechanical properties, and optical properties and a price has been conventionally used. Have been used. In addition, since the surface of the biaxially oriented polyester film is generally poor in affinity, when laminating thin films having different refractive indexes, for example, on the film substrate, an easy adhesion component is applied, There is known a technique for forming (Patent Document 11).
Polyester films, particularly uniaxial or biaxial stretched films of polyethylene terephthalate, are often used as various optical films such as protective films and antireflection films for flat panel displays in addition to the above-mentioned touch panel applications. . However, even if an attempt is made to laminate a functional layer such as a hard coat layer for suppressing the generation of scratches on the film surface or an antireflection layer for suppressing light reflection, the surface has an affinity as described above. Since it is scarce and has poor adhesion, it is common to use a laminated film in which an easy-adhesion layer is usually provided on the film surface by in-line coating or off-line coating. In this case, when the difference between the refractive index of the polyester film and / or the functional layer and the refractive index of the easy-adhesion layer becomes large, there is a problem that color spots due to light interference spots occur. In addition, this interference spot is more perceived under the special fluorescent lamp called a three wavelength fluorescent lamp rather than sunlight or an incandescent lamp. In order to solve such a problem, it has been proposed to increase the refractive index of the easy-adhesion layer so that the refractive index is intermediate between the polyester film and the functional layer, and to adjust the thickness.
For example, Patent Document 12 discloses that the easy-adhesion layer has a refractive index of 1.55 to 1.62 which is an intermediate between the refractive index of the stretched polyester film and the hard coat layer, and has a thickness of 50 to 150 nm. And a method of using a high glass transition temperature polyester having a 2,6-naphthalenedicarboxylic acid component and a low glass transition temperature polyester containing a trimellitic acid component as an easy-adhesion layer is described. . Patent Document 13 discloses a method of providing an easy-adhesion layer mainly composed of a copolyester containing a naphthalenedicarboxylic acid component and a glycol component having a bisphenol A skeleton, and Patent Document 14 discloses 2,6-naphthalene dicarboxylic acid. A method has been proposed in which a copolyester containing an acid component and an ethylene oxide adduct component of bisphenolfluorene is contained as one component, and an easy adhesion layer having a thickness of 50 to 200 nm is provided.
JP 2011-142089 A JP 2011-136562 A JP 2011-134482 A JP 2011-116128 A JP 2011-084075 A JP 2011-076932 A JP 2011-044145 A JP 2010-027294 A JP 2010-023282 A JP 2009-076432 A JP 2002-155156 A JP 2007-253512 A JP 2009-126035 A JP 2010-284944 A
静電容量方式タッチパネルは、液晶ディスプレイ等の表示装置の上に、静電容量方式のタッチセンサーを配した構成である。かかる静電容量方式タッチセンサーは、人間の指の持つ静電容量による電界の乱れを検知する。そのセンサーの基材には、大きく分類してガラス基板とフィルム基板の2種類があるが、この内フィルム基材センサーは、ロールトゥロールによる連続生産が可能で製造コストが比較的安価であること、衝撃に強く割れにくいこと、軽量かつ薄型化が可能であることなど、モバイル機器用のセンサー基材として好ましい多くの特長を有しており、近年その適用範囲が拡大している。
静電容量方式タッチセンサーは、位置検出のために、細線やダイヤモンド形状などにパターン化(パターニング)された透明導電層を有する透明導電性フィルムを電極として用い、かかる電極2枚を、透明導電層を対向させて重ね合わせた構造となっている。パターニングは所望のパターンをフォトリソグラフィーやスクリーン印刷などで描いたあと、エッチングすることで形成するが、このとき、透明導電層が存在する部分と除去された部分の光学特性に差が生じて、透明導電層のパターンが視認されてしまう、いわゆる「骨見え」現象が生じる。
この骨見えの課題を解決するため、屈折率の異なる薄膜を積層した光学調整層を形成し、光の干渉効果を利用して光学特性の差を解消する、いわゆるインデックスマッチング技術が知られている(特許文献1~10)。
ところで、タッチパネルに用いられる透明導電性フィルムの基材としては、耐熱性、力学特性、光学特性などの諸特性と価格のバランスに優れた二軸配向ポリエステルフィルム、特に二軸配向ポリエチレンテレフタレートフィルムが従来使用されてきた。また、二軸配向ポリエステルフィルムの表面は、一般的に親和性に乏しいため、フィルム基材上に例えば上記のような屈折率の異なる薄膜を積層するにあたって、易接着成分を塗布し、易接着層を形成する技術が知られている(特許文献11)。
また、ポリエステルフィルム、特にポリエチレンテレフタレートの一軸または二軸の延伸フィルムは、上述のタッチパネル用途の他にも、例えばフラットパネルディスプレイの保護フィルムや反射防止フィルムなどの各種光学用フィルムとして多く用いられている。しかしながら、フィルム表面に傷が発生するのを抑制するためのハードコート層や、光反射を抑制するための反射防止層などの機能層を積層しようとしても、上述のようにその表面は親和性に乏しく、接着性に乏しいため、通常フィルム表面にインラインコーティングまたはオフラインコーティングで易接着層を設けた積層フィルムとするのが一般的である。この場合、ポリエステルフィルムおよび/または機能層の屈折率と、易接着層の屈折率との差が大きくなると、光の干渉斑による色斑感が発生するという問題がある。なお、この干渉斑は、太陽光や白熱灯よりも、三波長蛍光灯という特殊な蛍光灯下でより感知される。かかる問題を解消するために、易接着層の屈折率を高めてポリエステルフィルムと機能層の中間の屈折率にするとともに、厚みを調整することが提案されている。
例えば、特許文献12には、易接着層の屈折率を延伸ポリエステルフィルムの面方向屈折率とハードコート層の屈折率の中間である1.55~1.62とし、さらに厚みを50~150nmとする方法が提案され、易接着層として2,6−ナフタレンジカルボン酸成分を有する高ガラス転移温度のポリエステルとトリメリット酸成分を含有する低ガラス転移温度のポリエステルとを併用することが記載されている。また、特許文献13には、ナフタレンジカルボン酸成分とビスフェノールA骨格を有するグリコール成分を含む共重合ポリエステルを主成分とする易接着層を設ける方法、さらに特許文献14には、2,6−ナフタレンジカルボン酸成分とビスフェノールフルオレンのエチレンオキサイド付加体成分を含む共重合ポリエステルを1成分として含有し、厚みが50~200nmの易接着層を設ける方法が提案されている。
The capacitive touch panel has a configuration in which a capacitive touch sensor is arranged on a display device such as a liquid crystal display. Such a capacitive touch sensor detects an electric field disturbance due to a capacitance of a human finger. There are two types of sensor base materials: glass substrates and film substrates. The film base sensors can be continuously produced by roll-to-roll and are relatively inexpensive to manufacture. It has many features that are preferable as a sensor base material for mobile devices, such as being strong against impacts and being hard to break, and being light and thin, and its application range has expanded in recent years.
The capacitive touch sensor uses, as an electrode, a transparent conductive film having a transparent conductive layer patterned (patterned) into a thin line or a diamond shape for position detection. It is the structure which piled up facing each other. Patterning is performed by drawing a desired pattern by photolithography or screen printing, and then etching. At this time, there is a difference in the optical characteristics between the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is removed. A so-called “bone appearance” phenomenon occurs in which the pattern of the conductive layer is visually recognized.
In order to solve this problem of bone appearance, a so-called index matching technique is known in which an optical adjustment layer is formed by laminating thin films having different refractive indexes and the difference in optical characteristics is eliminated by utilizing the light interference effect. (Patent Documents 1 to 10).
By the way, as a base material of a transparent conductive film used for a touch panel, a biaxially oriented polyester film, particularly a biaxially oriented polyethylene terephthalate film, which has an excellent balance between various properties such as heat resistance, mechanical properties, and optical properties and a price has been conventionally used. Have been used. In addition, since the surface of the biaxially oriented polyester film is generally poor in affinity, when laminating thin films having different refractive indexes, for example, on the film substrate, an easy adhesion component is applied, There is known a technique for forming (Patent Document 11).
Polyester films, particularly uniaxial or biaxial stretched films of polyethylene terephthalate, are often used as various optical films such as protective films and antireflection films for flat panel displays in addition to the above-mentioned touch panel applications. . However, even if an attempt is made to laminate a functional layer such as a hard coat layer for suppressing the generation of scratches on the film surface or an antireflection layer for suppressing light reflection, the surface has an affinity as described above. Since it is scarce and has poor adhesion, it is common to use a laminated film in which an easy-adhesion layer is usually provided on the film surface by in-line coating or off-line coating. In this case, when the difference between the refractive index of the polyester film and / or the functional layer and the refractive index of the easy-adhesion layer becomes large, there is a problem that color spots due to light interference spots occur. In addition, this interference spot is more perceived under the special fluorescent lamp called a three wavelength fluorescent lamp rather than sunlight or an incandescent lamp. In order to solve such a problem, it has been proposed to increase the refractive index of the easy-adhesion layer so that the refractive index is intermediate between the polyester film and the functional layer, and to adjust the thickness.
For example, Patent Document 12 discloses that the easy-adhesion layer has a refractive index of 1.55 to 1.62 which is an intermediate between the refractive index of the stretched polyester film and the hard coat layer, and has a thickness of 50 to 150 nm. And a method of using a high glass transition temperature polyester having a 2,6-naphthalenedicarboxylic acid component and a low glass transition temperature polyester containing a trimellitic acid component as an easy-adhesion layer is described. . Patent Document 13 discloses a method of providing an easy-adhesion layer mainly composed of a copolyester containing a naphthalenedicarboxylic acid component and a glycol component having a bisphenol A skeleton, and Patent Document 14 discloses 2,6-naphthalene dicarboxylic acid. A method has been proposed in which a copolyester containing an acid component and an ethylene oxide adduct component of bisphenolfluorene is contained as one component, and an easy adhesion layer having a thickness of 50 to 200 nm is provided.
近年、ディスプレイの高画質化に伴い、「骨見え」がさらに抑制されたタッチセンサーが求められるようになってきた。しかしながら、このような要求に対しては、パターン化された透明導電層を有する透明導電性フィルムの基材として、従来の抵抗膜方式のフィルムセンサー電極に用いられるような一般的な易接着性ポリエステルフィルムを適用しても不十分である。本発明者らは、ポリエステルフィルム上に積層された易接着層の特性によって、骨見えの程度が異なることを見出し、これに着目した。これは、光学調整層の高屈折率層と、易接着層およびポリエステルフィルムとの光学干渉が原因であると考えられる。
一方で、易接着層を有しないで光学調整層(特に高屈折率層)を形成した場合は、十分な接着性が得られず、層間剥離が発生する。
そこで本発明は、優れたインデックスマッチング特性と、良好な接着性とを両立した、透明導電性フィルム基材用の積層体を提供することを目的とする。
本発明者らは、前記課題を解決するために鋭意検討した結果、以下の特性を満たす易接着層を適用することにより、易接着層による光学干渉の影響を抑え、良好な骨見え抑制効果を発揮しつつ、同時に十分な接着性が得られることを見出し、本発明を完成させるに到った。
すなわち、本発明の積層体は、以下の構成を採用するものである。
1. ポリエステルフィルムの少なくとも片面に、第1易接着層、光学調整層をこの順で有する積層体であって、該第1易接着層は、ポリエステル樹脂を第1易接着層の質量を基準として50質量%以上含有し、屈折率が1.60~1.65であり、厚みが8~30nmである、透明導電性フィルム基材用積層体。
2. ポリエステルフィルムの面方向平均屈折率が1.60~1.70であり、光学調整層が第1易接着層側に配置された高屈折率層とその上の低屈折率層とからなり、高屈折率層の屈折率が1.60~1.80であり、低屈折率層の屈折率が1.40~1.60である、上記1に記載の透明導電性フィルム基材用積層体。
3. 第1易接着層が屈折率1.7~3.0の金属酸化物粒子を含有する、上記1または2に記載の透明導電性フィルム基材用積層体。
4. 第1易接着層におけるポリエステル樹脂の屈折率が1.58~1.65である、上記1~3のいずれか1に記載の透明導電性フィルム基材用積層体。
5. 第1易接着層におけるポリエステル樹脂が、共重合成分としてナフタレンジカルボン酸成分及び/またはフルオレン構造を有するジオール成分を含有する共重合ポリエステル樹脂である、上記1~4のいずれか1に記載の透明導電性フィルム基材用積層体。
6. 上記1~5のいずれか1に記載の積層体における光学調整層の上に、屈折率1.9~2.3のパターン化された透明導電層を有する、透明導電性フィルム。
7. 上記1~6のいずれか1に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、他面に第2易接着層を有する積層体であって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層体。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計は15~50モル%、および
(C1)下記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
(R1は炭素数2~4のアルキレン基、R2、R3、R4、およびR5は、水素、炭素数1~4のアルキル基、アリール基またはアラルキル基であり、それぞれ同じであっても異なっていてもよい。)
8. 第2易接着層が、第2易接着層の質量を基準として1~30質量%の下記架橋性付加重合体を含有する、上記7に記載の積層体。
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。)
9. 上記共重合ポリエステルが、さらに
(F1)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記7に記載の積層体。
10.上記1~6のいずれか1に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、該ポリエステルフィルムの面方向平均屈折率が1.63~1.68であり、他面に、屈折率が1.58~1.64、下記の方法で求められる膨潤率がいずれの溶剤においても130~200%、かつ厚みが50~100nmである第2易接着層を有する積層体。
膨潤率:
積層体の第2易接着層上に、下記UV硬化系組成物を溶剤(メチルエチルケトン、酢酸エチル、トルエン、イソプロパノールまたはプロピレングリコールモノメチルエーテル)で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100として求めた値である。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量% In recent years, with an increase in the image quality of displays, a touch sensor in which “bone appearance” is further suppressed has been demanded. However, in response to such a demand, a general easy-adhesive polyester used for a conventional resistive film type film sensor electrode as a substrate of a transparent conductive film having a patterned transparent conductive layer. Even if a film is applied, it is insufficient. The present inventors have found that the degree of bone appearance differs depending on the characteristics of the easy-adhesion layer laminated on the polyester film, and have focused on this. This is considered to be caused by optical interference between the high refractive index layer of the optical adjustment layer, the easy adhesion layer and the polyester film.
On the other hand, when an optical adjustment layer (particularly a high refractive index layer) is formed without having an easy-adhesion layer, sufficient adhesion cannot be obtained and delamination occurs.
Then, an object of this invention is to provide the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible.
As a result of intensive studies to solve the above-mentioned problems, the present inventors applied an easy-adhesion layer that satisfies the following characteristics, thereby suppressing the influence of optical interference caused by the easy-adhesion layer and providing a good bone appearance suppression effect. At the same time, it was found that sufficient adhesion was obtained, and the present invention was completed.
That is, the laminate of the present invention adopts the following configuration.
1. A laminated body having a first easy-adhesion layer and an optical adjustment layer in this order on at least one surface of the polyester film, wherein the first easy-adhesion layer is 50 masses based on the mass of the first easy-adhesion layer. % Or more, a refractive index of 1.60 to 1.65, and a thickness of 8 to 30 nm, a laminate for a transparent conductive film substrate.
2. The average refractive index in the plane direction of the polyester film is 1.60 to 1.70, and the optical adjustment layer is composed of a high refractive index layer disposed on the first easy adhesion layer side and a low refractive index layer thereon, 2. The laminate for a transparent conductive film substrate according to 1 above, wherein the refractive index layer has a refractive index of 1.60 to 1.80 and the low refractive index layer has a refractive index of 1.40 to 1.60.
3. 3. The laminate for a transparent conductive film substrate according to 1 or 2 above, wherein the first easy-adhesion layer contains metal oxide particles having a refractive index of 1.7 to 3.0.
4). 4. The laminate for a transparent conductive film substrate according to any one of 1 to 3 above, wherein the refractive index of the polyester resin in the first easy-adhesion layer is 1.58 to 1.65.
5. The transparent conductive material according to any one of 1 to 4 above, wherein the polyester resin in the first easy-adhesion layer is a copolymerized polyester resin containing a naphthalene dicarboxylic acid component and / or a diol component having a fluorene structure as a copolymerization component. Laminate for conductive film substrate.
6). 6. A transparent conductive film comprising a patterned transparent conductive layer having a refractive index of 1.9 to 2.3 on the optical adjustment layer in the laminate according to any one of 1 to 5 above.
7). The laminate according to any one of 1 to 6, wherein the laminate has a first easy-adhesion layer and an optical adjustment layer in this order on one side of the polyester film, and a second easy-adhesion layer on the other side. A laminate in which the second easy-adhesion layer contains 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 Copolyester containing ~ 50 mol% and (C1) 5 mol% or more and less than 20 mol% of a glycol component having a fluorene structure represented by the following formula (I).
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
(R 1 is an alkylene group having 2 to 4 carbon atoms, R 2 , R 3 , R 4 , and R 5 are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group. Or different.)
8). 8. The laminate according to 7 above, wherein the second easy-adhesion layer contains 1 to 30% by mass of the following crosslinkable addition polymer based on the mass of the second easy-adhesion layer.
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.)
9. The copolymerized polyester further contains (F1) a dicarboxylic acid component having a sulfonate group in an amount of 0.1 to 5 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated body of said 7 containing.
10. The laminate according to any one of 1 to 6 above, wherein the polyester film has a first easy-adhesion layer and an optical adjustment layer in this order on one side of the polyester film, and the average refractive index in the plane direction of the polyester film is 1.63. To 1.68, the refractive index is 1.58 to 1.64 on the other surface, the swelling rate obtained by the following method is 130 to 200% in any solvent, and the thickness is 50 to 100 nm. A laminate having two easy-adhesion layers.
Swelling rate:
On the second easy-adhesion layer of the laminate, a coating solution (solid content concentration 40% by mass) obtained by diluting the following UV curable composition with a solvent (methyl ethyl ketone, ethyl acetate, toluene, isopropanol or propylene glycol monomethyl ether) was applied. The hard coat layer having a thickness of 5 μm is formed by drying and curing, the thickness dh of the second easy-adhesion layer after forming the hard coat layer, and the thickness d0 of the second easy-adhesion layer before forming the hard coat layer From the above, the swelling ratio E (%) = value obtained as dh / d0 × 100.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
一方で、易接着層を有しないで光学調整層(特に高屈折率層)を形成した場合は、十分な接着性が得られず、層間剥離が発生する。
そこで本発明は、優れたインデックスマッチング特性と、良好な接着性とを両立した、透明導電性フィルム基材用の積層体を提供することを目的とする。
本発明者らは、前記課題を解決するために鋭意検討した結果、以下の特性を満たす易接着層を適用することにより、易接着層による光学干渉の影響を抑え、良好な骨見え抑制効果を発揮しつつ、同時に十分な接着性が得られることを見出し、本発明を完成させるに到った。
すなわち、本発明の積層体は、以下の構成を採用するものである。
1. ポリエステルフィルムの少なくとも片面に、第1易接着層、光学調整層をこの順で有する積層体であって、該第1易接着層は、ポリエステル樹脂を第1易接着層の質量を基準として50質量%以上含有し、屈折率が1.60~1.65であり、厚みが8~30nmである、透明導電性フィルム基材用積層体。
2. ポリエステルフィルムの面方向平均屈折率が1.60~1.70であり、光学調整層が第1易接着層側に配置された高屈折率層とその上の低屈折率層とからなり、高屈折率層の屈折率が1.60~1.80であり、低屈折率層の屈折率が1.40~1.60である、上記1に記載の透明導電性フィルム基材用積層体。
3. 第1易接着層が屈折率1.7~3.0の金属酸化物粒子を含有する、上記1または2に記載の透明導電性フィルム基材用積層体。
4. 第1易接着層におけるポリエステル樹脂の屈折率が1.58~1.65である、上記1~3のいずれか1に記載の透明導電性フィルム基材用積層体。
5. 第1易接着層におけるポリエステル樹脂が、共重合成分としてナフタレンジカルボン酸成分及び/またはフルオレン構造を有するジオール成分を含有する共重合ポリエステル樹脂である、上記1~4のいずれか1に記載の透明導電性フィルム基材用積層体。
6. 上記1~5のいずれか1に記載の積層体における光学調整層の上に、屈折率1.9~2.3のパターン化された透明導電層を有する、透明導電性フィルム。
7. 上記1~6のいずれか1に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、他面に第2易接着層を有する積層体であって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層体。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計は15~50モル%、および
(C1)下記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
(R1は炭素数2~4のアルキレン基、R2、R3、R4、およびR5は、水素、炭素数1~4のアルキル基、アリール基またはアラルキル基であり、それぞれ同じであっても異なっていてもよい。)
8. 第2易接着層が、第2易接着層の質量を基準として1~30質量%の下記架橋性付加重合体を含有する、上記7に記載の積層体。
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。)
9. 上記共重合ポリエステルが、さらに
(F1)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記7に記載の積層体。
10.上記1~6のいずれか1に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、該ポリエステルフィルムの面方向平均屈折率が1.63~1.68であり、他面に、屈折率が1.58~1.64、下記の方法で求められる膨潤率がいずれの溶剤においても130~200%、かつ厚みが50~100nmである第2易接着層を有する積層体。
膨潤率:
積層体の第2易接着層上に、下記UV硬化系組成物を溶剤(メチルエチルケトン、酢酸エチル、トルエン、イソプロパノールまたはプロピレングリコールモノメチルエーテル)で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100として求めた値である。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量% In recent years, with an increase in the image quality of displays, a touch sensor in which “bone appearance” is further suppressed has been demanded. However, in response to such a demand, a general easy-adhesive polyester used for a conventional resistive film type film sensor electrode as a substrate of a transparent conductive film having a patterned transparent conductive layer. Even if a film is applied, it is insufficient. The present inventors have found that the degree of bone appearance differs depending on the characteristics of the easy-adhesion layer laminated on the polyester film, and have focused on this. This is considered to be caused by optical interference between the high refractive index layer of the optical adjustment layer, the easy adhesion layer and the polyester film.
On the other hand, when an optical adjustment layer (particularly a high refractive index layer) is formed without having an easy-adhesion layer, sufficient adhesion cannot be obtained and delamination occurs.
Then, an object of this invention is to provide the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible.
As a result of intensive studies to solve the above-mentioned problems, the present inventors applied an easy-adhesion layer that satisfies the following characteristics, thereby suppressing the influence of optical interference caused by the easy-adhesion layer and providing a good bone appearance suppression effect. At the same time, it was found that sufficient adhesion was obtained, and the present invention was completed.
That is, the laminate of the present invention adopts the following configuration.
1. A laminated body having a first easy-adhesion layer and an optical adjustment layer in this order on at least one surface of the polyester film, wherein the first easy-adhesion layer is 50 masses based on the mass of the first easy-adhesion layer. % Or more, a refractive index of 1.60 to 1.65, and a thickness of 8 to 30 nm, a laminate for a transparent conductive film substrate.
2. The average refractive index in the plane direction of the polyester film is 1.60 to 1.70, and the optical adjustment layer is composed of a high refractive index layer disposed on the first easy adhesion layer side and a low refractive index layer thereon, 2. The laminate for a transparent conductive film substrate according to 1 above, wherein the refractive index layer has a refractive index of 1.60 to 1.80 and the low refractive index layer has a refractive index of 1.40 to 1.60.
3. 3. The laminate for a transparent conductive film substrate according to 1 or 2 above, wherein the first easy-adhesion layer contains metal oxide particles having a refractive index of 1.7 to 3.0.
4). 4. The laminate for a transparent conductive film substrate according to any one of 1 to 3 above, wherein the refractive index of the polyester resin in the first easy-adhesion layer is 1.58 to 1.65.
5. The transparent conductive material according to any one of 1 to 4 above, wherein the polyester resin in the first easy-adhesion layer is a copolymerized polyester resin containing a naphthalene dicarboxylic acid component and / or a diol component having a fluorene structure as a copolymerization component. Laminate for conductive film substrate.
6). 6. A transparent conductive film comprising a patterned transparent conductive layer having a refractive index of 1.9 to 2.3 on the optical adjustment layer in the laminate according to any one of 1 to 5 above.
7). The laminate according to any one of 1 to 6, wherein the laminate has a first easy-adhesion layer and an optical adjustment layer in this order on one side of the polyester film, and a second easy-adhesion layer on the other side. A laminate in which the second easy-adhesion layer contains 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 Copolyester containing ~ 50 mol% and (C1) 5 mol% or more and less than 20 mol% of a glycol component having a fluorene structure represented by the following formula (I).
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
(R 1 is an alkylene group having 2 to 4 carbon atoms, R 2 , R 3 , R 4 , and R 5 are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group. Or different.)
8). 8. The laminate according to 7 above, wherein the second easy-adhesion layer contains 1 to 30% by mass of the following crosslinkable addition polymer based on the mass of the second easy-adhesion layer.
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.)
9. The copolymerized polyester further contains (F1) a dicarboxylic acid component having a sulfonate group in an amount of 0.1 to 5 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated body of said 7 containing.
10. The laminate according to any one of 1 to 6 above, wherein the polyester film has a first easy-adhesion layer and an optical adjustment layer in this order on one side of the polyester film, and the average refractive index in the plane direction of the polyester film is 1.63. To 1.68, the refractive index is 1.58 to 1.64 on the other surface, the swelling rate obtained by the following method is 130 to 200% in any solvent, and the thickness is 50 to 100 nm. A laminate having two easy-adhesion layers.
Swelling rate:
On the second easy-adhesion layer of the laminate, a coating solution (solid content concentration 40% by mass) obtained by diluting the following UV curable composition with a solvent (methyl ethyl ketone, ethyl acetate, toluene, isopropanol or propylene glycol monomethyl ether) was applied. The hard coat layer having a thickness of 5 μm is formed by drying and curing, the thickness dh of the second easy-adhesion layer after forming the hard coat layer, and the thickness d0 of the second easy-adhesion layer before forming the hard coat layer From the above, the swelling ratio E (%) = value obtained as dh / d0 × 100.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
本発明の積層体は、ポリエステルフィルムの少なくとも片面に、第1易接着層、光学調整層を、この順で積層した構成である。
また、本発明の透明導電性フィルムは、上記積層体における光学調整層の上に、さらにパターン化された透明導電層を有する構成である。
以下、本発明を構成する各構成成分について説明する。
<ポリエステルフィルム>
(ポリエステル)
本発明において、ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体(ポリエステル中酸成分となる。)と、ジオールまたはそのエステル形成性誘導体(ポリエステル中グリコール成分となる。)とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレートを例示することができる。また、これらの共重合体、これらのブレンド体、またはこれらと小割合の他樹脂とのブレンド体であってもよい。これらのポリエステルのうち、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが、力学的物性や光学物性等のバランスが良いので好ましい。特にポリエチレンテレフタレートは、二軸延伸後の屈折率(面方向平均屈折率)が1.65に近くなり、よってポリエステルフィルムの面方向平均屈折率を1.60~1.70の範囲としやすく、本発明における光学調整層との屈折率調整がしやすく、それによってより良好な骨見え抑制効果を奏することができるため、好ましい。
ポリエステルは、ホモポリマーであってもよいが、共重合成分(共重合酸成分または共重合グリコール成分)が、その特性を損なわない範囲、例えば全酸成分100モル%に対して5モル%以下、好ましくは3モル%以下の割合で共重合されたコポリマーであってもよい。該共重合酸成分としては、フタル酸成分、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分等の如き芳香族ジカルボン酸成分、アジピン酸成分、アゼライン酸成分、セバシン酸成分、1,10−デカンジカルボン酸成分の如き脂肪族ジカルボン酸成分を例示でき、また共重合グリコール成分としては、1,4−ブタンジオール成分、1,6−ヘキサンジオール成分、ネオペンチルグリコール成分の如き脂肪族ジオール成分、1,4−シクロヘキサンジメタノール成分の如き脂環族ジオール成分を例示できる。これらを併用することもできる。
また、他の共重合成分として、上記以外の分子内に2つのエステル形成性官能基を有する化合物を用いることもできる。かかる化合物としては、例えば、蓚酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,7−ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸に由来する成分、p−オキシ安息香酸、p−オキシエトキシ安息香酸の如きオキシカルボン酸に由来する成分、或いはプロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールの如き2価アルコールに由来する成分を好ましく用いることができる。これらの化合物は1種のみ用いてもよく、2種以上を用いることができる。また、これらの中で好ましくは、酸成分としては、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p−オキシ安息香酸に由来する成分であり、グリコール成分としてはトリメチレングリコール、ヘキサメチレングリコールネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物に由来する成分である。
本発明においてポリエステルフィルムを構成するポリエステルとして特に好ましくは、ポリエチレンテレフタレートである。かかるポリエチレンテレフタレートとしては、上述のように共重合成分を有していても良いが、エチレンテレフタレート単位を90モル%以上、好ましくは95%以上、更に好ましくは97%以上有するものが好ましい。特に好ましくはホモのポリエチレンテレフタレートである。共重合成分としてはイソフタル酸が好ましい。
本発明におけるポリエステルは、従来公知の方法で、例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒である、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種または二種以上を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。
なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中において更に固相重合を施してもよい。
ポリエステルの固有粘度は0.40dl/g以上であることが好ましく、0.40~0.90dl/gであることが更に好ましい。固有粘度が0.40dl/g未満では工程切断が多発することがあり、0.9dl/gより高いと溶融粘度が高いため溶融押出しが困難であるうえ、重合時間が長く不経済である。
(ポリエステルフィルム)
本発明におけるポリエステルフィルムは、好ましくは面方向平均屈折率が1.60~1.70である。これにより、本発明の積層体を構成する他の層との相乗効果により、骨見え抑制効果により優れる。ここで面方向平均屈折率とは、フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率、好ましくはフィルム面内において、最大屈折率と、かかる最大屈折率を示す方向と垂直な方向の屈折率との平均屈折率を示す。面方向平均屈折率は、低すぎても高すぎても、骨見え抑制の効果が低下する。かかる観点から、ポリエステルフィルムの面方向平均屈折率の範囲は、1.62以上がより好ましく、1.63以上がさらに好ましく、1.64以上が特に好ましく、1.65以上が最も好ましい。また、1.68以下がより好ましく、1.67以下がさらに好ましく、1.66以下が特に好ましい。
また、面方向平均屈折率がこの範囲にあると、後述するように、ポリエステルフィルムの光学調整層とは反対側の面にハードコート層等の機能層を設ける場合において、第2易接着層を設け、その上にハードコート層のような比較的屈折率の低い層を形成した際に、干渉斑の発生を抑制することができる。かかる干渉斑抑制の観点においては、面方向平均屈折率は、好ましくは1.63~1.68、より好ましくは1.64~1.67、さらに好ましくは1.65~1.66の範囲であり、かかる範囲を外れて高すぎても低すぎても、干渉斑発生の抑制が難しくなる。
かかるポリエステルフィルムは、面方向平均屈折率が上記の要件を満足していれば、未配向フィルム、一軸配向フィルム、二軸配向フィルムのいずれであってもよいが、機械的特性や熱的特性の点から二軸配向フィルムであることが好ましい。
(ポリエチレンテレフタレートフィルム)
かかる面方向平均屈折率を達成するためには、例えばフィルムを構成するポリエステルとして、上述したポリエチレンテレフタレート(PET)を採用することが好ましい。また、延伸条件として後述する条件を採用することも、面方向平均屈折率を達成する上で効果的である。
本発明においては、好ましくは配向ポリエチレンテレフタレートフィルムが用いられる。配向ポリエチレンテレフタレートフィルムを構成するポリエステルは、全繰返し単位を基準として、エチレンテレフタレート単位が95モル%以上、好ましくは98モル%以上のポリエステルであり、特に好ましくは共重合成分を併用していないホモポリエステルである。共重合ポリエチレンテレフタレートである場合には、共重合成分として、例えば、イソフタル酸、ナフタレンジカルボン酸等のジカルボン酸成分や、ジエチレングリコール、ブタンジオール、シクロヘキサンジオール等のグリコール成分を用いることができる。
(ポリエステルフィルムのその他の成分)
ポリエステルフィルムは、搬送性を確保するために、例えば不活性粒子等の易滑性のフィラーを含有させることもできる。一方で、例えば静電容量式のタッチセンサーは、複数の透明フィルムを積層して構成され、フィルムのヘーズが積算されるため、各構成フィルムの内部ヘーズはできるだけ低いことが望まれる。このように、光学用途において高い透明性を維持する観点からは、ポリエステルフィルムにはフィラーを含有しないか、実質的にフィラーを含有しない(例えば10ppm以下、好ましくは1ppm以下)ことが好ましい。しかし、製造工程での微小なキズ防止や、フィルムの巻取り性を向上させるために、滑剤として少量のフィラーを含有させてもよい。フィラーは、例えば平均粒径0.01~2μm、さらには0.05~1μm、特に0.1~0.3μmの不活性粒子を用いるとよい。配合割合としては、配合する層の質量を基準として、例えば100ppm以下とするのが好ましく、また実質的に含有しない範囲である10ppm以下、特に1ppm以下としてもよい。
また、ポリエステルフィルムは、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒を含有することもできる。
<第1易接着層>
本発明においては、第1易接着層によって、ポリエステルフィルムと光学調整層との接着性を高めることができる。なお、本発明においては、第1易接着層および/または後述する第2易接着層を有するポリエステルフィルムを積層ポリエステルフィルムと呼称する場合がある。
(第1易接着層の屈折率)
本発明においては、第1易接着層の屈折率は1.60~1.65の範囲であることが重要である。これにより、本発明の積層体を構成する他の層との相乗効果により、骨見え抑制効果に優れる。第1の易接着層の屈折率が低すぎると、光学干渉が大きくなりすぎるため、骨見え抑制効果が得られない。理想的には、ポリエステルフィルム、第1易接着層、光学調整層(または光学調整層における高屈折率層)のすべてが同一の屈折率であることが好ましいが、現実には、1.65を超える屈折率を達成しようとすると、第1易接着層の透明性を高めることが困難となる傾向にある。これらのバランスを考えて、第1易接着層の屈折率は、好ましくは1.61~1.64、さらに好ましくは1.62~1.64である。
第1易接着層の屈折率は、後述する高屈折率層の屈折率との差が、0.05以下であることが好ましい。かかる態様により、骨見え抑制の向上効果を高くすることができる。かかる屈折率差は、より好ましくは0.04以下、さらに好ましくは0.03以下である。
また、第1易接着層の屈折率は、ポリエステルフィルムの面方向平均屈折率との差が、0.05以下であることが好ましい。かかる態様により、骨見え抑制の向上効果を高くすることができる。かかる屈折率差は、より好ましくは0.04以下、さらに好ましくは0.03以下である。
(第1易接着層の厚み)
第1易接着層の厚みは、8~30nmである。これにより接着性に優れる。また、第1易接着層の屈折率を上述した範囲とするとともに、厚みを上記範囲とすることで、本発明の積層体における他の層との相互作用により、優れた骨見え抑制効果を奏することができる。
薄膜の光学干渉は、屈折率と光路長(膜厚み)の積に依存する。本発明者らは、これに関し更に詳細な検討を行った結果、光学調整層または光学調整層における高屈折率層が後述する屈折率範囲であり、かつ第1易接着層が前記屈折率範囲である場合において、第1易接着層の膜厚を8~30nmというごく狭い範囲に制御することで、優れた骨見え抑制効果を奏しながら、かつ優れた接着性が得られることを見出した。第1易接着層の厚みが厚すぎると、骨見え抑制の効果が低下する。他方、薄すぎると、接着性が低下する。かかる観点から、第1易接着層の厚みは、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは18nm以上であり、また、好ましくは25nm以下、さらに好ましくは22nm以下である。
(第1易接着層のポリエステル樹脂)
本発明における第1易接着層は、第1易接着層の質量を基準として50質量%以上をポリエステル樹脂が占める。これにより接着性に優れる。かかる観点から、ポリエステル樹脂の含有量は、好ましくは70質量%以上であり、より好ましくは80質量%以上である。第1易接着層中におけるポリエステル樹脂の含有量の上限は特に限られないが、後述する、第1易接着層中に好ましく含有することができる成分以外の、その余の部分をポリエステル樹脂が占める態様とすればよい。
本発明では、第1易接着層を形成するバインダー成分としてポリエステル樹脂を用いるが、このポリエステル樹脂のガラス転移温度(Tg)は120℃以下であることが好ましい。これにより接着性にさらに優れる。また、延伸追随性(造膜性)に優れ、平滑で透明性に優れた第1易接着層とすることができる。かかる観点から、Tgは100℃以下がより好ましく、80℃以下がさらに好ましく、75℃以下が特に好ましい。また、ポリエステル樹脂のTgの下限は40℃であることが好ましく、これにより接着性にさらに優れ、また耐ブロッキング性に優れる。かかる観点から、Tgは、50℃以上であることがより好ましく、60℃以上が特に好ましい。
このポリエステル樹脂としては、以下に示すような酸成分とグリコール成分とからなるポリエステルまたは共重合ポリエステルを挙げることができる。本発明においては、接着性の観点から、共重合ポリエステルであることが好ましい。尚、以下にかかるポリエステルを構成するモノマー成分を例示するが、これらに限定されない。
酸成分としてはテレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2、6−ナフタレンジカルボン酸、1、4−シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ダイマー酸、5−ナトリウムスルホイソフタル酸等に由来する成分を挙げることができる。これら酸成分を2種以上用いて共重合ポリエステルとすることが好ましい。また、若干量ながら不飽和多塩基酸成分のマレイン酸、イタコン酸等及びp−ヒドロキシ安息香酸等の如きヒドロキシカルボン酸を用いることもできる。本発明においては、なかでも屈折率と塗膜強度とのバランスが取れるという観点から、2,6−ナフタレンジカルボン酸を用いることが好ましい。ポリエステル樹脂中の2,6−ナフタレンジカルボン酸の含有量としては、全酸成分100モル%に対して、50モル%以上が好ましく、60モル%以上がより好ましい。また、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下がさらに好ましい。かかる成分の含有量が多すぎると、第1易接着層の造膜性が低下する傾向にある。他方、少なすぎると、屈折率の向上効果が小さく、また、力学特性の向上効果が小さい。
グリコール成分としては、エチレングリコール、1、4−ブタンジオール、ジエチレングリコール、ジプロピレングリコール、1、6−ヘキサンジオール、1、4−シクロヘキサンジメタノール、キシレングリコール、ジメチロールプロパン、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等に由来する成分を挙げることができる。これらグリコール成分を2種以上用いて共重合ポリエステルとすることが好ましい。本発明においては、さらに、第1易接着層の屈折率を効果的に高くするために、好ましくはビス(4−ヒドロキシエトキシフェニル)フルオレン成分などの、下記式(I)で表わされるフルオレン構造を有するグリコール成分のような、共役系を有する化合物を共重合成分として用いることが好ましい。
(R1は炭素数2~4のアルキレン基、R2、R3、R4、およびR5は、水素、炭素数1~4のアルキル基、アリール基またはアラルキル基であり、それぞれ同じであっても異なっていてもよい。)
ポリエステル樹脂中のフルオレン構造を有するグリコール成分の含有量としては、全酸成分100モル%に対して、2モル%以上が好ましく、4モル%以上がより好ましく、6モル%以上がさらに好ましい。また、10モル%以下が好ましく、8モル%以下がより好ましい。かかる成分の含有量が多すぎると、第1易接着層の造膜性が低下する傾向にある。他方、少なすぎると、屈折率の向上効果が小さい。
本発明においては、これら成分の中でも、酸成分として2,6−ナフタレンジカルボン酸成分を採用し、同時に、グリコール成分としてフルオレン構造を有するグリコール成分、好ましくはビス(4−ヒドロキシエトキシフェニル)フルオレン成分を採用した態様が好ましい。これにより、第1易接着層の屈折率を本発明が規定する範囲にすることがより容易となると同時に、力学特性にも優れ、また接着性の向上効果を高くすることができる。これら成分は、各々上述した含有量でポリエステル樹脂中に含有する態様が好ましい。
また、上記のような思想の基、本発明における第1易接着層を構成するポリエステル樹脂として、後述する第2易接着層を構成する共重合ポリエステル樹脂を採用することができる。そうすることによって、かかる第2易接着層を構成する共重合ポリエステル樹脂を採用する効果と同様の効果を、第1易接着層に付与することができるため好ましい。
本発明における第1易接着層を構成するポリエステル樹脂の特に好ましい態様は、全酸成分を100モル%として、酸成分が、2,6−ナフタレンジカルボン酸が60~70モル%、イソフタル酸が25~30モル%、5−ナトリウムスルホイソフタル酸が5~10モル%であり、グリコール成分が、ビスフェノールAが10~20モル%、エチレングリコールが35~60モル%、トリメチレングリコールが25~35モル%、ビス(4−ヒドロキシエトキシフェニル)フルオレンが5~10モル%からなる態様である。
なお、ポリエステル樹脂は、水(多少の有機溶剤を含有したものであっても良い)に可溶性または分散性のポリエステルが好ましく、後述する塗液を製造しやすい。
(金属酸化物粒子)
本発明における第1易接着層は、層の屈折率を制御するために、屈折率が1.7~3.0、好ましくは1.8~2.2の金属酸化物粒子を添加することが好ましい。この金属酸化物粒子としては、TiO2(屈折率2.5)、ZrO2(屈折率2.4)、SnO2(屈折率2.0)、Sb2O3(屈折率2.0)などが例示され、本発明においては、これらからなる群より選ばれる少なくとも1種の金属酸化物粒子を用いることが好ましい。
高度な透明性を達成するためには、第1易接着層中の金属酸化物粒子による光学散乱を避けるため、金属酸化物粒子は、無色透明で、光の波長に対して十分に小さい粒径(例えば400nm以下、好ましくは100nm以下)であるものが好ましい。また屈折率が高いほど少量で第1易接着層の屈折率を上げることができるため好ましいが、屈折率が3.0を超えるような高屈折率の金属酸化物粒子は透明性に劣る傾向にあり、また特殊な希少金属が多いため、製造コストの上昇をもたらす傾向にある。
このような観点から、本発明における第1易接着層の金属酸化物粒子としては、酸化チタン、酸化ジルコニウムからなる粒子がより好ましく、比重の観点から少量で屈折率向上効果の高い酸化チタン粒子が特に好ましい。
金属酸化物粒子の添加量は、第1易接着層の質量を基準として、2質量%以上、20質量%以下が好ましく、かかる範囲とすることで透明性を維持しながら効率的に屈折率を高くすることができる。多すぎると透明性が低下する傾向にある。また、粒子脱落等が生じ易くなったり、コーティング時に設備の磨耗を引き起こしたり、安定したコーティングが困難となる傾向にある。他方、少なすぎると屈折率向上の効果が低くなる。かかる観点から、より好ましくは3質量%以上、更には4質量%以上、特には5質量%以上が好ましく、また、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。
第1易接着層の屈折率を高めるためには、上述したように、金属酸化物粒子などの高屈折率フィラーを添加する方法や、バインダー成分としてのポリエステル樹脂の屈折率を高める方法などの手段があるが、金属酸化物粒子の使用は、設備磨耗の問題があり、多量に添加することが比較的難しい。一方、バインダー成分の屈折率を高めようとした場合は、同時にガラス転移温度も高くなる傾向があるため、延伸時の変形に追随できず延伸工程で塗膜が割れ、フィルムヘーズが上昇してしまう等の問題が生じ易くなる。したがって、これらの制約から、バインダー成分(ポリエステル樹脂)の構成および屈折率と、金属酸化物粒子の屈折率及び添加率は適切なバランスを取る必要があり、本発明においては、それぞれ上述した好ましい範囲を同時に採用する態様が最も好ましい。
(滑材粒子)
本発明における第1易接着層は、上記特定屈折率範囲の金属酸化物粒子以外にも、滑性を付与するための滑材粒子を含有することが好ましい。滑材粒子を含有することによって、フィルムに滑性や耐傷性を付与することができる。
かかる滑材粒子としては、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化ケイ素、ケイ酸ソーダ、水酸化アルミニウム、カーボンブラック、等の無機滑材粒子、アクリル系架橋重合体、スチレン系架橋重合体、シリコーン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、フェノール樹脂、ナイロン樹脂等の有機滑材粒子を挙げることができる。これらは1種類で用いてもよく、2種類以上を併用してもよい。
滑材粒子の平均粒子径は、好ましくは10~180nm、更に好ましくは20~150nmである。本発明の第1易接着層厚みは、通常の光学用フィルムにおける易接着層の厚みである80~120nmに対して非常に薄いため、平均粒子径が180nmより大きいと、滑材粒子の落脱が発生しやすくなり、また10nmよりも小さいと十分な滑性、耐傷性が得られない場合がある。
滑材粒子の含有量は、第1易接着層の質量100質量%あたり、好ましくは0.1~10質量%である。0.1質量%未満であると十分な滑性、耐傷性が得られず、10質量%を超えると表面ヘーズが高くなる傾向にあり、光学特性が低下する傾向にある。
(架橋剤)
本発明においては、第1易接着層の塗膜強度を向上させる目的、および接着性の向上効果を高くする目的で、架橋剤を添加することが好ましい。
架橋剤としては、塗膜強度向上の観点、および接着性をより向上できる観点から、好ましくはオキサゾリン基及びポリアルキレンオキシド鎖を有する化合物、更に好ましくはオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂を用いる。アクリル樹脂は、容易に多種類の官能基を共重合できるため好ましい。オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂は、水(多少の有機溶剤を含有していても良い)に可溶性または分散性のアクリルが好ましい。また、アクリル樹脂は屈折率が低いため、かかる成分の添加は第1易接着層の屈折率を下げることにつながるため、その添加量には十分注意する必要がある。
かかるオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂としては、以下に示すようなモノマーを成分として含むものを挙げることができる。
オキサゾリン基を有するモノマーとしては、例えば2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリンを挙げることができる。これらは、1種で用いてもよく、2種以上の混合物として使用してもよい。これらの中、2−イソプロペニル−2−オキサゾリンが工業的に入手しやすく好適である。オキサゾリン基を有するアクリル樹脂を用いることにより第1易接着層の凝集力が向上し、光学調整層または高屈折率層との接着性がより強固になる。更に、フィルム製膜工程内や、光学調整層または高屈折率層の加工工程内の金属ロールに対する耐擦過性を付与できる。このような効果の観点から、かかる成分を、アクリル樹脂中に10~50モル%含有することが好ましく、20~40モル%含有することがより好ましく、25~35モル%含有することがさらに好ましい。
ポリアルキレンオキシド鎖を有するモノマーとしては、例えばアクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたものを挙げることができる。ポリアルキレンオキシド鎖は、例えばポリメチレンオキシド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシドを挙げることができる。
ポリアルキレンオキシド鎖を有するアクリル樹脂を用いることで、第1易接着層中のポリエステル樹脂とアクリル樹脂の相溶性が、ポリアルキレンオキシド連鎖を含有しないアクリル樹脂と比較して良くなり、第1易接着層の透明性を向上させることができる。このような観点から、かかる成分を、アクリル樹脂中に2~20モル%含有することが好ましく、5~15モル%含有することがより好ましい。
ポリアルキレンオキシド鎖の繰り返し単位は3~100であることが好ましく、より好ましくは4~50、さらに好ましくは5~20である。ポリアルキレンオキシド鎖の繰り返し単位が少なすぎると、ポリエステル樹脂とアクリル樹脂との相溶性が悪くなる傾向にあり、第1易接着層の透明性の向上効果が低くなる傾向にある。他方、大きすぎると、第1易接着層の耐湿熱性が低くなる傾向にあり、特に高湿度、高温下において光学調整層または高屈折率層との接着性が低くなる傾向にある。
架橋剤としてのアクリル樹脂を構成するその余のモノマーとしては、アルキルアクリレート(好ましくはメチルアクリレートまたはエチルアクリレート)や、アルキルメタクリレート(好ましくはメチルメタクリレートまたはエチルメタクリレート)を用いればよい。
架橋剤の、第1易接着層中での含有割合は、第1易接着層のポリエステル樹脂と架橋剤の合計100質量%に対して、好ましくは1~20質量%、より好ましくは2~15質量%、さらに好ましくは8~15質量%である。
本発明においては、後述する第2易接着層における好ましい架橋剤である架橋性付加重合体を、第1易接着層の架橋剤として用いることができる。これにより、第2易接着層において架橋性付加重合体を採用する効果と同様の効果を、第1易接着層に付与することができる。
<光学調整層>
第1易接着層の上には、光学調整層が設けられる。
光学調整層は、干渉効果により、透明導電層の存在する部分と存在しない部分の光の反射、透過特性をマッチングさせ、骨見えを抑制する機能を奏する層である。光学調整層は、少なくとも一層の高屈折率層と少なくとも一層の低屈折率層より、これらを適宜組み合わせて構成されるのが通常である。高屈折率層と低屈折率層は、それぞれ複数層有していても良い。通常は、ポリエステルフィルム、高屈折率層、低屈折率層の積層順序となる。本発明における光学調整層としては、ポリエステルフィルムに近い側に高屈折率層、かかる高屈折率層のポリエステルフィルムとは反対側に低屈折率層を備える、高屈折率層/低屈折率層の2層構成である態様が好ましい。
(高屈折率層)
高屈折率層は、屈折率が1.60~1.80の層である。このような屈折率範囲とすることによって、本発明における他の層との相互作用により、骨見え抑制効果により優れる。かかる屈折率は高すぎても低すぎても骨見え抑制効果が低くなる傾向にある。かかる観点から、高屈折率層の屈折率は、好ましくは1.60以上、より好ましくは1.62以上、さらに好ましくは1.64以上であり、また、好ましくは1.75以下、より好ましくは1.70以下、さらに好ましくは1.68以下、特に好ましくは1.66以下である。
高屈折率層は、好ましくは、金属および/または金属酸化物と、任意にバインダー樹脂とからなる層である。中でも、金属酸化物とバインダー樹脂とからなる層であることが好ましい。かかる金属酸化物としては、ゾル−ゲル法により得られた金属酸化物膜を挙げることができる。この場合、かかる金属酸化物膜が高屈折率層となり得る。金属酸化物膜は、任意にバインダー樹脂を含有していてもよい。また、金属酸化物として、金属酸化物微粒子を挙げることができる。この場合、かかる金属酸化物粒子は、上述したゾル−ゲル法により形成された金属酸化物膜中に分散して存在する態様や、バインダー樹脂中に分散して存在する態様を挙げることができる。
上記において高屈折率層における膜や微粒子を形成する金属酸化物の種類としては、上記屈折率を満足するものであれば特に限定はされないが、得られる膜の強度を高くすることができ、また適度な屈折率とすることができるといった観点から、酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム、インジウム含有酸化錫、アンチモン含有酸化錫およびアンチモン酸亜鉛からなる群より選ばれる少なくとも一種であることが好ましい。中でも膜強度が特に高いこと、また微粒子の場合においては分散性に優れるといった観点から、酸化チタン、アンチモン含有酸化錫、酸化ジルコニウムが特に好ましい。これら金属酸化物は、1種を単独で用いても2種以上を組み合わせて用いても構わない。すなわち、2種以上の金属酸化物からなる金属酸化物膜であってもよいし、2種以上の金属酸化物微粒子を含有する態様であってもよい。また、金属酸化物膜中に金属酸化物微粒子を含有する態様においては、膜を形成する金属酸化物と微粒子を形成する金属酸化物とは同じであってもよいし、異なるものであってもよい。
高屈折率層におけるバインダー樹脂としては、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物等が挙げられる。中でも高屈折率となるような骨格を有するものを好ましく用いればよい。バインダー樹脂は、膜強度の観点から、熱、紫外線、電子線等によって硬化して形成されたものであることが好ましい。バインダー樹脂により接着性をより向上することができる。
本発明において特に好ましい高屈折率層の態様は、金属酸化物膜中に、バインダー樹脂を含有している態様であり、特に好ましくは、酸化チタン膜中に、有機シラン縮合物を含有している態様である。
高屈折率層に好ましく用いられる金属酸化物としては、市販品を用いることもできる。例えば、酸化ジルコニウム:HXU−110JC(住友大阪セメント社製)、酸化チタン:ナノテックTi−トル(シーアイ化成製)、酸化亜鉛:ナノテックZnO−Xylene(シーアイ化成製)、酸化セリウム:ニードラール(多木化学製)、インジウム含有酸化錫:三菱マテリアル社製の製品、アンチモン含有酸化錫:SN−100D(石原産業社製)、アンチモン酸亜鉛:セルナックスシリーズ(日産化学工業(株)製)等が挙げられる。
(低屈折率層)
低屈折率層は、屈折率が1.40~1.60の層である。このような屈折率範囲とすることによって、本発明における他の層との相互作用により、骨見え抑制効果により優れる。かかる屈折率は高すぎても低すぎても骨見え抑制効果は低くなる傾向にある。かかる観点から、低屈折率層の屈折率は、好ましくは1.42以上、より好ましくは1.43以上、さらに好ましくは1.44以上であり、また、好ましくは1.55以下、より好ましくは1.50以下、さらに好ましくは1.48以下である。
低屈折率層は、上記屈折率を満足するものであれば特に限定されず、バインダー樹脂からなる層であってもよいし、金属酸化物からなる層であってもよいし、バインダー樹脂と金属酸化物とからなる層であってもよい。また、低屈折率の有機粒子を含有することができる。金属酸化物としては、ゾル−ゲル法により得られた金属酸化物膜を挙げることができる。この場合、かかる金属酸化物膜が低屈折率層となり得る。金属酸化物膜は、任意にバインダー樹脂を含有していてもよい。また、金属酸化物として、金属酸化物微粒子を挙げることができる。この場合、かかる金属酸化物粒子は、上述したゾル−ゲル法により形成された金属酸化物膜中に分散して存在する態様や、バインダー樹脂中に分散して存在する態様を挙げることができる。
上記において低屈折率層における膜や微粒子を形成する金属酸化物の種類としては、好適な低屈折率を有する層が形成できる観点から、特に好ましくはシリカが挙げられる。また、有機粒子として有機シラン系の珪素化合物や、フッ素化合物等の低屈折率有機粒子を含有することにより、より好適な低屈折率を得ることができる。また、層中にボイド形成剤を含有する等により空隙を形成することにより、屈折率を低くすることもできる。
低屈折率層におけるバインダー樹脂としては、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物等が挙げられる。中でも低屈折率となるような骨格を有するものを好ましく用いればよい。バインダー樹脂は、膜強度の観点から、熱、紫外線、電子線等によって硬化して形成されたものであることが好ましい。
本発明において特に好ましい低屈折率層の態様は、金属酸化物膜からなる態様であり、ゾル−ゲル法により形成されたシリカ膜が特に好ましい。
本発明においては、上記のような高屈折率層と低屈折率層とを、上述したような配置で備えることにより、本発明における他の層との相乗効果により骨見えが抑制される。
また、高屈折率層の屈折率を上記範囲とすると同時に、厚みを、好ましくは50~250nm、より好ましくは100~200nm、さらに好ましくは125~175nmとすることにより、さらに骨見え抑制の向上効果を高くすることができる。また、低屈折率層の屈折率を上記範囲とすると同時に、厚みを、好ましくは5~50nm、より好ましくは10~45nm、さらに好ましくは20~40nmとすることにより、さらに骨見え抑制の向上効果を高くすることができる。さらに、各層の厚みを同時に前記好ましい範囲とすることにより、骨見え抑制の向上効果をさらに高くすることができる。
<その他の層>
本発明の積層体は、本発明の目的を阻害しない範囲において、他の層を有していてもよい。例えば、ポリエステルフィルムの光学調整層とは反対側の面に、他の光学部材と貼り合せるための粘着層を有していても良い。また、第1易接着層の上に、例えばハードコート層等の平滑化層を有して、その上に光学調整層を有してもよい。この際は、かかる平滑化層は、本発明における第1易接着層とも光学調整層(または高屈折率層)とも好適な接着性を示すものである。そうすることで、結果としてポリエステルフィルムと光学調整層(または高屈折率層)との接着性を確保できることとなる。
<第2易接着層>
本発明においては、ポリエステルフィルムの第1易接着層とは反対側の面に、第2易接着層を有することができる。かかる第2易接着層は、ハードコート層などの機能層を積層する際に、ポリエステルフィルムと該機能層との接着性を向上させるための層である。
第2易接着層は、下記共重合ポリエステル樹脂を第2易接着層の質量を基準として70質量%以上、好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上含有する層である。共重合ポリエステル樹脂の割合が70質量%以上であることにより、ハードコート層などの機能層との接着性が良好となり、また、第2易接着層の屈折率を適正な範囲とすることができるので光の干渉斑を抑制することができる。さらに、第2易接着層のガラス転移温度(Tg)も適正な範囲となって造膜性が向上し、第2易接着層のひび割れが低減され、かかるひび割れに起因した接着性低下を抑制することができ、接着性に優れる。
なお、配向ポリエチレンテレフタレートフィルムの面方向平均屈折率は通常1.66程度あり、機能層として通常用いられるアクリル系樹脂系ハードコート層の屈折率は1.52程度であるので、第2易接着層の屈折率は1.57~1.62の範囲が好ましく、1.58~1.61の範囲がより好ましく、特に好ましくは1.59~1.60の範囲である。かかる屈折率は、後述する共重合ポリエステル樹脂を採用することにより容易に達成することができる。
第2易接着層の厚みは、好ましくは50~100nm、さらに好ましくは70~90nmである。厚みをこの範囲にすることで、そのうえにアクリル系ハードコート層等の機能層を設けたときに、光の干渉斑を抑制する効果がより高まるので好ましい。
(第2易接着層の共重合ポリエステル樹脂)
第2易接着層に用いられる共重合ポリエステル樹脂は、目的とする作用効果によって、以下に説明する態様を選択することができる。なお、かかる共重合ポリエステル樹脂は、目的を阻害しない限りにおいて第1易接着層のポリエステル樹脂としても用いることができ、それによりかかる共重合ポリエステル樹脂を採用することによる効果を第1易接着層に付与することができる。以下、第1易接着層および第2易接着層をまとめて易接着層と呼称する場合がある。
<共重合ポリエステル樹脂の好ましい態様1(共重合ポリエステル樹脂1)>
第1および第2易接着層等の塗布層を形成するに際して、配向完了前のポリエステルフィルム上に塗布層を形成するための塗液を塗布した後に配向結晶化を完了させる、所謂インラインコーティング法がしばしば用いられる。しかしながら、我々の検討によれば、ポリエチレンテレフタレートフィルム上に塗布する場合には、延伸工程で発生する塗布層の割れのためと推定されるが、接着性についてさらなる改善が望まれる場合があることが判明した。
本態様は、例えばハードコート層などの機能層との優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
本態様の第2易接着層に用いられる共重合ポリエステル樹脂は、該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む共重合ポリエステルである。
ナフタレンジカルボン酸成分の割合が上記範囲にあることにより、共重合ポリエステルの屈折率を高くすることができ、容易に第2易接着層の屈折率を上述の好ましい範囲とすることができ、光の干渉斑を抑制することができる。また、溶剤に対する第2易接着層の耐膨潤性も良好なものとなる。このナフタレンジカルボン酸成分の割合が下限未満になると、共重合ポリエステルの屈折率が低くなるため、結果として第2易接着層の屈折率が低くなって光の干渉斑を抑制する効果が不十分となる。さらに有機溶剤に対する膨潤性が大きくなる(耐溶剤性が悪化)ため、ハードコート層などの機能層用塗布液中の有機溶剤に接触した際に膨潤して第2易接着層の厚み斑に起因する干渉斑が発生しやすくなるだけでなく、耐ブロッキング性も低下するため好ましくない。他方、ナフタレンジカルボン酸成分の割合が多くなるほど共重合ポリエステルの屈折率は大きくなるので、第2易接着層としては他の成分(例えば後述する架橋剤やその他の成分等)の割合を増やすことができる。しかし、同時に共重合ポリエステルのガラス転移温度(Tg)が高くなって第2易接着層のガラス転移温度も高くなる傾向にあり、第2易接着層の造膜性が低下して、接着性が低下しやすくなる。したがって、ナフタレンジカルボン酸成分の含有量の好ましい下限は65モル%であり、好ましい上限は85モル%、さらに好ましくは80モル%、特に好ましくは70モル%である。ここでナフタレンジカルボン酸成分としては、2,7−ナフタレンジカルボン酸成分や2,6−ナフタレンジカルボン酸成分、1,4−ナフタレンジカルボン酸成分等があげられるが、なかでも2,6−ナフタレンジカルボン酸成分が好ましい。
また、共重合ポリエステルの全酸成分を基準として、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有している。好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~40モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。このため、共重合ポリエステルのTgを低くすることができ、第2易接着層のTgを低くすることができる。その結果、配向ポリエチレンテレフタレートフィルム上に第2易接着層を形成する際にしばしば採用されるインラインコーティング法でも、第2易接着層の造膜性に優れているので、乾燥・延伸条件下で第2易接着層に割れ(クラック)が発生するのを抑制し、接着性に優れたフィルムが得られる。特に、配向ポリエステルフィルムの製造に同時二軸延伸法を採用し、第2易接着層の形成にインラインコーティング法を採用する場合には、予熱・乾燥温度が比較的低くなりやすいために本態様を採用する効果が大きく特に好ましい。また、耐ブロッキング性にも優れる。
上記アルキレンジカルボン酸成分と上記アルキレングリコール成分の合計量が下限未満になると、共重合ポリエステルのTgが十分には下がらないため、接着性が不十分なものとなる。他方、上記アルキレンジカルボン酸成分またはアルキレングリコール成分が上限を超えるか、両者の合計が上限を超える場合には、耐ブロッキング性が低下するだけでなく、他の共重合成分の含有量が少なくなることとなる結果、共重合ポリエステルの屈折率が低くなって光の干渉斑を抑制する効果が不十分となる。また、第2易接着層の耐溶剤性も低下する恐れがある。そのような観点から、アルキレンジカルボン酸成分とアルキレングリコール成分の合計量は、20~50モル%の範囲とするのが好ましい。
好ましく用いられる炭素数6~12のアルキレンジカルボン酸成分(炭素数4~10のアルキレン基を有するジカルボン酸成分)としては、例えば1,4−ブタンジカルボン酸成分、1,6−ヘキサンジカルボン酸成分、1,4−シクロヘキサンジカルボン酸成分、1,8−オクタンジカルボン酸成分、1,10−デカンジカルボン酸成分等をあげることができる。中でも、適切なTgが得易いという観点から、炭素数4~8のアルキレン基を有するジカルボン酸成分が好ましく、炭素数4~6のアルキレン基を有するジカルボン酸成分がさらに好ましい。また、好ましく用いられる炭素数4~10のアルキレングリコール成分としては、例えば1,4−ブタンジオール成分、1,6−ヘキサンジオール成分、1,4−シクロヘキサンジオール成分、1,8−オクタンジオール成分、1,10−デカンジオール成分等を挙げることができる。中でも、適切なTgが得易いという観点から、炭素数4~8のアルキレングリコール成分が好ましく、炭素数4~6のアルキレングリコール成分がさらに好ましい。
なお、共重合ポリエステルに他の共重合成分を含有させて他の機能を付与しようとする場合は、酸成分として含有させる方が容易であり、また重合反応もしやすいため、酸成分に共重合の余地を残しておくという観点から、上記のアルキレンジカルボン酸成分とアルキレングリコール成分の中では、アルキレングリコール成分として含有させる方がより好ましい。
また、共重合ポリエステルの全酸成分を基準として、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいるので、共重合ポリエステルのTgを適度に低い温度に維持しながら、屈折率を高くし、好ましい範囲とすることができる。前記式(I)で示されるフルオレン構造を有するグリコール成分の含有量が5モル%未満の場合には、共重合ポリエステルの屈折率を好ましい範囲とすることが難しくなり、光の干渉斑を抑制できない。他方20モル%以上の場合には、共重合ポリエステルのTgが高くなりすぎるため、第2易接着層の造膜性が低下して、得られるフィルムの透明性が低下するだけでなく、接着性も低下する。このような観点から、好ましい下限値は3モル%であり、さらに好ましくは5%であり、好ましい上限値は15モル%であり、さらに好ましくは10%である。好ましく用いられる前記式(I)で示されるフルオレン構造を有するグリコール成分としては、例えば9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン成分、9,9−ビス[4−(2−ヒドロキシエトキシ)−2−メチルフェニル]フルオレン成分を挙げることができる。
以上に説明した本態様における第2易接着層の共重合ポリエステルは、上記の成分に加えて、ビスフェノールAのエチレンオキサイド付加体成分を5~25モル%、さらには10~20モル%含有していることが好ましく、これにより屈折率を維持しながら、Tgをより好ましい範囲とすることができ、接着性も向上する。なお、エチレンオキサイドの平均付加モル数はビスフェノールA1モルに対して2~4モルの範囲が適当である。
また、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~40モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
さらに本態様の共重合ポリエステルは、全酸成分を基準として、スルホン酸塩基を有するジカルボン酸成分を1~10モル%含有していることが好ましい。これにより、共重合ポリエステルを水性塗布液とする際の溶解性ないし水分散性を高めることができる。また、第2易接着層の耐溶剤性(耐膨潤性)を向上させることができる。しかし、多くなりすぎると第2易接着層の耐水性や耐ブロッキング性が低くなる傾向にあるので、2~8モル%の範囲が特に好ましい。このスルホン酸塩基を有する芳香族ジカルボン酸成分としては、例えば5−ナトリウムスルホイソフタル酸成分、5−カリウムスルホイソフタル酸成分、5−リチウムスルホイソフタル酸成分、5−ホスホニウムスルホイソフタル酸成分等が挙げられるが、水分散性良化の点から、5−ナトリウムスルホイソフタル酸成分が最も好ましい。
好ましく用いられる共重合ポリエステル樹脂1の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂1の好ましい態様1(好ましい態様1−1)]
(A2)ナフタレンジカルボン酸成分を60~90モル%
(B2)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%
(C2)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様2(好ましい態様1−2)]
(A3)ナフタレンジカルボン酸成分を60~80モル%
(B3)炭素数4~10のアルキレングリコール成分を15~50モル%
(C3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D3)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E3)テレフタル酸成分および/またはイソフタル酸成分を20~40モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様3(好ましい態様1−3)]
(A4)ナフタレンジカルボン酸成分を60~80モル%
(B4)炭素数4~10のアルキレングリコール成分を15~50モル%
(C4)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E4)テレフタル酸成分および/またはイソフタル酸成分を20~40モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様4(好ましい態様1−4)]
(A5)ナフタレンジカルボン酸成分を60~70モル%
(B5)炭素数4~10のアルキレングリコール成分を15~50モル%
(C5)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D5)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E5)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(F5)スルホン酸塩基を有するジカルボン酸成分を6~8モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
(ポリエステルフィルム)
本態様においては、ポリエステルフィルムは配向ポリエチレンテレフタレートフィルムであることが好ましく、一軸配向フィルムであっても二軸配向フィルムであってもよいが、面内方向の機械的特性や熱的特性の均一性の点から二軸配向フィルムであることが好ましい。その際、面方向平均屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)は、本態様の第2易接着層を設けた上にハードコート層などの機能層を設けた際において、光の干渉斑(色斑感)の発生を抑制することができるという観点では、1.6~1.7の範囲が好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計は15~50モル%、および
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~40モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記1~3のいずれかに記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
<共重合ポリエステル樹脂の好ましい態様2(共重合ポリエステル樹脂2)>
ハードコート層等の機能層を設けるための塗布液には、溶剤として様々な溶剤が用いられるようになってきており、溶剤によっては易接着層が膨潤溶解して厚みが変動し、結果として干渉斑が抑制できなくなるという問題がある。かかる問題に対して、例えば特開2009−300658号公報や特開2009−300658号公報には、平均粒径0.2~0.7μmの比較的大きな粒径を有する粒子を添加することにより、易接着層の厚み変動が生じても、表面粗さによって干渉斑を抑制する方法が提案されている。なお、この厚み変動に係る問題は、光学調整層を形成するに際しても同様に様々な溶剤が用いられることから、骨見えが抑制できなくなる問題となる場合もある。
本態様は、例えばハードコート層などの機能層との優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
かかる共重合ポリエステルは、例えばナフタレンジカルボン酸成分やフルオレン構造を有するグリコール成分などの屈折率を増大しうる成分およびスルホン酸塩基を有する芳香族ジカルボン酸成分などの膨潤率を調整しうる成分を使用し、これらの共重合量を調整することによって、屈折率および膨潤率を調整すればよい。
好ましく用いられる共重合ポリエステルとしては、例えば該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、ビスフェノールAのエチレンオキサイド付加体を5~25モル%含むものが挙げられる。
ナフタレンジカルボン酸成分の割合が上記範囲にあることにより、共重合ポリエステルの屈折率を高くすることができ、容易に第2易接着層の屈折率を上述の範囲とすることができ、干渉斑を抑制することができる。また、第2易接着層の膨潤率も容易に好ましい範囲とすることができる。このナフタレンジカルボン酸成分の割合が少なくなりすぎると、共重合ポリエステルの屈折率が低くなるため、結果として第2易接着層の屈折率が低くなって干渉斑を抑制する効果が不十分となる。他方、ナフタレンジカルボン酸成分の割合が多くなるほど共重合ポリエステルの屈折率は大きくなるので、第2易接着層としては他の成分(例えば後述する架橋剤やその他の成分等)の割合を増やすことができる。しかし、同時に共重合ポリエステルのガラス転移温度(Tg)が高くなって第2易接着層のガラス転移温度も高くなる傾向にあり、第2易接着層の造膜性が低下して、接着性やフィルムの透明性が低下しやすくなる。したがって、ナフタレンジカルボン酸成分の含有量は65モル%以上であることが好ましく、かつ85モル%以下、さらに80モル%以下、特に70モル%以下であることが好ましい。ここで、好ましいナフタレンジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。
また、共重合ポリエステルの全酸成分を基準として、スルホン酸塩基を有する芳香族ジカルボン酸成分を上記範囲で有することにより、共重合ポリエステルを水性塗布液とする際の溶解性ないし水分散性を高めることができる。また、第2易接着層の膨潤率を容易に好ましい範囲とすることができる。しかし、多くなりすぎると第2易接着層の耐水性や耐ブロッキング性が低くなる傾向にあるので、好ましくは2~8モル%であり、6~8モル%の範囲が特に好ましい。好ましいスルホン酸塩基を有する芳香族ジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。。
さらに、共重合ポリエステルの全酸成分を基準として、ビスフェノールAのエチレンオキサイド付加体成分を上記範囲で有することにより、共重合ポリエステルの屈折率を維持したまま、Tgを好ましい範囲とすることができ、第2易接着層の造膜性が向上して透明性に優れたフィルムを得ることができる。また、膨潤率を好ましい範囲にし易くなる。なお、エチレンオキサイドの平均付加モル数はビスフェノールA1モルに対して2~4モルの範囲が適当である。
以上に説明した共重合ポリエステルは、上記の成分に加えて、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいることが好ましく、共重合ポリエステルのTgを適度に低い温度に維持しながら、屈折率を好ましい範囲とすることができる。かかる成分の含有量が少なくなると共重合ポリエステルの屈折率が低くなる傾向にあり、他方多くなると共重合ポリエステルのTgが高くなり、第2易接着層の造膜性が低下してフィルムの透明性が低下する傾向にあり、接着性も低下する傾向にある。このような観点から、好ましい下限は5モル%であり、好ましい上限は15モル%であり、特に好ましくは10モル%である。好ましく用いられる前記式(I)で示されるフルオレン構造を有するグリコール成分としては、共重合ポリエステル樹脂1と同様である。
さらに、上記の成分に加えて、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有することが好ましい。より好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~40モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。これにより、共重合ポリエステルのTgを低くすることができ、第2易接着層のTgを低くすることができる。その結果、ポリエステルフィルムがポリエチレンテレフタレートフィルムであっても、第2易接着層を形成する際にしばしば採用されるインラインコーティング法でも、第2易接着層の造膜性に優れているので透明性に優れたフィルムが得られる。特に同時二軸延伸法を採用し、第2易接着層の形成にインラインコーティング法を採用する場合には、予熱・乾燥温度が比較的低くなりやすいために本態様の採用により透明性向上効果が大きく好ましい。また、接着性の向上効果を高くすることができ、耐ブロッキング性にも優れる。
上記アルキレンジカルボン酸成分と上記アルキレングリコール成分の合計量が少なくなると、共重合ポリエステルのTgが下がりにくくなるため、得られるフィルムの透明性が低下する場合がある。他方、上記アルキレンジカルボン酸成分またはアルキレングリコール成分が多くなるか、両者の合計が多くなると、耐ブロッキング性が低下したり、共重合ポリエステルの屈折率が低下して干渉斑を抑制する効果が低下する場合がある。また、第2易接着層の膨潤率も増大する恐れがある。そのような観点から、アルキレンジカルボン酸成分とアルキレングリコール成分の合計量は、20~50モル%の範囲とするのが好ましい。
好ましく用いられる炭素数6~12のアルキレンジカルボン酸成分(炭素数4~10のアルキレン基を有するジカルボン酸成分)および、好ましく用いられる炭素数4~10のアルキレングリコール成分としては、共重合ポリエステル樹脂1と同様である。
なお、共重合ポリエステルに他の共重合成分を含有させて他の機能を付与する場合、酸成分として含有させるのがやりやすく、また重合反応もしやすいので、上記のアルキレンジカルボン酸成分と上記アルキレングリコール成分の中では、アルキレングリコール成分として含有させる方がより好ましい。
さらに、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~40モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
好ましく用いられる共重合ポリエステル樹脂2の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂2の好ましい態様1(好ましい態様2−1)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、および
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様2(好ましい態様2−2)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%、および
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様3(好ましい態様2−3)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(E)炭素数4~10のアルキレングリコール成分を15~50モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様4(好ましい態様2−4)]
(A)ナフタレンジカルボン酸成分を60~70モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を6~8モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(F)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様5(好ましい態様2−5)]
(A)ナフタレンジカルボン酸成分を60~70モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を6~8モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E)炭素数4~10のアルキレングリコール成分を15~50モル%、および
(F)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
本態様における第2易接着層は、以下のような態様であることが好ましい。
(屈折率)
本態様における第2易接着層の屈折率は、1.58~1.64であることが好ましい。より好ましくは1.58~1.62、さらに好ましくは1.58~1.60、特に好ましくは1.58~1.59である。第2易接着層の屈折率がこの範囲にあることにより、後述する好ましいポリエステルフィルムの面方向平均屈折率と、通常アクリル系樹脂からなるハードコート層の屈折率(おおよそ1.52程度)との間の屈折率となるので、第2易接着層上にこのようなアクリル系樹脂からなるハードコート層等を塗設した際の干渉斑(色斑感)が抑制できる。この屈折率は、高すぎても低すぎても干渉斑の抑制が難しくなる。また、このような屈折率となるような成分、好ましくは上述した成分からなる第2易接着層とすることによって、膨潤率を好ましい範囲とし易くなる。
このような屈折率を達成するためには、第2易接着層を構成する各成分の屈折率を調整すればよい。例えば、屈折率の高い共重合ポリエステル樹脂や粒子を用いることで、第2易接着層の屈折率を高くすることができる。特に好ましくは、上述した共重合ポリエステル樹脂2を採用すればよい。
(厚み)
本態様において第2易接着層の厚みは、50~100nmである必要があり、好ましくは70~90nmである。第2易接着層の厚みをこの範囲にすることにより、その上にアクリル系樹脂からなるハードコート層等の低屈折率層を設けた際の干渉斑(色斑感)が抑制できる。この厚みは、薄すぎると接着性が低下しやすく、また、薄すぎても厚すぎても干渉斑の抑制が難しくなる。
(膨潤率)
本態様における第2易接着層は、下記の方法で求められる膨潤率が下記のいずれの溶剤においても130~200%である。好ましくは130~180%、より好ましくは135~175%、さらに好ましくは139~165%である。ここで膨潤率は、フィルムの第2易接着層上に、下記UV硬化系組成物を溶剤で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100
として求めた値である。UV硬化系組成物としては下記を使用し、溶剤としては、通常ハードコート層などを形成する際に使用される溶剤の代表となるメチルエチルケトン(MEK)、酢酸エチル、トルエン、イソプロパノール(IPA)およびプロピレングリコールモノメチルエーテルアセテート(PGMEA)を用い、これらの溶剤のいずれにおいても、第2易接着層の膨潤率が上記範囲となる必要がある。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量%
この膨潤率が130%未満の場合には、ハードコート層などとの接着性が低くなる傾向にあり、他方、膨潤率が200%を超える場合には、ハードコート層などの機能層形成前後における第2易接着層の厚みの変動が大きすぎるため、干渉斑を抑制することが難しくなる。また、かかる膨潤率は、上記溶剤のいずれにおいても、上記範囲内となることが重要なのであり、いずれかの溶剤での膨潤率がこの範囲を外れると、かかる溶剤を用いてハードコート層等の機能層を形成した際に、接着性が不十分となるか干渉斑の抑制が困難となるためである。なお、この膨潤率は、溶剤の種類による変動が少ない方がハードコート層を形成した際の干渉斑抑制が容易となるので、最大の膨潤率と最少の膨潤率の差が50%以下、さらに25%以下であることが好ましい。
このような膨潤率を達成するためには、第2易接着層に用いられる成分、特にバインダー成分を構成する共重合成分を調整し、親油性と親水性のバランスをとればよい。具体的には、前述した好ましい態様の共重合ポリエステル樹脂2を用いることができる。また、第2易接着層に架橋剤を用いることによっても膨潤率を調整することができる。架橋剤は、添加量が多くなるほど膨潤率が小さくなる傾向にある。
(ポリエステルフィルム)
本態様における好ましいポリエステルフィルムの態様は、その面方向屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)が1.63~1.68であり、好ましくは1.64~1.67、特に好ましくは1.65~1.66の範囲である。面方向屈折率がこの範囲にあると、前述の共重合ポリエステル樹脂2を用いた第2易接着層を設けたフィルムは、その上にハードコート層のような低屈折率層を形成した際の、干渉斑発生の抑制効果に優れる。面方向屈折率は、上記範囲を外れて高すぎても低すぎても、干渉斑発生の抑制効果が低下する傾向にある。
かかるポリエステルフィルムは、面方向屈折率が上記の要件を満足していれば、未配向フィルム、一軸配向フィルム、二軸配向フィルムのいずれであってもよいが、機械的特性や熱的特性の点から二軸配向フィルムであることが好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.面方向屈折率が1.63~1.68のポリエステルフィルムの少なくとも片面に、屈折率が1.58~1.64、下記の方法で求められる膨潤率がいずれの溶剤においても130~200%、かつ厚みが50~100nmである第2易接着層を有する積層ポリエステルフィルム。
膨潤率:
積層ポリエステルフィルムの第2易接着層上に、下記UV硬化系組成物を溶剤(メチルエチルケトン、酢酸エチル、トルエン、イソプロパノールまたはプロピレングリコールモノメチルエーテル)で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100として求めた値である。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量%
2.第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する、上記1に記載の積層ポリエステルフィルム。
共重合ポリエステル:
(A2)ナフタレンジカルボン酸成分を60~90モル%、
(B2)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、および
(C2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
3.上記共重合ポリエステルが、さらに
(D3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記2に記載の積層フィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記2または3に記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
<共重合ポリエステル樹脂の好ましい態様3(共重合ポリエステル樹脂3)>
第1および第2易接着層等の塗布層を形成するに際して、配向完了前のポリエステルフィルム上に塗布層を形成するための塗液を塗布した後に配向結晶化を完了させる、所謂インラインコーティング法がしばしば用いられる。しかしながら、我々の検討によれば、ポリエチレンテレフタレートフィルム上に塗布する場合には、延伸工程で発生する塗布層の割れのためと推定されるが、接着性についてさらなる改善が望まれる場合があることが判明した。そして、かかる接着性については、特に湿熱環境下における接着性(湿熱接着性)の向上が強く要求されている。
本態様は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
本態様の第2易接着層に用いられる共重合ポリエステル樹脂は、該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および、スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%含むものである。
ナフタレンジカルボン酸成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。本態様においては、スルホン酸塩基を有するジカルボン酸成分が必須成分であることを勘案して、含有量については、ナフタレンジカルボン酸成分の含有量の好ましい下限は65モル%であり、好ましい上限は85モル%、より好ましくは80モル%、さらに好ましくは75.9モル%、特に好ましくは70モル%である。
また、共重合ポリエステルの全酸成分を基準として、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有している。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。本態様においては、スルホン酸塩基を有するジカルボン酸成分が必須成分であることを勘案して、含有量については、好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~39.9モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。
また、共重合ポリエステルの全酸成分を基準として、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいる。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。
さらに本態様においては、全酸成分を基準として、スルホン酸塩基を有するジカルボン酸成分の含有量が0.1~5モル%である。これにより、湿熱環境下における接着性を高くすることができる。多くなりすぎると湿熱環境下における接着性が低くなる傾向にあるので、0.1~4.5モル%の範囲が特に好ましい。他方、含有量が少なすぎても、溶媒(特に水溶媒)に分散させたり溶解させたりする効果が低下し、均一な塗布がし難くなる傾向にあり、それにより接着性、特に湿熱環境下における接着性が低くなる傾向にある。かかる観点から、0.2モル%以上が好ましく、0.4モル%以上がより好ましい。好ましいスルホン酸塩基を有する芳香族ジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。
以上に説明した本態様における第2易接着層の共重合ポリエステルは、上記の成分に加えて、ビスフェノールAのエチレンオキサイド付加体成分を5~25モル%、さらには10~20モル%含有していることが好ましい。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。
また、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~39.9モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
好ましく用いられる共重合ポリエステル樹脂3の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂3の好ましい態様1(好ましい態様3−1)]
(A2)ナフタレンジカルボン酸成分を60~90モル%
(B2)炭素数6~12のアルキレンジカルボン酸成分を0~39.9モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%
(C2)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(F2)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様2(好ましい態様3−2)]
(A3)ナフタレンジカルボン酸成分を60~80モル%
(B3)炭素数4~10のアルキレングリコール成分を15~50モル%
(C3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D3)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E3)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F3)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様3(好ましい態様3−3)]
(A4)ナフタレンジカルボン酸成分を60~80モル%
(B4)炭素数4~10のアルキレングリコール成分を15~50モル%
(C4)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E4)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F4)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様4(好ましい態様3−4)]
(A5)ナフタレンジカルボン酸成分を60~75.9モル%
(B5)炭素数4~10のアルキレングリコール成分を15~50モル%
(C5)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D5)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E5)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F5)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
(ポリエステルフィルム)
本態様においては、ポリエステルフィルムは配向ポリエチレンテレフタレートフィルムであることが好ましく、一軸配向フィルムであっても二軸配向フィルムであってもよいが、面内方向の機械的特性や熱的特性の均一性の点から二軸配向フィルムであることが好ましい。その際、面方向平均屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)は、本態様の第2易接着層を設けた上にハードコート層などの機能層を設けた際において、光の干渉斑(色斑感)の発生を抑制することができるという観点では、1.6~1.7の範囲が好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(F1)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~39.9モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記1~3のいずれかに記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
以上に詳述した共重合ポリエステルは、従来公知のポリエステル製造技術により製造することができる。例えば2,6−ナフタレンジカルボン酸またはそのエステル形成性誘導体、イソフタル酸またはそのエステル形成性誘導体および5−ナトリウムスルホイソフタル酸またはそのエステル形成性誘導体などの酸成分を、テトラメチレングリコール、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、ビスフェノールAエチレンオキサイド付加体成分などのジオール成分と反応せしめてモノマーもしくはオリゴマーを形成し、その後真空下で重縮合せしめることによって所定の固有粘度の共重合ポリエステルとする方法で製造できる。その際、反応を促進する触媒、例えばエステル化もしくはエステル交換触媒、重縮合触媒を用いることができ、また種々の添加剤、例えば安定剤等を添加することもできる。
また、共重合ポリエステルは、塗液としてフィルムの少なくとも片面に塗布されるが、フィルムを製膜する際に塗布するインラインコーティング法が好ましいので、該共重合ポリエステルを水分散体として用いることが好ましい。水分散体とする方法は特に限定する必要はなく、従来公知の方法を採用すればよい。
(その他の成分)
本発明において第2易接着層に用いられる共重合ポリエステルは、上記以外の酸成分やジオール成分を含有していてもよく、酸成分としては、例えば、フタル酸、無水フタル酸などを例示することができ、またジオール成分としては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、キシレングリコール、ジメチロールプロパンなどを例示することができる。さらに若干量であれば、マレイン酸、イタコン酸等の不飽和酸成分、トリメリット酸、ピロメリット酸等の多官能酸成分、グリセリン、トリメチロールプロパンなどの多官能ヒドロキシ成分や、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等のポリ(アルキレンオキシド)グリコール成分を用いてもよい。本発明においては、特にジオール成分としては、上述の必須あるいは好ましいジオール成分を必須あるいは好ましい含有量で含有し、その余のジオール成分がエチレングリコール成分である態様が好ましい。
第2易接着層の共重合ポリエステルの好ましい固有粘度(IVと省略することがある。)の範囲は、0.2~0.8dl/gであり、下限はさらに0.3dl/g、特に0.4dl/gであることが好ましく、上限はさらに0.7dl/g、特に0.6dl/gであることが好ましい。ここで固有粘度は、オルトクロロフェノールを用いて35℃において測定した値である。
また、第2易接着層の共重合ポリエステルのガラス転移温度(Tg)は、ポリエチレンテレフタレートフィルム上にインラインコーティングする際の塗膜形成性(造膜性)や接着性の点から70℃以下であることが好ましく、耐ブロッキング性の点からは40℃以上、特に45℃以上であることが好ましい。
また、共重合ポリエステルの屈折率は、第2易接着層の屈折率を前述の好適な範囲として光の干渉斑(色斑感)を抑制することが容易となるので、1.58~1.65の範囲、さらに1.60~1.63の範囲、特に1.61~1.62の範囲にあることが好ましい。共重合ポリエステルのTgと屈折率を同時に満足させるためには、前述の好ましい共重合ポリエステル樹脂の態様を採用すればよい。
<架橋剤>
第2易接着層には、上述の共重合ポリエステル樹脂に加えて架橋剤を配合することが好ましい。好ましく用いられる架橋剤としては、エポキシ系架橋剤、オキサゾリン系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤などを例示することができ、これらは1種類を用いてもよく、2種類以上を併用してもよい。
エポキシ系架橋剤としては、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等が挙げられ、ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリ−1、4−ブタンジオールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としては、例えばN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサンが挙げられる。
オキサゾリン系架橋剤としては、オキサゾリン基を含有する重合体が好ましい。付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであればよく、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N、N−ジアルキルアクリルアミド、N、N−ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル、アクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたもの等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα、β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα、β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
メラミン系架橋剤としては、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に低級アルコールとしてメチルアルコール、エチルアルコール、イソプロピルアルコール等を反応させてエーテル化した化合物およびそれらの混合物が好ましい。メチロールメラミン誘導体としては、例えば、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン等が挙げられる。
イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、メタキシリレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート、1,6−ジイソシアネートヘキサン、トリレンジイソシアネートとヘキサントリオールの付加物、トリレンジイソシアネートとトリメチロールプロパンの付加物、ポリオール変性ジフェニルメタン−4、4’−ジイソシアネート、カルボジイミド変性ジフェニルメタン−4,4’−ジイソシアネート、イソホロンジイソシアネート、1,5−ナフタレンジイソシアネート、3,3’−ビトリレン−4,4’ジイソシアネート、3,3’ジメチルジフェニルメタン−4,4’−ジイソシアネート、メタフェニレンジイソシアネート等が挙げられる。
これらの架橋剤のうち特にオキサゾリン系架橋剤が、取扱い易さや塗布液のポットライフ等の点から好ましい。
第2易接着層にかかる架橋剤を含有させることによって、第2易接着層の耐溶剤性(耐膨潤性)および耐ブロッキング性を向上させることができるが、多くなりすぎると共重合ポリエステル樹脂の割合が少なくなり、第2易接着層の屈折率が低下して光の干渉斑を抑制することが難しくなるだけでなく、第2易接着層が硬くなって接着性も低下する傾向にあるので、架橋剤の含有割合は、第2易接着層の質量100質量%あたり、1~30質量%の範囲とするのが好ましく、特に5~10重量%の範囲とするのが好ましい。
これらの架橋剤のうち特にオキサゾリン系架橋剤が、取扱い易さや塗布液のポットライフ等の点から好ましい。
また、上述の共重合ポリエステル樹脂2を採用した好ましい態様においては、第2易接着層にかかる架橋剤を含有させることにより、第2易接着層の溶剤に対する膨潤率を容易に好適な値とすることができるが、多くなりすぎると膨潤率が低くなりすぎて接着性が低下する傾向にあるので、架橋剤の含有割合は、第2易接着層の質量100質量%あたり、1~30質量%の範囲とするのが好ましく、特に5~10質量%の範囲とするのが好ましい。
<架橋性付加重合体>
上述のとおり、接着性について、特に湿熱環境下における接着性(湿熱接着性)の向上が強く要求されている。
本態様は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性を目的とするにあたって、特に好適な架橋剤の態様である。
第2易接着層においては、後述する架橋性付加重合体を架橋剤として採用することにより、湿熱接着性を向上することができ、好ましい。特に、上述した共重合ポリエステル樹脂1の態様において下記架橋性付加重合体を用いる態様が、特に接着性(湿熱接着性)が高く好ましい。
本発明における第2易接着眉は、上述の共重合ポリエステル樹脂(特に好ましくは共重合ポリエステル樹脂1)に加えて、下記の架橋性付加重合体を、第2易接着層の質量を基準として1~30質量%含有することが好ましい。
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。
これにより、上述の共重合ポリエステル樹脂を採用することによる第2易接着層の割れ抑制による接着性向上と併せて、湿熱環境下における接着性に優れたものとすることができる。
付加重合性オキサゾリン基含有モノマーユニットを構成する付加重合性オキサゾリン基含有モノマーとしては、例えば2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができる。これらの1種または2種以上の混合物を使用することもできる。付加重合性を奏するための付加重合性基は、特に限定はされないが、ハードコート層等の機能層との接着性をさらに向上する観点から、また目的とする化合物が得やすい観点から、特にアクリル残基もしくはメタクリル残基が好ましく、すなわちモノマーとしては、オキサゾリン基含有アクリルモノマーまたはオキサゾリン基含有メタクリルモノマーが好ましい。中でも特に2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。
付加重合性ポリアルキレンオキシド基含有モノマーユニットを構成する付加重合性ポリアルキレンオキシド基含有モノマーとしては、任意の付加重合性基と、ポリアルキレンオキシド基とを有するものであればよく、例えば酢酸ビニル、プロピオン酸ビニル、アクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたもの等のビニルエステル類を好ましく挙げることができる。ここで、ポリアルキレンオキシド基におけるアルキレン基としては、例えば炭素数2~30のものであり、好ましくは炭素数2~20のアルキレン基であり、より好ましくは炭素数2~10であり、さらに好ましくはエチレン基、プロピレン基、ブチレン基である。また、ポリアルキレンオキシド基におけるアルキレン基の繰り返し数(平均)としては、例えば2~30であり、好ましくは4~20、より好ましくは5~15である。なお、複数種類のアルキレン基からなるポリアルキレンオキシド基である場合は、合計の繰り返し数が上記範囲となることが好ましい。
本発明における架橋性付加重合体は、上記のような付加重合性オキサゾリン基含有モノマーからなるモノマーユニットを、重合体中に、重合体の全モノマーユニット100モル%に対して10~80モル%含み、かつ上記のような付加重合性ポリアルキレンオキシド基含有モノマーからなるモノマーユニットの重合体中の含有量が、重合体の全モノマーユニット100モル%に対して5モル%以下である構成を具備するものである。このような構成とすることによって、湿熱環境下における接着性を高くすることができる。
付加重合性オキサゾリン基含有モノマーユニットの含有量は、少なすぎると、湿熱環境下における接着性に劣る。かかる観点から、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上、特に好ましくは50モル%以上である。他方、多すぎると造膜性低下の問題が生じる。かかる観点から、好ましくは75モル%以下、より好ましくは70モル%以下である。
また、付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量は、多すぎると、湿熱環境下における接着性に劣る。かかる観点から、好ましくは4モル%以下、より好ましくは3モル%以下、さらに好ましくは2モル%以下である。理想的には、付加重合性ポリアルキレシオキシド基含有モノマーユニットを含有しない態様である。
本態様において架橋性付加重合体は、上記(X1)および(Y1)の要件を満たす構成のものであればよく、その余のモノマーユニットは、本態様の目的を阻害しない範囲において、付加重合性オキサゾリン基含有モノマーおよび付加重合性ポリアルキレンオキシド基含有モノマーと付加重合可能な任意の付加重合性モノマーからなるモノマーユニットであればよい。かかる任意の付加重合性モノマーとしては、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N、N−ジアルキルアクリルアミド、N、N−ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα、β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα、β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
第2易接着層中の上記架橋性付加重合体の含有量は、第2易接着層の質量を基準として好ましくは1~30質量%であるが、含有量が少ないと、湿熱環境下における接着性が低下する傾向にあり、上記下限未満であると湿熱環境下における接着性に劣るものとなる。かかる観点から、架橋性付加重合体の含有量は、より好ましくは2質量%以上、さらに好ましくは3質量%以上である。他方、含有量が多いと、第2接着層の屈折率が低下する傾向にあり、よって上記上限を超えると干渉斑に劣るものとなる。かかる観点から、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
本態様においては、第2易接着層に、上述の架橋性付加重合体とは異なる架橋剤を、本態様の目的を阻害しない範囲において配合し、併用することができる。かかる架橋剤としては、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤などを例示することができ、これらは1種類を用いてもよく、2種類以上を併用してもよい。
上述の架橋性重合体を採用した本態様の第2易接着層は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルおよび1~30質量%の下記架橋性付加重合体を含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、および
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~40モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.光学用易接着性ポリエステルフィルムとして用いられる、上記1~3のいずれかに記載の積層ポリエステルフィルム。
<その他の成分>
本発明の第2易接着層には、本発明の目的を阻害しない範囲内で各種添加剤を配合することができる。例えばフィルムの滑り性、耐傷付き性、塗布時の濡れ性などを改善するために、粒子、ワックス類、界面活性剤、濡れ調整剤等を添加してもよく、その他帯電防止剤、紫外線吸収剤などを配合してもよい。
例えば粒子を添加することによって、フィルムの滑性、耐傷付き性を向上することができる。かかる粒子としては、有機粒子、無機粒子、有機無機複合粒子のいずれでもよいが、透明性を保持したまま耐傷付き性も向上させるという観点から、粒径の大きな粒子(大粒子)と、粒径の小さな粒子(小粒子)の両方を含有することが好ましい。
大粒子の平均粒径は、80~1000nmの範囲が適当であり、より好ましくは100~400nmの範囲、さらに好ましくは130~350nmの範囲である。これにより滑性、耐傷付き性に優れる。なお、大粒子は第2易接着層から脱落しやすいため、無機粒子表面を有機物(例えばアクリル)で被覆した有機無機複合粒子であることが好ましい。
第2易接着層における大粒子の含有量は、第2易接着層の質量に対して、好ましくは0.1~5質量%、さらに好ましくは0.1~1質量%であり、大粒子を添加する効果がより得やすい。
小粒子の平均粒径は、10nm以上、100nm未満の範囲が適当であり、より好ましくは20~80nm、さらに好ましくは30~60nmである。これにより耐ブロッキングに優れる。小粒子は、硬度の観点から、無機粒子であることが好ましく、金属酸化物粒子であることが好ましい。金属酸化物粒子としては、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子等が挙げられる。中でも、コストに優れるという観点から、シリカ粒子、チタニア粒子が好ましい。
第2易接着層における小粒子の含有量は、第2易接着層の質量に対して、好ましくは0.1~5質量%、さらに好ましくは1~3質量%であり、小粒子を添加する効果がより得やすい。
第2易接着層には、界面活性剤を含有することができる。第2易接着層を形成するための塗液に界面活性剤を含有することで、塗液の塗工性を向上させることができる。かかる界面活性剤としては、ポリエチレンテレフタレートフィルムへの塗工性を高める効果を奏するものであれば特に限定されず、例えばノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤のいずれを用いることもできる。なかでも特に発泡が少なく塗工性が良好であるという観点からノニオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、例えばポリオキシエチレンアルキルエーテルやポリオキシプロピレンアルキルエーテルおよびポリオキシエチレンプロピレン共重合体アルキルエーテルが好ましく挙げられる。
界面活性剤を用いる場合は、その添加量としては、第2易接着層の質量に対して20質量%以下で用いることが好ましい。これにより接着性の向上効果が高くなる傾向にある。かかる観点から、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、上述した塗工性の観点から添加量の下限は好ましくは1質量%であり、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。
<ポリエステルフィルムの製造方法>
本発明におけるポリエステルフィルムを製造するための方法について、一例を挙げて説明する。なお、本発明におけるポリエステルフィルムは、これに限定されるものではない。
本発明におけるポリエステルフィルムは、例えば上記ポリエステルをフィルム状に溶融押出し、キャスティングドラムで冷却固化させ未延伸フィルムとし、この未延伸フィルムをTg~(Tg+60)℃にて長手方向(製膜機械軸方向のこと。縦方向またはMDと呼称する場合がある。)に1回もしくは2回以上、合計の倍率が3~6倍になるよう延伸し、一軸延伸フィルムを形成する。ここでTgは、フィルムを構成するポリエステルのガラス転移温度である。好ましくは、ここで後述する第1易接着層を形成するための塗液を塗布する。次いでTg~(Tg+60)℃で幅方向(製膜機械軸方向と厚み方向とに垂直な方向のこと。横方向またはTDと呼称する場合がある。)に倍率が3~5倍になるように延伸し、更に必要に応じて180~230℃にて1~60秒間熱処理を行い、熱処理温度より10~20℃低い温度で幅方向に0~20%収縮させながら再熱処理を行うことにより得ることができる。
二軸配向ポリエステルフィルムの屈折率は、延伸倍率によって調整することができ、延伸倍率を高くするほど屈折率も高くすることができる。しかしながら延伸倍率の上昇に伴い熱寸法安定性が損なわれるため、延伸倍率は、長手方向および幅方向ともに3.0~4.0の範囲にすることが好ましく、より好ましくは3.3~3.8倍、さらに好ましくは3.4~3.7倍である。
本発明においては、ポリエステルフィルムの製造において、上記のような逐次二軸延伸法が採用できるが、同時二軸延伸法を採用することもできる。その際、延伸条件等は上述の条件と同様である。この際は、易接着層を形成するための塗液を塗布するのは、未延伸フィルムに塗布することになる。
本発明に使用するポリエステルフィルムの厚みは20~200μmの範囲であることが好ましい。特に静電容量式タッチセンサーに用いられる場合、所定の静電容量を確保するため、コントローラーICの特性に合わせて適宜選択することができる。
<積層体の製造方法>
本発明の積層体を製造するための方法について、一例を挙げて説明する。なお、本発明の積層体は、これに限定されるものではない。
(第1易接着層の形成方法)
第1易接着層は、第1易接着層を形成するための塗液(以下、第1易接着塗液と呼称する場合がある。)を、ポリエステルフィルムの上に塗布して、乾燥、必要に応じて硬化することにより形成することができる。好ましくは、上記ポリエステルフィルムの製造工程中において第1易接着塗液を塗布して、第1易接着層を形成する、いわゆるインラインコーティング法である。これにより、ポリエステルフィルムと第1易接着層との密着性を高くすることができる。また、第1易接着層の厚みがごく薄いとしても、高度に正確に厚みを制御することが可能となる。
第1易接着塗液は、上述した第1易接着層を構成する成分を混合し、必要に応じて溶媒で希釈して得ることができる。ここで各成分は、そのまま添加してもよいし、あらかじめ適当な溶媒に溶解したり、分散したりして添加してもよいし、適当な溶媒で希釈して添加してもよい。塗液の濃度は、塗液の粘度、塗布厚み、コーティング方式等により適宜設定することができる。
第1易接着層を形成するためのコーティング方式としては、従来公知の方法を採用することができる。例えば、ロールコート法(グラビアロールコート法等)、スプレーコート法等を挙げることができる。
(高屈折率層および低屈折率層の形成方法)
高屈折率層および低屈折率層は、湿式法、乾式法のいずれの方法でも形成することができる。適した任意の方法によって、第1易接着層の上に高屈折率層を形成したり、また、さらに高屈折率層の上に低屈折率層を形成したりして、光学調整層を形成すればよい。
湿式法では、ドクターナイフ、バーコーター、グラビアロールコーター、カーテンコーター、ナイフコーター、スピンコータ−等、スプレー法、浸漬法等によって、高屈折率層を形成するための塗液(以下、高屈折率塗液と呼称する場合がある。)や低屈折率層を形成するための塗液(以下、低屈折率塗液と呼称する場合がある。)を、層を形成したい面に塗布して塗膜を形成し、かかる塗膜を乾燥、必要に応じて熱、紫外線、電子線等により硬化することにより、高屈折率層および低屈折率層を形成することができる。かかる塗液はゾルであってもよく、それによれば金属酸化物膜が得られる。なお、乾燥条件や硬化条件は、適宜選択すればよい。塗液の溶媒にもよるが、乾燥温度としては、例えば50~100℃、好ましくは60~90℃である。硬化における紫外線や電子線の照射強度としては、例えば100~2000mJ/m2である。塗液の固形分濃度も、目的とする塗布量や用いる塗布法方によって適宜選択することができる。例えば1~70質量%である。
湿式方によれば、バインダー樹脂に金属酸化物微粒子を含有する層や、ゾル−ゲル法により金属酸化物膜からなる層や、金属酸化物膜に金属酸化物粒子、有機粒子、バインダー樹脂を含有する層を形成するのに好適である。
乾式法ではスパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法あるいは印刷法、CVD法などを適応することができる。乾式方によれば、金属からなる層や、金属酸化物膜膜からなる層を形成するのに好適である。なお、条件は、ターゲットの種類や、目的とする層の厚み等を勘案して適宜調整すればよい。
<透明導電性フィルム>
本発明においては、上記で得られた積層体の光学調整層の上に、特には低屈折率層の上に、屈折率1.9~2.3の透明導電層を形成して、透明導電性フィルムを得ることができる。
本発明において透明導電層は、上記屈折率範囲であれば特に制限は無いが、例えば結晶質の金属あるいは結晶質の金属化合物からなる層を挙げることができる。透明導電層を構成する成分としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化錫等の金属酸化物が挙げられる。これらのうち酸化インジウムを主成分とした結晶質の層であることが好ましく、特に結晶質のITO(Indium Tin Oxide)からなる層が好ましく用いられる。透明導電層が結晶質の膜であると、タッチパネルに要求される環境信頼性が向上する傾向にある。結晶化の手法は特に限定されるものではないが、例えば120~160℃、60~90分程度の熱処理加工により結晶化させることができる。
また、ポリアセチレン、ポリパラフェニレン,ポリチオフェン,ポリエチレンジオキシチオフェン、ポリピロール,ポリアニリン,ポリアセン、ポリフェニレンビニレン等の導電性高分子からなる層も採用することができる。
透明導電層の膜厚は、透明性と導電性の点から5~50nmであることが好ましい。更に好ましくは5~30nmである。透明導電層の膜厚が5nm未満では抵抗値の経時安定性に劣る傾向が有り、また50nmを超えると表面抵抗値が低下する傾向にある。また、膜の色調が強くなり、パターンが強調されやすくなる傾向にある。
本発明の透明導電性フィルムをタッチパネルに用いる場合、タッチパネルの消費電力の低減と回路処理上の必要等から、厚み10~30nmにおいて透明導電層の表面抵抗値が100~1000Ω/□、より好ましくは140~600Ω/□の範囲を示す透明導電層を用いることが好ましい。
<透明導電性フィルムの製造方法>
透明導電層は、公知の手法にて形成することが可能であり、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、真空蒸着法、パルスレーザーデポジション法等の物理的形成法(Physical Vapor Deposition(PVD))等を用いることができるが、大面積に対して均一な膜厚の金属化合物層を形成するという工業生産性に着目すると、DCマグネトロンスパッタリング法が望ましい。なお、上記物理的形成法(PVD)のほかに、化学気相堆積法(Chemical Vapor Deposition(CVD))、ゾルゲル法などの化学的形成法を用いることもできるが、膜厚制御の観点からはスパッタリング法が好ましい。
なお、本発明における透明導電層は、パターン化されている。ここでパターン化とは、規定の形状に透明導電層が存在している箇所と、存在していない箇所とが形成されている態様をいう。すなわち、本発明の積層体の一部に透明導電層が形成された態様となる。規定の形状とは、静電容量方式タッチパネルの電極として用いることができる、公知の形状であればよい。例えば細線状やタイヤモンド状のパターンがある。パターニングの方法は特に限定されるものではなく、従来公知のエッチング方法を用いることができる。
<第2易接着層の形成方法>
第2易接着層は、第2易接着層を形成するための塗液(以下、第2易接着塗液と呼称する場合がある。)を、ポリエステルフィルムの上に塗布して、乾燥、必要に応じて硬化することにより形成することができる。好ましくは、上記ポリエステルフィルムの製造工程中において第2易接着塗液を塗布して、第2易接着層を形成する、いわゆるインラインコーティング法である。これにより、ポリエステルフィルムと第2易接着層との密着性を高くすることができる。また、第2易接着層の厚みがごく薄いとしても、高度に正確に厚みを制御することが可能となる。特に好ましくは、ポリエステルフィルムの製造工程中において、第1易接着塗液を塗布した面と反対面に第2易接着塗液を塗布し、第1易接着層と第2易接着層を同時に形成する製造方法である。
第2易接着塗液は、上述した第2易接着層を構成する成分を混合し、必要に応じて溶媒で希釈して得ることができる。ここで各成分は、そのまま添加してもよいし、あらかじめ適当な溶媒に溶解したり、分散したりして添加してもよいし、適当な溶媒で希釈して添加してもよい。塗液の濃度は、塗液の粘度、塗布厚み、コーティング方式等により適宜設定することができる。
第2易接着層を形成するためのコーティング方式としては、従来公知の方法を採用することができる。例えば、ロールコート法(グラビアロールコート法等)、スプレーコート法等を挙げることができる。
第1易接着層を形成する前に、第2易接着層を形成することができる。また、目的によっては、ポリエステルフィルムの両面に第2易接着層を形成することもできる。以下は、このような場合において第2易接着層を形成するための特に好ましい製造方法について説明である。
第2易接着層を有するポリエステルフィルムは、二軸配向ポリエステルフィルムを製造する製膜工程と、第2易接着層を形成する塗布工程とを経て製造される。製膜工程は、逐次二軸延伸法であってもよいし、同時二軸延伸法であってもよいが、同時二軸延伸法であれば、製膜中にフィルム表面に傷が付き難く、光学用途に用いるフィルムを製造するのに適しているので好ましい。また、塗布工程は、フィルムの製膜工程の後(所謂オフラインコーティング法)であってもよいし、フィルムの製膜工程の中(所謂インラインコーティング法)であってもよいが、インラインコーティングであれば、厚みの薄い塗布層を均一に得ることが容易であり、また強固な塗布層が得られるため好ましい。さらに、生産性にも優れる。
第2易接着層において、共重合ポリエステル樹脂1や3を用いて、造膜性向上による易接着性向上の効果を奏するのは、配向が完了する前の未延伸フィルムまたは部分配向フィルムに塗膜を設けた後に延伸熱固定するインラインコーティング法により製造する場合である。製膜方法は、逐次二軸延伸法であってもよいし、同時二軸延伸法であってもよいが、同時二軸延伸法では、二軸を同時に延伸するために、第2易接着層を形成するための塗液を塗布後に延伸するに際しては、第2易接着層の造膜性がより厳しいものとなる。そのため、特にこのような場合において上述した共重合ポリエステル樹脂1や3を用いた態様はとりわけ有用である。
以下、ポリエステルとしてポリエチレンテレフタレートを用い、同時二軸延伸法でインラインコーティング法を採用した場合の好ましい方法について説明する。まず、十分に乾燥したポリエチレンテレフタレートをTm+10℃ないしTm+30℃(ただし、Tmはポリエチレンテレフタレートの融点)の温度で溶融し、シート状に押出し、冷却ドラムで冷却して未延伸フィルムとする。次いで、該未延伸フィルムにおいて第2易接着層を形成したい側の表面に、第2易接着層を形成するための塗液をロールコーターで塗布して、塗膜を有する未延伸フィルムをえる。このとき、得られるフィルムにおける第2易接着層の厚みが好ましくは50~100nm、さらに好ましくは70~90nmとなるように塗布する。次いでこれを、90~110℃で予熱し、同時二軸延伸機で、二軸方向に同時に、TgないしTg+70℃の温度(ただし、Tgはポリエチレンテレフタレートのガラス転移温度)で、縦方向(製膜機械軸方向、長手方向またはMD)に好ましくは2.5~5.0倍、さらに好ましくは3.0~4.0倍、横方向(製膜機械軸方向に垂直な方向、幅方向またはTD)に好ましくは2.5~5.0倍、さらに好ましくは3.0~4.0倍で延伸した後に、(Tg+60℃)~Tmの温度で熱固定し、好ましくは熱収縮率を調整するために熱弛緩処理することによって、配向ポリエチレンテレフタレートフィルムの上に第2易接着層を有する積層フィルムを得ることができる。なお、かかる延伸温度は、第2易接着層における共重合ポリエステルのガラス転移温度よりも45℃以上高い温度であることが好ましく、より好ましくは50℃以上、さらに好ましくは55℃以上高い温度であることである。これにより第2易接着層の造膜性がより優れたものとなり、接着性の向上効果を高くすることができる。また、第2易接着層のガラス転移温度よりも40℃以上高い温度であることが好ましく、より好ましくは45℃以上、さらに好ましくは53℃以上高い温度であることであり、これによっても第2易接着層の造膜性がより優れ、接着性の向上効果を高くすることができる。次いで熱固定は、例えば、ポリエチレンテレフタレートフィルムについては210~240℃の範囲内の温度で、1~60秒の時間熱固定処理するのが好ましい。また、塗膜は、上記工程でかかる熱により乾燥、および必要に応じて硬化し、第2易接着層となる。
なお、第2易接着層を形成するための塗液は、第2易接着層を構成する各成分を混合して、粘度や塗布厚み等を考慮して適度に希釈して調整する。希釈に用いる溶媒としては、水が好ましく、すなわち塗液が水系であることが好ましい。塗液の固形分濃度は5~20質量%とすることが好ましく、良好な塗布外観を得ることができる。
<積層フィルムの特性>
(ヘーズ)
本発明の積層フィルムは、JIS規格K7136に従って測定したヘーズ値が0%以上、1.0%以下であることが好ましく、より好ましくは0.1%以上、0.8%以下、特に好ましくは0.1%以上、0.5%以下である。ヘーズは光学用途に用いる場合の重要な評価指標であり、例えばディスプレイに用いる場合には、ヘーズはディスプレイの視認性を評価する指標の1つで、ヘーズが1.0%を越える場合には、フィルムの透明性が低下してディスプレイの表示画面が白っぽく見えるため、コントラストが低下し視認性が低下することがある。ヘーズをかかる範囲にするためには、ポリエステルフィルムおよび易接着層において、粒子を用いないか、用いる場合でも前述の範囲内の径および量にとどめ、また易接着層を構成する高分子バインダーとして前述の好ましい共重合ポリエステル樹脂を用いればよい。 The laminated body of this invention is the structure which laminated | stacked the 1st easily bonding layer and the optical adjustment layer in this order on the at least single side | surface of the polyester film.
Moreover, the transparent conductive film of this invention is a structure which has the transparent conductive layer further patterned on the optical adjustment layer in the said laminated body.
Hereinafter, each component constituting the present invention will be described.
<Polyester film>
(polyester)
In the present invention, the polyester constituting the polyester film is an aromatic dibasic acid or an ester-forming derivative thereof (which is an acid component in the polyester) and a diol or an ester-forming derivative thereof (which is a glycol component in the polyester). Is a linear saturated polyester synthesized from Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. Further, these copolymers, blends thereof, or blends of these with a small proportion of other resins may be used. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable because of a good balance between mechanical properties and optical properties. In particular, polyethylene terephthalate has a refractive index after biaxial stretching (average refractive index in the plane direction) close to 1.65, and thus the average refractive index in the plane direction of the polyester film is easily in the range of 1.60 to 1.70. The refractive index adjustment with the optical adjustment layer in the invention is easy to perform, and thereby a better bone appearance suppressing effect can be obtained, which is preferable.
The polyester may be a homopolymer, but the copolymer component (copolymeric acid component or copolymer glycol component) does not impair its properties, for example, 5 mol% or less with respect to 100 mol% of the total acid component, Preferably, it may be a copolymer copolymerized at a ratio of 3 mol% or less. Examples of the copolymer acid component include aromatic dicarboxylic acid components such as a phthalic acid component, an isophthalic acid component, and a 2,6-naphthalenedicarboxylic acid component, an adipic acid component, an azelaic acid component, a sebacic acid component, and 1,10-decane. An aliphatic dicarboxylic acid component such as a dicarboxylic acid component can be exemplified, and examples of the copolymer glycol component include an aliphatic diol component such as a 1,4-butanediol component, a 1,6-hexanediol component, and a neopentyl glycol component, An alicyclic diol component such as 1,4-cyclohexanedimethanol component can be exemplified. These can also be used together.
Further, as another copolymer component, a compound having two ester-forming functional groups in the molecule other than the above can be used. Examples of such compounds include oxalic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid. , Components derived from dicarboxylic acids such as diphenyl ether dicarboxylic acid, components derived from oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid, or propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene Glycol, cyclohexanemethylene glycol, neopentyl glycol, ethylene oxide adduct of bisphenolsulfone, ethylene oxide adduct of bisphenol A, diethylene glycol, poly A component derived from a dihydric alcohol such as ethylene oxide glycol can be preferably used. These compounds may be used alone or in combination of two or more. Of these, the acid component is preferably a component derived from 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or p-oxybenzoic acid, and the glycol component is trimethylene glycol. , A component derived from an ethylene oxide adduct of hexamethylene glycol neopentyl glycol and bisphenol sulfone.
In the present invention, the polyester constituting the polyester film is particularly preferably polyethylene terephthalate. Such polyethylene terephthalate may have a copolymer component as described above, but preferably has an ethylene terephthalate unit of 90 mol% or more, preferably 95% or more, more preferably 97% or more. Particularly preferred is homopolyethylene terephthalate. As the copolymer component, isophthalic acid is preferred.
The polyester in the present invention is a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol is a conventionally known transesterification catalyst. Obtained by a method in which a polymerization reaction is performed in the presence of a polymerization catalyst after reacting with one or more of compounds containing sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. Can do. As a polymerization catalyst, antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.
The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.
The intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, and more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. If it is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.
(Polyester film)
The polyester film in the present invention preferably has an average refractive index in the plane direction of 1.60 to 1.70. Thereby, it is more excellent in a bone appearance suppression effect by the synergistic effect with the other layer which comprises the laminated body of this invention. Here, the average refractive index in the plane direction is an average refractive index between a refractive index in an arbitrary direction and a refractive index in a direction perpendicular to the refractive index in the film plane, preferably the maximum refractive index in the film plane and the maximum The average refractive index of the refractive index in the direction perpendicular to the direction indicating the refractive index is shown. If the average refractive index in the plane direction is too low or too high, the effect of suppressing bone appearance is reduced. From this viewpoint, the range of the average refractive index in the plane direction of the polyester film is more preferably 1.62 or more, further preferably 1.63 or more, particularly preferably 1.64 or more, and most preferably 1.65 or more. Moreover, 1.68 or less is more preferable, 1.67 or less is further more preferable, and 1.66 or less is especially preferable.
In addition, when the average refractive index in the plane direction is in this range, as described later, when a functional layer such as a hard coat layer is provided on the surface opposite to the optical adjustment layer of the polyester film, the second easy-adhesion layer is provided. When a layer having a relatively low refractive index such as a hard coat layer is formed thereon, the occurrence of interference spots can be suppressed. In terms of suppressing such interference spots, the average refractive index in the plane direction is preferably 1.63 to 1.68, more preferably 1.64 to 1.67, and still more preferably 1.65 to 1.66. Yes, if it is too high or too low outside this range, it is difficult to suppress the occurrence of interference spots.
Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the average refractive index in the plane direction satisfies the above requirements. From the viewpoint, a biaxially oriented film is preferable.
(Polyethylene terephthalate film)
In order to achieve such an average refractive index in the plane direction, it is preferable to employ, for example, the above-described polyethylene terephthalate (PET) as the polyester constituting the film. Moreover, it is effective to adopt the conditions described later as the stretching conditions in order to achieve the average refractive index in the plane direction.
In the present invention, an oriented polyethylene terephthalate film is preferably used. The polyester constituting the oriented polyethylene terephthalate film is a polyester having an ethylene terephthalate unit of 95 mol% or more, preferably 98 mol% or more, based on all repeating units, and particularly preferably a homopolyester not using a copolymer component in combination. It is. In the case of copolymerized polyethylene terephthalate, for example, a dicarboxylic acid component such as isophthalic acid or naphthalenedicarboxylic acid or a glycol component such as diethylene glycol, butanediol, or cyclohexanediol can be used as the copolymerization component.
(Other components of polyester film)
The polyester film can contain a slippery filler such as inert particles in order to ensure transportability. On the other hand, for example, a capacitive touch sensor is formed by laminating a plurality of transparent films, and the haze of the film is integrated. Therefore, it is desired that the internal haze of each constituent film is as low as possible. Thus, from the viewpoint of maintaining high transparency in optical applications, the polyester film preferably contains no filler or substantially no filler (for example, 10 ppm or less, preferably 1 ppm or less). However, a small amount of filler may be included as a lubricant in order to prevent minute scratches in the manufacturing process and improve the film winding property. As the filler, for example, inert particles having an average particle diameter of 0.01 to 2 μm, further 0.05 to 1 μm, and particularly 0.1 to 0.3 μm may be used. The blending ratio is preferably 100 ppm or less, for example, based on the mass of the layer to be blended, and may be 10 ppm or less, particularly 1 ppm or less, which is a range that does not substantially contain.
The polyester film can also contain a colorant, an antistatic agent, an antioxidant, an organic lubricant, and a catalyst.
<First easy adhesive layer>
In the present invention, the adhesion between the polyester film and the optical adjustment layer can be enhanced by the first easy-adhesion layer. In the present invention, a polyester film having a first easy-adhesion layer and / or a second easy-adhesion layer described later may be referred to as a laminated polyester film.
(Refractive index of the first easy-adhesion layer)
In the present invention, it is important that the refractive index of the first easy-adhesion layer is in the range of 1.60 to 1.65. Thereby, it is excellent in the bone appearance suppression effect by the synergistic effect with the other layer which comprises the laminated body of this invention. If the refractive index of the first easy-adhesion layer is too low, the optical interference becomes too large, so that the bone appearance suppressing effect cannot be obtained. Ideally, the polyester film, the first easy-adhesion layer, and the optical adjustment layer (or the high refractive index layer in the optical adjustment layer) preferably all have the same refractive index. When trying to achieve a refractive index exceeding, it tends to be difficult to increase the transparency of the first easy-adhesion layer. Considering these balances, the refractive index of the first easy-adhesion layer is preferably 1.61 to 1.64, more preferably 1.62 to 1.64.
The difference between the refractive index of the first easy-adhesion layer and the refractive index of the high refractive index layer described later is preferably 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased. The refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
Moreover, it is preferable that the difference of the refractive index of a 1st easily bonding layer and the surface direction average refractive index of a polyester film is 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased. The refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
(The thickness of the first easy-adhesion layer)
The thickness of the first easy-adhesion layer is 8 to 30 nm. Thereby, it is excellent in adhesiveness. Moreover, while making the refractive index of a 1st easily bonding layer into the range mentioned above, and making thickness into the said range, there exists an outstanding bone-inhibition suppression effect by interaction with the other layer in the laminated body of this invention. be able to.
The optical interference of the thin film depends on the product of the refractive index and the optical path length (film thickness). As a result of conducting further detailed studies on this, the present inventors have found that the optical adjustment layer or the high refractive index layer in the optical adjustment layer is in the refractive index range described later, and the first easy-adhesion layer is in the refractive index range. In some cases, it has been found that by controlling the film thickness of the first easy-adhesion layer within a very narrow range of 8 to 30 nm, excellent adhesiveness can be obtained while exhibiting an excellent bone appearance suppressing effect. If the thickness of the first easy-adhesion layer is too thick, the effect of suppressing bone appearance is reduced. On the other hand, if it is too thin, the adhesiveness decreases. From this viewpoint, the thickness of the first easy-adhesion layer is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 18 nm or more, and preferably 25 nm or less, more preferably 22 nm or less.
(Polyester resin of the first easy-adhesion layer)
In the first easy-adhesion layer in the present invention, the polyester resin occupies 50% by mass or more based on the mass of the first easy-adhesion layer. Thereby, it is excellent in adhesiveness. From this viewpoint, the content of the polyester resin is preferably 70% by mass or more, and more preferably 80% by mass or more. The upper limit of the content of the polyester resin in the first easy-adhesion layer is not particularly limited, but the polyester resin occupies the remaining part other than the components that can be preferably contained in the first easy-adhesion layer, which will be described later. What is necessary is just to be an aspect.
In this invention, although a polyester resin is used as a binder component which forms a 1st easily bonding layer, it is preferable that the glass transition temperature (Tg) of this polyester resin is 120 degrees C or less. Thereby, it is further excellent in adhesiveness. Moreover, it can be set as the 1st easily bonding layer excellent in extending | stretching followability (film-forming property), smooth and excellent in transparency. From this viewpoint, Tg is more preferably 100 ° C. or less, further preferably 80 ° C. or less, and particularly preferably 75 ° C. or less. Moreover, it is preferable that the minimum of Tg of a polyester resin is 40 degreeC, and this is further excellent in adhesiveness, and is excellent in blocking resistance. From this viewpoint, Tg is more preferably 50 ° C. or higher, and particularly preferably 60 ° C. or higher.
As this polyester resin, the polyester or copolymer polyester which consists of an acid component and a glycol component as shown below can be mentioned. In the present invention, a copolyester is preferable from the viewpoint of adhesiveness. In addition, although the monomer component which comprises the polyester concerning the following is illustrated, it is not limited to these.
Acid components include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, dimer acid, Examples include components derived from 5-sodium sulfoisophthalic acid and the like. It is preferable to use two or more of these acid components as a copolyester. Further, an unsaturated polybasic acid component such as maleic acid, itaconic acid and the like, and hydroxycarboxylic acid such as p-hydroxybenzoic acid, etc., can also be used in a slight amount. In the present invention, 2,6-naphthalenedicarboxylic acid is preferably used from the viewpoint of achieving a balance between the refractive index and the coating film strength. As content of 2, 6- naphthalene dicarboxylic acid in a polyester resin, 50 mol% or more is preferable with respect to 100 mol% of all the acid components, and 60 mol% or more is more preferable. Moreover, 90 mol% or less is preferable, 80 mol% or less is more preferable, and 70 mol% or less is more preferable. When there is too much content of this component, it exists in the tendency for the film forming property of a 1st easily bonding layer to fall. On the other hand, if the amount is too small, the effect of improving the refractive index is small, and the effect of improving the mechanical properties is small.
Examples of the glycol component include ethylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane, poly (ethylene oxide) glycol, poly The component derived from (tetramethylene oxide) glycol etc. can be mentioned. It is preferable to use two or more of these glycol components as a copolyester. In the present invention, in order to effectively increase the refractive index of the first easy-adhesion layer, a fluorene structure represented by the following formula (I) such as bis (4-hydroxyethoxyphenyl) fluorene component is preferably used. A compound having a conjugated system, such as a glycol component, is preferably used as the copolymer component.
(R 1 Is an alkylene group having 2 to 4 carbon atoms, R 2 , R 3 , R 4 And R 5 Are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, which may be the same or different. )
As content of the glycol component which has a fluorene structure in a polyester resin, 2 mol% or more is preferable with respect to 100 mol% of all the acid components, 4 mol% or more is more preferable, and 6 mol% or more is further more preferable. Moreover, 10 mol% or less is preferable and 8 mol% or less is more preferable. When there is too much content of this component, it exists in the tendency for the film forming property of a 1st easily bonding layer to fall. On the other hand, if the amount is too small, the effect of improving the refractive index is small.
In the present invention, among these components, a 2,6-naphthalenedicarboxylic acid component is adopted as the acid component, and at the same time, a glycol component having a fluorene structure, preferably a bis (4-hydroxyethoxyphenyl) fluorene component, is used as the glycol component. The embodiment adopted is preferred. Thereby, it becomes easier to set the refractive index of the first easy-adhesion layer within the range defined by the present invention, and at the same time, the mechanical properties are excellent, and the effect of improving adhesiveness can be enhanced. An embodiment in which these components are contained in the polyester resin at the above-described contents is preferable.
In addition, as a polyester resin constituting the first easy-adhesion layer in the present invention based on the above idea, a copolymer polyester resin constituting a second easy-adhesion layer described later can be employed. By doing so, since the same effect as the effect which employ | adopts the copolyester resin which comprises this 2nd easily bonding layer can be provided to a 1st easily bonding layer, it is preferable.
A particularly preferred embodiment of the polyester resin constituting the first easy-adhesion layer in the present invention is that the total acid component is 100 mol%, the acid component is 2,6-naphthalenedicarboxylic acid 60 to 70 mol%, and isophthalic acid 25 ~ 30 mol%, 5-sodium sulfoisophthalic acid is 5-10 mol%, glycol component is 10-20 mol% bisphenol A, ethylene glycol is 35-60 mol%, trimethylene glycol is 25-35 mol% %, And bis (4-hydroxyethoxyphenyl) fluorene consists of 5 to 10 mol%.
The polyester resin is preferably a polyester that is soluble or dispersible in water (which may contain some organic solvent), and it is easy to produce a coating liquid described later.
(Metal oxide particles)
In order to control the refractive index of the first easy-adhesion layer in the present invention, metal oxide particles having a refractive index of 1.7 to 3.0, preferably 1.8 to 2.2 may be added. preferable. As this metal oxide particle, TiO 2 (Refractive index 2.5), ZrO 2 (Refractive index 2.4), SnO 2 (Refractive index 2.0), Sb 2 O 3 (Refractive index 2.0) is exemplified, and in the present invention, it is preferable to use at least one metal oxide particle selected from the group consisting of these.
In order to achieve a high degree of transparency, in order to avoid optical scattering by the metal oxide particles in the first easy-adhesion layer, the metal oxide particles are colorless and transparent and have a particle size sufficiently small with respect to the wavelength of light. (For example, 400 nm or less, preferably 100 nm or less) is preferable. A higher refractive index is preferable because the refractive index of the first easy-adhesion layer can be increased with a small amount, but high refractive index metal oxide particles having a refractive index exceeding 3.0 tend to be inferior in transparency. In addition, since there are many special rare metals, the manufacturing cost tends to increase.
From such a viewpoint, as the metal oxide particles of the first easy-adhesion layer in the present invention, particles made of titanium oxide and zirconium oxide are more preferable. From the viewpoint of specific gravity, titanium oxide particles having a high refractive index improving effect in a small amount. Particularly preferred.
The addition amount of the metal oxide particles is preferably 2% by mass or more and 20% by mass or less based on the mass of the first easy-adhesion layer, and the refractive index can be efficiently maintained while maintaining transparency by making such a range. Can be high. If the amount is too large, the transparency tends to decrease. In addition, particle dropping or the like tends to occur, equipment wear occurs during coating, and stable coating tends to be difficult. On the other hand, if the amount is too small, the effect of improving the refractive index is lowered. From this viewpoint, it is more preferably 3% by mass or more, further 4% by mass or more, particularly preferably 5% by mass or more, more preferably 15% by mass or less, still more preferably 10% by mass or less, and further preferably 8% by mass or less. Is particularly preferred.
In order to increase the refractive index of the first easy-adhesion layer, as described above, means such as a method of adding a high refractive index filler such as metal oxide particles or a method of increasing the refractive index of a polyester resin as a binder component However, the use of metal oxide particles has a problem of equipment wear and is relatively difficult to add in a large amount. On the other hand, when trying to increase the refractive index of the binder component, since the glass transition temperature tends to increase at the same time, the coating film is cracked in the stretching process and the film haze is increased because it cannot follow the deformation during stretching. Such problems are likely to occur. Therefore, from these restrictions, it is necessary to appropriately balance the constitution and refractive index of the binder component (polyester resin) and the refractive index and addition rate of the metal oxide particles. The aspect which employ | adopts simultaneously is the most preferable.
(Lubricant particles)
It is preferable that the 1st easily bonding layer in this invention contains the lubricant particle for providing lubricity other than the metal oxide particle of the said specific refractive index range. By containing the lubricant particles, it is possible to impart lubricity and scratch resistance to the film.
Examples of such lubricant particles include inorganic lubricant particles such as calcium carbonate, magnesium carbonate, calcium oxide, silicon oxide, sodium silicate, aluminum hydroxide, and carbon black, acrylic cross-linked polymers, styrene cross-linked polymers, and silicones. Examples thereof include organic lubricant particles such as resin, fluororesin, benzoguanamine resin, phenol resin, and nylon resin. These may be used alone or in combination of two or more.
The average particle diameter of the lubricant particles is preferably 10 to 180 nm, more preferably 20 to 150 nm. The thickness of the first easy-adhesion layer of the present invention is very thin with respect to 80 to 120 nm which is the thickness of the easy-adhesion layer in a normal optical film. If it is smaller than 10 nm, sufficient lubricity and scratch resistance may not be obtained.
The content of the lubricant particles is preferably 0.1 to 10% by mass per 100% by mass of the first easy-adhesion layer. If it is less than 0.1% by mass, sufficient lubricity and scratch resistance cannot be obtained, and if it exceeds 10% by mass, the surface haze tends to increase, and the optical properties tend to deteriorate.
(Crosslinking agent)
In the present invention, it is preferable to add a crosslinking agent for the purpose of improving the coating strength of the first easy-adhesion layer and for enhancing the effect of improving the adhesiveness.
The crosslinking agent is preferably a compound having an oxazoline group and a polyalkylene oxide chain, more preferably an acrylic resin having an oxazoline group and a polyalkylene oxide chain, from the viewpoint of improving the coating film strength and further improving the adhesiveness. Use. An acrylic resin is preferable because it can easily copolymerize many kinds of functional groups. The acrylic resin having an oxazoline group and a polyalkylene oxide chain is preferably an acrylic resin that is soluble or dispersible in water (may contain some organic solvent). In addition, since the acrylic resin has a low refractive index, the addition of such components leads to a decrease in the refractive index of the first easy-adhesion layer, and therefore the amount of addition must be sufficiently careful.
Examples of the acrylic resin having an oxazoline group and a polyalkylene oxide chain include those containing the following monomers as components.
Examples of the monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline and 2-isopropenyl-5-methyl-2-oxazoline. These may be used alone or in a mixture of two or more. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. By using an acrylic resin having an oxazoline group, the cohesive force of the first easy-adhesion layer is improved, and the adhesiveness with the optical adjustment layer or the high refractive index layer becomes stronger. Further, it is possible to impart scratch resistance to the metal roll in the film forming process or in the processing process of the optical adjustment layer or the high refractive index layer. From the viewpoint of such effects, the component is preferably contained in the acrylic resin in an amount of 10 to 50 mol%, more preferably 20 to 40 mol%, and even more preferably 25 to 35 mol%. .
Examples of the monomer having a polyalkylene oxide chain include those obtained by adding polyalkylene oxide to an ester part of acrylic acid or methacrylic acid. Examples of the polyalkylene oxide chain include polymethylene oxide, polyethylene oxide, polypropylene oxide, and polybutylene oxide.
By using an acrylic resin having a polyalkylene oxide chain, the compatibility between the polyester resin and the acrylic resin in the first easy-adhesion layer is improved as compared with an acrylic resin not containing a polyalkylene oxide chain. The transparency of the layer can be improved. From such a viewpoint, it is preferable to contain 2 to 20 mol% of this component in the acrylic resin, and more preferably 5 to 15 mol%.
The repeating unit of the polyalkylene oxide chain is preferably 3 to 100, more preferably 4 to 50, still more preferably 5 to 20. If the number of repeating units of the polyalkylene oxide chain is too small, the compatibility between the polyester resin and the acrylic resin tends to be poor, and the effect of improving the transparency of the first easy-adhesion layer tends to be low. On the other hand, if it is too large, the heat-and-moisture resistance of the first easy-adhesion layer tends to be low, and particularly the adhesiveness to the optical adjustment layer or the high refractive index layer tends to be low under high humidity and high temperature.
As the remaining monomer constituting the acrylic resin as the crosslinking agent, alkyl acrylate (preferably methyl acrylate or ethyl acrylate) or alkyl methacrylate (preferably methyl methacrylate or ethyl methacrylate) may be used.
The content of the cross-linking agent in the first easy-adhesive layer is preferably 1 to 20% by mass, more preferably 2 to 15% with respect to 100% by mass of the total amount of the polyester resin and the cross-linking agent in the first easy-adhesive layer. % By mass, more preferably 8 to 15% by mass.
In this invention, the crosslinkable addition polymer which is a preferable crosslinking agent in the 2nd easily bonding layer mentioned later can be used as a crosslinking agent of a 1st easily bonding layer. Thereby, the effect similar to the effect which employ | adopts a crosslinkable addition polymer in a 2nd easily bonding layer can be provided to a 1st easily bonding layer.
<Optical adjustment layer>
An optical adjustment layer is provided on the first easy-adhesion layer.
The optical adjustment layer is a layer that has a function of suppressing the appearance of bone by matching the light reflection and transmission characteristics of the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is not present due to the interference effect. The optical adjustment layer is usually composed of at least one high refractive index layer and at least one low refractive index layer, which are appropriately combined. Each of the high refractive index layer and the low refractive index layer may have a plurality of layers. Usually, it becomes a lamination order of a polyester film, a high refractive index layer, and a low refractive index layer. As the optical adjustment layer in the present invention, a high refractive index layer / low refractive index layer comprising a high refractive index layer on the side close to the polyester film and a low refractive index layer on the opposite side of the polyester film of the high refractive index layer. An embodiment having a two-layer structure is preferable.
(High refractive index layer)
The high refractive index layer is a layer having a refractive index of 1.60 to 1.80. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the effect of suppressing bone appearance tends to be low. From such a viewpoint, the refractive index of the high refractive index layer is preferably 1.60 or more, more preferably 1.62 or more, still more preferably 1.64 or more, and preferably 1.75 or less, more preferably 1.70 or less, more preferably 1.68 or less, particularly preferably 1.66 or less.
The high refractive index layer is preferably a layer comprising a metal and / or metal oxide and optionally a binder resin. Especially, it is preferable that it is a layer which consists of a metal oxide and binder resin. An example of such a metal oxide is a metal oxide film obtained by a sol-gel method. In this case, the metal oxide film can be a high refractive index layer. The metal oxide film may optionally contain a binder resin. Examples of the metal oxide include metal oxide fine particles. In this case, the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
In the above, the type of metal oxide forming the film and fine particles in the high refractive index layer is not particularly limited as long as the above refractive index is satisfied, but the strength of the obtained film can be increased. From the viewpoint of being able to have an appropriate refractive index, it should be at least one selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, indium-containing tin oxide, antimony-containing tin oxide and zinc antimonate. preferable. Among these, titanium oxide, antimony-containing tin oxide, and zirconium oxide are particularly preferable from the viewpoints of particularly high film strength and excellent dispersibility in the case of fine particles. These metal oxides may be used alone or in combination of two or more. That is, the metal oxide film which consists of 2 or more types of metal oxides may be sufficient, and the aspect containing 2 or more types of metal oxide fine particles may be sufficient. In the embodiment in which metal oxide fine particles are contained in the metal oxide film, the metal oxide forming the film and the metal oxide forming the fine particles may be the same or different. Good.
Examples of the binder resin in the high refractive index layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a high refractive index may be preferably used. From the viewpoint of film strength, the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like. Adhesiveness can be further improved by the binder resin.
A particularly preferable embodiment of the high refractive index layer in the present invention is an embodiment in which a binder resin is contained in the metal oxide film, and an organosilane condensate is particularly preferably contained in the titanium oxide film. It is an aspect.
Commercially available products can also be used as metal oxides preferably used for the high refractive index layer. For example, zirconium oxide: HXU-110JC (manufactured by Sumitomo Osaka Cement Co., Ltd.), titanium oxide: nanotech Ti-Tolu (Ci Kasei), zinc oxide: nanotech ZnO-Xylene (Ci Kasei), cerium oxide: Nidral (Taki Chemical) Indium-containing tin oxide: products manufactured by Mitsubishi Materials, antimony-containing tin oxide: SN-100D (manufactured by Ishihara Sangyo Co., Ltd.), zinc antimonate: Cellnax series (manufactured by Nissan Chemical Industries, Ltd.), etc. .
(Low refractive index layer)
The low refractive index layer is a layer having a refractive index of 1.40 to 1.60. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the bone appearance suppression effect tends to be low. From this viewpoint, the refractive index of the low refractive index layer is preferably 1.42 or more, more preferably 1.43 or more, further preferably 1.44 or more, and preferably 1.55 or less, more preferably 1.50 or less, more preferably 1.48 or less.
The low refractive index layer is not particularly limited as long as it satisfies the above refractive index, and may be a layer made of a binder resin, a layer made of a metal oxide, or a binder resin and a metal. It may be a layer made of an oxide. In addition, organic particles having a low refractive index can be contained. An example of the metal oxide is a metal oxide film obtained by a sol-gel method. In this case, the metal oxide film can be a low refractive index layer. The metal oxide film may optionally contain a binder resin. Examples of the metal oxide include metal oxide fine particles. In this case, the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
In the above, the kind of metal oxide forming the film and fine particles in the low refractive index layer is particularly preferably silica from the viewpoint of forming a layer having a suitable low refractive index. Moreover, a more preferable low refractive index can be obtained by containing organic silane-based silicon compounds and low refractive index organic particles such as fluorine compounds as organic particles. Further, the refractive index can be lowered by forming voids by including a void forming agent in the layer.
Examples of the binder resin in the low refractive index layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a low refractive index may be preferably used. From the viewpoint of film strength, the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like.
A particularly preferable embodiment of the low refractive index layer in the present invention is an embodiment comprising a metal oxide film, and a silica film formed by a sol-gel method is particularly preferable.
In the present invention, by providing the high refractive index layer and the low refractive index layer as described above in the above-described arrangement, bone appearance is suppressed due to a synergistic effect with the other layers in the present invention.
In addition, when the refractive index of the high refractive index layer is within the above range, the thickness is preferably 50 to 250 nm, more preferably 100 to 200 nm, and even more preferably 125 to 175 nm. Can be high. In addition, when the refractive index of the low refractive index layer is within the above range, the thickness is preferably 5 to 50 nm, more preferably 10 to 45 nm, and even more preferably 20 to 40 nm. Can be high. Furthermore, the improvement effect of bone appearance suppression can be further heightened by making the thickness of each layer into the said preferable range simultaneously.
<Other layers>
The laminated body of this invention may have another layer in the range which does not inhibit the objective of this invention. For example, you may have the adhesion layer for bonding with another optical member in the surface on the opposite side to the optical adjustment layer of a polyester film. Further, a smoothing layer such as a hard coat layer may be provided on the first easy-adhesion layer, and an optical adjustment layer may be provided thereon. In this case, the smoothing layer exhibits suitable adhesiveness for both the first easy-adhesion layer and the optical adjustment layer (or the high refractive index layer) in the present invention. By doing so, the adhesiveness of a polyester film and an optical adjustment layer (or high refractive index layer) can be ensured as a result.
<Second easy adhesion layer>
In this invention, it can have a 2nd easily bonding layer in the surface on the opposite side to the 1st easily bonding layer of a polyester film. The second easy-adhesion layer is a layer for improving the adhesion between the polyester film and the functional layer when a functional layer such as a hard coat layer is laminated.
The second easy-adhesion layer is 70% by mass or more based on the weight of the second easy-adhesion layer, preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more. It is a layer to contain. When the ratio of the copolyester resin is 70% by mass or more, the adhesion with a functional layer such as a hard coat layer is improved, and the refractive index of the second easy-adhesion layer can be within an appropriate range. Therefore, light interference spots can be suppressed. Furthermore, the glass transition temperature (Tg) of the second easy-adhesive layer is also in an appropriate range, and the film-forming property is improved, and the cracks of the second easy-adhesive layer are reduced, and the deterioration of the adhesiveness due to such cracks is suppressed. It can be excellent in adhesion.
The average refractive index in the plane direction of the oriented polyethylene terephthalate film is usually about 1.66, and the refractive index of the acrylic resin hard coat layer usually used as the functional layer is about 1.52. The refractive index is preferably in the range of 1.57 to 1.62, more preferably in the range of 1.58 to 1.61, and particularly preferably in the range of 1.59 to 1.60. Such a refractive index can be easily achieved by employing a copolyester resin described later.
The thickness of the second easy-adhesion layer is preferably 50 to 100 nm, more preferably 70 to 90 nm. By setting the thickness within this range, when a functional layer such as an acrylic hard coat layer is provided thereon, the effect of suppressing light interference spots is further increased, which is preferable.
(Copolymerized polyester resin for the second easy adhesion layer)
The copolymer polyester resin used for the second easy-adhesion layer can be selected from the modes described below depending on the intended effect. Such a copolyester resin can also be used as the polyester resin of the first easy-adhesion layer as long as the purpose is not hindered, whereby the effect of adopting such a copolyester resin is applied to the first easy-adhesion layer. Can be granted. Hereinafter, the first easy-adhesion layer and the second easy-adhesion layer may be collectively referred to as an easy-adhesion layer.
<Preferred embodiment 1 of copolymerized polyester resin (copolymerized polyester resin 1)>
In forming a coating layer such as the first and second easy-adhesion layers, a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied. Often used. However, according to our study, when applied on a polyethylene terephthalate film, it is presumed to be due to the cracking of the coating layer that occurs in the stretching process, but there may be cases where further improvement in adhesion is desired. found.
This aspect is a particularly suitable copolymer polyester resin for the purpose of excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots (color spots) after the formation of the functional layer. It is an aspect.
The copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester. A copolymer comprising 12 alkylene dicarboxylic acid components and 4 to 10 alkylene glycol components in a total amount of 15 to 50 mol%, and a glycol component having a fluorene structure represented by the formula (I) of 5 mol% or more and less than 20 mol%. Polyester.
When the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set to the above-mentioned preferable range, Interference spots can be suppressed. Moreover, the swelling resistance of the second easily adhesive layer with respect to the solvent is also good. When the proportion of the naphthalenedicarboxylic acid component is less than the lower limit, the refractive index of the copolyester is lowered, and as a result, the refractive index of the second easy-adhesive layer is lowered and the effect of suppressing light interference spots is insufficient. Become. In addition, the swelling with organic solvents increases (solvent resistance deteriorates), so it swells when it comes into contact with the organic solvent in the coating liquid for functional layers such as the hard coat layer, resulting from the uneven thickness of the second easy-adhesive layer This is not preferable because it causes not only interference spots to occur but also blocking resistance. On the other hand, since the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can. However, at the same time, the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high. It tends to decrease. Accordingly, the preferable lower limit of the content of the naphthalenedicarboxylic acid component is 65 mol%, and the preferable upper limit is 85 mol%, more preferably 80 mol%, and particularly preferably 70 mol%. Here, examples of the naphthalenedicarboxylic acid component include 2,7-naphthalenedicarboxylic acid component, 2,6-naphthalenedicarboxylic acid component, 1,4-naphthalenedicarboxylic acid component, and the like, among which 2,6-naphthalenedicarboxylic acid component. Ingredients are preferred.
Further, based on the total acid component of the copolyester, it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. Preferably, the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is contained in an amount of 0 to 40 mol% and the alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the alkylene dicarboxylic acid component and the alkylene glycol component are preferably contained. The total content is 15 to 50 mol%. For this reason, Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low. As a result, even the in-line coating method often adopted when forming the second easy-adhesion layer on the oriented polyethylene terephthalate film is excellent in the film-forming property of the second easy-adhesion layer. 2 It is possible to suppress the occurrence of cracking (cracking) in the easy-adhesion layer and to obtain a film having excellent adhesiveness. In particular, when the simultaneous biaxial stretching method is adopted for the production of the oriented polyester film and the in-line coating method is adopted for the formation of the second easy-adhesion layer, the preheating / drying temperature tends to be relatively low. The effect to employ | adopt is large especially preferable. Moreover, it is excellent also in blocking resistance.
If the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is less than the lower limit, the Tg of the copolyester will not be lowered sufficiently, resulting in insufficient adhesion. On the other hand, when the above-mentioned alkylene dicarboxylic acid component or alkylene glycol component exceeds the upper limit or the total of both exceeds the upper limit, not only the blocking resistance is lowered, but the content of other copolymer components is reduced. As a result, the refractive index of the copolyester becomes low and the effect of suppressing light interference spots becomes insufficient. Moreover, there exists a possibility that the solvent resistance of a 2nd easily bonding layer may fall. From such a viewpoint, the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
Preferred examples of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms (dicarboxylic acid component having an alkylene group having 4 to 10 carbon atoms) include 1,4-butanedicarboxylic acid component, 1,6-hexanedicarboxylic acid component, Examples thereof include 1,4-cyclohexanedicarboxylic acid component, 1,8-octanedicarboxylic acid component, 1,10-decanedicarboxylic acid component, and the like. Of these, a dicarboxylic acid component having an alkylene group having 4 to 8 carbon atoms is preferable, and a dicarboxylic acid component having an alkylene group having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg is easily obtained. Examples of the alkylene glycol component having 4 to 10 carbon atoms preferably used include a 1,4-butanediol component, a 1,6-hexanediol component, a 1,4-cyclohexanediol component, a 1,8-octanediol component, Examples include 1,10-decanediol component. Among these, an alkylene glycol component having 4 to 8 carbon atoms is preferable, and an alkylene glycol component having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg can be easily obtained.
In addition, when it is intended to add another copolymer component to the copolymer polyester to impart other functions, it is easier to add it as an acid component, and it is also easy to carry out a polymerization reaction. From the viewpoint of leaving room, it is more preferable to contain the alkylene dicarboxylic acid component and the alkylene glycol component as an alkylene glycol component.
Further, since the glycol component having the fluorene structure represented by the formula (I) is contained in an amount of 5 mol% or more and less than 20 mol% based on the total acid component of the copolymerized polyester, the Tg of the copolymerized polyester is appropriately low. While maintaining the temperature, the refractive index can be increased to a preferable range. When the content of the glycol component having the fluorene structure represented by the formula (I) is less than 5 mol%, it is difficult to make the refractive index of the copolymer polyester within a preferable range, and light interference spots cannot be suppressed. . On the other hand, in the case of 20 mol% or more, since the Tg of the copolyester becomes too high, not only the film-forming property of the second easy-adhesive layer is lowered and the transparency of the resulting film is lowered, but also the adhesiveness. Also decreases. From such a viewpoint, the preferred lower limit is 3 mol%, more preferably 5%, and the preferred upper limit is 15 mol%, more preferably 10%. Examples of the glycol component having a fluorene structure represented by the formula (I) preferably used include a 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene component and a 9,9-bis [4- (2 -Hydroxyethoxy) -2-methylphenyl] fluorene component.
The copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. It is preferable that Tg can be within a more preferable range while maintaining the refractive index, and the adhesiveness is also improved. The average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
In addition to the above components, in order to keep the Tg of the copolyester within a more preferable range while maintaining the refractive index, terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
Further, the copolyester of this embodiment preferably contains 1 to 10 mol% of a dicarboxylic acid component having a sulfonate group based on the total acid component. Thereby, the solubility at the time of making copolymer polyester into aqueous coating liquid thru | or water dispersibility can be improved. Moreover, the solvent resistance (swelling resistance) of the second easy-adhesion layer can be improved. However, if the amount is too large, the water resistance and blocking resistance of the second easy-adhesion layer tend to be low, so the range of 2 to 8 mol% is particularly preferable. Examples of the aromatic dicarboxylic acid component having a sulfonate group include a 5-sodium sulfoisophthalic acid component, a 5-potassium sulfoisophthalic acid component, a 5-lithium sulfoisophthalic acid component, and a 5-phosphonium sulfoisophthalic acid component. However, the 5-sodium sulfoisophthalic acid component is most preferable from the viewpoint of improving water dispersibility.
The following can be illustrated as a specific aspect of the copolyester resin 1 preferably used.
[Preferred embodiment 1 of copolyester resin 1 (preferred embodiment 1-1)]
(A2) Naphthalene dicarboxylic acid component is 60 to 90 mol%
(B2) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component being 15 ~ 50 mol%
(C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 2 of Copolyester Resin 1 (Preferred Embodiment 1-2)]
(A3) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D3) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E3) 20-40 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 3 (Preferred Aspect 1-3) of Copolyester Resin 1]
(A4) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E4) 20-40 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 1 (Preferred Embodiment 1-4)]
(A5) Naphthalenedicarboxylic acid component is 60 to 70 mol%
(B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D5) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E5) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(F5) 6-8 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
(Polyester film)
In this embodiment, the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable. At that time, the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect. When a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
The second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed. The second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer comprises 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer. Contains laminated polyester film.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 ~ 50 mol%, and
(C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film according to any one of 1 to 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
<Preferred embodiment 2 of copolymerized polyester resin (copolymerized polyester resin 2)>
Various solvents have come to be used as coating solutions for forming functional layers such as hard coat layers. Depending on the solvent, the easy-adhesion layer swells and dissolves, and the thickness varies, resulting in interference. There is a problem that the spots cannot be suppressed. In response to such a problem, for example, in JP 2009-300658 A and JP 2009-300658 A, by adding particles having a relatively large particle diameter of 0.2 to 0.7 μm in average particle diameter, A method has been proposed in which interference spots are suppressed by surface roughness even when the thickness of the easy-adhesion layer varies. Note that the problem related to the thickness variation may be a problem that the appearance of bones cannot be suppressed because various solvents are similarly used when forming the optical adjustment layer.
This aspect is a particularly suitable copolymer polyester resin for the purpose of excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots (color spots) after the formation of the functional layer. It is an aspect.
Such a copolyester uses, for example, a component capable of increasing the refractive index such as a naphthalenedicarboxylic acid component or a glycol component having a fluorene structure and a component capable of adjusting the swelling ratio such as an aromatic dicarboxylic acid component having a sulfonate group. The refractive index and the swelling rate may be adjusted by adjusting the copolymerization amount.
Examples of the copolymer polyester preferably used include, for example, an aromatic dicarboxylic acid component having 60 to 90 mol% of a naphthalenedicarboxylic acid component and a sulfonate group based on the total dicarboxylic acid component (100 mol%) of the copolymer polyester. Examples thereof include those containing 1 to 10 mol% and 5 to 25 mol% of bisphenol A ethylene oxide adduct.
When the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set in the above range, and interference spots can be prevented. Can be suppressed. Further, the swelling ratio of the second easy-adhesion layer can be easily set within a preferable range. If the ratio of the naphthalenedicarboxylic acid component is too small, the refractive index of the copolyester is lowered, and as a result, the refractive index of the second easy-adhesive layer is lowered and the effect of suppressing interference spots is insufficient. On the other hand, since the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can. However, at the same time, the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high. The transparency of the film tends to decrease. Therefore, the content of the naphthalenedicarboxylic acid component is preferably 65 mol% or more, and 85 mol% or less, more preferably 80 mol% or less, and particularly preferably 70 mol% or less. Here, as a preferable naphthalene dicarboxylic acid component, it is the same as that of the copolyester resin 1.
Further, by having the aromatic dicarboxylic acid component having a sulfonate group in the above range based on the total acid component of the copolymer polyester, the solubility or water dispersibility when the copolymer polyester is used as an aqueous coating liquid is improved. be able to. In addition, the swelling ratio of the second easy-adhesion layer can be easily within a preferable range. However, if the amount is too large, the water resistance and blocking resistance of the second easy-adhesion layer tend to be low, so the content is preferably 2 to 8 mol%, particularly preferably 6 to 8 mol%. The aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1. .
Furthermore, by having the ethylene oxide adduct component of bisphenol A in the above range based on the total acid component of the copolymer polyester, the Tg can be made a preferred range while maintaining the refractive index of the copolymer polyester, The film forming property of the second easy-adhesion layer is improved, and a film excellent in transparency can be obtained. Moreover, it becomes easy to make a swelling rate into a preferable range. The average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
The copolymer polyester described above preferably contains 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) in addition to the above components. While maintaining Tg at a moderately low temperature, the refractive index can be within a preferred range. When the content of such components decreases, the refractive index of the copolyester tends to decrease, while when it increases, the Tg of the copolyester increases, and the film-forming property of the second easy-adhesive layer decreases and the transparency of the film is reduced. Tend to decrease, and the adhesiveness also tends to decrease. From such a viewpoint, the preferable lower limit is 5 mol%, and the preferable upper limit is 15 mol%, and particularly preferably 10 mol%. The glycol component having a fluorene structure represented by the formula (I) preferably used is the same as that of the copolyester resin 1.
Further, in addition to the above components, it is preferable to contain a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. More preferably, it contains 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms and 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the alkylene dicarboxylic acid component and the alkylene glycol In this embodiment, the total amount of the components is 15 to 50 mol%. Thereby, Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low. As a result, even if the polyester film is a polyethylene terephthalate film, even the in-line coating method often adopted when forming the second easy-adhesion layer is excellent in the film-forming property of the second easy-adhesion layer, so that the transparency is improved. An excellent film is obtained. In particular, when the simultaneous biaxial stretching method is used and the in-line coating method is used to form the second easy-adhesion layer, the preheating / drying temperature tends to be relatively low. Largely preferred. Moreover, the adhesive improvement effect can be enhanced and the blocking resistance is also excellent.
When the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component decreases, the Tg of the copolyester is difficult to decrease, and the transparency of the resulting film may be reduced. On the other hand, when the amount of the alkylene dicarboxylic acid component or the alkylene glycol component is increased or the sum of both is increased, the anti-blocking property is reduced, or the refractive index of the copolyester is reduced and the effect of suppressing interference spots is reduced. There is a case. In addition, the swelling rate of the second easy-adhesion layer may increase. From such a viewpoint, the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
The alkylene dicarboxylic acid component having 6 to 12 carbon atoms (dicarboxylic acid component having an alkylene group having 4 to 10 carbon atoms) and the alkylene glycol component having 4 to 10 carbon atoms that are preferably used include copolymer polyester resin 1 It is the same.
In addition, when other copolymerization components are added to the copolymerized polyester to impart other functions, the above-mentioned alkylene dicarboxylic acid component and the above-mentioned alkylene glycol can be easily added as an acid component and easily subjected to a polymerization reaction. Among the components, it is more preferable to contain them as an alkylene glycol component.
Further, in addition to the above components, in order to keep the Tg of the copolyester within a more preferable range while maintaining the refractive index, terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
The following can be illustrated as a specific aspect of the copolyester resin 2 preferably used.
[Preferred Embodiment 1 of Copolyester Resin 2 (Preferred Embodiment 2-1)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 2 of Copolyester Resin 2 (Preferred Embodiment 2-2)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1-10 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5 to 25 mol% of bisphenol A ethylene oxide adduct component, and
(D) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 3 of Copolyester Resin 2 (Preferred Embodiment 2-3)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1-10 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(E) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 2 (Preferred Embodiment 2-4)]
(A) 60-70 mol% of naphthalene dicarboxylic acid component
(B) 6-8 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(F) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 5 (Preferred Aspect 2-5) of Copolyester Resin 2]
(A) 60-70 mol% of naphthalene dicarboxylic acid component
(B) 6-8 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms, and
(F) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
It is preferable that the 2nd easily bonding layer in this aspect is the following aspects.
(Refractive index)
The refractive index of the second easy-adhesion layer in this embodiment is preferably 1.58 to 1.64. More preferably, it is 1.58 to 1.62, more preferably 1.58 to 1.60, and particularly preferably 1.58 to 1.59. When the refractive index of the second easy-adhesion layer is within this range, the average refractive index in the plane direction of a preferable polyester film, which will be described later, and the refractive index of a hard coat layer usually made of an acrylic resin (approximately 1.52) Since the refractive index is between, interference spots (color spots) when a hard coat layer made of such an acrylic resin is applied on the second easy-adhesion layer can be suppressed. If this refractive index is too high or too low, it becomes difficult to suppress interference spots. Moreover, it becomes easy to make a swelling rate into a preferable range by setting it as the 2nd easily bonding layer which consists of a component which becomes such a refractive index, Preferably the component mentioned above.
In order to achieve such a refractive index, the refractive index of each component constituting the second easy-adhesion layer may be adjusted. For example, the refractive index of a 2nd easily bonding layer can be made high by using copolyester resin and particle | grains with a high refractive index. Particularly preferably, the above-described copolymer polyester resin 2 may be employed.
(Thickness)
In this embodiment, the thickness of the second easy-adhesion layer needs to be 50 to 100 nm, and preferably 70 to 90 nm. By setting the thickness of the second easy-adhesion layer within this range, interference spots (color spots) when a low refractive index layer such as a hard coat layer made of an acrylic resin is provided thereon can be suppressed. If this thickness is too thin, the adhesiveness tends to decrease, and if it is too thin or too thick, it becomes difficult to suppress interference spots.
(Swell rate)
In the second easy-adhesion layer in this embodiment, the swelling ratio obtained by the following method is 130 to 200% in any of the following solvents. Preferably it is 130 to 180%, more preferably 135 to 175%, still more preferably 139 to 165%. Here, the swelling rate is determined by applying a coating solution (solid content concentration: 40% by mass) obtained by diluting the following UV curable composition with a solvent onto the second easy-adhesive layer of the film, drying and curing, and then hardening the hard 5 μm thick. From the thickness dh of the second easy-adhesion layer after forming the coat layer and forming the hard coat layer and the thickness d0 of the second easy-adhesion layer before forming the hard coat layer, the swelling ratio E (%) = dh / d0 × 100
It is the value calculated as. The following are used as the UV curable composition, and as the solvent, methyl ethyl ketone (MEK), ethyl acetate, toluene, isopropanol (IPA) and propylene, which are representative of the solvents usually used for forming hard coat layers and the like, are used. Glycol monomethyl ether acetate (PGMEA) is used, and in any of these solvents, the swelling ratio of the second easy-adhesion layer needs to be in the above range.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
When the swelling ratio is less than 130%, the adhesion with the hard coat layer tends to be low. On the other hand, when the swelling ratio exceeds 200%, the functional layer such as the hard coat layer is formed before and after the formation. Since the variation in the thickness of the second easy-adhesion layer is too large, it is difficult to suppress interference spots. Further, it is important that the swelling rate is within the above range in any of the above solvents. If the swelling rate in any of the solvents is out of this range, such a solvent is used to form a hard coat layer or the like. This is because when the functional layer is formed, the adhesiveness is insufficient or it is difficult to suppress interference spots. In addition, since the swelling rate is easier to suppress interference spots when the hard coat layer is formed when the fluctuation due to the type of solvent is less, the difference between the maximum swelling rate and the minimum swelling rate is 50% or less. It is preferable that it is 25% or less.
In order to achieve such a swelling ratio, the components used for the second easy-adhesion layer, particularly the copolymer component constituting the binder component, may be adjusted to balance the lipophilicity and the hydrophilicity. Specifically, the above-described preferred embodiment of the copolyester resin 2 can be used. The swelling rate can also be adjusted by using a crosslinking agent for the second easy-adhesion layer. The crosslinking agent tends to have a lower swelling ratio as the addition amount increases.
(Polyester film)
The preferred polyester film according to this embodiment has a refractive index in the plane direction (average refractive index of a refractive index in any one direction and a refractive index in a direction perpendicular thereto in the film plane) of 1.63 to 1.68. Preferably, it is in the range of 1.64 to 1.67, particularly preferably 1.65 to 1.66. When the refractive index in the plane direction is in this range, the film provided with the second easy-adhesion layer using the above-described copolymer polyester resin 2 has a low refractive index layer such as a hard coat layer formed thereon. Excellent in suppressing the occurrence of interference spots. Even if the surface direction refractive index is out of the above range and is too high or too low, the effect of suppressing the occurrence of interference spots tends to decrease.
Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the plane direction refractive index satisfies the above requirements. To a biaxially oriented film.
The second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed. The second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. At least one surface of a polyester film having a surface direction refractive index of 1.63 to 1.68 has a refractive index of 1.58 to 1.64, and the swelling ratio required by the following method is 130 to 200% in any solvent, A laminated polyester film having a second easy adhesion layer having a thickness of 50 to 100 nm.
Swelling rate:
On the second easy-adhesion layer of the laminated polyester film, a coating solution (solid content concentration 40% by mass) obtained by diluting the following UV curable composition with a solvent (methyl ethyl ketone, ethyl acetate, toluene, isopropanol or propylene glycol monomethyl ether) is applied. And then drying and curing to form a hard coat layer having a thickness of 5 μm, the thickness dh of the second easy-adhesion layer after forming the hard coat layer, and the thickness of the second easy-adhesion layer before forming the hard coat layer The value obtained from d0 as the swelling ratio E (%) = dh / d0 × 100.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
2. 2. The laminated polyester film according to 1 above, wherein the second easy-adhesion layer contains 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer.
Copolyester:
(A2) Naphthalenedicarboxylic acid component is 60 to 90 mol%,
(B2) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and
(C2) Copolyester containing 5 to 25 mol% of bisphenol A ethylene oxide adduct component.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The copolyester is further
(D3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated film as described in 2 above.
4). 4. The laminated polyester film as described in 2 or 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
<Preferred embodiment 3 of copolymerized polyester resin (copolymerized polyester resin 3)>
In forming a coating layer such as the first and second easy-adhesion layers, a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied. Often used. However, according to our study, when applied on a polyethylene terephthalate film, it is presumed to be due to the cracking of the coating layer that occurs in the stretching process, but there may be cases where further improvement in adhesion is desired. found. And about this adhesiveness, the improvement of the adhesiveness (wet heat adhesiveness) especially in a wet heat environment is strongly requested | required.
This aspect is particularly suitable for the purpose of, for example, excellent adhesion with a functional layer such as a hard coat layer in a humid heat environment, and suppression of light interference spots (color spots) after the formation of the functional layer. This is an embodiment of a polymerized polyester resin.
The copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester. 12 alkylene dicarboxylic acid components and alkylene glycol components having 4 to 10 carbon atoms in total 15 to 50 mol%, glycol components having a fluorene structure represented by the formula (I) of 5 mol% or more and less than 20 mol%, and It contains 0.1 to 5 mol% of a dicarboxylic acid component having a sulfonate group.
The preferred embodiment and effect of the naphthalenedicarboxylic acid component are the same as those of the copolyester resin 1. In this embodiment, considering that the dicarboxylic acid component having a sulfonate group is an essential component, the preferable lower limit of the content of the naphthalene dicarboxylic acid component is 65 mol%, and the preferable upper limit is 85. The mol%, more preferably 80 mol%, still more preferably 75.9 mol%, particularly preferably 70 mol%.
Further, based on the total acid component of the copolyester, it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1. In this embodiment, considering that the dicarboxylic acid component having a sulfonate group is an essential component, the content is preferably 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms. And an alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 to 50 mol%. .
Moreover, 5 mol% or more and less than 20 mol% of the glycol component which has the fluorene structure shown by said Formula (I) is included on the basis of all the acid components of copolyester. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
Furthermore, in this embodiment, the content of the dicarboxylic acid component having a sulfonate group is 0.1 to 5 mol% based on the total acid component. Thereby, the adhesiveness in a wet heat environment can be made high. If the amount is too large, the adhesiveness in a moist heat environment tends to be low, and the range of 0.1 to 4.5 mol% is particularly preferable. On the other hand, even if the content is too small, the effect of dispersing or dissolving in a solvent (particularly an aqueous solvent) tends to be reduced, and uniform coating tends to be difficult. Adhesiveness tends to be low. From this viewpoint, 0.2 mol% or more is preferable, and 0.4 mol% or more is more preferable. The aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1.
The copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. Preferably it is. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
In addition to the above components, in order to keep the Tg of the copolyester in a more preferable range while maintaining the refractive index, 20 to 39.9 mol%, particularly 24 to 34, of terephthalic acid and / or isophthalic acid is used. It is preferable to contain mol%. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
The following can be illustrated as a specific aspect of the copolyester resin 3 preferably used.
[Preferred Embodiment 1 of Copolyester Resin 3 (Preferred Embodiment 3-1)]
(A2) Naphthalene dicarboxylic acid component is 60 to 90 mol%
(B2) 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component 15 to 50 mol%
(C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I)
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(F2) 0.1-5 mol% of dicarboxylic acid component having sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 2 (Preferred Aspect 3-2) of Copolyester Resin 3]
(A3) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D3) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E3) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F3) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 3 of Copolyester Resin 3 (Preferred Embodiment 3-3)]
(A4) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E4) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F4) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 3 (Preferred Embodiment 3-4)]
(A5) Naphthalene dicarboxylic acid component is 60 to 75.9 mol%
(B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D5) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E5) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F5) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
(Polyester film)
In this embodiment, the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable. At that time, the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect. When a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
The second easy-adhesion layer of this aspect is, for example, excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment and the suppression of light interference spots after the formation of the functional layer. A 2nd easily bonding layer can be provided in the one or both surfaces of a polyester film, without having 1 easily bonding layer, and it can be set as a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer comprises 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer. Contains laminated polyester film.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 15 to 50 mol% of the total of alkylene dicarboxylic acid component having 6 to 12 carbon atoms and alkylene glycol component having 4 to 10 carbon atoms,
(C1) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(F1) Copolyester containing 0.1 to 5 mol% of a dicarboxylic acid component having a sulfonate group.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 39.9 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film according to any one of 1 to 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
The copolyester detailed above can be produced by a conventionally known polyester production technique. For example, an acid component such as 2,6-naphthalenedicarboxylic acid or an ester-forming derivative thereof, isophthalic acid or an ester-forming derivative thereof and 5-sodium sulfoisophthalic acid or an ester-forming derivative thereof is converted to tetramethylene glycol, 9,9- It reacts with diol components such as bis [4- (2-hydroxyethoxy) phenyl] fluorene and bisphenol A ethylene oxide adduct components to form monomers or oligomers, and then polycondensates under vacuum to obtain a predetermined intrinsic viscosity. It can be produced by a method of making a copolyester. At that time, a catalyst for promoting the reaction, for example, an esterification or transesterification catalyst or a polycondensation catalyst can be used, and various additives such as a stabilizer can be added.
The copolymerized polyester is applied to at least one surface of the film as a coating liquid, but since the in-line coating method applied when forming the film is preferable, the copolymerized polyester is preferably used as an aqueous dispersion. The method for forming the aqueous dispersion is not particularly limited, and a conventionally known method may be adopted.
(Other ingredients)
In the present invention, the copolyester used for the second easy-adhesion layer may contain an acid component or diol component other than those described above, and examples of the acid component include phthalic acid and phthalic anhydride. In addition, examples of the diol component include ethylene glycol, diethylene glycol, dipropylene glycol, xylene glycol, and dimethylolpropane. If the amount is slightly more, unsaturated acid components such as maleic acid and itaconic acid, polyfunctional acid components such as trimellitic acid and pyromellitic acid, polyfunctional hydroxy components such as glycerin and trimethylolpropane, and poly (ethylene oxide) Poly (alkylene oxide) glycol components such as glycol and poly (tetramethylene oxide) glycol may be used. In the present invention, the diol component is preferably an embodiment in which the above-mentioned essential or preferred diol component is contained in an essential or preferred content and the other diol component is an ethylene glycol component.
The range of preferable intrinsic viscosity (may be abbreviated as IV) of the copolyester of the second easy-adhesion layer is 0.2 to 0.8 dl / g, and the lower limit is further 0.3 dl / g, especially 0. .4 dl / g, and the upper limit is further preferably 0.7 dl / g, particularly preferably 0.6 dl / g. Here, the intrinsic viscosity is a value measured at 35 ° C. using orthochlorophenol.
Further, the glass transition temperature (Tg) of the copolymerized polyester of the second easy-adhesion layer is 70 ° C. or less from the viewpoint of coating film formability (film forming property) and adhesiveness when in-line coating is performed on a polyethylene terephthalate film. In view of blocking resistance, it is preferably 40 ° C. or higher, particularly 45 ° C. or higher.
Further, the refractive index of the copolyester makes it easy to suppress light interference spots (color spot feeling) by setting the refractive index of the second easy-adhesive layer to the above-mentioned preferred range, so that it is 1.58-1. It is preferably in the range of 65, more preferably in the range of 1.60 to 1.63, and particularly preferably in the range of 1.61 to 1.62. In order to satisfy the Tg and refractive index of the copolyester at the same time, the above-described preferred copolyester resin embodiment may be employed.
<Crosslinking agent>
In the second easy-adhesion layer, it is preferable to add a crosslinking agent in addition to the above-mentioned copolymerized polyester resin. Preferred examples of the crosslinking agent include an epoxy crosslinking agent, an oxazoline crosslinking agent, a melamine crosslinking agent, and an isocyanate crosslinking agent, and these may be used alone or in combination of two or more. May be.
Examples of the epoxy-based crosslinking agent include polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether. , Diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, diepoxy compound, for example, neopentyl glycol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene group As a co-diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, poly-1,4-butanediol diglycidyl ether, monoepoxy compound, for example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether Examples of the glycidylamine compound include N, N, N ′, N′-tetraglycidyl-m-xylylenediamine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
As the oxazoline-based crosslinking agent, a polymer containing an oxazoline group is preferable. It can be prepared by polymerization with addition polymerizable oxazoline group-containing monomers alone or with other monomers. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer may be any monomer that can be copolymerized with an addition-polymerizable oxazoline group-containing monomer. For example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n (Meth) acrylic acid esters such as butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene sulfone Unsaturated carboxylic acids such as acids and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); unsaturated nitriles such as acrylonitrile, methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkyl methacrylamide N, N-dialkylacrylamide, N, N-dialkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl groups Unsaturated amides such as cyclohexyl groups, etc .; vinyl esters such as vinyl acetate, vinyl propionate, acrylic acid, methacrylic acid added with polyalkylene oxide; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether Α-olefins such as ethylene and propylene; halogen-containing α and β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; α and β-unsaturated aromatics such as styrene and α-methylstyrene Group monomers and the like, one or more of these It is possible to use a monomer.
As the melamine-based crosslinking agent, a compound obtained by reacting methyl alcohol melamine derivative obtained by condensing melamine and formaldehyde with methyl alcohol, ethyl alcohol, isopropyl alcohol or the like as a lower alcohol and a mixture thereof are preferable. Examples of the methylol melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine and the like.
Examples of the isocyanate-based crosslinking agent include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, metaxylylene diisocyanate, hexamethylene-1,6-diisocyanate, 1,6-diisocyanate hexane, tolylene diisocyanate and hexanetriol. Adduct, adduct of tolylene diisocyanate and trimethylolpropane, polyol-modified diphenylmethane-4,4'-diisocyanate, carbodiimide-modified diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, 3,3 ' -Bitrylene-4,4 'diisocyanate, 3,3'dimethyldiphenylmethane-4,4'-diisocyanate, metaphenylene diisocyanate and the like.
Of these cross-linking agents, oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
By including a crosslinking agent for the second easy-adhesive layer, the solvent resistance (swelling resistance) and blocking resistance of the second easy-adhesive layer can be improved. Not only does the ratio decrease and the refractive index of the second easy-adhesive layer decreases, it becomes difficult to suppress light interference spots, but the second easy-adhesive layer tends to become harder and the adhesiveness tends to decrease. The content of the crosslinking agent is preferably in the range of 1 to 30% by mass, particularly preferably in the range of 5 to 10% by mass per 100% by mass of the second easy-adhesive layer.
Of these cross-linking agents, oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
Moreover, in the preferable aspect which employ | adopted the above-mentioned copolyester resin 2, the swelling rate with respect to the solvent of a 2nd easily bonding layer is easily made into a suitable value by containing the crosslinking agent concerning a 2nd easily bonding layer. However, if the amount is too large, the swelling rate tends to be too low and the adhesiveness tends to decrease. Therefore, the content of the crosslinking agent is 1 to 30% by mass per 100% by mass of the second easy-adhesive layer. The range is preferably in the range of 5 to 10% by mass.
<Crosslinkable addition polymer>
As described above, there is a strong demand for improving adhesiveness (wet heat adhesiveness) particularly in a wet heat environment.
This embodiment is a particularly suitable embodiment of a crosslinking agent for the purpose of excellent adhesion with a functional layer such as a hard coat layer in a wet heat environment.
In a 2nd easily bonding layer, wet heat adhesiveness can be improved by employ | adopting the crosslinkable addition polymer mentioned later as a crosslinking agent, It is preferable. In particular, in the above-described embodiment of the copolyester resin 1, an embodiment using the following crosslinkable addition polymer is particularly preferable because of high adhesiveness (wet heat adhesiveness).
In the present invention, the second easy-adhesion eyebrows are prepared by adding the following cross-linkable addition polymer in addition to the above-mentioned copolymer polyester resin (particularly preferably copolymer polyester resin 1), based on the mass of the second easy-adhesion layer. It is preferable to contain ~ 30% by mass.
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(However, the above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.
Thereby, it can be excellent in the adhesiveness in a humid-heat environment together with the adhesive improvement by the crack suppression of the 2nd easily bonding layer by employ | adopting the above-mentioned copolyester resin.
Examples of the addition polymerizable oxazoline group-containing monomer constituting the addition polymerizable oxazoline group-containing monomer unit include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl- 2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like can be mentioned. These 1 type, or 2 or more types of mixtures can also be used. The addition polymerizable group for exhibiting the addition polymerization property is not particularly limited, but particularly from the viewpoint of further improving the adhesion with a functional layer such as a hard coat layer and from the viewpoint of easily obtaining the target compound. Residues or methacrylic residues are preferred, that is, the monomer is preferably an oxazoline group-containing acrylic monomer or an oxazoline group-containing methacrylic monomer. Among them, 2-isopropenyl-2-oxazoline is particularly preferable because it is easily available industrially.
The addition-polymerizable polyalkylene oxide group-containing monomer constituting the addition-polymerizable polyalkylene oxide group-containing monomer unit may have any addition-polymerizable group and polyalkylene oxide group, such as vinyl acetate, Preferable examples include vinyl esters such as those obtained by adding polyalkylene oxide to the ester portion of vinyl propionate, acrylic acid or methacrylic acid. Here, the alkylene group in the polyalkylene oxide group is, for example, one having 2 to 30 carbon atoms, preferably an alkylene group having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably. Are an ethylene group, a propylene group, and a butylene group. The number of repeating alkylene groups in the polyalkylene oxide group (average) is, for example, 2 to 30, preferably 4 to 20, and more preferably 5 to 15. In the case of a polyalkylene oxide group comprising a plurality of types of alkylene groups, the total number of repetitions is preferably within the above range.
The crosslinkable addition polymer in the present invention contains 10-80 mol% of monomer units composed of the above addition polymerizable oxazoline group-containing monomer in the polymer with respect to 100 mol% of all monomer units of the polymer. And the content of the monomer unit composed of the addition-polymerizable polyalkylene oxide group-containing monomer as described above in the polymer is 5 mol% or less with respect to 100 mol% of all monomer units of the polymer. Is. By setting it as such a structure, the adhesiveness in a humid heat environment can be made high.
If the content of the addition-polymerizable oxazoline group-containing monomer unit is too small, the adhesiveness in a moist heat environment is inferior. From this viewpoint, it is preferably 20 mol% or more, more preferably 30 mol% or more, still more preferably 40 mol% or more, and particularly preferably 50 mol% or more. On the other hand, if the amount is too large, a problem of film formation deteriorates. From this viewpoint, it is preferably 75 mol% or less, more preferably 70 mol% or less.
Moreover, when there is too much content of an addition polymerizable polyalkylene oxide group containing monomer unit, it will be inferior to the adhesiveness in a wet heat environment. From this viewpoint, it is preferably 4 mol% or less, more preferably 3 mol% or less, and still more preferably 2 mol% or less. Ideally, it is an embodiment that does not contain addition-polymerizable polyalkylene oxide group-containing monomer units.
In this embodiment, the crosslinkable addition polymer only needs to have a structure satisfying the requirements of the above (X1) and (Y1), and the other monomer units are addition polymerizable in a range that does not impair the purpose of this embodiment. Any monomer unit may be used as long as it is composed of any addition polymerizable monomer capable of addition polymerization with an oxazoline group-containing monomer and an addition polymerizable polyalkylene oxide group-containing monomer. Such optional addition polymerizable monomers include, for example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2 (Meth) acrylic acid esters such as ethylhexyl group and cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrenesulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt) Unsaturated nitriles such as acrylonitrile and methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N, N-dialkylacrylamide, N, N-dia Unsaturated amides such as kill methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.) Vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α and β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; styrene, α-methyl styrene, Α, β-unsaturated aromatic monomers and the like can be used, and one or more of these monomers can be used.
The content of the crosslinkable addition polymer in the second easy-adhesive layer is preferably 1 to 30% by mass based on the mass of the second easy-adhesive layer. The adhesiveness tends to decrease, and if it is less than the above lower limit, the adhesiveness in a moist heat environment is inferior. From this viewpoint, the content of the crosslinkable addition polymer is more preferably 2% by mass or more, and further preferably 3% by mass or more. On the other hand, when the content is large, the refractive index of the second adhesive layer tends to be lowered. Therefore, when the upper limit is exceeded, the interference spots are inferior. From this viewpoint, it is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
In this embodiment, a crosslinking agent different from the above-mentioned crosslinkable addition polymer can be blended and used in combination in the second easy-adhesion layer within a range that does not impair the purpose of this embodiment. As such a crosslinking agent, an epoxy-type crosslinking agent, a melamine-type crosslinking agent, an isocyanate-type crosslinking agent, etc. can be illustrated, These may use 1 type and may use 2 or more types together.
The second easy-adhesion layer of the present embodiment adopting the above-mentioned crosslinkable polymer has excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment, and suppression of light interference spots after the functional layer is formed. In the case of the main purpose, the second easy-adhesion layer can be provided on one or both sides of the polyester film without having the first easy-adhesion layer to obtain a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer is 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer, and A laminated polyester film containing 1 to 30% by mass of the following crosslinkable addition polymer.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 15 to 50 mol% in total of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms and the alkylene glycol component having 4 to 10 carbon atoms, and
(C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film as described in any one of 1 to 3 above, which is used as an easily adhesive polyester film for optics.
<Other ingredients>
Various additives can be blended in the second easy-adhesion layer of the present invention within a range not impairing the object of the present invention. For example, particles, waxes, surfactants, wetting modifiers, etc. may be added to improve film slipperiness, scratch resistance, wettability during coating, and other antistatic agents, UV absorbers, etc. Etc. may be blended.
For example, by adding particles, the slipperiness and scratch resistance of the film can be improved. Such particles may be any of organic particles, inorganic particles, and organic-inorganic composite particles. From the viewpoint of improving scratch resistance while maintaining transparency, large particles (particles), It is preferable to contain both small particles (small particles).
The average particle size of the large particles is suitably in the range of 80 to 1000 nm, more preferably in the range of 100 to 400 nm, and still more preferably in the range of 130 to 350 nm. Thereby, it is excellent in lubricity and scratch resistance. In addition, since a large particle is easy to drop | omit from a 2nd easily bonding layer, it is preferable that it is an organic inorganic composite particle which coat | covered the inorganic particle surface with organic substance (for example, acrylic).
The content of the large particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the mass of the second easy-adhesion layer. The effect of adding is easier to obtain.
The average particle size of the small particles is suitably in the range of 10 nm or more and less than 100 nm, more preferably 20 to 80 nm, still more preferably 30 to 60 nm. Thereby, it is excellent in blocking resistance. From the viewpoint of hardness, the small particles are preferably inorganic particles, and are preferably metal oxide particles. Examples of the metal oxide particles include silica particles, alumina particles, titania particles, and zirconia particles. Among these, silica particles and titania particles are preferable from the viewpoint of excellent cost.
The content of the small particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass with respect to the mass of the second easy-adhesion layer, and the small particles are added. The effect is easier to obtain.
The second easy-adhesion layer can contain a surfactant. By containing a surfactant in the coating liquid for forming the second easy-adhesion layer, the coating properties of the coating liquid can be improved. Such a surfactant is not particularly limited as long as it has an effect of enhancing the coating property to a polyethylene terephthalate film. For example, nonionic surfactants, cationic surfactants, anionic surfactants, amphoteric interfaces. Any activator can be used. Of these, nonionic surfactants are preferred from the viewpoint of particularly low foaming and good coatability. Preferred examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, and polyoxyethylene propylene copolymer alkyl ether.
When using a surfactant, it is preferable to use it in an amount of 20% by mass or less based on the mass of the second easy-adhesion layer. Thereby, there exists a tendency for the adhesive improvement effect to become high. From this viewpoint, it is more preferably 15% by mass or less, and further preferably 10% by mass or less. Moreover, the lower limit of the addition amount is preferably 1% by mass, more preferably 3% by mass or more, and further preferably 5% by mass or more from the viewpoint of the coating property described above.
<Method for producing polyester film>
An example is given and demonstrated about the method for manufacturing the polyester film in this invention. In addition, the polyester film in this invention is not limited to this.
The polyester film in the present invention is obtained by, for example, melt-extruding the above polyester into a film shape, cooling and solidifying with a casting drum to form an unstretched film, and this unstretched film is longitudinal (Tg + 60) ° C. In some cases, it may be referred to as “longitudinal direction or MD”) once or twice or more so that the total magnification becomes 3 to 6 times to form a uniaxially stretched film. Here, Tg is the glass transition temperature of the polyester constituting the film. Preferably, the coating liquid for forming the 1st easily bonding layer mentioned later here is apply | coated. Next, the magnification is 3 to 5 times in the width direction (the direction perpendicular to the film forming machine axis direction and the thickness direction, sometimes referred to as the transverse direction or TD) at Tg ~ (Tg + 60) ° C. It is obtained by stretching, and if necessary, heat treatment at 180-230 ° C. for 1-60 seconds and re-heat treatment while shrinking 0-20% in the width direction at a temperature 10-20 ° C. lower than the heat treatment temperature. Can do.
The refractive index of the biaxially oriented polyester film can be adjusted by the draw ratio. The higher the draw ratio, the higher the refractive index. However, since the thermal dimensional stability is impaired as the draw ratio increases, the draw ratio is preferably in the range of 3.0 to 4.0 in the longitudinal direction and the width direction, more preferably 3.3 to 3. It is 8 times, more preferably 3.4 to 3.7 times.
In the present invention, in the production of the polyester film, the sequential biaxial stretching method as described above can be adopted, but the simultaneous biaxial stretching method can also be adopted. At that time, the stretching conditions and the like are the same as those described above. In this case, the coating liquid for forming the easy-adhesion layer is applied to the unstretched film.
The thickness of the polyester film used in the present invention is preferably in the range of 20 to 200 μm. In particular, when used in a capacitive touch sensor, it can be appropriately selected according to the characteristics of the controller IC in order to ensure a predetermined capacitance.
<Method for producing laminate>
An example is given and demonstrated about the method for manufacturing the laminated body of this invention. In addition, the laminated body of this invention is not limited to this.
(Formation method of a 1st easily bonding layer)
The first easy-adhesion layer is coated with a coating liquid for forming the first easy-adhesion layer (hereinafter sometimes referred to as a first easy-adhesion coating liquid) on the polyester film, and is dried and necessary. It can form by hardening according to. Preferably, it is a so-called in-line coating method in which the first easy-adhesion coating liquid is applied during the production process of the polyester film to form the first easy-adhesion layer. Thereby, the adhesiveness of a polyester film and a 1st easily bonding layer can be made high. Even if the thickness of the first easy-adhesion layer is very thin, the thickness can be controlled with high accuracy.
The first easy-adhesive coating liquid can be obtained by mixing the components constituting the first easy-adhesive layer described above and diluting with a solvent as necessary. Here, each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent. The concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
A conventionally well-known method can be employ | adopted as a coating system for forming a 1st easily bonding layer. Examples thereof include a roll coating method (such as a gravure roll coating method) and a spray coating method.
(Method for forming high refractive index layer and low refractive index layer)
The high refractive index layer and the low refractive index layer can be formed by either a wet method or a dry method. An optical adjustment layer is formed by forming a high refractive index layer on the first easy-adhesion layer or further forming a low refractive index layer on the high refractive index layer by any suitable method. do it.
In the wet method, a coating liquid for forming a high refractive index layer (hereinafter referred to as a high refractive index coating) is formed by a doctor method, a bar coater, a gravure roll coater, a curtain coater, a knife coater, a spin coater, a spray method, a dipping method, or the like. And a coating liquid for forming a low refractive index layer (hereinafter sometimes referred to as a low refractive index coating liquid) is applied to the surface on which the layer is to be formed. The coating film is dried, and the coating film is dried and, if necessary, cured by heat, ultraviolet rays, an electron beam or the like, whereby a high refractive index layer and a low refractive index layer can be formed. Such a coating solution may be a sol, whereby a metal oxide film is obtained. In addition, what is necessary is just to select drying conditions and hardening conditions suitably. Depending on the solvent of the coating solution, the drying temperature is, for example, 50 to 100 ° C., preferably 60 to 90 ° C. As the irradiation intensity of ultraviolet rays or electron beams in curing, for example, 100 to 2000 mJ / m 2 It is. The solid content concentration of the coating liquid can also be appropriately selected depending on the intended coating amount and the coating method used. For example, it is 1 to 70% by mass.
According to the wet method, a layer containing metal oxide fine particles in a binder resin, a layer made of a metal oxide film by a sol-gel method, a metal oxide film containing metal oxide particles, organic particles, and a binder resin It is suitable for forming the layer which carries out.
In the dry method, a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a printing method, a CVD method, or the like can be applied. The dry method is suitable for forming a layer made of metal or a layer made of a metal oxide film. Note that the conditions may be appropriately adjusted in consideration of the type of target, the target layer thickness, and the like.
<Transparent conductive film>
In the present invention, a transparent conductive layer having a refractive index of 1.9 to 2.3 is formed on the optical adjustment layer of the laminate obtained above, in particular, on the low refractive index layer. Can be obtained.
In the present invention, the transparent conductive layer is not particularly limited as long as it is within the above refractive index range, and examples thereof include a layer made of a crystalline metal or a crystalline metal compound. Examples of the component constituting the transparent conductive layer include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide. Of these, a crystalline layer mainly composed of indium oxide is preferable, and a layer made of crystalline ITO (Indium Tin Oxide) is particularly preferably used. When the transparent conductive layer is a crystalline film, the environmental reliability required for the touch panel tends to be improved. The crystallization method is not particularly limited, and for example, crystallization can be performed by heat treatment at 120 to 160 ° C. for about 60 to 90 minutes.
A layer made of a conductive polymer such as polyacetylene, polyparaphenylene, polythiophene, polyethylenedioxythiophene, polypyrrole, polyaniline, polyacene, polyphenylene vinylene, or the like can also be employed.
The film thickness of the transparent conductive layer is preferably 5 to 50 nm from the viewpoints of transparency and conductivity. More preferably, it is 5 to 30 nm. When the film thickness of the transparent conductive layer is less than 5 nm, the resistance stability with time tends to be inferior, and when it exceeds 50 nm, the surface resistance value tends to decrease. In addition, the color tone of the film becomes strong and the pattern tends to be emphasized.
When the transparent conductive film of the present invention is used for a touch panel, the surface resistance value of the transparent conductive layer at a thickness of 10 to 30 nm is more preferably 100 to 1000Ω / □, more preferably due to reduction of power consumption of the touch panel and circuit processing. It is preferable to use a transparent conductive layer exhibiting a range of 140 to 600Ω / □.
<Method for producing transparent conductive film>
The transparent conductive layer can be formed by a known method. For example, a physical formation method (such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser deposition method) (Physical Vapor Deposition (PVD)) or the like can be used, but DC magnetron sputtering is desirable from the viewpoint of industrial productivity of forming a metal compound layer having a uniform film thickness over a large area. In addition to the physical formation method (PVD), a chemical formation method such as chemical vapor deposition (CVD) or a sol-gel method can be used. A sputtering method is preferred.
In addition, the transparent conductive layer in this invention is patterned. Here, patterning refers to an aspect in which a portion where the transparent conductive layer exists in a prescribed shape and a portion where the transparent conductive layer does not exist are formed. That is, the transparent conductive layer is formed on a part of the laminate of the present invention. The specified shape may be a known shape that can be used as an electrode of a capacitive touch panel. For example, there are fine wire and tiremond patterns. The patterning method is not particularly limited, and a conventionally known etching method can be used.
<Method for forming second easy-adhesion layer>
The second easy-adhesion layer is coated with a coating liquid for forming the second easy-adhesion layer (hereinafter sometimes referred to as a second easy-adhesion coating liquid) on the polyester film, and then dried. It can form by hardening according to. Preferably, a so-called in-line coating method is used in which the second easy-adhesion coating liquid is applied to form the second easy-adhesion layer during the production process of the polyester film. Thereby, the adhesiveness of a polyester film and a 2nd easily bonding layer can be made high. Moreover, even if the thickness of the second easy-adhesion layer is very thin, the thickness can be controlled with high accuracy. Particularly preferably, during the production process of the polyester film, the second easy-adhesion coating solution is applied to the surface opposite to the surface to which the first easy-adhesion coating solution is applied, and the first easy-adhesion layer and the second easy-adhesion layer are formed simultaneously. Manufacturing method.
A 2nd easily-adhesive coating liquid can mix and obtain the component which comprises the 2nd easily-adhesive layer mentioned above, and can obtain it by diluting with a solvent as needed. Here, each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent. The concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
A conventionally well-known method can be employ | adopted as a coating system for forming a 2nd easily bonding layer. Examples thereof include a roll coating method (such as a gravure roll coating method) and a spray coating method.
The second easy-adhesion layer can be formed before forming the first easy-adhesion layer. Moreover, a 2nd easily bonding layer can also be formed on both surfaces of a polyester film depending on the objective. The following is a description of a particularly preferable manufacturing method for forming the second easily adhesive layer in such a case.
The polyester film which has a 2nd easily bonding layer is manufactured through the film forming process which manufactures a biaxially-oriented polyester film, and the application | coating process which forms a 2nd easily bonding layer. The film forming step may be a sequential biaxial stretching method or a simultaneous biaxial stretching method, but if it is a simultaneous biaxial stretching method, the film surface is hardly damaged during film formation, Since it is suitable for manufacturing the film used for an optical use, it is preferable. The coating process may be after the film forming process (so-called off-line coating method) or in the film forming process (so-called in-line coating method). For example, a thin coating layer can be easily obtained uniformly, and a strong coating layer can be obtained. Furthermore, it is excellent in productivity.
In the second easy-adhesion layer, using the copolyester resin 1 or 3, the effect of improving the easy-adhesive property by improving the film-forming property is to be applied to the unstretched film or the partially oriented film before completion of the orientation. Is produced by an in-line coating method in which the film is stretched and heat-set after being provided. The film forming method may be a sequential biaxial stretching method or a simultaneous biaxial stretching method. In the simultaneous biaxial stretching method, the second easy-adhesive layer is used to stretch the biaxial simultaneously. When the coating liquid for forming the film is stretched after coating, the film forming property of the second easy-adhesive layer becomes more severe. Therefore, especially in such a case, the embodiment using the above-described copolymer polyester resins 1 and 3 is particularly useful.
Hereinafter, a preferable method when polyethylene terephthalate is used as the polyester and the in-line coating method is adopted by the simultaneous biaxial stretching method will be described. First, sufficiently dried polyethylene terephthalate is melted at a temperature of Tm + 10 ° C. to Tm + 30 ° C. (where Tm is the melting point of polyethylene terephthalate), extruded into a sheet, and cooled with a cooling drum to form an unstretched film. Next, a coating solution for forming the second easy-adhesion layer is applied to the surface of the unstretched film on the side where the second easy-adhesion layer is to be formed by using a roll coater to obtain an unstretched film having a coating film. At this time, coating is performed so that the thickness of the second easy-adhesion layer in the obtained film is preferably 50 to 100 nm, more preferably 70 to 90 nm. Next, this was preheated at 90 to 110 ° C., and simultaneously in the biaxial direction with a simultaneous biaxial stretching machine at a temperature of Tg to Tg + 70 ° C. (where Tg is the glass transition temperature of polyethylene terephthalate) and in the longitudinal direction (film formation) Preferably in the machine axis direction, longitudinal direction or MD) 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, lateral direction (direction perpendicular to the film forming machine axis direction, width direction or TD) ) Is preferably 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, and then heat-fixed at a temperature of (Tg + 60 ° C.) to Tm, preferably adjusting the heat shrinkage rate. Therefore, a laminated film having a second easy-adhesion layer on the oriented polyethylene terephthalate film can be obtained by heat relaxation treatment. In addition, it is preferable that this extending | stretching temperature is 45 degreeC or more higher than the glass transition temperature of the copolyester in a 2nd easily bonding layer, More preferably, it is 50 degreeC or more, More preferably, it is 55 degreeC or more higher temperature. That is. Thereby, the film-forming property of the second easy-adhesion layer becomes more excellent, and the effect of improving the adhesiveness can be enhanced. Further, the temperature is preferably 40 ° C. or higher than the glass transition temperature of the second easy-adhesion layer, more preferably 45 ° C. or higher, and even more preferably 53 ° C. or higher. The film forming property of the easy-adhesion layer is more excellent, and the effect of improving the adhesiveness can be increased. Next, for heat setting, for example, a polyethylene terephthalate film is preferably heat-set at a temperature in the range of 210 to 240 ° C. for 1 to 60 seconds. In addition, the coating film is dried by the heat applied in the above process, and is cured as necessary to become a second easy-adhesion layer.
In addition, the coating liquid for forming a 2nd easily bonding layer mixes each component which comprises a 2nd easily bonding layer, and considers a viscosity, application | coating thickness, etc., and adjusts it suitably. The solvent used for dilution is preferably water, that is, the coating liquid is preferably aqueous. The solid concentration of the coating liquid is preferably 5 to 20% by mass, and a good coating appearance can be obtained.
<Characteristics of laminated film>
(Haze)
The laminated film of the present invention preferably has a haze value measured according to JIS standard K7136 of 0% or more and 1.0% or less, more preferably 0.1% or more and 0.8% or less, particularly preferably 0. .1% or more and 0.5% or less. Haze is an important evaluation index for use in optical applications. For example, when used for a display, haze is one of the indexes for evaluating the visibility of a display, and when haze exceeds 1.0%, Since the transparency of the film is lowered and the display screen of the display looks whitish, the contrast is lowered and the visibility may be lowered. In order to make the haze within such a range, in the polyester film and the easy-adhesion layer, particles are not used or even when used, the diameter and amount are within the above-mentioned range, and the polymer binder constituting the easy-adhesion layer is the above-mentioned. A preferable copolyester resin may be used.
また、本発明の透明導電性フィルムは、上記積層体における光学調整層の上に、さらにパターン化された透明導電層を有する構成である。
以下、本発明を構成する各構成成分について説明する。
<ポリエステルフィルム>
(ポリエステル)
本発明において、ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体(ポリエステル中酸成分となる。)と、ジオールまたはそのエステル形成性誘導体(ポリエステル中グリコール成分となる。)とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレートを例示することができる。また、これらの共重合体、これらのブレンド体、またはこれらと小割合の他樹脂とのブレンド体であってもよい。これらのポリエステルのうち、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが、力学的物性や光学物性等のバランスが良いので好ましい。特にポリエチレンテレフタレートは、二軸延伸後の屈折率(面方向平均屈折率)が1.65に近くなり、よってポリエステルフィルムの面方向平均屈折率を1.60~1.70の範囲としやすく、本発明における光学調整層との屈折率調整がしやすく、それによってより良好な骨見え抑制効果を奏することができるため、好ましい。
ポリエステルは、ホモポリマーであってもよいが、共重合成分(共重合酸成分または共重合グリコール成分)が、その特性を損なわない範囲、例えば全酸成分100モル%に対して5モル%以下、好ましくは3モル%以下の割合で共重合されたコポリマーであってもよい。該共重合酸成分としては、フタル酸成分、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分等の如き芳香族ジカルボン酸成分、アジピン酸成分、アゼライン酸成分、セバシン酸成分、1,10−デカンジカルボン酸成分の如き脂肪族ジカルボン酸成分を例示でき、また共重合グリコール成分としては、1,4−ブタンジオール成分、1,6−ヘキサンジオール成分、ネオペンチルグリコール成分の如き脂肪族ジオール成分、1,4−シクロヘキサンジメタノール成分の如き脂環族ジオール成分を例示できる。これらを併用することもできる。
また、他の共重合成分として、上記以外の分子内に2つのエステル形成性官能基を有する化合物を用いることもできる。かかる化合物としては、例えば、蓚酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,7−ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸に由来する成分、p−オキシ安息香酸、p−オキシエトキシ安息香酸の如きオキシカルボン酸に由来する成分、或いはプロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールの如き2価アルコールに由来する成分を好ましく用いることができる。これらの化合物は1種のみ用いてもよく、2種以上を用いることができる。また、これらの中で好ましくは、酸成分としては、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p−オキシ安息香酸に由来する成分であり、グリコール成分としてはトリメチレングリコール、ヘキサメチレングリコールネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物に由来する成分である。
本発明においてポリエステルフィルムを構成するポリエステルとして特に好ましくは、ポリエチレンテレフタレートである。かかるポリエチレンテレフタレートとしては、上述のように共重合成分を有していても良いが、エチレンテレフタレート単位を90モル%以上、好ましくは95%以上、更に好ましくは97%以上有するものが好ましい。特に好ましくはホモのポリエチレンテレフタレートである。共重合成分としてはイソフタル酸が好ましい。
本発明におけるポリエステルは、従来公知の方法で、例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒である、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種または二種以上を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。
なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中において更に固相重合を施してもよい。
ポリエステルの固有粘度は0.40dl/g以上であることが好ましく、0.40~0.90dl/gであることが更に好ましい。固有粘度が0.40dl/g未満では工程切断が多発することがあり、0.9dl/gより高いと溶融粘度が高いため溶融押出しが困難であるうえ、重合時間が長く不経済である。
(ポリエステルフィルム)
本発明におけるポリエステルフィルムは、好ましくは面方向平均屈折率が1.60~1.70である。これにより、本発明の積層体を構成する他の層との相乗効果により、骨見え抑制効果により優れる。ここで面方向平均屈折率とは、フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率、好ましくはフィルム面内において、最大屈折率と、かかる最大屈折率を示す方向と垂直な方向の屈折率との平均屈折率を示す。面方向平均屈折率は、低すぎても高すぎても、骨見え抑制の効果が低下する。かかる観点から、ポリエステルフィルムの面方向平均屈折率の範囲は、1.62以上がより好ましく、1.63以上がさらに好ましく、1.64以上が特に好ましく、1.65以上が最も好ましい。また、1.68以下がより好ましく、1.67以下がさらに好ましく、1.66以下が特に好ましい。
また、面方向平均屈折率がこの範囲にあると、後述するように、ポリエステルフィルムの光学調整層とは反対側の面にハードコート層等の機能層を設ける場合において、第2易接着層を設け、その上にハードコート層のような比較的屈折率の低い層を形成した際に、干渉斑の発生を抑制することができる。かかる干渉斑抑制の観点においては、面方向平均屈折率は、好ましくは1.63~1.68、より好ましくは1.64~1.67、さらに好ましくは1.65~1.66の範囲であり、かかる範囲を外れて高すぎても低すぎても、干渉斑発生の抑制が難しくなる。
かかるポリエステルフィルムは、面方向平均屈折率が上記の要件を満足していれば、未配向フィルム、一軸配向フィルム、二軸配向フィルムのいずれであってもよいが、機械的特性や熱的特性の点から二軸配向フィルムであることが好ましい。
(ポリエチレンテレフタレートフィルム)
かかる面方向平均屈折率を達成するためには、例えばフィルムを構成するポリエステルとして、上述したポリエチレンテレフタレート(PET)を採用することが好ましい。また、延伸条件として後述する条件を採用することも、面方向平均屈折率を達成する上で効果的である。
本発明においては、好ましくは配向ポリエチレンテレフタレートフィルムが用いられる。配向ポリエチレンテレフタレートフィルムを構成するポリエステルは、全繰返し単位を基準として、エチレンテレフタレート単位が95モル%以上、好ましくは98モル%以上のポリエステルであり、特に好ましくは共重合成分を併用していないホモポリエステルである。共重合ポリエチレンテレフタレートである場合には、共重合成分として、例えば、イソフタル酸、ナフタレンジカルボン酸等のジカルボン酸成分や、ジエチレングリコール、ブタンジオール、シクロヘキサンジオール等のグリコール成分を用いることができる。
(ポリエステルフィルムのその他の成分)
ポリエステルフィルムは、搬送性を確保するために、例えば不活性粒子等の易滑性のフィラーを含有させることもできる。一方で、例えば静電容量式のタッチセンサーは、複数の透明フィルムを積層して構成され、フィルムのヘーズが積算されるため、各構成フィルムの内部ヘーズはできるだけ低いことが望まれる。このように、光学用途において高い透明性を維持する観点からは、ポリエステルフィルムにはフィラーを含有しないか、実質的にフィラーを含有しない(例えば10ppm以下、好ましくは1ppm以下)ことが好ましい。しかし、製造工程での微小なキズ防止や、フィルムの巻取り性を向上させるために、滑剤として少量のフィラーを含有させてもよい。フィラーは、例えば平均粒径0.01~2μm、さらには0.05~1μm、特に0.1~0.3μmの不活性粒子を用いるとよい。配合割合としては、配合する層の質量を基準として、例えば100ppm以下とするのが好ましく、また実質的に含有しない範囲である10ppm以下、特に1ppm以下としてもよい。
また、ポリエステルフィルムは、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒を含有することもできる。
<第1易接着層>
本発明においては、第1易接着層によって、ポリエステルフィルムと光学調整層との接着性を高めることができる。なお、本発明においては、第1易接着層および/または後述する第2易接着層を有するポリエステルフィルムを積層ポリエステルフィルムと呼称する場合がある。
(第1易接着層の屈折率)
本発明においては、第1易接着層の屈折率は1.60~1.65の範囲であることが重要である。これにより、本発明の積層体を構成する他の層との相乗効果により、骨見え抑制効果に優れる。第1の易接着層の屈折率が低すぎると、光学干渉が大きくなりすぎるため、骨見え抑制効果が得られない。理想的には、ポリエステルフィルム、第1易接着層、光学調整層(または光学調整層における高屈折率層)のすべてが同一の屈折率であることが好ましいが、現実には、1.65を超える屈折率を達成しようとすると、第1易接着層の透明性を高めることが困難となる傾向にある。これらのバランスを考えて、第1易接着層の屈折率は、好ましくは1.61~1.64、さらに好ましくは1.62~1.64である。
第1易接着層の屈折率は、後述する高屈折率層の屈折率との差が、0.05以下であることが好ましい。かかる態様により、骨見え抑制の向上効果を高くすることができる。かかる屈折率差は、より好ましくは0.04以下、さらに好ましくは0.03以下である。
また、第1易接着層の屈折率は、ポリエステルフィルムの面方向平均屈折率との差が、0.05以下であることが好ましい。かかる態様により、骨見え抑制の向上効果を高くすることができる。かかる屈折率差は、より好ましくは0.04以下、さらに好ましくは0.03以下である。
(第1易接着層の厚み)
第1易接着層の厚みは、8~30nmである。これにより接着性に優れる。また、第1易接着層の屈折率を上述した範囲とするとともに、厚みを上記範囲とすることで、本発明の積層体における他の層との相互作用により、優れた骨見え抑制効果を奏することができる。
薄膜の光学干渉は、屈折率と光路長(膜厚み)の積に依存する。本発明者らは、これに関し更に詳細な検討を行った結果、光学調整層または光学調整層における高屈折率層が後述する屈折率範囲であり、かつ第1易接着層が前記屈折率範囲である場合において、第1易接着層の膜厚を8~30nmというごく狭い範囲に制御することで、優れた骨見え抑制効果を奏しながら、かつ優れた接着性が得られることを見出した。第1易接着層の厚みが厚すぎると、骨見え抑制の効果が低下する。他方、薄すぎると、接着性が低下する。かかる観点から、第1易接着層の厚みは、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは18nm以上であり、また、好ましくは25nm以下、さらに好ましくは22nm以下である。
(第1易接着層のポリエステル樹脂)
本発明における第1易接着層は、第1易接着層の質量を基準として50質量%以上をポリエステル樹脂が占める。これにより接着性に優れる。かかる観点から、ポリエステル樹脂の含有量は、好ましくは70質量%以上であり、より好ましくは80質量%以上である。第1易接着層中におけるポリエステル樹脂の含有量の上限は特に限られないが、後述する、第1易接着層中に好ましく含有することができる成分以外の、その余の部分をポリエステル樹脂が占める態様とすればよい。
本発明では、第1易接着層を形成するバインダー成分としてポリエステル樹脂を用いるが、このポリエステル樹脂のガラス転移温度(Tg)は120℃以下であることが好ましい。これにより接着性にさらに優れる。また、延伸追随性(造膜性)に優れ、平滑で透明性に優れた第1易接着層とすることができる。かかる観点から、Tgは100℃以下がより好ましく、80℃以下がさらに好ましく、75℃以下が特に好ましい。また、ポリエステル樹脂のTgの下限は40℃であることが好ましく、これにより接着性にさらに優れ、また耐ブロッキング性に優れる。かかる観点から、Tgは、50℃以上であることがより好ましく、60℃以上が特に好ましい。
このポリエステル樹脂としては、以下に示すような酸成分とグリコール成分とからなるポリエステルまたは共重合ポリエステルを挙げることができる。本発明においては、接着性の観点から、共重合ポリエステルであることが好ましい。尚、以下にかかるポリエステルを構成するモノマー成分を例示するが、これらに限定されない。
酸成分としてはテレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2、6−ナフタレンジカルボン酸、1、4−シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ダイマー酸、5−ナトリウムスルホイソフタル酸等に由来する成分を挙げることができる。これら酸成分を2種以上用いて共重合ポリエステルとすることが好ましい。また、若干量ながら不飽和多塩基酸成分のマレイン酸、イタコン酸等及びp−ヒドロキシ安息香酸等の如きヒドロキシカルボン酸を用いることもできる。本発明においては、なかでも屈折率と塗膜強度とのバランスが取れるという観点から、2,6−ナフタレンジカルボン酸を用いることが好ましい。ポリエステル樹脂中の2,6−ナフタレンジカルボン酸の含有量としては、全酸成分100モル%に対して、50モル%以上が好ましく、60モル%以上がより好ましい。また、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下がさらに好ましい。かかる成分の含有量が多すぎると、第1易接着層の造膜性が低下する傾向にある。他方、少なすぎると、屈折率の向上効果が小さく、また、力学特性の向上効果が小さい。
グリコール成分としては、エチレングリコール、1、4−ブタンジオール、ジエチレングリコール、ジプロピレングリコール、1、6−ヘキサンジオール、1、4−シクロヘキサンジメタノール、キシレングリコール、ジメチロールプロパン、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等に由来する成分を挙げることができる。これらグリコール成分を2種以上用いて共重合ポリエステルとすることが好ましい。本発明においては、さらに、第1易接着層の屈折率を効果的に高くするために、好ましくはビス(4−ヒドロキシエトキシフェニル)フルオレン成分などの、下記式(I)で表わされるフルオレン構造を有するグリコール成分のような、共役系を有する化合物を共重合成分として用いることが好ましい。
(R1は炭素数2~4のアルキレン基、R2、R3、R4、およびR5は、水素、炭素数1~4のアルキル基、アリール基またはアラルキル基であり、それぞれ同じであっても異なっていてもよい。)
ポリエステル樹脂中のフルオレン構造を有するグリコール成分の含有量としては、全酸成分100モル%に対して、2モル%以上が好ましく、4モル%以上がより好ましく、6モル%以上がさらに好ましい。また、10モル%以下が好ましく、8モル%以下がより好ましい。かかる成分の含有量が多すぎると、第1易接着層の造膜性が低下する傾向にある。他方、少なすぎると、屈折率の向上効果が小さい。
本発明においては、これら成分の中でも、酸成分として2,6−ナフタレンジカルボン酸成分を採用し、同時に、グリコール成分としてフルオレン構造を有するグリコール成分、好ましくはビス(4−ヒドロキシエトキシフェニル)フルオレン成分を採用した態様が好ましい。これにより、第1易接着層の屈折率を本発明が規定する範囲にすることがより容易となると同時に、力学特性にも優れ、また接着性の向上効果を高くすることができる。これら成分は、各々上述した含有量でポリエステル樹脂中に含有する態様が好ましい。
また、上記のような思想の基、本発明における第1易接着層を構成するポリエステル樹脂として、後述する第2易接着層を構成する共重合ポリエステル樹脂を採用することができる。そうすることによって、かかる第2易接着層を構成する共重合ポリエステル樹脂を採用する効果と同様の効果を、第1易接着層に付与することができるため好ましい。
本発明における第1易接着層を構成するポリエステル樹脂の特に好ましい態様は、全酸成分を100モル%として、酸成分が、2,6−ナフタレンジカルボン酸が60~70モル%、イソフタル酸が25~30モル%、5−ナトリウムスルホイソフタル酸が5~10モル%であり、グリコール成分が、ビスフェノールAが10~20モル%、エチレングリコールが35~60モル%、トリメチレングリコールが25~35モル%、ビス(4−ヒドロキシエトキシフェニル)フルオレンが5~10モル%からなる態様である。
なお、ポリエステル樹脂は、水(多少の有機溶剤を含有したものであっても良い)に可溶性または分散性のポリエステルが好ましく、後述する塗液を製造しやすい。
(金属酸化物粒子)
本発明における第1易接着層は、層の屈折率を制御するために、屈折率が1.7~3.0、好ましくは1.8~2.2の金属酸化物粒子を添加することが好ましい。この金属酸化物粒子としては、TiO2(屈折率2.5)、ZrO2(屈折率2.4)、SnO2(屈折率2.0)、Sb2O3(屈折率2.0)などが例示され、本発明においては、これらからなる群より選ばれる少なくとも1種の金属酸化物粒子を用いることが好ましい。
高度な透明性を達成するためには、第1易接着層中の金属酸化物粒子による光学散乱を避けるため、金属酸化物粒子は、無色透明で、光の波長に対して十分に小さい粒径(例えば400nm以下、好ましくは100nm以下)であるものが好ましい。また屈折率が高いほど少量で第1易接着層の屈折率を上げることができるため好ましいが、屈折率が3.0を超えるような高屈折率の金属酸化物粒子は透明性に劣る傾向にあり、また特殊な希少金属が多いため、製造コストの上昇をもたらす傾向にある。
このような観点から、本発明における第1易接着層の金属酸化物粒子としては、酸化チタン、酸化ジルコニウムからなる粒子がより好ましく、比重の観点から少量で屈折率向上効果の高い酸化チタン粒子が特に好ましい。
金属酸化物粒子の添加量は、第1易接着層の質量を基準として、2質量%以上、20質量%以下が好ましく、かかる範囲とすることで透明性を維持しながら効率的に屈折率を高くすることができる。多すぎると透明性が低下する傾向にある。また、粒子脱落等が生じ易くなったり、コーティング時に設備の磨耗を引き起こしたり、安定したコーティングが困難となる傾向にある。他方、少なすぎると屈折率向上の効果が低くなる。かかる観点から、より好ましくは3質量%以上、更には4質量%以上、特には5質量%以上が好ましく、また、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。
第1易接着層の屈折率を高めるためには、上述したように、金属酸化物粒子などの高屈折率フィラーを添加する方法や、バインダー成分としてのポリエステル樹脂の屈折率を高める方法などの手段があるが、金属酸化物粒子の使用は、設備磨耗の問題があり、多量に添加することが比較的難しい。一方、バインダー成分の屈折率を高めようとした場合は、同時にガラス転移温度も高くなる傾向があるため、延伸時の変形に追随できず延伸工程で塗膜が割れ、フィルムヘーズが上昇してしまう等の問題が生じ易くなる。したがって、これらの制約から、バインダー成分(ポリエステル樹脂)の構成および屈折率と、金属酸化物粒子の屈折率及び添加率は適切なバランスを取る必要があり、本発明においては、それぞれ上述した好ましい範囲を同時に採用する態様が最も好ましい。
(滑材粒子)
本発明における第1易接着層は、上記特定屈折率範囲の金属酸化物粒子以外にも、滑性を付与するための滑材粒子を含有することが好ましい。滑材粒子を含有することによって、フィルムに滑性や耐傷性を付与することができる。
かかる滑材粒子としては、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化ケイ素、ケイ酸ソーダ、水酸化アルミニウム、カーボンブラック、等の無機滑材粒子、アクリル系架橋重合体、スチレン系架橋重合体、シリコーン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、フェノール樹脂、ナイロン樹脂等の有機滑材粒子を挙げることができる。これらは1種類で用いてもよく、2種類以上を併用してもよい。
滑材粒子の平均粒子径は、好ましくは10~180nm、更に好ましくは20~150nmである。本発明の第1易接着層厚みは、通常の光学用フィルムにおける易接着層の厚みである80~120nmに対して非常に薄いため、平均粒子径が180nmより大きいと、滑材粒子の落脱が発生しやすくなり、また10nmよりも小さいと十分な滑性、耐傷性が得られない場合がある。
滑材粒子の含有量は、第1易接着層の質量100質量%あたり、好ましくは0.1~10質量%である。0.1質量%未満であると十分な滑性、耐傷性が得られず、10質量%を超えると表面ヘーズが高くなる傾向にあり、光学特性が低下する傾向にある。
(架橋剤)
本発明においては、第1易接着層の塗膜強度を向上させる目的、および接着性の向上効果を高くする目的で、架橋剤を添加することが好ましい。
架橋剤としては、塗膜強度向上の観点、および接着性をより向上できる観点から、好ましくはオキサゾリン基及びポリアルキレンオキシド鎖を有する化合物、更に好ましくはオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂を用いる。アクリル樹脂は、容易に多種類の官能基を共重合できるため好ましい。オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂は、水(多少の有機溶剤を含有していても良い)に可溶性または分散性のアクリルが好ましい。また、アクリル樹脂は屈折率が低いため、かかる成分の添加は第1易接着層の屈折率を下げることにつながるため、その添加量には十分注意する必要がある。
かかるオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂としては、以下に示すようなモノマーを成分として含むものを挙げることができる。
オキサゾリン基を有するモノマーとしては、例えば2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリンを挙げることができる。これらは、1種で用いてもよく、2種以上の混合物として使用してもよい。これらの中、2−イソプロペニル−2−オキサゾリンが工業的に入手しやすく好適である。オキサゾリン基を有するアクリル樹脂を用いることにより第1易接着層の凝集力が向上し、光学調整層または高屈折率層との接着性がより強固になる。更に、フィルム製膜工程内や、光学調整層または高屈折率層の加工工程内の金属ロールに対する耐擦過性を付与できる。このような効果の観点から、かかる成分を、アクリル樹脂中に10~50モル%含有することが好ましく、20~40モル%含有することがより好ましく、25~35モル%含有することがさらに好ましい。
ポリアルキレンオキシド鎖を有するモノマーとしては、例えばアクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたものを挙げることができる。ポリアルキレンオキシド鎖は、例えばポリメチレンオキシド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシドを挙げることができる。
ポリアルキレンオキシド鎖を有するアクリル樹脂を用いることで、第1易接着層中のポリエステル樹脂とアクリル樹脂の相溶性が、ポリアルキレンオキシド連鎖を含有しないアクリル樹脂と比較して良くなり、第1易接着層の透明性を向上させることができる。このような観点から、かかる成分を、アクリル樹脂中に2~20モル%含有することが好ましく、5~15モル%含有することがより好ましい。
ポリアルキレンオキシド鎖の繰り返し単位は3~100であることが好ましく、より好ましくは4~50、さらに好ましくは5~20である。ポリアルキレンオキシド鎖の繰り返し単位が少なすぎると、ポリエステル樹脂とアクリル樹脂との相溶性が悪くなる傾向にあり、第1易接着層の透明性の向上効果が低くなる傾向にある。他方、大きすぎると、第1易接着層の耐湿熱性が低くなる傾向にあり、特に高湿度、高温下において光学調整層または高屈折率層との接着性が低くなる傾向にある。
架橋剤としてのアクリル樹脂を構成するその余のモノマーとしては、アルキルアクリレート(好ましくはメチルアクリレートまたはエチルアクリレート)や、アルキルメタクリレート(好ましくはメチルメタクリレートまたはエチルメタクリレート)を用いればよい。
架橋剤の、第1易接着層中での含有割合は、第1易接着層のポリエステル樹脂と架橋剤の合計100質量%に対して、好ましくは1~20質量%、より好ましくは2~15質量%、さらに好ましくは8~15質量%である。
本発明においては、後述する第2易接着層における好ましい架橋剤である架橋性付加重合体を、第1易接着層の架橋剤として用いることができる。これにより、第2易接着層において架橋性付加重合体を採用する効果と同様の効果を、第1易接着層に付与することができる。
<光学調整層>
第1易接着層の上には、光学調整層が設けられる。
光学調整層は、干渉効果により、透明導電層の存在する部分と存在しない部分の光の反射、透過特性をマッチングさせ、骨見えを抑制する機能を奏する層である。光学調整層は、少なくとも一層の高屈折率層と少なくとも一層の低屈折率層より、これらを適宜組み合わせて構成されるのが通常である。高屈折率層と低屈折率層は、それぞれ複数層有していても良い。通常は、ポリエステルフィルム、高屈折率層、低屈折率層の積層順序となる。本発明における光学調整層としては、ポリエステルフィルムに近い側に高屈折率層、かかる高屈折率層のポリエステルフィルムとは反対側に低屈折率層を備える、高屈折率層/低屈折率層の2層構成である態様が好ましい。
(高屈折率層)
高屈折率層は、屈折率が1.60~1.80の層である。このような屈折率範囲とすることによって、本発明における他の層との相互作用により、骨見え抑制効果により優れる。かかる屈折率は高すぎても低すぎても骨見え抑制効果が低くなる傾向にある。かかる観点から、高屈折率層の屈折率は、好ましくは1.60以上、より好ましくは1.62以上、さらに好ましくは1.64以上であり、また、好ましくは1.75以下、より好ましくは1.70以下、さらに好ましくは1.68以下、特に好ましくは1.66以下である。
高屈折率層は、好ましくは、金属および/または金属酸化物と、任意にバインダー樹脂とからなる層である。中でも、金属酸化物とバインダー樹脂とからなる層であることが好ましい。かかる金属酸化物としては、ゾル−ゲル法により得られた金属酸化物膜を挙げることができる。この場合、かかる金属酸化物膜が高屈折率層となり得る。金属酸化物膜は、任意にバインダー樹脂を含有していてもよい。また、金属酸化物として、金属酸化物微粒子を挙げることができる。この場合、かかる金属酸化物粒子は、上述したゾル−ゲル法により形成された金属酸化物膜中に分散して存在する態様や、バインダー樹脂中に分散して存在する態様を挙げることができる。
上記において高屈折率層における膜や微粒子を形成する金属酸化物の種類としては、上記屈折率を満足するものであれば特に限定はされないが、得られる膜の強度を高くすることができ、また適度な屈折率とすることができるといった観点から、酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム、インジウム含有酸化錫、アンチモン含有酸化錫およびアンチモン酸亜鉛からなる群より選ばれる少なくとも一種であることが好ましい。中でも膜強度が特に高いこと、また微粒子の場合においては分散性に優れるといった観点から、酸化チタン、アンチモン含有酸化錫、酸化ジルコニウムが特に好ましい。これら金属酸化物は、1種を単独で用いても2種以上を組み合わせて用いても構わない。すなわち、2種以上の金属酸化物からなる金属酸化物膜であってもよいし、2種以上の金属酸化物微粒子を含有する態様であってもよい。また、金属酸化物膜中に金属酸化物微粒子を含有する態様においては、膜を形成する金属酸化物と微粒子を形成する金属酸化物とは同じであってもよいし、異なるものであってもよい。
高屈折率層におけるバインダー樹脂としては、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物等が挙げられる。中でも高屈折率となるような骨格を有するものを好ましく用いればよい。バインダー樹脂は、膜強度の観点から、熱、紫外線、電子線等によって硬化して形成されたものであることが好ましい。バインダー樹脂により接着性をより向上することができる。
本発明において特に好ましい高屈折率層の態様は、金属酸化物膜中に、バインダー樹脂を含有している態様であり、特に好ましくは、酸化チタン膜中に、有機シラン縮合物を含有している態様である。
高屈折率層に好ましく用いられる金属酸化物としては、市販品を用いることもできる。例えば、酸化ジルコニウム:HXU−110JC(住友大阪セメント社製)、酸化チタン:ナノテックTi−トル(シーアイ化成製)、酸化亜鉛:ナノテックZnO−Xylene(シーアイ化成製)、酸化セリウム:ニードラール(多木化学製)、インジウム含有酸化錫:三菱マテリアル社製の製品、アンチモン含有酸化錫:SN−100D(石原産業社製)、アンチモン酸亜鉛:セルナックスシリーズ(日産化学工業(株)製)等が挙げられる。
(低屈折率層)
低屈折率層は、屈折率が1.40~1.60の層である。このような屈折率範囲とすることによって、本発明における他の層との相互作用により、骨見え抑制効果により優れる。かかる屈折率は高すぎても低すぎても骨見え抑制効果は低くなる傾向にある。かかる観点から、低屈折率層の屈折率は、好ましくは1.42以上、より好ましくは1.43以上、さらに好ましくは1.44以上であり、また、好ましくは1.55以下、より好ましくは1.50以下、さらに好ましくは1.48以下である。
低屈折率層は、上記屈折率を満足するものであれば特に限定されず、バインダー樹脂からなる層であってもよいし、金属酸化物からなる層であってもよいし、バインダー樹脂と金属酸化物とからなる層であってもよい。また、低屈折率の有機粒子を含有することができる。金属酸化物としては、ゾル−ゲル法により得られた金属酸化物膜を挙げることができる。この場合、かかる金属酸化物膜が低屈折率層となり得る。金属酸化物膜は、任意にバインダー樹脂を含有していてもよい。また、金属酸化物として、金属酸化物微粒子を挙げることができる。この場合、かかる金属酸化物粒子は、上述したゾル−ゲル法により形成された金属酸化物膜中に分散して存在する態様や、バインダー樹脂中に分散して存在する態様を挙げることができる。
上記において低屈折率層における膜や微粒子を形成する金属酸化物の種類としては、好適な低屈折率を有する層が形成できる観点から、特に好ましくはシリカが挙げられる。また、有機粒子として有機シラン系の珪素化合物や、フッ素化合物等の低屈折率有機粒子を含有することにより、より好適な低屈折率を得ることができる。また、層中にボイド形成剤を含有する等により空隙を形成することにより、屈折率を低くすることもできる。
低屈折率層におけるバインダー樹脂としては、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物等が挙げられる。中でも低屈折率となるような骨格を有するものを好ましく用いればよい。バインダー樹脂は、膜強度の観点から、熱、紫外線、電子線等によって硬化して形成されたものであることが好ましい。
本発明において特に好ましい低屈折率層の態様は、金属酸化物膜からなる態様であり、ゾル−ゲル法により形成されたシリカ膜が特に好ましい。
本発明においては、上記のような高屈折率層と低屈折率層とを、上述したような配置で備えることにより、本発明における他の層との相乗効果により骨見えが抑制される。
また、高屈折率層の屈折率を上記範囲とすると同時に、厚みを、好ましくは50~250nm、より好ましくは100~200nm、さらに好ましくは125~175nmとすることにより、さらに骨見え抑制の向上効果を高くすることができる。また、低屈折率層の屈折率を上記範囲とすると同時に、厚みを、好ましくは5~50nm、より好ましくは10~45nm、さらに好ましくは20~40nmとすることにより、さらに骨見え抑制の向上効果を高くすることができる。さらに、各層の厚みを同時に前記好ましい範囲とすることにより、骨見え抑制の向上効果をさらに高くすることができる。
<その他の層>
本発明の積層体は、本発明の目的を阻害しない範囲において、他の層を有していてもよい。例えば、ポリエステルフィルムの光学調整層とは反対側の面に、他の光学部材と貼り合せるための粘着層を有していても良い。また、第1易接着層の上に、例えばハードコート層等の平滑化層を有して、その上に光学調整層を有してもよい。この際は、かかる平滑化層は、本発明における第1易接着層とも光学調整層(または高屈折率層)とも好適な接着性を示すものである。そうすることで、結果としてポリエステルフィルムと光学調整層(または高屈折率層)との接着性を確保できることとなる。
<第2易接着層>
本発明においては、ポリエステルフィルムの第1易接着層とは反対側の面に、第2易接着層を有することができる。かかる第2易接着層は、ハードコート層などの機能層を積層する際に、ポリエステルフィルムと該機能層との接着性を向上させるための層である。
第2易接着層は、下記共重合ポリエステル樹脂を第2易接着層の質量を基準として70質量%以上、好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上含有する層である。共重合ポリエステル樹脂の割合が70質量%以上であることにより、ハードコート層などの機能層との接着性が良好となり、また、第2易接着層の屈折率を適正な範囲とすることができるので光の干渉斑を抑制することができる。さらに、第2易接着層のガラス転移温度(Tg)も適正な範囲となって造膜性が向上し、第2易接着層のひび割れが低減され、かかるひび割れに起因した接着性低下を抑制することができ、接着性に優れる。
なお、配向ポリエチレンテレフタレートフィルムの面方向平均屈折率は通常1.66程度あり、機能層として通常用いられるアクリル系樹脂系ハードコート層の屈折率は1.52程度であるので、第2易接着層の屈折率は1.57~1.62の範囲が好ましく、1.58~1.61の範囲がより好ましく、特に好ましくは1.59~1.60の範囲である。かかる屈折率は、後述する共重合ポリエステル樹脂を採用することにより容易に達成することができる。
第2易接着層の厚みは、好ましくは50~100nm、さらに好ましくは70~90nmである。厚みをこの範囲にすることで、そのうえにアクリル系ハードコート層等の機能層を設けたときに、光の干渉斑を抑制する効果がより高まるので好ましい。
(第2易接着層の共重合ポリエステル樹脂)
第2易接着層に用いられる共重合ポリエステル樹脂は、目的とする作用効果によって、以下に説明する態様を選択することができる。なお、かかる共重合ポリエステル樹脂は、目的を阻害しない限りにおいて第1易接着層のポリエステル樹脂としても用いることができ、それによりかかる共重合ポリエステル樹脂を採用することによる効果を第1易接着層に付与することができる。以下、第1易接着層および第2易接着層をまとめて易接着層と呼称する場合がある。
<共重合ポリエステル樹脂の好ましい態様1(共重合ポリエステル樹脂1)>
第1および第2易接着層等の塗布層を形成するに際して、配向完了前のポリエステルフィルム上に塗布層を形成するための塗液を塗布した後に配向結晶化を完了させる、所謂インラインコーティング法がしばしば用いられる。しかしながら、我々の検討によれば、ポリエチレンテレフタレートフィルム上に塗布する場合には、延伸工程で発生する塗布層の割れのためと推定されるが、接着性についてさらなる改善が望まれる場合があることが判明した。
本態様は、例えばハードコート層などの機能層との優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
本態様の第2易接着層に用いられる共重合ポリエステル樹脂は、該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む共重合ポリエステルである。
ナフタレンジカルボン酸成分の割合が上記範囲にあることにより、共重合ポリエステルの屈折率を高くすることができ、容易に第2易接着層の屈折率を上述の好ましい範囲とすることができ、光の干渉斑を抑制することができる。また、溶剤に対する第2易接着層の耐膨潤性も良好なものとなる。このナフタレンジカルボン酸成分の割合が下限未満になると、共重合ポリエステルの屈折率が低くなるため、結果として第2易接着層の屈折率が低くなって光の干渉斑を抑制する効果が不十分となる。さらに有機溶剤に対する膨潤性が大きくなる(耐溶剤性が悪化)ため、ハードコート層などの機能層用塗布液中の有機溶剤に接触した際に膨潤して第2易接着層の厚み斑に起因する干渉斑が発生しやすくなるだけでなく、耐ブロッキング性も低下するため好ましくない。他方、ナフタレンジカルボン酸成分の割合が多くなるほど共重合ポリエステルの屈折率は大きくなるので、第2易接着層としては他の成分(例えば後述する架橋剤やその他の成分等)の割合を増やすことができる。しかし、同時に共重合ポリエステルのガラス転移温度(Tg)が高くなって第2易接着層のガラス転移温度も高くなる傾向にあり、第2易接着層の造膜性が低下して、接着性が低下しやすくなる。したがって、ナフタレンジカルボン酸成分の含有量の好ましい下限は65モル%であり、好ましい上限は85モル%、さらに好ましくは80モル%、特に好ましくは70モル%である。ここでナフタレンジカルボン酸成分としては、2,7−ナフタレンジカルボン酸成分や2,6−ナフタレンジカルボン酸成分、1,4−ナフタレンジカルボン酸成分等があげられるが、なかでも2,6−ナフタレンジカルボン酸成分が好ましい。
また、共重合ポリエステルの全酸成分を基準として、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有している。好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~40モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。このため、共重合ポリエステルのTgを低くすることができ、第2易接着層のTgを低くすることができる。その結果、配向ポリエチレンテレフタレートフィルム上に第2易接着層を形成する際にしばしば採用されるインラインコーティング法でも、第2易接着層の造膜性に優れているので、乾燥・延伸条件下で第2易接着層に割れ(クラック)が発生するのを抑制し、接着性に優れたフィルムが得られる。特に、配向ポリエステルフィルムの製造に同時二軸延伸法を採用し、第2易接着層の形成にインラインコーティング法を採用する場合には、予熱・乾燥温度が比較的低くなりやすいために本態様を採用する効果が大きく特に好ましい。また、耐ブロッキング性にも優れる。
上記アルキレンジカルボン酸成分と上記アルキレングリコール成分の合計量が下限未満になると、共重合ポリエステルのTgが十分には下がらないため、接着性が不十分なものとなる。他方、上記アルキレンジカルボン酸成分またはアルキレングリコール成分が上限を超えるか、両者の合計が上限を超える場合には、耐ブロッキング性が低下するだけでなく、他の共重合成分の含有量が少なくなることとなる結果、共重合ポリエステルの屈折率が低くなって光の干渉斑を抑制する効果が不十分となる。また、第2易接着層の耐溶剤性も低下する恐れがある。そのような観点から、アルキレンジカルボン酸成分とアルキレングリコール成分の合計量は、20~50モル%の範囲とするのが好ましい。
好ましく用いられる炭素数6~12のアルキレンジカルボン酸成分(炭素数4~10のアルキレン基を有するジカルボン酸成分)としては、例えば1,4−ブタンジカルボン酸成分、1,6−ヘキサンジカルボン酸成分、1,4−シクロヘキサンジカルボン酸成分、1,8−オクタンジカルボン酸成分、1,10−デカンジカルボン酸成分等をあげることができる。中でも、適切なTgが得易いという観点から、炭素数4~8のアルキレン基を有するジカルボン酸成分が好ましく、炭素数4~6のアルキレン基を有するジカルボン酸成分がさらに好ましい。また、好ましく用いられる炭素数4~10のアルキレングリコール成分としては、例えば1,4−ブタンジオール成分、1,6−ヘキサンジオール成分、1,4−シクロヘキサンジオール成分、1,8−オクタンジオール成分、1,10−デカンジオール成分等を挙げることができる。中でも、適切なTgが得易いという観点から、炭素数4~8のアルキレングリコール成分が好ましく、炭素数4~6のアルキレングリコール成分がさらに好ましい。
なお、共重合ポリエステルに他の共重合成分を含有させて他の機能を付与しようとする場合は、酸成分として含有させる方が容易であり、また重合反応もしやすいため、酸成分に共重合の余地を残しておくという観点から、上記のアルキレンジカルボン酸成分とアルキレングリコール成分の中では、アルキレングリコール成分として含有させる方がより好ましい。
また、共重合ポリエステルの全酸成分を基準として、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいるので、共重合ポリエステルのTgを適度に低い温度に維持しながら、屈折率を高くし、好ましい範囲とすることができる。前記式(I)で示されるフルオレン構造を有するグリコール成分の含有量が5モル%未満の場合には、共重合ポリエステルの屈折率を好ましい範囲とすることが難しくなり、光の干渉斑を抑制できない。他方20モル%以上の場合には、共重合ポリエステルのTgが高くなりすぎるため、第2易接着層の造膜性が低下して、得られるフィルムの透明性が低下するだけでなく、接着性も低下する。このような観点から、好ましい下限値は3モル%であり、さらに好ましくは5%であり、好ましい上限値は15モル%であり、さらに好ましくは10%である。好ましく用いられる前記式(I)で示されるフルオレン構造を有するグリコール成分としては、例えば9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン成分、9,9−ビス[4−(2−ヒドロキシエトキシ)−2−メチルフェニル]フルオレン成分を挙げることができる。
以上に説明した本態様における第2易接着層の共重合ポリエステルは、上記の成分に加えて、ビスフェノールAのエチレンオキサイド付加体成分を5~25モル%、さらには10~20モル%含有していることが好ましく、これにより屈折率を維持しながら、Tgをより好ましい範囲とすることができ、接着性も向上する。なお、エチレンオキサイドの平均付加モル数はビスフェノールA1モルに対して2~4モルの範囲が適当である。
また、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~40モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
さらに本態様の共重合ポリエステルは、全酸成分を基準として、スルホン酸塩基を有するジカルボン酸成分を1~10モル%含有していることが好ましい。これにより、共重合ポリエステルを水性塗布液とする際の溶解性ないし水分散性を高めることができる。また、第2易接着層の耐溶剤性(耐膨潤性)を向上させることができる。しかし、多くなりすぎると第2易接着層の耐水性や耐ブロッキング性が低くなる傾向にあるので、2~8モル%の範囲が特に好ましい。このスルホン酸塩基を有する芳香族ジカルボン酸成分としては、例えば5−ナトリウムスルホイソフタル酸成分、5−カリウムスルホイソフタル酸成分、5−リチウムスルホイソフタル酸成分、5−ホスホニウムスルホイソフタル酸成分等が挙げられるが、水分散性良化の点から、5−ナトリウムスルホイソフタル酸成分が最も好ましい。
好ましく用いられる共重合ポリエステル樹脂1の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂1の好ましい態様1(好ましい態様1−1)]
(A2)ナフタレンジカルボン酸成分を60~90モル%
(B2)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%
(C2)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様2(好ましい態様1−2)]
(A3)ナフタレンジカルボン酸成分を60~80モル%
(B3)炭素数4~10のアルキレングリコール成分を15~50モル%
(C3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D3)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E3)テレフタル酸成分および/またはイソフタル酸成分を20~40モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様3(好ましい態様1−3)]
(A4)ナフタレンジカルボン酸成分を60~80モル%
(B4)炭素数4~10のアルキレングリコール成分を15~50モル%
(C4)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E4)テレフタル酸成分および/またはイソフタル酸成分を20~40モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂1の好ましい態様4(好ましい態様1−4)]
(A5)ナフタレンジカルボン酸成分を60~70モル%
(B5)炭素数4~10のアルキレングリコール成分を15~50モル%
(C5)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D5)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E5)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(F5)スルホン酸塩基を有するジカルボン酸成分を6~8モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
(ポリエステルフィルム)
本態様においては、ポリエステルフィルムは配向ポリエチレンテレフタレートフィルムであることが好ましく、一軸配向フィルムであっても二軸配向フィルムであってもよいが、面内方向の機械的特性や熱的特性の均一性の点から二軸配向フィルムであることが好ましい。その際、面方向平均屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)は、本態様の第2易接着層を設けた上にハードコート層などの機能層を設けた際において、光の干渉斑(色斑感)の発生を抑制することができるという観点では、1.6~1.7の範囲が好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計は15~50モル%、および
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~40モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記1~3のいずれかに記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
<共重合ポリエステル樹脂の好ましい態様2(共重合ポリエステル樹脂2)>
ハードコート層等の機能層を設けるための塗布液には、溶剤として様々な溶剤が用いられるようになってきており、溶剤によっては易接着層が膨潤溶解して厚みが変動し、結果として干渉斑が抑制できなくなるという問題がある。かかる問題に対して、例えば特開2009−300658号公報や特開2009−300658号公報には、平均粒径0.2~0.7μmの比較的大きな粒径を有する粒子を添加することにより、易接着層の厚み変動が生じても、表面粗さによって干渉斑を抑制する方法が提案されている。なお、この厚み変動に係る問題は、光学調整層を形成するに際しても同様に様々な溶剤が用いられることから、骨見えが抑制できなくなる問題となる場合もある。
本態様は、例えばハードコート層などの機能層との優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
かかる共重合ポリエステルは、例えばナフタレンジカルボン酸成分やフルオレン構造を有するグリコール成分などの屈折率を増大しうる成分およびスルホン酸塩基を有する芳香族ジカルボン酸成分などの膨潤率を調整しうる成分を使用し、これらの共重合量を調整することによって、屈折率および膨潤率を調整すればよい。
好ましく用いられる共重合ポリエステルとしては、例えば該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、ビスフェノールAのエチレンオキサイド付加体を5~25モル%含むものが挙げられる。
ナフタレンジカルボン酸成分の割合が上記範囲にあることにより、共重合ポリエステルの屈折率を高くすることができ、容易に第2易接着層の屈折率を上述の範囲とすることができ、干渉斑を抑制することができる。また、第2易接着層の膨潤率も容易に好ましい範囲とすることができる。このナフタレンジカルボン酸成分の割合が少なくなりすぎると、共重合ポリエステルの屈折率が低くなるため、結果として第2易接着層の屈折率が低くなって干渉斑を抑制する効果が不十分となる。他方、ナフタレンジカルボン酸成分の割合が多くなるほど共重合ポリエステルの屈折率は大きくなるので、第2易接着層としては他の成分(例えば後述する架橋剤やその他の成分等)の割合を増やすことができる。しかし、同時に共重合ポリエステルのガラス転移温度(Tg)が高くなって第2易接着層のガラス転移温度も高くなる傾向にあり、第2易接着層の造膜性が低下して、接着性やフィルムの透明性が低下しやすくなる。したがって、ナフタレンジカルボン酸成分の含有量は65モル%以上であることが好ましく、かつ85モル%以下、さらに80モル%以下、特に70モル%以下であることが好ましい。ここで、好ましいナフタレンジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。
また、共重合ポリエステルの全酸成分を基準として、スルホン酸塩基を有する芳香族ジカルボン酸成分を上記範囲で有することにより、共重合ポリエステルを水性塗布液とする際の溶解性ないし水分散性を高めることができる。また、第2易接着層の膨潤率を容易に好ましい範囲とすることができる。しかし、多くなりすぎると第2易接着層の耐水性や耐ブロッキング性が低くなる傾向にあるので、好ましくは2~8モル%であり、6~8モル%の範囲が特に好ましい。好ましいスルホン酸塩基を有する芳香族ジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。。
さらに、共重合ポリエステルの全酸成分を基準として、ビスフェノールAのエチレンオキサイド付加体成分を上記範囲で有することにより、共重合ポリエステルの屈折率を維持したまま、Tgを好ましい範囲とすることができ、第2易接着層の造膜性が向上して透明性に優れたフィルムを得ることができる。また、膨潤率を好ましい範囲にし易くなる。なお、エチレンオキサイドの平均付加モル数はビスフェノールA1モルに対して2~4モルの範囲が適当である。
以上に説明した共重合ポリエステルは、上記の成分に加えて、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいることが好ましく、共重合ポリエステルのTgを適度に低い温度に維持しながら、屈折率を好ましい範囲とすることができる。かかる成分の含有量が少なくなると共重合ポリエステルの屈折率が低くなる傾向にあり、他方多くなると共重合ポリエステルのTgが高くなり、第2易接着層の造膜性が低下してフィルムの透明性が低下する傾向にあり、接着性も低下する傾向にある。このような観点から、好ましい下限は5モル%であり、好ましい上限は15モル%であり、特に好ましくは10モル%である。好ましく用いられる前記式(I)で示されるフルオレン構造を有するグリコール成分としては、共重合ポリエステル樹脂1と同様である。
さらに、上記の成分に加えて、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有することが好ましい。より好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~40モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。これにより、共重合ポリエステルのTgを低くすることができ、第2易接着層のTgを低くすることができる。その結果、ポリエステルフィルムがポリエチレンテレフタレートフィルムであっても、第2易接着層を形成する際にしばしば採用されるインラインコーティング法でも、第2易接着層の造膜性に優れているので透明性に優れたフィルムが得られる。特に同時二軸延伸法を採用し、第2易接着層の形成にインラインコーティング法を採用する場合には、予熱・乾燥温度が比較的低くなりやすいために本態様の採用により透明性向上効果が大きく好ましい。また、接着性の向上効果を高くすることができ、耐ブロッキング性にも優れる。
上記アルキレンジカルボン酸成分と上記アルキレングリコール成分の合計量が少なくなると、共重合ポリエステルのTgが下がりにくくなるため、得られるフィルムの透明性が低下する場合がある。他方、上記アルキレンジカルボン酸成分またはアルキレングリコール成分が多くなるか、両者の合計が多くなると、耐ブロッキング性が低下したり、共重合ポリエステルの屈折率が低下して干渉斑を抑制する効果が低下する場合がある。また、第2易接着層の膨潤率も増大する恐れがある。そのような観点から、アルキレンジカルボン酸成分とアルキレングリコール成分の合計量は、20~50モル%の範囲とするのが好ましい。
好ましく用いられる炭素数6~12のアルキレンジカルボン酸成分(炭素数4~10のアルキレン基を有するジカルボン酸成分)および、好ましく用いられる炭素数4~10のアルキレングリコール成分としては、共重合ポリエステル樹脂1と同様である。
なお、共重合ポリエステルに他の共重合成分を含有させて他の機能を付与する場合、酸成分として含有させるのがやりやすく、また重合反応もしやすいので、上記のアルキレンジカルボン酸成分と上記アルキレングリコール成分の中では、アルキレングリコール成分として含有させる方がより好ましい。
さらに、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~40モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
好ましく用いられる共重合ポリエステル樹脂2の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂2の好ましい態様1(好ましい態様2−1)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、および
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様2(好ましい態様2−2)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%、および
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様3(好ましい態様2−3)]
(A)ナフタレンジカルボン酸成分を60~90モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(E)炭素数4~10のアルキレングリコール成分を15~50モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様4(好ましい態様2−4)]
(A)ナフタレンジカルボン酸成分を60~70モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を6~8モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(F)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂2の好ましい態様5(好ましい態様2−5)]
(A)ナフタレンジカルボン酸成分を60~70モル%
(B)スルホン酸塩基を有する芳香族ジカルボン酸成分を6~8モル%
(C)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(D)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E)炭素数4~10のアルキレングリコール成分を15~50モル%、および
(F)テレフタル酸成分および/またはイソフタル酸成分を24~34モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
本態様における第2易接着層は、以下のような態様であることが好ましい。
(屈折率)
本態様における第2易接着層の屈折率は、1.58~1.64であることが好ましい。より好ましくは1.58~1.62、さらに好ましくは1.58~1.60、特に好ましくは1.58~1.59である。第2易接着層の屈折率がこの範囲にあることにより、後述する好ましいポリエステルフィルムの面方向平均屈折率と、通常アクリル系樹脂からなるハードコート層の屈折率(おおよそ1.52程度)との間の屈折率となるので、第2易接着層上にこのようなアクリル系樹脂からなるハードコート層等を塗設した際の干渉斑(色斑感)が抑制できる。この屈折率は、高すぎても低すぎても干渉斑の抑制が難しくなる。また、このような屈折率となるような成分、好ましくは上述した成分からなる第2易接着層とすることによって、膨潤率を好ましい範囲とし易くなる。
このような屈折率を達成するためには、第2易接着層を構成する各成分の屈折率を調整すればよい。例えば、屈折率の高い共重合ポリエステル樹脂や粒子を用いることで、第2易接着層の屈折率を高くすることができる。特に好ましくは、上述した共重合ポリエステル樹脂2を採用すればよい。
(厚み)
本態様において第2易接着層の厚みは、50~100nmである必要があり、好ましくは70~90nmである。第2易接着層の厚みをこの範囲にすることにより、その上にアクリル系樹脂からなるハードコート層等の低屈折率層を設けた際の干渉斑(色斑感)が抑制できる。この厚みは、薄すぎると接着性が低下しやすく、また、薄すぎても厚すぎても干渉斑の抑制が難しくなる。
(膨潤率)
本態様における第2易接着層は、下記の方法で求められる膨潤率が下記のいずれの溶剤においても130~200%である。好ましくは130~180%、より好ましくは135~175%、さらに好ましくは139~165%である。ここで膨潤率は、フィルムの第2易接着層上に、下記UV硬化系組成物を溶剤で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100
として求めた値である。UV硬化系組成物としては下記を使用し、溶剤としては、通常ハードコート層などを形成する際に使用される溶剤の代表となるメチルエチルケトン(MEK)、酢酸エチル、トルエン、イソプロパノール(IPA)およびプロピレングリコールモノメチルエーテルアセテート(PGMEA)を用い、これらの溶剤のいずれにおいても、第2易接着層の膨潤率が上記範囲となる必要がある。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量%
この膨潤率が130%未満の場合には、ハードコート層などとの接着性が低くなる傾向にあり、他方、膨潤率が200%を超える場合には、ハードコート層などの機能層形成前後における第2易接着層の厚みの変動が大きすぎるため、干渉斑を抑制することが難しくなる。また、かかる膨潤率は、上記溶剤のいずれにおいても、上記範囲内となることが重要なのであり、いずれかの溶剤での膨潤率がこの範囲を外れると、かかる溶剤を用いてハードコート層等の機能層を形成した際に、接着性が不十分となるか干渉斑の抑制が困難となるためである。なお、この膨潤率は、溶剤の種類による変動が少ない方がハードコート層を形成した際の干渉斑抑制が容易となるので、最大の膨潤率と最少の膨潤率の差が50%以下、さらに25%以下であることが好ましい。
このような膨潤率を達成するためには、第2易接着層に用いられる成分、特にバインダー成分を構成する共重合成分を調整し、親油性と親水性のバランスをとればよい。具体的には、前述した好ましい態様の共重合ポリエステル樹脂2を用いることができる。また、第2易接着層に架橋剤を用いることによっても膨潤率を調整することができる。架橋剤は、添加量が多くなるほど膨潤率が小さくなる傾向にある。
(ポリエステルフィルム)
本態様における好ましいポリエステルフィルムの態様は、その面方向屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)が1.63~1.68であり、好ましくは1.64~1.67、特に好ましくは1.65~1.66の範囲である。面方向屈折率がこの範囲にあると、前述の共重合ポリエステル樹脂2を用いた第2易接着層を設けたフィルムは、その上にハードコート層のような低屈折率層を形成した際の、干渉斑発生の抑制効果に優れる。面方向屈折率は、上記範囲を外れて高すぎても低すぎても、干渉斑発生の抑制効果が低下する傾向にある。
かかるポリエステルフィルムは、面方向屈折率が上記の要件を満足していれば、未配向フィルム、一軸配向フィルム、二軸配向フィルムのいずれであってもよいが、機械的特性や熱的特性の点から二軸配向フィルムであることが好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.面方向屈折率が1.63~1.68のポリエステルフィルムの少なくとも片面に、屈折率が1.58~1.64、下記の方法で求められる膨潤率がいずれの溶剤においても130~200%、かつ厚みが50~100nmである第2易接着層を有する積層ポリエステルフィルム。
膨潤率:
積層ポリエステルフィルムの第2易接着層上に、下記UV硬化系組成物を溶剤(メチルエチルケトン、酢酸エチル、トルエン、イソプロパノールまたはプロピレングリコールモノメチルエーテル)で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100として求めた値である。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量%
2.第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する、上記1に記載の積層ポリエステルフィルム。
共重合ポリエステル:
(A2)ナフタレンジカルボン酸成分を60~90モル%、
(B2)スルホン酸塩基を有する芳香族ジカルボン酸成分を1~10モル%、および
(C2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
3.上記共重合ポリエステルが、さらに
(D3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記2に記載の積層フィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記2または3に記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
<共重合ポリエステル樹脂の好ましい態様3(共重合ポリエステル樹脂3)>
第1および第2易接着層等の塗布層を形成するに際して、配向完了前のポリエステルフィルム上に塗布層を形成するための塗液を塗布した後に配向結晶化を完了させる、所謂インラインコーティング法がしばしば用いられる。しかしながら、我々の検討によれば、ポリエチレンテレフタレートフィルム上に塗布する場合には、延伸工程で発生する塗布層の割れのためと推定されるが、接着性についてさらなる改善が望まれる場合があることが判明した。そして、かかる接着性については、特に湿熱環境下における接着性(湿熱接着性)の向上が強く要求されている。
本態様は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性、および該機能層形成後の光の干渉斑(色斑感)抑制を目的とするにあたって、特に好適な共重合ポリエステル樹脂の態様である。
本態様の第2易接着層に用いられる共重合ポリエステル樹脂は、該共重合ポリエステルの全ジカルボン酸成分(100モル%)を基準として、ナフタレンジカルボン酸成分を60~90モル%、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および、スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%含むものである。
ナフタレンジカルボン酸成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。本態様においては、スルホン酸塩基を有するジカルボン酸成分が必須成分であることを勘案して、含有量については、ナフタレンジカルボン酸成分の含有量の好ましい下限は65モル%であり、好ましい上限は85モル%、より好ましくは80モル%、さらに好ましくは75.9モル%、特に好ましくは70モル%である。
また、共重合ポリエステルの全酸成分を基準として、炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%含有している。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。本態様においては、スルホン酸塩基を有するジカルボン酸成分が必須成分であることを勘案して、含有量については、好ましくは、炭素数6~12のアルキレンジカルボン酸成分を0~39.9モル%および炭素数4~10のアルキレングリコール成分を0~50モル%を含有し、かつ該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%となるように含有している態様である。
また、共重合ポリエステルの全酸成分を基準として、前記式(I)で示されるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含んでいる。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。
さらに本態様においては、全酸成分を基準として、スルホン酸塩基を有するジカルボン酸成分の含有量が0.1~5モル%である。これにより、湿熱環境下における接着性を高くすることができる。多くなりすぎると湿熱環境下における接着性が低くなる傾向にあるので、0.1~4.5モル%の範囲が特に好ましい。他方、含有量が少なすぎても、溶媒(特に水溶媒)に分散させたり溶解させたりする効果が低下し、均一な塗布がし難くなる傾向にあり、それにより接着性、特に湿熱環境下における接着性が低くなる傾向にある。かかる観点から、0.2モル%以上が好ましく、0.4モル%以上がより好ましい。好ましいスルホン酸塩基を有する芳香族ジカルボン酸成分としては、共重合ポリエステル樹脂1と同様である。
以上に説明した本態様における第2易接着層の共重合ポリエステルは、上記の成分に加えて、ビスフェノールAのエチレンオキサイド付加体成分を5~25モル%、さらには10~20モル%含有していることが好ましい。かかる成分の好ましい態様および効果は、共重合ポリエステル樹脂1と同様である。
また、上記の成分に加えて、屈折率を維持しながら共重合ポリエステルのTgをより好適な範囲とするために、テレフタル酸および/またはイソフタル酸を20~39.9モル%、特に24~34モル%含有していることが好ましい。なかでもイソフタル酸成分が、より適したTgを得やすいので好ましい。
好ましく用いられる共重合ポリエステル樹脂3の具体的な態様として、下記を例示することができる。
[共重合ポリエステル樹脂3の好ましい態様1(好ましい態様3−1)]
(A2)ナフタレンジカルボン酸成分を60~90モル%
(B2)炭素数6~12のアルキレンジカルボン酸成分を0~39.9モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計が15~50モル%
(C2)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(F2)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様2(好ましい態様3−2)]
(A3)ナフタレンジカルボン酸成分を60~80モル%
(B3)炭素数4~10のアルキレングリコール成分を15~50モル%
(C3)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D3)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E3)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F3)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様3(好ましい態様3−3)]
(A4)ナフタレンジカルボン酸成分を60~80モル%
(B4)炭素数4~10のアルキレングリコール成分を15~50モル%
(C4)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(E4)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F4)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
[共重合ポリエステル樹脂3の好ましい態様4(好ましい態様3−4)]
(A5)ナフタレンジカルボン酸成分を60~75.9モル%
(B5)炭素数4~10のアルキレングリコール成分を15~50モル%
(C5)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満
(D5)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(E5)テレフタル酸成分および/またはイソフタル酸成分を20~39.9モル%
(F5)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む共重合ポリエステル。
(ポリエステルフィルム)
本態様においては、ポリエステルフィルムは配向ポリエチレンテレフタレートフィルムであることが好ましく、一軸配向フィルムであっても二軸配向フィルムであってもよいが、面内方向の機械的特性や熱的特性の均一性の点から二軸配向フィルムであることが好ましい。その際、面方向平均屈折率(フィルム面内において、任意の一方向の屈折率とそれに垂直な方向の屈折率との平均屈折率)は、本態様の第2易接着層を設けた上にハードコート層などの機能層を設けた際において、光の干渉斑(色斑感)の発生を抑制することができるという観点では、1.6~1.7の範囲が好ましい。
本態様の第2易接着層は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満、および
(F1)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~39.9モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.第2易接着層が、第2易接着層の質量を基準として1~30質量%の架橋剤を含有する、上記1~3のいずれかに記載の積層ポリエステルフィルム。
5.光学用易接着性ポリエステルフィルムとして用いられる、上記1~4のいずれかに記載の積層ポリエステルフィルム。
以上に詳述した共重合ポリエステルは、従来公知のポリエステル製造技術により製造することができる。例えば2,6−ナフタレンジカルボン酸またはそのエステル形成性誘導体、イソフタル酸またはそのエステル形成性誘導体および5−ナトリウムスルホイソフタル酸またはそのエステル形成性誘導体などの酸成分を、テトラメチレングリコール、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、ビスフェノールAエチレンオキサイド付加体成分などのジオール成分と反応せしめてモノマーもしくはオリゴマーを形成し、その後真空下で重縮合せしめることによって所定の固有粘度の共重合ポリエステルとする方法で製造できる。その際、反応を促進する触媒、例えばエステル化もしくはエステル交換触媒、重縮合触媒を用いることができ、また種々の添加剤、例えば安定剤等を添加することもできる。
また、共重合ポリエステルは、塗液としてフィルムの少なくとも片面に塗布されるが、フィルムを製膜する際に塗布するインラインコーティング法が好ましいので、該共重合ポリエステルを水分散体として用いることが好ましい。水分散体とする方法は特に限定する必要はなく、従来公知の方法を採用すればよい。
(その他の成分)
本発明において第2易接着層に用いられる共重合ポリエステルは、上記以外の酸成分やジオール成分を含有していてもよく、酸成分としては、例えば、フタル酸、無水フタル酸などを例示することができ、またジオール成分としては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、キシレングリコール、ジメチロールプロパンなどを例示することができる。さらに若干量であれば、マレイン酸、イタコン酸等の不飽和酸成分、トリメリット酸、ピロメリット酸等の多官能酸成分、グリセリン、トリメチロールプロパンなどの多官能ヒドロキシ成分や、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等のポリ(アルキレンオキシド)グリコール成分を用いてもよい。本発明においては、特にジオール成分としては、上述の必須あるいは好ましいジオール成分を必須あるいは好ましい含有量で含有し、その余のジオール成分がエチレングリコール成分である態様が好ましい。
第2易接着層の共重合ポリエステルの好ましい固有粘度(IVと省略することがある。)の範囲は、0.2~0.8dl/gであり、下限はさらに0.3dl/g、特に0.4dl/gであることが好ましく、上限はさらに0.7dl/g、特に0.6dl/gであることが好ましい。ここで固有粘度は、オルトクロロフェノールを用いて35℃において測定した値である。
また、第2易接着層の共重合ポリエステルのガラス転移温度(Tg)は、ポリエチレンテレフタレートフィルム上にインラインコーティングする際の塗膜形成性(造膜性)や接着性の点から70℃以下であることが好ましく、耐ブロッキング性の点からは40℃以上、特に45℃以上であることが好ましい。
また、共重合ポリエステルの屈折率は、第2易接着層の屈折率を前述の好適な範囲として光の干渉斑(色斑感)を抑制することが容易となるので、1.58~1.65の範囲、さらに1.60~1.63の範囲、特に1.61~1.62の範囲にあることが好ましい。共重合ポリエステルのTgと屈折率を同時に満足させるためには、前述の好ましい共重合ポリエステル樹脂の態様を採用すればよい。
<架橋剤>
第2易接着層には、上述の共重合ポリエステル樹脂に加えて架橋剤を配合することが好ましい。好ましく用いられる架橋剤としては、エポキシ系架橋剤、オキサゾリン系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤などを例示することができ、これらは1種類を用いてもよく、2種類以上を併用してもよい。
エポキシ系架橋剤としては、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等が挙げられ、ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリ−1、4−ブタンジオールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としては、例えばN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサンが挙げられる。
オキサゾリン系架橋剤としては、オキサゾリン基を含有する重合体が好ましい。付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであればよく、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N、N−ジアルキルアクリルアミド、N、N−ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル、アクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたもの等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα、β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα、β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
メラミン系架橋剤としては、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に低級アルコールとしてメチルアルコール、エチルアルコール、イソプロピルアルコール等を反応させてエーテル化した化合物およびそれらの混合物が好ましい。メチロールメラミン誘導体としては、例えば、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン等が挙げられる。
イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、メタキシリレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート、1,6−ジイソシアネートヘキサン、トリレンジイソシアネートとヘキサントリオールの付加物、トリレンジイソシアネートとトリメチロールプロパンの付加物、ポリオール変性ジフェニルメタン−4、4’−ジイソシアネート、カルボジイミド変性ジフェニルメタン−4,4’−ジイソシアネート、イソホロンジイソシアネート、1,5−ナフタレンジイソシアネート、3,3’−ビトリレン−4,4’ジイソシアネート、3,3’ジメチルジフェニルメタン−4,4’−ジイソシアネート、メタフェニレンジイソシアネート等が挙げられる。
これらの架橋剤のうち特にオキサゾリン系架橋剤が、取扱い易さや塗布液のポットライフ等の点から好ましい。
第2易接着層にかかる架橋剤を含有させることによって、第2易接着層の耐溶剤性(耐膨潤性)および耐ブロッキング性を向上させることができるが、多くなりすぎると共重合ポリエステル樹脂の割合が少なくなり、第2易接着層の屈折率が低下して光の干渉斑を抑制することが難しくなるだけでなく、第2易接着層が硬くなって接着性も低下する傾向にあるので、架橋剤の含有割合は、第2易接着層の質量100質量%あたり、1~30質量%の範囲とするのが好ましく、特に5~10重量%の範囲とするのが好ましい。
これらの架橋剤のうち特にオキサゾリン系架橋剤が、取扱い易さや塗布液のポットライフ等の点から好ましい。
また、上述の共重合ポリエステル樹脂2を採用した好ましい態様においては、第2易接着層にかかる架橋剤を含有させることにより、第2易接着層の溶剤に対する膨潤率を容易に好適な値とすることができるが、多くなりすぎると膨潤率が低くなりすぎて接着性が低下する傾向にあるので、架橋剤の含有割合は、第2易接着層の質量100質量%あたり、1~30質量%の範囲とするのが好ましく、特に5~10質量%の範囲とするのが好ましい。
<架橋性付加重合体>
上述のとおり、接着性について、特に湿熱環境下における接着性(湿熱接着性)の向上が強く要求されている。
本態様は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性を目的とするにあたって、特に好適な架橋剤の態様である。
第2易接着層においては、後述する架橋性付加重合体を架橋剤として採用することにより、湿熱接着性を向上することができ、好ましい。特に、上述した共重合ポリエステル樹脂1の態様において下記架橋性付加重合体を用いる態様が、特に接着性(湿熱接着性)が高く好ましい。
本発明における第2易接着眉は、上述の共重合ポリエステル樹脂(特に好ましくは共重合ポリエステル樹脂1)に加えて、下記の架橋性付加重合体を、第2易接着層の質量を基準として1~30質量%含有することが好ましい。
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。
これにより、上述の共重合ポリエステル樹脂を採用することによる第2易接着層の割れ抑制による接着性向上と併せて、湿熱環境下における接着性に優れたものとすることができる。
付加重合性オキサゾリン基含有モノマーユニットを構成する付加重合性オキサゾリン基含有モノマーとしては、例えば2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができる。これらの1種または2種以上の混合物を使用することもできる。付加重合性を奏するための付加重合性基は、特に限定はされないが、ハードコート層等の機能層との接着性をさらに向上する観点から、また目的とする化合物が得やすい観点から、特にアクリル残基もしくはメタクリル残基が好ましく、すなわちモノマーとしては、オキサゾリン基含有アクリルモノマーまたはオキサゾリン基含有メタクリルモノマーが好ましい。中でも特に2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。
付加重合性ポリアルキレンオキシド基含有モノマーユニットを構成する付加重合性ポリアルキレンオキシド基含有モノマーとしては、任意の付加重合性基と、ポリアルキレンオキシド基とを有するものであればよく、例えば酢酸ビニル、プロピオン酸ビニル、アクリル酸、メタクリル酸のエステル部にポリアルキレンオキシドを付加させたもの等のビニルエステル類を好ましく挙げることができる。ここで、ポリアルキレンオキシド基におけるアルキレン基としては、例えば炭素数2~30のものであり、好ましくは炭素数2~20のアルキレン基であり、より好ましくは炭素数2~10であり、さらに好ましくはエチレン基、プロピレン基、ブチレン基である。また、ポリアルキレンオキシド基におけるアルキレン基の繰り返し数(平均)としては、例えば2~30であり、好ましくは4~20、より好ましくは5~15である。なお、複数種類のアルキレン基からなるポリアルキレンオキシド基である場合は、合計の繰り返し数が上記範囲となることが好ましい。
本発明における架橋性付加重合体は、上記のような付加重合性オキサゾリン基含有モノマーからなるモノマーユニットを、重合体中に、重合体の全モノマーユニット100モル%に対して10~80モル%含み、かつ上記のような付加重合性ポリアルキレンオキシド基含有モノマーからなるモノマーユニットの重合体中の含有量が、重合体の全モノマーユニット100モル%に対して5モル%以下である構成を具備するものである。このような構成とすることによって、湿熱環境下における接着性を高くすることができる。
付加重合性オキサゾリン基含有モノマーユニットの含有量は、少なすぎると、湿熱環境下における接着性に劣る。かかる観点から、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上、特に好ましくは50モル%以上である。他方、多すぎると造膜性低下の問題が生じる。かかる観点から、好ましくは75モル%以下、より好ましくは70モル%以下である。
また、付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量は、多すぎると、湿熱環境下における接着性に劣る。かかる観点から、好ましくは4モル%以下、より好ましくは3モル%以下、さらに好ましくは2モル%以下である。理想的には、付加重合性ポリアルキレシオキシド基含有モノマーユニットを含有しない態様である。
本態様において架橋性付加重合体は、上記(X1)および(Y1)の要件を満たす構成のものであればよく、その余のモノマーユニットは、本態様の目的を阻害しない範囲において、付加重合性オキサゾリン基含有モノマーおよび付加重合性ポリアルキレンオキシド基含有モノマーと付加重合可能な任意の付加重合性モノマーからなるモノマーユニットであればよい。かかる任意の付加重合性モノマーとしては、例えばアルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N、N−ジアルキルアクリルアミド、N、N−ジアルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα、β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα、β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
第2易接着層中の上記架橋性付加重合体の含有量は、第2易接着層の質量を基準として好ましくは1~30質量%であるが、含有量が少ないと、湿熱環境下における接着性が低下する傾向にあり、上記下限未満であると湿熱環境下における接着性に劣るものとなる。かかる観点から、架橋性付加重合体の含有量は、より好ましくは2質量%以上、さらに好ましくは3質量%以上である。他方、含有量が多いと、第2接着層の屈折率が低下する傾向にあり、よって上記上限を超えると干渉斑に劣るものとなる。かかる観点から、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
本態様においては、第2易接着層に、上述の架橋性付加重合体とは異なる架橋剤を、本態様の目的を阻害しない範囲において配合し、併用することができる。かかる架橋剤としては、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤などを例示することができ、これらは1種類を用いてもよく、2種類以上を併用してもよい。
上述の架橋性重合体を採用した本態様の第2易接着層は、例えばハードコート層などの機能層との湿熱環境下における優れた接着性および該機能層形成後の光の干渉斑抑制を主の目的とする場合は、第1易接着層を有さずに、第2易接着層をポリエステルフィルムの片面または両面に設け、積層ポリエステルフィルムとすることができる。かかる積層ポリエステルフィルムとしては、以下の態様を包含する。
1.配向ポリエチレンテレフタレートフィルムの少なくとも片面に第2易接着層を有する積層ポリエステルフィルムであって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルおよび1~30質量%の下記架橋性付加重合体を含有する積層ポリエステルフィルム。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分および炭素数4~10のアルキレングリコール成分を合計15~50モル%、および
(C1)前記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。)
2.上記共重合ポリエステルが、さらに
(D2)ビスフェノールAエチレンオキサイド付加体成分を5~25モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、上記1に記載の積層ポリエステルフィルム。
3.上記共重合ポリエステルが、
(A3)ナフタレンジカルボン酸成分を含む割合が60~80モル%で、
(B3)炭素数6~12のアルキレンジカルボン酸成分を含む割合が0モル%であり、さらに、
(E3)テレフタル酸および/またはイソフタル酸成分を20~40モル%含む、
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
上記1または2に記載の積層ポリエステルフィルム。
4.光学用易接着性ポリエステルフィルムとして用いられる、上記1~3のいずれかに記載の積層ポリエステルフィルム。
<その他の成分>
本発明の第2易接着層には、本発明の目的を阻害しない範囲内で各種添加剤を配合することができる。例えばフィルムの滑り性、耐傷付き性、塗布時の濡れ性などを改善するために、粒子、ワックス類、界面活性剤、濡れ調整剤等を添加してもよく、その他帯電防止剤、紫外線吸収剤などを配合してもよい。
例えば粒子を添加することによって、フィルムの滑性、耐傷付き性を向上することができる。かかる粒子としては、有機粒子、無機粒子、有機無機複合粒子のいずれでもよいが、透明性を保持したまま耐傷付き性も向上させるという観点から、粒径の大きな粒子(大粒子)と、粒径の小さな粒子(小粒子)の両方を含有することが好ましい。
大粒子の平均粒径は、80~1000nmの範囲が適当であり、より好ましくは100~400nmの範囲、さらに好ましくは130~350nmの範囲である。これにより滑性、耐傷付き性に優れる。なお、大粒子は第2易接着層から脱落しやすいため、無機粒子表面を有機物(例えばアクリル)で被覆した有機無機複合粒子であることが好ましい。
第2易接着層における大粒子の含有量は、第2易接着層の質量に対して、好ましくは0.1~5質量%、さらに好ましくは0.1~1質量%であり、大粒子を添加する効果がより得やすい。
小粒子の平均粒径は、10nm以上、100nm未満の範囲が適当であり、より好ましくは20~80nm、さらに好ましくは30~60nmである。これにより耐ブロッキングに優れる。小粒子は、硬度の観点から、無機粒子であることが好ましく、金属酸化物粒子であることが好ましい。金属酸化物粒子としては、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子等が挙げられる。中でも、コストに優れるという観点から、シリカ粒子、チタニア粒子が好ましい。
第2易接着層における小粒子の含有量は、第2易接着層の質量に対して、好ましくは0.1~5質量%、さらに好ましくは1~3質量%であり、小粒子を添加する効果がより得やすい。
第2易接着層には、界面活性剤を含有することができる。第2易接着層を形成するための塗液に界面活性剤を含有することで、塗液の塗工性を向上させることができる。かかる界面活性剤としては、ポリエチレンテレフタレートフィルムへの塗工性を高める効果を奏するものであれば特に限定されず、例えばノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤のいずれを用いることもできる。なかでも特に発泡が少なく塗工性が良好であるという観点からノニオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、例えばポリオキシエチレンアルキルエーテルやポリオキシプロピレンアルキルエーテルおよびポリオキシエチレンプロピレン共重合体アルキルエーテルが好ましく挙げられる。
界面活性剤を用いる場合は、その添加量としては、第2易接着層の質量に対して20質量%以下で用いることが好ましい。これにより接着性の向上効果が高くなる傾向にある。かかる観点から、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、上述した塗工性の観点から添加量の下限は好ましくは1質量%であり、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。
<ポリエステルフィルムの製造方法>
本発明におけるポリエステルフィルムを製造するための方法について、一例を挙げて説明する。なお、本発明におけるポリエステルフィルムは、これに限定されるものではない。
本発明におけるポリエステルフィルムは、例えば上記ポリエステルをフィルム状に溶融押出し、キャスティングドラムで冷却固化させ未延伸フィルムとし、この未延伸フィルムをTg~(Tg+60)℃にて長手方向(製膜機械軸方向のこと。縦方向またはMDと呼称する場合がある。)に1回もしくは2回以上、合計の倍率が3~6倍になるよう延伸し、一軸延伸フィルムを形成する。ここでTgは、フィルムを構成するポリエステルのガラス転移温度である。好ましくは、ここで後述する第1易接着層を形成するための塗液を塗布する。次いでTg~(Tg+60)℃で幅方向(製膜機械軸方向と厚み方向とに垂直な方向のこと。横方向またはTDと呼称する場合がある。)に倍率が3~5倍になるように延伸し、更に必要に応じて180~230℃にて1~60秒間熱処理を行い、熱処理温度より10~20℃低い温度で幅方向に0~20%収縮させながら再熱処理を行うことにより得ることができる。
二軸配向ポリエステルフィルムの屈折率は、延伸倍率によって調整することができ、延伸倍率を高くするほど屈折率も高くすることができる。しかしながら延伸倍率の上昇に伴い熱寸法安定性が損なわれるため、延伸倍率は、長手方向および幅方向ともに3.0~4.0の範囲にすることが好ましく、より好ましくは3.3~3.8倍、さらに好ましくは3.4~3.7倍である。
本発明においては、ポリエステルフィルムの製造において、上記のような逐次二軸延伸法が採用できるが、同時二軸延伸法を採用することもできる。その際、延伸条件等は上述の条件と同様である。この際は、易接着層を形成するための塗液を塗布するのは、未延伸フィルムに塗布することになる。
本発明に使用するポリエステルフィルムの厚みは20~200μmの範囲であることが好ましい。特に静電容量式タッチセンサーに用いられる場合、所定の静電容量を確保するため、コントローラーICの特性に合わせて適宜選択することができる。
<積層体の製造方法>
本発明の積層体を製造するための方法について、一例を挙げて説明する。なお、本発明の積層体は、これに限定されるものではない。
(第1易接着層の形成方法)
第1易接着層は、第1易接着層を形成するための塗液(以下、第1易接着塗液と呼称する場合がある。)を、ポリエステルフィルムの上に塗布して、乾燥、必要に応じて硬化することにより形成することができる。好ましくは、上記ポリエステルフィルムの製造工程中において第1易接着塗液を塗布して、第1易接着層を形成する、いわゆるインラインコーティング法である。これにより、ポリエステルフィルムと第1易接着層との密着性を高くすることができる。また、第1易接着層の厚みがごく薄いとしても、高度に正確に厚みを制御することが可能となる。
第1易接着塗液は、上述した第1易接着層を構成する成分を混合し、必要に応じて溶媒で希釈して得ることができる。ここで各成分は、そのまま添加してもよいし、あらかじめ適当な溶媒に溶解したり、分散したりして添加してもよいし、適当な溶媒で希釈して添加してもよい。塗液の濃度は、塗液の粘度、塗布厚み、コーティング方式等により適宜設定することができる。
第1易接着層を形成するためのコーティング方式としては、従来公知の方法を採用することができる。例えば、ロールコート法(グラビアロールコート法等)、スプレーコート法等を挙げることができる。
(高屈折率層および低屈折率層の形成方法)
高屈折率層および低屈折率層は、湿式法、乾式法のいずれの方法でも形成することができる。適した任意の方法によって、第1易接着層の上に高屈折率層を形成したり、また、さらに高屈折率層の上に低屈折率層を形成したりして、光学調整層を形成すればよい。
湿式法では、ドクターナイフ、バーコーター、グラビアロールコーター、カーテンコーター、ナイフコーター、スピンコータ−等、スプレー法、浸漬法等によって、高屈折率層を形成するための塗液(以下、高屈折率塗液と呼称する場合がある。)や低屈折率層を形成するための塗液(以下、低屈折率塗液と呼称する場合がある。)を、層を形成したい面に塗布して塗膜を形成し、かかる塗膜を乾燥、必要に応じて熱、紫外線、電子線等により硬化することにより、高屈折率層および低屈折率層を形成することができる。かかる塗液はゾルであってもよく、それによれば金属酸化物膜が得られる。なお、乾燥条件や硬化条件は、適宜選択すればよい。塗液の溶媒にもよるが、乾燥温度としては、例えば50~100℃、好ましくは60~90℃である。硬化における紫外線や電子線の照射強度としては、例えば100~2000mJ/m2である。塗液の固形分濃度も、目的とする塗布量や用いる塗布法方によって適宜選択することができる。例えば1~70質量%である。
湿式方によれば、バインダー樹脂に金属酸化物微粒子を含有する層や、ゾル−ゲル法により金属酸化物膜からなる層や、金属酸化物膜に金属酸化物粒子、有機粒子、バインダー樹脂を含有する層を形成するのに好適である。
乾式法ではスパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法あるいは印刷法、CVD法などを適応することができる。乾式方によれば、金属からなる層や、金属酸化物膜膜からなる層を形成するのに好適である。なお、条件は、ターゲットの種類や、目的とする層の厚み等を勘案して適宜調整すればよい。
<透明導電性フィルム>
本発明においては、上記で得られた積層体の光学調整層の上に、特には低屈折率層の上に、屈折率1.9~2.3の透明導電層を形成して、透明導電性フィルムを得ることができる。
本発明において透明導電層は、上記屈折率範囲であれば特に制限は無いが、例えば結晶質の金属あるいは結晶質の金属化合物からなる層を挙げることができる。透明導電層を構成する成分としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化錫等の金属酸化物が挙げられる。これらのうち酸化インジウムを主成分とした結晶質の層であることが好ましく、特に結晶質のITO(Indium Tin Oxide)からなる層が好ましく用いられる。透明導電層が結晶質の膜であると、タッチパネルに要求される環境信頼性が向上する傾向にある。結晶化の手法は特に限定されるものではないが、例えば120~160℃、60~90分程度の熱処理加工により結晶化させることができる。
また、ポリアセチレン、ポリパラフェニレン,ポリチオフェン,ポリエチレンジオキシチオフェン、ポリピロール,ポリアニリン,ポリアセン、ポリフェニレンビニレン等の導電性高分子からなる層も採用することができる。
透明導電層の膜厚は、透明性と導電性の点から5~50nmであることが好ましい。更に好ましくは5~30nmである。透明導電層の膜厚が5nm未満では抵抗値の経時安定性に劣る傾向が有り、また50nmを超えると表面抵抗値が低下する傾向にある。また、膜の色調が強くなり、パターンが強調されやすくなる傾向にある。
本発明の透明導電性フィルムをタッチパネルに用いる場合、タッチパネルの消費電力の低減と回路処理上の必要等から、厚み10~30nmにおいて透明導電層の表面抵抗値が100~1000Ω/□、より好ましくは140~600Ω/□の範囲を示す透明導電層を用いることが好ましい。
<透明導電性フィルムの製造方法>
透明導電層は、公知の手法にて形成することが可能であり、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、真空蒸着法、パルスレーザーデポジション法等の物理的形成法(Physical Vapor Deposition(PVD))等を用いることができるが、大面積に対して均一な膜厚の金属化合物層を形成するという工業生産性に着目すると、DCマグネトロンスパッタリング法が望ましい。なお、上記物理的形成法(PVD)のほかに、化学気相堆積法(Chemical Vapor Deposition(CVD))、ゾルゲル法などの化学的形成法を用いることもできるが、膜厚制御の観点からはスパッタリング法が好ましい。
なお、本発明における透明導電層は、パターン化されている。ここでパターン化とは、規定の形状に透明導電層が存在している箇所と、存在していない箇所とが形成されている態様をいう。すなわち、本発明の積層体の一部に透明導電層が形成された態様となる。規定の形状とは、静電容量方式タッチパネルの電極として用いることができる、公知の形状であればよい。例えば細線状やタイヤモンド状のパターンがある。パターニングの方法は特に限定されるものではなく、従来公知のエッチング方法を用いることができる。
<第2易接着層の形成方法>
第2易接着層は、第2易接着層を形成するための塗液(以下、第2易接着塗液と呼称する場合がある。)を、ポリエステルフィルムの上に塗布して、乾燥、必要に応じて硬化することにより形成することができる。好ましくは、上記ポリエステルフィルムの製造工程中において第2易接着塗液を塗布して、第2易接着層を形成する、いわゆるインラインコーティング法である。これにより、ポリエステルフィルムと第2易接着層との密着性を高くすることができる。また、第2易接着層の厚みがごく薄いとしても、高度に正確に厚みを制御することが可能となる。特に好ましくは、ポリエステルフィルムの製造工程中において、第1易接着塗液を塗布した面と反対面に第2易接着塗液を塗布し、第1易接着層と第2易接着層を同時に形成する製造方法である。
第2易接着塗液は、上述した第2易接着層を構成する成分を混合し、必要に応じて溶媒で希釈して得ることができる。ここで各成分は、そのまま添加してもよいし、あらかじめ適当な溶媒に溶解したり、分散したりして添加してもよいし、適当な溶媒で希釈して添加してもよい。塗液の濃度は、塗液の粘度、塗布厚み、コーティング方式等により適宜設定することができる。
第2易接着層を形成するためのコーティング方式としては、従来公知の方法を採用することができる。例えば、ロールコート法(グラビアロールコート法等)、スプレーコート法等を挙げることができる。
第1易接着層を形成する前に、第2易接着層を形成することができる。また、目的によっては、ポリエステルフィルムの両面に第2易接着層を形成することもできる。以下は、このような場合において第2易接着層を形成するための特に好ましい製造方法について説明である。
第2易接着層を有するポリエステルフィルムは、二軸配向ポリエステルフィルムを製造する製膜工程と、第2易接着層を形成する塗布工程とを経て製造される。製膜工程は、逐次二軸延伸法であってもよいし、同時二軸延伸法であってもよいが、同時二軸延伸法であれば、製膜中にフィルム表面に傷が付き難く、光学用途に用いるフィルムを製造するのに適しているので好ましい。また、塗布工程は、フィルムの製膜工程の後(所謂オフラインコーティング法)であってもよいし、フィルムの製膜工程の中(所謂インラインコーティング法)であってもよいが、インラインコーティングであれば、厚みの薄い塗布層を均一に得ることが容易であり、また強固な塗布層が得られるため好ましい。さらに、生産性にも優れる。
第2易接着層において、共重合ポリエステル樹脂1や3を用いて、造膜性向上による易接着性向上の効果を奏するのは、配向が完了する前の未延伸フィルムまたは部分配向フィルムに塗膜を設けた後に延伸熱固定するインラインコーティング法により製造する場合である。製膜方法は、逐次二軸延伸法であってもよいし、同時二軸延伸法であってもよいが、同時二軸延伸法では、二軸を同時に延伸するために、第2易接着層を形成するための塗液を塗布後に延伸するに際しては、第2易接着層の造膜性がより厳しいものとなる。そのため、特にこのような場合において上述した共重合ポリエステル樹脂1や3を用いた態様はとりわけ有用である。
以下、ポリエステルとしてポリエチレンテレフタレートを用い、同時二軸延伸法でインラインコーティング法を採用した場合の好ましい方法について説明する。まず、十分に乾燥したポリエチレンテレフタレートをTm+10℃ないしTm+30℃(ただし、Tmはポリエチレンテレフタレートの融点)の温度で溶融し、シート状に押出し、冷却ドラムで冷却して未延伸フィルムとする。次いで、該未延伸フィルムにおいて第2易接着層を形成したい側の表面に、第2易接着層を形成するための塗液をロールコーターで塗布して、塗膜を有する未延伸フィルムをえる。このとき、得られるフィルムにおける第2易接着層の厚みが好ましくは50~100nm、さらに好ましくは70~90nmとなるように塗布する。次いでこれを、90~110℃で予熱し、同時二軸延伸機で、二軸方向に同時に、TgないしTg+70℃の温度(ただし、Tgはポリエチレンテレフタレートのガラス転移温度)で、縦方向(製膜機械軸方向、長手方向またはMD)に好ましくは2.5~5.0倍、さらに好ましくは3.0~4.0倍、横方向(製膜機械軸方向に垂直な方向、幅方向またはTD)に好ましくは2.5~5.0倍、さらに好ましくは3.0~4.0倍で延伸した後に、(Tg+60℃)~Tmの温度で熱固定し、好ましくは熱収縮率を調整するために熱弛緩処理することによって、配向ポリエチレンテレフタレートフィルムの上に第2易接着層を有する積層フィルムを得ることができる。なお、かかる延伸温度は、第2易接着層における共重合ポリエステルのガラス転移温度よりも45℃以上高い温度であることが好ましく、より好ましくは50℃以上、さらに好ましくは55℃以上高い温度であることである。これにより第2易接着層の造膜性がより優れたものとなり、接着性の向上効果を高くすることができる。また、第2易接着層のガラス転移温度よりも40℃以上高い温度であることが好ましく、より好ましくは45℃以上、さらに好ましくは53℃以上高い温度であることであり、これによっても第2易接着層の造膜性がより優れ、接着性の向上効果を高くすることができる。次いで熱固定は、例えば、ポリエチレンテレフタレートフィルムについては210~240℃の範囲内の温度で、1~60秒の時間熱固定処理するのが好ましい。また、塗膜は、上記工程でかかる熱により乾燥、および必要に応じて硬化し、第2易接着層となる。
なお、第2易接着層を形成するための塗液は、第2易接着層を構成する各成分を混合して、粘度や塗布厚み等を考慮して適度に希釈して調整する。希釈に用いる溶媒としては、水が好ましく、すなわち塗液が水系であることが好ましい。塗液の固形分濃度は5~20質量%とすることが好ましく、良好な塗布外観を得ることができる。
<積層フィルムの特性>
(ヘーズ)
本発明の積層フィルムは、JIS規格K7136に従って測定したヘーズ値が0%以上、1.0%以下であることが好ましく、より好ましくは0.1%以上、0.8%以下、特に好ましくは0.1%以上、0.5%以下である。ヘーズは光学用途に用いる場合の重要な評価指標であり、例えばディスプレイに用いる場合には、ヘーズはディスプレイの視認性を評価する指標の1つで、ヘーズが1.0%を越える場合には、フィルムの透明性が低下してディスプレイの表示画面が白っぽく見えるため、コントラストが低下し視認性が低下することがある。ヘーズをかかる範囲にするためには、ポリエステルフィルムおよび易接着層において、粒子を用いないか、用いる場合でも前述の範囲内の径および量にとどめ、また易接着層を構成する高分子バインダーとして前述の好ましい共重合ポリエステル樹脂を用いればよい。 The laminated body of this invention is the structure which laminated | stacked the 1st easily bonding layer and the optical adjustment layer in this order on the at least single side | surface of the polyester film.
Moreover, the transparent conductive film of this invention is a structure which has the transparent conductive layer further patterned on the optical adjustment layer in the said laminated body.
Hereinafter, each component constituting the present invention will be described.
<Polyester film>
(polyester)
In the present invention, the polyester constituting the polyester film is an aromatic dibasic acid or an ester-forming derivative thereof (which is an acid component in the polyester) and a diol or an ester-forming derivative thereof (which is a glycol component in the polyester). Is a linear saturated polyester synthesized from Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. Further, these copolymers, blends thereof, or blends of these with a small proportion of other resins may be used. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable because of a good balance between mechanical properties and optical properties. In particular, polyethylene terephthalate has a refractive index after biaxial stretching (average refractive index in the plane direction) close to 1.65, and thus the average refractive index in the plane direction of the polyester film is easily in the range of 1.60 to 1.70. The refractive index adjustment with the optical adjustment layer in the invention is easy to perform, and thereby a better bone appearance suppressing effect can be obtained, which is preferable.
The polyester may be a homopolymer, but the copolymer component (copolymeric acid component or copolymer glycol component) does not impair its properties, for example, 5 mol% or less with respect to 100 mol% of the total acid component, Preferably, it may be a copolymer copolymerized at a ratio of 3 mol% or less. Examples of the copolymer acid component include aromatic dicarboxylic acid components such as a phthalic acid component, an isophthalic acid component, and a 2,6-naphthalenedicarboxylic acid component, an adipic acid component, an azelaic acid component, a sebacic acid component, and 1,10-decane. An aliphatic dicarboxylic acid component such as a dicarboxylic acid component can be exemplified, and examples of the copolymer glycol component include an aliphatic diol component such as a 1,4-butanediol component, a 1,6-hexanediol component, and a neopentyl glycol component, An alicyclic diol component such as 1,4-cyclohexanedimethanol component can be exemplified. These can also be used together.
Further, as another copolymer component, a compound having two ester-forming functional groups in the molecule other than the above can be used. Examples of such compounds include oxalic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid. , Components derived from dicarboxylic acids such as diphenyl ether dicarboxylic acid, components derived from oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid, or propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene Glycol, cyclohexanemethylene glycol, neopentyl glycol, ethylene oxide adduct of bisphenolsulfone, ethylene oxide adduct of bisphenol A, diethylene glycol, poly A component derived from a dihydric alcohol such as ethylene oxide glycol can be preferably used. These compounds may be used alone or in combination of two or more. Of these, the acid component is preferably a component derived from 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or p-oxybenzoic acid, and the glycol component is trimethylene glycol. , A component derived from an ethylene oxide adduct of hexamethylene glycol neopentyl glycol and bisphenol sulfone.
In the present invention, the polyester constituting the polyester film is particularly preferably polyethylene terephthalate. Such polyethylene terephthalate may have a copolymer component as described above, but preferably has an ethylene terephthalate unit of 90 mol% or more, preferably 95% or more, more preferably 97% or more. Particularly preferred is homopolyethylene terephthalate. As the copolymer component, isophthalic acid is preferred.
The polyester in the present invention is a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol is a conventionally known transesterification catalyst. Obtained by a method in which a polymerization reaction is performed in the presence of a polymerization catalyst after reacting with one or more of compounds containing sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. Can do. As a polymerization catalyst, antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or a partial hydrolyzate thereof, titanyl ammonium oxalate , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.
The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.
The intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, and more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. If it is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.
(Polyester film)
The polyester film in the present invention preferably has an average refractive index in the plane direction of 1.60 to 1.70. Thereby, it is more excellent in a bone appearance suppression effect by the synergistic effect with the other layer which comprises the laminated body of this invention. Here, the average refractive index in the plane direction is an average refractive index between a refractive index in an arbitrary direction and a refractive index in a direction perpendicular to the refractive index in the film plane, preferably the maximum refractive index in the film plane and the maximum The average refractive index of the refractive index in the direction perpendicular to the direction indicating the refractive index is shown. If the average refractive index in the plane direction is too low or too high, the effect of suppressing bone appearance is reduced. From this viewpoint, the range of the average refractive index in the plane direction of the polyester film is more preferably 1.62 or more, further preferably 1.63 or more, particularly preferably 1.64 or more, and most preferably 1.65 or more. Moreover, 1.68 or less is more preferable, 1.67 or less is further more preferable, and 1.66 or less is especially preferable.
In addition, when the average refractive index in the plane direction is in this range, as described later, when a functional layer such as a hard coat layer is provided on the surface opposite to the optical adjustment layer of the polyester film, the second easy-adhesion layer is provided. When a layer having a relatively low refractive index such as a hard coat layer is formed thereon, the occurrence of interference spots can be suppressed. In terms of suppressing such interference spots, the average refractive index in the plane direction is preferably 1.63 to 1.68, more preferably 1.64 to 1.67, and still more preferably 1.65 to 1.66. Yes, if it is too high or too low outside this range, it is difficult to suppress the occurrence of interference spots.
Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the average refractive index in the plane direction satisfies the above requirements. From the viewpoint, a biaxially oriented film is preferable.
(Polyethylene terephthalate film)
In order to achieve such an average refractive index in the plane direction, it is preferable to employ, for example, the above-described polyethylene terephthalate (PET) as the polyester constituting the film. Moreover, it is effective to adopt the conditions described later as the stretching conditions in order to achieve the average refractive index in the plane direction.
In the present invention, an oriented polyethylene terephthalate film is preferably used. The polyester constituting the oriented polyethylene terephthalate film is a polyester having an ethylene terephthalate unit of 95 mol% or more, preferably 98 mol% or more, based on all repeating units, and particularly preferably a homopolyester not using a copolymer component in combination. It is. In the case of copolymerized polyethylene terephthalate, for example, a dicarboxylic acid component such as isophthalic acid or naphthalenedicarboxylic acid or a glycol component such as diethylene glycol, butanediol, or cyclohexanediol can be used as the copolymerization component.
(Other components of polyester film)
The polyester film can contain a slippery filler such as inert particles in order to ensure transportability. On the other hand, for example, a capacitive touch sensor is formed by laminating a plurality of transparent films, and the haze of the film is integrated. Therefore, it is desired that the internal haze of each constituent film is as low as possible. Thus, from the viewpoint of maintaining high transparency in optical applications, the polyester film preferably contains no filler or substantially no filler (for example, 10 ppm or less, preferably 1 ppm or less). However, a small amount of filler may be included as a lubricant in order to prevent minute scratches in the manufacturing process and improve the film winding property. As the filler, for example, inert particles having an average particle diameter of 0.01 to 2 μm, further 0.05 to 1 μm, and particularly 0.1 to 0.3 μm may be used. The blending ratio is preferably 100 ppm or less, for example, based on the mass of the layer to be blended, and may be 10 ppm or less, particularly 1 ppm or less, which is a range that does not substantially contain.
The polyester film can also contain a colorant, an antistatic agent, an antioxidant, an organic lubricant, and a catalyst.
<First easy adhesive layer>
In the present invention, the adhesion between the polyester film and the optical adjustment layer can be enhanced by the first easy-adhesion layer. In the present invention, a polyester film having a first easy-adhesion layer and / or a second easy-adhesion layer described later may be referred to as a laminated polyester film.
(Refractive index of the first easy-adhesion layer)
In the present invention, it is important that the refractive index of the first easy-adhesion layer is in the range of 1.60 to 1.65. Thereby, it is excellent in the bone appearance suppression effect by the synergistic effect with the other layer which comprises the laminated body of this invention. If the refractive index of the first easy-adhesion layer is too low, the optical interference becomes too large, so that the bone appearance suppressing effect cannot be obtained. Ideally, the polyester film, the first easy-adhesion layer, and the optical adjustment layer (or the high refractive index layer in the optical adjustment layer) preferably all have the same refractive index. When trying to achieve a refractive index exceeding, it tends to be difficult to increase the transparency of the first easy-adhesion layer. Considering these balances, the refractive index of the first easy-adhesion layer is preferably 1.61 to 1.64, more preferably 1.62 to 1.64.
The difference between the refractive index of the first easy-adhesion layer and the refractive index of the high refractive index layer described later is preferably 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased. The refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
Moreover, it is preferable that the difference of the refractive index of a 1st easily bonding layer and the surface direction average refractive index of a polyester film is 0.05 or less. According to such an embodiment, the effect of improving bone appearance suppression can be increased. The refractive index difference is more preferably 0.04 or less, and still more preferably 0.03 or less.
(The thickness of the first easy-adhesion layer)
The thickness of the first easy-adhesion layer is 8 to 30 nm. Thereby, it is excellent in adhesiveness. Moreover, while making the refractive index of a 1st easily bonding layer into the range mentioned above, and making thickness into the said range, there exists an outstanding bone-inhibition suppression effect by interaction with the other layer in the laminated body of this invention. be able to.
The optical interference of the thin film depends on the product of the refractive index and the optical path length (film thickness). As a result of conducting further detailed studies on this, the present inventors have found that the optical adjustment layer or the high refractive index layer in the optical adjustment layer is in the refractive index range described later, and the first easy-adhesion layer is in the refractive index range. In some cases, it has been found that by controlling the film thickness of the first easy-adhesion layer within a very narrow range of 8 to 30 nm, excellent adhesiveness can be obtained while exhibiting an excellent bone appearance suppressing effect. If the thickness of the first easy-adhesion layer is too thick, the effect of suppressing bone appearance is reduced. On the other hand, if it is too thin, the adhesiveness decreases. From this viewpoint, the thickness of the first easy-adhesion layer is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 18 nm or more, and preferably 25 nm or less, more preferably 22 nm or less.
(Polyester resin of the first easy-adhesion layer)
In the first easy-adhesion layer in the present invention, the polyester resin occupies 50% by mass or more based on the mass of the first easy-adhesion layer. Thereby, it is excellent in adhesiveness. From this viewpoint, the content of the polyester resin is preferably 70% by mass or more, and more preferably 80% by mass or more. The upper limit of the content of the polyester resin in the first easy-adhesion layer is not particularly limited, but the polyester resin occupies the remaining part other than the components that can be preferably contained in the first easy-adhesion layer, which will be described later. What is necessary is just to be an aspect.
In this invention, although a polyester resin is used as a binder component which forms a 1st easily bonding layer, it is preferable that the glass transition temperature (Tg) of this polyester resin is 120 degrees C or less. Thereby, it is further excellent in adhesiveness. Moreover, it can be set as the 1st easily bonding layer excellent in extending | stretching followability (film-forming property), smooth and excellent in transparency. From this viewpoint, Tg is more preferably 100 ° C. or less, further preferably 80 ° C. or less, and particularly preferably 75 ° C. or less. Moreover, it is preferable that the minimum of Tg of a polyester resin is 40 degreeC, and this is further excellent in adhesiveness, and is excellent in blocking resistance. From this viewpoint, Tg is more preferably 50 ° C. or higher, and particularly preferably 60 ° C. or higher.
As this polyester resin, the polyester or copolymer polyester which consists of an acid component and a glycol component as shown below can be mentioned. In the present invention, a copolyester is preferable from the viewpoint of adhesiveness. In addition, although the monomer component which comprises the polyester concerning the following is illustrated, it is not limited to these.
Acid components include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, dimer acid, Examples include components derived from 5-sodium sulfoisophthalic acid and the like. It is preferable to use two or more of these acid components as a copolyester. Further, an unsaturated polybasic acid component such as maleic acid, itaconic acid and the like, and hydroxycarboxylic acid such as p-hydroxybenzoic acid, etc., can also be used in a slight amount. In the present invention, 2,6-naphthalenedicarboxylic acid is preferably used from the viewpoint of achieving a balance between the refractive index and the coating film strength. As content of 2, 6- naphthalene dicarboxylic acid in a polyester resin, 50 mol% or more is preferable with respect to 100 mol% of all the acid components, and 60 mol% or more is more preferable. Moreover, 90 mol% or less is preferable, 80 mol% or less is more preferable, and 70 mol% or less is more preferable. When there is too much content of this component, it exists in the tendency for the film forming property of a 1st easily bonding layer to fall. On the other hand, if the amount is too small, the effect of improving the refractive index is small, and the effect of improving the mechanical properties is small.
Examples of the glycol component include ethylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane, poly (ethylene oxide) glycol, poly The component derived from (tetramethylene oxide) glycol etc. can be mentioned. It is preferable to use two or more of these glycol components as a copolyester. In the present invention, in order to effectively increase the refractive index of the first easy-adhesion layer, a fluorene structure represented by the following formula (I) such as bis (4-hydroxyethoxyphenyl) fluorene component is preferably used. A compound having a conjugated system, such as a glycol component, is preferably used as the copolymer component.
(R 1 Is an alkylene group having 2 to 4 carbon atoms, R 2 , R 3 , R 4 And R 5 Are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, which may be the same or different. )
As content of the glycol component which has a fluorene structure in a polyester resin, 2 mol% or more is preferable with respect to 100 mol% of all the acid components, 4 mol% or more is more preferable, and 6 mol% or more is further more preferable. Moreover, 10 mol% or less is preferable and 8 mol% or less is more preferable. When there is too much content of this component, it exists in the tendency for the film forming property of a 1st easily bonding layer to fall. On the other hand, if the amount is too small, the effect of improving the refractive index is small.
In the present invention, among these components, a 2,6-naphthalenedicarboxylic acid component is adopted as the acid component, and at the same time, a glycol component having a fluorene structure, preferably a bis (4-hydroxyethoxyphenyl) fluorene component, is used as the glycol component. The embodiment adopted is preferred. Thereby, it becomes easier to set the refractive index of the first easy-adhesion layer within the range defined by the present invention, and at the same time, the mechanical properties are excellent, and the effect of improving adhesiveness can be enhanced. An embodiment in which these components are contained in the polyester resin at the above-described contents is preferable.
In addition, as a polyester resin constituting the first easy-adhesion layer in the present invention based on the above idea, a copolymer polyester resin constituting a second easy-adhesion layer described later can be employed. By doing so, since the same effect as the effect which employ | adopts the copolyester resin which comprises this 2nd easily bonding layer can be provided to a 1st easily bonding layer, it is preferable.
A particularly preferred embodiment of the polyester resin constituting the first easy-adhesion layer in the present invention is that the total acid component is 100 mol%, the acid component is 2,6-naphthalenedicarboxylic acid 60 to 70 mol%, and isophthalic acid 25 ~ 30 mol%, 5-sodium sulfoisophthalic acid is 5-10 mol%, glycol component is 10-20 mol% bisphenol A, ethylene glycol is 35-60 mol%, trimethylene glycol is 25-35 mol% %, And bis (4-hydroxyethoxyphenyl) fluorene consists of 5 to 10 mol%.
The polyester resin is preferably a polyester that is soluble or dispersible in water (which may contain some organic solvent), and it is easy to produce a coating liquid described later.
(Metal oxide particles)
In order to control the refractive index of the first easy-adhesion layer in the present invention, metal oxide particles having a refractive index of 1.7 to 3.0, preferably 1.8 to 2.2 may be added. preferable. As this metal oxide particle, TiO 2 (Refractive index 2.5), ZrO 2 (Refractive index 2.4), SnO 2 (Refractive index 2.0), Sb 2 O 3 (Refractive index 2.0) is exemplified, and in the present invention, it is preferable to use at least one metal oxide particle selected from the group consisting of these.
In order to achieve a high degree of transparency, in order to avoid optical scattering by the metal oxide particles in the first easy-adhesion layer, the metal oxide particles are colorless and transparent and have a particle size sufficiently small with respect to the wavelength of light. (For example, 400 nm or less, preferably 100 nm or less) is preferable. A higher refractive index is preferable because the refractive index of the first easy-adhesion layer can be increased with a small amount, but high refractive index metal oxide particles having a refractive index exceeding 3.0 tend to be inferior in transparency. In addition, since there are many special rare metals, the manufacturing cost tends to increase.
From such a viewpoint, as the metal oxide particles of the first easy-adhesion layer in the present invention, particles made of titanium oxide and zirconium oxide are more preferable. From the viewpoint of specific gravity, titanium oxide particles having a high refractive index improving effect in a small amount. Particularly preferred.
The addition amount of the metal oxide particles is preferably 2% by mass or more and 20% by mass or less based on the mass of the first easy-adhesion layer, and the refractive index can be efficiently maintained while maintaining transparency by making such a range. Can be high. If the amount is too large, the transparency tends to decrease. In addition, particle dropping or the like tends to occur, equipment wear occurs during coating, and stable coating tends to be difficult. On the other hand, if the amount is too small, the effect of improving the refractive index is lowered. From this viewpoint, it is more preferably 3% by mass or more, further 4% by mass or more, particularly preferably 5% by mass or more, more preferably 15% by mass or less, still more preferably 10% by mass or less, and further preferably 8% by mass or less. Is particularly preferred.
In order to increase the refractive index of the first easy-adhesion layer, as described above, means such as a method of adding a high refractive index filler such as metal oxide particles or a method of increasing the refractive index of a polyester resin as a binder component However, the use of metal oxide particles has a problem of equipment wear and is relatively difficult to add in a large amount. On the other hand, when trying to increase the refractive index of the binder component, since the glass transition temperature tends to increase at the same time, the coating film is cracked in the stretching process and the film haze is increased because it cannot follow the deformation during stretching. Such problems are likely to occur. Therefore, from these restrictions, it is necessary to appropriately balance the constitution and refractive index of the binder component (polyester resin) and the refractive index and addition rate of the metal oxide particles. The aspect which employ | adopts simultaneously is the most preferable.
(Lubricant particles)
It is preferable that the 1st easily bonding layer in this invention contains the lubricant particle for providing lubricity other than the metal oxide particle of the said specific refractive index range. By containing the lubricant particles, it is possible to impart lubricity and scratch resistance to the film.
Examples of such lubricant particles include inorganic lubricant particles such as calcium carbonate, magnesium carbonate, calcium oxide, silicon oxide, sodium silicate, aluminum hydroxide, and carbon black, acrylic cross-linked polymers, styrene cross-linked polymers, and silicones. Examples thereof include organic lubricant particles such as resin, fluororesin, benzoguanamine resin, phenol resin, and nylon resin. These may be used alone or in combination of two or more.
The average particle diameter of the lubricant particles is preferably 10 to 180 nm, more preferably 20 to 150 nm. The thickness of the first easy-adhesion layer of the present invention is very thin with respect to 80 to 120 nm which is the thickness of the easy-adhesion layer in a normal optical film. If it is smaller than 10 nm, sufficient lubricity and scratch resistance may not be obtained.
The content of the lubricant particles is preferably 0.1 to 10% by mass per 100% by mass of the first easy-adhesion layer. If it is less than 0.1% by mass, sufficient lubricity and scratch resistance cannot be obtained, and if it exceeds 10% by mass, the surface haze tends to increase, and the optical properties tend to deteriorate.
(Crosslinking agent)
In the present invention, it is preferable to add a crosslinking agent for the purpose of improving the coating strength of the first easy-adhesion layer and for enhancing the effect of improving the adhesiveness.
The crosslinking agent is preferably a compound having an oxazoline group and a polyalkylene oxide chain, more preferably an acrylic resin having an oxazoline group and a polyalkylene oxide chain, from the viewpoint of improving the coating film strength and further improving the adhesiveness. Use. An acrylic resin is preferable because it can easily copolymerize many kinds of functional groups. The acrylic resin having an oxazoline group and a polyalkylene oxide chain is preferably an acrylic resin that is soluble or dispersible in water (may contain some organic solvent). In addition, since the acrylic resin has a low refractive index, the addition of such components leads to a decrease in the refractive index of the first easy-adhesion layer, and therefore the amount of addition must be sufficiently careful.
Examples of the acrylic resin having an oxazoline group and a polyalkylene oxide chain include those containing the following monomers as components.
Examples of the monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline and 2-isopropenyl-5-methyl-2-oxazoline. These may be used alone or in a mixture of two or more. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. By using an acrylic resin having an oxazoline group, the cohesive force of the first easy-adhesion layer is improved, and the adhesiveness with the optical adjustment layer or the high refractive index layer becomes stronger. Further, it is possible to impart scratch resistance to the metal roll in the film forming process or in the processing process of the optical adjustment layer or the high refractive index layer. From the viewpoint of such effects, the component is preferably contained in the acrylic resin in an amount of 10 to 50 mol%, more preferably 20 to 40 mol%, and even more preferably 25 to 35 mol%. .
Examples of the monomer having a polyalkylene oxide chain include those obtained by adding polyalkylene oxide to an ester part of acrylic acid or methacrylic acid. Examples of the polyalkylene oxide chain include polymethylene oxide, polyethylene oxide, polypropylene oxide, and polybutylene oxide.
By using an acrylic resin having a polyalkylene oxide chain, the compatibility between the polyester resin and the acrylic resin in the first easy-adhesion layer is improved as compared with an acrylic resin not containing a polyalkylene oxide chain. The transparency of the layer can be improved. From such a viewpoint, it is preferable to contain 2 to 20 mol% of this component in the acrylic resin, and more preferably 5 to 15 mol%.
The repeating unit of the polyalkylene oxide chain is preferably 3 to 100, more preferably 4 to 50, still more preferably 5 to 20. If the number of repeating units of the polyalkylene oxide chain is too small, the compatibility between the polyester resin and the acrylic resin tends to be poor, and the effect of improving the transparency of the first easy-adhesion layer tends to be low. On the other hand, if it is too large, the heat-and-moisture resistance of the first easy-adhesion layer tends to be low, and particularly the adhesiveness to the optical adjustment layer or the high refractive index layer tends to be low under high humidity and high temperature.
As the remaining monomer constituting the acrylic resin as the crosslinking agent, alkyl acrylate (preferably methyl acrylate or ethyl acrylate) or alkyl methacrylate (preferably methyl methacrylate or ethyl methacrylate) may be used.
The content of the cross-linking agent in the first easy-adhesive layer is preferably 1 to 20% by mass, more preferably 2 to 15% with respect to 100% by mass of the total amount of the polyester resin and the cross-linking agent in the first easy-adhesive layer. % By mass, more preferably 8 to 15% by mass.
In this invention, the crosslinkable addition polymer which is a preferable crosslinking agent in the 2nd easily bonding layer mentioned later can be used as a crosslinking agent of a 1st easily bonding layer. Thereby, the effect similar to the effect which employ | adopts a crosslinkable addition polymer in a 2nd easily bonding layer can be provided to a 1st easily bonding layer.
<Optical adjustment layer>
An optical adjustment layer is provided on the first easy-adhesion layer.
The optical adjustment layer is a layer that has a function of suppressing the appearance of bone by matching the light reflection and transmission characteristics of the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is not present due to the interference effect. The optical adjustment layer is usually composed of at least one high refractive index layer and at least one low refractive index layer, which are appropriately combined. Each of the high refractive index layer and the low refractive index layer may have a plurality of layers. Usually, it becomes a lamination order of a polyester film, a high refractive index layer, and a low refractive index layer. As the optical adjustment layer in the present invention, a high refractive index layer / low refractive index layer comprising a high refractive index layer on the side close to the polyester film and a low refractive index layer on the opposite side of the polyester film of the high refractive index layer. An embodiment having a two-layer structure is preferable.
(High refractive index layer)
The high refractive index layer is a layer having a refractive index of 1.60 to 1.80. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the effect of suppressing bone appearance tends to be low. From such a viewpoint, the refractive index of the high refractive index layer is preferably 1.60 or more, more preferably 1.62 or more, still more preferably 1.64 or more, and preferably 1.75 or less, more preferably 1.70 or less, more preferably 1.68 or less, particularly preferably 1.66 or less.
The high refractive index layer is preferably a layer comprising a metal and / or metal oxide and optionally a binder resin. Especially, it is preferable that it is a layer which consists of a metal oxide and binder resin. An example of such a metal oxide is a metal oxide film obtained by a sol-gel method. In this case, the metal oxide film can be a high refractive index layer. The metal oxide film may optionally contain a binder resin. Examples of the metal oxide include metal oxide fine particles. In this case, the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
In the above, the type of metal oxide forming the film and fine particles in the high refractive index layer is not particularly limited as long as the above refractive index is satisfied, but the strength of the obtained film can be increased. From the viewpoint of being able to have an appropriate refractive index, it should be at least one selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, indium-containing tin oxide, antimony-containing tin oxide and zinc antimonate. preferable. Among these, titanium oxide, antimony-containing tin oxide, and zirconium oxide are particularly preferable from the viewpoints of particularly high film strength and excellent dispersibility in the case of fine particles. These metal oxides may be used alone or in combination of two or more. That is, the metal oxide film which consists of 2 or more types of metal oxides may be sufficient, and the aspect containing 2 or more types of metal oxide fine particles may be sufficient. In the embodiment in which metal oxide fine particles are contained in the metal oxide film, the metal oxide forming the film and the metal oxide forming the fine particles may be the same or different. Good.
Examples of the binder resin in the high refractive index layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a high refractive index may be preferably used. From the viewpoint of film strength, the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like. Adhesiveness can be further improved by the binder resin.
A particularly preferable embodiment of the high refractive index layer in the present invention is an embodiment in which a binder resin is contained in the metal oxide film, and an organosilane condensate is particularly preferably contained in the titanium oxide film. It is an aspect.
Commercially available products can also be used as metal oxides preferably used for the high refractive index layer. For example, zirconium oxide: HXU-110JC (manufactured by Sumitomo Osaka Cement Co., Ltd.), titanium oxide: nanotech Ti-Tolu (Ci Kasei), zinc oxide: nanotech ZnO-Xylene (Ci Kasei), cerium oxide: Nidral (Taki Chemical) Indium-containing tin oxide: products manufactured by Mitsubishi Materials, antimony-containing tin oxide: SN-100D (manufactured by Ishihara Sangyo Co., Ltd.), zinc antimonate: Cellnax series (manufactured by Nissan Chemical Industries, Ltd.), etc. .
(Low refractive index layer)
The low refractive index layer is a layer having a refractive index of 1.40 to 1.60. By setting it as such a refractive index range, it is excellent by the bone appearance suppression effect by interaction with the other layer in this invention. If the refractive index is too high or too low, the bone appearance suppression effect tends to be low. From this viewpoint, the refractive index of the low refractive index layer is preferably 1.42 or more, more preferably 1.43 or more, further preferably 1.44 or more, and preferably 1.55 or less, more preferably 1.50 or less, more preferably 1.48 or less.
The low refractive index layer is not particularly limited as long as it satisfies the above refractive index, and may be a layer made of a binder resin, a layer made of a metal oxide, or a binder resin and a metal. It may be a layer made of an oxide. In addition, organic particles having a low refractive index can be contained. An example of the metal oxide is a metal oxide film obtained by a sol-gel method. In this case, the metal oxide film can be a low refractive index layer. The metal oxide film may optionally contain a binder resin. Examples of the metal oxide include metal oxide fine particles. In this case, the metal oxide particles may include an embodiment in which the metal oxide particles are dispersed in the metal oxide film formed by the sol-gel method described above, or an embodiment in which the metal oxide particles are dispersed in the binder resin.
In the above, the kind of metal oxide forming the film and fine particles in the low refractive index layer is particularly preferably silica from the viewpoint of forming a layer having a suitable low refractive index. Moreover, a more preferable low refractive index can be obtained by containing organic silane-based silicon compounds and low refractive index organic particles such as fluorine compounds as organic particles. Further, the refractive index can be lowered by forming voids by including a void forming agent in the layer.
Examples of the binder resin in the low refractive index layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates. Among them, those having a skeleton that has a low refractive index may be preferably used. From the viewpoint of film strength, the binder resin is preferably formed by curing with heat, ultraviolet rays, electron beams or the like.
A particularly preferable embodiment of the low refractive index layer in the present invention is an embodiment comprising a metal oxide film, and a silica film formed by a sol-gel method is particularly preferable.
In the present invention, by providing the high refractive index layer and the low refractive index layer as described above in the above-described arrangement, bone appearance is suppressed due to a synergistic effect with the other layers in the present invention.
In addition, when the refractive index of the high refractive index layer is within the above range, the thickness is preferably 50 to 250 nm, more preferably 100 to 200 nm, and even more preferably 125 to 175 nm. Can be high. In addition, when the refractive index of the low refractive index layer is within the above range, the thickness is preferably 5 to 50 nm, more preferably 10 to 45 nm, and even more preferably 20 to 40 nm. Can be high. Furthermore, the improvement effect of bone appearance suppression can be further heightened by making the thickness of each layer into the said preferable range simultaneously.
<Other layers>
The laminated body of this invention may have another layer in the range which does not inhibit the objective of this invention. For example, you may have the adhesion layer for bonding with another optical member in the surface on the opposite side to the optical adjustment layer of a polyester film. Further, a smoothing layer such as a hard coat layer may be provided on the first easy-adhesion layer, and an optical adjustment layer may be provided thereon. In this case, the smoothing layer exhibits suitable adhesiveness for both the first easy-adhesion layer and the optical adjustment layer (or the high refractive index layer) in the present invention. By doing so, the adhesiveness of a polyester film and an optical adjustment layer (or high refractive index layer) can be ensured as a result.
<Second easy adhesion layer>
In this invention, it can have a 2nd easily bonding layer in the surface on the opposite side to the 1st easily bonding layer of a polyester film. The second easy-adhesion layer is a layer for improving the adhesion between the polyester film and the functional layer when a functional layer such as a hard coat layer is laminated.
The second easy-adhesion layer is 70% by mass or more based on the weight of the second easy-adhesion layer, preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more. It is a layer to contain. When the ratio of the copolyester resin is 70% by mass or more, the adhesion with a functional layer such as a hard coat layer is improved, and the refractive index of the second easy-adhesion layer can be within an appropriate range. Therefore, light interference spots can be suppressed. Furthermore, the glass transition temperature (Tg) of the second easy-adhesive layer is also in an appropriate range, and the film-forming property is improved, and the cracks of the second easy-adhesive layer are reduced, and the deterioration of the adhesiveness due to such cracks is suppressed. It can be excellent in adhesion.
The average refractive index in the plane direction of the oriented polyethylene terephthalate film is usually about 1.66, and the refractive index of the acrylic resin hard coat layer usually used as the functional layer is about 1.52. The refractive index is preferably in the range of 1.57 to 1.62, more preferably in the range of 1.58 to 1.61, and particularly preferably in the range of 1.59 to 1.60. Such a refractive index can be easily achieved by employing a copolyester resin described later.
The thickness of the second easy-adhesion layer is preferably 50 to 100 nm, more preferably 70 to 90 nm. By setting the thickness within this range, when a functional layer such as an acrylic hard coat layer is provided thereon, the effect of suppressing light interference spots is further increased, which is preferable.
(Copolymerized polyester resin for the second easy adhesion layer)
The copolymer polyester resin used for the second easy-adhesion layer can be selected from the modes described below depending on the intended effect. Such a copolyester resin can also be used as the polyester resin of the first easy-adhesion layer as long as the purpose is not hindered, whereby the effect of adopting such a copolyester resin is applied to the first easy-adhesion layer. Can be granted. Hereinafter, the first easy-adhesion layer and the second easy-adhesion layer may be collectively referred to as an easy-adhesion layer.
<Preferred embodiment 1 of copolymerized polyester resin (copolymerized polyester resin 1)>
In forming a coating layer such as the first and second easy-adhesion layers, a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied. Often used. However, according to our study, when applied on a polyethylene terephthalate film, it is presumed to be due to the cracking of the coating layer that occurs in the stretching process, but there may be cases where further improvement in adhesion is desired. found.
This aspect is a particularly suitable copolymer polyester resin for the purpose of excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots (color spots) after the formation of the functional layer. It is an aspect.
The copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester. A copolymer comprising 12 alkylene dicarboxylic acid components and 4 to 10 alkylene glycol components in a total amount of 15 to 50 mol%, and a glycol component having a fluorene structure represented by the formula (I) of 5 mol% or more and less than 20 mol%. Polyester.
When the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set to the above-mentioned preferable range, Interference spots can be suppressed. Moreover, the swelling resistance of the second easily adhesive layer with respect to the solvent is also good. When the proportion of the naphthalenedicarboxylic acid component is less than the lower limit, the refractive index of the copolyester is lowered, and as a result, the refractive index of the second easy-adhesive layer is lowered and the effect of suppressing light interference spots is insufficient. Become. In addition, the swelling with organic solvents increases (solvent resistance deteriorates), so it swells when it comes into contact with the organic solvent in the coating liquid for functional layers such as the hard coat layer, resulting from the uneven thickness of the second easy-adhesive layer This is not preferable because it causes not only interference spots to occur but also blocking resistance. On the other hand, since the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can. However, at the same time, the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high. It tends to decrease. Accordingly, the preferable lower limit of the content of the naphthalenedicarboxylic acid component is 65 mol%, and the preferable upper limit is 85 mol%, more preferably 80 mol%, and particularly preferably 70 mol%. Here, examples of the naphthalenedicarboxylic acid component include 2,7-naphthalenedicarboxylic acid component, 2,6-naphthalenedicarboxylic acid component, 1,4-naphthalenedicarboxylic acid component, and the like, among which 2,6-naphthalenedicarboxylic acid component. Ingredients are preferred.
Further, based on the total acid component of the copolyester, it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. Preferably, the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is contained in an amount of 0 to 40 mol% and the alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the alkylene dicarboxylic acid component and the alkylene glycol component are preferably contained. The total content is 15 to 50 mol%. For this reason, Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low. As a result, even the in-line coating method often adopted when forming the second easy-adhesion layer on the oriented polyethylene terephthalate film is excellent in the film-forming property of the second easy-adhesion layer. 2 It is possible to suppress the occurrence of cracking (cracking) in the easy-adhesion layer and to obtain a film having excellent adhesiveness. In particular, when the simultaneous biaxial stretching method is adopted for the production of the oriented polyester film and the in-line coating method is adopted for the formation of the second easy-adhesion layer, the preheating / drying temperature tends to be relatively low. The effect to employ | adopt is large especially preferable. Moreover, it is excellent also in blocking resistance.
If the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is less than the lower limit, the Tg of the copolyester will not be lowered sufficiently, resulting in insufficient adhesion. On the other hand, when the above-mentioned alkylene dicarboxylic acid component or alkylene glycol component exceeds the upper limit or the total of both exceeds the upper limit, not only the blocking resistance is lowered, but the content of other copolymer components is reduced. As a result, the refractive index of the copolyester becomes low and the effect of suppressing light interference spots becomes insufficient. Moreover, there exists a possibility that the solvent resistance of a 2nd easily bonding layer may fall. From such a viewpoint, the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
Preferred examples of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms (dicarboxylic acid component having an alkylene group having 4 to 10 carbon atoms) include 1,4-butanedicarboxylic acid component, 1,6-hexanedicarboxylic acid component, Examples thereof include 1,4-cyclohexanedicarboxylic acid component, 1,8-octanedicarboxylic acid component, 1,10-decanedicarboxylic acid component, and the like. Of these, a dicarboxylic acid component having an alkylene group having 4 to 8 carbon atoms is preferable, and a dicarboxylic acid component having an alkylene group having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg is easily obtained. Examples of the alkylene glycol component having 4 to 10 carbon atoms preferably used include a 1,4-butanediol component, a 1,6-hexanediol component, a 1,4-cyclohexanediol component, a 1,8-octanediol component, Examples include 1,10-decanediol component. Among these, an alkylene glycol component having 4 to 8 carbon atoms is preferable, and an alkylene glycol component having 4 to 6 carbon atoms is more preferable from the viewpoint that appropriate Tg can be easily obtained.
In addition, when it is intended to add another copolymer component to the copolymer polyester to impart other functions, it is easier to add it as an acid component, and it is also easy to carry out a polymerization reaction. From the viewpoint of leaving room, it is more preferable to contain the alkylene dicarboxylic acid component and the alkylene glycol component as an alkylene glycol component.
Further, since the glycol component having the fluorene structure represented by the formula (I) is contained in an amount of 5 mol% or more and less than 20 mol% based on the total acid component of the copolymerized polyester, the Tg of the copolymerized polyester is appropriately low. While maintaining the temperature, the refractive index can be increased to a preferable range. When the content of the glycol component having the fluorene structure represented by the formula (I) is less than 5 mol%, it is difficult to make the refractive index of the copolymer polyester within a preferable range, and light interference spots cannot be suppressed. . On the other hand, in the case of 20 mol% or more, since the Tg of the copolyester becomes too high, not only the film-forming property of the second easy-adhesive layer is lowered and the transparency of the resulting film is lowered, but also the adhesiveness. Also decreases. From such a viewpoint, the preferred lower limit is 3 mol%, more preferably 5%, and the preferred upper limit is 15 mol%, more preferably 10%. Examples of the glycol component having a fluorene structure represented by the formula (I) preferably used include a 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene component and a 9,9-bis [4- (2 -Hydroxyethoxy) -2-methylphenyl] fluorene component.
The copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. It is preferable that Tg can be within a more preferable range while maintaining the refractive index, and the adhesiveness is also improved. The average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
In addition to the above components, in order to keep the Tg of the copolyester within a more preferable range while maintaining the refractive index, terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
Further, the copolyester of this embodiment preferably contains 1 to 10 mol% of a dicarboxylic acid component having a sulfonate group based on the total acid component. Thereby, the solubility at the time of making copolymer polyester into aqueous coating liquid thru | or water dispersibility can be improved. Moreover, the solvent resistance (swelling resistance) of the second easy-adhesion layer can be improved. However, if the amount is too large, the water resistance and blocking resistance of the second easy-adhesion layer tend to be low, so the range of 2 to 8 mol% is particularly preferable. Examples of the aromatic dicarboxylic acid component having a sulfonate group include a 5-sodium sulfoisophthalic acid component, a 5-potassium sulfoisophthalic acid component, a 5-lithium sulfoisophthalic acid component, and a 5-phosphonium sulfoisophthalic acid component. However, the 5-sodium sulfoisophthalic acid component is most preferable from the viewpoint of improving water dispersibility.
The following can be illustrated as a specific aspect of the copolyester resin 1 preferably used.
[Preferred embodiment 1 of copolyester resin 1 (preferred embodiment 1-1)]
(A2) Naphthalene dicarboxylic acid component is 60 to 90 mol%
(B2) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component being 15 ~ 50 mol%
(C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 2 of Copolyester Resin 1 (Preferred Embodiment 1-2)]
(A3) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D3) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E3) 20-40 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 3 (Preferred Aspect 1-3) of Copolyester Resin 1]
(A4) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E4) 20-40 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 1 (Preferred Embodiment 1-4)]
(A5) Naphthalenedicarboxylic acid component is 60 to 70 mol%
(B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D5) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E5) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(F5) 6-8 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
(Polyester film)
In this embodiment, the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable. At that time, the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect. When a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
The second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed. The second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer comprises 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer. Contains laminated polyester film.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 ~ 50 mol%, and
(C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film according to any one of 1 to 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
<Preferred embodiment 2 of copolymerized polyester resin (copolymerized polyester resin 2)>
Various solvents have come to be used as coating solutions for forming functional layers such as hard coat layers. Depending on the solvent, the easy-adhesion layer swells and dissolves, and the thickness varies, resulting in interference. There is a problem that the spots cannot be suppressed. In response to such a problem, for example, in JP 2009-300658 A and JP 2009-300658 A, by adding particles having a relatively large particle diameter of 0.2 to 0.7 μm in average particle diameter, A method has been proposed in which interference spots are suppressed by surface roughness even when the thickness of the easy-adhesion layer varies. Note that the problem related to the thickness variation may be a problem that the appearance of bones cannot be suppressed because various solvents are similarly used when forming the optical adjustment layer.
This aspect is a particularly suitable copolymer polyester resin for the purpose of excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots (color spots) after the formation of the functional layer. It is an aspect.
Such a copolyester uses, for example, a component capable of increasing the refractive index such as a naphthalenedicarboxylic acid component or a glycol component having a fluorene structure and a component capable of adjusting the swelling ratio such as an aromatic dicarboxylic acid component having a sulfonate group. The refractive index and the swelling rate may be adjusted by adjusting the copolymerization amount.
Examples of the copolymer polyester preferably used include, for example, an aromatic dicarboxylic acid component having 60 to 90 mol% of a naphthalenedicarboxylic acid component and a sulfonate group based on the total dicarboxylic acid component (100 mol%) of the copolymer polyester. Examples thereof include those containing 1 to 10 mol% and 5 to 25 mol% of bisphenol A ethylene oxide adduct.
When the proportion of the naphthalenedicarboxylic acid component is in the above range, the refractive index of the copolyester can be increased, the refractive index of the second easy-adhesion layer can be easily set in the above range, and interference spots can be prevented. Can be suppressed. Further, the swelling ratio of the second easy-adhesion layer can be easily set within a preferable range. If the ratio of the naphthalenedicarboxylic acid component is too small, the refractive index of the copolyester is lowered, and as a result, the refractive index of the second easy-adhesive layer is lowered and the effect of suppressing interference spots is insufficient. On the other hand, since the refractive index of the copolyester increases as the proportion of the naphthalenedicarboxylic acid component increases, the proportion of other components (for example, a crosslinking agent and other components described later) may be increased as the second easy-adhesion layer. it can. However, at the same time, the glass transition temperature (Tg) of the copolyester tends to be high and the glass transition temperature of the second easy-adhesion layer tends to be high. The transparency of the film tends to decrease. Therefore, the content of the naphthalenedicarboxylic acid component is preferably 65 mol% or more, and 85 mol% or less, more preferably 80 mol% or less, and particularly preferably 70 mol% or less. Here, as a preferable naphthalene dicarboxylic acid component, it is the same as that of the copolyester resin 1.
Further, by having the aromatic dicarboxylic acid component having a sulfonate group in the above range based on the total acid component of the copolymer polyester, the solubility or water dispersibility when the copolymer polyester is used as an aqueous coating liquid is improved. be able to. In addition, the swelling ratio of the second easy-adhesion layer can be easily within a preferable range. However, if the amount is too large, the water resistance and blocking resistance of the second easy-adhesion layer tend to be low, so the content is preferably 2 to 8 mol%, particularly preferably 6 to 8 mol%. The aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1. .
Furthermore, by having the ethylene oxide adduct component of bisphenol A in the above range based on the total acid component of the copolymer polyester, the Tg can be made a preferred range while maintaining the refractive index of the copolymer polyester, The film forming property of the second easy-adhesion layer is improved, and a film excellent in transparency can be obtained. Moreover, it becomes easy to make a swelling rate into a preferable range. The average added mole number of ethylene oxide is suitably in the range of 2 to 4 moles with respect to 1 mole of bisphenol A.
The copolymer polyester described above preferably contains 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I) in addition to the above components. While maintaining Tg at a moderately low temperature, the refractive index can be within a preferred range. When the content of such components decreases, the refractive index of the copolyester tends to decrease, while when it increases, the Tg of the copolyester increases, and the film-forming property of the second easy-adhesive layer decreases and the transparency of the film is reduced. Tend to decrease, and the adhesiveness also tends to decrease. From such a viewpoint, the preferable lower limit is 5 mol%, and the preferable upper limit is 15 mol%, and particularly preferably 10 mol%. The glycol component having a fluorene structure represented by the formula (I) preferably used is the same as that of the copolyester resin 1.
Further, in addition to the above components, it is preferable to contain a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. More preferably, it contains 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms and 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the alkylene dicarboxylic acid component and the alkylene glycol In this embodiment, the total amount of the components is 15 to 50 mol%. Thereby, Tg of copolyester can be made low and Tg of a 2nd easily bonding layer can be made low. As a result, even if the polyester film is a polyethylene terephthalate film, even the in-line coating method often adopted when forming the second easy-adhesion layer is excellent in the film-forming property of the second easy-adhesion layer, so that the transparency is improved. An excellent film is obtained. In particular, when the simultaneous biaxial stretching method is used and the in-line coating method is used to form the second easy-adhesion layer, the preheating / drying temperature tends to be relatively low. Largely preferred. Moreover, the adhesive improvement effect can be enhanced and the blocking resistance is also excellent.
When the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component decreases, the Tg of the copolyester is difficult to decrease, and the transparency of the resulting film may be reduced. On the other hand, when the amount of the alkylene dicarboxylic acid component or the alkylene glycol component is increased or the sum of both is increased, the anti-blocking property is reduced, or the refractive index of the copolyester is reduced and the effect of suppressing interference spots is reduced. There is a case. In addition, the swelling rate of the second easy-adhesion layer may increase. From such a viewpoint, the total amount of the alkylene dicarboxylic acid component and the alkylene glycol component is preferably in the range of 20 to 50 mol%.
The alkylene dicarboxylic acid component having 6 to 12 carbon atoms (dicarboxylic acid component having an alkylene group having 4 to 10 carbon atoms) and the alkylene glycol component having 4 to 10 carbon atoms that are preferably used include copolymer polyester resin 1 It is the same.
In addition, when other copolymerization components are added to the copolymerized polyester to impart other functions, the above-mentioned alkylene dicarboxylic acid component and the above-mentioned alkylene glycol can be easily added as an acid component and easily subjected to a polymerization reaction. Among the components, it is more preferable to contain them as an alkylene glycol component.
Further, in addition to the above components, in order to keep the Tg of the copolyester within a more preferable range while maintaining the refractive index, terephthalic acid and / or isophthalic acid is contained in an amount of 20 to 40 mol%, particularly 24 to 34 mol%. It is preferable to contain. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
The following can be illustrated as a specific aspect of the copolyester resin 2 preferably used.
[Preferred Embodiment 1 of Copolyester Resin 2 (Preferred Embodiment 2-1)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 2 of Copolyester Resin 2 (Preferred Embodiment 2-2)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1-10 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5 to 25 mol% of bisphenol A ethylene oxide adduct component, and
(D) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 3 of Copolyester Resin 2 (Preferred Embodiment 2-3)]
(A) 60-90 mol% of naphthalenedicarboxylic acid component
(B) 1-10 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(E) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 2 (Preferred Embodiment 2-4)]
(A) 60-70 mol% of naphthalene dicarboxylic acid component
(B) 6-8 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(F) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 5 (Preferred Aspect 2-5) of Copolyester Resin 2]
(A) 60-70 mol% of naphthalene dicarboxylic acid component
(B) 6-8 mol% of an aromatic dicarboxylic acid component having a sulfonate group
(C) 5-25 mol% of bisphenol A ethylene oxide adduct component
(D) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms, and
(F) 24 to 34 mol% of terephthalic acid component and / or isophthalic acid component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
It is preferable that the 2nd easily bonding layer in this aspect is the following aspects.
(Refractive index)
The refractive index of the second easy-adhesion layer in this embodiment is preferably 1.58 to 1.64. More preferably, it is 1.58 to 1.62, more preferably 1.58 to 1.60, and particularly preferably 1.58 to 1.59. When the refractive index of the second easy-adhesion layer is within this range, the average refractive index in the plane direction of a preferable polyester film, which will be described later, and the refractive index of a hard coat layer usually made of an acrylic resin (approximately 1.52) Since the refractive index is between, interference spots (color spots) when a hard coat layer made of such an acrylic resin is applied on the second easy-adhesion layer can be suppressed. If this refractive index is too high or too low, it becomes difficult to suppress interference spots. Moreover, it becomes easy to make a swelling rate into a preferable range by setting it as the 2nd easily bonding layer which consists of a component which becomes such a refractive index, Preferably the component mentioned above.
In order to achieve such a refractive index, the refractive index of each component constituting the second easy-adhesion layer may be adjusted. For example, the refractive index of a 2nd easily bonding layer can be made high by using copolyester resin and particle | grains with a high refractive index. Particularly preferably, the above-described copolymer polyester resin 2 may be employed.
(Thickness)
In this embodiment, the thickness of the second easy-adhesion layer needs to be 50 to 100 nm, and preferably 70 to 90 nm. By setting the thickness of the second easy-adhesion layer within this range, interference spots (color spots) when a low refractive index layer such as a hard coat layer made of an acrylic resin is provided thereon can be suppressed. If this thickness is too thin, the adhesiveness tends to decrease, and if it is too thin or too thick, it becomes difficult to suppress interference spots.
(Swell rate)
In the second easy-adhesion layer in this embodiment, the swelling ratio obtained by the following method is 130 to 200% in any of the following solvents. Preferably it is 130 to 180%, more preferably 135 to 175%, still more preferably 139 to 165%. Here, the swelling rate is determined by applying a coating solution (solid content concentration: 40% by mass) obtained by diluting the following UV curable composition with a solvent onto the second easy-adhesive layer of the film, drying and curing, and then hardening the hard 5 μm thick. From the thickness dh of the second easy-adhesion layer after forming the coat layer and forming the hard coat layer and the thickness d0 of the second easy-adhesion layer before forming the hard coat layer, the swelling ratio E (%) = dh / d0 × 100
It is the value calculated as. The following are used as the UV curable composition, and as the solvent, methyl ethyl ketone (MEK), ethyl acetate, toluene, isopropanol (IPA) and propylene, which are representative of the solvents usually used for forming hard coat layers and the like, are used. Glycol monomethyl ether acetate (PGMEA) is used, and in any of these solvents, the swelling ratio of the second easy-adhesion layer needs to be in the above range.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
When the swelling ratio is less than 130%, the adhesion with the hard coat layer tends to be low. On the other hand, when the swelling ratio exceeds 200%, the functional layer such as the hard coat layer is formed before and after the formation. Since the variation in the thickness of the second easy-adhesion layer is too large, it is difficult to suppress interference spots. Further, it is important that the swelling rate is within the above range in any of the above solvents. If the swelling rate in any of the solvents is out of this range, such a solvent is used to form a hard coat layer or the like. This is because when the functional layer is formed, the adhesiveness is insufficient or it is difficult to suppress interference spots. In addition, since the swelling rate is easier to suppress interference spots when the hard coat layer is formed when the fluctuation due to the type of solvent is less, the difference between the maximum swelling rate and the minimum swelling rate is 50% or less. It is preferable that it is 25% or less.
In order to achieve such a swelling ratio, the components used for the second easy-adhesion layer, particularly the copolymer component constituting the binder component, may be adjusted to balance the lipophilicity and the hydrophilicity. Specifically, the above-described preferred embodiment of the copolyester resin 2 can be used. The swelling rate can also be adjusted by using a crosslinking agent for the second easy-adhesion layer. The crosslinking agent tends to have a lower swelling ratio as the addition amount increases.
(Polyester film)
The preferred polyester film according to this embodiment has a refractive index in the plane direction (average refractive index of a refractive index in any one direction and a refractive index in a direction perpendicular thereto in the film plane) of 1.63 to 1.68. Preferably, it is in the range of 1.64 to 1.67, particularly preferably 1.65 to 1.66. When the refractive index in the plane direction is in this range, the film provided with the second easy-adhesion layer using the above-described copolymer polyester resin 2 has a low refractive index layer such as a hard coat layer formed thereon. Excellent in suppressing the occurrence of interference spots. Even if the surface direction refractive index is out of the above range and is too high or too low, the effect of suppressing the occurrence of interference spots tends to decrease.
Such a polyester film may be any of an unoriented film, a uniaxially oriented film, and a biaxially oriented film as long as the plane direction refractive index satisfies the above requirements. To a biaxially oriented film.
The second easy-adhesion layer of this aspect is, for example, the first easy-adhesion layer when the main purpose is excellent adhesion to a functional layer such as a hard coat layer and suppression of light interference spots after the functional layer is formed. The second easy-adhesion layer can be provided on one or both sides of the polyester film to form a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. At least one surface of a polyester film having a surface direction refractive index of 1.63 to 1.68 has a refractive index of 1.58 to 1.64, and the swelling ratio required by the following method is 130 to 200% in any solvent, A laminated polyester film having a second easy adhesion layer having a thickness of 50 to 100 nm.
Swelling rate:
On the second easy-adhesion layer of the laminated polyester film, a coating solution (solid content concentration 40% by mass) obtained by diluting the following UV curable composition with a solvent (methyl ethyl ketone, ethyl acetate, toluene, isopropanol or propylene glycol monomethyl ether) is applied. And then drying and curing to form a hard coat layer having a thickness of 5 μm, the thickness dh of the second easy-adhesion layer after forming the hard coat layer, and the thickness of the second easy-adhesion layer before forming the hard coat layer The value obtained from d0 as the swelling ratio E (%) = dh / d0 × 100.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
2. 2. The laminated polyester film according to 1 above, wherein the second easy-adhesion layer contains 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer.
Copolyester:
(A2) Naphthalenedicarboxylic acid component is 60 to 90 mol%,
(B2) 1 to 10 mol% of an aromatic dicarboxylic acid component having a sulfonate group, and
(C2) Copolyester containing 5 to 25 mol% of bisphenol A ethylene oxide adduct component.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The copolyester is further
(D3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated film as described in 2 above.
4). 4. The laminated polyester film as described in 2 or 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
<Preferred embodiment 3 of copolymerized polyester resin (copolymerized polyester resin 3)>
In forming a coating layer such as the first and second easy-adhesion layers, a so-called in-line coating method in which orientation crystallization is completed after coating a coating liquid for forming a coating layer on a polyester film before completion of orientation is applied. Often used. However, according to our study, when applied on a polyethylene terephthalate film, it is presumed to be due to the cracking of the coating layer that occurs in the stretching process, but there may be cases where further improvement in adhesion is desired. found. And about this adhesiveness, the improvement of the adhesiveness (wet heat adhesiveness) especially in a wet heat environment is strongly requested | required.
This aspect is particularly suitable for the purpose of, for example, excellent adhesion with a functional layer such as a hard coat layer in a humid heat environment, and suppression of light interference spots (color spots) after the formation of the functional layer. This is an embodiment of a polymerized polyester resin.
The copolymerized polyester resin used in the second easy-adhesion layer of this embodiment has a naphthalenedicarboxylic acid component of 60 to 90 mol% and a carbon number of 6 to 6 on the basis of the total dicarboxylic acid component (100 mol%) of the copolymerized polyester. 12 alkylene dicarboxylic acid components and alkylene glycol components having 4 to 10 carbon atoms in total 15 to 50 mol%, glycol components having a fluorene structure represented by the formula (I) of 5 mol% or more and less than 20 mol%, and It contains 0.1 to 5 mol% of a dicarboxylic acid component having a sulfonate group.
The preferred embodiment and effect of the naphthalenedicarboxylic acid component are the same as those of the copolyester resin 1. In this embodiment, considering that the dicarboxylic acid component having a sulfonate group is an essential component, the preferable lower limit of the content of the naphthalene dicarboxylic acid component is 65 mol%, and the preferable upper limit is 85. The mol%, more preferably 80 mol%, still more preferably 75.9 mol%, particularly preferably 70 mol%.
Further, based on the total acid component of the copolyester, it contains a total of 15 to 50 mol% of an alkylene dicarboxylic acid component having 6 to 12 carbon atoms and an alkylene glycol component having 4 to 10 carbon atoms. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1. In this embodiment, considering that the dicarboxylic acid component having a sulfonate group is an essential component, the content is preferably 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms. And an alkylene glycol component having 4 to 10 carbon atoms is contained in an amount of 0 to 50 mol%, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 to 50 mol%. .
Moreover, 5 mol% or more and less than 20 mol% of the glycol component which has the fluorene structure shown by said Formula (I) is included on the basis of all the acid components of copolyester. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
Furthermore, in this embodiment, the content of the dicarboxylic acid component having a sulfonate group is 0.1 to 5 mol% based on the total acid component. Thereby, the adhesiveness in a wet heat environment can be made high. If the amount is too large, the adhesiveness in a moist heat environment tends to be low, and the range of 0.1 to 4.5 mol% is particularly preferable. On the other hand, even if the content is too small, the effect of dispersing or dissolving in a solvent (particularly an aqueous solvent) tends to be reduced, and uniform coating tends to be difficult. Adhesiveness tends to be low. From this viewpoint, 0.2 mol% or more is preferable, and 0.4 mol% or more is more preferable. The aromatic dicarboxylic acid component having a preferred sulfonate group is the same as the copolymer polyester resin 1.
The copolymerized polyester of the second easy-adhesion layer in this embodiment described above contains 5 to 25 mol%, more preferably 10 to 20 mol%, of an ethylene oxide adduct component of bisphenol A in addition to the above components. Preferably it is. Preferred embodiments and effects of such components are the same as those of the copolyester resin 1.
In addition to the above components, in order to keep the Tg of the copolyester in a more preferable range while maintaining the refractive index, 20 to 39.9 mol%, particularly 24 to 34, of terephthalic acid and / or isophthalic acid is used. It is preferable to contain mol%. Among these, an isophthalic acid component is preferable because it is easy to obtain a more suitable Tg.
The following can be illustrated as a specific aspect of the copolyester resin 3 preferably used.
[Preferred Embodiment 1 of Copolyester Resin 3 (Preferred Embodiment 3-1)]
(A2) Naphthalene dicarboxylic acid component is 60 to 90 mol%
(B2) 0 to 39.9 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component 15 to 50 mol%
(C2) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I)
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(F2) 0.1-5 mol% of dicarboxylic acid component having sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Aspect 2 (Preferred Aspect 3-2) of Copolyester Resin 3]
(A3) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B3) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C3) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D3) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E3) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F3) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 3 of Copolyester Resin 3 (Preferred Embodiment 3-3)]
(A4) Naphthalene dicarboxylic acid component is 60 to 80 mol%
(B4) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C4) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(E4) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F4) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
[Preferred Embodiment 4 of Copolyester Resin 3 (Preferred Embodiment 3-4)]
(A5) Naphthalene dicarboxylic acid component is 60 to 75.9 mol%
(B5) 15 to 50 mol% of an alkylene glycol component having 4 to 10 carbon atoms
(C5) 5 mol% or more and less than 20 mol% of the glycol component having the fluorene structure represented by the formula (I)
(D5) 5-25 mol% of bisphenol A ethylene oxide adduct component
(E5) 20 to 39.9 mol% of terephthalic acid component and / or isophthalic acid component
(F5) 0.1-5 mol% of dicarboxylic acid component having a sulfonate group
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Copolyester containing.
(Polyester film)
In this embodiment, the polyester film is preferably an oriented polyethylene terephthalate film, which may be a uniaxially oriented film or a biaxially oriented film, but the in-plane mechanical and thermal properties are uniform. From this point, a biaxially oriented film is preferable. At that time, the average refractive index in the plane direction (in the film plane, the average refractive index between the refractive index in any one direction and the refractive index in the direction perpendicular thereto) is provided on the second easy-adhesive layer of this aspect. When a functional layer such as a hard coat layer is provided, the range of 1.6 to 1.7 is preferable from the viewpoint of suppressing the occurrence of light interference spots (color spots).
The second easy-adhesion layer of this aspect is, for example, excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment and the suppression of light interference spots after the formation of the functional layer. A 2nd easily bonding layer can be provided in the one or both surfaces of a polyester film, without having 1 easily bonding layer, and it can be set as a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer comprises 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer. Contains laminated polyester film.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 15 to 50 mol% of the total of alkylene dicarboxylic acid component having 6 to 12 carbon atoms and alkylene glycol component having 4 to 10 carbon atoms,
(C1) 5 mol% or more and less than 20 mol% of the glycol component having a fluorene structure represented by the formula (I), and
(F1) Copolyester containing 0.1 to 5 mol% of a dicarboxylic acid component having a sulfonate group.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 39.9 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film according to any one of 1 to 3 above, wherein the second easy-adhesive layer contains 1 to 30% by mass of a crosslinking agent based on the mass of the second easy-adhesive layer.
5. 5. The laminated polyester film as described in any one of 1 to 4 above, which is used as an easily adhesive polyester film for optics.
The copolyester detailed above can be produced by a conventionally known polyester production technique. For example, an acid component such as 2,6-naphthalenedicarboxylic acid or an ester-forming derivative thereof, isophthalic acid or an ester-forming derivative thereof and 5-sodium sulfoisophthalic acid or an ester-forming derivative thereof is converted to tetramethylene glycol, 9,9- It reacts with diol components such as bis [4- (2-hydroxyethoxy) phenyl] fluorene and bisphenol A ethylene oxide adduct components to form monomers or oligomers, and then polycondensates under vacuum to obtain a predetermined intrinsic viscosity. It can be produced by a method of making a copolyester. At that time, a catalyst for promoting the reaction, for example, an esterification or transesterification catalyst or a polycondensation catalyst can be used, and various additives such as a stabilizer can be added.
The copolymerized polyester is applied to at least one surface of the film as a coating liquid, but since the in-line coating method applied when forming the film is preferable, the copolymerized polyester is preferably used as an aqueous dispersion. The method for forming the aqueous dispersion is not particularly limited, and a conventionally known method may be adopted.
(Other ingredients)
In the present invention, the copolyester used for the second easy-adhesion layer may contain an acid component or diol component other than those described above, and examples of the acid component include phthalic acid and phthalic anhydride. In addition, examples of the diol component include ethylene glycol, diethylene glycol, dipropylene glycol, xylene glycol, and dimethylolpropane. If the amount is slightly more, unsaturated acid components such as maleic acid and itaconic acid, polyfunctional acid components such as trimellitic acid and pyromellitic acid, polyfunctional hydroxy components such as glycerin and trimethylolpropane, and poly (ethylene oxide) Poly (alkylene oxide) glycol components such as glycol and poly (tetramethylene oxide) glycol may be used. In the present invention, the diol component is preferably an embodiment in which the above-mentioned essential or preferred diol component is contained in an essential or preferred content and the other diol component is an ethylene glycol component.
The range of preferable intrinsic viscosity (may be abbreviated as IV) of the copolyester of the second easy-adhesion layer is 0.2 to 0.8 dl / g, and the lower limit is further 0.3 dl / g, especially 0. .4 dl / g, and the upper limit is further preferably 0.7 dl / g, particularly preferably 0.6 dl / g. Here, the intrinsic viscosity is a value measured at 35 ° C. using orthochlorophenol.
Further, the glass transition temperature (Tg) of the copolymerized polyester of the second easy-adhesion layer is 70 ° C. or less from the viewpoint of coating film formability (film forming property) and adhesiveness when in-line coating is performed on a polyethylene terephthalate film. In view of blocking resistance, it is preferably 40 ° C. or higher, particularly 45 ° C. or higher.
Further, the refractive index of the copolyester makes it easy to suppress light interference spots (color spot feeling) by setting the refractive index of the second easy-adhesive layer to the above-mentioned preferred range, so that it is 1.58-1. It is preferably in the range of 65, more preferably in the range of 1.60 to 1.63, and particularly preferably in the range of 1.61 to 1.62. In order to satisfy the Tg and refractive index of the copolyester at the same time, the above-described preferred copolyester resin embodiment may be employed.
<Crosslinking agent>
In the second easy-adhesion layer, it is preferable to add a crosslinking agent in addition to the above-mentioned copolymerized polyester resin. Preferred examples of the crosslinking agent include an epoxy crosslinking agent, an oxazoline crosslinking agent, a melamine crosslinking agent, and an isocyanate crosslinking agent, and these may be used alone or in combination of two or more. May be.
Examples of the epoxy-based crosslinking agent include polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether. , Diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, diepoxy compound, for example, neopentyl glycol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene group As a co-diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, poly-1,4-butanediol diglycidyl ether, monoepoxy compound, for example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether Examples of the glycidylamine compound include N, N, N ′, N′-tetraglycidyl-m-xylylenediamine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
As the oxazoline-based crosslinking agent, a polymer containing an oxazoline group is preferable. It can be prepared by polymerization with addition polymerizable oxazoline group-containing monomers alone or with other monomers. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer may be any monomer that can be copolymerized with an addition-polymerizable oxazoline group-containing monomer. For example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n (Meth) acrylic acid esters such as butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene sulfone Unsaturated carboxylic acids such as acids and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); unsaturated nitriles such as acrylonitrile, methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkyl methacrylamide N, N-dialkylacrylamide, N, N-dialkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl groups Unsaturated amides such as cyclohexyl groups, etc .; vinyl esters such as vinyl acetate, vinyl propionate, acrylic acid, methacrylic acid added with polyalkylene oxide; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether Α-olefins such as ethylene and propylene; halogen-containing α and β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; α and β-unsaturated aromatics such as styrene and α-methylstyrene Group monomers and the like, one or more of these It is possible to use a monomer.
As the melamine-based crosslinking agent, a compound obtained by reacting methyl alcohol melamine derivative obtained by condensing melamine and formaldehyde with methyl alcohol, ethyl alcohol, isopropyl alcohol or the like as a lower alcohol and a mixture thereof are preferable. Examples of the methylol melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine and the like.
Examples of the isocyanate-based crosslinking agent include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, metaxylylene diisocyanate, hexamethylene-1,6-diisocyanate, 1,6-diisocyanate hexane, tolylene diisocyanate and hexanetriol. Adduct, adduct of tolylene diisocyanate and trimethylolpropane, polyol-modified diphenylmethane-4,4'-diisocyanate, carbodiimide-modified diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, 3,3 ' -Bitrylene-4,4 'diisocyanate, 3,3'dimethyldiphenylmethane-4,4'-diisocyanate, metaphenylene diisocyanate and the like.
Of these cross-linking agents, oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
By including a crosslinking agent for the second easy-adhesive layer, the solvent resistance (swelling resistance) and blocking resistance of the second easy-adhesive layer can be improved. Not only does the ratio decrease and the refractive index of the second easy-adhesive layer decreases, it becomes difficult to suppress light interference spots, but the second easy-adhesive layer tends to become harder and the adhesiveness tends to decrease. The content of the crosslinking agent is preferably in the range of 1 to 30% by mass, particularly preferably in the range of 5 to 10% by mass per 100% by mass of the second easy-adhesive layer.
Of these cross-linking agents, oxazoline-based cross-linking agents are particularly preferred from the viewpoints of ease of handling, pot life of the coating liquid, and the like.
Moreover, in the preferable aspect which employ | adopted the above-mentioned copolyester resin 2, the swelling rate with respect to the solvent of a 2nd easily bonding layer is easily made into a suitable value by containing the crosslinking agent concerning a 2nd easily bonding layer. However, if the amount is too large, the swelling rate tends to be too low and the adhesiveness tends to decrease. Therefore, the content of the crosslinking agent is 1 to 30% by mass per 100% by mass of the second easy-adhesive layer. The range is preferably in the range of 5 to 10% by mass.
<Crosslinkable addition polymer>
As described above, there is a strong demand for improving adhesiveness (wet heat adhesiveness) particularly in a wet heat environment.
This embodiment is a particularly suitable embodiment of a crosslinking agent for the purpose of excellent adhesion with a functional layer such as a hard coat layer in a wet heat environment.
In a 2nd easily bonding layer, wet heat adhesiveness can be improved by employ | adopting the crosslinkable addition polymer mentioned later as a crosslinking agent, It is preferable. In particular, in the above-described embodiment of the copolyester resin 1, an embodiment using the following crosslinkable addition polymer is particularly preferable because of high adhesiveness (wet heat adhesiveness).
In the present invention, the second easy-adhesion eyebrows are prepared by adding the following cross-linkable addition polymer in addition to the above-mentioned copolymer polyester resin (particularly preferably copolymer polyester resin 1), based on the mass of the second easy-adhesion layer. It is preferable to contain ~ 30% by mass.
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(However, the above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.
Thereby, it can be excellent in the adhesiveness in a humid-heat environment together with the adhesive improvement by the crack suppression of the 2nd easily bonding layer by employ | adopting the above-mentioned copolyester resin.
Examples of the addition polymerizable oxazoline group-containing monomer constituting the addition polymerizable oxazoline group-containing monomer unit include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl- 2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like can be mentioned. These 1 type, or 2 or more types of mixtures can also be used. The addition polymerizable group for exhibiting the addition polymerization property is not particularly limited, but particularly from the viewpoint of further improving the adhesion with a functional layer such as a hard coat layer and from the viewpoint of easily obtaining the target compound. Residues or methacrylic residues are preferred, that is, the monomer is preferably an oxazoline group-containing acrylic monomer or an oxazoline group-containing methacrylic monomer. Among them, 2-isopropenyl-2-oxazoline is particularly preferable because it is easily available industrially.
The addition-polymerizable polyalkylene oxide group-containing monomer constituting the addition-polymerizable polyalkylene oxide group-containing monomer unit may have any addition-polymerizable group and polyalkylene oxide group, such as vinyl acetate, Preferable examples include vinyl esters such as those obtained by adding polyalkylene oxide to the ester portion of vinyl propionate, acrylic acid or methacrylic acid. Here, the alkylene group in the polyalkylene oxide group is, for example, one having 2 to 30 carbon atoms, preferably an alkylene group having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably. Are an ethylene group, a propylene group, and a butylene group. The number of repeating alkylene groups in the polyalkylene oxide group (average) is, for example, 2 to 30, preferably 4 to 20, and more preferably 5 to 15. In the case of a polyalkylene oxide group comprising a plurality of types of alkylene groups, the total number of repetitions is preferably within the above range.
The crosslinkable addition polymer in the present invention contains 10-80 mol% of monomer units composed of the above addition polymerizable oxazoline group-containing monomer in the polymer with respect to 100 mol% of all monomer units of the polymer. And the content of the monomer unit composed of the addition-polymerizable polyalkylene oxide group-containing monomer as described above in the polymer is 5 mol% or less with respect to 100 mol% of all monomer units of the polymer. Is. By setting it as such a structure, the adhesiveness in a humid heat environment can be made high.
If the content of the addition-polymerizable oxazoline group-containing monomer unit is too small, the adhesiveness in a moist heat environment is inferior. From this viewpoint, it is preferably 20 mol% or more, more preferably 30 mol% or more, still more preferably 40 mol% or more, and particularly preferably 50 mol% or more. On the other hand, if the amount is too large, a problem of film formation deteriorates. From this viewpoint, it is preferably 75 mol% or less, more preferably 70 mol% or less.
Moreover, when there is too much content of an addition polymerizable polyalkylene oxide group containing monomer unit, it will be inferior to the adhesiveness in a wet heat environment. From this viewpoint, it is preferably 4 mol% or less, more preferably 3 mol% or less, and still more preferably 2 mol% or less. Ideally, it is an embodiment that does not contain addition-polymerizable polyalkylene oxide group-containing monomer units.
In this embodiment, the crosslinkable addition polymer only needs to have a structure satisfying the requirements of the above (X1) and (Y1), and the other monomer units are addition polymerizable in a range that does not impair the purpose of this embodiment. Any monomer unit may be used as long as it is composed of any addition polymerizable monomer capable of addition polymerization with an oxazoline group-containing monomer and an addition polymerizable polyalkylene oxide group-containing monomer. Such optional addition polymerizable monomers include, for example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2 (Meth) acrylic acid esters such as ethylhexyl group and cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrenesulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt) Unsaturated nitriles such as acrylonitrile and methacrylonitrile; acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N, N-dialkylacrylamide, N, N-dia Unsaturated amides such as kill methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.) Vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α and β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; styrene, α-methyl styrene, Α, β-unsaturated aromatic monomers and the like can be used, and one or more of these monomers can be used.
The content of the crosslinkable addition polymer in the second easy-adhesive layer is preferably 1 to 30% by mass based on the mass of the second easy-adhesive layer. The adhesiveness tends to decrease, and if it is less than the above lower limit, the adhesiveness in a moist heat environment is inferior. From this viewpoint, the content of the crosslinkable addition polymer is more preferably 2% by mass or more, and further preferably 3% by mass or more. On the other hand, when the content is large, the refractive index of the second adhesive layer tends to be lowered. Therefore, when the upper limit is exceeded, the interference spots are inferior. From this viewpoint, it is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
In this embodiment, a crosslinking agent different from the above-mentioned crosslinkable addition polymer can be blended and used in combination in the second easy-adhesion layer within a range that does not impair the purpose of this embodiment. As such a crosslinking agent, an epoxy-type crosslinking agent, a melamine-type crosslinking agent, an isocyanate-type crosslinking agent, etc. can be illustrated, These may use 1 type and may use 2 or more types together.
The second easy-adhesion layer of the present embodiment adopting the above-mentioned crosslinkable polymer has excellent adhesiveness with a functional layer such as a hard coat layer in a moist heat environment, and suppression of light interference spots after the functional layer is formed. In the case of the main purpose, the second easy-adhesion layer can be provided on one or both sides of the polyester film without having the first easy-adhesion layer to obtain a laminated polyester film. Such a laminated polyester film includes the following embodiments.
1. A laminated polyester film having a second easy-adhesion layer on at least one surface of an oriented polyethylene terephthalate film, wherein the second easy-adhesion layer is 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer, and A laminated polyester film containing 1 to 30% by mass of the following crosslinkable addition polymer.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 15 to 50 mol% in total of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms and the alkylene glycol component having 4 to 10 carbon atoms, and
(C1) A copolyester containing a glycol component having a fluorene structure represented by the formula (I) in an amount of 5 mol% to less than 20 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.)
2. The copolyester is further
(D2) 5-25 mol% of bisphenol A ethylene oxide adduct component
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated polyester film according to 1 above, comprising:
3. The copolymerized polyester is
(A3) The proportion containing a naphthalenedicarboxylic acid component is 60 to 80 mol%,
(B3) the proportion of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms is 0 mol%,
(E3) containing 20 to 40 mol% of terephthalic acid and / or isophthalic acid component,
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
3. The laminated polyester film as described in 1 or 2 above.
4). 4. The laminated polyester film as described in any one of 1 to 3 above, which is used as an easily adhesive polyester film for optics.
<Other ingredients>
Various additives can be blended in the second easy-adhesion layer of the present invention within a range not impairing the object of the present invention. For example, particles, waxes, surfactants, wetting modifiers, etc. may be added to improve film slipperiness, scratch resistance, wettability during coating, and other antistatic agents, UV absorbers, etc. Etc. may be blended.
For example, by adding particles, the slipperiness and scratch resistance of the film can be improved. Such particles may be any of organic particles, inorganic particles, and organic-inorganic composite particles. From the viewpoint of improving scratch resistance while maintaining transparency, large particles (particles), It is preferable to contain both small particles (small particles).
The average particle size of the large particles is suitably in the range of 80 to 1000 nm, more preferably in the range of 100 to 400 nm, and still more preferably in the range of 130 to 350 nm. Thereby, it is excellent in lubricity and scratch resistance. In addition, since a large particle is easy to drop | omit from a 2nd easily bonding layer, it is preferable that it is an organic inorganic composite particle which coat | covered the inorganic particle surface with organic substance (for example, acrylic).
The content of the large particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the mass of the second easy-adhesion layer. The effect of adding is easier to obtain.
The average particle size of the small particles is suitably in the range of 10 nm or more and less than 100 nm, more preferably 20 to 80 nm, still more preferably 30 to 60 nm. Thereby, it is excellent in blocking resistance. From the viewpoint of hardness, the small particles are preferably inorganic particles, and are preferably metal oxide particles. Examples of the metal oxide particles include silica particles, alumina particles, titania particles, and zirconia particles. Among these, silica particles and titania particles are preferable from the viewpoint of excellent cost.
The content of the small particles in the second easy-adhesion layer is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass with respect to the mass of the second easy-adhesion layer, and the small particles are added. The effect is easier to obtain.
The second easy-adhesion layer can contain a surfactant. By containing a surfactant in the coating liquid for forming the second easy-adhesion layer, the coating properties of the coating liquid can be improved. Such a surfactant is not particularly limited as long as it has an effect of enhancing the coating property to a polyethylene terephthalate film. For example, nonionic surfactants, cationic surfactants, anionic surfactants, amphoteric interfaces. Any activator can be used. Of these, nonionic surfactants are preferred from the viewpoint of particularly low foaming and good coatability. Preferred examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, and polyoxyethylene propylene copolymer alkyl ether.
When using a surfactant, it is preferable to use it in an amount of 20% by mass or less based on the mass of the second easy-adhesion layer. Thereby, there exists a tendency for the adhesive improvement effect to become high. From this viewpoint, it is more preferably 15% by mass or less, and further preferably 10% by mass or less. Moreover, the lower limit of the addition amount is preferably 1% by mass, more preferably 3% by mass or more, and further preferably 5% by mass or more from the viewpoint of the coating property described above.
<Method for producing polyester film>
An example is given and demonstrated about the method for manufacturing the polyester film in this invention. In addition, the polyester film in this invention is not limited to this.
The polyester film in the present invention is obtained by, for example, melt-extruding the above polyester into a film shape, cooling and solidifying with a casting drum to form an unstretched film, and this unstretched film is longitudinal (Tg + 60) ° C. In some cases, it may be referred to as “longitudinal direction or MD”) once or twice or more so that the total magnification becomes 3 to 6 times to form a uniaxially stretched film. Here, Tg is the glass transition temperature of the polyester constituting the film. Preferably, the coating liquid for forming the 1st easily bonding layer mentioned later here is apply | coated. Next, the magnification is 3 to 5 times in the width direction (the direction perpendicular to the film forming machine axis direction and the thickness direction, sometimes referred to as the transverse direction or TD) at Tg ~ (Tg + 60) ° C. It is obtained by stretching, and if necessary, heat treatment at 180-230 ° C. for 1-60 seconds and re-heat treatment while shrinking 0-20% in the width direction at a temperature 10-20 ° C. lower than the heat treatment temperature. Can do.
The refractive index of the biaxially oriented polyester film can be adjusted by the draw ratio. The higher the draw ratio, the higher the refractive index. However, since the thermal dimensional stability is impaired as the draw ratio increases, the draw ratio is preferably in the range of 3.0 to 4.0 in the longitudinal direction and the width direction, more preferably 3.3 to 3. It is 8 times, more preferably 3.4 to 3.7 times.
In the present invention, in the production of the polyester film, the sequential biaxial stretching method as described above can be adopted, but the simultaneous biaxial stretching method can also be adopted. At that time, the stretching conditions and the like are the same as those described above. In this case, the coating liquid for forming the easy-adhesion layer is applied to the unstretched film.
The thickness of the polyester film used in the present invention is preferably in the range of 20 to 200 μm. In particular, when used in a capacitive touch sensor, it can be appropriately selected according to the characteristics of the controller IC in order to ensure a predetermined capacitance.
<Method for producing laminate>
An example is given and demonstrated about the method for manufacturing the laminated body of this invention. In addition, the laminated body of this invention is not limited to this.
(Formation method of a 1st easily bonding layer)
The first easy-adhesion layer is coated with a coating liquid for forming the first easy-adhesion layer (hereinafter sometimes referred to as a first easy-adhesion coating liquid) on the polyester film, and is dried and necessary. It can form by hardening according to. Preferably, it is a so-called in-line coating method in which the first easy-adhesion coating liquid is applied during the production process of the polyester film to form the first easy-adhesion layer. Thereby, the adhesiveness of a polyester film and a 1st easily bonding layer can be made high. Even if the thickness of the first easy-adhesion layer is very thin, the thickness can be controlled with high accuracy.
The first easy-adhesive coating liquid can be obtained by mixing the components constituting the first easy-adhesive layer described above and diluting with a solvent as necessary. Here, each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent. The concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
A conventionally well-known method can be employ | adopted as a coating system for forming a 1st easily bonding layer. Examples thereof include a roll coating method (such as a gravure roll coating method) and a spray coating method.
(Method for forming high refractive index layer and low refractive index layer)
The high refractive index layer and the low refractive index layer can be formed by either a wet method or a dry method. An optical adjustment layer is formed by forming a high refractive index layer on the first easy-adhesion layer or further forming a low refractive index layer on the high refractive index layer by any suitable method. do it.
In the wet method, a coating liquid for forming a high refractive index layer (hereinafter referred to as a high refractive index coating) is formed by a doctor method, a bar coater, a gravure roll coater, a curtain coater, a knife coater, a spin coater, a spray method, a dipping method, or the like. And a coating liquid for forming a low refractive index layer (hereinafter sometimes referred to as a low refractive index coating liquid) is applied to the surface on which the layer is to be formed. The coating film is dried, and the coating film is dried and, if necessary, cured by heat, ultraviolet rays, an electron beam or the like, whereby a high refractive index layer and a low refractive index layer can be formed. Such a coating solution may be a sol, whereby a metal oxide film is obtained. In addition, what is necessary is just to select drying conditions and hardening conditions suitably. Depending on the solvent of the coating solution, the drying temperature is, for example, 50 to 100 ° C., preferably 60 to 90 ° C. As the irradiation intensity of ultraviolet rays or electron beams in curing, for example, 100 to 2000 mJ / m 2 It is. The solid content concentration of the coating liquid can also be appropriately selected depending on the intended coating amount and the coating method used. For example, it is 1 to 70% by mass.
According to the wet method, a layer containing metal oxide fine particles in a binder resin, a layer made of a metal oxide film by a sol-gel method, a metal oxide film containing metal oxide particles, organic particles, and a binder resin It is suitable for forming the layer which carries out.
In the dry method, a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a printing method, a CVD method, or the like can be applied. The dry method is suitable for forming a layer made of metal or a layer made of a metal oxide film. Note that the conditions may be appropriately adjusted in consideration of the type of target, the target layer thickness, and the like.
<Transparent conductive film>
In the present invention, a transparent conductive layer having a refractive index of 1.9 to 2.3 is formed on the optical adjustment layer of the laminate obtained above, in particular, on the low refractive index layer. Can be obtained.
In the present invention, the transparent conductive layer is not particularly limited as long as it is within the above refractive index range, and examples thereof include a layer made of a crystalline metal or a crystalline metal compound. Examples of the component constituting the transparent conductive layer include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide. Of these, a crystalline layer mainly composed of indium oxide is preferable, and a layer made of crystalline ITO (Indium Tin Oxide) is particularly preferably used. When the transparent conductive layer is a crystalline film, the environmental reliability required for the touch panel tends to be improved. The crystallization method is not particularly limited, and for example, crystallization can be performed by heat treatment at 120 to 160 ° C. for about 60 to 90 minutes.
A layer made of a conductive polymer such as polyacetylene, polyparaphenylene, polythiophene, polyethylenedioxythiophene, polypyrrole, polyaniline, polyacene, polyphenylene vinylene, or the like can also be employed.
The film thickness of the transparent conductive layer is preferably 5 to 50 nm from the viewpoints of transparency and conductivity. More preferably, it is 5 to 30 nm. When the film thickness of the transparent conductive layer is less than 5 nm, the resistance stability with time tends to be inferior, and when it exceeds 50 nm, the surface resistance value tends to decrease. In addition, the color tone of the film becomes strong and the pattern tends to be emphasized.
When the transparent conductive film of the present invention is used for a touch panel, the surface resistance value of the transparent conductive layer at a thickness of 10 to 30 nm is more preferably 100 to 1000Ω / □, more preferably due to reduction of power consumption of the touch panel and circuit processing. It is preferable to use a transparent conductive layer exhibiting a range of 140 to 600Ω / □.
<Method for producing transparent conductive film>
The transparent conductive layer can be formed by a known method. For example, a physical formation method (such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser deposition method) (Physical Vapor Deposition (PVD)) or the like can be used, but DC magnetron sputtering is desirable from the viewpoint of industrial productivity of forming a metal compound layer having a uniform film thickness over a large area. In addition to the physical formation method (PVD), a chemical formation method such as chemical vapor deposition (CVD) or a sol-gel method can be used. A sputtering method is preferred.
In addition, the transparent conductive layer in this invention is patterned. Here, patterning refers to an aspect in which a portion where the transparent conductive layer exists in a prescribed shape and a portion where the transparent conductive layer does not exist are formed. That is, the transparent conductive layer is formed on a part of the laminate of the present invention. The specified shape may be a known shape that can be used as an electrode of a capacitive touch panel. For example, there are fine wire and tiremond patterns. The patterning method is not particularly limited, and a conventionally known etching method can be used.
<Method for forming second easy-adhesion layer>
The second easy-adhesion layer is coated with a coating liquid for forming the second easy-adhesion layer (hereinafter sometimes referred to as a second easy-adhesion coating liquid) on the polyester film, and then dried. It can form by hardening according to. Preferably, a so-called in-line coating method is used in which the second easy-adhesion coating liquid is applied to form the second easy-adhesion layer during the production process of the polyester film. Thereby, the adhesiveness of a polyester film and a 2nd easily bonding layer can be made high. Moreover, even if the thickness of the second easy-adhesion layer is very thin, the thickness can be controlled with high accuracy. Particularly preferably, during the production process of the polyester film, the second easy-adhesion coating solution is applied to the surface opposite to the surface to which the first easy-adhesion coating solution is applied, and the first easy-adhesion layer and the second easy-adhesion layer are formed simultaneously. Manufacturing method.
A 2nd easily-adhesive coating liquid can mix and obtain the component which comprises the 2nd easily-adhesive layer mentioned above, and can obtain it by diluting with a solvent as needed. Here, each component may be added as it is, or may be added after dissolving or dispersing in an appropriate solvent, or may be diluted with an appropriate solvent. The concentration of the coating liquid can be appropriately set depending on the viscosity of the coating liquid, the coating thickness, the coating method, and the like.
A conventionally well-known method can be employ | adopted as a coating system for forming a 2nd easily bonding layer. Examples thereof include a roll coating method (such as a gravure roll coating method) and a spray coating method.
The second easy-adhesion layer can be formed before forming the first easy-adhesion layer. Moreover, a 2nd easily bonding layer can also be formed on both surfaces of a polyester film depending on the objective. The following is a description of a particularly preferable manufacturing method for forming the second easily adhesive layer in such a case.
The polyester film which has a 2nd easily bonding layer is manufactured through the film forming process which manufactures a biaxially-oriented polyester film, and the application | coating process which forms a 2nd easily bonding layer. The film forming step may be a sequential biaxial stretching method or a simultaneous biaxial stretching method, but if it is a simultaneous biaxial stretching method, the film surface is hardly damaged during film formation, Since it is suitable for manufacturing the film used for an optical use, it is preferable. The coating process may be after the film forming process (so-called off-line coating method) or in the film forming process (so-called in-line coating method). For example, a thin coating layer can be easily obtained uniformly, and a strong coating layer can be obtained. Furthermore, it is excellent in productivity.
In the second easy-adhesion layer, using the copolyester resin 1 or 3, the effect of improving the easy-adhesive property by improving the film-forming property is to be applied to the unstretched film or the partially oriented film before completion of the orientation. Is produced by an in-line coating method in which the film is stretched and heat-set after being provided. The film forming method may be a sequential biaxial stretching method or a simultaneous biaxial stretching method. In the simultaneous biaxial stretching method, the second easy-adhesive layer is used to stretch the biaxial simultaneously. When the coating liquid for forming the film is stretched after coating, the film forming property of the second easy-adhesive layer becomes more severe. Therefore, especially in such a case, the embodiment using the above-described copolymer polyester resins 1 and 3 is particularly useful.
Hereinafter, a preferable method when polyethylene terephthalate is used as the polyester and the in-line coating method is adopted by the simultaneous biaxial stretching method will be described. First, sufficiently dried polyethylene terephthalate is melted at a temperature of Tm + 10 ° C. to Tm + 30 ° C. (where Tm is the melting point of polyethylene terephthalate), extruded into a sheet, and cooled with a cooling drum to form an unstretched film. Next, a coating solution for forming the second easy-adhesion layer is applied to the surface of the unstretched film on the side where the second easy-adhesion layer is to be formed by using a roll coater to obtain an unstretched film having a coating film. At this time, coating is performed so that the thickness of the second easy-adhesion layer in the obtained film is preferably 50 to 100 nm, more preferably 70 to 90 nm. Next, this was preheated at 90 to 110 ° C., and simultaneously in the biaxial direction with a simultaneous biaxial stretching machine at a temperature of Tg to Tg + 70 ° C. (where Tg is the glass transition temperature of polyethylene terephthalate) and in the longitudinal direction (film formation) Preferably in the machine axis direction, longitudinal direction or MD) 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, lateral direction (direction perpendicular to the film forming machine axis direction, width direction or TD) ) Is preferably 2.5 to 5.0 times, more preferably 3.0 to 4.0 times, and then heat-fixed at a temperature of (Tg + 60 ° C.) to Tm, preferably adjusting the heat shrinkage rate. Therefore, a laminated film having a second easy-adhesion layer on the oriented polyethylene terephthalate film can be obtained by heat relaxation treatment. In addition, it is preferable that this extending | stretching temperature is 45 degreeC or more higher than the glass transition temperature of the copolyester in a 2nd easily bonding layer, More preferably, it is 50 degreeC or more, More preferably, it is 55 degreeC or more higher temperature. That is. Thereby, the film-forming property of the second easy-adhesion layer becomes more excellent, and the effect of improving the adhesiveness can be enhanced. Further, the temperature is preferably 40 ° C. or higher than the glass transition temperature of the second easy-adhesion layer, more preferably 45 ° C. or higher, and even more preferably 53 ° C. or higher. The film forming property of the easy-adhesion layer is more excellent, and the effect of improving the adhesiveness can be increased. Next, for heat setting, for example, a polyethylene terephthalate film is preferably heat-set at a temperature in the range of 210 to 240 ° C. for 1 to 60 seconds. In addition, the coating film is dried by the heat applied in the above process, and is cured as necessary to become a second easy-adhesion layer.
In addition, the coating liquid for forming a 2nd easily bonding layer mixes each component which comprises a 2nd easily bonding layer, and considers a viscosity, application | coating thickness, etc., and adjusts it suitably. The solvent used for dilution is preferably water, that is, the coating liquid is preferably aqueous. The solid concentration of the coating liquid is preferably 5 to 20% by mass, and a good coating appearance can be obtained.
<Characteristics of laminated film>
(Haze)
The laminated film of the present invention preferably has a haze value measured according to JIS standard K7136 of 0% or more and 1.0% or less, more preferably 0.1% or more and 0.8% or less, particularly preferably 0. .1% or more and 0.5% or less. Haze is an important evaluation index for use in optical applications. For example, when used for a display, haze is one of the indexes for evaluating the visibility of a display, and when haze exceeds 1.0%, Since the transparency of the film is lowered and the display screen of the display looks whitish, the contrast is lowered and the visibility may be lowered. In order to make the haze within such a range, in the polyester film and the easy-adhesion layer, particles are not used or even when used, the diameter and amount are within the above-mentioned range, and the polymer binder constituting the easy-adhesion layer is the above-mentioned. A preferable copolyester resin may be used.
以下では実施例を挙げ、本発明をさらに具体的に説明するが、本発明はかかる実施例に限定されるものではない。また、実施例中における各種の測定は、下記のとおり行った。
(1)易接着層の屈折率
1−1.第1易接着層の屈折率
日本分光製エリプソメータ(M−200)にて、第1易接着層を有するポリエステルフィルムの第1易接着層形成面について、位相差(デルタ)と振幅(プサイ)とを測定し、これら値より、波長550nmにおける第1易接着層の屈折率を求めた。
1−2.第2易接着層の屈折率
第2易接着層を形成するための塗液を90℃で板状に乾固させて、アッベ屈折率計(D線589nm)で測定し、第2易接着層の屈折率とした。
(2)ポリエステルフィルムの屈折率
2−1.ポリエステルフィルムの面方向平均屈折率1
ポリエステルフィルムの面方向平均屈折率は、アッベ屈折率計(D線589nm)を用いて測定して得られた数値を用いた。すなわち、ポリエステルフィルムの長手方向を90°とし、それに垂直な幅方向を0°として、5°毎の屈折率を測定し、最大屈折率を示す方向を特定し、かかる方向と垂直な方向の屈折率を求め、これら屈折率の平均を面方向平均屈折率とした。
本測定方法は、以下の実施例および比較例において用いた。
2−2.ポリエステルフィルムの面方向平均屈折率2
得られた二軸延伸ポリエステルフィルムの長手方向(MD)、幅方向(TD)、フィルム厚み方向(Z方向)それぞれの屈折率をアッベ屈折率計にて測定した。なお、易接着層の厚みは薄いため、易接着層が両面に形成されている場合に易接着層上からアッベ屈折率計を用いて測定しても、易接着層の屈折率の影響を受けず、二軸配向ポリエステルフィルムの屈折率を求めることができる。
面方向屈折率=(長手方向屈折率+幅方向屈折率)/2
本測定方法は、以下の参考実施例および参考比較例において用いた。
(3)その他層および樹脂の屈折率
3−1.高屈折率層、低屈折率層、第1易接着層のポリエステル樹脂の屈折率
Metricon社製のレーザー屈折率計プリズムカプラ、モデル2010を用い、各層を形成するための塗液の乾固物について633nmの波長を用いて測定を行った。なお、各層を形成するための塗液の乾固物は、塗液を80℃24時間常圧のオーブン中で乾燥することにより作成したものを用いた。
3−2.第2易接着層の共重合ポリエステル樹脂の屈折率
共重合ポリエステルの溶液または分散体を90℃で板状に乾固させて、アッベ屈折率計(D線589nm)で測定した。
(4)膜厚
4−1.第1易接着層、高屈折率層、低屈折率層、透明導電層の膜厚
各層の膜厚は、フィルムサンプルの断面を日立社製電界放出形透過電子顕微鏡HF−3300で観察し、実際の膜厚を測定した。
4−2.第2易接着層の膜厚
包埋樹脂でフィルムを固定して断面をミクロトームで切断し、2%オスミウム酸で60℃、2時間染色して、透過型電子顕微鏡(日本電子製JEM2010)を用いて断面観察し、第2易接着層の厚みを測定した。
(5)ガラス転移温度
5−1.共重合ポリエステルのガラス転移温度
共重合ポリエステルサンプル10mgを、測定用のアルミニウム製パンに封入して示差熱量計(デュポン社製・V4.OB2000型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させ、300℃で5分間保持した後取出し、直ちに氷の上に移して急冷した。このパンを再度、示差熱量計に装着し、25℃から20℃/分の速度で昇温させて、ガラス転移温度を測定した。
5−2.易接着層のガラス転移温度
易接着層を形成するための塗液を90℃で板状に乾固させたサンプル10mgを、測定用のアルミニウム製パンに封入して示差熱量計(デュポン社製・V4.OB2000型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させガラス転移温度を測定した。
(6)第1易接着層の評価
6−1.接着性
第1易接着層の上に高屈折率層を形成したサンプルを用いて、高屈折率層に碁盤目のクロスカット(1mm2のマス目を100個)を施し、その上に24mm幅のセロハンテープ(ニチバン社製)を貼り付け、180°の剥離角度で急激に剥がした後、クロスカット部分を目視で観察し、第1易接着層と高屈折率層との接着性について下記の基準で評価した。
○:剥離面積が20%未満・・・接着力良好
△:剥離面積が20%以上50%未満・・・接着力やや良好
×:剥離面積が50%以上・・・接着力不良
6−2.パターン視認性(骨見え評価)
パターン化された透明導電層を有する透明導電性フィルムにおいて、透明導電層が存在する部分と存在しない部分の境界を目視で観察し、その視認性を以下の基準で評価した。
○:境界がほとんど見えない
△:境界がやや目立つ
×:境界が顕著に見える
(7)第2易接着層の評価
7−1.ハードコート層接着性((初期)接着性)
ハードコート層を形成したフィルムのハードコート層に1mm2のクロスカットを100個入れ、セロハンテープ(ニチバン社製)をその上に貼り付け、指で強く押し付けた後、90°方向に剥離し、ハードコート層が残存した個数により下記のように評価を行った。
◎:90<残存個数≦100・・・接着性極めて良好
○:80<残存個数≦ 90・・・接着性良好
△:70<残存個数≦ 80・・・接着性やや良好
×: 残存個数≦ 70・・・接着性不良
7−2.ハードコート層接着性(湿熱接着性)
ハードコート層を形成したフィルムを常圧下において100度の沸水(イオン交換水)に2時間つけた後に、上記7−1と同様にして接着性評価を行った。
7−3.膨潤率
ハードコート層を積層した後のフィルムを上記4−2と同様に第2易接着層の厚みを測定した。第2易接着層の、ハードコート層を積層する前の厚みをd0、積層した後の厚みをdhとしたとき、下記式1により、第2易接着層の膨潤率E(%)を求めた。
E=dh/d0×100
また、上記膨潤率Eに対して下記のように評価した。
◎:100≦E<130・・・膨潤性極めて良好
○:130≦E≦200・・・膨潤性良好
△:200<E ・・・膨潤性不良
7−4.干渉斑
ハードコート層を形成したフィルムを用いて、ハードコート層を形成した面とは反対側の面を黒色マジックで塗りつぶして反対面からの反射光の影響を無くした上で、分光光度計(島津製作所製UV−3101PC)を用いて、分光反射率を測定した。波長500~600nmでの反射率を測定し、その反射率の振幅を下記の基準で評価した。その際、反射率の長周期変動を補正して得られた短周期振幅で評価した。測定された反射率の振幅が大きいほど干渉斑が発生することとなり、ディスプレイとしての視認性が低下する。
◎: 反射率振幅≦0.5% ・・・干渉斑極めて良好
○:0.5%<反射率振幅≦1.0% ・・・干渉斑良好
×:1.0%<反射率振幅 ・・・干渉斑不良
7−5.耐ブロッキング性
2枚のフィルムを、第2易接着層形成面同士が接するように重ね合せ、これに、60℃、80%RHの雰囲気下で17時間にわたって0.6kg/cm2の圧力をかけ、その後、剥離して、その剥離力により耐ブロッキング性を下記の基準で評価した。
◎: 剥離力< 98mN/5cm・・・耐ブロッキング性極めて良好
○: 98mN/5cm≦剥離力<147mN/5cm・・・耐ブロッキング性良好
△:147mN/5cm≦剥離力<196mN/5cm・・・耐ブロッキング性やや良好
×:196mN/5cm≦剥離力 ・・・耐ブロッキング性不良
7−6.積層フィルムのヘーズ値
JIS K7136に準じ、日本電色工業社製のヘーズ測定器(NDH−2000)を使用してフィルムのヘーズ値を測定した。照射面は第2易接着層面とした。なお、かかるヘーズの高低により第2易接着層表面におけるヒビの態様を評価することができ、条件が同一であれば、ヘーズ(表面ヘーズ)が高い方が、表面ひびが多いこととなり、好ましくは0.8%以下、より好ましくは0.7%以下、さらに好ましくは0.6%以下、特に好ましくは0.5%以下である。
[実施例1−1]
(第1易接着層を有するポリエステルフィルムの製造)
固有粘度が0.60dl/gのポリエチレンテレフタレート(PET)のチップを、120~150℃の温度で乾燥した後、エクストルーダーを用いて290℃の温度で溶融し、スリット状のダイを通してキャスティングドラム上に押し出して冷却した。得られた未延伸フィルムは連続して延伸工程に送られ、温度110℃で縦方向に3.5倍延伸した後、表1−1に示す共重合ポリエステル樹脂の水分散体、架橋剤(アクリル樹脂)の水分散体、および酸化チタン粒子(屈折率2.5)の水分散体(シーアイ化成社製、商品名:酸化チタンスラリー、平均粒径80nm)を用いて、各成分の固形分比率が表1−2の塗液Aとして示す比率となるように混合し、イオン交換水を用いて塗液の固形分濃度が10質量%となるように希釈して得た塗液Aを、グラビアロールコーターを用いて、片面に塗布した。塗布厚みは、乾燥後15nmになるように調整した。
引き続き、塗液を塗布したフィルムの両端をクリップで掴み、100℃で2分間予熱したのち、温度130℃で横方向に3.6倍に延伸し、230℃で2分間熱固定して、第1易接着層を有する二軸配向ポリエステルフィルムを得た。かかるポリエステルフィルムの厚みは125μmであった。また、面方向における最大屈折率は1.66、かかる最大屈折率を示す方向と直交する方向における屈折率は1.64であり、面方向平均屈折率は1.65であった。
(光学調整層の形成)
得られた二軸配向ポリエステルフィルムの第1易接着層の上に、テトラブチルチタネートの4量体(日本曹達製TBT B−4)のリグロイン/n−ブタノール(3/1体積%)溶液に、γ−グリシドキシプロピルトリメトキシシランをアルコキシド100質量部に対し15質量部添加して得られた塗液を、マイクログラビアコーティングにより塗布し、150℃2分間乾燥し、厚さ150nmの高屈折率層(屈折率1.65)を形成した。
さらにこの上に、テトラエチルシリケートをエタノールに溶解し、水および塩酸を加えて加水分解して得られたSiO2ゾルを塗布し、100℃で2分間熱処理し、厚み30nmのSiO2ゲル膜(屈折率1.45))を低屈折率層として形成した。こうして屈折率の異なる高屈折率層と低屈折率層との2層からなる光学調整層を形成し、積層体を作成した。
(透明導電層の形成)
積層体における低屈折率層の上に、酸化インジウムと酸化錫が重量比95:5の組成で充填密度98%の酸化インジウム−酸化錫ターゲットを用いスパッタリング法によりITO層(屈折率2.1)を形成した。形成されたITO層の膜厚は40nmであった。次いで、ITO層の上に、ストライプ状にパターン化されているフォトレジストを塗布して形成し、乾燥硬化した後、25℃、5%の塩酸(塩化水素水溶液)に、1分間浸漬して、ITO膜のエッチングを行った。その後、フォトレジストを除去した。さらに150℃90分熱処理を行い、ITO膜を結晶化させ、パターン化された透明導電層を形成した。こうして得られた透明導電性フィルムの特性を表1−3に示す。
[実施例1−2~1−4、比較例1−1~1−4]
それぞれ表1−3に示す塗液を用い、ウェット塗布量を調整することにより第1易接着層の厚みをそれぞれ表1−3に示す厚みにした以外は、実施例1と同様にして積層体および透明導電性フィルムを得た。評価結果を表1−3に示す。
以下に、第2易接着層の共重合ポリエステル樹脂として、共重合ポリエステル樹脂1を採用した参考例について示す。
[参考実施例2−1~2−8、参考比較例2−1~2−4]
溶融ポリエチレンテレフタレート([η]=0.63dl/g、Tg=78℃)をダイより押出し、常法により冷却ドラムで冷却して未延伸フィルムとし、次いでその両面に、固形分が表2−1に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した。
次いで、この塗布フィルムを温度100℃で予熱し、乾燥し、同時二軸延伸機において120℃で縦方向に3.2倍、横方向に3.7倍で縦横方向を同時に延伸し、220℃で60秒間熱固定し、厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表2−2に示す。
さらに、得られた積層フィルムからB4サイズに切り出したフィルムサンプルの第2易接着層のうえに、以下の組成からなるUV硬化組成物をメチルエチルケトンで固形分濃度40質量%になるように希釈し、マイヤーバーを用いて塗布し、直ちに70℃1分で乾燥し、強度80W/cmの高圧水銀灯で30秒間紫外線を照射して硬化させ、ハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。
(UV硬化組成物)
ペンタエリスリトールアクリレート :45重量%
N−メチロールアクリルアミド :40重量%
N−ビニルピロリドン :10重量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5重量%
このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表2−2に示す。
以下に、第2易接着層の共重合ポリエステル樹脂として、共重合ポリエステル樹脂2を採用した参考例について示す。
[参考実施例3−1~3−10、参考比較例3−1~3−9]
固形分が表3−1、3−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが表3−3に示すとおりとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして、厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層フィルムを得た。得られた積層フィルムの面方向屈折率は1.66であった。
さらに、得られた積層フィルムからB4サイズに切り出したフィルムサンプルの第2易接着層のうえに、上述した参考実施例2−1におけるUV硬化組成物を、メチルエチルケトン(MEK)、酢酸エチル、トルエン、イソプロパノール(IPA)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)の5種類の溶剤で、各々固形分濃度40質量%になるように希釈したものを5種類用意し、それぞれについてマイヤーバーを用いて塗布し、直ちに70℃1分で乾燥し、強度80W/cmの高圧水銀灯で30秒間紫外線を照射して硬化させ、ハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。
このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表3−3に示す。
以下に、第2易接着層の共重合ポリエステル樹脂として、共重合ポリエステル樹脂1を採用し、架橋剤として架橋性付加重合体を採用した参考例について示す。
[製造例4−1:架橋性付加重合体1]
特開昭63−37167号公報の製造例1~3に記載の方法に準じて下記の通り製造した。即ち、四つ口フラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3部、およびイオン交換水181部を仕込んで窒素気流中で60℃まで昇温させ、次いで重合開始剤として過硫酸アンモニウム0.5部、亜硝酸水素ナトリウム0.2部を添加し、更にモノマー類である、メタクリル酸メチル30.0部、2−イソプロペニル−2−オキサゾリン66.6部、メタクリルアミド8.5部の混合物を3時間にわたり、液温が60~70℃になるよう調整しながら滴下した。滴下終了後も同温度範囲に2時間保持しつつ、攪拌下に反応を継続させ、次いで冷却して固形分が35%の水分散体を得た。
得られた架橋性付加重合体における2−イソプロペニル−2−オキサゾリンユニットの含有量(表中「オキサゾリン」と記載)およびポリエチレンオキシド(n=10)メタクリル酸ユニットの含有量(表中「ポリアルキレンオキシド」と記載)は表4−1、4−2に示すとおりであった。なお、上記において「部」は「質量部」を表わす。
[製造例4−2~4−9:架橋性付加重合体2~9]
原料の仕込み量を適宜変更することにより、表4−1、4−2に示すような2−イソプロペニル−2−オキサゾリンユニットの含有量およびポリエチレンオキシド(n=10)メタクリル酸ユニットの含有量である架橋性付加重合体2~9を得た。なお、ポリエチレンオキシド(n=10)メタクリ酸ユニットを構成するための原料(モノマー)として、ポリエチレンオキシド(n=10)メタクリル酸を用いた。また、これらユニット量を増減させた分は、メタクリル酸メチルユニットの量とメタクリルアミドユニットの量を、メタクリル酸メチルユニット:メタクリルアミドユニット=3:1(モル比率)の比率を保ったまま合計量を増減させて調整した。
[参考実施例4−1~4−16、参考比較例4−1~4−7]
固形分が表4−1、4−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表4−1、4−2に示す。
さらに、得られた積層フィルムを用いて、参考実施例2−1と同様にしてハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表4−1、4−2に示す。
以下に、第2易接着層の共重合ポリエステル樹脂として、共重合ポリエステル樹脂3を採用した参考例について示す。
[参考実施例5−1~5−12、参考比較例5−1~5−6]
固形分が表5−1、5−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表5−1、5−2に示す。
さらに、得られた積層フィルムを用いて、参考実施例2−1と同様にしてハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表5−1、5−2に示す。
表2−1~5−2中のNDCAは2,6−ナフタレンジカルボン酸成分、TAはテレフタル酸成分、IAはイソフタル酸成分、NSIAは5−ナトリウムスルホイソフタル酸成分、C4Gはテトラメチレングリコール成分、C8Gはオクタメチレングリコール成分、BPA−4は三洋化成工業製のビスフェノールAのエチレンオキサイド4モル付加体成分(ニューポールBPE−40)、BPA−23Pは三洋化成工業製のビスフェノールAのプロピレンオキサイド付加体成分(ニューポールBPE−23)、BPEFは9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン成分、EGはエチレングリコールを意味する。
また、架橋剤としてオキサゾリン架橋剤(日本触媒社製 商品名エポクロスWS−700)、粒子1としてはシリカアクリル複合微粒子(平均粒径:250nm)(日本触媒社製 商品名ソリオスター)、粒子2としてはシリカフィラー(50nm)(日産化学株式会社製 商品名スノーテックス)、界面活性剤としてはポリオキシエチレン(n=7)ラウリルエーテル(三洋化成工業社製 商品名ナロアクティーN−70)を用いた。
表中のIVはo−クロロフェノール、35℃の条件で測定した固有粘度を表わす。
[実施例6−1~6−4]
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表2−1の参考実施例2−2に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例6−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表2−1の参考実施例2−2に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例6−2、6−3、6−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例2−2と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例2−2と同様にして第2易接着層のうえに形成した。評価結果を表6に示す。
[実施例7−1~7−4]
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表3−2の塗液3−1に示す組成からなる固形分濃度10質量%の水性塗液を、参考実施例3−1と同様に、延伸後の得られる第2易接着層の厚みが70nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例7−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表3−2の塗液3−1に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例7−2、7−3、7−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例3−1と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例3−1と同様にして第2易接着層のうえに形成した。評価結果を表7に示す。
[実施例8−1~8−4]
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表4−1の参考実施例4−2に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例8−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表4−1の参考実施例4−2に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例8−2、8−3、8−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例4−2と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例4−2と同様にして第2易接着層のうえに形成した。評価結果を表8に示す。
[実施例9−1~9−4]
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表5−1の参考実施例5−1に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例9−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表5−1の参考実施例5−1に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例9−2、9−3、9−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例5−1と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例5−1と同様にして第2易接着層のうえに形成した。評価結果を表9に示す。
発明の効果
本発明によれば、優れたインデックスマッチング特性と、良好な接着性とを両立した、透明導電性フィルム基材用の積層体を提供することができる。上記効果により、本発明の積層体をパターン化された透明導電層を有する透明導電性フィルムの基材として採用した際には、良好な骨見え抑制効果を実現できるとともに、ポリエステルフィルムと光学調整層(特に高屈折率層)との接着性を優れたものとすることができる。
また、本発明の好ましい態様である積層ポリエステルフィルムは、上記共重合ポリエステル樹脂1のような特定の共重合ポリエステルを用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。
本発明の別の好ましい態様である積層フィルムは、易接着層の膨潤率が特定範囲にあるので、干渉斑(色斑感)が発生しがたく、かつ接着性にも優れるといった特徴を有する。したがって、特に光学用易接着性フィルムとして好適に使用することができる。
本発明の別の好ましい態様である積層ポリエステルフィルムは、特定の共重合ポリエステルおよび上記架橋性重合体のような特定の架橋剤を用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性、特に湿熱環境下における接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。
本発明の別の好ましい態様である積層ポリエステルフィルムは、上記共重合ポリエステル3のような特定の共重合ポリエステルを用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性、特に湿熱環境下における接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples. Various measurements in the examples were performed as follows.
(1) Refractive index of the easily adhesive layer
1-1. Refractive index of the first easy-adhesion layer
With the ellipsometer (M-200) manufactured by JASCO Corporation, the phase difference (delta) and the amplitude (psi) are measured for the first easy-adhesion layer-forming surface of the polyester film having the first easy-adhesion layer. The refractive index of the 1st easily bonding layer in wavelength 550nm was calculated | required.
1-2. Refractive index of the second easy adhesion layer
The coating liquid for forming the second easy-adhesion layer was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D-line 589 nm) to obtain the refractive index of the second easy-adhesion layer.
(2) Refractive index of polyester film
2-1. Average refractive index in the plane direction of polyester film 1
As the average refractive index in the plane direction of the polyester film, a numerical value obtained by measurement using an Abbe refractometer (D line 589 nm) was used. That is, the longitudinal direction of the polyester film is 90 °, the width direction perpendicular to it is 0 °, the refractive index is measured every 5 °, the direction showing the maximum refractive index is specified, and the refraction in the direction perpendicular to the direction is determined. The average of these refractive indexes was taken as the average refractive index in the plane direction.
This measurement method was used in the following examples and comparative examples.
2-2. Average refractive index in the plane direction of polyester film 2
The refractive index of each of the obtained biaxially stretched polyester film in the longitudinal direction (MD), the width direction (TD), and the film thickness direction (Z direction) was measured with an Abbe refractometer. In addition, since the thickness of the easy-adhesion layer is thin, even if the easy-adhesion layer is formed on both sides, even if it is measured from above the easy-adhesion layer using an Abbe refractometer, it is affected by the refractive index of the easy-adhesion layer. The refractive index of the biaxially oriented polyester film can be obtained.
Surface direction refractive index = (longitudinal direction refractive index + width direction refractive index) / 2
This measurement method was used in the following Reference Examples and Reference Comparative Examples.
(3) Refractive index of other layers and resin
3-1. Refractive index of polyester resin of high refractive index layer, low refractive index layer, first easy adhesion layer
Using a laser refractometer prism coupler, model 2010, manufactured by Metricon, the dried product of the coating liquid for forming each layer was measured using a wavelength of 633 nm. In addition, the dried product of the coating liquid for forming each layer was prepared by drying the coating liquid in an oven at 80 ° C. for 24 hours under normal pressure.
3-2. Refractive index of the copolyester resin of the second easy adhesion layer
The solution or dispersion of the copolyester was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D line 589 nm).
(4) Film thickness
4-1. Film thickness of first easy-adhesion layer, high refractive index layer, low refractive index layer, transparent conductive layer
The film thickness of each layer was measured by observing the cross section of the film sample with a field emission type transmission electron microscope HF-3300 manufactured by Hitachi, Ltd.
4-2. Film thickness of the second easy adhesion layer
The film is fixed with an embedding resin, the cross section is cut with a microtome, stained with 2% osmic acid at 60 ° C. for 2 hours, and the cross section is observed with a transmission electron microscope (JEM 2010 manufactured by JEOL). The thickness of the adhesive layer was measured.
(5) Glass transition temperature
5-1. Glass transition temperature of copolyester.
10 mg of copolymer polyester sample is sealed in an aluminum pan for measurement and attached to a differential calorimeter (DuPont V4.OB2000 DSC), and the temperature is raised from 25 ° C. to 300 ° C. at a rate of 20 ° C./min. It was taken out after being kept at 300 ° C. for 5 minutes, immediately transferred onto ice and rapidly cooled. The pan was again attached to the differential calorimeter, and the glass transition temperature was measured by increasing the temperature from 25 ° C. to 20 ° C./min.
5-2. Glass transition temperature of easily adhesive layer
A 10 mg sample obtained by drying a coating solution for forming an easy-adhesion layer into a plate at 90 ° C. is sealed in an aluminum pan for measurement and placed in a differential calorimeter (DuPont V4.OB2000 DSC). The glass transition temperature was measured by raising the temperature from 25 ° C. to 300 ° C. at a rate of 20 ° C./min.
(6) Evaluation of the first adhesive layer
6-1. Adhesiveness
Using a sample in which a high refractive index layer is formed on the first easy-adhesion layer, a cross cut (1 mm) on the high refractive index layer 2 100 squares), a 24 mm wide cellophane tape (manufactured by Nichiban Co., Ltd.) is pasted thereon, abruptly peeled off at a 180 ° peeling angle, and the crosscut portion is visually observed. The adhesion between the easy adhesion layer and the high refractive index layer was evaluated according to the following criteria.
○: Peeling area is less than 20% ... good adhesion
Δ: Peeling area of 20% or more and less than 50%: Adhesive strength is slightly good
X: Peeling area is 50% or more ... adhesive strength failure
6-2. Pattern visibility (evaluation of bone appearance)
In the transparent conductive film having the patterned transparent conductive layer, the boundary between the portion where the transparent conductive layer exists and the portion where the transparent conductive layer does not exist was visually observed, and the visibility was evaluated according to the following criteria.
○: The border is hardly visible
Δ: The border is slightly conspicuous
×: The boundary looks prominent
(7) Evaluation of the second easily adhesive layer
7-1. Hard coat layer adhesion ((initial) adhesion)
1mm on the hard coat layer of the film on which the hard coat layer is formed 2 100 cross-cuts are put, cellophane tape (manufactured by Nichiban Co., Ltd.) is pasted on it, pressed firmly with fingers, peeled in the direction of 90 °, and evaluated as follows according to the number of remaining hard coat layers. went.
A: 90 <remaining number ≦ 100 ... adhesiveness is very good
◯: 80 <remaining number ≦ 90 ... adhesiveness good
Δ: 70 <remaining number ≦ 80 ... adhesiveness is slightly good
×: Remaining number ≦ 70 ... Adhesive failure
7-2. Hard coat layer adhesion (wet heat adhesion)
The film on which the hard coat layer was formed was immersed in 100 ° C. boiling water (ion-exchanged water) for 2 hours under normal pressure, and then evaluated for adhesiveness in the same manner as in 7-1 above.
7-3. Swelling rate
The thickness of the second easy adhesion layer of the film after laminating the hard coat layer was measured in the same manner as in 4-2 above. The swelling ratio E (%) of the second easy-adhesion layer was determined by the following formula 1 when the thickness of the second easy-adhesion layer before lamination of the hard coat layer was d0 and the thickness after lamination was dh. .
E = dh / d0 × 100
Further, the swelling ratio E was evaluated as follows.
A: 100 ≦ E <130, very good swelling property
○: 130 ≦ E ≦ 200. Good swelling property.
Δ: 200 <E ... Swellability defect
7-4. Interference spots
Using a film with a hard coat layer, the surface opposite to the surface on which the hard coat layer is formed is painted with black magic to eliminate the effect of reflected light from the opposite surface, and a spectrophotometer (Shimadzu Corporation) Spectral reflectance was measured using UV-3101PC). The reflectance at a wavelength of 500 to 600 nm was measured, and the amplitude of the reflectance was evaluated according to the following criteria. At that time, the evaluation was performed with the short-period amplitude obtained by correcting the long-period fluctuation of the reflectance. As the amplitude of the measured reflectance is larger, interference spots are generated, and the visibility as a display is lowered.
A: Reflectance amplitude ≦ 0.5% ・ ・ ・ Interference spots are extremely good
○: 0.5% <reflectance amplitude ≦ 1.0%.
×: 1.0% <reflectance amplitude: defective interference spots
7-5. Blocking resistance
Two films were overlapped so that the second easy-adhesion layer forming surfaces were in contact with each other, and 0.6 kg / cm over 17 hours under an atmosphere of 60 ° C. and 80% RH. 2 Then, the film was peeled off, and the blocking resistance was evaluated according to the following criteria by the peeling force.
A: Peeling force <98 mN / 5 cm: very good blocking resistance
○: 98 mN / 5 cm ≦ peeling force <147 mN / 5 cm: good blocking resistance
Δ: 147 mN / 5 cm ≦ peeling force <196 mN / 5 cm: Slightly good blocking resistance
×: 196 mN / 5 cm ≦ peeling force: poor blocking resistance
7-6. Haze value of laminated film
According to JIS K7136, the haze value of the film was measured using the haze measuring device (NDH-2000) by Nippon Denshoku Industries Co., Ltd. The irradiation surface was the second easily adhesive layer surface. In addition, the aspect of the crack on the surface of the second easy-adhesive layer can be evaluated by the height of the haze. If the conditions are the same, the higher the haze (surface haze), the more surface cracks, and preferably It is 0.8% or less, more preferably 0.7% or less, further preferably 0.6% or less, and particularly preferably 0.5% or less.
[Example 1-1]
(Manufacture of a polyester film having a first easy-adhesion layer)
A polyethylene terephthalate (PET) chip having an intrinsic viscosity of 0.60 dl / g is dried at a temperature of 120 to 150 ° C., melted at a temperature of 290 ° C. using an extruder, and passed through a slit-shaped die on a casting drum. Extruded to cool. The obtained unstretched film was continuously sent to the stretching step, and stretched 3.5 times in the longitudinal direction at a temperature of 110 ° C., and then an aqueous dispersion of a copolymer polyester resin shown in Table 1-1 and a crosslinking agent (acrylic). Resin) and an aqueous dispersion of titanium oxide particles (refractive index 2.5) (trade name: titanium oxide slurry, average particle size 80 nm, manufactured by CI Kasei Co., Ltd.) The coating liquid A obtained by mixing so as to have the ratio shown as coating liquid A in Table 1-2 and diluting the coating liquid with ion-exchanged water so that the solid content concentration becomes 10% by mass is a gravure. It applied to one side using the roll coater. The coating thickness was adjusted to 15 nm after drying.
Subsequently, the both ends of the film coated with the coating liquid were grasped with clips, preheated at 100 ° C. for 2 minutes, stretched 3.6 times in the transverse direction at a temperature of 130 ° C., and heat-fixed at 230 ° C. for 2 minutes. A biaxially oriented polyester film having one easy adhesion layer was obtained. The thickness of this polyester film was 125 μm. The maximum refractive index in the surface direction was 1.66, the refractive index in the direction orthogonal to the direction showing the maximum refractive index was 1.64, and the average refractive index in the surface direction was 1.65.
(Formation of optical adjustment layer)
On the first easy-adhesion layer of the obtained biaxially oriented polyester film, tetrabutyl titanate tetramer (Nihon Soda TBT B-4) in a ligroin / n-butanol (3/1 vol%) solution, A coating solution obtained by adding 15 parts by mass of γ-glycidoxypropyltrimethoxysilane to 100 parts by mass of alkoxide is applied by microgravure coating, dried at 150 ° C. for 2 minutes, and has a high refractive index of 150 nm. A layer (refractive index 1.65) was formed.
Further, a SiO2 sol obtained by dissolving tetraethylsilicate in ethanol, adding water and hydrochloric acid and hydrolyzing it is applied, heat-treated at 100 ° C. for 2 minutes, and having a thickness of 30 nm. 2 A gel film (refractive index 1.45)) was formed as a low refractive index layer. Thus, an optical adjustment layer composed of two layers of a high refractive index layer and a low refractive index layer having different refractive indexes was formed, and a laminate was prepared.
(Formation of transparent conductive layer)
An ITO layer (refractive index 2.1) is formed on the low refractive index layer in the laminate by sputtering using an indium oxide-tin oxide target having a composition of indium oxide and tin oxide of 95: 5 by weight and a packing density of 98%. Formed. The film thickness of the formed ITO layer was 40 nm. Next, on the ITO layer, a photoresist patterned in stripes is applied and formed, dried and cured, and then immersed in 25 ° C., 5% hydrochloric acid (aqueous hydrogen chloride solution) for 1 minute. Etching of the ITO film was performed. Thereafter, the photoresist was removed. Further, heat treatment was performed at 150 ° C. for 90 minutes to crystallize the ITO film, and a patterned transparent conductive layer was formed. The characteristics of the transparent conductive film thus obtained are shown in Table 1-3.
[Examples 1-2 to 1-4, Comparative Examples 1-1 to 1-4]
A laminated body in the same manner as in Example 1 except that the coating liquid shown in Table 1-3 was used and the thickness of the first easy-adhesion layer was changed to the thickness shown in Table 1-3 by adjusting the wet coating amount. And the transparent conductive film was obtained. The evaluation results are shown in Table 1-3.
Below, the reference example which employ | adopted the copolyester resin 1 as a copolyester resin of a 2nd easily bonding layer is shown.
[Reference Examples 2-1 to 2-8, Reference Comparative Examples 2-1 to 2-4]
Molten polyethylene terephthalate ([η] = 0.63 dl / g, Tg = 78 ° C.) was extruded from a die and cooled with a cooling drum by a conventional method to form an unstretched film. An aqueous coating solution having a solid content concentration of 10% by mass having the composition shown in (1) was uniformly applied with a roll coater so that the thickness of the second easy-adhesion layer obtained after stretching was 75 nm.
Next, this coated film was preheated at a temperature of 100 ° C., dried, and stretched simultaneously in the longitudinal and transverse directions at a magnification of 3.2 times in the longitudinal direction and 3.7 times in the transverse direction at 120 ° C. in a simultaneous biaxial stretching machine. And heat-fixed for 60 seconds to obtain a laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm thick biaxially oriented polyethylene terephthalate film. The characteristics of the obtained laminated polyester film are shown in Table 2-2.
Furthermore, on the second easy-adhesive layer of the film sample cut out to B4 size from the obtained laminated film, a UV curable composition having the following composition was diluted with methyl ethyl ketone so as to have a solid content concentration of 40% by mass, It was applied using a Meyer bar, immediately dried at 70 ° C. for 1 minute, and cured by irradiating with ultraviolet rays for 30 seconds with a high-pressure mercury lamp having an intensity of 80 W / cm to form a hard coat layer. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm.
(UV curable composition)
Pentaerythritol acrylate: 45% by weight
N-methylolacrylamide: 40% by weight
N-vinylpyrrolidone: 10% by weight
1-hydroxycyclohexyl phenyl ketone: 5% by weight
Table 2-2 shows the interference spots and adhesion results of the hard coat film on which the hard coat layer was laminated.
Below, the reference example which employ | adopted the copolyester resin 2 as a copolyester resin of a 2nd easily bonding layer is shown.
[Reference Examples 3-1 to 3-10, Reference Comparative Examples 3-1 to 3-9]
As for the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid whose solid content consists of a composition shown to Table 3-1 and 3-2 and whose solid content concentration is 10 mass% as shown in Table 3-3. A laminated film having a second easy-adhesion layer on both surfaces of a biaxially oriented polyethylene terephthalate film having a thickness of 125 μm was obtained in the same manner as in Reference Example 2-1, except that the film was uniformly applied with a roll coater. The plane direction refractive index of the obtained laminated film was 1.66.
Furthermore, on the 2nd easily-adhesive layer of the film sample cut out to B4 size from the obtained laminated | multilayer film, the UV curable composition in the reference example 2-1 mentioned above is methyl ethyl ketone (MEK), ethyl acetate, toluene, Prepare 5 types of solvents diluted with isopropanol (IPA) and propylene glycol monomethyl ether acetate (PGMEA) to a solid content concentration of 40% by mass, and apply each using a Meyer bar. Immediately after drying at 70 ° C. for 1 minute, a hard coat layer was formed by irradiating with a high-pressure mercury lamp with an intensity of 80 W / cm for 30 seconds to cure with ultraviolet rays. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm.
Table 3-3 shows the interference spots and adhesion results of the hard coat film on which the hard coat layer was laminated.
Below, the reference example which employ | adopted the copolyester resin 1 as a copolyester resin of a 2nd easily bonding layer and employ | adopted the crosslinkable addition polymer as a crosslinking agent is shown.
[Production Example 4-1: Crosslinkable addition polymer 1]
According to the method described in Production Examples 1 to 3 of JP-A-63-37167, the production was carried out as follows. That is, in a four-necked flask, 3 parts of sodium lauryl sulfonate as a surfactant and 181 parts of ion-exchanged water were charged and heated to 60 ° C. in a nitrogen stream, and then 0.5 part of ammonium persulfate as a polymerization initiator. Then, 0.2 part of sodium hydrogen nitrite was added, and a mixture of 30.0 parts of methyl methacrylate, 66.6 parts of 2-isopropenyl-2-oxazoline, and 8.5 parts of methacrylamide was further added. It was added dropwise while adjusting the liquid temperature to 60 to 70 ° C. over time. The reaction was continued with stirring while maintaining the same temperature range for 2 hours after the completion of the dropping, and then cooled to obtain an aqueous dispersion having a solid content of 35%.
The content of 2-isopropenyl-2-oxazoline unit (described as “oxazoline” in the table) and the content of polyethylene oxide (n = 10) methacrylic acid unit (“polyalkylene” in the table) in the resulting crosslinkable addition polymer Oxide ”was as shown in Tables 4-1 and 4-2. In the above, “part” represents “part by mass”.
[Production Examples 4-2 to 4-9: Crosslinkable addition polymers 2 to 9]
By appropriately changing the amount of raw material charged, the content of 2-isopropenyl-2-oxazoline units and the content of polyethylene oxide (n = 10) methacrylic acid units as shown in Tables 4-1 and 4-2 Some crosslinkable addition polymers 2 to 9 were obtained. In addition, polyethylene oxide (n = 10) methacrylic acid was used as a raw material (monomer) for constituting a polyethylene oxide (n = 10) methacrylic acid unit. The amount of these units increased or decreased is the total amount of methyl methacrylate units and methacrylamide units while maintaining the ratio of methyl methacrylate units: methacrylamide units = 3: 1 (molar ratio). Was adjusted by increasing or decreasing.
[Reference Examples 4-1 to 4-16, Reference Comparative Examples 4-1 to 4-7]
A roll coater is used so that the thickness of the second easy-adhesion layer obtained after stretching the aqueous coating liquid having a solid content of 10% by mass having a composition shown in Tables 4-1 and 4-2. A laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm-thick biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 2-1, except that it was uniformly applied. The characteristics of the obtained laminated polyester film are shown in Tables 4-1 and 4-2.
Furthermore, a hard coat layer was formed in the same manner as in Reference Example 2-1, using the obtained laminated film. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm. Tables 4-1 and 4-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
Below, the reference example which employ | adopted the copolyester resin 3 as a copolyester resin of a 2nd easily bonding layer is shown.
[Reference Examples 5-1 to 5-12, Reference Comparative Examples 5-1 to 5-6]
A roll coater is used so that the thickness of the second easy-adhesion layer obtained after stretching an aqueous coating liquid having a solid content of 10% by mass, comprising the composition shown in Tables 5-1 and 5-2, after stretching. A laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm-thick biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 2-1, except that it was uniformly applied. The characteristics of the obtained laminated polyester film are shown in Tables 5-1 and 5-2.
Furthermore, a hard coat layer was formed in the same manner as in Reference Example 2-1, using the obtained laminated film. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm. Tables 5-1 and 5-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
In Tables 2-1 to 5-2, NDCA is 2,6-naphthalenedicarboxylic acid component, TA is terephthalic acid component, IA is isophthalic acid component, NSIA is 5-sodium sulfoisophthalic acid component, C4G is tetramethylene glycol component, C8G is an octamethylene glycol component, BPA-4 is a bisphenol A ethylene oxide 4-mol adduct component (New Paul BPE-40) manufactured by Sanyo Chemical Industries, and BPA-23P is a bisphenol A propylene oxide adduct manufactured by Sanyo Chemical Industries. The component (Newpol BPE-23), BPEF means 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene component, and EG means ethylene glycol.
Moreover, as an oxazoline crosslinking agent (trade name Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd.) as the crosslinking agent, silica acrylic composite fine particles (average particle diameter: 250 nm) (trade name Soriostar manufactured by Nippon Shokubai Co., Ltd.), and particle 2 are used. Used silica filler (50 nm) (trade name Snowtex manufactured by Nissan Chemical Co., Ltd.), and polyoxyethylene (n = 7) lauryl ether (trade name NAROACTY N-70, manufactured by Sanyo Chemical Industries, Ltd.) was used as the surfactant. .
IV in the table represents the intrinsic viscosity measured under conditions of o-chlorophenol and 35 ° C.
[Examples 6-1 to 6-4]
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to the reference Example 2-2 of Table 2-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 6-1.
In the same manner, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass having a solid content of the composition shown in Reference Example 2-2 in Table 2-1 on the other surface. The liquid was apply | coated and the biaxially-oriented polyester film as Example 6-2, 6-3, and 6-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, about the obtained laminated body, evaluation which concerns on a 2nd easily bonding layer was performed like reference Example 2-2. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 2-2. The evaluation results are shown in Table 6.
[Examples 7-1 to 7-4]
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As the liquid, an aqueous coating liquid having a solid content of 10% by mass having the composition shown in the coating liquid 3-1 in Table 3-2 is obtained as the second obtained after stretching in the same manner as in Reference Example 3-1. Except for uniformly coating with a roll coater so that the thickness of the easy-adhesion layer is 70 nm, as in Example 1-1, the first easy-adhesion layer is provided on one side and the second easy-adhesion layer is provided on the other side. A biaxially oriented polyester film, a laminate using the biaxially oriented polyester film, and a transparent conductive film were obtained as Example 7-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating solution having a solid content concentration of 10% by mass on the other surface, the solid content having the composition shown in coating solution 3-1 of Table 3-2. Were applied to obtain biaxially oriented polyester films as Examples 7-2, 7-3, and 7-4, and laminates and transparent conductive films using the biaxially oriented polyester films, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 3-1. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 3-1. Table 7 shows the evaluation results.
[Examples 8-1 to 8-4]
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to the reference example 4-2 of Table 4-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 8-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass having the composition shown in Reference Example 4-2 in Table 4-1 on the other surface. The liquid was apply | coated and the biaxially-oriented polyester film as Example 8-2, 8-3, and 8-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 4-2. In addition, the hard-coat layer was formed on the 2nd easily bonding layer like the reference example 4-2. The evaluation results are shown in Table 8.
[Examples 9-1 to 9-4]
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to Reference Example 5-1 of Table 5-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 9-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass on the other surface, the solid content having the composition shown in Reference Example 5-1 in Table 5-1. The liquid was apply | coated and the biaxially-oriented polyester film as Example 9-2, 9-3, 9-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 5-1. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 5-1. Table 9 shows the evaluation results.
The invention's effect
ADVANTAGE OF THE INVENTION According to this invention, the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible can be provided. Due to the above effects, when the laminate of the present invention is adopted as a substrate of a transparent conductive film having a patterned transparent conductive layer, a good bone-inhibiting effect can be realized, and a polyester film and an optical adjustment layer Adhesiveness with (especially high refractive index layer) can be made excellent.
In addition, the laminated polyester film which is a preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymer polyester such as the above-described copolymer polyester resin 1, so that even an in-line coating which is usually employed is stretched. Since it is difficult to cause easy adhesion layer cracking in the process, for example, it has excellent adhesion to a functional layer such as a hard coat layer, and also has a feature that light interference spots (color spots) hardly occur. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
The laminated film, which is another preferred embodiment of the present invention, has the characteristics that the swelling ratio of the easy-adhesion layer is in a specific range, so that interference spots (color spots) hardly occur and the adhesiveness is excellent. Therefore, it can be suitably used as an easily adhesive film for optics.
The laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific cross-linking agent such as a specific copolymer polyester and the above cross-linkable polymer, and is therefore usually used in-line. Even in coating, easy adhesion layer cracking in the stretching process is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet and heat environments, and light interference spots (color spots) ) Is also unlikely to occur. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
The laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymerized polyester such as the above-described copolymerized polyester 3. Therefore, even in the in-line coating which is usually employed, the stretching step Easy-to-adhesive layer cracking is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet heat environments, and light interference spots (color spots) may also occur. It has the characteristics of wanting. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
(1)易接着層の屈折率
1−1.第1易接着層の屈折率
日本分光製エリプソメータ(M−200)にて、第1易接着層を有するポリエステルフィルムの第1易接着層形成面について、位相差(デルタ)と振幅(プサイ)とを測定し、これら値より、波長550nmにおける第1易接着層の屈折率を求めた。
1−2.第2易接着層の屈折率
第2易接着層を形成するための塗液を90℃で板状に乾固させて、アッベ屈折率計(D線589nm)で測定し、第2易接着層の屈折率とした。
(2)ポリエステルフィルムの屈折率
2−1.ポリエステルフィルムの面方向平均屈折率1
ポリエステルフィルムの面方向平均屈折率は、アッベ屈折率計(D線589nm)を用いて測定して得られた数値を用いた。すなわち、ポリエステルフィルムの長手方向を90°とし、それに垂直な幅方向を0°として、5°毎の屈折率を測定し、最大屈折率を示す方向を特定し、かかる方向と垂直な方向の屈折率を求め、これら屈折率の平均を面方向平均屈折率とした。
本測定方法は、以下の実施例および比較例において用いた。
2−2.ポリエステルフィルムの面方向平均屈折率2
得られた二軸延伸ポリエステルフィルムの長手方向(MD)、幅方向(TD)、フィルム厚み方向(Z方向)それぞれの屈折率をアッベ屈折率計にて測定した。なお、易接着層の厚みは薄いため、易接着層が両面に形成されている場合に易接着層上からアッベ屈折率計を用いて測定しても、易接着層の屈折率の影響を受けず、二軸配向ポリエステルフィルムの屈折率を求めることができる。
面方向屈折率=(長手方向屈折率+幅方向屈折率)/2
本測定方法は、以下の参考実施例および参考比較例において用いた。
(3)その他層および樹脂の屈折率
3−1.高屈折率層、低屈折率層、第1易接着層のポリエステル樹脂の屈折率
Metricon社製のレーザー屈折率計プリズムカプラ、モデル2010を用い、各層を形成するための塗液の乾固物について633nmの波長を用いて測定を行った。なお、各層を形成するための塗液の乾固物は、塗液を80℃24時間常圧のオーブン中で乾燥することにより作成したものを用いた。
3−2.第2易接着層の共重合ポリエステル樹脂の屈折率
共重合ポリエステルの溶液または分散体を90℃で板状に乾固させて、アッベ屈折率計(D線589nm)で測定した。
(4)膜厚
4−1.第1易接着層、高屈折率層、低屈折率層、透明導電層の膜厚
各層の膜厚は、フィルムサンプルの断面を日立社製電界放出形透過電子顕微鏡HF−3300で観察し、実際の膜厚を測定した。
4−2.第2易接着層の膜厚
包埋樹脂でフィルムを固定して断面をミクロトームで切断し、2%オスミウム酸で60℃、2時間染色して、透過型電子顕微鏡(日本電子製JEM2010)を用いて断面観察し、第2易接着層の厚みを測定した。
(5)ガラス転移温度
5−1.共重合ポリエステルのガラス転移温度
共重合ポリエステルサンプル10mgを、測定用のアルミニウム製パンに封入して示差熱量計(デュポン社製・V4.OB2000型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させ、300℃で5分間保持した後取出し、直ちに氷の上に移して急冷した。このパンを再度、示差熱量計に装着し、25℃から20℃/分の速度で昇温させて、ガラス転移温度を測定した。
5−2.易接着層のガラス転移温度
易接着層を形成するための塗液を90℃で板状に乾固させたサンプル10mgを、測定用のアルミニウム製パンに封入して示差熱量計(デュポン社製・V4.OB2000型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させガラス転移温度を測定した。
(6)第1易接着層の評価
6−1.接着性
第1易接着層の上に高屈折率層を形成したサンプルを用いて、高屈折率層に碁盤目のクロスカット(1mm2のマス目を100個)を施し、その上に24mm幅のセロハンテープ(ニチバン社製)を貼り付け、180°の剥離角度で急激に剥がした後、クロスカット部分を目視で観察し、第1易接着層と高屈折率層との接着性について下記の基準で評価した。
○:剥離面積が20%未満・・・接着力良好
△:剥離面積が20%以上50%未満・・・接着力やや良好
×:剥離面積が50%以上・・・接着力不良
6−2.パターン視認性(骨見え評価)
パターン化された透明導電層を有する透明導電性フィルムにおいて、透明導電層が存在する部分と存在しない部分の境界を目視で観察し、その視認性を以下の基準で評価した。
○:境界がほとんど見えない
△:境界がやや目立つ
×:境界が顕著に見える
(7)第2易接着層の評価
7−1.ハードコート層接着性((初期)接着性)
ハードコート層を形成したフィルムのハードコート層に1mm2のクロスカットを100個入れ、セロハンテープ(ニチバン社製)をその上に貼り付け、指で強く押し付けた後、90°方向に剥離し、ハードコート層が残存した個数により下記のように評価を行った。
◎:90<残存個数≦100・・・接着性極めて良好
○:80<残存個数≦ 90・・・接着性良好
△:70<残存個数≦ 80・・・接着性やや良好
×: 残存個数≦ 70・・・接着性不良
7−2.ハードコート層接着性(湿熱接着性)
ハードコート層を形成したフィルムを常圧下において100度の沸水(イオン交換水)に2時間つけた後に、上記7−1と同様にして接着性評価を行った。
7−3.膨潤率
ハードコート層を積層した後のフィルムを上記4−2と同様に第2易接着層の厚みを測定した。第2易接着層の、ハードコート層を積層する前の厚みをd0、積層した後の厚みをdhとしたとき、下記式1により、第2易接着層の膨潤率E(%)を求めた。
E=dh/d0×100
また、上記膨潤率Eに対して下記のように評価した。
◎:100≦E<130・・・膨潤性極めて良好
○:130≦E≦200・・・膨潤性良好
△:200<E ・・・膨潤性不良
7−4.干渉斑
ハードコート層を形成したフィルムを用いて、ハードコート層を形成した面とは反対側の面を黒色マジックで塗りつぶして反対面からの反射光の影響を無くした上で、分光光度計(島津製作所製UV−3101PC)を用いて、分光反射率を測定した。波長500~600nmでの反射率を測定し、その反射率の振幅を下記の基準で評価した。その際、反射率の長周期変動を補正して得られた短周期振幅で評価した。測定された反射率の振幅が大きいほど干渉斑が発生することとなり、ディスプレイとしての視認性が低下する。
◎: 反射率振幅≦0.5% ・・・干渉斑極めて良好
○:0.5%<反射率振幅≦1.0% ・・・干渉斑良好
×:1.0%<反射率振幅 ・・・干渉斑不良
7−5.耐ブロッキング性
2枚のフィルムを、第2易接着層形成面同士が接するように重ね合せ、これに、60℃、80%RHの雰囲気下で17時間にわたって0.6kg/cm2の圧力をかけ、その後、剥離して、その剥離力により耐ブロッキング性を下記の基準で評価した。
◎: 剥離力< 98mN/5cm・・・耐ブロッキング性極めて良好
○: 98mN/5cm≦剥離力<147mN/5cm・・・耐ブロッキング性良好
△:147mN/5cm≦剥離力<196mN/5cm・・・耐ブロッキング性やや良好
×:196mN/5cm≦剥離力 ・・・耐ブロッキング性不良
7−6.積層フィルムのヘーズ値
JIS K7136に準じ、日本電色工業社製のヘーズ測定器(NDH−2000)を使用してフィルムのヘーズ値を測定した。照射面は第2易接着層面とした。なお、かかるヘーズの高低により第2易接着層表面におけるヒビの態様を評価することができ、条件が同一であれば、ヘーズ(表面ヘーズ)が高い方が、表面ひびが多いこととなり、好ましくは0.8%以下、より好ましくは0.7%以下、さらに好ましくは0.6%以下、特に好ましくは0.5%以下である。
[実施例1−1]
(第1易接着層を有するポリエステルフィルムの製造)
固有粘度が0.60dl/gのポリエチレンテレフタレート(PET)のチップを、120~150℃の温度で乾燥した後、エクストルーダーを用いて290℃の温度で溶融し、スリット状のダイを通してキャスティングドラム上に押し出して冷却した。得られた未延伸フィルムは連続して延伸工程に送られ、温度110℃で縦方向に3.5倍延伸した後、表1−1に示す共重合ポリエステル樹脂の水分散体、架橋剤(アクリル樹脂)の水分散体、および酸化チタン粒子(屈折率2.5)の水分散体(シーアイ化成社製、商品名:酸化チタンスラリー、平均粒径80nm)を用いて、各成分の固形分比率が表1−2の塗液Aとして示す比率となるように混合し、イオン交換水を用いて塗液の固形分濃度が10質量%となるように希釈して得た塗液Aを、グラビアロールコーターを用いて、片面に塗布した。塗布厚みは、乾燥後15nmになるように調整した。
引き続き、塗液を塗布したフィルムの両端をクリップで掴み、100℃で2分間予熱したのち、温度130℃で横方向に3.6倍に延伸し、230℃で2分間熱固定して、第1易接着層を有する二軸配向ポリエステルフィルムを得た。かかるポリエステルフィルムの厚みは125μmであった。また、面方向における最大屈折率は1.66、かかる最大屈折率を示す方向と直交する方向における屈折率は1.64であり、面方向平均屈折率は1.65であった。
(光学調整層の形成)
得られた二軸配向ポリエステルフィルムの第1易接着層の上に、テトラブチルチタネートの4量体(日本曹達製TBT B−4)のリグロイン/n−ブタノール(3/1体積%)溶液に、γ−グリシドキシプロピルトリメトキシシランをアルコキシド100質量部に対し15質量部添加して得られた塗液を、マイクログラビアコーティングにより塗布し、150℃2分間乾燥し、厚さ150nmの高屈折率層(屈折率1.65)を形成した。
さらにこの上に、テトラエチルシリケートをエタノールに溶解し、水および塩酸を加えて加水分解して得られたSiO2ゾルを塗布し、100℃で2分間熱処理し、厚み30nmのSiO2ゲル膜(屈折率1.45))を低屈折率層として形成した。こうして屈折率の異なる高屈折率層と低屈折率層との2層からなる光学調整層を形成し、積層体を作成した。
(透明導電層の形成)
積層体における低屈折率層の上に、酸化インジウムと酸化錫が重量比95:5の組成で充填密度98%の酸化インジウム−酸化錫ターゲットを用いスパッタリング法によりITO層(屈折率2.1)を形成した。形成されたITO層の膜厚は40nmであった。次いで、ITO層の上に、ストライプ状にパターン化されているフォトレジストを塗布して形成し、乾燥硬化した後、25℃、5%の塩酸(塩化水素水溶液)に、1分間浸漬して、ITO膜のエッチングを行った。その後、フォトレジストを除去した。さらに150℃90分熱処理を行い、ITO膜を結晶化させ、パターン化された透明導電層を形成した。こうして得られた透明導電性フィルムの特性を表1−3に示す。
[実施例1−2~1−4、比較例1−1~1−4]
それぞれ表1−3に示す塗液を用い、ウェット塗布量を調整することにより第1易接着層の厚みをそれぞれ表1−3に示す厚みにした以外は、実施例1と同様にして積層体および透明導電性フィルムを得た。評価結果を表1−3に示す。
[参考実施例2−1~2−8、参考比較例2−1~2−4]
溶融ポリエチレンテレフタレート([η]=0.63dl/g、Tg=78℃)をダイより押出し、常法により冷却ドラムで冷却して未延伸フィルムとし、次いでその両面に、固形分が表2−1に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した。
次いで、この塗布フィルムを温度100℃で予熱し、乾燥し、同時二軸延伸機において120℃で縦方向に3.2倍、横方向に3.7倍で縦横方向を同時に延伸し、220℃で60秒間熱固定し、厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表2−2に示す。
さらに、得られた積層フィルムからB4サイズに切り出したフィルムサンプルの第2易接着層のうえに、以下の組成からなるUV硬化組成物をメチルエチルケトンで固形分濃度40質量%になるように希釈し、マイヤーバーを用いて塗布し、直ちに70℃1分で乾燥し、強度80W/cmの高圧水銀灯で30秒間紫外線を照射して硬化させ、ハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。
(UV硬化組成物)
ペンタエリスリトールアクリレート :45重量%
N−メチロールアクリルアミド :40重量%
N−ビニルピロリドン :10重量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5重量%
このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表2−2に示す。
[参考実施例3−1~3−10、参考比較例3−1~3−9]
固形分が表3−1、3−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが表3−3に示すとおりとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして、厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層フィルムを得た。得られた積層フィルムの面方向屈折率は1.66であった。
さらに、得られた積層フィルムからB4サイズに切り出したフィルムサンプルの第2易接着層のうえに、上述した参考実施例2−1におけるUV硬化組成物を、メチルエチルケトン(MEK)、酢酸エチル、トルエン、イソプロパノール(IPA)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)の5種類の溶剤で、各々固形分濃度40質量%になるように希釈したものを5種類用意し、それぞれについてマイヤーバーを用いて塗布し、直ちに70℃1分で乾燥し、強度80W/cmの高圧水銀灯で30秒間紫外線を照射して硬化させ、ハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。
このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表3−3に示す。
[製造例4−1:架橋性付加重合体1]
特開昭63−37167号公報の製造例1~3に記載の方法に準じて下記の通り製造した。即ち、四つ口フラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3部、およびイオン交換水181部を仕込んで窒素気流中で60℃まで昇温させ、次いで重合開始剤として過硫酸アンモニウム0.5部、亜硝酸水素ナトリウム0.2部を添加し、更にモノマー類である、メタクリル酸メチル30.0部、2−イソプロペニル−2−オキサゾリン66.6部、メタクリルアミド8.5部の混合物を3時間にわたり、液温が60~70℃になるよう調整しながら滴下した。滴下終了後も同温度範囲に2時間保持しつつ、攪拌下に反応を継続させ、次いで冷却して固形分が35%の水分散体を得た。
得られた架橋性付加重合体における2−イソプロペニル−2−オキサゾリンユニットの含有量(表中「オキサゾリン」と記載)およびポリエチレンオキシド(n=10)メタクリル酸ユニットの含有量(表中「ポリアルキレンオキシド」と記載)は表4−1、4−2に示すとおりであった。なお、上記において「部」は「質量部」を表わす。
[製造例4−2~4−9:架橋性付加重合体2~9]
原料の仕込み量を適宜変更することにより、表4−1、4−2に示すような2−イソプロペニル−2−オキサゾリンユニットの含有量およびポリエチレンオキシド(n=10)メタクリル酸ユニットの含有量である架橋性付加重合体2~9を得た。なお、ポリエチレンオキシド(n=10)メタクリ酸ユニットを構成するための原料(モノマー)として、ポリエチレンオキシド(n=10)メタクリル酸を用いた。また、これらユニット量を増減させた分は、メタクリル酸メチルユニットの量とメタクリルアミドユニットの量を、メタクリル酸メチルユニット:メタクリルアミドユニット=3:1(モル比率)の比率を保ったまま合計量を増減させて調整した。
[参考実施例4−1~4−16、参考比較例4−1~4−7]
固形分が表4−1、4−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表4−1、4−2に示す。
さらに、得られた積層フィルムを用いて、参考実施例2−1と同様にしてハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表4−1、4−2に示す。
[参考実施例5−1~5−12、参考比較例5−1~5−6]
固形分が表5−1、5−2に示す組成からなる、固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は、参考実施例2−1と同様にして厚み125μmの二軸配向ポリエチレンテレフタレートフィルムの両面に第2易接着層を有する積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムの特性を表5−1、5−2に示す。
さらに、得られた積層フィルムを用いて、参考実施例2−1と同様にしてハードコート層を形成した。なお、硬化後のハードコート層膜厚が5μmとなるようにマイヤーバーの番手を調整した。このハードコート層を積層したハードコートフィルムの干渉斑、接着性の結果を表5−1、5−2に示す。
また、架橋剤としてオキサゾリン架橋剤(日本触媒社製 商品名エポクロスWS−700)、粒子1としてはシリカアクリル複合微粒子(平均粒径:250nm)(日本触媒社製 商品名ソリオスター)、粒子2としてはシリカフィラー(50nm)(日産化学株式会社製 商品名スノーテックス)、界面活性剤としてはポリオキシエチレン(n=7)ラウリルエーテル(三洋化成工業社製 商品名ナロアクティーN−70)を用いた。
表中のIVはo−クロロフェノール、35℃の条件で測定した固有粘度を表わす。
[実施例6−1~6−4]
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表2−1の参考実施例2−2に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例6−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表2−1の参考実施例2−2に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例6−2、6−3、6−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例2−2と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例2−2と同様にして第2易接着層のうえに形成した。評価結果を表6に示す。
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表3−2の塗液3−1に示す組成からなる固形分濃度10質量%の水性塗液を、参考実施例3−1と同様に、延伸後の得られる第2易接着層の厚みが70nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例7−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表3−2の塗液3−1に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例7−2、7−3、7−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例3−1と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例3−1と同様にして第2易接着層のうえに形成した。評価結果を表7に示す。
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表4−1の参考実施例4−2に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例8−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表4−1の参考実施例4−2に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例8−2、8−3、8−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例4−2と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例4−2と同様にして第2易接着層のうえに形成した。評価結果を表8に示す。
実施例1−1のポリエステルフィルムの製造において、第1易接着層を形成するための塗液Aをフィルムの片面に塗布する際に、他面に、第2易接着層を形成するための塗液として、固形分が表5−1の参考実施例5−1に示す組成からなる固形分濃度10質量%の水性塗液を、延伸後の得られる第2易接着層の厚みが75nmとなるようにロールコーターで均一に塗布した以外は実施例1−1と同様にして、片面に第1易接着層を有し、他面に第2易接着層を有する二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを実施例9−1として得た。
同様にして、実施例1−2、1−3、1−4において、他面に固形分が表5−1の参考実施例5−1に示す組成からなる固形分濃度10質量%の水性塗液を塗布し、それぞれ実施例9−2、9−3、9−4としての二軸配向ポリエステルフィルム、それを用いた積層体および透明導電性フィルムを得た。
得られた積層体について、実施例1−1と同様にして第1易接着層に係る評価を行った。また、得られた積層体について、参考実施例5−1と同様にして第2易接着層に係る評価を行った。なお、ハードコート層は参考実施例5−1と同様にして第2易接着層のうえに形成した。評価結果を表9に示す。
本発明によれば、優れたインデックスマッチング特性と、良好な接着性とを両立した、透明導電性フィルム基材用の積層体を提供することができる。上記効果により、本発明の積層体をパターン化された透明導電層を有する透明導電性フィルムの基材として採用した際には、良好な骨見え抑制効果を実現できるとともに、ポリエステルフィルムと光学調整層(特に高屈折率層)との接着性を優れたものとすることができる。
また、本発明の好ましい態様である積層ポリエステルフィルムは、上記共重合ポリエステル樹脂1のような特定の共重合ポリエステルを用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。
本発明の別の好ましい態様である積層フィルムは、易接着層の膨潤率が特定範囲にあるので、干渉斑(色斑感)が発生しがたく、かつ接着性にも優れるといった特徴を有する。したがって、特に光学用易接着性フィルムとして好適に使用することができる。
本発明の別の好ましい態様である積層ポリエステルフィルムは、特定の共重合ポリエステルおよび上記架橋性重合体のような特定の架橋剤を用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性、特に湿熱環境下における接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。
本発明の別の好ましい態様である積層ポリエステルフィルムは、上記共重合ポリエステル3のような特定の共重合ポリエステルを用いた易接着層が設けられているため、通常採用されるインラインコーティングでも、延伸工程での易接着層割れが発生しがたいので、例えばハードコート層などの機能層との接着性、特に湿熱環境下における接着性に優れ、しかも光の干渉斑(色斑感)も発生しがたいといった特徴を有する。したがって、光学用易接着性ポリエステルフィルムとして特に好適に使用することができる。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples. Various measurements in the examples were performed as follows.
(1) Refractive index of the easily adhesive layer
1-1. Refractive index of the first easy-adhesion layer
With the ellipsometer (M-200) manufactured by JASCO Corporation, the phase difference (delta) and the amplitude (psi) are measured for the first easy-adhesion layer-forming surface of the polyester film having the first easy-adhesion layer. The refractive index of the 1st easily bonding layer in wavelength 550nm was calculated | required.
1-2. Refractive index of the second easy adhesion layer
The coating liquid for forming the second easy-adhesion layer was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D-line 589 nm) to obtain the refractive index of the second easy-adhesion layer.
(2) Refractive index of polyester film
2-1. Average refractive index in the plane direction of polyester film 1
As the average refractive index in the plane direction of the polyester film, a numerical value obtained by measurement using an Abbe refractometer (D line 589 nm) was used. That is, the longitudinal direction of the polyester film is 90 °, the width direction perpendicular to it is 0 °, the refractive index is measured every 5 °, the direction showing the maximum refractive index is specified, and the refraction in the direction perpendicular to the direction is determined. The average of these refractive indexes was taken as the average refractive index in the plane direction.
This measurement method was used in the following examples and comparative examples.
2-2. Average refractive index in the plane direction of polyester film 2
The refractive index of each of the obtained biaxially stretched polyester film in the longitudinal direction (MD), the width direction (TD), and the film thickness direction (Z direction) was measured with an Abbe refractometer. In addition, since the thickness of the easy-adhesion layer is thin, even if the easy-adhesion layer is formed on both sides, even if it is measured from above the easy-adhesion layer using an Abbe refractometer, it is affected by the refractive index of the easy-adhesion layer. The refractive index of the biaxially oriented polyester film can be obtained.
Surface direction refractive index = (longitudinal direction refractive index + width direction refractive index) / 2
This measurement method was used in the following Reference Examples and Reference Comparative Examples.
(3) Refractive index of other layers and resin
3-1. Refractive index of polyester resin of high refractive index layer, low refractive index layer, first easy adhesion layer
Using a laser refractometer prism coupler, model 2010, manufactured by Metricon, the dried product of the coating liquid for forming each layer was measured using a wavelength of 633 nm. In addition, the dried product of the coating liquid for forming each layer was prepared by drying the coating liquid in an oven at 80 ° C. for 24 hours under normal pressure.
3-2. Refractive index of the copolyester resin of the second easy adhesion layer
The solution or dispersion of the copolyester was dried into a plate at 90 ° C. and measured with an Abbe refractometer (D line 589 nm).
(4) Film thickness
4-1. Film thickness of first easy-adhesion layer, high refractive index layer, low refractive index layer, transparent conductive layer
The film thickness of each layer was measured by observing the cross section of the film sample with a field emission type transmission electron microscope HF-3300 manufactured by Hitachi, Ltd.
4-2. Film thickness of the second easy adhesion layer
The film is fixed with an embedding resin, the cross section is cut with a microtome, stained with 2% osmic acid at 60 ° C. for 2 hours, and the cross section is observed with a transmission electron microscope (JEM 2010 manufactured by JEOL). The thickness of the adhesive layer was measured.
(5) Glass transition temperature
5-1. Glass transition temperature of copolyester.
10 mg of copolymer polyester sample is sealed in an aluminum pan for measurement and attached to a differential calorimeter (DuPont V4.OB2000 DSC), and the temperature is raised from 25 ° C. to 300 ° C. at a rate of 20 ° C./min. It was taken out after being kept at 300 ° C. for 5 minutes, immediately transferred onto ice and rapidly cooled. The pan was again attached to the differential calorimeter, and the glass transition temperature was measured by increasing the temperature from 25 ° C. to 20 ° C./min.
5-2. Glass transition temperature of easily adhesive layer
A 10 mg sample obtained by drying a coating solution for forming an easy-adhesion layer into a plate at 90 ° C. is sealed in an aluminum pan for measurement and placed in a differential calorimeter (DuPont V4.OB2000 DSC). The glass transition temperature was measured by raising the temperature from 25 ° C. to 300 ° C. at a rate of 20 ° C./min.
(6) Evaluation of the first adhesive layer
6-1. Adhesiveness
Using a sample in which a high refractive index layer is formed on the first easy-adhesion layer, a cross cut (1 mm) on the high refractive index layer 2 100 squares), a 24 mm wide cellophane tape (manufactured by Nichiban Co., Ltd.) is pasted thereon, abruptly peeled off at a 180 ° peeling angle, and the crosscut portion is visually observed. The adhesion between the easy adhesion layer and the high refractive index layer was evaluated according to the following criteria.
○: Peeling area is less than 20% ... good adhesion
Δ: Peeling area of 20% or more and less than 50%: Adhesive strength is slightly good
X: Peeling area is 50% or more ... adhesive strength failure
6-2. Pattern visibility (evaluation of bone appearance)
In the transparent conductive film having the patterned transparent conductive layer, the boundary between the portion where the transparent conductive layer exists and the portion where the transparent conductive layer does not exist was visually observed, and the visibility was evaluated according to the following criteria.
○: The border is hardly visible
Δ: The border is slightly conspicuous
×: The boundary looks prominent
(7) Evaluation of the second easily adhesive layer
7-1. Hard coat layer adhesion ((initial) adhesion)
1mm on the hard coat layer of the film on which the hard coat layer is formed 2 100 cross-cuts are put, cellophane tape (manufactured by Nichiban Co., Ltd.) is pasted on it, pressed firmly with fingers, peeled in the direction of 90 °, and evaluated as follows according to the number of remaining hard coat layers. went.
A: 90 <remaining number ≦ 100 ... adhesiveness is very good
◯: 80 <remaining number ≦ 90 ... adhesiveness good
Δ: 70 <remaining number ≦ 80 ... adhesiveness is slightly good
×: Remaining number ≦ 70 ... Adhesive failure
7-2. Hard coat layer adhesion (wet heat adhesion)
The film on which the hard coat layer was formed was immersed in 100 ° C. boiling water (ion-exchanged water) for 2 hours under normal pressure, and then evaluated for adhesiveness in the same manner as in 7-1 above.
7-3. Swelling rate
The thickness of the second easy adhesion layer of the film after laminating the hard coat layer was measured in the same manner as in 4-2 above. The swelling ratio E (%) of the second easy-adhesion layer was determined by the following formula 1 when the thickness of the second easy-adhesion layer before lamination of the hard coat layer was d0 and the thickness after lamination was dh. .
E = dh / d0 × 100
Further, the swelling ratio E was evaluated as follows.
A: 100 ≦ E <130, very good swelling property
○: 130 ≦ E ≦ 200. Good swelling property.
Δ: 200 <E ... Swellability defect
7-4. Interference spots
Using a film with a hard coat layer, the surface opposite to the surface on which the hard coat layer is formed is painted with black magic to eliminate the effect of reflected light from the opposite surface, and a spectrophotometer (Shimadzu Corporation) Spectral reflectance was measured using UV-3101PC). The reflectance at a wavelength of 500 to 600 nm was measured, and the amplitude of the reflectance was evaluated according to the following criteria. At that time, the evaluation was performed with the short-period amplitude obtained by correcting the long-period fluctuation of the reflectance. As the amplitude of the measured reflectance is larger, interference spots are generated, and the visibility as a display is lowered.
A: Reflectance amplitude ≦ 0.5% ・ ・ ・ Interference spots are extremely good
○: 0.5% <reflectance amplitude ≦ 1.0%.
×: 1.0% <reflectance amplitude: defective interference spots
7-5. Blocking resistance
Two films were overlapped so that the second easy-adhesion layer forming surfaces were in contact with each other, and 0.6 kg / cm over 17 hours under an atmosphere of 60 ° C. and 80% RH. 2 Then, the film was peeled off, and the blocking resistance was evaluated according to the following criteria by the peeling force.
A: Peeling force <98 mN / 5 cm: very good blocking resistance
○: 98 mN / 5 cm ≦ peeling force <147 mN / 5 cm: good blocking resistance
Δ: 147 mN / 5 cm ≦ peeling force <196 mN / 5 cm: Slightly good blocking resistance
×: 196 mN / 5 cm ≦ peeling force: poor blocking resistance
7-6. Haze value of laminated film
According to JIS K7136, the haze value of the film was measured using the haze measuring device (NDH-2000) by Nippon Denshoku Industries Co., Ltd. The irradiation surface was the second easily adhesive layer surface. In addition, the aspect of the crack on the surface of the second easy-adhesive layer can be evaluated by the height of the haze. If the conditions are the same, the higher the haze (surface haze), the more surface cracks, and preferably It is 0.8% or less, more preferably 0.7% or less, further preferably 0.6% or less, and particularly preferably 0.5% or less.
[Example 1-1]
(Manufacture of a polyester film having a first easy-adhesion layer)
A polyethylene terephthalate (PET) chip having an intrinsic viscosity of 0.60 dl / g is dried at a temperature of 120 to 150 ° C., melted at a temperature of 290 ° C. using an extruder, and passed through a slit-shaped die on a casting drum. Extruded to cool. The obtained unstretched film was continuously sent to the stretching step, and stretched 3.5 times in the longitudinal direction at a temperature of 110 ° C., and then an aqueous dispersion of a copolymer polyester resin shown in Table 1-1 and a crosslinking agent (acrylic). Resin) and an aqueous dispersion of titanium oxide particles (refractive index 2.5) (trade name: titanium oxide slurry, average particle size 80 nm, manufactured by CI Kasei Co., Ltd.) The coating liquid A obtained by mixing so as to have the ratio shown as coating liquid A in Table 1-2 and diluting the coating liquid with ion-exchanged water so that the solid content concentration becomes 10% by mass is a gravure. It applied to one side using the roll coater. The coating thickness was adjusted to 15 nm after drying.
Subsequently, the both ends of the film coated with the coating liquid were grasped with clips, preheated at 100 ° C. for 2 minutes, stretched 3.6 times in the transverse direction at a temperature of 130 ° C., and heat-fixed at 230 ° C. for 2 minutes. A biaxially oriented polyester film having one easy adhesion layer was obtained. The thickness of this polyester film was 125 μm. The maximum refractive index in the surface direction was 1.66, the refractive index in the direction orthogonal to the direction showing the maximum refractive index was 1.64, and the average refractive index in the surface direction was 1.65.
(Formation of optical adjustment layer)
On the first easy-adhesion layer of the obtained biaxially oriented polyester film, tetrabutyl titanate tetramer (Nihon Soda TBT B-4) in a ligroin / n-butanol (3/1 vol%) solution, A coating solution obtained by adding 15 parts by mass of γ-glycidoxypropyltrimethoxysilane to 100 parts by mass of alkoxide is applied by microgravure coating, dried at 150 ° C. for 2 minutes, and has a high refractive index of 150 nm. A layer (refractive index 1.65) was formed.
Further, a SiO2 sol obtained by dissolving tetraethylsilicate in ethanol, adding water and hydrochloric acid and hydrolyzing it is applied, heat-treated at 100 ° C. for 2 minutes, and having a thickness of 30 nm. 2 A gel film (refractive index 1.45)) was formed as a low refractive index layer. Thus, an optical adjustment layer composed of two layers of a high refractive index layer and a low refractive index layer having different refractive indexes was formed, and a laminate was prepared.
(Formation of transparent conductive layer)
An ITO layer (refractive index 2.1) is formed on the low refractive index layer in the laminate by sputtering using an indium oxide-tin oxide target having a composition of indium oxide and tin oxide of 95: 5 by weight and a packing density of 98%. Formed. The film thickness of the formed ITO layer was 40 nm. Next, on the ITO layer, a photoresist patterned in stripes is applied and formed, dried and cured, and then immersed in 25 ° C., 5% hydrochloric acid (aqueous hydrogen chloride solution) for 1 minute. Etching of the ITO film was performed. Thereafter, the photoresist was removed. Further, heat treatment was performed at 150 ° C. for 90 minutes to crystallize the ITO film, and a patterned transparent conductive layer was formed. The characteristics of the transparent conductive film thus obtained are shown in Table 1-3.
[Examples 1-2 to 1-4, Comparative Examples 1-1 to 1-4]
A laminated body in the same manner as in Example 1 except that the coating liquid shown in Table 1-3 was used and the thickness of the first easy-adhesion layer was changed to the thickness shown in Table 1-3 by adjusting the wet coating amount. And the transparent conductive film was obtained. The evaluation results are shown in Table 1-3.
[Reference Examples 2-1 to 2-8, Reference Comparative Examples 2-1 to 2-4]
Molten polyethylene terephthalate ([η] = 0.63 dl / g, Tg = 78 ° C.) was extruded from a die and cooled with a cooling drum by a conventional method to form an unstretched film. An aqueous coating solution having a solid content concentration of 10% by mass having the composition shown in (1) was uniformly applied with a roll coater so that the thickness of the second easy-adhesion layer obtained after stretching was 75 nm.
Next, this coated film was preheated at a temperature of 100 ° C., dried, and stretched simultaneously in the longitudinal and transverse directions at a magnification of 3.2 times in the longitudinal direction and 3.7 times in the transverse direction at 120 ° C. in a simultaneous biaxial stretching machine. And heat-fixed for 60 seconds to obtain a laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm thick biaxially oriented polyethylene terephthalate film. The characteristics of the obtained laminated polyester film are shown in Table 2-2.
Furthermore, on the second easy-adhesive layer of the film sample cut out to B4 size from the obtained laminated film, a UV curable composition having the following composition was diluted with methyl ethyl ketone so as to have a solid content concentration of 40% by mass, It was applied using a Meyer bar, immediately dried at 70 ° C. for 1 minute, and cured by irradiating with ultraviolet rays for 30 seconds with a high-pressure mercury lamp having an intensity of 80 W / cm to form a hard coat layer. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm.
(UV curable composition)
Pentaerythritol acrylate: 45% by weight
N-methylolacrylamide: 40% by weight
N-vinylpyrrolidone: 10% by weight
1-hydroxycyclohexyl phenyl ketone: 5% by weight
Table 2-2 shows the interference spots and adhesion results of the hard coat film on which the hard coat layer was laminated.
[Reference Examples 3-1 to 3-10, Reference Comparative Examples 3-1 to 3-9]
As for the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid whose solid content consists of a composition shown to Table 3-1 and 3-2 and whose solid content concentration is 10 mass% as shown in Table 3-3. A laminated film having a second easy-adhesion layer on both surfaces of a biaxially oriented polyethylene terephthalate film having a thickness of 125 μm was obtained in the same manner as in Reference Example 2-1, except that the film was uniformly applied with a roll coater. The plane direction refractive index of the obtained laminated film was 1.66.
Furthermore, on the 2nd easily-adhesive layer of the film sample cut out to B4 size from the obtained laminated | multilayer film, the UV curable composition in the reference example 2-1 mentioned above is methyl ethyl ketone (MEK), ethyl acetate, toluene, Prepare 5 types of solvents diluted with isopropanol (IPA) and propylene glycol monomethyl ether acetate (PGMEA) to a solid content concentration of 40% by mass, and apply each using a Meyer bar. Immediately after drying at 70 ° C. for 1 minute, a hard coat layer was formed by irradiating with a high-pressure mercury lamp with an intensity of 80 W / cm for 30 seconds to cure with ultraviolet rays. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm.
Table 3-3 shows the interference spots and adhesion results of the hard coat film on which the hard coat layer was laminated.
[Production Example 4-1: Crosslinkable addition polymer 1]
According to the method described in Production Examples 1 to 3 of JP-A-63-37167, the production was carried out as follows. That is, in a four-necked flask, 3 parts of sodium lauryl sulfonate as a surfactant and 181 parts of ion-exchanged water were charged and heated to 60 ° C. in a nitrogen stream, and then 0.5 part of ammonium persulfate as a polymerization initiator. Then, 0.2 part of sodium hydrogen nitrite was added, and a mixture of 30.0 parts of methyl methacrylate, 66.6 parts of 2-isopropenyl-2-oxazoline, and 8.5 parts of methacrylamide was further added. It was added dropwise while adjusting the liquid temperature to 60 to 70 ° C. over time. The reaction was continued with stirring while maintaining the same temperature range for 2 hours after the completion of the dropping, and then cooled to obtain an aqueous dispersion having a solid content of 35%.
The content of 2-isopropenyl-2-oxazoline unit (described as “oxazoline” in the table) and the content of polyethylene oxide (n = 10) methacrylic acid unit (“polyalkylene” in the table) in the resulting crosslinkable addition polymer Oxide ”was as shown in Tables 4-1 and 4-2. In the above, “part” represents “part by mass”.
[Production Examples 4-2 to 4-9: Crosslinkable addition polymers 2 to 9]
By appropriately changing the amount of raw material charged, the content of 2-isopropenyl-2-oxazoline units and the content of polyethylene oxide (n = 10) methacrylic acid units as shown in Tables 4-1 and 4-2 Some crosslinkable addition polymers 2 to 9 were obtained. In addition, polyethylene oxide (n = 10) methacrylic acid was used as a raw material (monomer) for constituting a polyethylene oxide (n = 10) methacrylic acid unit. The amount of these units increased or decreased is the total amount of methyl methacrylate units and methacrylamide units while maintaining the ratio of methyl methacrylate units: methacrylamide units = 3: 1 (molar ratio). Was adjusted by increasing or decreasing.
[Reference Examples 4-1 to 4-16, Reference Comparative Examples 4-1 to 4-7]
A roll coater is used so that the thickness of the second easy-adhesion layer obtained after stretching the aqueous coating liquid having a solid content of 10% by mass having a composition shown in Tables 4-1 and 4-2. A laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm-thick biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 2-1, except that it was uniformly applied. The characteristics of the obtained laminated polyester film are shown in Tables 4-1 and 4-2.
Furthermore, a hard coat layer was formed in the same manner as in Reference Example 2-1, using the obtained laminated film. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm. Tables 4-1 and 4-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
[Reference Examples 5-1 to 5-12, Reference Comparative Examples 5-1 to 5-6]
A roll coater is used so that the thickness of the second easy-adhesion layer obtained after stretching an aqueous coating liquid having a solid content of 10% by mass, comprising the composition shown in Tables 5-1 and 5-2, after stretching. A laminated polyester film having a second easy-adhesion layer on both sides of a 125 μm-thick biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 2-1, except that it was uniformly applied. The characteristics of the obtained laminated polyester film are shown in Tables 5-1 and 5-2.
Furthermore, a hard coat layer was formed in the same manner as in Reference Example 2-1, using the obtained laminated film. The count of the Meyer bar was adjusted so that the hard coat layer thickness after curing was 5 μm. Tables 5-1 and 5-2 show the results of interference spots and adhesiveness of the hard coat film on which the hard coat layer was laminated.
Moreover, as an oxazoline crosslinking agent (trade name Epocross WS-700 manufactured by Nippon Shokubai Co., Ltd.) as the crosslinking agent, silica acrylic composite fine particles (average particle diameter: 250 nm) (trade name Soriostar manufactured by Nippon Shokubai Co., Ltd.), and particle 2 are used. Used silica filler (50 nm) (trade name Snowtex manufactured by Nissan Chemical Co., Ltd.), and polyoxyethylene (n = 7) lauryl ether (trade name NAROACTY N-70, manufactured by Sanyo Chemical Industries, Ltd.) was used as the surfactant. .
IV in the table represents the intrinsic viscosity measured under conditions of o-chlorophenol and 35 ° C.
[Examples 6-1 to 6-4]
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to the reference Example 2-2 of Table 2-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 6-1.
In the same manner, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass having a solid content of the composition shown in Reference Example 2-2 in Table 2-1 on the other surface. The liquid was apply | coated and the biaxially-oriented polyester film as Example 6-2, 6-3, and 6-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, about the obtained laminated body, evaluation which concerns on a 2nd easily bonding layer was performed like reference Example 2-2. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 2-2. The evaluation results are shown in Table 6.
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As the liquid, an aqueous coating liquid having a solid content of 10% by mass having the composition shown in the coating liquid 3-1 in Table 3-2 is obtained as the second obtained after stretching in the same manner as in Reference Example 3-1. Except for uniformly coating with a roll coater so that the thickness of the easy-adhesion layer is 70 nm, as in Example 1-1, the first easy-adhesion layer is provided on one side and the second easy-adhesion layer is provided on the other side. A biaxially oriented polyester film, a laminate using the biaxially oriented polyester film, and a transparent conductive film were obtained as Example 7-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating solution having a solid content concentration of 10% by mass on the other surface, the solid content having the composition shown in coating solution 3-1 of Table 3-2. Were applied to obtain biaxially oriented polyester films as Examples 7-2, 7-3, and 7-4, and laminates and transparent conductive films using the biaxially oriented polyester films, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 3-1. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 3-1. Table 7 shows the evaluation results.
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to the reference example 4-2 of Table 4-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 8-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass having the composition shown in Reference Example 4-2 in Table 4-1 on the other surface. The liquid was apply | coated and the biaxially-oriented polyester film as Example 8-2, 8-3, and 8-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 4-2. In addition, the hard-coat layer was formed on the 2nd easily bonding layer like the reference example 4-2. The evaluation results are shown in Table 8.
In the production of the polyester film of Example 1-1, when the coating liquid A for forming the first easy-adhesion layer is applied to one side of the film, the coating for forming the second easy-adhesion layer on the other side As a liquid, the thickness of the 2nd easily bonding layer obtained after extending | stretching the aqueous coating liquid of solid content concentration 10 mass% which consists of a composition shown to Reference Example 5-1 of Table 5-1 will be 75 nm. A biaxially oriented polyester film having a first easy-adhesion layer on one side and a second easy-adhesion layer on the other side, as in Example 1-1, except that it was uniformly applied by a roll coater The laminated body and transparent conductive film used were obtained as Example 9-1.
Similarly, in Examples 1-2, 1-3, and 1-4, an aqueous coating having a solid content concentration of 10% by mass on the other surface, the solid content having the composition shown in Reference Example 5-1 in Table 5-1. The liquid was apply | coated and the biaxially-oriented polyester film as Example 9-2, 9-3, 9-4, the laminated body using the same, and a transparent conductive film were obtained, respectively.
About the obtained laminated body, evaluation which concerns on a 1st easily bonding layer was performed like Example 1-1. Moreover, the evaluation which concerns on a 2nd easily bonding layer was performed about the obtained laminated body similarly to Reference Example 5-1. The hard coat layer was formed on the second easy adhesion layer in the same manner as in Reference Example 5-1. Table 9 shows the evaluation results.
ADVANTAGE OF THE INVENTION According to this invention, the laminated body for transparent conductive film base materials which made the outstanding index matching characteristic and favorable adhesiveness compatible can be provided. Due to the above effects, when the laminate of the present invention is adopted as a substrate of a transparent conductive film having a patterned transparent conductive layer, a good bone-inhibiting effect can be realized, and a polyester film and an optical adjustment layer Adhesiveness with (especially high refractive index layer) can be made excellent.
In addition, the laminated polyester film which is a preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymer polyester such as the above-described copolymer polyester resin 1, so that even an in-line coating which is usually employed is stretched. Since it is difficult to cause easy adhesion layer cracking in the process, for example, it has excellent adhesion to a functional layer such as a hard coat layer, and also has a feature that light interference spots (color spots) hardly occur. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
The laminated film, which is another preferred embodiment of the present invention, has the characteristics that the swelling ratio of the easy-adhesion layer is in a specific range, so that interference spots (color spots) hardly occur and the adhesiveness is excellent. Therefore, it can be suitably used as an easily adhesive film for optics.
The laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific cross-linking agent such as a specific copolymer polyester and the above cross-linkable polymer, and is therefore usually used in-line. Even in coating, easy adhesion layer cracking in the stretching process is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet and heat environments, and light interference spots (color spots) ) Is also unlikely to occur. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
The laminated polyester film which is another preferred embodiment of the present invention is provided with an easy-adhesion layer using a specific copolymerized polyester such as the above-described copolymerized polyester 3. Therefore, even in the in-line coating which is usually employed, the stretching step Easy-to-adhesive layer cracking is unlikely to occur, so it has excellent adhesion to functional layers such as hard coat layers, especially in wet heat environments, and light interference spots (color spots) may also occur. It has the characteristics of wanting. Therefore, it can be particularly suitably used as an easily adhesive polyester film for optics.
本発明の積層体は、パターン化された透明導電層を有する透明導電性フィルムの基板として好適に用いることができる。これにより、骨見えが抑制された電極を得ることができ、視認性に優れた静電容量方式タッチパネルを得ることができる。
The laminate of the present invention can be suitably used as a substrate for a transparent conductive film having a patterned transparent conductive layer. Thereby, the electrode by which the bone appearance was suppressed can be obtained and the electrostatic capacitance type touch panel excellent in visibility can be obtained.
Claims (10)
- ポリエステルフィルムの少なくとも片面に、第1易接着層、光学調整層をこの順で有する積層体であって、該第1易接着層は、ポリエステル樹脂を第1易接着層の質量を基準として50質量%以上含有し、屈折率が1.60~1.65であり、厚みが8~30nmである、透明導電性フィルム基材用積層体。 A laminated body having a first easy-adhesion layer and an optical adjustment layer in this order on at least one surface of the polyester film, wherein the first easy-adhesion layer is 50 masses based on the mass of the first easy-adhesion layer. %, A refractive index of 1.60 to 1.65, and a thickness of 8 to 30 nm.
- ポリエステルフィルムの面方向平均屈折率が1.60~1.70であり、光学調整層が第1易接着層側に配置された高屈折率層とその上の低屈折率層とからなり、高屈折率層の屈折率が1.60~1.80であり、低屈折率層の屈折率が1.40~1.60である、請求項1に記載の透明導電性フィルム基材用積層体。 The average refractive index in the plane direction of the polyester film is 1.60 to 1.70, and the optical adjustment layer is composed of a high refractive index layer disposed on the first easy adhesion layer side and a low refractive index layer thereon, The laminate for a transparent conductive film substrate according to claim 1, wherein the refractive index layer has a refractive index of 1.60 to 1.80, and the low refractive index layer has a refractive index of 1.40 to 1.60. .
- 第1易接着層が屈折率1.7~3.0の金属酸化物粒子を含有する、請求項1または2に記載の透明導電性フィルム基材用積層体。 The laminate for a transparent conductive film substrate according to claim 1 or 2, wherein the first easy-adhesion layer contains metal oxide particles having a refractive index of 1.7 to 3.0.
- 第1易接着層におけるポリエステル樹脂の屈折率が1.58~1.65である、請求項1~3のいずれか1項に記載の透明導電性フィルム基材用積層体。 The laminate for a transparent conductive film substrate according to any one of claims 1 to 3, wherein the refractive index of the polyester resin in the first easy-adhesion layer is 1.58 to 1.65.
- 第1易接着層におけるポリエステル樹脂が、共重合成分としてナフタレンジカルボン酸成分及び/またはフルオレン構造を有するジオール成分を含有する共重合ポリエステル樹脂である、請求項1~4のいずれか1項に記載の透明導電性フィルム基材用積層体。 The polyester resin in the first easy-adhesion layer is a copolymer polyester resin containing a naphthalene dicarboxylic acid component and / or a diol component having a fluorene structure as a copolymer component, according to any one of claims 1 to 4. Laminated body for transparent conductive film substrate.
- 請求項1~5のいずれか1項に記載の積層体における光学調整層の上に、屈折率1.9~2.3のパターン化された透明導電層を有する、透明導電性フィルム。 A transparent conductive film having a patterned transparent conductive layer having a refractive index of 1.9 to 2.3 on the optical adjustment layer in the laminate according to any one of claims 1 to 5.
- 請求項1~6のいずれか1項に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、他面に第2易接着層を有する積層体であって、該第2易接着層が、第2易接着層の質量を基準として70質量%以上の下記共重合ポリエステルを含有する積層体。
共重合ポリエステル:
(A1)ナフタレンジカルボン酸成分を60~90モル%、
(B1)炭素数6~12のアルキレンジカルボン酸成分を0~40モル%、炭素数4~10のアルキレングリコール成分を0~50モル%、該アルキレンジカルボン酸成分と該アルキレングリコール成分の合計は15~50モル%、および
(C1)下記式(I)で表わされるフルオレン構造を有するグリコール成分を5モル%以上20モル%未満含む、共重合ポリエステル。
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
(R1は炭素数2~4のアルキレン基、R2、R3、R4、およびR5は、水素、炭素数1~4のアルキル基、アリール基またはアラルキル基であり、それぞれ同じであっても異なっていてもよい。) The laminate according to any one of claims 1 to 6, wherein the polyester film has a first easy-adhesion layer and an optical adjustment layer in this order on one side, and a second easy-adhesion layer on the other side. A laminate in which the second easy-adhesion layer contains 70% by mass or more of the following copolyester based on the mass of the second easy-adhesion layer.
Copolyester:
(A1) 60-90 mol% of naphthalenedicarboxylic acid component,
(B1) 0 to 40 mol% of the alkylene dicarboxylic acid component having 6 to 12 carbon atoms, 0 to 50 mol% of the alkylene glycol component having 4 to 10 carbon atoms, and the total of the alkylene dicarboxylic acid component and the alkylene glycol component is 15 Copolyester containing ~ 50 mol% and (C1) 5 mol% or more and less than 20 mol% of a glycol component having a fluorene structure represented by the following formula (I).
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
(R 1 is an alkylene group having 2 to 4 carbon atoms, R 2 , R 3 , R 4 , and R 5 are hydrogen, an alkyl group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group. Or different.) - 第2易接着層が、第2易接着層の質量を基準として1~30質量%の下記架橋性付加重合体を含有する、請求項7に記載の積層体。
架橋性付加重合体:
(X1)付加重合性オキサゾリン基含有モノマーユニットを10~80モル%含み、
(Y1)付加重合性ポリアルキレンオキシド基含有モノマーユニットの含有量が5モル%以下である、架橋性付加重合体。
(ただし、上記モル%は、架橋性付加重合体の全モノマーユニット100モル%に対する値である。) The laminate according to claim 7, wherein the second easy-adhesion layer contains 1 to 30% by mass of the following cross-linkable addition polymer based on the mass of the second easy-adhesion layer.
Crosslinkable addition polymer:
(X1) containing 10 to 80 mol% of an addition polymerizable oxazoline group-containing monomer unit,
(Y1) A crosslinkable addition polymer having an addition polymerizable polyalkylene oxide group-containing monomer unit content of 5 mol% or less.
(The above mol% is a value based on 100 mol% of all monomer units of the crosslinkable addition polymer.) - 上記共重合ポリエステルが、さらに
(F1)スルホン酸塩基を有するジカルボン酸成分を0.1~5モル%
(ただし、上記モル%は、共重合ポリエステルの全ジカルボン酸成分100モル%に対する値である。)
含む、請求項7に記載の積層体。 The copolymerized polyester further contains (F1) a dicarboxylic acid component having a sulfonate group in an amount of 0.1 to 5 mol%.
(However, the above mol% is a value with respect to 100 mol% of all dicarboxylic acid components of the copolyester.)
The laminated body of Claim 7 containing. - 請求項1~6のいずれか1項に記載の積層体において、ポリエステルフィルムの片面に、第1易接着層、光学調整層をこの順で有し、該ポリエステルフィルムの面方向平均屈折率が1.63~1.68であり、他面に、屈折率が1.58~1.64、下記の方法で求められる膨潤率がいずれの溶剤においても130~200%、かつ厚みが50~100nmである第2易接着層を有する積層体。
膨潤率:
積層体の第2易接着層上に、下記UV硬化系組成物を溶剤(メチルエチルケトン、酢酸エチル、トルエン、イソプロパノールまたはプロピレングリコールモノメチルエーテル)で希釈した塗布液(固形分濃度40質量%)を塗布し、乾燥、硬化させて厚み5μmのハードコート層を形成し、ハードコート層を形成した後の第2易接着層の厚みdhと、ハードコート層を形成する前の第2易接着層の厚みd0とから、膨潤率E(%)=dh/d0×100として求めた値である。
UV硬化系組成物:
ペンタエリスリトールアクリレート :45質量%
N−メチロールアクリルアミド :40質量%
N−ビニルピロリドン :10質量%
1−ヒドロキシシクロヘキシルフェニルケトン: 5質量% The laminate according to any one of claims 1 to 6, wherein the polyester film has a first easy-adhesion layer and an optical adjustment layer in this order on one side of the polyester film, and the polyester film has an average refractive index in the plane direction of 1. .63 to 1.68, the refractive index is 1.58 to 1.64 on the other surface, the swelling ratio obtained by the following method is 130 to 200% in any solvent, and the thickness is 50 to 100 nm. The laminated body which has a certain 2nd easily bonding layer.
Swelling rate:
On the second easy-adhesion layer of the laminate, a coating solution (solid content concentration 40% by mass) obtained by diluting the following UV curable composition with a solvent (methyl ethyl ketone, ethyl acetate, toluene, isopropanol or propylene glycol monomethyl ether) was applied. The hard coat layer having a thickness of 5 μm is formed by drying and curing, the thickness dh of the second easy-adhesion layer after forming the hard coat layer, and the thickness d0 of the second easy-adhesion layer before forming the hard coat layer From the above, the swelling ratio E (%) = value obtained as dh / d0 × 100.
UV curable composition:
Pentaerythritol acrylate: 45% by mass
N-methylolacrylamide: 40% by mass
N-vinylpyrrolidone: 10% by mass
1-hydroxycyclohexyl phenyl ketone: 5% by mass
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147026853A KR102087006B1 (en) | 2012-03-09 | 2013-03-07 | Laminate for transparent electroconductive film base material |
CN201380012824.4A CN104159735B (en) | 2012-03-09 | 2013-03-07 | Laminate for transparent electroconductive film base material |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-052909 | 2012-03-09 | ||
JP2012052909A JP5908752B2 (en) | 2012-03-09 | 2012-03-09 | Laminate for transparent conductive film substrate |
JP2012-112505 | 2012-05-16 | ||
JP2012112505A JP2013237800A (en) | 2012-05-16 | 2012-05-16 | Laminated polyester film |
JP2012191484A JP2014046570A (en) | 2012-08-31 | 2012-08-31 | Laminated polyester film |
JP2012-191484 | 2012-08-31 | ||
JP2012-191482 | 2012-08-31 | ||
JP2012191482A JP5960555B2 (en) | 2012-08-31 | 2012-08-31 | Laminated film |
JP2012284406A JP5981335B2 (en) | 2012-12-27 | 2012-12-27 | Laminated polyester film |
JP2012-284406 | 2012-12-27 | ||
JP2012284407A JP6082858B2 (en) | 2012-12-27 | 2012-12-27 | Laminated polyester film |
JP2012-284407 | 2012-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133451A1 true WO2013133451A1 (en) | 2013-09-12 |
Family
ID=49116916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057108 WO2013133451A1 (en) | 2012-03-09 | 2013-03-07 | Laminate for transparent electroconductive film base material |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR102087006B1 (en) |
CN (1) | CN104159735B (en) |
TW (1) | TWI649200B (en) |
WO (1) | WO2013133451A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152184A1 (en) * | 2014-03-31 | 2015-10-08 | 積水ナノコートテクノロジー株式会社 | Optically transparent conductive film and touch panel comprising same |
CN108350155A (en) * | 2015-10-28 | 2018-07-31 | 日本合成化学工业株式会社 | Polyester based resin, priming paint polyester based resin, Polyester aqueous solution and the base film with prime coat and laminate film |
WO2019130842A1 (en) * | 2017-12-28 | 2019-07-04 | 日東電工株式会社 | Light-transmitting conductive film, method for producing same, light control film, and light control member |
WO2019130841A1 (en) * | 2017-12-28 | 2019-07-04 | 日東電工株式会社 | Light-transmissive electrically conductive film, method for manufacturing same, light control film, and light control member |
CN110744830A (en) * | 2019-10-17 | 2020-02-04 | 重庆金美新材料科技有限公司 | Preparation method of high-conductivity polyester film |
CN115103766A (en) * | 2020-02-20 | 2022-09-23 | 东洋纺株式会社 | Laminated film |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3224215B1 (en) * | 2014-11-25 | 2021-05-12 | PPG Industries Ohio, Inc. | Antiglare touch screen displays and other coated articles and methods of forming them |
JP7305306B2 (en) * | 2018-03-30 | 2023-07-10 | 日東電工株式会社 | circular polarizer |
WO2019203175A1 (en) * | 2018-04-18 | 2019-10-24 | 三菱ケミカル株式会社 | Polyester film for dry film resist |
CN113396179B (en) * | 2019-02-08 | 2024-09-17 | 东洋纺株式会社 | Polyester film and use thereof |
KR20210126046A (en) | 2019-02-08 | 2021-10-19 | 도요보 가부시키가이샤 | Foldable display and mobile terminal device |
KR20220016131A (en) | 2019-05-28 | 2022-02-08 | 도요보 가부시키가이샤 | Laminated films and their uses |
US11899167B2 (en) | 2019-05-28 | 2024-02-13 | Toyobo Co., Ltd. | Polyester film, laminated film, and use thereof |
US20220246069A1 (en) * | 2019-05-28 | 2022-08-04 | Toyobo Co., Ltd. | Transparent conductive polyester film and use of same |
CN113874191B (en) | 2019-05-28 | 2024-03-12 | 东洋纺株式会社 | Polyester film and use thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003020509A1 (en) * | 2001-09-03 | 2003-03-13 | Teijin Limited | Transparent conductive laminate |
JP2007253512A (en) * | 2006-03-24 | 2007-10-04 | Toray Ind Inc | Optical laminated biaxially stretched polyester film and hard coat film using it |
JP2008169277A (en) * | 2007-01-10 | 2008-07-24 | Teijin Dupont Films Japan Ltd | Easily adhesive polyester film for optical use |
JP2009242461A (en) * | 2008-03-28 | 2009-10-22 | Goo Chemical Co Ltd | Polyester resin, polyester water dispersion, and polyester film with coat |
JP2010027294A (en) * | 2008-07-16 | 2010-02-04 | Nitto Denko Corp | Transparent conductive film and touch panel |
JP2010284943A (en) * | 2009-06-15 | 2010-12-24 | Teijin Dupont Films Japan Ltd | Polyester film optical use |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059814A1 (en) * | 1998-05-15 | 1999-11-25 | Toyo Boseki Kabushiki Kaisha | Transparent conductive film and touch panel |
JP2002155156A (en) | 2000-11-21 | 2002-05-28 | Teijin Ltd | Easily bondable laminated film for optical use |
JP4852526B2 (en) * | 2005-02-07 | 2012-01-11 | 帝人デュポンフィルム株式会社 | Conductive laminated film |
JP4667471B2 (en) | 2007-01-18 | 2011-04-13 | 日東電工株式会社 | Transparent conductive film, method for producing the same, and touch panel provided with the same |
JP5099893B2 (en) * | 2007-10-22 | 2012-12-19 | 日東電工株式会社 | Transparent conductive film, method for producing the same, and touch panel provided with the same |
JP4924381B2 (en) | 2007-11-22 | 2012-04-25 | 東洋紡績株式会社 | Coated polyester film and hard coat film using the same |
JP4966924B2 (en) | 2008-07-16 | 2012-07-04 | 日東電工株式会社 | Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film |
KR101607728B1 (en) * | 2009-05-22 | 2016-03-30 | 도요보 가부시키가이샤 | Highly adhesive polyester film for optical use |
JP2011076932A (en) | 2009-09-30 | 2011-04-14 | Nitto Denko Corp | Transparent conductive film and touch panel |
JP5521535B2 (en) | 2009-12-22 | 2014-06-18 | 日油株式会社 | Transparent conductive film |
-
2013
- 2013-03-07 CN CN201380012824.4A patent/CN104159735B/en active Active
- 2013-03-07 KR KR1020147026853A patent/KR102087006B1/en active IP Right Grant
- 2013-03-07 WO PCT/JP2013/057108 patent/WO2013133451A1/en active Application Filing
- 2013-03-08 TW TW102108234A patent/TWI649200B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003020509A1 (en) * | 2001-09-03 | 2003-03-13 | Teijin Limited | Transparent conductive laminate |
JP2007253512A (en) * | 2006-03-24 | 2007-10-04 | Toray Ind Inc | Optical laminated biaxially stretched polyester film and hard coat film using it |
JP2008169277A (en) * | 2007-01-10 | 2008-07-24 | Teijin Dupont Films Japan Ltd | Easily adhesive polyester film for optical use |
JP2009242461A (en) * | 2008-03-28 | 2009-10-22 | Goo Chemical Co Ltd | Polyester resin, polyester water dispersion, and polyester film with coat |
JP2010027294A (en) * | 2008-07-16 | 2010-02-04 | Nitto Denko Corp | Transparent conductive film and touch panel |
JP2010284943A (en) * | 2009-06-15 | 2010-12-24 | Teijin Dupont Films Japan Ltd | Polyester film optical use |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152184A1 (en) * | 2014-03-31 | 2015-10-08 | 積水ナノコートテクノロジー株式会社 | Optically transparent conductive film and touch panel comprising same |
JP2015201165A (en) * | 2014-03-31 | 2015-11-12 | 積水ナノコートテクノロジー株式会社 | Light transmissive conductive film and touch panel having the same |
CN108350155A (en) * | 2015-10-28 | 2018-07-31 | 日本合成化学工业株式会社 | Polyester based resin, priming paint polyester based resin, Polyester aqueous solution and the base film with prime coat and laminate film |
CN111527570A (en) * | 2017-12-28 | 2020-08-11 | 日东电工株式会社 | Light-transmitting conductive film, method for producing same, light-controlling film, and light-controlling member |
WO2019130841A1 (en) * | 2017-12-28 | 2019-07-04 | 日東電工株式会社 | Light-transmissive electrically conductive film, method for manufacturing same, light control film, and light control member |
WO2019130842A1 (en) * | 2017-12-28 | 2019-07-04 | 日東電工株式会社 | Light-transmitting conductive film, method for producing same, light control film, and light control member |
KR20200098500A (en) * | 2017-12-28 | 2020-08-20 | 닛토덴코 가부시키가이샤 | Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member |
CN111527570B (en) * | 2017-12-28 | 2022-06-14 | 日东电工株式会社 | Light-transmitting conductive film, method for producing same, light-controlling film, and light-controlling member |
KR102618094B1 (en) | 2017-12-28 | 2023-12-27 | 닛토덴코 가부시키가이샤 | Light-transmissive conductive film, manufacturing method thereof, dimming film, and dimming member |
CN110744830A (en) * | 2019-10-17 | 2020-02-04 | 重庆金美新材料科技有限公司 | Preparation method of high-conductivity polyester film |
CN110744830B (en) * | 2019-10-17 | 2022-03-15 | 重庆金美新材料科技有限公司 | Preparation method of high-conductivity polyester film |
CN115103766A (en) * | 2020-02-20 | 2022-09-23 | 东洋纺株式会社 | Laminated film |
CN115103766B (en) * | 2020-02-20 | 2023-12-15 | 东洋纺株式会社 | Laminated film |
Also Published As
Publication number | Publication date |
---|---|
KR20140138775A (en) | 2014-12-04 |
CN104159735B (en) | 2017-03-22 |
CN104159735A (en) | 2014-11-19 |
KR102087006B1 (en) | 2020-03-10 |
TWI649200B (en) | 2019-02-01 |
TW201350330A (en) | 2013-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI649200B (en) | Laminate for transparent conductive film substrate | |
JP5363206B2 (en) | Optical polyester film | |
JP4661946B2 (en) | Optically easy-adhesive polyester film and optical laminated polyester film | |
JP5908752B2 (en) | Laminate for transparent conductive film substrate | |
JP6957885B2 (en) | Films and laminated sheets for organic electroluminescence display devices | |
JP4576808B2 (en) | Optical laminated film, antireflection laminated film, touch panel laminated film and display member laminated film manufacturing method | |
US8778484B2 (en) | Laminated polyester film and antireflection film | |
JP4096268B2 (en) | Transparent conductive film and touch panel using the same | |
JP2013067164A (en) | Laminated polyester film | |
JP6176270B2 (en) | Release film | |
JP6164075B2 (en) | Coating film for transparent conductive film substrate | |
JP4534608B2 (en) | Laminated polyester film, display member using the same, and method for producing laminated polyester film | |
JP5536716B2 (en) | Laminated polyester film | |
JP5607520B2 (en) | Optical polyester film | |
JP6082858B2 (en) | Laminated polyester film | |
JP5489971B2 (en) | Laminated polyester film | |
JP2008168487A (en) | Easily adhesive polyester film for optical use | |
JP3942460B2 (en) | Easy-adhesive polyester film for ITO film | |
JP2014046570A (en) | Laminated polyester film | |
WO2012081438A1 (en) | Layered polyester film | |
JP5734405B2 (en) | Laminated polyester film | |
JP5981335B2 (en) | Laminated polyester film | |
JP5489972B2 (en) | Laminated polyester film | |
JP5960555B2 (en) | Laminated film | |
JP2016125024A (en) | Laminated polyester film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13758515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147026853 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13758515 Country of ref document: EP Kind code of ref document: A1 |