WO2013133313A1 - Yoghurt with limited rise in acidity and method for producing same - Google Patents
Yoghurt with limited rise in acidity and method for producing same Download PDFInfo
- Publication number
- WO2013133313A1 WO2013133313A1 PCT/JP2013/056108 JP2013056108W WO2013133313A1 WO 2013133313 A1 WO2013133313 A1 WO 2013133313A1 JP 2013056108 W JP2013056108 W JP 2013056108W WO 2013133313 A1 WO2013133313 A1 WO 2013133313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- milk
- lactic acid
- fermentation
- lactobacillus
- bacteria
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/123—Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
- A23C9/1234—Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
Definitions
- the present invention relates to fermented milk in which an increase in acidity is suppressed and a method for producing the same.
- Patent Document 4 describes that fermented milk in which an increase in lactic acid acidity is suppressed can be obtained by using a lactic acid bacterium belonging to Lactobacillus helveticus and Lactobacillus acidophilus as a starter.
- Patent Document 5 also describes a method for producing fermented milk using a strain that inhibits acid production of Lactobacillus bulgaricus and a strain that produces a viscous product of Streptococcus thermophilus.
- Patent Document 6 discloses a lactic acid bacteria growth promoter and survival improver containing dead lactic acid bacteria as active ingredients
- Patent Document 7 discloses lactic acid bacteria containing ⁇ -caseinoglyco macropeptide as active ingredients.
- a growth promoter for bifidobacteria containing milk protein as an active ingredient hydrolyzed by a cell wall-localized proteolytic enzyme PrtP is also known (Patent Document 8).
- an object of the present invention is to promote fermentation of lactic acid bacteria and reduce the fermentation time while suppressing an increase in acidity during refrigerated storage and maintaining a moderately mild acidity and highly fermented fermented milk and its It is to provide a manufacturing method.
- the present invention relates to fermented milk in which the following increase in acidity is suppressed and a method for producing the same.
- a method for producing fermented milk by adding a starter to raw material milk the method comprising a step of mixing a mixed starter and a single culture of Lactobacillus lactic acid bacteria.
- the mixed starter includes a lactic acid bacterium of the genus Lactobacillus and a lactic acid bacterium of the genus Streptococcus.
- [6] The method according to any one of [1] to [5], wherein the lactic acid bacteria in the single culture are removed and / or sterilized.
- [7] The method according to any one of [1] to [6], wherein the removal treatment and / or sterilization treatment is selected from centrifugation, filtration, and heating.
- [8] The method according to [7], wherein the heating of the single culture is performed together with the heating of the raw milk.
- the single culture solution uses only the components contained in the raw milk as the culture components.
- the single culture solution comprises raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk and / or skim concentrated milk.
- the method according to item. [11] The method according to any one of [1] to [10], wherein the single culture solution is added at a concentration of 2 to 15% by weight.
- the method for producing fermented milk of the present invention by using a single culture solution of lactic acid bacteria, particularly a single culture solution obtained by removing and / or sterilizing bacterial cells, it functions as an additive for promoting fermentation (fermentation promoter). , Fermentation time can be shortened. Compared with the prior art, the preparation method is simple as a fermentation promoter and can be provided at low cost. Moreover, fermentation time can also be shortened by fermenting after a deoxygenation process.
- the lactic acid bacteria single culture solution of the present invention contains, for example, peptides that promote fermentation such as casein degradation products, the number of bacteria such as Streptococcus thermophilus can be increased.
- the lactic acid bacteria single culture solution of the present invention contains lactic acid, particularly D-lactic acid, it is considered that excessive lactic acid production during the fermentation process can be suppressed. Therefore, while shortening the fermentation time, an increase in acidity during refrigerated storage can be suppressed, and fermented milk excellent in refrigerated storage stability can be provided.
- the smoothness of the card structure is improved and the texture is improved. Therefore, according to the method for producing fermented milk of the present invention, moderately mild sourness can be maintained during refrigerated storage, and fermented milk having excellent quality such as texture and flavor, especially plain type yogurt can be provided. .
- FIG. 1 shows the time courses of D-lactic acid and L-lactic acid during fermentation and refrigerated storage of yogurt (low PA-4 yogurt) using a low PA-4 starter.
- the fermentation time is 6.75 hours.
- FIG. 2 shows changes over time in D-lactic acid and L-lactic acid during fermentation and refrigerated storage of low PA-4 yogurt formulated with 0.05% by weight of milk peptide.
- the fermentation time is 3.5 hours.
- FIG. 3 shows changes over time in D-lactic acid and L-lactic acid during fermentation and refrigerated storage of low PA-4 yogurt formulated with 0.1% by weight of milk peptide.
- the fermentation time is 3.25 hours.
- FIG. 4 shows changes over time in D-lactic acid and L-lactic acid during fermentation and refrigerated storage of low PA-4 yogurt formulated with 5% by weight of a single culture of Bulgaria.
- the fermentation time is 4 hours.
- FIG. 5 shows changes over time in D-lactic acid and L-lactic acid during fermentation and refrigerated storage of low PA-4 yogurt formulated with 10% by weight of a single culture of Bulgaria.
- the fermentation time is 5 hours.
- the method for producing fermented milk of the present invention includes a step of mixing a mixed starter and a single culture solution of lactic acid bacteria.
- a single culture solution of Lactobacillus lactic acid bacteria is blended in the raw milk and fermented with a mixed starter.
- fermented milk includes “fermented milk” defined by a ministerial ordinance (Ministerial Ordinance on Milk, etc.) regarding ingredient standards of milk and dairy products.
- fermented milk can be raw milk, milk, special milk, raw goat milk, pasteurized goat milk, raw noodle milk, ingredient-adjusted milk, low-fat milk, non-fat milk, processed milk, etc.
- Milk or the like containing milk solids is fermented with lactic acid bacteria or yeast to form paste or liquid, or those frozen.
- yogurts but typically in the present invention are plain type yogurts.
- a set type yogurt such as plain yogurt
- raw milk is filled in a container and then fermented (post-fermentation).
- soft yogurt or drink yogurt is manufactured by filling fermented milk obtained by fermenting raw material milk into a container (pre-fermentation) after atomization or homogenization.
- raw milk is a liquid or gel-like raw material for producing fermented milk such as yogurt, and is also called yogurt mix or fermented milk mix.
- known raw material milk can be appropriately used.
- the raw milk includes those before sterilization and those after sterilization.
- Specific ingredients (materials) of raw milk include water, raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, etc. Also good.
- WPC whey protein concentrate
- WPI whey protein isolate
- ⁇ -La ⁇ -lactalbumin
- ⁇ -Lg ⁇ -lactoglobulin
- starter is mixed (mixed) with raw milk and fermented.
- known starters can be used as appropriate, but lactic acid bacteria starters are preferred.
- lactic acid bacteria starters include, for example, Lactobacillus bulgaricus (L.bulgaricus), Streptococcus thermophilus (S.thermophilus), Lactobacillus lactis (L.lactis), Lactobacillus gasseri (L.gasseri) or Bifidobacterium
- Lactobacillus bulgaricus L.bulgaricus
- Streptococcus thermophilus S.thermophilus
- Lactobacillus lactis L.lactis
- Lactobacillus gasseri Lactobacillus gasseri
- Bifidobacterium one or more of lactic acid bacteria, bifidobacteria, yeasts and the like that are generally used can be used.
- the “mixed starter” is a starter using two or more of lactic acid bacteria, bifidobacteria, yeast and the like, and may be a mixed starter combining these lactic acid bacteria, bifidobacteria and yeast, or only from lactic acid bacteria. May be a mixed starter.
- mixed starters of lactic acid bacteria are preferable, mixed starters of lactic acid bacteria of the genus Lactobacillus and Streptococcus are more preferable, and mixed starters of Lactobacillus bulgaricus and Streptococcus thermophilus are more preferable.
- a mixed starter of lactic acid bacteria for example, other lactic acid bacteria or bifidobacteria such as Bifidobacterium may be added.
- Lactobacillus bulgaricus Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri are preferable for the lactic acid bacteria of the genus Lactobacillus used for the mixed starter, and Streptococcus thermophilus and Streptococcus macedonis are preferable for the lactic acid bacteria of the genus Streptococcus. preferable.
- an increase in acidity during refrigerated storage can be further suppressed by using a lactic acid bacteria starter that is slow in fermentation.
- a lactic acid bacteria starter may be a mixed starter using lactic acid bacteria that do not establish symbiosis.
- a lactic acid bacteria starter that requires a fermentation time of 5.5 hours or more until the acidity reaches 0.73% at a fermentation temperature of 43 ° C. is preferable.
- Lactic acid bacteria used for such a lactic acid bacteria starter include Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri, Streptococcus thermophilus, Streptococcus macedonis and the like.
- the addition amount of the starter is preferably 1 to 8% by weight, more preferably 2 to 6% by weight, and further preferably 2 to 4% by weight.
- the number of bacteria of Lactobacillus bulgaricus in the starter is preferably 10 6 to 10 12 cfu / mL, more preferably 10 7 to 10 11 cfu / mL, and further more preferably 10 8 to 10 10 cfu / mL. preferable.
- the number of Streptococcus thermophilus bacteria in the starter is preferably 10 7 to 10 13 cfu / mL, more preferably 10 8 to 10 12 cfu / mL, and more preferably 10 9 to 10 11 cfu / mL.
- a starter addition (inoculation) method there are a method of adding a bulk starter after preparing it from a mother starter, a direct culture method of directly adding frozen bacteria (frozen concentrated bacteria) and the like.
- the “single culture medium” mainly means a culture liquid in which microorganisms are independently cultured without mixing a plurality of types of microorganisms. Typically, a specific bacterial cell is cultured alone. Means a simple bacterial culture.
- the single culture solution of lactic acid bacteria those cultured by combining lactic acid bacteria of the same genus are preferable, those cultured by combining lactic acid bacteria of the same genus / same species are more preferable, and those obtained by culturing only lactic acid bacteria of the same strain are more preferable.
- a lactic acid bacterium belonging to the genus Lactobacillus is preferred as a lactic acid bacterium to be cultivated alone, and Lactobacillus selected from Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri
- Lactobacillus bulgaricus is particularly preferred.
- the component contained in the single culture solution is not particularly limited, but it is preferable to use the culture component contained in the raw milk, and it is more preferable to use only the culture component contained in the raw milk. preferable.
- a liquid form is preferable as a single culture solution, as long as the component of a culture solution is contained substantially, a solid form or a semi-solid form (gel form etc.) may be sufficient.
- Ingredients for cultivating lactic acid bacteria include raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, whey protein concentrate (WPC), whey protein isolation Products (WPI), ⁇ -lactalbumin ( ⁇ -La), ⁇ -lactoglobulin ( ⁇ -Lg) and the like are preferably used as raw milk, and raw milk, pasteurized milk, skimmed milk, skimmed milk powder, whole milk powder, It is more preferable to use fat concentrated milk and / or defatted concentrated milk as raw material milk.
- skim milk When skim milk is used, it may be an aqueous solution of 5% by weight or more of skim milk, preferably 7 to 15% by weight, more preferably 8 to 14% by weight, and further preferably 9 to 13% by weight of reduced skim milk. It is milk.
- the single culture solution to be blended with the raw milk may be 1% by weight or more of the raw milk, preferably 2 to 15% by weight, more preferably 3 to 10% by weight, and further preferably 4 to 8% by weight. It is.
- the number of Lactobacillus bulgaricus bacteria in a single culture solution is preferably 10 6 to 10 12 cfu / mL, more preferably 10 7 to 10 11 cfu / mL, and 10 8 to 10 10 cfu / mL. Is more preferable.
- the casein degradation product (peptide, amino acid, etc.) may be 0.01% by weight or more of the single culture solution as an effective component contained in the single culture solution, preferably 0. 0.02 to 0.2% by weight, more preferably 0.03 to 0.15% by weight, still more preferably 0.05 to 0.1% by weight.
- the D-lactic acid may be 0.05% by weight or more of the single culture medium, preferably 0.1 to 2% by weight, more preferably 0.4 to 1.6% by weight, and still more preferably 0%. .8 to 1.2% by weight.
- the removal and / or sterilization treatment of the cells in the single culture solution is not particularly limited, but methods such as centrifugation, filtration, heating, ultraviolet irradiation, ⁇ -ray irradiation, and ultrasonic waves can be used, preferably , Centrifugation, filtration and heating. Moreover, it can also carry out with the removal and / or disinfection process of the raw material milk
- the single culture solution may contain dead cells.
- the single culture solution may contain viable bacteria.
- the quantity is preferably such that the viable bacteria do not function as a starter.
- the step of mixing the single culture solution and the mixed starter is not particularly limited, but it is preferable to mix the raw material milk, the single culture solution, and the mixed starter almost simultaneously before fermentation. More preferably, the mixed starter is mixed with the single culture solution.
- the single culture solution may be added either before or after sterilizing the raw material milk, or both.
- the single culture solution is also sterilized at the same time as the raw milk, so even if a single culture solution containing live bacteria is added, Can be reduced to a quantity that does not function as.
- a deoxygenation treatment step of deoxygenating raw material milk in the fermentation step may be included.
- the deoxygenation process is a process for reducing or removing oxygen present in the raw material milk.
- a method for reducing the dissolved oxygen concentration (DO) of raw material milk for example, gas replacement treatment with an inert gas such as nitrogen gas, helium, neon, argon, xenon, membrane separation treatment with an oxygen permeable membrane, low pressure Or a deaeration treatment by vacuum can be used.
- the deoxygenation method may be performed so that the oxygen (dissolved oxygen concentration) present in the raw milk is, for example, 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less.
- the dissolved oxygen concentration of raw material milk at the start of fermentation the lower the concentration, the better.
- the temperature of the raw milk is about 40 ° C., it is preferably 5 ppm or less, more preferably 3 ppm or less. Since the fermentation time is shortened by reducing the dissolved oxygen concentration in the raw milk at the start of fermentation, for example, even when the fermentation temperature is lowered, the fermentation time is relatively 3 to 7 hours. The fermentation process can be completed by setting a short time range.
- the deoxygenation process may be carried out once or several times before the start of fermentation, such as after preparing raw milk, homogenizing and / or sterilizing raw milk, and after adding a starter to raw milk. Good. However, since it is important that the dissolved oxygen concentration is maintained in a reduced state at the start of fermentation, the deoxygenation treatment step is desirably performed immediately before, immediately after, or simultaneously with the addition of the starter.
- the fermentation temperature is preferably 30 to 50 ° C., more preferably 35 to 47 ° C., and still more preferably 40 to 45 ° C.
- the fermentation temperature is preferably 30 to 39 ° C., more preferably 32 to 38 ° C.
- it is 34 to 37 ° C.
- the fermentation time can be defined as the elapsed time until the lactic acid acidity of the fermented milk reaches about 0.7%.
- the lactic acid acidity can be calculated by titration using an indicator of NaOH or phenolphthalein.
- the fermentation time is preferably 2 to 24 hours, more preferably 2 to 12 hours, still more preferably 3 to 7 hours, and particularly preferably 3 to 5 hours.
- the fermentation time is preferably 2 to 20 hours, more preferably 2 to 10 hours, still more preferably 3 to 6 hours, particularly preferably 3 to 4 hours. It is.
- fermented milk by adding a single culture solution to raw milk, a mild acidity is felt, the natural sweetness and smoothness of the touch are improved, and a taste that maintains a moderately mild acidity A highly fermented milk is produced.
- yogurt such as set type yogurt, soft yogurt, drink yogurt because it is easy to feel a mellow acidity, and since natural sweetness and smoothness of the texture stand out, plain yogurt etc. More preferably, it is a set type yogurt.
- the acidity increase rate of the fermented milk of the present invention may be 5% or less, preferably 0 to 5%, more preferably 0 to 3% when stored at 10 ° C. for 7 days. More preferably, it is 0 to 2%.
- the lipid is preferably 0 to 5% by weight, more preferably 0 to 4% by weight, and still more preferably 0 to 3% by weight.
- the protein is preferably 7 to 15% by weight, more preferably 8 to 14% by weight, and still more preferably 9 to 13% by weight.
- Example 1 Characteristics of Lactic Acid Bacteria Starter (Low PA Starter) Slowly Progressing Fermentation Yogurt (fat content: 3.0%, SNF: 9.5%) was prepared using a mixed starter of lactic acid bacteria. Table 1 shows the fermentation time, acidity increase and pH during refrigerated storage of this yogurt.
- a mixed starter for the four types of lactic acid bacteria in Table 1 a mixed starter composed of Bulgarian bacteria (Lactobacillus bulgaricus) and Thermophilus bacteria (Streptococcus thermophilus) was used.
- a lactic acid bacterium starter having a fermentation time of 5.5 hours or more and a slow progress of fermentation and a tendency of small increase in acidity (Post-acidification: PA) after refrigerated storage was used.
- the mixed starter of these lactic acid bacteria is called a low PA starter.
- the fermentation time was shortened in any starter by adding milk peptide to raw milk.
- Thermophilus singly (single) low PA-1, low PA-2 and low PA-3 as starters, It was necessary to blend at 0.3% or more, and when low PA-4 was used as a starter, it was necessary to blend milk peptide at 0.1% or more.
- thermophilus bacterium alone single cell
- the acidity after refrigerated storage is 0.9 even if milk peptide is added at 0.3% and fermentation is completed in a short 3.5 hours. It was a low value of less than%.
- low PA-1, low PA-2, low PA-3 and low PA-4 are used as starters for yogurt, milk peptides are added at 0.3% and fermentation is performed.
- the acidity after refrigerated storage was a high value of 0.9% or more, and the increase in acidity was not suppressed.
- low PA-4 which was confirmed to have a fermentation promoting effect even when the amount of milk peptide added was minimal, was used.
- Example 3 Fermentation promoting effect of culture solution of lactic acid bacteria After blending various lactic acid bacteria culture solutions at 2.0% with formula milk (fat content: 3.0%, SNF: 9.5%), The raw milk (medium) was prepared by heating (90 ° C., 10 min). The raw milk was inoculated (added) with a low PA-4 starter at 2.0%, and fermented (43 ° C.) to a lactic acid content of about 0.7%.
- Table 3 shows the relationship between fermentation time and acidity over time. “No addition” in the table is a control in which no culture solution of lactic acid bacteria was added.
- Example 4 Fermentation promotion effect of single culture solution of Bulgaria bacteria According to Example 3, a fermentation promotion effect was recognized in the single culture solution of Bulgaria bacteria. Therefore, in order to examine the effect of the concentration of the single culture solution of Bulgaria bacteria, the single culture solution of Bulgaria bacteria is mixed at 5% or 10% and fermented to about 0.7% lactic acid (43 ° C). It was. Table 4 shows the relationship between the fermentation time and acidity over time, and Table 5 shows the increase in acidity and pH during refrigerated storage.
- Example 5 Fermentation promoting effect of various yogurts and inhibitory effect on increase in acidity The following five yogurts were compared in terms of fermentation promotion effect and inhibitory effect on increase in acidity, and the characteristics of each yogurt were examined. (1) Yogurt using low PA-4 starter (low PA-4 yogurt) (2) Low PA-4 yogurt formulated with milk peptide at 0.05% (3) Low PA-4 yogurt formulated with milk peptide at 0.1% (4) Single culture solution of Bulgarian bacteria formulated at 5% Low PA-4 yogurt (5) Low PA-4 yogurt formulated with 10% Bulgarian monoculture
- FIGS. 1 to 5 show the amount of D-lactic acid produced by Bulgarian bacteria and the production of Thermophilus bacteria during fermentation (43 ° C.) and refrigerated storage (10 ° C.) in the preparation of the yogurt of (1) to (5) above. Changes over time such as the amount of L-lactic acid to be added and the total amount of lactic acid obtained by adding them together are shown.
- thermophilus ⁇ Fermentation promoting effect of milk peptide (fermenting time shortening effect)>
- the amount of L-lactic acid produced by thermophilus is 2.5 hours after the start of fermentation. It reached about 50 mM.
- the amount of L-lactic acid reached about 30 mM. That is, in the cases (2) and (3) containing the milk peptide, the amount of L-lactic acid was remarkably increased as compared with the control (1).
- the number of the thermophilus bacteria did not increase at the time of fermentation compared with the control (1), but the number of the bacteria of Bulgaria was 10 times at the time of fermentation. It increased in degree. In other words, it was considered that the milk peptide increased the number of Bulgarian bacteria during fermentation by enhancing the metabolic activity of Thermophilus bacteria and increasing the production of formic acid, a growth promoting factor of Bulgarian bacteria.
- Fermentation time was shortened sufficiently in (4) in which a single culture solution of Bulgaria was mixed. This is because the amount of L-lactic acid is increased by the action of the casein degradation product and peptide derived from the culture solution, and as a result of the increase in the amount of D-lactic acid derived from the culture solution, the total amount of lactic acid is increased. It was considered that the fermentation time was shortened sufficiently.
- Fermentation time was slightly shortened in (5) in which a single culture solution of Bulgaria was mixed. This is because thermophilus bacteria are generally inferior in acid resistance, and as a result of the increase in the amount of D-lactic acid derived from the culture solution to about 10 mM, the metabolic activity of thermophilus bacteria is reduced, and the fermentation time is sufficient. It was thought that it was not shortened. Actually, the amount of L-lactic acid produced by Thermophilus was lower at the time of fermentation in (5) in which a single culture solution of Bulgaria was mixed, compared to the control (1).
- thermophilus bacteria In the case of (4) containing a bulgaria single culture, the number of thermophilus bacteria was increased approximately twice compared to the control (1), and the amount of L-lactic acid produced by thermophilus was moderately increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened due to the increase.
- the amount of D-lactic acid derived from the Bulgarian monoculture broth increased in (5) containing the Bulgarian monoculture, and the acidity increased during fermentation and the acidity increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened because the metabolic vitality of thermophilus bacteria with poor resistance was reduced and the production amount of L-lactic acid was reduced.
- yogurt blended with a single culture solution of Bulgaria bacteria has a tendency to suppress an increase in acidity during refrigerated storage and maintain an appropriate acidity while promoting fermentation.
- plain yogurt blended with a culture solution of Bulgaria has improved the natural sweetness and smoothness of the touch.
- the method for producing fermented milk of the present invention not only promotes fermentation, but also suppresses an increase in acidity during storage of the obtained fermented milk, and improves quality such as flavor and physical properties. Therefore, plain yogurt and the like are useful for manufacturing on a commercial scale.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Dairy Products (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
There is provided a high-palatability yoghurt in which a rise in acidity during refrigeration is limited and a suitably mild acidity is maintained while fermentation of lactic bacteria is promoted and fermentation time is reduced, and a method for producing the yoghurt. The method for producing the yoghurt includes a step for mixing a mixing starter and a monoculture liquid of Lactobacillus lactic bacteria into raw milk.
Description
本発明は、酸度上昇が抑制された発酵乳およびその製造方法に関する。
The present invention relates to fermented milk in which an increase in acidity is suppressed and a method for producing the same.
乳酸発酵によって製造される発酵乳では、発酵乳(製品)中に生きた乳酸菌が含まれる。そのため、実際の製品を冷蔵保存などする場合には、生きた乳酸菌によって、発酵乳の酸度が上昇し、品質劣化の問題が生じる。これまでに、冷蔵保存中における酸度の上昇が抑制された発酵乳を得る目的で、ナイシンを産生するラクトコッカス・ラクティス・サブスピーシーズ・ラクティスを用いる発酵乳の製造方法が開示されている(特許文献1)。同様の目的で、ストレプトコッカス・サーモフィラスに属する乳酸菌であって、抗菌物質を産生する菌株や低温感受性の菌株を用いる発酵乳の製造方法も知られている(特許文献2および3)。
In fermented milk produced by lactic acid fermentation, live lactic acid bacteria are contained in the fermented milk (product). Therefore, when storing an actual product refrigerated, the acidity of fermented milk rises by the living lactic acid bacteria, and the problem of quality degradation arises. So far, a method for producing fermented milk using Lactococcus lactis subspecies lactis producing nisin has been disclosed for the purpose of obtaining fermented milk in which the increase in acidity during refrigerated storage is suppressed (patent document). 1). For the same purpose, fermented milk production methods using lactic acid bacteria belonging to Streptococcus thermophilus and producing antibacterial substances and low-temperature sensitive strains are also known (Patent Documents 2 and 3).
また、特定の乳酸菌の菌株を混合スターターとして用いることにより、酸度の上昇を抑制する発酵乳の製造方法も知られている。特許文献4には、ラクトバチルス・ヘルベティカスおよびラクトバチルス・アシドフィルスに属する乳酸菌をスターターに用いることにより、乳酸酸度の上昇が抑制された発酵乳を得られることが記載されている。さらに、特許文献5には、ラクトバチルス・ブルガリカスの酸生成抑制の菌株およびストレプトコッカス・サーモフィラスの粘性物生成の菌株を用いる発酵乳の製造方法も記載されている。
In addition, a method for producing fermented milk that suppresses an increase in acidity by using a specific lactic acid bacteria strain as a mixed starter is also known. Patent Document 4 describes that fermented milk in which an increase in lactic acid acidity is suppressed can be obtained by using a lactic acid bacterium belonging to Lactobacillus helveticus and Lactobacillus acidophilus as a starter. Furthermore, Patent Document 5 also describes a method for producing fermented milk using a strain that inhibits acid production of Lactobacillus bulgaricus and a strain that produces a viscous product of Streptococcus thermophilus.
一方で、乳酸菌やビフィズス菌の増殖を促進などする添加剤がいくつか知られている。特許文献6には、乳酸菌の死菌体を有効成分とする乳酸菌の増殖促進剤および生残性向上剤が開示され、特許文献7には、κ-カゼイノグリコマクロペプチドを有効成分とする乳酸菌の増殖促進剤および生残性向上剤が開示されている。また、細胞壁局在性タンパク質分解酵素PrtPによって加水分解された、乳タンパク質を有効成分とするビフィズス菌の増殖促進剤も知られている(特許文献8)。
On the other hand, some additives that promote the growth of lactic acid bacteria and bifidobacteria are known. Patent Document 6 discloses a lactic acid bacteria growth promoter and survival improver containing dead lactic acid bacteria as active ingredients, and Patent Document 7 discloses lactic acid bacteria containing κ-caseinoglyco macropeptide as active ingredients. Of the present invention have been disclosed. In addition, a growth promoter for bifidobacteria containing milk protein as an active ingredient hydrolyzed by a cell wall-localized proteolytic enzyme PrtP is also known (Patent Document 8).
しかしながら、乳酸菌の増殖を促進させ、発酵時間を短縮しようとする場合、冷蔵保存中における酸度も上昇する傾向にある。そのため、発酵を促進しながらも、冷蔵保存中における酸度の上昇を抑制することは、非常に困難である。
したがって、本発明の課題は、乳酸菌の発酵を促進して、発酵時間を短縮させながら、冷蔵保存中における酸度の上昇を抑制し、適度にマイルドな酸味を維持した嗜好性の高い発酵乳およびその製造方法を提供することである。 However, when promoting the growth of lactic acid bacteria and shortening the fermentation time, the acidity during refrigerated storage also tends to increase. Therefore, it is very difficult to suppress an increase in acidity during refrigerated storage while promoting fermentation.
Therefore, an object of the present invention is to promote fermentation of lactic acid bacteria and reduce the fermentation time while suppressing an increase in acidity during refrigerated storage and maintaining a moderately mild acidity and highly fermented fermented milk and its It is to provide a manufacturing method.
したがって、本発明の課題は、乳酸菌の発酵を促進して、発酵時間を短縮させながら、冷蔵保存中における酸度の上昇を抑制し、適度にマイルドな酸味を維持した嗜好性の高い発酵乳およびその製造方法を提供することである。 However, when promoting the growth of lactic acid bacteria and shortening the fermentation time, the acidity during refrigerated storage also tends to increase. Therefore, it is very difficult to suppress an increase in acidity during refrigerated storage while promoting fermentation.
Therefore, an object of the present invention is to promote fermentation of lactic acid bacteria and reduce the fermentation time while suppressing an increase in acidity during refrigerated storage and maintaining a moderately mild acidity and highly fermented fermented milk and its It is to provide a manufacturing method.
本発明者らは、上記課題を解決するため、鋭意研究を重ねる中で、混合スターターを用いる発酵乳の製造において、原料乳中にラクトバチルス・ブルガリカスの単独培養液を配合することにより、発酵時間が短縮されるだけではなく、冷蔵保存中における酸度の上昇が抑制され、カードの組織の滑らかさが向上された発酵乳が得られることを見出し、さらに研究を進めた結果、本発明を完成させるに至った。
In the production of fermented milk using a mixed starter, in order to solve the above problems, the present inventors, in the production of fermented milk using a mixed starter, fermented by blending a single culture solution of Lactobacillus bulgaricus into the raw material milk. As a result of further research, we found that fermented milk with improved acidity during refrigerated storage and reduced smoothness of curd tissue was obtained. I came to let you.
すなわち、本発明は、以下の酸度上昇が抑制された発酵乳およびその製造方法に関する。
[1] 原料乳にスターターを加えて発酵乳を製造する方法であって、混合スターターとラクトバチルス属の乳酸菌の単独培養液とを混ぜる工程を含む、前記方法。
[2] 混合スターターが、ラクトバチルス属の乳酸菌およびストレプトコッカス属の乳酸菌を含む、[1]に記載の方法。
[3] ラクトバチルス属の乳酸菌が、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルスおよびラクトバチルス・ガッセリからなる群から選択される、[1]または[2]に記載の方法。
[4] ストレプトコッカス属の乳酸菌が、ストレプトコッカス・サーモフィラスまたはストレプトコッカス・マケドニスである、[2]または[3]に記載の方法。
[5] 単独培養液に用いるラクトバチルス属の乳酸菌が、混合スターターに用いるラクトバチルス属の乳酸菌と同種の乳酸菌である、[2]~[4]のいずれか一項に記載の方法。
[6] 単独培養液中の乳酸菌が、除去処理および/または殺菌処理される、[1]~[5]のいずれか一項に記載の方法。
[7] 除去処理および/または殺菌処理が、遠心分離、濾過、加熱から選択される、[1]~[6]のいずれか一項に記載の方法。
[8] 単独培養液の加熱が、原料乳の加熱とともに行われる、[7]に記載の方法。
[9] 単独培養液が、原料乳に含まれる成分のみを培養成分とする、[1]~[8]のいずれか一項に記載の方法。
[10] 単独培養液が、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳および/または脱脂濃縮乳を培養成分とする、[1]~[9]のいずれか一項に記載の方法。
[11] 単独培養液が、2~15重量%の濃度で加えられる、[1]~[10]のいずれか一項に記載の方法。
[12] [1]~[11]のいずれか一項に記載の方法で製造される発酵乳。 That is, the present invention relates to fermented milk in which the following increase in acidity is suppressed and a method for producing the same.
[1] A method for producing fermented milk by adding a starter to raw material milk, the method comprising a step of mixing a mixed starter and a single culture of Lactobacillus lactic acid bacteria.
[2] The method according to [1], wherein the mixed starter includes a lactic acid bacterium of the genus Lactobacillus and a lactic acid bacterium of the genus Streptococcus.
[3] The method according to [1] or [2], wherein the Lactobacillus lactic acid bacterium is selected from the group consisting of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus and Lactobacillus gasseri.
[4] The method according to [2] or [3], wherein the Streptococcus lactic acid bacterium is Streptococcus thermophilus or Streptococcus macedonias.
[5] The method according to any one of [2] to [4], wherein the Lactobacillus lactic acid bacterium used in the single culture is the same type of lactic acid bacterium as the Lactobacillus lactic acid bacterium used in the mixed starter.
[6] The method according to any one of [1] to [5], wherein the lactic acid bacteria in the single culture are removed and / or sterilized.
[7] The method according to any one of [1] to [6], wherein the removal treatment and / or sterilization treatment is selected from centrifugation, filtration, and heating.
[8] The method according to [7], wherein the heating of the single culture is performed together with the heating of the raw milk.
[9] The method according to any one of [1] to [8], wherein the single culture solution uses only the components contained in the raw milk as the culture components.
[10] Any one of [1] to [9], wherein the single culture solution comprises raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk and / or skim concentrated milk. The method according to item.
[11] The method according to any one of [1] to [10], wherein the single culture solution is added at a concentration of 2 to 15% by weight.
[12] Fermented milk produced by the method according to any one of [1] to [11].
[1] 原料乳にスターターを加えて発酵乳を製造する方法であって、混合スターターとラクトバチルス属の乳酸菌の単独培養液とを混ぜる工程を含む、前記方法。
[2] 混合スターターが、ラクトバチルス属の乳酸菌およびストレプトコッカス属の乳酸菌を含む、[1]に記載の方法。
[3] ラクトバチルス属の乳酸菌が、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルスおよびラクトバチルス・ガッセリからなる群から選択される、[1]または[2]に記載の方法。
[4] ストレプトコッカス属の乳酸菌が、ストレプトコッカス・サーモフィラスまたはストレプトコッカス・マケドニスである、[2]または[3]に記載の方法。
[5] 単独培養液に用いるラクトバチルス属の乳酸菌が、混合スターターに用いるラクトバチルス属の乳酸菌と同種の乳酸菌である、[2]~[4]のいずれか一項に記載の方法。
[6] 単独培養液中の乳酸菌が、除去処理および/または殺菌処理される、[1]~[5]のいずれか一項に記載の方法。
[7] 除去処理および/または殺菌処理が、遠心分離、濾過、加熱から選択される、[1]~[6]のいずれか一項に記載の方法。
[8] 単独培養液の加熱が、原料乳の加熱とともに行われる、[7]に記載の方法。
[9] 単独培養液が、原料乳に含まれる成分のみを培養成分とする、[1]~[8]のいずれか一項に記載の方法。
[10] 単独培養液が、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳および/または脱脂濃縮乳を培養成分とする、[1]~[9]のいずれか一項に記載の方法。
[11] 単独培養液が、2~15重量%の濃度で加えられる、[1]~[10]のいずれか一項に記載の方法。
[12] [1]~[11]のいずれか一項に記載の方法で製造される発酵乳。 That is, the present invention relates to fermented milk in which the following increase in acidity is suppressed and a method for producing the same.
[1] A method for producing fermented milk by adding a starter to raw material milk, the method comprising a step of mixing a mixed starter and a single culture of Lactobacillus lactic acid bacteria.
[2] The method according to [1], wherein the mixed starter includes a lactic acid bacterium of the genus Lactobacillus and a lactic acid bacterium of the genus Streptococcus.
[3] The method according to [1] or [2], wherein the Lactobacillus lactic acid bacterium is selected from the group consisting of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus and Lactobacillus gasseri.
[4] The method according to [2] or [3], wherein the Streptococcus lactic acid bacterium is Streptococcus thermophilus or Streptococcus macedonias.
[5] The method according to any one of [2] to [4], wherein the Lactobacillus lactic acid bacterium used in the single culture is the same type of lactic acid bacterium as the Lactobacillus lactic acid bacterium used in the mixed starter.
[6] The method according to any one of [1] to [5], wherein the lactic acid bacteria in the single culture are removed and / or sterilized.
[7] The method according to any one of [1] to [6], wherein the removal treatment and / or sterilization treatment is selected from centrifugation, filtration, and heating.
[8] The method according to [7], wherein the heating of the single culture is performed together with the heating of the raw milk.
[9] The method according to any one of [1] to [8], wherein the single culture solution uses only the components contained in the raw milk as the culture components.
[10] Any one of [1] to [9], wherein the single culture solution comprises raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk and / or skim concentrated milk. The method according to item.
[11] The method according to any one of [1] to [10], wherein the single culture solution is added at a concentration of 2 to 15% by weight.
[12] Fermented milk produced by the method according to any one of [1] to [11].
本発明の発酵乳の製造方法では、乳酸菌の単独培養液、とくに菌体を除去処理および/または殺菌処理した単独培養液を用いることにより、発酵促進用の添加剤(発酵促進剤)として機能し、発酵時間を短縮できる。従来技術と比較しても、発酵促進剤として調製方法が簡便であり、安価に提供することができる。また、脱酸素処理してから発酵することにより、さらに発酵時間を短縮することもできる。
In the method for producing fermented milk of the present invention, by using a single culture solution of lactic acid bacteria, particularly a single culture solution obtained by removing and / or sterilizing bacterial cells, it functions as an additive for promoting fermentation (fermentation promoter). , Fermentation time can be shortened. Compared with the prior art, the preparation method is simple as a fermentation promoter and can be provided at low cost. Moreover, fermentation time can also be shortened by fermenting after a deoxygenation process.
本発明の乳酸菌の単独培養液には、例えば、カゼイン分解産物などの発酵を促進させるペプチドが含まれているため、ストレプトコッカス・サーモフィラス菌などの菌数を増加させることができる。
一方、本発明の乳酸菌の単独培養液には、乳酸、とくにD-乳酸が含まれているため、発酵過程における過剰な乳酸の生産を抑制することができると考えられる。したがって、発酵時間を短縮しながらも、冷蔵保存中における酸度の上昇を抑制することができ、冷蔵保存性に優れた発酵乳を提供することができる。 Since the lactic acid bacteria single culture solution of the present invention contains, for example, peptides that promote fermentation such as casein degradation products, the number of bacteria such as Streptococcus thermophilus can be increased.
On the other hand, since the lactic acid bacteria single culture solution of the present invention contains lactic acid, particularly D-lactic acid, it is considered that excessive lactic acid production during the fermentation process can be suppressed. Therefore, while shortening the fermentation time, an increase in acidity during refrigerated storage can be suppressed, and fermented milk excellent in refrigerated storage stability can be provided.
一方、本発明の乳酸菌の単独培養液には、乳酸、とくにD-乳酸が含まれているため、発酵過程における過剰な乳酸の生産を抑制することができると考えられる。したがって、発酵時間を短縮しながらも、冷蔵保存中における酸度の上昇を抑制することができ、冷蔵保存性に優れた発酵乳を提供することができる。 Since the lactic acid bacteria single culture solution of the present invention contains, for example, peptides that promote fermentation such as casein degradation products, the number of bacteria such as Streptococcus thermophilus can be increased.
On the other hand, since the lactic acid bacteria single culture solution of the present invention contains lactic acid, particularly D-lactic acid, it is considered that excessive lactic acid production during the fermentation process can be suppressed. Therefore, while shortening the fermentation time, an increase in acidity during refrigerated storage can be suppressed, and fermented milk excellent in refrigerated storage stability can be provided.
また、本発明の発酵乳の製造方法によって得られた発酵乳では、カードの組織の滑らかさが向上し、食感が改善される。したがって、本発明の発酵乳の製造方法では、冷蔵保存中において適度に穏やかな酸味が維持され、さらに食感および風味などの品質の優れた発酵乳、とくにプレーンタイプのヨーグルトを提供することができる。
Moreover, in the fermented milk obtained by the method for producing fermented milk of the present invention, the smoothness of the card structure is improved and the texture is improved. Therefore, according to the method for producing fermented milk of the present invention, moderately mild sourness can be maintained during refrigerated storage, and fermented milk having excellent quality such as texture and flavor, especially plain type yogurt can be provided. .
また、乳酸菌の単独培養液の培養成分を選択して調製することによって、発酵乳の品質を安定化させるだけではなく、従来の発酵促進剤と異なり、「乳製品」および「乳たんぱく質」以外の配合成分を製品(発酵乳)の容器に表示させる必要性もなくなる。したがって、プレーンタイプのヨーグルトなどを商業規模で製造・販売する際において好適に使用することができる。
In addition to stabilizing the quality of fermented milk by selecting and preparing the culture components of a single culture solution of lactic acid bacteria, unlike conventional fermentation accelerators, other than “dairy products” and “milk protein” There is no need to display the ingredients on the product (fermented milk) container. Accordingly, plain type yogurt and the like can be suitably used when manufactured and sold on a commercial scale.
本発明の発酵乳の製造方法は、混合スターターと乳酸菌の単独培養液とを混ぜる工程を含む。好ましくは、ラクトバチルス属の乳酸菌の単独培養液を原料乳に配合し、混合スターターによって発酵させる。
The method for producing fermented milk of the present invention includes a step of mixing a mixed starter and a single culture solution of lactic acid bacteria. Preferably, a single culture solution of Lactobacillus lactic acid bacteria is blended in the raw milk and fermented with a mixed starter.
本発明において「発酵乳」とは、乳及び乳製品の成分規格等に関する省令(乳等省令)で定義される「発酵乳」を包含する。例えば、発酵乳は、生乳、牛乳、特別牛乳、生山羊乳、殺菌山羊乳、生めん羊乳、成分調整牛乳、低脂肪牛乳、無脂肪牛乳および加工乳などの乳またはこれと同等以上の無脂乳固形分を含む乳等を、乳酸菌または酵母で発酵させ、糊状または液状にしたものまたはこれらを凍結したものをいう。これらは多様なヨーグルトを包含するが、本発明において典型的には、プレーンタイプヨーグルトである。
In the present invention, “fermented milk” includes “fermented milk” defined by a ministerial ordinance (Ministerial Ordinance on Milk, etc.) regarding ingredient standards of milk and dairy products. For example, fermented milk can be raw milk, milk, special milk, raw goat milk, pasteurized goat milk, raw noodle milk, ingredient-adjusted milk, low-fat milk, non-fat milk, processed milk, etc. Milk or the like containing milk solids is fermented with lactic acid bacteria or yeast to form paste or liquid, or those frozen. These include a variety of yogurts, but typically in the present invention are plain type yogurts.
一般的に、プレーンヨーグルトなどのセットタイプヨーグルトでは、原料乳を容器に充填させた後に発酵させること(後発酵)により製造される。一方、ソフトヨーグルトやドリンクヨーグルトでは、原料乳を発酵させて得た発酵乳を微粒化処理や均質化処理した後に容器に充填させること(前発酵)により製造される。
Generally, in a set type yogurt such as plain yogurt, raw milk is filled in a container and then fermented (post-fermentation). On the other hand, soft yogurt or drink yogurt is manufactured by filling fermented milk obtained by fermenting raw material milk into a container (pre-fermentation) after atomization or homogenization.
本発明において「原料乳」とは、ヨーグルトなどの発酵乳を製造するための液状やゲル状の原料となるもので、ヨーグルトミックスや発酵乳ミックスなどともよばれる。本発明では、公知の原料乳を適宜用いることができる。原料乳には、殺菌前のものも、殺菌後のものも含まれる。原料乳の具体的な素材(材料)には、水、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、バターミルク、バター、クリームなどが含まれてもよい。
また、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α-ラクトアルブミン(α-La)、β-ラクトグロブリン(β-Lg)などが含まれてもよい。 In the present invention, “raw milk” is a liquid or gel-like raw material for producing fermented milk such as yogurt, and is also called yogurt mix or fermented milk mix. In the present invention, known raw material milk can be appropriately used. The raw milk includes those before sterilization and those after sterilization. Specific ingredients (materials) of raw milk include water, raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, etc. Also good.
Further, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg) and the like may be included.
また、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α-ラクトアルブミン(α-La)、β-ラクトグロブリン(β-Lg)などが含まれてもよい。 In the present invention, “raw milk” is a liquid or gel-like raw material for producing fermented milk such as yogurt, and is also called yogurt mix or fermented milk mix. In the present invention, known raw material milk can be appropriately used. The raw milk includes those before sterilization and those after sterilization. Specific ingredients (materials) of raw milk include water, raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, etc. Also good.
Further, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg) and the like may be included.
原料乳を乳酸発酵させるため、原料乳にスターターを配合(混合)して発酵する。これらのスターターとして、公知のスターターを適宜用いることができるが、乳酸菌スターターが好ましい。乳酸菌スターターとして、例えば、ラクトバチルス・ブルガリカス(L.bulgaricus)、ストレプトコッカス・サーモフィラス(S.thermophilus)、ラクトバチルス・ラクティス(L.lactis)、ラクトバチルス・ガッセリ(L.gasseri)またはビフィドバクテリウム(Bifidobacterium)などの発酵乳の製造において、一般的に用いられる乳酸菌、ビフィズス菌、酵母などの中から1または2以上を用いることができる。
In order to ferment raw milk with lactic acid, starter is mixed (mixed) with raw milk and fermented. As these starters, known starters can be used as appropriate, but lactic acid bacteria starters are preferred. Examples of lactic acid bacteria starters include, for example, Lactobacillus bulgaricus (L.bulgaricus), Streptococcus thermophilus (S.thermophilus), Lactobacillus lactis (L.lactis), Lactobacillus gasseri (L.gasseri) or Bifidobacterium In the production of fermented milk such as (Bifidobacterium), one or more of lactic acid bacteria, bifidobacteria, yeasts and the like that are generally used can be used.
本発明において「混合スターター」とは、乳酸菌、ビフィズス菌、酵母などの中から2以上を用いるスターターであり、これら乳酸菌、ビフィズス菌、酵母などを組み合わせる混合スターターであってもよいし、乳酸菌のみからなる混合スターターであってもよい。これらの混合スターターとして、乳酸菌の混合スターターが好ましく、ラクトバチルス属およびストレプトコッカス属の乳酸菌の混合スターターがより好ましく、ラクトバチルス・ブルガリカスおよびストレプトコッカス・サーモフィラスの混合スターターがさらに好ましい。乳酸菌の混合スターターとして、例えば、さらに他の乳酸菌やビフィドバクテリウムなどのビフィズス菌を添加してもよい。
In the present invention, the “mixed starter” is a starter using two or more of lactic acid bacteria, bifidobacteria, yeast and the like, and may be a mixed starter combining these lactic acid bacteria, bifidobacteria and yeast, or only from lactic acid bacteria. May be a mixed starter. As these mixed starters, mixed starters of lactic acid bacteria are preferable, mixed starters of lactic acid bacteria of the genus Lactobacillus and Streptococcus are more preferable, and mixed starters of Lactobacillus bulgaricus and Streptococcus thermophilus are more preferable. As a mixed starter of lactic acid bacteria, for example, other lactic acid bacteria or bifidobacteria such as Bifidobacterium may be added.
混合スターターに用いるラクトバチルス属の乳酸菌には、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルス、ラクトバチルス・ガッセリが好ましく、ストレプトコッカス属の乳酸菌には、ストレプトコッカス・サーモフィラス、ストレプトコッカス・マケドニスが好ましい。とくに、コーデックス規格でヨーグルトスターターとして規格化されているラクトバチルス・ブルガリカス(ブルガリア菌)およびストレプトコッカス・サーモフィラス(サーモフィラス菌)の混合スターターを用いることが好ましい。
Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri are preferable for the lactic acid bacteria of the genus Lactobacillus used for the mixed starter, and Streptococcus thermophilus and Streptococcus macedonis are preferable for the lactic acid bacteria of the genus Streptococcus. preferable. In particular, it is preferable to use a mixed starter of Lactobacillus bulgaricus (Bulgaria bacterium) and Streptococcus thermophilus (thermophilus bacterium) standardized as a yogurt starter in Codex standards.
本発明の発酵乳の製造方法では、発酵の進行が遅い乳酸菌スターターを用いることにより、冷蔵保存中における酸度上昇をさらに抑制することができる。かかる乳酸菌スターターでは、共生が成立しないような乳酸菌を用いる混合スターターであってもよい。
具体的には、43℃の発酵温度において、酸度が0.73%となるまでに、5.5時間以上の発酵時間を要する乳酸菌スターターが好ましい。かかる乳酸菌スターターに用いる乳酸菌には、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルス、ラクトバチルス・ガッセリ、ストレプトコッカス・サーモフィラス、ストレプトコッカス・マケドニスなどが含まれる。 In the method for producing fermented milk of the present invention, an increase in acidity during refrigerated storage can be further suppressed by using a lactic acid bacteria starter that is slow in fermentation. Such a lactic acid bacteria starter may be a mixed starter using lactic acid bacteria that do not establish symbiosis.
Specifically, a lactic acid bacteria starter that requires a fermentation time of 5.5 hours or more until the acidity reaches 0.73% at a fermentation temperature of 43 ° C. is preferable. Lactic acid bacteria used for such a lactic acid bacteria starter include Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri, Streptococcus thermophilus, Streptococcus macedonis and the like.
具体的には、43℃の発酵温度において、酸度が0.73%となるまでに、5.5時間以上の発酵時間を要する乳酸菌スターターが好ましい。かかる乳酸菌スターターに用いる乳酸菌には、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルス、ラクトバチルス・ガッセリ、ストレプトコッカス・サーモフィラス、ストレプトコッカス・マケドニスなどが含まれる。 In the method for producing fermented milk of the present invention, an increase in acidity during refrigerated storage can be further suppressed by using a lactic acid bacteria starter that is slow in fermentation. Such a lactic acid bacteria starter may be a mixed starter using lactic acid bacteria that do not establish symbiosis.
Specifically, a lactic acid bacteria starter that requires a fermentation time of 5.5 hours or more until the acidity reaches 0.73% at a fermentation temperature of 43 ° C. is preferable. Lactic acid bacteria used for such a lactic acid bacteria starter include Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri, Streptococcus thermophilus, Streptococcus macedonis and the like.
スターターの添加量として、1~8重量%が好ましく、2~6重量%がより好ましく、2~4重量%がさらに好ましい。このとき、例えば、スターターにおけるラクトバチルス・ブルガリカスの菌数として、106~1012cfu/mLが好ましく、107~1011cfu/mLがより好ましく、108~1010cfu/mLがさらに好ましい。また、スターターにおけるストレプトコッカス・サーモフィラスの菌数として、107~1013cfu/mLが好ましく、108~1012cfu/mLがより好ましく、109~1011cfu/mLが好ましい。そして、スターターの添加(接種)方法として、マザースターターからバルクスターターを調製してから添加する方法や、凍結菌(凍結濃縮菌)などを直接そのまま添加するダイレクトカルチャー方式などがある。
The addition amount of the starter is preferably 1 to 8% by weight, more preferably 2 to 6% by weight, and further preferably 2 to 4% by weight. At this time, for example, the number of bacteria of Lactobacillus bulgaricus in the starter is preferably 10 6 to 10 12 cfu / mL, more preferably 10 7 to 10 11 cfu / mL, and further more preferably 10 8 to 10 10 cfu / mL. preferable. The number of Streptococcus thermophilus bacteria in the starter is preferably 10 7 to 10 13 cfu / mL, more preferably 10 8 to 10 12 cfu / mL, and more preferably 10 9 to 10 11 cfu / mL. As a starter addition (inoculation) method, there are a method of adding a bulk starter after preparing it from a mother starter, a direct culture method of directly adding frozen bacteria (frozen concentrated bacteria) and the like.
本発明において「単独培養液」とは主として、複数の種類の微生物を混合せずに、微生物を独立して培養させた培養液を意味し、典型的には、特定の菌体を単独で培養した単菌培養液を意味する。
本発明の発酵乳の製造方法では、乳酸菌の単独培養液を用いることが好ましい。乳酸菌の単独培養液として、同属の乳酸菌を組み合わせて培養したものが好ましく、同属・同種の乳酸菌を組み合わせて培養したものがより好ましく、同一菌株の乳酸菌のみを培養したものがさらに好ましい。 In the present invention, the “single culture medium” mainly means a culture liquid in which microorganisms are independently cultured without mixing a plurality of types of microorganisms. Typically, a specific bacterial cell is cultured alone. Means a simple bacterial culture.
In the method for producing fermented milk of the present invention, it is preferable to use a single culture solution of lactic acid bacteria. As the single culture solution of lactic acid bacteria, those cultured by combining lactic acid bacteria of the same genus are preferable, those cultured by combining lactic acid bacteria of the same genus / same species are more preferable, and those obtained by culturing only lactic acid bacteria of the same strain are more preferable.
本発明の発酵乳の製造方法では、乳酸菌の単独培養液を用いることが好ましい。乳酸菌の単独培養液として、同属の乳酸菌を組み合わせて培養したものが好ましく、同属・同種の乳酸菌を組み合わせて培養したものがより好ましく、同一菌株の乳酸菌のみを培養したものがさらに好ましい。 In the present invention, the “single culture medium” mainly means a culture liquid in which microorganisms are independently cultured without mixing a plurality of types of microorganisms. Typically, a specific bacterial cell is cultured alone. Means a simple bacterial culture.
In the method for producing fermented milk of the present invention, it is preferable to use a single culture solution of lactic acid bacteria. As the single culture solution of lactic acid bacteria, those cultured by combining lactic acid bacteria of the same genus are preferable, those cultured by combining lactic acid bacteria of the same genus / same species are more preferable, and those obtained by culturing only lactic acid bacteria of the same strain are more preferable.
本発明の発酵乳の製造方法では、単独培養する乳酸菌として、ラクトバチルス属の乳酸菌が好ましく、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルス、ラクトバチルス・ガッセリから選択されるラクトバチルス属の乳酸菌がより好ましく、ラクトバチルス・ブルガリカスがとくに好ましい。
In the method for producing fermented milk of the present invention, a lactic acid bacterium belonging to the genus Lactobacillus is preferred as a lactic acid bacterium to be cultivated alone, and Lactobacillus selected from Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus, Lactobacillus gasseri The genus lactic acid bacteria are more preferred, and Lactobacillus bulgaricus is particularly preferred.
本発明の発酵乳の製造方法では、単独培養液に含まれる成分として、とくに限定されないが、原料乳に含まれる培養成分を用いることが好ましく、原料乳に含まれる培養成分のみを用いることがより好ましい。また、単独培養液として、液体状が好ましいが、実質的に培養液の成分が含まれていれば、固体状や半固体状(ゲル状など)であってもよい。
In the method for producing fermented milk of the present invention, the component contained in the single culture solution is not particularly limited, but it is preferable to use the culture component contained in the raw milk, and it is more preferable to use only the culture component contained in the raw milk. preferable. Moreover, although a liquid form is preferable as a single culture solution, as long as the component of a culture solution is contained substantially, a solid form or a semi-solid form (gel form etc.) may be sufficient.
乳酸菌を培養する成分として、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、バターミルク、バター、クリーム、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α-ラクトアルブミン(α-La)、β-ラクトグロブリン(β-Lg)などを原料乳に用いることが好ましく、生乳、殺菌乳、脱脂乳、脱脂粉乳、全脂粉乳、全脂濃縮乳および/または脱脂濃縮乳を原料乳に用いることがより好ましい。
脱脂粉乳を用いる場合、脱脂粉乳の5重量%以上の水溶液であればよく、好ましくは、7~15重量%、より好ましくは、8~14重量%、さらに好ましくは9~13重量%の還元脱脂乳である。 Ingredients for cultivating lactic acid bacteria include raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, whey protein concentrate (WPC), whey protein isolation Products (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg) and the like are preferably used as raw milk, and raw milk, pasteurized milk, skimmed milk, skimmed milk powder, whole milk powder, It is more preferable to use fat concentrated milk and / or defatted concentrated milk as raw material milk.
When skim milk is used, it may be an aqueous solution of 5% by weight or more of skim milk, preferably 7 to 15% by weight, more preferably 8 to 14% by weight, and further preferably 9 to 13% by weight of reduced skim milk. It is milk.
脱脂粉乳を用いる場合、脱脂粉乳の5重量%以上の水溶液であればよく、好ましくは、7~15重量%、より好ましくは、8~14重量%、さらに好ましくは9~13重量%の還元脱脂乳である。 Ingredients for cultivating lactic acid bacteria include raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk, skim concentrated milk, butter milk, butter, cream, whey protein concentrate (WPC), whey protein isolation Products (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg) and the like are preferably used as raw milk, and raw milk, pasteurized milk, skimmed milk, skimmed milk powder, whole milk powder, It is more preferable to use fat concentrated milk and / or defatted concentrated milk as raw material milk.
When skim milk is used, it may be an aqueous solution of 5% by weight or more of skim milk, preferably 7 to 15% by weight, more preferably 8 to 14% by weight, and further preferably 9 to 13% by weight of reduced skim milk. It is milk.
原料乳に配合される単独培養液は、原料乳の1重量%以上であればよく、好ましくは、2~15重量%、より好ましくは、3~10重量%、さらに好ましくは4~8重量%である。このとき、例えば、単独培養液におけるラクトバチルス・ブルガリカスの菌数として、106~1012cfu/mLが好ましく、107~1011cfu/mLがより好ましく、108~1010cfu/mLがさらに好ましい。
The single culture solution to be blended with the raw milk may be 1% by weight or more of the raw milk, preferably 2 to 15% by weight, more preferably 3 to 10% by weight, and further preferably 4 to 8% by weight. It is. At this time, for example, the number of Lactobacillus bulgaricus bacteria in a single culture solution is preferably 10 6 to 10 12 cfu / mL, more preferably 10 7 to 10 11 cfu / mL, and 10 8 to 10 10 cfu / mL. Is more preferable.
本発明の発酵乳の製造方法では、単独培養液に含まれる有効な成分として、カゼイン分解物(ペプチド、アミノ酸など)が単独培養液の0.01重量%以上であればよく、好ましくは、0.02~0.2重量%、より好ましくは、0.03~0.15重量%、さらに好ましくは0.05~0.1重量%である。そして、D-乳酸が単独培養液の0.05重量%以上であればよく、好ましくは、0.1~2重量%、より好ましくは、0.4~1.6重量%、さらに好ましくは0.8~1.2重量%である。
In the method for producing fermented milk of the present invention, the casein degradation product (peptide, amino acid, etc.) may be 0.01% by weight or more of the single culture solution as an effective component contained in the single culture solution, preferably 0. 0.02 to 0.2% by weight, more preferably 0.03 to 0.15% by weight, still more preferably 0.05 to 0.1% by weight. The D-lactic acid may be 0.05% by weight or more of the single culture medium, preferably 0.1 to 2% by weight, more preferably 0.4 to 1.6% by weight, and still more preferably 0%. .8 to 1.2% by weight.
本発明の発酵乳の製造方法では、単独培養液の菌体を除去処理および/または殺菌処理することが好ましい。このとき、単独培養液の菌体の除去および/または殺菌処理として、とくに限定されないが、遠心分離、濾過、加熱、紫外線照射、γ線照射、超音波などの方法を用いることができ、好ましくは、遠心分離、濾過、加熱である。
また、単独培養液の菌体の除去および/または殺菌処理として、原料乳の菌体の除去および/または殺菌処理とともに行うこともできる。 In the method for producing fermented milk of the present invention, it is preferable to remove and / or sterilize the cells of the single culture solution. At this time, the removal and / or sterilization treatment of the cells in the single culture solution is not particularly limited, but methods such as centrifugation, filtration, heating, ultraviolet irradiation, γ-ray irradiation, and ultrasonic waves can be used, preferably , Centrifugation, filtration and heating.
Moreover, it can also carry out with the removal and / or disinfection process of the raw material milk | bacteria as a removal and / or disinfection process of a microbial cell of a single culture solution.
また、単独培養液の菌体の除去および/または殺菌処理として、原料乳の菌体の除去および/または殺菌処理とともに行うこともできる。 In the method for producing fermented milk of the present invention, it is preferable to remove and / or sterilize the cells of the single culture solution. At this time, the removal and / or sterilization treatment of the cells in the single culture solution is not particularly limited, but methods such as centrifugation, filtration, heating, ultraviolet irradiation, γ-ray irradiation, and ultrasonic waves can be used, preferably , Centrifugation, filtration and heating.
Moreover, it can also carry out with the removal and / or disinfection process of the raw material milk | bacteria as a removal and / or disinfection process of a microbial cell of a single culture solution.
単独培養液の菌体を除去および/または殺菌処理した後に、単独培養液は死菌体を含んでいてもよい。一方、単独培養液の菌体を除去および/または殺菌処理した後に、生菌を含む場合もあるが、かかる場合には、生菌がスターターとして機能しない程度の数量であることが好ましい。
After the cells in the single culture solution are removed and / or sterilized, the single culture solution may contain dead cells. On the other hand, after removing and / or sterilizing the cells of the single culture, it may contain viable bacteria. In such a case, the quantity is preferably such that the viable bacteria do not function as a starter.
本発明の発酵乳の製造方法では、単独培養液と混合スターターとを混ぜる工程として、とくに限定されないが、発酵前に原料乳、単独培養液、および混合スターターをほぼ同時に混ぜることが好ましく、原料乳と単独培養液とを混ぜてから、混合スターターを混ぜることがより好ましい。このとき、原料乳と単独培養液とを混ぜる場合には、原料乳を殺菌処理する前または殺菌処理した後のいずれか一方または両方において、単独培養液を加えてよい。原料乳を殺菌処理する前に、単独培養液を加える場合には、原料乳と同時に単独培養液も殺菌処理されるため、生菌を含んだ単独培養液を加えても、この生菌をスターターとして機能しない程度の数量にまで低減することができる。
In the method for producing fermented milk of the present invention, the step of mixing the single culture solution and the mixed starter is not particularly limited, but it is preferable to mix the raw material milk, the single culture solution, and the mixed starter almost simultaneously before fermentation. More preferably, the mixed starter is mixed with the single culture solution. At this time, when the raw material milk and the single culture solution are mixed, the single culture solution may be added either before or after sterilizing the raw material milk, or both. When a single culture solution is added before sterilizing raw material milk, the single culture solution is also sterilized at the same time as the raw milk, so even if a single culture solution containing live bacteria is added, Can be reduced to a quantity that does not function as.
本発明の発酵乳の製造方法では、その一態様として、発酵工程において原料乳を脱酸素処理する脱酸素処理工程を含んでもよい。
脱酸素処理工程は、原料乳に存在している酸素を低減または除去するための工程である。原料乳の溶存酸素濃度(DO)の低減方法(脱酸素方法)として、例えば、窒素ガス、ヘリウム、ネオン、アルゴン、キセノンなどの不活性ガスによるガス置換処理、酸素透過膜による膜分離処理、低圧や真空による脱気処理などを用いることができる。脱酸素処理工程は、原料乳に存在している酸素(溶存酸素濃度)として、例えば5ppm以下、好ましくは3ppm以下、より好ましくは2ppm以下となる程度まで、脱酸素方法を行えばよい。 In the method for producing fermented milk of the present invention, as one aspect thereof, a deoxygenation treatment step of deoxygenating raw material milk in the fermentation step may be included.
The deoxygenation process is a process for reducing or removing oxygen present in the raw material milk. As a method for reducing the dissolved oxygen concentration (DO) of raw material milk (deoxygenation method), for example, gas replacement treatment with an inert gas such as nitrogen gas, helium, neon, argon, xenon, membrane separation treatment with an oxygen permeable membrane, low pressure Or a deaeration treatment by vacuum can be used. In the deoxygenation treatment step, the deoxygenation method may be performed so that the oxygen (dissolved oxygen concentration) present in the raw milk is, for example, 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less.
脱酸素処理工程は、原料乳に存在している酸素を低減または除去するための工程である。原料乳の溶存酸素濃度(DO)の低減方法(脱酸素方法)として、例えば、窒素ガス、ヘリウム、ネオン、アルゴン、キセノンなどの不活性ガスによるガス置換処理、酸素透過膜による膜分離処理、低圧や真空による脱気処理などを用いることができる。脱酸素処理工程は、原料乳に存在している酸素(溶存酸素濃度)として、例えば5ppm以下、好ましくは3ppm以下、より好ましくは2ppm以下となる程度まで、脱酸素方法を行えばよい。 In the method for producing fermented milk of the present invention, as one aspect thereof, a deoxygenation treatment step of deoxygenating raw material milk in the fermentation step may be included.
The deoxygenation process is a process for reducing or removing oxygen present in the raw material milk. As a method for reducing the dissolved oxygen concentration (DO) of raw material milk (deoxygenation method), for example, gas replacement treatment with an inert gas such as nitrogen gas, helium, neon, argon, xenon, membrane separation treatment with an oxygen permeable membrane, low pressure Or a deaeration treatment by vacuum can be used. In the deoxygenation treatment step, the deoxygenation method may be performed so that the oxygen (dissolved oxygen concentration) present in the raw milk is, for example, 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less.
発酵開始時の原料乳の溶存酸素濃度として、その濃度が低いほど好ましい。例えば、原料乳の温度が40℃程度の場合には、好ましくは5ppm以下であり、より好ましくは3ppm以下である。発酵開始時の原料乳の溶存酸素濃度を低減することによって、発酵時間が短縮されるため、例えば、発酵温度を低下させた場合であっても、発酵時間として、3~7時間という比較的に短時間の範囲に設定して、発酵工程を終了できる。これら脱酸素処理工程は、特許第3666871号、特許第3644505号、特許第3968108号などにも記載されている。
As the dissolved oxygen concentration of raw material milk at the start of fermentation, the lower the concentration, the better. For example, when the temperature of the raw milk is about 40 ° C., it is preferably 5 ppm or less, more preferably 3 ppm or less. Since the fermentation time is shortened by reducing the dissolved oxygen concentration in the raw milk at the start of fermentation, for example, even when the fermentation temperature is lowered, the fermentation time is relatively 3 to 7 hours. The fermentation process can be completed by setting a short time range. These deoxygenation treatment steps are also described in Japanese Patent No. 3666871, Japanese Patent No. 3644505, Japanese Patent No. 3968108, and the like.
脱酸素処理工程は、原料乳を調合する時、原料乳を均質化および/または殺菌した後、原料乳にスターターを添加した後などのいずれか一回または複数回で発酵開始時までに行えばよい。しかしながら、発酵開始時に溶存酸素濃度が低減された状態で維持されていることが重要であることからも、脱酸素処理工程は、スターターを添加する直前、直後、または同時に行うことが望ましい。
The deoxygenation process may be carried out once or several times before the start of fermentation, such as after preparing raw milk, homogenizing and / or sterilizing raw milk, and after adding a starter to raw milk. Good. However, since it is important that the dissolved oxygen concentration is maintained in a reduced state at the start of fermentation, the deoxygenation treatment step is desirably performed immediately before, immediately after, or simultaneously with the addition of the starter.
本発明の発酵乳の製造方法では、発酵温度として、好ましくは、30~50℃、より好ましくは、35~47℃、さらに好ましくは、40~45℃である。
また、発酵工程において原料乳を脱酸素処理する場合には、比較的に低温で発酵することができるため、発酵温度として、好ましくは、30~39℃、より好ましくは、32~38℃、さらに好ましくは、34~37℃である。 In the method for producing fermented milk of the present invention, the fermentation temperature is preferably 30 to 50 ° C., more preferably 35 to 47 ° C., and still more preferably 40 to 45 ° C.
In addition, when the raw milk is deoxygenated in the fermentation process, it can be fermented at a relatively low temperature. Therefore, the fermentation temperature is preferably 30 to 39 ° C., more preferably 32 to 38 ° C. Preferably, it is 34 to 37 ° C.
また、発酵工程において原料乳を脱酸素処理する場合には、比較的に低温で発酵することができるため、発酵温度として、好ましくは、30~39℃、より好ましくは、32~38℃、さらに好ましくは、34~37℃である。 In the method for producing fermented milk of the present invention, the fermentation temperature is preferably 30 to 50 ° C., more preferably 35 to 47 ° C., and still more preferably 40 to 45 ° C.
In addition, when the raw milk is deoxygenated in the fermentation process, it can be fermented at a relatively low temperature. Therefore, the fermentation temperature is preferably 30 to 39 ° C., more preferably 32 to 38 ° C. Preferably, it is 34 to 37 ° C.
本発明の発酵乳の製造方法では、発酵時間を発酵乳の乳酸酸度が0.7%程度に到達するまでの経過時間と規定することができる。このとき、乳酸酸度は、NaOHやフェノールフタレインの指示薬を用いる滴定などによって算出することができる。
In the method for producing fermented milk of the present invention, the fermentation time can be defined as the elapsed time until the lactic acid acidity of the fermented milk reaches about 0.7%. At this time, the lactic acid acidity can be calculated by titration using an indicator of NaOH or phenolphthalein.
本発明の発酵乳の製造方法では、発酵時間として、好ましくは、2~24時間、より好ましくは、2~12時間、さらに好ましくは、3~7時間、とくに好ましくは3~5時間である。
また、脱酸素処理を行う場合には、発酵時間として、好ましくは、2~20時間であり、より好ましくは、2~10時間、さらに好ましくは、3~6時間、とくに好ましくは3~4時間である。 In the method for producing fermented milk of the present invention, the fermentation time is preferably 2 to 24 hours, more preferably 2 to 12 hours, still more preferably 3 to 7 hours, and particularly preferably 3 to 5 hours.
When performing deoxygenation treatment, the fermentation time is preferably 2 to 20 hours, more preferably 2 to 10 hours, still more preferably 3 to 6 hours, particularly preferably 3 to 4 hours. It is.
また、脱酸素処理を行う場合には、発酵時間として、好ましくは、2~20時間であり、より好ましくは、2~10時間、さらに好ましくは、3~6時間、とくに好ましくは3~4時間である。 In the method for producing fermented milk of the present invention, the fermentation time is preferably 2 to 24 hours, more preferably 2 to 12 hours, still more preferably 3 to 7 hours, and particularly preferably 3 to 5 hours.
When performing deoxygenation treatment, the fermentation time is preferably 2 to 20 hours, more preferably 2 to 10 hours, still more preferably 3 to 6 hours, particularly preferably 3 to 4 hours. It is.
本発明の発酵乳の製造方法では、原料乳に単独培養液を加えることにより、まろやかな酸味を感じられ、自然な甘みや舌触りの滑らかさが向上された、適度にマイルドな酸味を維持した嗜好性の高い発酵乳が製造される。このとき、発酵乳として、まろやかな酸味を感じやすいため、セットタイプヨーグルト、ソフトヨーグルト、ドリンクヨーグルトなどのヨーグルトであることが好ましく、自然な甘みや舌触りの滑らかさが際立つことから、プレーンヨーグルトなどのセットタイプヨーグルトであることがより好ましい。
In the method for producing fermented milk of the present invention, by adding a single culture solution to raw milk, a mild acidity is felt, the natural sweetness and smoothness of the touch are improved, and a taste that maintains a moderately mild acidity A highly fermented milk is produced. At this time, as fermented milk, it is preferable to use yogurt such as set type yogurt, soft yogurt, drink yogurt because it is easy to feel a mellow acidity, and since natural sweetness and smoothness of the texture stand out, plain yogurt etc. More preferably, it is a set type yogurt.
本発明の発酵乳では、冷蔵保存中における酸度上昇が抑制される。本発明の発酵乳の酸度上昇率は、10℃に7日間で保存した場合に、5%以下であればよく、好ましくは、0~5%であり、より好ましくは、0~3%であり、さらに好ましくは、0~2%である。
In the fermented milk of the present invention, an increase in acidity during refrigerated storage is suppressed. The acidity increase rate of the fermented milk of the present invention may be 5% or less, preferably 0 to 5%, more preferably 0 to 3% when stored at 10 ° C. for 7 days. More preferably, it is 0 to 2%.
本発明の発酵乳では、脂質として、好ましくは、0~5重量%、より好ましくは、0~4重量%、さらに好ましくは0~3重量%である。そして、タンパク質として、好ましくは、7~15重量%、より好ましくは、8~14重量%、さらに好ましくは9~13重量%である。
In the fermented milk of the present invention, the lipid is preferably 0 to 5% by weight, more preferably 0 to 4% by weight, and still more preferably 0 to 3% by weight. The protein is preferably 7 to 15% by weight, more preferably 8 to 14% by weight, and still more preferably 9 to 13% by weight.
以下に、本発明を実施例に基づいて、さらに説明するが、かかる実施例は、本発明の例示であり、本発明を限定するものではない。
Hereinafter, the present invention will be further described based on examples. However, the examples are examples of the present invention and do not limit the present invention.
[実施例1] 発酵の進行が遅い乳酸菌スターター(低PAスターター)の特性
乳酸菌の混合スターターを用いて、ヨーグルト(脂肪分:3.0%、SNF:9.5%)を調製した。このヨーグルトの発酵時間、冷蔵保存中における酸度上昇、pHを表1に示す。表1の4種類の乳酸菌の混合スターターとして、ブルガリア菌(ラクトバチルス・ブルガリカス)およびサーモフィラス菌(ストレプトコッカス・サーモフィラス)からなる混合スターターを用いた。 [Example 1] Characteristics of Lactic Acid Bacteria Starter (Low PA Starter) Slowly Progressing Fermentation Yogurt (fat content: 3.0%, SNF: 9.5%) was prepared using a mixed starter of lactic acid bacteria. Table 1 shows the fermentation time, acidity increase and pH during refrigerated storage of this yogurt. As a mixed starter for the four types of lactic acid bacteria in Table 1, a mixed starter composed of Bulgarian bacteria (Lactobacillus bulgaricus) and Thermophilus bacteria (Streptococcus thermophilus) was used.
乳酸菌の混合スターターを用いて、ヨーグルト(脂肪分:3.0%、SNF:9.5%)を調製した。このヨーグルトの発酵時間、冷蔵保存中における酸度上昇、pHを表1に示す。表1の4種類の乳酸菌の混合スターターとして、ブルガリア菌(ラクトバチルス・ブルガリカス)およびサーモフィラス菌(ストレプトコッカス・サーモフィラス)からなる混合スターターを用いた。 [Example 1] Characteristics of Lactic Acid Bacteria Starter (Low PA Starter) Slowly Progressing Fermentation Yogurt (fat content: 3.0%, SNF: 9.5%) was prepared using a mixed starter of lactic acid bacteria. Table 1 shows the fermentation time, acidity increase and pH during refrigerated storage of this yogurt. As a mixed starter for the four types of lactic acid bacteria in Table 1, a mixed starter composed of Bulgarian bacteria (Lactobacillus bulgaricus) and Thermophilus bacteria (Streptococcus thermophilus) was used.
本実施例では、発酵時間が5.5時間以上と発酵の進行が遅く、冷蔵保存後における酸度上昇(Post acidification :PA)が小さい傾向の乳酸菌スターターを用いた。本実施例では、これら乳酸菌の混合スターターを、低PAスターターと呼ぶ。
In this example, a lactic acid bacterium starter having a fermentation time of 5.5 hours or more and a slow progress of fermentation and a tendency of small increase in acidity (Post-acidification: PA) after refrigerated storage was used. In this example, the mixed starter of these lactic acid bacteria is called a low PA starter.
[実験例2] 市販品のミルクペプチドの発酵促進効果
還元脱脂乳(脱脂粉乳の10% 水溶液)に、市販品のミルクペプチド(CE90GMM:日本新薬社)を0~0.3%で配合してから、加熱(90℃、10min)し、原料乳(培地)を調製した。この原料乳に各種の低PAスターターを2.0%で接種(添加)し、乳酸酸度で0.73%まで発酵(43℃)させた。この発酵時間および冷蔵保存(14日)後における酸度を表2に示す。 [Experimental example 2] Fermentation-promoting effect of commercially available milk peptide Reduced skim milk (10% aqueous solution of skim milk powder) is blended with 0 to 0.3% of commercially available milk peptide (CE90GMM: Nippon Shinyaku Co., Ltd.). Then, the mixture was heated (90 ° C., 10 min) to prepare raw milk (medium). Various low PA starters were inoculated (added) to the raw milk at 2.0%, and fermented (43 ° C.) to a lactate degree of 0.73%. The fermentation time and acidity after refrigerated storage (14 days) are shown in Table 2.
還元脱脂乳(脱脂粉乳の10% 水溶液)に、市販品のミルクペプチド(CE90GMM:日本新薬社)を0~0.3%で配合してから、加熱(90℃、10min)し、原料乳(培地)を調製した。この原料乳に各種の低PAスターターを2.0%で接種(添加)し、乳酸酸度で0.73%まで発酵(43℃)させた。この発酵時間および冷蔵保存(14日)後における酸度を表2に示す。 [Experimental example 2] Fermentation-promoting effect of commercially available milk peptide Reduced skim milk (10% aqueous solution of skim milk powder) is blended with 0 to 0.3% of commercially available milk peptide (CE90GMM: Nippon Shinyaku Co., Ltd.). Then, the mixture was heated (90 ° C., 10 min) to prepare raw milk (medium). Various low PA starters were inoculated (added) to the raw milk at 2.0%, and fermented (43 ° C.) to a lactate degree of 0.73%. The fermentation time and acidity after refrigerated storage (14 days) are shown in Table 2.
原料乳にミルクペプチドを配合することで、いずれのスターターにおいても、発酵時間は短縮された。サーモフィラス菌の単独(単菌)、低PA-1、低PA-2および低PA-3をスターターとして用いた場合、発酵を短時間の3.5時間以内で終了させるためには、ミルクペプチドを0.3%以上で配合する必要があり、低PA-4をスターターとして用いた場合、ミルクペプチドを0.1%以上で配合する必要があった。
The fermentation time was shortened in any starter by adding milk peptide to raw milk. In order to complete fermentation within 3.5 hours in a short time when using Thermophilus singly (single), low PA-1, low PA-2 and low PA-3 as starters, It was necessary to blend at 0.3% or more, and when low PA-4 was used as a starter, it was necessary to blend milk peptide at 0.1% or more.
サーモフィラス菌の単独(単菌)をスターターとして用いた場合、ミルクペプチドを0.3%で配合し、発酵を短時間の3.5時間で終了させても、冷蔵保存後における酸度は0.9%未満の低い数値であった。しかしながら、ヨーグルト用のスターターとして利用を目指す、低PA-1、低PA-2、低PA-3および低PA-4をスターターとして用いた場合、ミルクペプチドを0.3%で配合し、発酵を3.5時間で終了させると、冷蔵保存後における酸度は0.9%以上の高い数値となり、酸度上昇は抑制されなかった。
以下の実施例では、乳酸菌スターターとして、ミルクペプチドの添加量が最小であっても発酵促進効果が確認された、低PA-4を用いた。 When a thermophilus bacterium alone (single cell) is used as a starter, the acidity after refrigerated storage is 0.9 even if milk peptide is added at 0.3% and fermentation is completed in a short 3.5 hours. It was a low value of less than%. However, when low PA-1, low PA-2, low PA-3 and low PA-4 are used as starters for yogurt, milk peptides are added at 0.3% and fermentation is performed. When it was completed in 3.5 hours, the acidity after refrigerated storage was a high value of 0.9% or more, and the increase in acidity was not suppressed.
In the following examples, as a lactic acid bacteria starter, low PA-4, which was confirmed to have a fermentation promoting effect even when the amount of milk peptide added was minimal, was used.
以下の実施例では、乳酸菌スターターとして、ミルクペプチドの添加量が最小であっても発酵促進効果が確認された、低PA-4を用いた。 When a thermophilus bacterium alone (single cell) is used as a starter, the acidity after refrigerated storage is 0.9 even if milk peptide is added at 0.3% and fermentation is completed in a short 3.5 hours. It was a low value of less than%. However, when low PA-1, low PA-2, low PA-3 and low PA-4 are used as starters for yogurt, milk peptides are added at 0.3% and fermentation is performed. When it was completed in 3.5 hours, the acidity after refrigerated storage was a high value of 0.9% or more, and the increase in acidity was not suppressed.
In the following examples, as a lactic acid bacteria starter, low PA-4, which was confirmed to have a fermentation promoting effect even when the amount of milk peptide added was minimal, was used.
[実施例3] 乳酸菌の培養液の発酵促進効果
調製乳(脂肪分:3.0%、SNF:9.5%)に、各種の乳酸菌の培養液を2.0%で配合してから、加熱(90℃、10min)し、原料乳(培地)を調製した。この原料乳に低PA-4スターターを2.0%で接種(添加)し、乳酸酸度で0.7%程度まで発酵(43℃)させた。 [Example 3] Fermentation promoting effect of culture solution of lactic acid bacteria After blending various lactic acid bacteria culture solutions at 2.0% with formula milk (fat content: 3.0%, SNF: 9.5%), The raw milk (medium) was prepared by heating (90 ° C., 10 min). The raw milk was inoculated (added) with a low PA-4 starter at 2.0%, and fermented (43 ° C.) to a lactic acid content of about 0.7%.
調製乳(脂肪分:3.0%、SNF:9.5%)に、各種の乳酸菌の培養液を2.0%で配合してから、加熱(90℃、10min)し、原料乳(培地)を調製した。この原料乳に低PA-4スターターを2.0%で接種(添加)し、乳酸酸度で0.7%程度まで発酵(43℃)させた。 [Example 3] Fermentation promoting effect of culture solution of lactic acid bacteria After blending various lactic acid bacteria culture solutions at 2.0% with formula milk (fat content: 3.0%, SNF: 9.5%), The raw milk (medium) was prepared by heating (90 ° C., 10 min). The raw milk was inoculated (added) with a low PA-4 starter at 2.0%, and fermented (43 ° C.) to a lactic acid content of about 0.7%.
発酵時間と酸度の経時変化の関係を表3に示す。なお、表中の「添加なし」は、乳酸菌の培養液を配合していない対照である。
Table 3 shows the relationship between fermentation time and acidity over time. “No addition” in the table is a control in which no culture solution of lactic acid bacteria was added.
乳酸菌の培養液として、還元脱脂乳(脱脂粉乳の10%水溶液)に、ブルガリア菌A(ブルA)またはブルガリア菌B(ブルB)の単独(単菌)、サーモフィラス菌A(サーモA)またはサーモフィラス菌B(サーモB)の単独(単菌)、ブルガリア菌Aおよびサーモフィラス菌Aの混合(複合菌)、ブルガリア菌Bおよびサーモフィラス菌Bの混合(複合菌)を、それぞれ2.0%で接種(添加)し、培養(37℃、16時間)して調製した。なお、ブルガリア菌Aおよびサーモフィラス菌Aは、明治ブルガリアヨーグルトLB81プレーンから分離し、ブルガリア菌Bおよびサーモフィラス菌Bは、明治ブルガリアフルーツヨーグルトから分離した。
As a culture solution of lactic acid bacteria, reduced skim milk (10% aqueous solution of skim milk powder), Bulgaria A (Bul A) or Bulgaria B (Bul B) alone (single), Thermophilus A (Thermo A) or Thermophilus Bacteria B (Thermo B) alone (single), inoculated with a mixture of Bulgaria A and Thermophilus A (complex), and with a mixture of Bulgaria B and Thermophilus B (complex) at 2.0% ( Added) and cultured (37 ° C., 16 hours). In addition, Bulgaria bacteria A and Thermophilus bacteria A were isolate | separated from Meiji Bulgaria yogurt LB81 plane, Bulgaria bacteria B and Thermophilus bacteria B were isolate | separated from Meiji Bulgaria fruit yogurt.
ブルガリア菌の単独培養液の場合、対照に比べて、発酵促進効果が認められたが、サーモフィラス菌の単独培養液の場合、ならびにブルガリア菌およびサーモフィラス菌の混合菌培養液の場合、対照に比べて、発酵促進効果は認められなかった。
In the case of the Bulgarian monoculture, the fermentation-promoting effect was recognized compared to the control, but in the case of the thermophilus monoculture and in the case of the mixed culture of Bulgarian and thermophilus, compared to the control. No fermentation promoting effect was observed.
[実施例4] ブルガリア菌の単独培養液の発酵促進効果
実施例3によると、ブルガリア菌の単独培養液では、発酵促進効果が認められた。そこで、ブルガリア菌の単独培養液の配合濃度の影響を検討するため、ブルガリア菌の単独培養液を5%または10%で配合して、乳酸酸度で0.7%程度まで発酵(43℃)させた。
発酵時間と酸度の経時変化の関係を表4に、冷蔵保存中における酸度上昇およびpHを表5に示す。 [Example 4] Fermentation promotion effect of single culture solution of Bulgaria bacteria According to Example 3, a fermentation promotion effect was recognized in the single culture solution of Bulgaria bacteria. Therefore, in order to examine the effect of the concentration of the single culture solution of Bulgaria bacteria, the single culture solution of Bulgaria bacteria is mixed at 5% or 10% and fermented to about 0.7% lactic acid (43 ° C). It was.
Table 4 shows the relationship between the fermentation time and acidity over time, and Table 5 shows the increase in acidity and pH during refrigerated storage.
実施例3によると、ブルガリア菌の単独培養液では、発酵促進効果が認められた。そこで、ブルガリア菌の単独培養液の配合濃度の影響を検討するため、ブルガリア菌の単独培養液を5%または10%で配合して、乳酸酸度で0.7%程度まで発酵(43℃)させた。
発酵時間と酸度の経時変化の関係を表4に、冷蔵保存中における酸度上昇およびpHを表5に示す。 [Example 4] Fermentation promotion effect of single culture solution of Bulgaria bacteria According to Example 3, a fermentation promotion effect was recognized in the single culture solution of Bulgaria bacteria. Therefore, in order to examine the effect of the concentration of the single culture solution of Bulgaria bacteria, the single culture solution of Bulgaria bacteria is mixed at 5% or 10% and fermented to about 0.7% lactic acid (43 ° C). It was.
Table 4 shows the relationship between the fermentation time and acidity over time, and Table 5 shows the increase in acidity and pH during refrigerated storage.
ブルガリア菌の単独培養液を5%または10%で配合すると、発酵時間が短縮され、発酵促進効果が認められた(表4)。とくに、ブルガリア菌の単独培養液を5%で配合した場合、発酵時間が劇的に短縮され、発酵促進効果が強く認められた。
When a single culture solution of Bulgaria was mixed at 5% or 10%, the fermentation time was shortened and a fermentation promoting effect was observed (Table 4). In particular, when a single culture solution of Bulgaria was mixed at 5%, the fermentation time was dramatically shortened, and a fermentation promoting effect was strongly observed.
ブルガリア菌の単独培養液を5%または10%で配合した場合、冷蔵保存中における酸度は0.9%未満の低い数値であった。
When a single culture solution of Bulgaria was mixed at 5% or 10%, the acidity during refrigerated storage was a low value of less than 0.9%.
以上より、ブルガリア菌の単独培養液を5%または10%で配合することにより、発酵の進行を早めながら、冷蔵保存後における酸度上昇を抑制できることが分かった。
また、脱酸素処理してから発酵することで、さらに発酵時間は短縮され、発酵の進行が早まり(3.5時間)、保存性が良好なプレーンヨーグルトの調製に成功した。 From the above, it was found that by adding 5% or 10% of a single culture solution of Bulgaria bacteria, it is possible to suppress an increase in acidity after refrigerated storage while accelerating the progress of fermentation.
Moreover, by fermenting after deoxygenation, the fermentation time was further shortened, the progress of the fermentation was accelerated (3.5 hours), and a plain yogurt with good storage stability was successfully prepared.
また、脱酸素処理してから発酵することで、さらに発酵時間は短縮され、発酵の進行が早まり(3.5時間)、保存性が良好なプレーンヨーグルトの調製に成功した。 From the above, it was found that by adding 5% or 10% of a single culture solution of Bulgaria bacteria, it is possible to suppress an increase in acidity after refrigerated storage while accelerating the progress of fermentation.
Moreover, by fermenting after deoxygenation, the fermentation time was further shortened, the progress of the fermentation was accelerated (3.5 hours), and a plain yogurt with good storage stability was successfully prepared.
[実施例5] 各種のヨーグルトの発酵促進効果および酸度上昇の抑制効果
次の5つのヨーグルトの発酵促進効果および酸度上昇の抑制効果を比べ、それぞれのヨーグルトの特性について検討した。
(1)低PA-4スターターを使用したヨーグルト(低PA-4ヨーグルト)
(2)ミルクペプチドを0.05%で配合した低PA-4ヨーグルト
(3)ミルクペプチドを0.1%で配合した低PA-4ヨーグルト
(4)ブルガリア菌の単独培養液を5%で配合した低PA-4ヨーグルト
(5)ブルガリア菌の単独培養液を10%で配合した低PA-4ヨーグルト [Example 5] Fermentation promoting effect of various yogurts and inhibitory effect on increase in acidity The following five yogurts were compared in terms of fermentation promotion effect and inhibitory effect on increase in acidity, and the characteristics of each yogurt were examined.
(1) Yogurt using low PA-4 starter (low PA-4 yogurt)
(2) Low PA-4 yogurt formulated with milk peptide at 0.05% (3) Low PA-4 yogurt formulated with milk peptide at 0.1% (4) Single culture solution of Bulgarian bacteria formulated at 5% Low PA-4 yogurt (5) Low PA-4 yogurt formulated with 10% Bulgarian monoculture
次の5つのヨーグルトの発酵促進効果および酸度上昇の抑制効果を比べ、それぞれのヨーグルトの特性について検討した。
(1)低PA-4スターターを使用したヨーグルト(低PA-4ヨーグルト)
(2)ミルクペプチドを0.05%で配合した低PA-4ヨーグルト
(3)ミルクペプチドを0.1%で配合した低PA-4ヨーグルト
(4)ブルガリア菌の単独培養液を5%で配合した低PA-4ヨーグルト
(5)ブルガリア菌の単独培養液を10%で配合した低PA-4ヨーグルト [Example 5] Fermentation promoting effect of various yogurts and inhibitory effect on increase in acidity The following five yogurts were compared in terms of fermentation promotion effect and inhibitory effect on increase in acidity, and the characteristics of each yogurt were examined.
(1) Yogurt using low PA-4 starter (low PA-4 yogurt)
(2) Low PA-4 yogurt formulated with milk peptide at 0.05% (3) Low PA-4 yogurt formulated with milk peptide at 0.1% (4) Single culture solution of Bulgarian bacteria formulated at 5% Low PA-4 yogurt (5) Low PA-4 yogurt formulated with 10% Bulgarian monoculture
図1~5は、上記の(1)~(5)のヨーグルトの調製における発酵時(43℃)および冷蔵保存時(10℃)について、ブルガリア菌の産生するD-乳酸量、サーモフィラス菌の産生するL-乳酸量、およびこれらを合計した全(Total)乳酸量などの経時変化を示す。
FIGS. 1 to 5 show the amount of D-lactic acid produced by Bulgarian bacteria and the production of Thermophilus bacteria during fermentation (43 ° C.) and refrigerated storage (10 ° C.) in the preparation of the yogurt of (1) to (5) above. Changes over time such as the amount of L-lactic acid to be added and the total amount of lactic acid obtained by adding them together are shown.
このとき、全乳酸量が65mM(乳酸酸度が0.73%程度)に到達した時点を発酵時間とし、その時点で発酵を終了させて、ヨーグルトを調製するとともに、発酵促進効果について検討した。その後に、これらヨーグルトを冷蔵保存(10℃)し、酸度上昇の抑制効果について検討した。すなわち、ヨーグルトの調製における発酵性(43℃)と冷蔵保存性(10℃)に分割して、それぞれの特性を考察した。
なお、D-乳酸量およびL-乳酸量は、キラルカラムを使用したHPLCにより測定した。 At this time, the time when the total amount of lactic acid reached 65 mM (the lactic acid acidity was about 0.73%) was set as the fermentation time. At that point, the fermentation was terminated to prepare yogurt, and the effect of promoting fermentation was examined. Thereafter, these yogurts were stored refrigerated (10 ° C.), and the effect of suppressing the increase in acidity was examined. That is, it divided | segmented into fermentability (43 degreeC) and refrigerated storage property (10 degreeC) in preparation of yogurt, and examined each characteristic.
The amount of D-lactic acid and the amount of L-lactic acid were measured by HPLC using a chiral column.
なお、D-乳酸量およびL-乳酸量は、キラルカラムを使用したHPLCにより測定した。 At this time, the time when the total amount of lactic acid reached 65 mM (the lactic acid acidity was about 0.73%) was set as the fermentation time. At that point, the fermentation was terminated to prepare yogurt, and the effect of promoting fermentation was examined. Thereafter, these yogurts were stored refrigerated (10 ° C.), and the effect of suppressing the increase in acidity was examined. That is, it divided | segmented into fermentability (43 degreeC) and refrigerated storage property (10 degreeC) in preparation of yogurt, and examined each characteristic.
The amount of D-lactic acid and the amount of L-lactic acid were measured by HPLC using a chiral column.
<ミルクペプチドの発酵促進効果(発酵時間の短縮効果)>
サーモフィラス菌の増殖促進因子であるミルクペプチドを配合した(2)(図2)および(3)(図3)では、発酵の開始から2.5時間後に、サーモフィラス菌が産生するL-乳酸量が約50mMに到達していた。これに対して、対照の(1)(図1)では、L-乳酸量が約30mMに到達していた。つまり、ミルクペプチドを配合した(2)および(3)では、対照の(1)に比べて、L-乳酸量が著しく増加していた。 <Fermentation promoting effect of milk peptide (fermenting time shortening effect)>
In (2) (FIG. 2) and (3) (FIG. 3) containing a milk peptide that is a growth promoting factor of thermophilus, the amount of L-lactic acid produced by thermophilus is 2.5 hours after the start of fermentation. It reached about 50 mM. In contrast, in the control (1) (FIG. 1), the amount of L-lactic acid reached about 30 mM. That is, in the cases (2) and (3) containing the milk peptide, the amount of L-lactic acid was remarkably increased as compared with the control (1).
サーモフィラス菌の増殖促進因子であるミルクペプチドを配合した(2)(図2)および(3)(図3)では、発酵の開始から2.5時間後に、サーモフィラス菌が産生するL-乳酸量が約50mMに到達していた。これに対して、対照の(1)(図1)では、L-乳酸量が約30mMに到達していた。つまり、ミルクペプチドを配合した(2)および(3)では、対照の(1)に比べて、L-乳酸量が著しく増加していた。 <Fermentation promoting effect of milk peptide (fermenting time shortening effect)>
In (2) (FIG. 2) and (3) (FIG. 3) containing a milk peptide that is a growth promoting factor of thermophilus, the amount of L-lactic acid produced by thermophilus is 2.5 hours after the start of fermentation. It reached about 50 mM. In contrast, in the control (1) (FIG. 1), the amount of L-lactic acid reached about 30 mM. That is, in the cases (2) and (3) containing the milk peptide, the amount of L-lactic acid was remarkably increased as compared with the control (1).
一方、ミルクペプチドを配合した(2)および(3)では、対照の(1)と比べて、サーモフィラス菌の菌数は発酵時に増加していなかった。そのため、ミルクペプチドはサーモフィラス菌の個々の代謝活力(L-乳酸の産生能力)を増強させることが示唆された。すなわち、ミルクペプチドはサーモフィラス菌の細胞分裂の速度の増加よりも、その代謝活力の増強に大きく影響することが推察された。
On the other hand, in (2) and (3) containing the milk peptide, the number of thermophilus bacteria did not increase during fermentation as compared with the control (1). Therefore, it was suggested that milk peptides enhance the individual metabolic vitality (L-lactic acid production ability) of Thermophilus bacteria. That is, it was speculated that the milk peptide has a greater effect on the enhancement of its metabolic vitality than the increase in the rate of cell division of Thermophilus bacteria.
ところで、ミルクペプチドを配合した(2)および(3)では、対照の(1)と比べて、サーモフィラス菌の菌数は発酵時に増加していなかったが、ブルガリア菌の菌数は発酵時に10倍程度で増加していた。つまり、ミルクペプチドはサーモフィラス菌の代謝活力を増強させ、ブルガリア菌の増殖促進因子である蟻酸の産生量を増加させたことで、ブルガリア菌の菌数が発酵時に増加していたと考えられた。
By the way, in (2) and (3) which mix | blended the milk peptide, the number of the thermophilus bacteria did not increase at the time of fermentation compared with the control (1), but the number of the bacteria of Bulgaria was 10 times at the time of fermentation. It increased in degree. In other words, it was considered that the milk peptide increased the number of Bulgarian bacteria during fermentation by enhancing the metabolic activity of Thermophilus bacteria and increasing the production of formic acid, a growth promoting factor of Bulgarian bacteria.
<ブルガリア菌の単独培養液の発酵促進効果(発酵時間の短縮効果)>
ブルガリア菌の単独培養液を配合した(4)(図4)では、発酵の開始から3.5時間後に、サーモフィラス菌が産生するL-乳酸量が約60mMに到達し、(5)(図5)では、L-乳酸量が約55mMに到達していた。これに対して、対照の(1)(図1)では、L-乳酸量が約45mMに到達していた。
つまり、ブルガリア菌の単独培養液を配合した(4)では、対照の(1)に比べて、L-乳酸量が増加し、(5)では、対照の(1)に比べて、L-乳酸量が微増していた。 <Fermentation-accelerating effect of single culture solution of Bulgarian bacteria (effect of shortening fermentation time)>
In (4) (FIG. 4) containing a single culture of Bulgaria, the amount of L-lactic acid produced by Thermophilus reached about 60 mM 3.5 hours after the start of fermentation, and (5) (FIG. 5). ), The amount of L-lactic acid reached about 55 mM. In contrast, in the control (1) (FIG. 1), the amount of L-lactic acid reached about 45 mM.
That is, the amount of L-lactic acid increased in (4) formulated with a Bulgarian monoculture, compared to control (1), and in (5), L-lactic acid increased compared to control (1). The amount increased slightly.
ブルガリア菌の単独培養液を配合した(4)(図4)では、発酵の開始から3.5時間後に、サーモフィラス菌が産生するL-乳酸量が約60mMに到達し、(5)(図5)では、L-乳酸量が約55mMに到達していた。これに対して、対照の(1)(図1)では、L-乳酸量が約45mMに到達していた。
つまり、ブルガリア菌の単独培養液を配合した(4)では、対照の(1)に比べて、L-乳酸量が増加し、(5)では、対照の(1)に比べて、L-乳酸量が微増していた。 <Fermentation-accelerating effect of single culture solution of Bulgarian bacteria (effect of shortening fermentation time)>
In (4) (FIG. 4) containing a single culture of Bulgaria, the amount of L-lactic acid produced by Thermophilus reached about 60 mM 3.5 hours after the start of fermentation, and (5) (FIG. 5). ), The amount of L-lactic acid reached about 55 mM. In contrast, in the control (1) (FIG. 1), the amount of L-lactic acid reached about 45 mM.
That is, the amount of L-lactic acid increased in (4) formulated with a Bulgarian monoculture, compared to control (1), and in (5), L-lactic acid increased compared to control (1). The amount increased slightly.
ブルガリア菌の単独培養液を配合した(4)では、発酵時間が十分に短縮された。これは、その培養液に由来するカゼイン分解物とペプチドの作用により、L-乳酸量が増加するとともに、その培養液に由来するD-乳酸量が増加した結果として、全乳酸量が増加し、発酵時間が十分に短縮されたと考えられた。
Fermentation time was shortened sufficiently in (4) in which a single culture solution of Bulgaria was mixed. This is because the amount of L-lactic acid is increased by the action of the casein degradation product and peptide derived from the culture solution, and as a result of the increase in the amount of D-lactic acid derived from the culture solution, the total amount of lactic acid is increased. It was considered that the fermentation time was shortened sufficiently.
ブルガリア菌の単独培養液を配合した(5)では、発酵時間が僅かに短縮された。これは、サーモフィラスで菌は、一般的に酸耐性に劣るため、その培養液に由来するD-乳酸量が約10mMまで増加した結果として、サーモフィラス菌の代謝活力が低減され、発酵時間が十分に短縮されなかったためと考えられた。実際にも、ブルガリア菌の単独培養液を配合した(5)では、対照の(1)と比べて、サーモフィラス菌が産生するL-乳酸量が発酵時に低値で推移していた。
つまり、ブルガリア菌の単独培養液を配合した(5)では、その培養液に由来するD-乳酸量が増加した結果として、全乳酸量が増加し、最終的には、発酵時間が僅かに短縮されたと考えられた。 Fermentation time was slightly shortened in (5) in which a single culture solution of Bulgaria was mixed. This is because thermophilus bacteria are generally inferior in acid resistance, and as a result of the increase in the amount of D-lactic acid derived from the culture solution to about 10 mM, the metabolic activity of thermophilus bacteria is reduced, and the fermentation time is sufficient. It was thought that it was not shortened. Actually, the amount of L-lactic acid produced by Thermophilus was lower at the time of fermentation in (5) in which a single culture solution of Bulgaria was mixed, compared to the control (1).
In other words, in the case of blending a single culture solution of Bulgaria bacteria (5), the total amount of lactic acid increased as a result of the increase in the amount of D-lactic acid derived from the culture solution, and eventually the fermentation time was slightly reduced. Was thought to have been.
つまり、ブルガリア菌の単独培養液を配合した(5)では、その培養液に由来するD-乳酸量が増加した結果として、全乳酸量が増加し、最終的には、発酵時間が僅かに短縮されたと考えられた。 Fermentation time was slightly shortened in (5) in which a single culture solution of Bulgaria was mixed. This is because thermophilus bacteria are generally inferior in acid resistance, and as a result of the increase in the amount of D-lactic acid derived from the culture solution to about 10 mM, the metabolic activity of thermophilus bacteria is reduced, and the fermentation time is sufficient. It was thought that it was not shortened. Actually, the amount of L-lactic acid produced by Thermophilus was lower at the time of fermentation in (5) in which a single culture solution of Bulgaria was mixed, compared to the control (1).
In other words, in the case of blending a single culture solution of Bulgaria bacteria (5), the total amount of lactic acid increased as a result of the increase in the amount of D-lactic acid derived from the culture solution, and eventually the fermentation time was slightly reduced. Was thought to have been.
<ミルクペプチドの酸度上昇の抑制効果(冷蔵保存時の酸度低減効果)>
サーモフィラス菌の増殖促進因子であるミルクペプチドを配合した(2)(図2)では、D-乳酸の増加量(=「D-乳酸量(D14)」-「D-乳酸量(D1)」)が約5mMとなり、(3)(図3)では、D-乳酸の増加量が約8mMとなった。これに対して、対照の(1)(図1)では、D-乳酸の増加量が約1mMとなった。 <Inhibition effect on increase in acidity of milk peptide (acidity reduction effect during refrigerated storage)>
In (2) (FIG. 2) in which a milk peptide that is a growth promoting factor of Thermophilus was blended, the increase amount of D-lactic acid (= “D-lactic acid amount (D14)” − “D-lactic acid amount (D1)”) Was about 5 mM, and in (3) (FIG. 3), the increased amount of D-lactic acid was about 8 mM. In contrast, in the control (1) (FIG. 1), the increase in D-lactic acid was about 1 mM.
サーモフィラス菌の増殖促進因子であるミルクペプチドを配合した(2)(図2)では、D-乳酸の増加量(=「D-乳酸量(D14)」-「D-乳酸量(D1)」)が約5mMとなり、(3)(図3)では、D-乳酸の増加量が約8mMとなった。これに対して、対照の(1)(図1)では、D-乳酸の増加量が約1mMとなった。 <Inhibition effect on increase in acidity of milk peptide (acidity reduction effect during refrigerated storage)>
In (2) (FIG. 2) in which a milk peptide that is a growth promoting factor of Thermophilus was blended, the increase amount of D-lactic acid (= “D-lactic acid amount (D14)” − “D-lactic acid amount (D1)”) Was about 5 mM, and in (3) (FIG. 3), the increased amount of D-lactic acid was about 8 mM. In contrast, in the control (1) (FIG. 1), the increase in D-lactic acid was about 1 mM.
一方、ミルクペプチドを配合した(2)では、L-乳酸の増加量(=「L-乳酸量(D14)」-「L-乳酸量(D1)」)が約18mMとなり、(3)では、L-乳酸の増加量が約23mMとなった。これに対して、対照の(1)では、L-乳酸の増加量が約8mMとなった。
つまり、ミルクペプチドを配合した(2)および(3)では、対照の(1)に比べて、冷蔵保存中に、ブルガリア菌が産生するD-乳酸量も、サーモフィラス菌が産生するL-乳酸量も増加し、これに伴って、冷蔵保存中の酸度上昇が抑制されず、ヨーグルトの酸味は強くなったと考えられた。 On the other hand, in (2) containing milk peptide, the increased amount of L-lactic acid (= “L-lactic acid amount (D14)” − “L-lactic acid amount (D1)”) was about 18 mM, and in (3), The increased amount of L-lactic acid was about 23 mM. In contrast, in the control (1), the increase in L-lactic acid was about 8 mM.
That is, in (2) and (3) containing milk peptide, compared to control (1), the amount of D-lactic acid produced by Bulgarian bacteria during storage under refrigeration was also the amount of L-lactic acid produced by Thermophilus bacteria. As a result, the increase in acidity during refrigerated storage was not suppressed, and the sour taste of yogurt was thought to have increased.
つまり、ミルクペプチドを配合した(2)および(3)では、対照の(1)に比べて、冷蔵保存中に、ブルガリア菌が産生するD-乳酸量も、サーモフィラス菌が産生するL-乳酸量も増加し、これに伴って、冷蔵保存中の酸度上昇が抑制されず、ヨーグルトの酸味は強くなったと考えられた。 On the other hand, in (2) containing milk peptide, the increased amount of L-lactic acid (= “L-lactic acid amount (D14)” − “L-lactic acid amount (D1)”) was about 18 mM, and in (3), The increased amount of L-lactic acid was about 23 mM. In contrast, in the control (1), the increase in L-lactic acid was about 8 mM.
That is, in (2) and (3) containing milk peptide, compared to control (1), the amount of D-lactic acid produced by Bulgarian bacteria during storage under refrigeration was also the amount of L-lactic acid produced by Thermophilus bacteria. As a result, the increase in acidity during refrigerated storage was not suppressed, and the sour taste of yogurt was thought to have increased.
このとき、ミルクペプチドを配合した(2)および(3)では、対照の(1)と比べて、サーモフィラス菌の代謝活力が増強され、L-乳酸量が増加したと考えられた。そして、ミルクペプチドがサーモフィラス菌の代謝活力を増強させ、ブルガリア菌の増殖促進因子である蟻酸の産生量を増加させたことで、ブルガリア菌の菌数が10倍程度で増加した結果として、D-乳酸量が増加したと考えられた。
At this time, in (2) and (3) containing the milk peptide, it was considered that the metabolic vitality of Thermophilus was enhanced and the amount of L-lactic acid was increased as compared with the control (1). As a result of the increase in the number of Bulgarian bacteria by about 10 times, the milk peptide enhanced the metabolic vitality of Thermophilus bacteria and increased the production of formic acid, a growth promoting factor of Bulgarian bacteria. It was thought that the amount of lactic acid increased.
<ブルガリア菌の単独培養液の酸度上昇の抑制効果(冷蔵保存時の酸度低減効果)>
ブルガリア菌の単独培養液を配合した(4)(図4)および(5)(図5)では、対照の(1)(図1)に比べて、冷蔵保存中に、D-乳酸量もL-乳酸量もとくに増加せず、これに伴って、冷蔵保存中の酸度上昇が抑制され、ヨーグルトの酸味はとくに強くならなかった。 <Inhibition effect of acidity increase in single culture solution of Bulgaria (acidity reduction effect during refrigerated storage)>
In (4) (FIG. 4) and (5) (FIG. 5) containing a bulgaria single culture solution, the amount of D-lactic acid was also reduced during refrigerated storage compared to the control (1) (FIG. 1). -The amount of lactic acid was not particularly increased, and as a result, the increase in acidity during refrigerated storage was suppressed, and the sourness of yogurt was not particularly strong.
ブルガリア菌の単独培養液を配合した(4)(図4)および(5)(図5)では、対照の(1)(図1)に比べて、冷蔵保存中に、D-乳酸量もL-乳酸量もとくに増加せず、これに伴って、冷蔵保存中の酸度上昇が抑制され、ヨーグルトの酸味はとくに強くならなかった。 <Inhibition effect of acidity increase in single culture solution of Bulgaria (acidity reduction effect during refrigerated storage)>
In (4) (FIG. 4) and (5) (FIG. 5) containing a bulgaria single culture solution, the amount of D-lactic acid was also reduced during refrigerated storage compared to the control (1) (FIG. 1). -The amount of lactic acid was not particularly increased, and as a result, the increase in acidity during refrigerated storage was suppressed, and the sourness of yogurt was not particularly strong.
ブルガリア菌の単独培養液を配合した(4)では、対照の(1)と比べて、サーモフィラス菌の菌数が約2倍に増加しており、サーモフィラス菌が産生するL-乳酸量を適度に増加させたため、発酵時間が短縮されながら、酸度が過剰に増加しなかったと考えられた。
ブルガリア菌の単独培養液を配合した(5)では、対照の(1)と比べて、ブルガリア菌の単独培養液に由来するD-乳酸量が増加して、発酵時に酸度が上昇するとともに、酸耐性に劣るサーモフィラス菌の代謝活力が低減されて、L-乳酸の産生量が低減したため、発酵時間が短縮されながら、酸度が過剰に増加しなかったと考えられた。 In the case of (4) containing a bulgaria single culture, the number of thermophilus bacteria was increased approximately twice compared to the control (1), and the amount of L-lactic acid produced by thermophilus was moderately increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened due to the increase.
Compared with the control (1), the amount of D-lactic acid derived from the Bulgarian monoculture broth increased in (5) containing the Bulgarian monoculture, and the acidity increased during fermentation and the acidity increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened because the metabolic vitality of thermophilus bacteria with poor resistance was reduced and the production amount of L-lactic acid was reduced.
ブルガリア菌の単独培養液を配合した(5)では、対照の(1)と比べて、ブルガリア菌の単独培養液に由来するD-乳酸量が増加して、発酵時に酸度が上昇するとともに、酸耐性に劣るサーモフィラス菌の代謝活力が低減されて、L-乳酸の産生量が低減したため、発酵時間が短縮されながら、酸度が過剰に増加しなかったと考えられた。 In the case of (4) containing a bulgaria single culture, the number of thermophilus bacteria was increased approximately twice compared to the control (1), and the amount of L-lactic acid produced by thermophilus was moderately increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened due to the increase.
Compared with the control (1), the amount of D-lactic acid derived from the Bulgarian monoculture broth increased in (5) containing the Bulgarian monoculture, and the acidity increased during fermentation and the acidity increased. It was considered that the acidity did not increase excessively while the fermentation time was shortened because the metabolic vitality of thermophilus bacteria with poor resistance was reduced and the production amount of L-lactic acid was reduced.
まとめ
ミルクペプチドは、サーモフィラス菌の代謝活力を増強し、発酵を促進するが、発酵時だけでなく冷蔵保存中にも、サーモフィラス菌のL-乳酸の産生能力を増強し、その共生作用により、ブルガリア菌の菌数を増加させたと考えられた。その結果として、ミルクペプチドを配合したヨーグルトでは、発酵が早いが、冷蔵保存中に酸度が上昇する傾向となり、従来の発酵促進剤では発酵促進と保存中の酸度上昇の抑制が両立しないことが示された。 Summary Milk peptides enhance the metabolic vitality of thermophilus and promote fermentation, but enhance the ability of thermophilus to produce L-lactic acid not only during fermentation but also during refrigerated storage. It was thought that the number of bacteria increased. As a result, yogurt blended with milk peptide has a fast fermentation but tends to increase the acidity during refrigerated storage, and conventional fermentation promoters show that fermentation promotion and suppression of acidity increase during storage are not compatible. It was done.
ミルクペプチドは、サーモフィラス菌の代謝活力を増強し、発酵を促進するが、発酵時だけでなく冷蔵保存中にも、サーモフィラス菌のL-乳酸の産生能力を増強し、その共生作用により、ブルガリア菌の菌数を増加させたと考えられた。その結果として、ミルクペプチドを配合したヨーグルトでは、発酵が早いが、冷蔵保存中に酸度が上昇する傾向となり、従来の発酵促進剤では発酵促進と保存中の酸度上昇の抑制が両立しないことが示された。 Summary Milk peptides enhance the metabolic vitality of thermophilus and promote fermentation, but enhance the ability of thermophilus to produce L-lactic acid not only during fermentation but also during refrigerated storage. It was thought that the number of bacteria increased. As a result, yogurt blended with milk peptide has a fast fermentation but tends to increase the acidity during refrigerated storage, and conventional fermentation promoters show that fermentation promotion and suppression of acidity increase during storage are not compatible. It was done.
一方、ブルガリア菌の単独培養液は、サーモフィラス菌の菌数を適度に増加させながら、D-乳酸量を補強することで、発酵時に全乳酸量を増加させ、発酵時間を短縮したと考えられた。その結果として、ブルガリア菌の単独培養液を配合したヨーグルトでは、発酵が促進されながらも、冷蔵保存中には酸度上昇が抑制され、適度な酸度を維持できる傾向にあることが示された。さらに、ブルガリア菌の培養液を配合したプレーンヨーグルトでは、自然な甘みや舌触りの滑らかさが向上していた。
On the other hand, it was thought that the single culture solution of Bulgaria bacteria increased the total amount of lactic acid during fermentation and shortened the fermentation time by reinforcing the amount of D-lactic acid while increasing the number of thermophilus bacteria moderately. . As a result, it was shown that yogurt blended with a single culture solution of Bulgaria bacteria has a tendency to suppress an increase in acidity during refrigerated storage and maintain an appropriate acidity while promoting fermentation. In addition, plain yogurt blended with a culture solution of Bulgaria has improved the natural sweetness and smoothness of the touch.
本発明の発酵乳の製造方法は、発酵を促進するだけでなく、得られた発酵乳の保存中の酸度上昇の抑制し、風味や物性などの品質を改良する。したがって、プレーンヨーグルトなどを商業規模での製造に有用である。
The method for producing fermented milk of the present invention not only promotes fermentation, but also suppresses an increase in acidity during storage of the obtained fermented milk, and improves quality such as flavor and physical properties. Therefore, plain yogurt and the like are useful for manufacturing on a commercial scale.
Claims (12)
- 原料乳にスターターを加えて発酵乳を製造する方法であって、混合スターターとラクトバチルス属の乳酸菌の単独培養液とを混ぜる工程を含む、前記方法。 A method for producing fermented milk by adding a starter to raw milk, the method comprising a step of mixing a mixed starter and a single culture of Lactobacillus lactic acid bacteria.
- 混合スターターが、ラクトバチルス属の乳酸菌およびストレプトコッカス属の乳酸菌を含む、請求項1に記載の方法。 The method according to claim 1, wherein the mixed starter contains a lactic acid bacterium belonging to the genus Lactobacillus and a lactic acid bacterium belonging to the genus Streptococcus.
- ラクトバチルス属の乳酸菌が、ラクトバチルス・ブルガリカス、ラクトバチルス・ラクティス、ラクトバチルス・アシドフィルスおよびラクトバチルス・ガッセリからなる群から選択される、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the lactic acid bacterium of the genus Lactobacillus is selected from the group consisting of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus acidophilus and Lactobacillus gasseri.
- ストレプトコッカス属の乳酸菌が、ストレプトコッカス・サーモフィラスまたはストレプトコッカス・マケドニスである、請求項2または3に記載の方法。 The method according to claim 2 or 3, wherein the Streptococcus lactic acid bacterium is Streptococcus thermophilus or Streptococcus macedonias.
- 単独培養液に用いるラクトバチルス属の乳酸菌が、混合スターターに用いるラクトバチルス属の乳酸菌と同種の乳酸菌である、請求項2~4のいずれか一項に記載の方法。 The method according to any one of claims 2 to 4, wherein the Lactobacillus lactic acid bacterium used in the single culture is the same type of lactic acid bacterium as the Lactobacillus lactic acid bacterium used in the mixed starter.
- 単独培養液中の乳酸菌が、除去処理および/または殺菌処理される、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the lactic acid bacteria in the single culture solution are removed and / or sterilized.
- 除去処理および/または殺菌処理が、遠心分離、濾過、加熱から選択される、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the removal treatment and / or sterilization treatment is selected from centrifugation, filtration, and heating.
- 単独培養液の加熱が、原料乳の加熱とともに行われる、請求項7に記載の方法。 The method according to claim 7, wherein the heating of the single culture is performed together with the heating of the raw milk.
- 単独培養液が、原料乳に含まれる成分のみを培養成分とする、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the single culture broth uses only components contained in raw milk as culture components.
- 単独培養液が、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳および/または脱脂濃縮乳を培養成分とする、請求項1~9のいずれか一項に記載の方法。 The method according to any one of claims 1 to 9, wherein the single culture solution comprises raw milk, pasteurized milk, skim milk, whole milk powder, skim milk powder, whole fat concentrated milk and / or skim concentrated milk as a culture component. .
- 単独培養液が、2~15重量%の濃度で加えられる、請求項1~10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the single culture solution is added at a concentration of 2 to 15% by weight.
- 請求項1~11のいずれか一項に記載の方法で製造される発酵乳。 Fermented milk produced by the method according to any one of claims 1 to 11.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201405534RA SG11201405534RA (en) | 2012-03-07 | 2013-03-06 | Fermented milk with a suppressed increase in acidity, and a method for producing the same |
CN201380012383.8A CN104159450A (en) | 2012-03-07 | 2013-03-06 | Yoghurt with limited rise in acidity and method for producing same |
JP2014503876A JP6317251B2 (en) | 2012-03-07 | 2013-03-06 | Fermented milk with suppressed increase in acidity and method for producing the same |
HK14112742.0A HK1199178A1 (en) | 2012-03-07 | 2014-12-19 | Yoghurt with limited rise in acidity and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050299 | 2012-03-07 | ||
JP2012-050299 | 2012-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133313A1 true WO2013133313A1 (en) | 2013-09-12 |
Family
ID=49116786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056108 WO2013133313A1 (en) | 2012-03-07 | 2013-03-06 | Yoghurt with limited rise in acidity and method for producing same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6317251B2 (en) |
CN (1) | CN104159450A (en) |
HK (1) | HK1199178A1 (en) |
SG (1) | SG11201405534RA (en) |
WO (1) | WO2013133313A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103749673A (en) * | 2013-12-27 | 2014-04-30 | 李跃东 | Yak yoghourt and preparation method thereof |
WO2016133009A1 (en) * | 2015-02-17 | 2016-08-25 | 株式会社ヤクルト本社 | Method for producing fermented milk food |
CN106061275A (en) * | 2013-11-08 | 2016-10-26 | 株式会社明治 | Fermented milk showing suppressed increase in acidity and method for producing same |
JP2019058132A (en) * | 2017-09-27 | 2019-04-18 | 株式会社明治 | Fermented milk and manufacturing method of fermented milk |
JP2019176780A (en) * | 2018-03-30 | 2019-10-17 | 株式会社明治 | Fermented milk and manufacturing method therefor |
CN110973251A (en) * | 2019-12-20 | 2020-04-10 | 光明乳业股份有限公司 | Yoghourt capable of being refrigerated and containing live bacteria and preparation method thereof |
KR20210127164A (en) | 2019-02-19 | 2021-10-21 | 가부시키가이샤 야쿠르트 혼샤 | Method for producing lactic acid bacteria and/or bacterial cultures of the genus Bifidobacterium |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190116820A1 (en) * | 2016-04-14 | 2019-04-25 | Meiji Co., Ltd. | Fermented milk production method, method for shortening fermentation time in fermented milk production, method for suppressing increased sourness in fermented milk |
CN108094541A (en) * | 2018-01-11 | 2018-06-01 | 黑龙江完达山林海液奶有限公司 | A kind of flavored fermented milk for having the function of that health care is prebiotic and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5076272A (en) * | 1973-11-10 | 1975-06-21 | ||
JPH07203954A (en) * | 1994-01-14 | 1995-08-08 | Yukijirushi Lorry Kk | Culture of bifidus bacterium and production thereof |
JP3013157B2 (en) * | 1996-09-27 | 2000-02-28 | カルピス株式会社 | Lactic acid bacteria fermented milk material with suppressed increase in lactic acidity |
JP3101143B2 (en) * | 1994-03-02 | 2000-10-23 | 雪印乳業株式会社 | A method for producing fermented milk with reduced acidity during storage. |
WO2008001497A1 (en) * | 2006-06-30 | 2008-01-03 | Snow Brand Milk Products Co., Ltd. | Enhancer of proliferation of lactic acid bacterium, and agent for improvement in survivability of lactic acid bacterium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS566246B2 (en) * | 1973-12-26 | 1981-02-10 | ||
JPH07327594A (en) * | 1994-06-10 | 1995-12-19 | Taiyoudou Yakuhin Kk | Lactic acid beverage and its production |
BG61712B1 (en) * | 1994-12-29 | 1998-04-30 | "Ел Би Булгарикум" ЕАД | Ferments for bulgarian yoghourt and method for their preparation |
JP3666871B1 (en) * | 2004-06-14 | 2005-06-29 | 明治乳業株式会社 | Fermented milk production method and fermented milk |
EP1869983A1 (en) * | 2006-06-23 | 2007-12-26 | Chr. Hansen A/S | Low post-acidifying lactic acid bacteria |
TWI491362B (en) * | 2006-12-01 | 2015-07-11 | Meiji Co Ltd | A method of manufacture fermented milk, and fermented milk |
SG182379A1 (en) * | 2010-01-06 | 2012-08-30 | Meiji Co Ltd | Method for producing fermented milk, and dairy product |
CN102138583B (en) * | 2011-01-25 | 2013-01-23 | 内蒙古伊利实业集团股份有限公司 | Method for controlling post-acidification of yoghourt by using sodium lactate |
-
2013
- 2013-03-06 JP JP2014503876A patent/JP6317251B2/en active Active
- 2013-03-06 WO PCT/JP2013/056108 patent/WO2013133313A1/en active Application Filing
- 2013-03-06 SG SG11201405534RA patent/SG11201405534RA/en unknown
- 2013-03-06 CN CN201380012383.8A patent/CN104159450A/en active Pending
-
2014
- 2014-12-19 HK HK14112742.0A patent/HK1199178A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5076272A (en) * | 1973-11-10 | 1975-06-21 | ||
JPH07203954A (en) * | 1994-01-14 | 1995-08-08 | Yukijirushi Lorry Kk | Culture of bifidus bacterium and production thereof |
JP3101143B2 (en) * | 1994-03-02 | 2000-10-23 | 雪印乳業株式会社 | A method for producing fermented milk with reduced acidity during storage. |
JP3013157B2 (en) * | 1996-09-27 | 2000-02-28 | カルピス株式会社 | Lactic acid bacteria fermented milk material with suppressed increase in lactic acidity |
WO2008001497A1 (en) * | 2006-06-30 | 2008-01-03 | Snow Brand Milk Products Co., Ltd. | Enhancer of proliferation of lactic acid bacterium, and agent for improvement in survivability of lactic acid bacterium |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106061275A (en) * | 2013-11-08 | 2016-10-26 | 株式会社明治 | Fermented milk showing suppressed increase in acidity and method for producing same |
CN106061275B (en) * | 2013-11-08 | 2019-11-12 | 株式会社明治 | Acidity rises the acidified milk being inhibited by and its manufacturing method |
CN103749673B (en) * | 2013-12-27 | 2016-04-27 | 李跃东 | A kind of yak yoghourt and preparation method thereof |
CN103749673A (en) * | 2013-12-27 | 2014-04-30 | 李跃东 | Yak yoghourt and preparation method thereof |
US11457641B2 (en) | 2015-02-17 | 2022-10-04 | Kabushiki Kaisha Yakult Honsha | Method for producing fermented milk food |
WO2016133009A1 (en) * | 2015-02-17 | 2016-08-25 | 株式会社ヤクルト本社 | Method for producing fermented milk food |
JPWO2016133009A1 (en) * | 2015-02-17 | 2017-12-07 | 株式会社ヤクルト本社 | Method for producing fermented milk food |
AU2016220905B2 (en) * | 2015-02-17 | 2020-02-27 | Kabushiki Kaisha Yakult Honsha | Method for producing fermented milk food |
JP2019058132A (en) * | 2017-09-27 | 2019-04-18 | 株式会社明治 | Fermented milk and manufacturing method of fermented milk |
JP2019176780A (en) * | 2018-03-30 | 2019-10-17 | 株式会社明治 | Fermented milk and manufacturing method therefor |
JP7249737B2 (en) | 2018-03-30 | 2023-03-31 | 株式会社明治 | Method for producing fermented milk |
KR20210127164A (en) | 2019-02-19 | 2021-10-21 | 가부시키가이샤 야쿠르트 혼샤 | Method for producing lactic acid bacteria and/or bacterial cultures of the genus Bifidobacterium |
CN110973251A (en) * | 2019-12-20 | 2020-04-10 | 光明乳业股份有限公司 | Yoghourt capable of being refrigerated and containing live bacteria and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
SG11201405534RA (en) | 2014-10-30 |
HK1199178A1 (en) | 2015-06-26 |
JPWO2013133313A1 (en) | 2015-07-30 |
JP6317251B2 (en) | 2018-04-25 |
CN104159450A (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6317251B2 (en) | Fermented milk with suppressed increase in acidity and method for producing the same | |
JP6506688B2 (en) | Fermented milk with suppressed acidity rise and method for producing the same | |
AU2007264660B2 (en) | Enhancer of proliferation of lactic acid bacterium, and agent for improvement in survivability of lactic acid bacterium | |
JP5457349B2 (en) | Method for producing fermented milk and fermented milk | |
JP6509737B2 (en) | Fermented milk with suppressed acidity rise and method for producing the same | |
JP6110301B2 (en) | Low calorie fermented milk and method for producing the same | |
JP7046492B2 (en) | Method for producing low-sour fermented milk | |
JP2013188177A (en) | Lactobacillus fermented matter highly containing reduced type glutathione, and method for producing the same | |
JP7232177B2 (en) | Method for producing lactic acid bacteria starter and fermented milk | |
JP6641275B2 (en) | Fermented milk with enhanced growth of Bulgarian bacteria and method for producing the same | |
WO2016009951A1 (en) | Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same | |
CN111248275A (en) | Fermented milk and method for producing same | |
JP6262412B1 (en) | Method for shortening fermentation time in production of fermented milk, and method for suppressing increase in sourness in fermented milk | |
RU2604782C1 (en) | Production method for curd product | |
MX2014011663A (en) | Lactobacillus culture and method for producing same. | |
JP2018038357A (en) | Method for producing fermented milk | |
RU2544052C2 (en) | Method for production of bacterial concentrate of probiotic microorganisms consortium | |
JP5800380B2 (en) | Lactic acid bacteria, beverage using the same, and method for producing the same | |
Gandhi | Microbiology of fermented dairy products | |
Ahmed et al. | Survival of some Probiotics in Bio-Yoghurt Production | |
JP2018038356A (en) | Method of producing bulk starter | |
CN105961589A (en) | Preparation method of brown set-style yogurt capable of resisting post-acidification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014503876 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13757524 Country of ref document: EP Kind code of ref document: A1 |