Nothing Special   »   [go: up one dir, main page]

WO2013132891A1 - 核酸増幅反応用マイクロチップの製造方法 - Google Patents

核酸増幅反応用マイクロチップの製造方法 Download PDF

Info

Publication number
WO2013132891A1
WO2013132891A1 PCT/JP2013/050652 JP2013050652W WO2013132891A1 WO 2013132891 A1 WO2013132891 A1 WO 2013132891A1 JP 2013050652 W JP2013050652 W JP 2013050652W WO 2013132891 A1 WO2013132891 A1 WO 2013132891A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid amplification
microchip
amplification reaction
reagent solution
Prior art date
Application number
PCT/JP2013/050652
Other languages
English (en)
French (fr)
Inventor
真寛 松本
佐藤 正樹
英俊 渡辺
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP13758540.2A priority Critical patent/EP2824172B1/en
Priority to IN1628MUN2014 priority patent/IN2014MN01628A/en
Priority to KR1020147023987A priority patent/KR20140143139A/ko
Priority to RU2014135538A priority patent/RU2014135538A/ru
Priority to JP2014503511A priority patent/JP5987895B2/ja
Priority to CN201380012088.2A priority patent/CN104160011A/zh
Priority to US14/378,588 priority patent/US9545630B2/en
Publication of WO2013132891A1 publication Critical patent/WO2013132891A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5088Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above confining liquids at a location by surface tension, e.g. virtual wells on plates, wires
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials

Definitions

  • This technology relates to a method for producing a microchip for nucleic acid amplification reaction. More specifically, the present invention relates to a nucleic acid amplification reaction microchip in which a solidified reagent containing one or more substances necessary for the reaction is contained in a well serving as a reaction field for the nucleic acid amplification reaction.
  • microchips having wells and channels for performing chemical and biological analysis on a silicon or glass substrate have been developed by applying microfabrication technology in the semiconductor industry. These microchips are beginning to be used in, for example, electrochemical detectors for liquid chromatography and small electrochemical sensors in medical settings.
  • ⁇ -TAS micro-Total-Analysis System
  • lab-on-chip a sample-on-chip
  • biochips a microchip that uses microchips
  • speed up and high efficiency of chemical and biological analysis As a technology that enables downsizing, integration, or downsizing of analyzers, it is attracting attention.
  • ⁇ -TAS can be analyzed with a small amount of sample and disposable use of microchips (disposable). Has been.
  • ⁇ -TAS there is an optical detection device that introduces a substance into a plurality of regions arranged on a microchip and chemically detects the substance.
  • an optical detection apparatus for example, a reaction apparatus (for example, a real-time PCR apparatus) that optically detects a substance to be generated by advancing a reaction between a plurality of substances such as a nucleic acid amplification reaction in a well on a microchip. and so on.
  • a reagent and template DNA necessary for a nucleic acid amplification reaction are all mixed in advance, and this mixed solution is introduced into a plurality of wells arranged in the microchip to perform a reaction.
  • this method requires a certain amount of time for the mixture to be introduced into the well, and during that time, the reaction proceeds in the mixture, facilitating non-specific nucleic acid amplification and improving the quantitativeness. There has been a problem of lowering.
  • Patent Document 1 discloses a microchip in which a plurality of reagents necessary for a nucleic acid amplification reaction are stacked and fixed in a predetermined order in a well.
  • This technology is mainly intended to provide a method for producing a microchip for nucleic acid amplification reaction that allows simple and highly accurate analysis.
  • the present technology provides a solidification step for drying a reagent solution containing at least a part of a substance necessary for a nucleic acid amplification reaction, and a well serving as a reaction field for the nucleic acid amplification reaction.
  • a method for producing a microchip for nucleic acid amplification reaction comprising: The solidification step preferably includes a step of freeze-drying the reagent solution. Before the solidification step, a preparation step of preparing a plurality of the reagent solutions having different compositions is included.
  • the reagent solution includes a first reagent solution that includes an oligonucleotide primer and does not include an enzyme, and an oligo that includes the enzyme.
  • the solidification step may include a step of separately lyophilizing the first reagent solution and the second reagent solution.
  • the storing step may include a step of storing the first reagent solution containing two or more kinds of solidified oligonucleotide primers in each of the plurality of wells.
  • any one of the first reagent solution and the second reagent solution is solidified by the solidification step, and the reagent not used in the solidification step before the containing step
  • a method for producing a microchip for nucleic acid amplification reaction which comprises a fixing step of dropping a liquid into the well and drying the well.
  • the fixing step preferably includes a step of vacuum drying the reagent solution.
  • This technology provides a nucleic acid amplification microchip that enables simple and accurate analysis.
  • FIG. 1 is a schematic diagram illustrating the configuration of a microchip 1a according to the first embodiment of the present technology.
  • 1A is a schematic top view
  • FIG. 1B is a schematic cross-sectional view corresponding to the PP cross section of FIG. 1A.
  • microchip for nucleic acid amplification reaction (hereinafter also referred to as “microchip”) denoted by reference numeral 1a in the figure, as an area into which a sample solution is introduced, an introduction part 2 into which a liquid such as a sample is introduced from the outside, and a nucleic acid Wells 41 to 45 serving as reaction fields for the amplification reaction, and flow paths 31 to 35 connecting the introduction part 2 and each well are provided.
  • the wells 41 to 45 contain reagents R1 and R2 containing at least a part of substances necessary for the nucleic acid amplification reaction (reagents R1 and R2, not shown in FIG. 1B).
  • the sample solution refers to a solution containing a nucleic acid such as DNA or RNA which is a template nucleic acid to be amplified in the nucleic acid amplification reaction.
  • the “nucleic acid amplification reaction” performed using the microchip according to the present technology includes a conventional PCR (Polymerase® Chain Reaction) method in which a temperature cycle is performed and various isothermal amplification methods not involving a temperature cycle.
  • PCR Polymerase® Chain Reaction
  • LAMP Loop-Mediated Isothermal Amplification
  • SMAP SMart Amplification Process
  • NASBA Nucleic Acid Sequence-Based Amplification
  • ICAN Isothermal and Chimeric primeer-initiated Amplification of Nucleic acid ⁇ method
  • TRC Transcription-Reverse-Translation-Amplification
  • SDA Stringand-Displacement-Amplification
  • TMA Transcription-Mediated Amplification
  • RCA Rolling-Circle-Amplification
  • nucleic acid amplification reaction broadly encompasses nucleic acid amplification reactions by temperature variation or isothermal for the purpose of nucleic acid amplification. These nucleic acid amplification reactions also include reactions involving quantification of amplified nucleic acids such as real-time PCR.
  • the microchip 1a is configured by bonding the substrate layer 11 to the substrate layer 12 on which the introduction part 2, the flow paths 31 to 35 and the wells 41 to 45 are formed, and further bonding the substrate layer 13 to the substrate layer 11. (See FIG. 1B).
  • the microchip 1a when the bonding of the substrate layer 11 and the substrate layer 12 is performed under a negative pressure with respect to the atmospheric pressure, the inside of the introduction unit 2, the flow paths 31 to 35, and the wells 41 to 45 is protected with respect to the atmospheric pressure. Thus, it can be hermetically sealed so as to be a negative pressure (1/100 atm).
  • the region into which the sample solution is introduced is set to a negative pressure with respect to the atmospheric pressure, whereby the sample solution is sucked by the negative pressure inside the microchip when the sample solution is introduced, and a fine channel structure is formed.
  • the sample solution can be introduced into the microchip 1a in a shorter time.
  • the material of the substrate layers 11, 12, 13 can be glass or various plastics.
  • the substrate layers 12 and 13 are made of a material having gas impermeability.
  • the sample solution introduced into the wells 41 to 45 is vaporized by heating in the nucleic acid amplification reaction. Further, it is possible to prevent disappearance (liquid loss) through the substrate layer 11. Further, when the region of the microchip 1a into which the sample solution is introduced is hermetically sealed as a negative pressure with respect to the atmospheric pressure, the negative pressure inside the microchip 1a is prevented by preventing the permeation of air from the outside of the microchip 1a. Therefore, it is preferable that the substrate layers 12 and 13 are made of a material having gas impermeability.
  • plastics polymethyl methacrylate: acrylic resin
  • PC polycarbonate
  • PS polystyrene
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • SAN resin Styrene-acrylonitrile copolymer
  • MS resin MMA-styrene copolymer
  • TPX poly (4-methylpentene-1)
  • SiMA siloxanyl methacrylate monomer
  • MMA copolymer SiMA- Fluorine-containing monomer copolymers
  • silicone macromers A) -HFBuMA (heptafluorobutyl methacrylate) -MMA terpolymers, disubstituted polyacetylene polymers, and the like.
  • Examples of the metals include aluminum, copper, stainless steel (SUS), silicon, titanium, tungsten, and the like.
  • ceramics include alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), titanium oxide (TiO 2 ), zirconia oxide (ZrO 2 ), and quartz.
  • the substrate layer 11 is preferably made of an elastic material.
  • the substrate layer 11 that seals the introduction part 2 is made of an elastic material, so that a part of a puncture member such as a needle can be penetrated into the introduction part 2 from the outside of the microchip 1a.
  • a puncture member such as a needle
  • the region where the sample solution is introduced is hermetically sealed as a negative pressure with respect to the atmospheric pressure, when the tip of the needle reaches the introduction part 2, the outside of the microchip 1a and the introduction part 2 The sample solution in the syringe is automatically sucked into the introduction unit 2 due to the pressure difference.
  • the puncture site is naturally sealed by the self-sealing property of the substrate layer 11 when the needle is removed from the introduction portion 2 after the sample solution is introduced. Can be.
  • self-sealing property of the substrate layer.
  • Examples of the material for the substrate layer having elasticity include acrylic elastomers, urethane elastomers, fluorine elastomers, styrene elastomers, epoxy elastomers, and natural rubbers, in addition to silicone elastomers such as polydimethylsiloxane (PDMS). .
  • PDMS polydimethylsiloxane
  • the material of each substrate layer is light transmissive, has less autofluorescence, and has less wavelength dispersion. Therefore, it is preferable to select a material with a small optical error.
  • FIG. 2 schematically shows the well 43 on behalf of each well of the microchip 1a.
  • the well 43 contains solid reagents R1 and R2.
  • Reagents R1 and R2 contain at least a part of a substance necessary for obtaining an amplified nucleic acid chain in the nucleic acid amplification reaction.
  • oligonucleotide primers hereinafter also referred to as “primers”
  • dNTPs nucleic acid monomers
  • enzymes enzymes
  • reaction buffers that are complementary to at least a part of the base sequence of DNA, RNA or the like to be amplified. Ingredients included.
  • a probe equipped with a label such as a fluorescent label for detecting the amplified nucleic acid chain
  • a detection reagent that intercalates into a double-stranded nucleic acid etc.
  • it can be a component contained in the reagents R1 and R2.
  • the reagent R1 may be a reagent solution containing a primer and not containing an enzyme (first reagent solution)
  • the reagent R2 may be a reagent solution containing an enzyme and not containing a primer (second reagent solution).
  • first reagent solution a reagent solution containing a primer and not containing an enzyme
  • second reagent solution a reagent solution containing an enzyme and not containing a primer
  • the reagent R1 containing the primer does not contain the enzyme
  • the reagent R2 containing the enzyme does not contain the primer, so that the primer and the enzyme are not mixed until the sample solution is introduced into the well. Occurrence is suppressed.
  • the reagent R1 may be a reagent solution that contains an enzyme and does not contain a primer (second reagent solution), and the reagent R2 may be a reagent solution that contains a primer and does not contain an enzyme (first reagent solution).
  • R2 can be of any composition.
  • the reagents R1 and R2 are not limited to the shape shown in FIG. 2, and may be any shape as long as the volume can be accommodated in the well 43.
  • reagents R1 and R2 having the same composition may be stored in a plurality of wells provided in the microchip 1a, and reagents R1 and R2 having different compositions may be stored in each well.
  • reference numeral S ⁇ b> 1 is a substrate layer formation step.
  • the introduction portion 2, the flow paths 31 to 35, and the wells 41 to 45 are formed on the substrate layer 12.
  • the introduction part 2 and the like can be formed on the substrate layer 12 by a known method. For example, wet etching or dry etching of a glass substrate layer, or nanoimprint, injection molding or cutting of a plastic substrate layer. Further, the introduction part 2 or the like may be formed on the substrate layer 11, or a part of the substrate layer 11 may be formed and the remaining part of the substrate layer 12 may be formed.
  • reference numeral S2 is a reagent solution preparation step.
  • a liquid or gel reagent solution is prepared according to the composition of the reagents R1 and R2 accommodated in the microchip 1a.
  • the reagent solution only needs to contain at least a part of the substances necessary for the nucleic acid amplification reaction, and the composition can be arbitrary.
  • a reagent R1 containing only a primer and a reagent R2 containing only an enzyme may be prepared.
  • the types of reagent solutions to be prepared are not limited to two, and the number of substances necessary for the nucleic acid amplification reaction contained in one reagent solution may be one or several.
  • the primer When a primer is included in the reagent solution prepared in the preparation step, the primer may be one type or plural types.
  • a primer including a different base sequence is defined as another type of primer with respect to a primer having a certain base sequence. That is, for a target nucleic acid chain to be amplified, a pair of primer sets that combine a primer designed for the base sequence of one nucleic acid chain and a primer designed for the base sequence of its complementary strand are: It is defined as including two types of primers. The definition about the kind of these primers is the same also in 2nd embodiment and 3rd embodiment which are mentioned later.
  • the sample solution introduced at the start of the nucleic acid amplification reaction is It is preferable that the primer and the enzyme are not mixed until non-specific amplification of the nucleic acid by the primer dimer is suppressed. Moreover, it is preferable that the reagent solution containing a primer contains two or more kinds of primers.
  • the reagent solution, and the primer solution and enzyme solution added thereto are preferably kept at a cold temperature.
  • Reagent solution etc. can be kept at a cold temperature by placing a container containing reagent solution on ice or placing an instrument such as an aluminum block in a freezer in advance and using it in a cooled state. is there.
  • FIG. 3 Solidification of reagent solution
  • symbol S3a is a solidification step of the reagent solution.
  • the plurality of reagent solutions prepared in the preparation step S2 are solidified. That is, the reagent solution is dried to produce solid-phase reagents R1 and R2.
  • the solidification step S3a will be described in two steps as shown in FIG. 3, followed by the step S3a-1 for “dropping reagent solution” and the step S3a-2 for “freeze drying”.
  • FIG. 3 is a flowchart when there are two types of reagent solutions prepared in the preparation step S2.
  • Step of dropping reagent solution S3a-1 the reagent solution prepared in the above-described reagent solution preparation step S2 is dropped into the solidification container used in the solidification step S3a.
  • the reagent solutions are dropped into separate solidification containers and solidified separately.
  • the reagent R1 having the same composition is accommodated in the plurality of wells 41 to 45 of the microchip 1a, the number of solidification containers corresponding to the number of wells is prepared, and the reagent solution is dropped into each solidification container.
  • the solidification container may be made of any material, but preferably has a resistance to the temperature and pressure set in the next freeze-drying step S3a-2.
  • freeze drying step S3a-2 In this step, the reagent solution dropped into the container is dried and solidified.
  • a drying method for example, freeze-drying is suitable.
  • freeze-drying includes steps of preliminary freezing, primary drying (sublimation freezing), and secondary drying (removing bound water).
  • the freezing temperature may be equal to or lower than the eutectic point (temperature at which the reagent solution freezes), but it is frozen at about -40 ° C for the purpose of preventing enzyme deactivation and freezing the reagent solution completely. It is desirable to make it.
  • the primary drying the reagent solution frozen in the preliminary freezing step is dried.
  • the degree of vacuum in the primary drying is desirably 100 Pa or less, for example. Since the boiling point of water at 100 Pa is about ⁇ 20 ° C., it is close to the eutectic point of the reagent solution described above, and dissolution of the reagent solution during drying is prevented.
  • the vacuum degree of primary drying should just select an appropriate value according to the eutectic point of the prepared reagent liquid.
  • water in a molecular state attached to components contained in the reagent solution after the primary drying is removed.
  • the dryness of the reagent solution may be increased by heating to a temperature at which the components contained in the reagent solution do not deactivate or denature.
  • the drying method in the solidifying step S3a is not limited to freeze-drying.
  • symbol S4 is an accommodating process of the reagents R1 and R2.
  • the solid reagents R1 and R2 prepared in the solidification container by the above-described reagent liquid solidification step S3a are taken out from the solidification container and formed on any of the substrate layers by the substrate layer forming step S1.
  • the number of the wells for storing the reagents R1 and R2 may be either one or one.
  • the number and type of the reagents R1 and R2 accommodated in one well may be arbitrary, and the reagents R1 and R2 having the same composition may be accommodated in a plurality of wells, and the reagents R1 and R2 having different compositions may be accommodated. R2 may be accommodated.
  • a primer is contained in reagent R1 or reagent R2
  • a reagent R1 and a reagent R2 having different primers are prepared, and the reagent R1 and the reagent R2 are accommodated in a plurality of wells provided in the microchip 1a so as to be arranged in different wells. In this case, it is possible to analyze the amplification of a plurality of nucleic acid chains having different base sequences by one nucleic acid amplification reaction, and the analysis using the microchip 1a becomes simpler.
  • symbol S5 is a bonding step of the substrate layer.
  • another substrate layer is bonded to one of the substrate layers containing the reagents R1 and R2.
  • the substrate layers 11, 12, and 13 can be bonded to each other by a known method such as heat fusion, adhesive, anodic bonding, bonding using an adhesive sheet, plasma activated bonding, ultrasonic bonding, or the like.
  • a negative pressure with respect to the atmospheric pressure
  • each region of the introduction part 2 the channels 31 to 35, and the wells 41 to 45 into which the sample solution is introduced.
  • the substrate layers 11 and 12 are bonded together and then subjected to a negative pressure (vacuum). Since the air existing in each region such as the introduction portion 2 is exhausted through the substrate layer 11, the inside of the microchip 1a can be set to a negative pressure (vacuum) with respect to the atmospheric pressure. Note that the step of making the inside of the microchip 1a negative with respect to the atmospheric pressure is not essential in the microchip manufacturing method according to the present technology.
  • the reagents R1 and R2 including a part of the substances necessary for the nucleic acid amplification reaction are stored in advance in the wells 41 to 45 serving as analysis sites. Therefore, the nucleic acid amplification reaction can be started only by supplying the sample solution containing the remaining substance and the target nucleic acid chain necessary for the nucleic acid amplification reaction into the wells 41 to 45.
  • a plurality of solid reagents R1 and R2 in the wells 41 to 45 a plurality of substances necessary for the nucleic acid amplification reaction can be held in the microchip 1a in a separated state until the start of analysis. Can do.
  • the method for producing a nucleic acid amplification reaction microchip according to the present technology makes it possible to produce a nucleic acid amplification reaction microchip capable of simple and highly accurate analysis.
  • FIG. 4 shows the well 43 for the reagent R accommodated in the well of the microchip 1a-2 according to the modified embodiment of the first embodiment. Shown schematically as a representative.
  • the configuration of the microchip 1a-2 is the same as that of the first embodiment except for the reagent R housed in each well such as the well 43.
  • symbol is attached
  • the material of the substrate layers 11, 12, and 13 constituting the microchip 1a-2 is the same as the substrate layer having the same reference numeral in the microchip 1a.
  • the well 43 of the microchip 1a-2 contains one type of reagent R.
  • the manufacturing process of the microchip 1a-2 is the same as the flowchart shown in FIG. 3 except for the type of reagent liquid to be prepared in the reagent liquid preparation process S2, and the description of the manufacturing process is omitted.
  • the reagent R accommodated in the microchip 1a-2 may be one type.
  • the reagent R containing the enzyme may be housed in the well 43, and at the start of the nucleic acid amplification reaction, other components necessary for the nucleic acid amplification reaction such as primers may be mixed with the sample solution and introduced into the microchip 1a-2.
  • the microchip 1a-2 In the microchip 1a-2 according to the present technology, some components necessary for the nucleic acid amplification reaction are stored in the wells 41 to 45 in advance until the sample solution is introduced into the wells. It is possible to separate the component contained in the reagent R from other components. For this reason, for example, the enzyme and the primer can be separated until the nucleic acid amplification reaction is started, nonspecific nucleic acid amplification by the primer dimer or the like is suppressed, and the microchip 1a-2 is used to provide high accuracy. Analysis becomes possible.
  • FIG. 5 shows the well 43 as a representative of the reagents R1 and R2 accommodated in the wells of the microchip 1b according to the second embodiment of the present technology. This is shown schematically.
  • the microchip 1b is the same as that of the first embodiment except for the shapes of the reagents R1 and R2 accommodated in each well such as the well 43.
  • symbol is attached
  • the material of the substrate layers 11, 12, 13 constituting the microchip 1b is the same as that of the substrate layer having the same reference numeral in the microchip 1a.
  • Reagents R1 and R2 shown in FIG. 5 are solid reagents, similar to the reagents housed in microchip 1a, and contain at least a part of substances necessary for obtaining an amplified nucleic acid chain in a nucleic acid amplification reaction. Yes. About the composition of reagent R1, R2, since it is the same as reagent R1, R2 accommodated in the microchip 1a, description is abbreviate
  • the reagents R1 and R2 accommodated in the microchip 1b the difference from the reagents R1 and R2 in the microchip 1a is that some of the reagents accommodated in the well 43 are fixed in the well 43. (See FIG. 5).
  • a method for producing a microchip 1b will be described with reference to a flowchart shown in FIG.
  • the substrate layer forming step S1, the reagent solution preparing step S2, and the substrate layer bonding step S5 are the same as those in the first embodiment, and thus the description thereof is omitted, and the reagent solution fixing step S3b is performed.
  • the reagent storage step S4 will be described.
  • FIG. 6 symbol S3b is a fixing step of the reagent solution.
  • this step one type of reagent solution among the plurality of types of reagent solutions prepared in the preparation step S 2 is fixed in the well 43. That is, the reagent solution is dried in the well 43, and the dried reagent solution is fixed in the well.
  • the fixing step S3b will be described in the order of “drop of reagent solution” step S3b-1 and “vacuum drying” step S3b-2.
  • other reagent liquids that are not used in the reagent liquid fixing step S3b are solidified by the reagent liquid solidifying step S3a as in the first embodiment.
  • one type of reagent solution is dropped into each well formed in the substrate layer 12 or the like in the substrate layer forming step S1. At this time, it is preferable that the substrate layer 12 on which the well is formed is cooled.
  • symbol S4 is a reagent storage step.
  • the reagent R2 is present in the well 43 in the microchip 1b.
  • the reagent R1 prepared in the reagent solution solidifying step S3a is separately accommodated in the well in which the reagent R2 is fixed in advance.
  • the solidified reagent R1 accommodated in the microchip 1b is not limited to one type, and can be arbitrary.
  • the reagents R1 and R2 including a part of a substance necessary for the nucleic acid amplification reaction are held in advance in the wells 41 to 45 serving as analysis fields. Therefore, similarly to the microchip 1a, when the nucleic acid amplification reaction is performed using the microchip 1b, only the sample solution containing the remaining substance and the target nucleic acid chain necessary for the nucleic acid amplification reaction is placed in the wells 41 to 45. What is necessary is just to introduce
  • the components contained in the plurality of solid reagents R1 and R2 having different compositions held in the wells 41 to 45 are maintained in a separated state until the start of the nucleic acid amplification reaction. For this reason, for example, by using an enzyme and a primer as components contained in the reagent R1 and the reagent R2, respectively, nonspecific amplification of nucleic acid due to generation of primer dimers or the like can be suppressed.
  • FIG. 7 schematically shows the reagent R housed in the well of the microchip 1c according to the third embodiment, with the well 43 as a representative.
  • the configuration of the microchip 1c other than the reagent R accommodated in each well such as the well 43 is the same as that of the first embodiment.
  • symbol is attached
  • the material of the substrate layers 11, 12, 13 constituting the microchip 1c is the same as the substrate layer having the same reference numeral in the microchip 1a.
  • a reagent R containing at least a part of a substance necessary for obtaining an amplified nucleic acid chain in the nucleic acid amplification reaction is fixed (FIG. 7).
  • the component required for the nucleic acid amplification reaction contained in the reagent R may be one type or a plurality of types.
  • the substrate layer forming step S1, the reagent solution preparing step S2, and the substrate layer bonding step S5 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the step of fixing the reagent solution to the well 43 similar to the reagent solution fixing step S3b of the second embodiment, the reagent solution prepared in a predetermined composition is applied to each well provided on the substrate layer 12. The reagent solution is dropped and fixed in the well 43 by vacuum drying or the like.
  • the prepared reagent solution is preferably stored at a cold temperature.
  • the substrate layer 12 on which each well is formed is also preferably stored at a cold temperature.
  • a device that holds the substrate layer 12 such as an aluminum block may be cooled in a freezer in advance, the substrate layer 12 may be placed on the cooled device, and the reagent solution may be dropped.
  • the reagent R fixed to the well 43 or the like may be one kind, or may be reagents R1 and R2 having different compositions.
  • one of the reagent solutions is dropped into the well 43 and fixed by vacuum drying or the like. On the fixed reagent R1, The next reagent solution may be dropped and dried, and the dropping and drying steps may be repeated.
  • this technique can also take the following structures.
  • a method for producing a microchip for nucleic acid amplification reaction comprising: (2) The method for producing a microchip for nucleic acid amplification reaction according to (1), wherein the solidification step includes a step of freeze-drying the reagent solution.
  • (3) including a preparation step of preparing a plurality of reagent solutions having different compositions before the solidifying step, wherein the reagent solution includes an oligonucleotide primer and an enzyme-free first reagent solution;
  • the solidifying step includes a step of separately lyophilizing the first reagent solution and the second reagent solution.
  • the storing step includes a step of storing the first reagent solution containing two or more kinds of solidified oligonucleotide primers in each of the plurality of wells.
  • Either one of the first reagent solution and the second reagent solution is solidified by the solidification step, and a reagent solution not used in the solidification step is added before the containing step.
  • the method for producing a microchip for nucleic acid amplification reaction according to the above (3) comprising a fixing step of dropping into the well and drying in the well.
  • the fixing step includes a step of vacuum drying the reagent solution.
  • Example 1 Detection of Non-specific Amplification in Nucleic Acid Amplification Reaction Inhibition of non-specific amplification of nucleic acid chains in a nucleic acid amplification reaction using a microchip according to the present technology was verified.
  • microchips used in this example are four types of microchips that differ in the method of preparing reagents contained therein.
  • PDMS and glass substrates were used as materials.
  • four types of primers used for influenza A amplification, Bst DNA polymerase, dNTPs, and a reaction buffer were prepared as reagents necessary for the nucleic acid amplification reaction performed in this example. The process from the preparation process of the reagent solution to the containing process will be described below for each microchip.
  • Microchip 1 As a comparative example of the microchip for nucleic acid amplification reaction according to the present technology, a microchip 1 (hereinafter referred to as M1) was manufactured. In the production of M1, a reagent solution containing four types of primers, Bst DNA polymerase, dNTPs, and a reaction buffer was prepared. 1.2 ⁇ l of reagent solution was dropped into the well formed in the substrate layer, and the reagent solution was fixed in the well by vacuum drying (about 1000 Pa) for about 2 hours.
  • microchip 2 (hereinafter referred to as M2) is a microchip in which a solidified reagent is accommodated in a well.
  • M2 a reagent solution containing four kinds of primers, Bst DNA polymerase, dNTPs, and reaction buffer was prepared by placing a solidification container on ice and cooling.
  • the solidification container containing 1.2 ⁇ l of the reagent solution was placed at ⁇ 40 ° C. for 6 hours or more to freeze the reagent solution. After the reagent solution was frozen, the solidification container was set in a freeze dryer (FDU-2200, EYELA).
  • the reagent solution was dried for 12 hours or more under vacuum (about 6 to 8 Pa). Thereafter, the temperature of the dry chamber was set to 30 ° C., and the reagent solution was further dried for 6 hours or more.
  • the reagent solidified by freeze-drying was taken out from the solidification container and accommodated in a well formed into a substrate layer.
  • M3 is a microchip in which a plurality of solidified reagents having different contained substances are accommodated in a well.
  • a reagent solution hereinafter referred to as FluA
  • FluA a reagent solution containing primers among the four types of primers, Bst DNA polymerase, dNTPs, and components necessary for the nucleic acid amplification reaction of the reaction buffer was prepared while cooling.
  • RM A reagent solution (hereinafter referred to as RM) containing Bst DNA polymerase, dNTPs, and reaction buffer was also prepared while cooling.
  • the prepared reagent solution was added dropwise to another solidification container at 0.4 ⁇ l for FluA and 0.8 ⁇ l for RM.
  • Each reagent solution placed in the solidification container was solidified by lyophilization in the same manner as M2.
  • the solidified FluA and RM were taken out from the solidification container and accommodated in each well formed in the substrate layer so that both were accommodated in one well.
  • M4 is a microchip in which reagent solutions having different components are fixed in a well divided into a plurality of times.
  • a reagent solution FluA and a reagent solution RM were prepared in the same manner as M2.
  • 0.4 ⁇ l of FluA was dropped into the well and fixed in the well by vacuum drying in the same manner as M1.
  • the substrate layer having the well to which FluA was fixed was cooled, and 0.8 ⁇ l of RM was dropped into the well to which FluA was fixed while keeping the temperature low. Again, vacuum drying was performed in the same manner as M1, and RM was fixed in the well.
  • each substrate layer was treated by oxygen plasma irradiation (O 2 : 10 cc, RF output: 100 W, RF irradiation time: 30 seconds) and bonded under vacuum to complete the microchips M1 to M4.
  • oxygen plasma irradiation O 2 : 10 cc, RF output: 100 W, RF irradiation time: 30 seconds
  • nucleic acid amplification reaction was performed using the microchips M1 to M4 manufactured by the above steps.
  • the LAMP method was used for nucleic acid amplification.
  • a sample solution was introduced from M1 to M4, and a nucleic acid amplification reaction was performed at 63 ° C.
  • the sample solution includes an influenza A positive specimen (positive control, hereinafter referred to as PC), an influenza A negative specimen (negative control, hereinafter referred to as NC), and water (non-template control, hereinafter referred to as NTC). ) was used.
  • the amplified nucleic acid chain was detected by fluorescence detection, and SYBR Green was used as a detection reagent.
  • FIG. 8 shows the results of this example.
  • FIG. 8 shows the start of nucleic acid amplification for each sample solution in each of the M1 to M4 microchips.
  • the start time of nucleic acid amplification was defined as the time when the amplification curve obtained by plotting the fluorescence intensity obtained by SYBR Green rose and reached a predetermined threshold.
  • M1 'shown in FIG. 8 is a microchip manufactured by the same manufacturing process as M1, and was used for nucleic acid amplification reaction like M1.
  • nucleic acid amplification was detected in the wells into which PC was introduced in the M1 to 4 microchips (for M1, see M1 '). That is, it was shown that the reagent accommodated in the well was stored in a usable state for the nucleic acid amplification reaction. On the other hand, nucleic acid amplification was also observed in the wells of M1-4 microchips into which NC and NTC had been introduced. This indicates that non-specific amplification of the nucleic acid chain occurred in the wells of the microchips M1 to M4.
  • nucleic acid amplification reaction performed in this example, amplification specific to the template nucleic acid strand of the nucleic acid was detected within 30 minutes after the start of the nucleic acid amplification reaction (FIG. 8). Therefore, the occurrence of nucleic acid amplification within 30 minutes after the start of the reaction in a well into which NC and NTC, which should not cause nucleic acid amplification, is hindered in analysis performed using a microchip.
  • the start of non-specific nucleic acid amplification in M3 was 50 minutes after the start of the nucleic acid amplification reaction.
  • the start of non-specific nucleic acid amplification in M1 which is a comparative example, is detected from about 20 minutes after the start of the reaction. From this result, it was shown that non-specific nucleic acid amplification was suppressed in the nucleic acid amplification reaction using M3.
  • the start of non-specific nucleic acid amplification in M2 and M4 was around 30 minutes in some wells. Compared with the result of M3, the start time of non-specific nucleic acid amplification was earlier in the results of M2 and M4. However, no nucleic acid amplification was observed in NTC and NC within 30 minutes after the start of the nucleic acid amplification reaction. From these results, it was shown that nonspecific nucleic acid amplification was suppressed in M2 and M4 compared to M1 (comparative example). Moreover, the inhibitory effect of nonspecific nucleic acid amplification in M2 and M4 was comparable.
  • a microchip (M2) containing a solid phase reagent containing an enzyme and a primer, or a microchip prepared by dropping a reagent solution containing an enzyme into a well to which a reagent containing a primer is fixed ( In M4), it was observed that non-specific nucleic acid amplification reaction was suppressed as compared with Comparative Example (M1). This indicates that in the microchip manufacturing process, non-specific nucleic acid amplification reaction was suppressed in the nucleic acid amplification reaction performed using the reagent dried after mixing the cooled enzyme and primer. .
  • the microchip for nucleic acid amplification reaction according to the present technology can be analyzed simply by introducing a sample solution or the like, and non-specific nucleic acid amplification is suppressed, so that highly accurate analysis is possible. It was confirmed that there was.
  • the microchip for nucleic acid amplification reaction according to the present technology analysis by nucleic acid amplification can be performed easily and with high accuracy. Therefore, the microchip for nucleic acid amplification reaction according to the present technology can be used as an apparatus for performing nucleic acid amplification for clinical genotype determination, infectious pathogen determination, and the like.
  • R, R1, R2 Reagent, 1a, 1a-2, 1b, 1c: Microchip, 11, 12, 13: Substrate layer, 2: Introduction part, 31, 32, 33, 34, 35: Channel, 41, 42, 43, 44, 45: Well

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 簡便かつ精度の高い分析が可能な核酸増幅反応用マイクロチップの製造方法の提供。 核酸増幅反応に必要な物質のうち、少なくとも一部を含む試薬液を乾燥させる固化工程と、固化された該物質を含む試薬を核酸増幅反応の反応場であるウェルに配置する収容工程と、を含む、核酸増幅反応用マイクロチップの製造方法を提供する。この製造方法によって製造された核酸増幅反応用マイクロチップでは、核酸増幅反応に必要な物質が固化された状態で収容されていることにより、核酸増幅反応において非特異的増幅が抑制され、高い精度で分析を行うことが可能である。

Description

核酸増幅反応用マイクロチップの製造方法
 本技術は、核酸増幅反応用マイクロチップの製造方法に関する。より詳しくは、核酸増幅反応の反応場となるウェル内に、反応に必要な1種類以上の物質を含む固化された試薬が収容された核酸増幅反応用マイクロチップに関する。
 近年、半導体産業における微細加工技術を応用し、シリコンやガラス製の基板上に化学的及び生物学的分析を行うためのウェルや流路を設けたマイクロチップが開発されてきている。これらのマイクロチップは、例えば、液体クロマトグラフィーの電気化学検出器や医療現場における小型の電気化学センサなどに利用され始めている。
 このようなマイクロチップを用いた分析システムは、μ-TAS(micro-Total-Analysis System)やラボ・オン・チップ、バイオチップ等と称され、化学的及び生物学的分析の高速化や高効率化、集積化あるいは、分析装置の小型化を可能にする技術として注目されている。μ-TASは、少量の試料で分析が可能なことや、マイクロチップのディスポーザブルユーズ(使い捨て)が可能なことから、特に貴重な微量試料や多数の検体を扱う生物学的分析への応用が期待されている。
 μ-TASの応用例として、マイクロチップ上に配設された複数の領域内に物質を導入し、該物質を化学的に検出する光学検出装置がある。このような光学検出装置としては、例えば、マイクロチップ上のウェル内で核酸増幅反応等の複数の物質間の反応を進行させ、生成する物質を光学的に検出する反応装置(例えばリアルタイムPCR装置)などがある。
 従来、マイクロチップ型の核酸増幅装置では、核酸増幅反応に必要な試薬及び鋳型DNAを予め全て混合し、この混合液をマイクロチップに配設された複数のウェル内に導入して反応を行う方法が取られている。しかし、この方法では、ウェル内に混合液が導入されるまでに一定の時間が必要であるため、その間に混合液内で反応が進行し、非特異的な核酸増幅を容易にし、定量性を低下させてしまう問題が生じていた。
 前述の問題に対し、例えば特許文献1には、ウェルに核酸増幅反応に必要な複数の試薬が所定の順序で積層されて固着化されたマイクロチップが開示されている。
特開2011-160728号公報
 本技術は、簡便かつ精度の高い分析が可能な核酸増幅反応用マイクロチップの製造方法を提供することを主な目的とする。
 上記課題解決のため、本技術は、核酸増幅反応に必要な物質のうち、少なくとも一部を含む試薬液を乾燥させる固化工程と、固化された該試薬液を核酸増幅反応の反応場であるウェルに配置する収容工程と、を含む、核酸増幅反応用マイクロチップの製造方法を提供する。
 前記固化工程は、前記試薬液を凍結乾燥する工程を含むことが好ましい。
 前記固化工程の前に、組成の異なる複数の前記試薬液を用意する調製工程を含み、該試薬液には、オリゴヌクレオチドプライマーを含んで酵素を含まない第1の試薬液と、酵素含んでオリゴヌクレオチドプライマーを含まない第2の試薬液と、が含まれていても良い。
 また、前記固化工程は、前記第1の試薬液と前記第2の試薬液とを別個に凍結乾燥する工程を含んでいても良い。
 さらに、前記収容工程は、複数の前記ウェルの各々に、固化された、2種類以上のオリゴヌクレオチドプライマーを含む前記第1の試薬液を収容する工程を含んでいても良い。
 本技術はまた、前記第1の試薬液と前記第2の試薬液のうち、何れか一の試薬液を前記固化工程によって固化し、前記収容工程の前に、前記固化工程に用いていない試薬液を前記ウェルに滴下して、該ウェル内で乾燥させる固着化工程を含む、核酸増幅反応用マイクロチップの製造方法を提供する。
 前記固着化工程は、前記試薬液を真空乾燥する工程を含むことが好ましい。
 本技術により、簡便で精度の高い分析を可能とする核酸増幅用マイクロチップが提供される。
本技術の第一実施形態に係るマイクロチップ1aの構成を説明するための模式図である。 マイクロチップ1aのウェル43内の構成を説明するための模式図である。 マイクロチップ1aの製造方法を説明するためのフローチャートである。 マイクロチップ1aの変形実施形態の構成を説明するための模式図である。 本技術の第二実施形態に係るマイクロチップ1bのウェル43内の構成を説明するための模式図である。 マイクロチップ1bの製造方法を説明するためのフローチャートである。 本技術の第三実施形態に係るマイクロチップ1cのウェル43内の構成を説明するための模式図である。 本技術に係るマイクロチップにおける核酸増幅の開始時刻を示す図面代用グラフである。
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。
 
1.本技術の第一実施形態に係る核酸増幅反応用マイクロチップの構成
2.本技術の第一実施形態に係る核酸増幅反応用マイクロチップの製造方法
(1)基板層の成形
(2)試薬液の調製
(3)試薬液の固化
(4)試薬の収容
(5)基板層の貼り合わせ
3.第一実施形態の変形実施形態に係る核酸増幅反応用マイクロチップの構成
4.本技術の第二実施形態に係る核酸増幅反応用マイクロチップの構成
5.本技術の第二実施形態に係る核酸増幅反応用マイクロチップの製造方法
(1)試薬液の固着化
(2)試薬の収容
6.本技術の第三実施形態に係る核酸増幅反応用マイクロチップの構成
 
1.本技術の第一実施形態に係る核酸増幅反応用マイクロチップの構成
 図1は、本技術の第一実施形態に係るマイクロチップ1aの構成を説明する模式図である。図1Aは上面模式図であり、図1Bは、図1AのP-P断面に対応する断面模式図である。
 図中符号1aで示す核酸増幅反応用マイクロチップ(以下、「マイクロチップ」とも称する)には、試料溶液が導入される領域として、外部からサンプル等の液体が導入される導入部2と、核酸増幅反応の反応場となるウェル41~45と、導入部2と各ウェルとを接続する流路31~35が設けられている。また、ウェル41~45には、後述するように、核酸増幅反応に必要な物質の少なくとも一部を含む試薬R1,R2が収容されている(図1Bにおいて、試薬R1,R2、不図示)。図1及びその説明においては、流路31により試料溶液が供給される5つのウェルを全てウェル41とし、同様に流路32,33,34,35により試料溶液の供給を受ける各々の5つのウェルを、ウェル42,43,44,45として説明する。また、試料溶液とは、核酸増幅反応において増幅の対象となる鋳型核酸であるDNAやRNA等の核酸を含む溶液を指す。
 本技術に係るマイクロチップを用いて行う「核酸増幅反応」については、温度サイクルを実施する従来のPCR(Polymerase Chain Reaction)法や、温度サイクルを伴わない各種等温増幅法が含まれる。等温増幅法としては、例えば、LAMP(Loop-Mediated Isothermal Amplification)法、SMAP(SMartAmplification Process)法、NASBA(Nucleic Acid Sequence-Based Amplification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法(登録商標)、TRC(Transcription-Reverse transcription Concerted)法、SDA(Strand Displacement Amplification)法、TMA(Transcription-Mediated Amplification)法、RCA(Rolling Circle Amplification)法等が挙げられる。この他、「核酸増幅反応」には核酸の増幅を目的とする、変温あるいは等温による核酸増幅反応が広く包含されるものとする。また、これらの核酸増幅反応には、リアルタイムPCR法などの増幅核酸の定量を伴う反応も包含される。
 マイクロチップ1aは、導入部2、流路31~35及びウェル41~45が形成された基板層12に基板層11が貼り合わされ、さらに基板層11に基板層13が貼り合わされることにより構成されている(図1B参照)。マイクロチップ1aでは、基板層11と基板層12との貼り合わせを大気圧に対して負圧下で行った場合、導入部2、流路31~35、ウェル41~45の内部を大気圧に対して負圧(1/100気圧)となるように気密に封止することができる。マイクロチップ1aにおいて、試料溶液が導入される領域を大気圧に対し負圧とすることにより、試料溶液の導入時にマイクロチップ内部の陰圧によって試料溶液が吸引され、微細な流路構造が形成されたマイクロチップ1aの内部への試料溶液の導入が、より短時間で行えるようになる。
 基板層11,12,13の材料は、ガラスや各種プラスチック類とできる。好ましくは、基板層12,13をガス不透過性を備える材料で構成する。マイクロチップ1aの外面を構成する基板層12,13をPCなどのガス不透過性を備える材料とすることで、ウェル41~45内に導入された試料溶液が、核酸増幅反応における加熱によって気化し、基板層11を透過して消失(液抜け)するのを防止できる。また、マイクロチップ1aの試料溶液が導入される領域を、大気圧に対し負圧として気密に封止した場合には、マイクロチップ1a外からの空気の浸透を防いで内部の負圧を保持するためにも、基板層12,13をガス不透過性を備える材料で構成することが好ましい。
 ガス不透過性を備える基板層の材料は、ガラス、プラスチック類、金属類及びセラミック類などが採用できる。プラスチック類としては、PMMA(ポリメチルメタアクリレート:アクリル樹脂)、PC(ポリカーボネート)、PS(ポリスチレン)、PP(ポリプロピレン)、PE(ポリエチレン)、PET(ポリエチレンテレフタレート)、ジエチレングリコールビスアリルカーボネート、SAN樹脂(スチレン-アクリロニトリル共重合体)、MS樹脂(MMA-スチレン共重合体)、TPX(ポリ(4-メチルペンテン-1))、ポリオレフィン、SiMA(シロキサニルメタクリレートモノマー)-MMA共重合体、SiMA-フッ素含有モノマー共重合体、シリコーンマクロマー(A)-HFBuMA(ヘプタフルオロブチルメタクリレート)-MMA3元共重合体、ジ置換ポリアセチレン系ポリマー等が挙げられる。金属類としては、アルミニウム、銅、ステンレス(SUS)、ケイ素、チタン、タングステン等が挙げられる。セラミック類としては、アルミナ(Al)、窒化アルミ(AlN)、炭化ケイ素(SiC)、酸化チタン(TiO)、酸化ジルコニア(ZrO)、石英等が挙げられる。
 基板層11は、弾性を有する材料で構成されることが好ましい。マイクロチップ1aにおいて、導入部2を封止する基板層11を、弾性を有する材料とすることによって、針などの穿刺部材の一部をマイクロチップ1a外部から導入部2に穿通することが可能となる。針を接続したシリンジ等に予め試料溶液を充填しておき、基板層11をその針で穿通すると、封止されていた導入部2がシリンジ内部とだけ接続されて、気泡を生じることなく試料溶液のマイクロチップ1a内への導入が可能となる。
 また、試料溶液が導入される領域を、大気圧に対し負圧として気密に封止した場合には、針の先が導入部2に到達した時点で、マイクロチップ1a外部と導入部2との圧力差によって、シリンジ内の試料溶液は、導入部2へ自動的に吸引される。
 基板層11を弾性を有する材料により形成しておくことで、試料溶液導入後、針を導入部2から抜いた際、基板層11の自己封止性により穿刺箇所が自然に封止されるようにできる。本技術においては、基板層の弾性変形による針の穿刺箇所の自然封止を、基板層の「自己封止性」と定義するものである。
 弾性を有する基板層の材料としては、ポリジメチルシロキサン(PDMS)等のシリコーン系エラストマーの他、アクリル系エラストマー、ウレタン系エラストマー、フッ素系エラストマー、スチレン系エラストマー、エポキシ系エラストマー、天然ゴムなどが挙げられる。
 なお、本技術に係るマイクロチップ1aの各ウェルに保持された物質を、光学的に分析する場合においては、各基板層の材質には、光透過性を有し自家蛍光が少なく波長分散が小さいことで光学誤差の少ない材料を選択することが好ましい。
 次に、マイクロチップ1aのウェルに収容された試薬について説明する。図2では、マイクロチップ1aの各ウェルを代表して、ウェル43について模式的に示す。ウェル43には、固形の試薬R1,R2が収容されている。試薬R1,R2には、核酸増幅反応において増幅核酸鎖を得るために必要な物質の少なくとも一部が含まれている。具体的には、増幅の対象であるDNA、RNA等の塩基配列の少なくとも一部に相補的なオリゴヌクレオチドプライマー(以下「プライマー」とも称する」)、核酸モノマー(dNTPs)、酵素、反応緩衝液に含まれる成分などである。また、核酸増幅反応に直接必要ではないが、増幅した核酸鎖を検出するための蛍光標識等の標識を備えたプローブや、二本鎖の核酸にインターカレートする検出用試薬なども、増幅核酸鎖の検出に必要な物質として、試薬R1,R2に含まれる成分とできる。
 試薬R1と試薬R2に含まれる核酸増幅反応に必要な成分は、各々異なる組成であっても良い。例えば、試薬R1を、プライマーを含んで酵素を含まない試薬液(第1の試薬液)とし、試薬R2を、酵素を含んでプライマーを含まない試薬液(第2の試薬液)とすることもできる。このようにプライマーが含まれる試薬R1に酵素が含まれず、酵素が含まれる試薬R2にプライマーが含まれないことによって、試料溶液がウェル内に導入されるまでプライマーと酵素が混合されず、プライマーダイマーの発生が抑えられる。試薬R1を、酵素を含んでプライマーを含まない試薬液(第2の試薬液)とし、試薬R2を、プライマーを含んで酵素を含まない試薬液(第1の試薬液)としても良く、試薬R1,R2の組成は任意とできる。なお、試薬R1,R2は、図2に示される形状には限定されず、ウェル43内に収容可能な体積であれば、いずれの形状であっても良い。また、マイクロチップ1aに設けられた複数のウェルに同一の組成の試薬R1,R2が収容されていても良く、異なる組成の試薬R1,R2が各ウェルに収容されていても良い。
2.本技術の第一実施形態に係る核酸増幅反応用マイクロチップの製造方法
 マイクロチップ1aの製造方法について、図3に示すフローチャートを参照して説明する。
(1)基板層の成形
 図3中、符号S1は基板層の成形工程である。本工程では、基板層12に、導入部2、流路31~35、ウェル41~45を成形する。基板層12への導入部2等の成形は、公知の手法によって行うことができる。例えば、ガラス製基板層のウェットエッチング又はドライエッチングによって、あるいはプラスチック製基板層のナノインプリント、射出成型又は切削加工である。また、導入部2等は、基板層11に成形されても良く、あるいは基板層11に一部を、基板層12に残りの部分を成形させても良い。
(2)試薬液の調製
 図3中、符号S2は試薬液の調製工程である。本工程では、マイクロチップ1aに収容する試薬R1,R2の組成に合わせ、液状又はゲル状の試薬液を調製する。試薬液には、核酸増幅反応に必要な物質のうち少なくとも一部が含まれていれば良く、その組成は任意とできる。例えば、プライマーのみが含まれる試薬R1と、酵素のみが含まれる試薬R2を用意しても良い。また、調製する試薬液の種類は2種類には限定されず、一の試薬液に含まれる核酸増幅反応に必要な物質は、1種類であっても、数種類であっても良い。
 調製工程で用意される試薬液にプライマーが含まれる場合、プライマーは1種類であっても、複数種類であっても良い。本技術に係るマイクロチップ1aの製造方法においては、ある塩基配列からなるプライマーに対し、異なる塩基配列を含むプライマーは、別の種類のプライマーと定義する。すなわち、増幅対象である標的核酸鎖について、1本の核酸鎖の塩基配列に対してデザインされたプライマーと、その相補鎖の塩基配列に対してデザインされたプライマーとを合わせた一対のプライマーセットは、2種類のプライマーを含むものと定義する。これらのプライマーの種類についての定義は、後述する第二実施形態及び第三実施形態においても、同様である。
 試薬液の組成については、例えば、プライマーを含んで酵素を含まない試薬液と、酵素を含んでプライマーが含まれない試薬液とを調製した場合、核酸増幅反応開始時に導入された試料溶液がウェルに到達するまで、プライマーと酵素が混合されず、プライマーダイマーによる核酸の非特異的な増幅が抑えられ、好適である。またプライマーを含む試薬液には、2種類以上のプライマーが含まれていることが好ましい。
 試薬液の調製工程S2において、試薬液や、そこに加えられるプライマー溶液や酵素溶液は冷温に保持されることが好ましい。試薬液等の冷温での保持は、氷上に試薬液等の入った容器を置いたり、アルミブロック等のチューブを保持する器具を予め冷凍庫などに置き、冷却された状態で使用することによって可能である。
(3)試薬液の固化
 図3中、符号S3aは試薬液の固化工程である。本工程では、調製工程S2で用意された複数の試薬液を固化する。すなわち、試薬液を乾燥させ、固相状態の試薬R1,R2を作製する工程である。固化工程S3aについては、図3に示すように二段階に分け、「試薬液の滴下」の工程S3a-1、「凍結乾燥」の工程S3a-2、の順に説明する。なお、図3は、調製工程S2で用意された試薬液が2種類の場合のフローチャートである。
[試薬液の滴下の工程S3a-1]
 本工程では、前述の、試薬液の調製工程S2において調製された試薬液を、固化工程S3aで使用する固化用容器に滴下する。複数種類の試薬液を調製工程S2で用意した場合は、試薬液を各々別の固化用容器に滴下し、別個に固化させる。また、マイクロチップ1aの複数のウェル41~45に、同じ組成の試薬R1を収容する場合も、ウェルの数に応じた数の固化用容器を用意し、各々の固化用容器に試薬液を滴下する。固化用容器は、いずれの材質であっても良いが、次の凍結乾燥の工程S3a-2で設定する温度や気圧に耐性を有するものが好ましい。
[凍結乾燥の工程S3a-2]
 本工程では、前述の、容器に滴下された試薬液を乾燥して固化する。乾燥方法としては、例えば、凍結乾燥が好適である。また、凍結乾燥には、予備凍結、一次乾燥(昇華凍結)、二次乾燥(結合水の除去)の各工程を含むことが好ましい。予備凍結においては、凍結温度は共晶点(試薬液が凍結する温度)以下であれば良いが、酵素の失活の防止や試薬液を完全に凍結させる目的のために-40℃程度で凍結させることが望ましい。一次乾燥においては、予備凍結工程で凍結させた試薬液を乾燥させる。この時、試薬液を共晶点以下で乾燥させることにより、乾燥途中での溶解が防止され、試薬液に含まれる水分を昇華させることが可能となる。一次乾燥における真空度は、例えば100Pa以下であることが望ましい。100Paにおける水の沸点は約-20℃であるため、上述した試薬液の共晶点に近く、乾燥途中の試薬液の溶解が防止される。一次乾燥の真空度は、調製した試薬液の共晶点に応じて、適切な値を選択すれば良い。二次乾燥では、一次乾燥後の試薬液に含まれる成分に付いている分子状態の水を除去する。試薬液に含まれる成分の失活、変性等が起こらない程度の温度まで加熱し、試薬液の乾燥度を高めても良い。なお、本技術に係る核酸増幅反応用マイクロチップの製造方法において、固化工程S3aの乾燥方法は、凍結乾燥に限定されない。
(4)試薬の収容
 図3中、符号S4は試薬R1,R2の収容工程である。本工程では、前述の試薬液の固化工程S3aによって固化用容器内に作製された固形状の試薬R1,R2を固化用容器から取出し、基板層の成形工程S1によっていずれかの基板層に形成されたウェルに収容する。基板層12に設けられた複数のウェルにおいて、試薬R1,R2を収容するウェルはいずれであっても良く、一つであっても複数であっても良い。また、一のウェルに収容する試薬R1,R2の数や種類は、任意とでき、複数のウェルに、同一の組成から成る試薬R1,R2を収容しても良く、異なる組成からなる試薬R1,R2を収容しても良い。試薬R1、又は試薬R2にプライマーが含まれる場合には、一の試薬に含まれるプライマーの種類は2種類以上であることが好ましい。例えば、含有するプライマーが各々異なる試薬R1と試薬R2を用意し、マイクロチップ1aに設けられた複数のウェルに、試薬R1と試薬R2とが別のウェルに配置されるように収容する。この場合、1回の核酸増幅反応によって、複数の塩基配列の異なる核酸鎖の増幅について解析することが可能となり、マイクロチップ1aを用いた解析がより簡便となる。
(5)基板層の貼り合わせ
 図3中、符号S5は基板層の貼り合わせ工程である。本工程では、試薬R1,R2が収容されたいずれかの基板層に、他の基板層を貼り合わせる。基板層11,12,13の貼り合わせには、例えば、熱融着、接着剤、陽極接合、粘着シートを用いた接合、プラズマ活性化結合、超音波接合等の公知の手法により行うことができる。また、基板層11,12,13の貼り合わせを、大気圧に対して負圧下で行うことにより、試料溶液が導入される、導入部2、流路31~35、ウェル41~45の各領域を大気圧に対して負圧(例えば1/100気圧)とすることができる。ウェル41~45を封止する基板層11に、PDMS等の弾性に加えてガス透過性を有する材料を用いた場合には、基板層11,12を貼り合わせた後、負圧(真空)下に静置すれば、導入部2等の各領域に存在する空気が基板層11を透過して排出されるため、マイクロチップ1a内部を大気圧に対して負圧(真空)にできる。なお、マイクロチップ1aの内部を大気圧に対し負圧とする工程は、本技術に係るマイクロチップの製造方法において、必須ではない。
 本技術に係る核酸増幅反応用マイクロチップ1aにおいては、核酸増幅反応に必要な物質の一部を含む試薬R1,R2が、分析場であるウェル41~45内に予め収容されている。このため、核酸増幅反応に必要な残りの物質と標的核酸鎖を含む試料溶液をウェル41~45内に供給するのみで核酸増幅反応を開始することができる。また、複数の固形状の試薬R1,R2をウェル41~45内に収容することにより、核酸増幅反応に必要な複数の物質を、解析開始時まで分離した状態でマイクロチップ1a内に保持することができる。このため、マイクロチップ1aを用いた核酸増幅反応においては、プライマー同士がアニーリングしてプライマーダイマー等を生じることが抑制され、核酸の非特異的増幅が低減される。さらに、試薬R1,R2の調製を各々固化用容器で行うことにより、核酸増幅反応に使用する物質を分けて固化することが容易である。このため、本技術に係る核酸増幅反応用マイクロチップの製造方法によって、簡便かつ精度の高い分析が可能な核酸増幅反応用マイクロチップの製造が可能となる。
3.第一実施形態の変形実施形態に係る核酸増幅反応用マイクロチップの構成
 図4に、第一実施形態の変形実施形態に係るマイクロチップ1a-2のウェルに収容された試薬Rについて、ウェル43を代表として模式的に示す。マイクロチップ1a-2は、ウェル43等の各ウェルに収容されている試薬R以外の構成については、第一実施形態と同一である。第一実施形態と同一の構成については、同一の符号を付し説明については、省略する。また、マイクロチップ1a-2を構成する基板層11,12,13の材料は、マイクロチップ1aにおいて同一の符号を付した基板層と同じである。
 マイクロチップ1a-2のウェル43には、1種類の試薬Rが収容されている。マイクロチップ1a-2の製造工程は、試薬液の調製工程S2において、調製される試薬液の種類以外は図3に示すフローチャートと同一であり、製造工程の説明は省略する。図4のウェル43に示すように、マイクロチップ1a-2に収容される試薬Rは、1種類であっても良い。例えば、酵素を含む試薬Rをウェル43に収容し、核酸増幅反応開始時に、プライマー等、他の核酸増幅反応に必要な成分を試料溶液と混合してマイクロチップ1a-2導入しても良い。
 本技術に係るマイクロチップ1a-2においては、一部の核酸増幅反応に必要な成分を、予めウェル41~45内に収容することによって、ウェル内に試料溶液が導入されるまで、ウェル内の試薬Rに含まれる成分と他の成分とを分離しておくことが可能である。このため、核酸増幅反応が開始されるまで、例えば酵素とプライマーを分けておくことができ、プライマーダイマー等による非特異的な核酸増幅が抑えられ、マイクロチップ1a-2を用いて、精度の高い分析が可能となる。
4.本技術の第二実施形態に係る核酸増幅反応用マイクロチップの構成
 図5に、本技術の第二実施形態に係るマイクロチップ1bのウェルに収容された試薬R1,R2について、ウェル43を代表として模式的に示す。マイクロチップ1bは、ウェル43等の各ウェルに収容されている試薬R1,R2の形状以外の構成については、第一実施形態と同一である。第一実施形態と同一の構成については、同一の符号を付し説明については、省略する。また、マイクロチップ1bを構成する基板層11,12,13の材料は、マイクロチップ1aにおいて同一の符号を付した基板層と同じである。
 図5に示す試薬R1,R2は、マイクロチップ1aに収容された試薬と同様に、固形の試薬であり、核酸増幅反応において増幅核酸鎖を得るために必要な物質の少なくとも一部が含まれている。試薬R1,R2の組成については、マイクロチップ1aに収容されている試薬R1,R2と同一であるため、説明は省略する。マイクロチップ1bに収容された試薬R1,R2について、マイクロチップ1aにおける試薬R1,R2と異なる点は、ウェル43に収容された試薬のうち一部が、ウェル43内に固着されていることである(図5参照)。
5.本技術の第二実施形態に係る核酸増幅反応用マイクロチップの製造方法
 マイクロチップ1bの製造方法について、図6に示すフローチャートを参照して説明する。基板層の成形工程S1、試薬液の調製工程S2、基板層の貼り合わせ工程S5、の各工程については、第一実施形態と同一であるため、説明は省略し、試薬液の固着化工程S3b及び試薬の収容工程S4について説明する。
(1)試薬液の固着化
 図6中、符号S3bは、試薬液の固着化工程である。本工程では、調製工程S2で用意された複数種類の試薬液のうち、1種類の試薬液をウェル43内に固着化する。すなわち、試薬液をウェル43内で乾燥させ、乾燥状態となった試薬液がウェル内に固着された状態にする工程である。固着化工程S3bについては、図6に示すように「試薬液の滴下」の工程S3b-1、「真空乾燥」の工程S3b-2、の順に説明する。また、マイクロチップ1bの製造においては、試薬液の固着化工程S3bに用いない他の試薬液は、第一実施形態と同様に試薬液の固化工程S3aによって、固形状にする。
[試薬液(R2)の滴下の工程S3b-1]
 本工程では、前述の、試薬液の調製工程S2において調製された試薬液のうち、1種類の試薬液を、基板層の成形工程S1において基板層12等に形成された各ウェルに滴下する。この時、ウェルが形成された基板層12は、冷却されていることが好ましい。
[真空乾燥の工程S3b-2]
 本工程では、前述の試薬液が滴下された基板層12を真空下(600-1000Pa)に置き、試薬液を乾燥させる。第一実施形態における試薬液の固化工程S3aと異なり、本工程では基板層12を変形させない乾燥方法を選択する必要があり、例えば、真空乾燥が好適である。乾燥方法については、その他、試薬液に含まれる物質の性質に合わせて、風乾とすることも可能である。
(2)試薬の収容
 図6中、符号S4は、試薬の収容工程である。前述の試薬液の固着化工程S3bの結果、第一実施形態とは異なり、マイクロチップ1bにおいては試薬R2がウェル43内に存在する。本工程では、この試薬R2が予め固着化されたウェルに、別途、試薬液の固化工程S3aにより用意した試薬R1を収容する。マイクロチップ1bに収容する固化された試薬R1は、1種類には限定されず、任意とできる。
 本技術に係るマイクロチップ1bでは、核酸増幅反応に必要な物質の一部を含む試薬R1,R2が、分析場であるウェル41~45内に予め保持されている。このため、マイクロチップ1aと同様に、マイクロチップ1bを用いて核酸増幅反応を行う際には、核酸増幅反応に必要な残りの物質と標的核酸鎖を含む試料溶液のみをウェル41~45内に導入すれば良く、簡便に核酸増幅反応を行うことができる。また、ウェル41~45内に保持された組成の異なる複数の固形状の試薬R1,R2に含まれる成分は、核酸増幅反応の開始時まで分離した状態が維持される。このため、例えば酵素とプライマーとを、各々試薬R1と試薬R2に含む成分とすることによって、プライマーダイマー等の発生による核酸の非特異的増幅が抑制が可能となる。
6.本技術の第三実施形態に係る核酸増幅反応用マイクロチップの構成
 図7に、第三実施形態に係るマイクロチップ1cのウェルに収容された試薬Rについて、ウェル43を代表として模式的に示す。マイクロチップ1cは、ウェル43等の各ウェルに収容されている試薬R以外の構成については、第一実施形態と同一である。第一実施形態と同一の構成については、同一の符号を付し説明については、省略する。また、マイクロチップ1cを構成する基板層11,12,13の材料は、マイクロチップ1aにおいて同一の符号を付した基板層と同じである。
 マイクロチップ1cのウェル43には、核酸増幅反応において増幅核酸鎖を得るために必要な物質の少なくとも一部が含まれている試薬Rが固着されている(図7)。試薬Rに含まれる核酸増幅反応に必要な成分は、1種類であっても良く、複数種類であっても良い。
 マイクロチップ1cの製造工程では、基板層の成形工程S1、試薬液の調製工程S2、及び基板層の貼り合わせ工程S5については、第一実施形態と同様であり、説明は省略する。試薬液をウェル43に固着化させる工程については、第二実施形態の、試薬液の固着化工程S3bと同様に、所定の組成に調製された試薬液を基板層12に設けられた各ウェルに滴下し、真空乾燥等によって試薬液をウェル43内に固着化させる。
 試薬液の滴下の際、調製された試薬液は、冷温に保存されていることが好ましい。また、各ウェルが形成された基板層12も冷温に保存されることが好ましい。例えば、予めアルミブロックなどの基板層12を保持する器具を冷凍庫で冷やしておき、冷却された器具の上に基板層12を置き、試薬液の滴下を行っても良い。マイクロチップ1cにおいて、ウェル43等に固着化される試薬Rは、1種類であっても良く、組成の異なる試薬R1,R2としても良い。複数の試薬R1,R2をウェル43内に固着化させる場合は、いずれか一の試薬液をウェル43内に滴下し、真空乾燥等により固着化させ、その固着化された試薬R1の上に、次の試薬液を滴下し乾燥させ、この滴下と乾燥の工程を繰り返しても良い。
 試薬液の調製工程から試薬液の乾燥工程の開始まで、試薬液を低温に保つことによって、試薬液に含まれる核酸増幅反応に必要な成分において、物質の結合や酵素の活性が抑えられる。このため、プライマーダイマー等の発生が抑制され、核酸の非特異的増幅が低減する。
 なお本技術は、以下のような構成もとることができる。
 (1)核酸増幅反応に必要な物質のうち、少なくとも一部を含む試薬液を乾燥させる固化工程と、固化された該試薬液を核酸増幅反応の反応場であるウェルに配置する収容工程と、を含む、核酸増幅反応用マイクロチップの製造方法。
 (2)前記固化工程は、前記試薬液を凍結乾燥する工程を含む、上記(1)記載の核酸増幅反応用マイクロチップの製造方法。
 (3)前記固化工程の前に、組成の異なる複数の前記試薬液を用意する調製工程を含み、該試薬液には、オリゴヌクレオチドプライマーを含んで酵素を含まない第1の試薬液と、酵素含んでオリゴヌクレオチドプライマーを含まない第2の試薬液と、が含まれる、上記(1)又は(2)記載の核酸増幅反応用マイクロチップの製造方法。
 (4)前記固化工程は、前記第1の試薬液と前記第2の試薬液とを別個に凍結乾燥する工程を含む、上記(3)記載の核酸増幅反応用マイクロチップの製造方法。
 (5)前記収容工程は、複数の前記ウェルの各々に、固化された、2種類以上のオリゴヌクレオチドプライマーを含む前記第1の試薬液を収容する工程を含む、上記(3)又は(4)記載の核酸増幅反応用マイクロチップの製造方法。
 (6)前記第1の試薬液と前記第2の試薬液のうち、何れか一の試薬液を前記固化工程によって固化し、前記収容工程の前に、前記固化工程に用いていない試薬液を前記ウェルに滴下して、該ウェル内で乾燥させる固着化工程を含む、上記(3)記載の核酸増幅反応用マイクロチップの製造方法。
 (7)前記固着化工程は、前記試薬液を真空乾燥する工程を含む、上記(6)記載の核酸増幅反応用マクロチップの製造方法。
<実施例1> 
1.核酸増幅反応における非特異的増幅の検出
 本技術に係るマイクロチップを用いた核酸増幅反応における、核酸鎖の非特異的増幅の抑制について、検証した。
[材料及び方法]
1.マイクロチップの製造
 本実施例に使用したマイクロチップは、内部に収容される試薬の作製方法等が異なる4種類のマイクロチップである。4種類のいずれのマイクロチップについても、PDMS製及びガラス製の基板を材料に用いた。また、本実施例で行う核酸増幅反応に必要な試薬として、インフルエンザA型の増幅に用いる4種類のプライマー、Bst DNAポリメラーゼ、dNTPs、反応緩衝液を用意した。試薬液の調製工程から収容工程までは、各々のマイクロチップごとに下記に説明する。
<1>マイクロチップ1
 本技術に係る核酸増幅反応用マイクロチップの比較例として、マイクロチップ1(以下、M1と称する)を製造した。M1の製造においては、4種類のプライマー、Bst DNAポリメラーゼ、dNTPs、及び反応緩衝液を含む試薬液を調製した。基板層に成形されたウェル内に1.2μlの試薬液を滴下し、約2時間の真空乾燥(約1000Pa)処理によってウェル内に試薬液を固着化させた。
<2>マイクロチップ2
 マイクロチップ2(以下、M2と称する)は、固化された試薬がウェル内に収容されたマイクロチップである。M2の製造においては、4種類のプライマー、Bst DNAポリメラーゼ、dNTPs、及び反応緩衝液を含む試薬液の調製は、氷上に固化用容器を置いて冷却しながら行った。1.2μlの試薬液が入った固化用容器を、-40℃に6時間以上置いて、試薬液を凍結させた。試薬液が凍結した後、固化用容器を、凍結乾燥機(FDU-2200,EYELA)にセットした。試薬液の凍結状態を保ったまま、真空下(約6~8Pa)で、試薬液の乾燥を12時間以上行った。その後、ドライチャンバーの温度を30℃に設定し、試薬液の乾燥をさらに6時間以上行った。凍結乾燥によって固化された試薬は、固化用容器から取り出し、基板層に成形されたウェルに収容した。
<3>マイクロチップ3
 マイクロチップ3(以下、M3と称する)は、含有する物質の異なる複数の固化された試薬がウェル内に収容されたマイクロチップである。M3の製造においては、4種類のプライマー、Bst DNAポリメラーゼ、dNTPs、及び反応緩衝液の核酸増幅反応に必要な成分のうち、プライマーを含む試薬液(以下、FluAと称する)を冷却しながら調製した。また、Bst DNAポリメラーゼ、dNTPs、及び反応緩衝液を含む試薬液(以下、RMと称する)についても、冷却しながら調製した。調製した試薬液を、FluAについては0.4μl、RMについては0.8μl、別の固化用容器に滴下した。固化用容器に入れた各々の試薬液を、M2と同様に、凍結乾燥によって固化した。固化されたFluA及びRMを、固化用容器から取り出し、一のウェルに両方が収容されるように、各々基板層に成形されたウェルに収容した。
<4>マイクロチップ4
 マイクロチップ4(以下、M4と称する)は、複数回に分けて、含有する成分の異なる試薬液がウェル内に固着化されたマイクロチップである。M4の製造においては、M2と同様に、試薬液FluAと試薬液RMを調製した。0.4μlのFluAをウェル内へ滴下し、M1と同様に真空乾燥によってウェル内へ固着させた。FluAが固着されたウェルを有する基板層を冷却し、低温に保った状態で、FluAが固着されたウェルに0.8μlのRMを滴下した。再び、M1と同様に真空乾燥を行い、RMをウェル内に固着させた。
 以上4種類の、試薬が収容、又は固着化されたウェルを有する基板層については、ウェルを封止するために、他の基板層を貼り合わせた。酸素プラズマ照射(O:10cc,RF出力:100W、RF照射時間:30秒)により、各基板層の表面を処理し、真空下で貼り合わせ、マイクロチップM1~4を完成させた。
2.核酸増幅反応
 上記の工程によって製造されたマイクロチップM1~4を用いて、核酸増幅反応を行った。核酸増幅にはLAMP法を用いた。M1からM4に試料溶液を導入し、63℃において核酸増幅反応を行った。試料溶液には、A型インフルエンザ陽性検体(ポジティブコントロール,以下、PCと称する)と、A型インフルエンザ陰性検体(ネガティブコントロール,以下、NCと称する)と、水(ノンテンプレートコントロール,以下、NTCと称する)を用いた。増幅核酸鎖の検出は蛍光検出によって行い、検出用試薬としてSYBR Greenを用いた。
[結果]
 図8に本実施例の結果を示す。図8は、M1~4の各マイクロチップにおいて、核酸増幅の開始を、試料溶液ごとに示す。核酸増幅の開始の時刻は、SYBR Greenによって得られた蛍光強度をプロットした増幅曲線が、立ち上がって所定の閾値に達した時と定義した。なお、図8に示すM1’は、M1と同一の製造工程によって製造されたマイクロチップであり、M1と同様に核酸増幅反応に用いた。
 核酸増幅反応の結果、M1~4のマイクロチップ(M1については、M1’を参照)において、PCを導入したウェルでの核酸増幅が検出された。すなわち、ウェルに収容された試薬は、核酸増幅反応に使用可能な状態で保存されていることが示された。一方、NC及びNTCが導入されたM1~4のマイクロチップのウェルにおいても、核酸の増幅が観察された。これは、マイクロチップM1~M4のウェル内で核酸鎖の非特異的増幅が起きたことを示している。本実施例で行った核酸増幅反応において、核酸の鋳型核酸鎖に特異的な増幅は、核酸増幅反応開始後30分以内に検出されている(図8)。そのため、本来、核酸増幅が生じないはずのNC及びNTCが導入されたウェルにおいて、反応開始後30分以内に核酸増幅が生じることは、マイクロチップを用いて行う解析に支障をきたす。
 図8に示すように、M3における非特異的な核酸増幅の開始は、核酸増幅反応開始後50分以降であった。一方、比較例であるM1における非特異的な核酸増幅の開始は、反応開始後20分程度から検出されている。この結果から、M3を用いた核酸増幅反応では、非特異的核酸増幅が抑制されていることが示された。
 M2とM4における、非特異的な核酸増幅の開始は、一部のウェルにおいては、30分を過ぎたあたりであった。M3の結果に比べ、M2及びM4の結果では、非特異的な核酸増幅の開始時刻が早かった。しかし、核酸増幅反応開始後30分以内に、NTC及びNCにおいて核酸増幅は認められなかった。この結果から、M2及びM4では、M1(比較例)に比べ、非特異的な核酸増幅は抑制されていることが示された。また、M2及びM4における非特異的な核酸増幅の抑制効果は、同程度であった。
 本実施例の結果から、核酸増幅反応に必要な物質を含む試薬がウェルに収容されたマイクロチップを用いることにより、核酸増幅反応において非特異的な核酸増幅の抑制が確認された。特に、プライマーを含んで酵素を含まない試薬液と、酵素を含んでプライマーを含まない試薬液とが、各々固化されてウェルに封止されているマイクロチップ(M3)においては、非特異的な核酸増幅が大きく抑制された。すなわち、本技術に係るマイクロチップの製造法によって製造されたマイクロチップでは、非特異的な核酸増幅が低減し、分析の精度が向上していた。
 また、酵素とプライマーとを含む固相状の試薬が収容されたマイクロチップ(M2)や、プライマーを含む試薬が固着化されたウェルに酵素を含む試薬液が滴下されて作製されたマイクロチップ(M4)においても、比較例(M1)に比べ、非特異的な核酸増幅反応が抑制されていることが観察された。これは、マイクロチップの製造工程において、冷却状態の酵素とプライマーが混合された後に乾燥された試薬を用いて行う核酸増幅反応において、非特異的な核酸増幅反応が抑制されたことを示している。以上から、本技術に係る核酸増幅反応用マイクロチップは、試料溶液等を導入することのみで簡便に分析が行える上、非特異的な核酸増幅が抑制されるため、精度が高い分析が可能であることが確認された。
 本技術に係る核酸増幅反応用マイクロチップによれば、簡便かつ高精度に核酸増幅による分析を行うことができる。そのため、臨床における遺伝子型判定や感染病原体判定などのための核酸増幅を行う装置として、本技術に係る核酸増幅反応用マイクロチップは用いられ得る。
R,R1,R2:試薬、1a,1a-2,1b,1c:マイクロチップ、11,12,13:基板層、2:導入部、31,32,33,34,35:流路、41,42,43,44,45:ウェル
 

Claims (7)

  1.  核酸増幅反応に必要な物質のうち、少なくとも一部を含む試薬液を乾燥させる固化工程と、
    固化された該試薬液を核酸増幅反応の反応場であるウェルに配置する収容工程と、を含む、
    核酸増幅反応用マイクロチップの製造方法。
  2.  前記固化工程は、前記試薬液を凍結乾燥する工程を含む、
    請求項1記載の核酸増幅反応用マイクロチップの製造方法。
  3.  前記固化工程の前に、組成の異なる複数の前記試薬液を用意する調製工程を含み、
    該試薬液には、オリゴヌクレオチドプライマーを含んで酵素を含まない第1の試薬液と、
    酵素含んでオリゴヌクレオチドプライマーを含まない第2の試薬液と、が含まれる、
    請求項2記載の核酸増幅反応用マイクロチップの製造方法。
  4.  前記固化工程は、前記第1の試薬液と前記第2の試薬液とを別個に凍結乾燥する工程を含む、
    請求項3記載の核酸増幅反応用マイクロチップの製造方法。
  5.  前記収容工程は、複数の前記ウェルの各々に、固化された、2種類以上のオリゴヌクレオチドプライマーを含む前記第1の試薬液を収容する工程を含む、
    請求項4記載の核酸増幅反応用マイクロチップの製造方法。
  6.  前記第1の試薬液と前記第2の試薬液のうち、何れか一の試薬液を前記固化工程によって固化し、
    前記収容工程の前に、前記固化工程に用いていない試薬液を前記ウェルに滴下して、該ウェル内で乾燥させる固着化工程を含む、
    請求項3記載の核酸増幅反応用マイクロチップの製造方法。
  7.  前記固着化工程は、前記試薬液を真空乾燥する工程を含む、
    請求項6記載の核酸増幅反応用マクロチップの製造方法。
     
PCT/JP2013/050652 2012-03-08 2013-01-16 核酸増幅反応用マイクロチップの製造方法 WO2013132891A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13758540.2A EP2824172B1 (en) 2012-03-08 2013-01-16 Method for producing microchip for use in nucleic acid amplification reaction
IN1628MUN2014 IN2014MN01628A (ja) 2012-03-08 2013-01-16
KR1020147023987A KR20140143139A (ko) 2012-03-08 2013-01-16 핵산 증폭 반응용 마이크로 칩의 제조 방법
RU2014135538A RU2014135538A (ru) 2012-03-08 2013-01-16 Способ изготовления микрочипа для реакции амплификации нуклеиновых кислот
JP2014503511A JP5987895B2 (ja) 2012-03-08 2013-01-16 核酸増幅反応用マイクロチップの製造方法
CN201380012088.2A CN104160011A (zh) 2012-03-08 2013-01-16 用于核酸扩增反应的微芯片的制造方法
US14/378,588 US9545630B2 (en) 2012-03-08 2013-01-16 Method for fabricating microchip for nucleic acid amplification reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012052322 2012-03-08
JP2012-052322 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013132891A1 true WO2013132891A1 (ja) 2013-09-12

Family

ID=49116378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050652 WO2013132891A1 (ja) 2012-03-08 2013-01-16 核酸増幅反応用マイクロチップの製造方法

Country Status (8)

Country Link
US (1) US9545630B2 (ja)
EP (1) EP2824172B1 (ja)
JP (1) JP5987895B2 (ja)
KR (1) KR20140143139A (ja)
CN (1) CN104160011A (ja)
IN (1) IN2014MN01628A (ja)
RU (1) RU2014135538A (ja)
WO (1) WO2013132891A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109829A1 (ja) * 2016-12-13 2018-06-21 栄研化学株式会社 マイクロチップ
JP2019513235A (ja) * 2016-03-15 2019-05-23 アボット モレキュラー インク. 自動分析のためのシステム及び方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885899B (zh) * 2018-09-10 2023-04-14 中国动物疫病预防控制中心(农业部屠宰技术中心) 用于鉴别16种禽病病原冻干微芯片、试剂盒及方法
CN110885902B (zh) * 2018-09-10 2022-10-21 北京亿森宝生物科技有限公司 用于检测猪蓝耳病毒并鉴别从中猪蓝耳病毒高致病经典变异株的冻干微芯片、试剂盒及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118328A (ja) * 1989-09-29 1991-05-20 Shimaya:Kk 高血圧、高脂血症、肥満の予防及び治療に有効な飲食用キノコタンパク質及びその抽出方法
JPH08291078A (ja) * 1995-04-21 1996-11-05 M I O:Kk 高血圧及び高脂血症の予防・治療に有効で且つ抗腫瘍作用を有する飲食用キノコタンパク質、及び肥満の予防・治療に有効で且つ抗腫瘍作用を有する飲食用キノコタンパク質、並びにそれらの抽出方法
JPH10234822A (ja) * 1997-02-28 1998-09-08 Material Eng Tech Lab Inc 凍結乾燥用容器
WO2000070973A1 (fr) * 1999-05-19 2000-11-30 Japan As Represented By Director General Of National Agriculture Research Center, Ministry Of Agriculture, Forestry And Fisheries Procede et dispositif de lyophilisation et materiau lyophilise
JP2010502199A (ja) * 2006-09-05 2010-01-28 重慶康衛生物科技有限公司 リコンビナントヘリコバクターピロリの経口ワクチン及びその調製方法
WO2011099251A1 (ja) * 2010-02-10 2011-08-18 ソニー株式会社 核酸増幅反応用マイクロチップ及びその製造方法
JP2012024072A (ja) * 2010-06-22 2012-02-09 Sony Corp 核酸等温増幅反応用マイクロチップ及びその製造方法並びに核酸等温増幅方法
JP2012080870A (ja) * 2010-09-16 2012-04-26 Sony Corp 核酸定量方法及び核酸増幅反応用マイクロチップ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556771A (en) * 1995-02-10 1996-09-17 Gen-Probe Incorporated Stabilized compositions of reverse transcriptase and RNA polymerase for nucleic acid amplification
US6875619B2 (en) * 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
ES2180416B1 (es) * 2001-03-12 2004-06-01 BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. Procedimiento para la preparacion de mezclas de reaccion estabilizadas, total o parcialmente desecadas, que comprenden, al menos, una enzima, mezclas de reaccion y kits que las contienen.
GB0414815D0 (en) * 2004-07-02 2004-08-04 Secr Defence Method for stabilising reagents which are useful for nucleic acid amplification
CA2738287C (en) * 2008-09-24 2019-06-25 Straus Holdings Inc. Method for detecting analytes
CN102246043B (zh) * 2008-12-25 2016-06-08 环球生物研究株式会社 试样的预处理方法和生物相关物质的测定方法
CA2750900C (en) * 2009-01-30 2017-03-28 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118328A (ja) * 1989-09-29 1991-05-20 Shimaya:Kk 高血圧、高脂血症、肥満の予防及び治療に有効な飲食用キノコタンパク質及びその抽出方法
JPH08291078A (ja) * 1995-04-21 1996-11-05 M I O:Kk 高血圧及び高脂血症の予防・治療に有効で且つ抗腫瘍作用を有する飲食用キノコタンパク質、及び肥満の予防・治療に有効で且つ抗腫瘍作用を有する飲食用キノコタンパク質、並びにそれらの抽出方法
JPH10234822A (ja) * 1997-02-28 1998-09-08 Material Eng Tech Lab Inc 凍結乾燥用容器
WO2000070973A1 (fr) * 1999-05-19 2000-11-30 Japan As Represented By Director General Of National Agriculture Research Center, Ministry Of Agriculture, Forestry And Fisheries Procede et dispositif de lyophilisation et materiau lyophilise
JP2010502199A (ja) * 2006-09-05 2010-01-28 重慶康衛生物科技有限公司 リコンビナントヘリコバクターピロリの経口ワクチン及びその調製方法
WO2011099251A1 (ja) * 2010-02-10 2011-08-18 ソニー株式会社 核酸増幅反応用マイクロチップ及びその製造方法
JP2011160728A (ja) 2010-02-10 2011-08-25 Sony Corp 核酸増幅反応用マイクロチップ及びその製造方法
JP2012024072A (ja) * 2010-06-22 2012-02-09 Sony Corp 核酸等温増幅反応用マイクロチップ及びその製造方法並びに核酸等温増幅方法
JP2012080870A (ja) * 2010-09-16 2012-04-26 Sony Corp 核酸定量方法及び核酸増幅反応用マイクロチップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2824172A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513235A (ja) * 2016-03-15 2019-05-23 アボット モレキュラー インク. 自動分析のためのシステム及び方法
US12025630B2 (en) 2016-03-15 2024-07-02 Abbott Molecular Inc. Systems and methods for automated analysis
WO2018109829A1 (ja) * 2016-12-13 2018-06-21 栄研化学株式会社 マイクロチップ

Also Published As

Publication number Publication date
CN104160011A (zh) 2014-11-19
JPWO2013132891A1 (ja) 2015-07-30
JP5987895B2 (ja) 2016-09-07
US20150017318A1 (en) 2015-01-15
US9545630B2 (en) 2017-01-17
EP2824172A1 (en) 2015-01-14
KR20140143139A (ko) 2014-12-15
IN2014MN01628A (ja) 2015-05-15
RU2014135538A (ru) 2016-03-20
EP2824172B1 (en) 2017-09-06
EP2824172A4 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US9737887B2 (en) Integrated sample preparation systems and stabilized enzyme mixtures
US10960399B2 (en) Cartridge-based thermocycler
CA3018687C (en) Multi-primer amplification method for barcoding of target nucleic acids
TWI539001B (zh) 快速多重擴增目標核酸的方法
EA031989B1 (ru) Ячеистая трубка
WO2007149903A2 (en) Multi-stage amplification reactions by control of sequence replication times
JP5987895B2 (ja) 核酸増幅反応用マイクロチップの製造方法
US20230405586A1 (en) System and self-metering cartridges for point of care bioassays
JP5691187B2 (ja) 核酸増幅反応用マイクロチップ及びその製造方法
US20130102062A1 (en) Microchip for nucleic acid amplification reaction and method of producing the same
US20230193366A1 (en) System and self-metering cartridges for point of care bioassays
US20240360497A1 (en) System and self-metering cartridges for point of care bioassays
AU2014259546A1 (en) Integrated sample preparation systems and stabilized enzyme mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14378588

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013758540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013758540

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147023987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014135538

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021681

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021681

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140901