WO2013125807A1 - 연마패드 및 그 제조방법 - Google Patents
연마패드 및 그 제조방법 Download PDFInfo
- Publication number
- WO2013125807A1 WO2013125807A1 PCT/KR2013/001083 KR2013001083W WO2013125807A1 WO 2013125807 A1 WO2013125807 A1 WO 2013125807A1 KR 2013001083 W KR2013001083 W KR 2013001083W WO 2013125807 A1 WO2013125807 A1 WO 2013125807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- oil
- pores
- porous
- pore
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
- B24D3/10—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/20—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
- B24D3/28—Resins or natural or synthetic macromolecular compounds
- B24D3/32—Resins or natural or synthetic macromolecular compounds for porous or cellular structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
- B24D11/003—Manufacture of flexible abrasive materials without embedded abrasive particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
Definitions
- the present invention relates to a polishing pad and a method for manufacturing the same, and more particularly, to a polishing pad and a method for manufacturing the same, which enables efficient slurry collection and transportation.
- CMP PLANARIZATION / CHEMICAL MECHANICAL POLISHING
- Polishing speed and flatness are important in the CMP process, which are determined by the process conditions of the polishing equipment and the polishing slurry and polishing pads, which are the consumable members used.
- the polishing pad uniformly distributes the supplied polishing slurry on the wafer while in contact with the surface of the wafer, and causes physical removal by the abrasive particles inside the polishing slurry and the surface protrusions of the polishing pad.
- the surface of the polishing pad in direct contact with the wafer should keep the polishing slurry saturated, so that the flow of the polishing slurry may be / sourced.
- techniques are disclosed in US Pat. Nos. 5,578,362 and the like that allow the formation of fine holes (eg pores) in the polishing pad surface.
- the CMP process also has a growing need for technology to produce porous pores that has evolved one step further to support this.
- the present invention has been made in view of the above-mentioned conventional request, and an object thereof is to provide a polishing pad and a method of manufacturing the same, which can maximize polishing performance and planarization performance by collecting and using the polishing slurry during the CMP process. .
- a polishing pad performing a polishing process by contacting and moving with a surface of an object to be polished according to the present invention
- the polishing pad includes a polishing layer
- the polishing layer comprises an inert gas
- It consists of at least two porous pores each having pore size control by at least two of the encapsulated foaming agent, the chemical blowing agent and the liquid microelement, the pores by opening the two or more porous pores on the surface of the polishing layer It is characterized in that the distribution.
- a method of manufacturing a polishing pad according to the present invention comprises the steps of mixing a polishing layer forming material; Mixing at least two types of inert gas, a capsul-type blowing agent, a chemical blowing agent, and a liquid microelement vapor, each of which is capable of pore size control, to form two or more kinds of porous pores; Gelling and curing the mixture produced through the above steps to produce an abrasive layer comprising the two or more porous pores; Processing the abrasive layer to distribute the pores by opening the two or more multi-pore pores on the surface.
- FIG. 1 is a cross-sectional view of a polishing pad according to an embodiment of the present invention
- FIG. 2 is an enlarged image of a cross section of the polishing pad polishing layer of FIG. 1,
- FIG. 3 is a schematic diagram of a polishing apparatus equipped with the polishing mill of FIG. 1,
- Figure 4 is a flow chart of the polishing layer manufacturing process of the polishing pad according to an embodiment of the present invention
- FIG. 1 is a cross-sectional view of a polishing pad according to an embodiment of the present invention.
- the polishing pad 100 is composed of a support layer 110 and the polishing layer 120.
- the support layer 110 is a portion that allows the polishing pad 100 to adhere to the pann 3.
- the support layer 110 is made of a material having a resilience against the force of pressing the silicon wafer 7, which is the target to be polished, which is loaded on the head 5 opposite to the pann 3.
- 120 serves to support the silicon wafer 7 with a uniform elastic force. Therefore, mainly made of a non-porous solid homogeneous elastomer material, the hardness is lower than the abrasive layer 120 formed thereon.
- the support layer 110 may be transparent or translucent to allow transmission of the light beam 170 used to detect flatness of the surface to be polished.
- the wafer 7 on which a to-be-polished film such as a metal or an insulating layer is formed is illustrated as the object to be polished.
- the polishing pad 100 may be configured without the support layer 110.
- FIG. 3 illustrates a case in which the shape of the polishing pad 100 is circular so as to be suitable for the rotary polishing apparatus 1, but may be modified in various shapes of rectangular and square round shapes according to the shape of the polishing apparatus 1. Of course.
- the polishing layer 120 is a portion in direct contact with the wafer 7 to be polished.
- the polishing layer 120 may be formed by mixing or chemically bonding a predetermined polishing layer forming material. That is, the polymer matrix 130 forming the polishing layer 120 is made of various known components, and descriptions of known materials and forming materials will be omitted.
- the abrasive layer 120 may include two or more kinds of porous pores, each of which is formed by at least two inert gases, a capsular blowing agent, a chemical foaming agent, and a liquid microelement vapor. This corresponds to what has been done.
- the types of porous pores can be distinguished from each other by the method of forming the porous pores, which are formed by the inert gas.
- Pore produced by blowing agent, produced by liquid microelement At least two kinds of pores are included in the polishing layer 120 according to the present invention.
- each kind of pores may be formed to distinguish the size from each other, but the present invention is not limited thereto.
- porous pores namely, a first porous pore and a second porous pore
- the first porous pore is formed by a liquid microelement.
- the second porous pore is formed by inert gas.
- the material produced by the mixing mixture of the above-described polishing layer forming material is, for example, a hydrophilic polymer matrix containing polyalkylene glycol (hereinafter ' Polyalkylene glycol-containing hydrophilic polymer matrix.
- the polishing layer occupies a certain area in the polyalkylene glycol-containing hydrophilic polymer matrix 130 and is uniformly distributed, that is, embedded liquid microelements (hereinafter referred to as 'embedded liquid microelements').
- a second porous pore 142 which is a vapor phase pore including the first porous pore 141 and an embedded inert gas, may be included.
- the actual examples of the first porous pore (liquid microelement pore) 141 and the second porous pore (gas phase pore) 142 included in the polishing layer are as shown in FIG. 2.
- the abrasive layer surface 160 in direct contact with the wafer 7 has a plurality of micropores 141 ', 142' defined and opened by a first porous pore 141 and a second porous pore 142. These are arranged uniformly.
- the meaning that the pores 141 'and 142' are defined and opened by the respective porous pores 141 and 142 means that the liquid microelement or the inert gas embedded in the polishing layer 120 leaks to the outside. This means that the region containing the microelement or the inert gas remains as the pores 141 ′ to capture certain substances from the outside.
- the polyalkylene glycol-containing hydrophilic polymer matrix 130 is preferably formed of a material that is insoluble in the polishing slurry 13, which is a chemical solution for planarization.
- the polishing slurry 13 supplied through the nozzle 11 of the polishing equipment 1 is formed of a material that cannot penetrate.
- the polyalkylene glycol-containing hydrophilic polymer matrix 130 may be formed by chemical bonding or physical mixing between the polymer matrix forming material, the hydrophilic material, and the polyalkylene glycol compound.
- the material of the polymer matrix produced by the material for forming the polymer matrix is polyurethane, polyether, polyester, polysulfone, polyacryl, polycarbonate, polyethylene, polymethyl methacrylate, polyvinyl acetate, polyvinyl chloride, polyethylene It may correspond to any one selected from the group consisting of imines, polyether sulfones, polyether imides, poly ketones, melamines, nylons and hydrocarbon fluorides or mixtures thereof.
- the polyalkylene glycol-containing hydrophilic polymer matrix 130 corresponds to a combination of a hydrophilic material and a polyalkylene glycol compound by a chemical method or a physical method in the polymer matrix.
- Hydrophilic substances include polyethylene glycol, polyethylene propylene glycol, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ether, polyethylene glycol fatty acid ester, polyoxyethylene alkyl amine ether, glycerin fatty acid ester, sugar fatty acid ester, sorbitol fatty acid.
- One example is any one selected from the group consisting of esters or mixtures thereof.
- the polyalkylene glycol compound may be any one or a mixture thereof selected from the group consisting of compounds in which an alkylene oxide is added to a compound containing water or active hydrogen.
- the material for forming the abrasive layer as described above may be configured to include various materials in addition to the description.
- the embedded liquid microelement forming the first porous pore 141 is formed of a liquid material which is incompatible with the polyalkylene glycol-containing hydrophilic polymer matrix 130, and includes an aliphatic mineral oil, an aromatic mineral oil, and a silicon having no hydroxyl group at the end of the molecule. Any one selected from the group consisting of oil, soybean oil, palm oil, palm oil, cottonseed oil, camellia oil, and hardened oil may be mixed.
- the first porous pore 141 by the embedded liquid microelement has a fine spherical shape. And is preferably dispersed and formed in the polyalkylene glycol-containing hydrophilic polymer matrix 130. It is preferable that the average diameter of a spherical shape is 1-, and it is more preferable that it is 2-10 IM. When the diameter of the sphere is in the above range, it is most suitable for the collection and supply of the abrasive slurry 13. However, the suitable spherical diameter may vary depending on the type of abrasive slurry 13 used, and the embedded liquid microelement
- the size of 141 can also vary accordingly.
- the shape of the first porous pore 141, i.e., the spherical mean diameter and concentration, by the embedded liquid microelement can be easily and variously controlled by changing the degree of hydrophilicity of the polyalkylene glycol-containing hydrophilic polymer matrix 130. have.
- the shape of the first porous pore 141 by the embedded liquid microelement is easily and variously controlled by the increase ratio of the liquid material.
- the polymer matrix forming material such as 20 to 50% by weight, more preferably 30 to 40% by weight, based on the total amount of the polyurethane substrate, is mixed with the liquid material in a desired form.
- One porous pore 141 may be produced.
- the size and concentration of the first porous pore 141 and the pores 141 'defined by the embedded liquid microelements may be determined by the degree of hydrophilicity and / or liquidity of the polyalkylene glycol-containing hydrophilic polymer matrix 130. Since the amount can be adjusted in various ways, there is an advantage that the production of the polishing pad 100 having various polishing performances is possible depending on the type of the polishing target and / or the type of the polishing slurry 13.
- the second porous pore 142 is formed by injection of an inert gas, a capsul-type blowing agent, a chemical foaming agent and the like.
- the inert gas may be a chemically stable gas having a valence of '0', such as helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), etc. It is contained in such an inert gas.
- the inert gas corresponds to any gas other than the Group 8 element of the periodic table that does not react with the polymer matrix, such as N 2 , for example, but does not participate in urethane reaction.
- the foaming agent is mixed with a predetermined raw material to generate a large amount of bubbles by vaporization or reaction by heat, and can be largely classified into a chemical foaming agent and a physical foaming agent.
- Chemical blowing agent is the isocyanate group ( ⁇ ) activated by pressing the water because of foaming and 7 i in the carbon dioxide produced by banung the like water agent to the S ⁇ .
- I JI physical trace blowing agent is mixed into the gas or decomposable or Using evaporative blowing agent It does not participate in the polymer reaction because it forms bubbles. Types and features of these blowing agents are only known in the art, and thus will not be described in more detail.
- the low 12 porous pore 142 is formed in the abrasive layer by mixing an inert gas or various blowing agents (capsular or chemical blowing agents), and may have a larger radius than the first porous pore 141, and preferably The second porous pore 142 is formed to have a volume 10 times or more than the first porous pore (141).
- materials for forming the polishing layer 120 are mixed (S100).
- the materials for forming the polyalkylene glycol-containing hydrophilic polymer matrix 130 may be mixed with each other (step S100).
- the material for forming the polyalkylene glycol-containing hydrophilic polymer matrix 130 is a material produced by the mixing or reaction of a hydrophilic material and a polyalkylene glycol compound to the material for forming the polymer matrix. It is preferable to advance this by a stirring method.
- liquid substances such as mineral drifting are mixed together, which can be mixed by administering with an inert gas such as argon (or a specific blowing agent to replace it).
- an inert gas such as argon (or a specific blowing agent to replace it).
- the amount of the liquid substance and the inert gas to be mixed here can be adjusted as much as the pore size for each type to be produced.
- gelation and curing reaction are performed (S110). That is, the mixture is injected into a mold of a predetermined shape and solidified through gelation and curing.
- the gelation reaction may be performed at 80 to 90 degrees for 5 to 30 minutes, and the curing reaction may be performed at 80 to 120 degrees for 20 to 24 hours, but the specific process temperature and time may be variously changed to find the optimum conditions. Of course it can.
- the resultant cured to a predetermined shape is processed (S120). Processing includes demolding, cutting, surface finishing and cleaning. First, the cured semi-coal water is taken out of the mold and cut to have a predetermined thickness, shape, and shape. In order to improve productivity, the fine abrasive layer 120 may be formed into a sheet by the method of 3 ⁇ 4_ known in the art for the manufacture of polymer sheets such as casting and extrusion molding. All. On the surface of the polishing layer 120, the polishing slurry 13 is a working surface of the polishing layer 120. It is desirable to form various types of grooves that can be supplied evenly to the.
- the polishing layer 120 is completed through a washing process.
- the liquid microelements 141 of the polishing layer surface 160 are eluted to distribute pores 141 ′ open to the polishing layer surface 160.
- the polishing pad 100 may be completed using only the polishing layer 120, but if necessary, the support layer 110 may be manufactured by a method well known in the manufacturing process of the polishing pad 100, and the support layer 110 and the polishing layer ( 120 may be combined to complete polishing pad 100.
- the mixture is then immediately poured into a square mold.
- the injected reaction solution is gelled for 30 minutes and then cured for 20 hours in a 100 ° C oven.
- the prepared cured product was taken out of the mold and the surface was cut to prepare a polishing layer of the polishing pad.
- the mixture is then immediately poured into a square mold.
- the injected reaction solution is gelled for 30 minutes and then cured for 20 hours at 100 ° C. Aubon.
- the prepared cured product was taken out of the mold and the surface was cut to prepare a polishing layer of the polishing pad.
- polishing performance and planarization performance of the prepared pad are shown in FIG. 7 (a polishing pad according to the present embodiment is known as “hybrid pore 2”).
- the "solid capsular pore” shows the case of a polishing pad using only a single solid capsular pore rather than using different kinds of composite pores (i.e., a giant U porous pore and a low 12 porous pore) as in the present invention.
- the solid capsule may mean a fine powder with an empty interior
- the “liquid microelement pore” also has different types of composite pores (ie, the first porous pore and the second porous pore) as in the present invention. It does not use, but shows a case of a polishing pad including only a single liquid microelement.
- the relatively small first porous pore collects a small amount of abrasive slurry particles to enable precise polishing, and the second large porous pore is relatively large at once. By collecting large amounts of abrasive slurry particles, high polishing rates can be achieved.
- the polishing pad according to the present invention includes three or more types of pores formed by liquid microelements, pores formed by solid capsules, pores formed by injection of inert gas, and pores formed by chemical blowing agents.
- Sizes of porous pore types generated at this time may be as described above. Of course, it may be changed depending on the type of the material for forming the pore or to increase the polishing efficiency.
- each pore forming method can control the pore size by the concentration of the mixed material and the reaction silver, the pore of each type does not have to have a different size.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
본 발명에 따른 연마패드의 제조방법은, 연마층 형성 물질을 혼합하는 단계와; 상기 단계의 혼합물에 포어 사이즈 컨트롤이 각각 가능한 불활성 기체, 캡슐형 발포제, 화학적 발포제와 액상 미소요소 중 적어도 두 가지를 혼합하여, 두 종류 이상의 다공성 포어를 형성하는 단계와; 상기 단계를 통해 생성된 혼합물을 겔화 및 경화시켜 상기 두 종류 이상의 다공성 포어를 포함하는 연마층을 제조하는 단계와; 상기 연마층을 가공하여 표면에 상기 두 종류 이상의 다공성 포어의 개방에 의한 기공들을 분포시키는 단계를 포함하는 것을 특징으로 한다.
Description
【명세세
[발명의 명칭]
연마패드 및 그 제조방법
【기술분야】
본 발명은 연마패드 및 그 쩨조방법에 관한 것으로, 보다 상세하게는 효 과적인 슬러리 포집과 운송이 가능토록 하는 연마패드 및 그 제조방법에 관한 것이다.
【배경기술】
화학기계적 평탄화 /연마 (CHEMICAL MECHANICAL
PLANARIZATION / CHEMICAL MECHANICAL POLISHING, 이하, CMP라 한다) 공정은 반도체 소자의 글로벌 평탄화를 위해 도입된 공정으로, 웨이퍼의 대구경화, 고집적화, 선폭의 미세화 및 배선구조의 다층화 추세에 따라 더욱 증 요한 공정으로 부각되고 있다.
CMP공정에서는 연마속도와 평탄화도가 중요하며 이는 연마 장비의 공 정조건 및 사용되는 소모성 부재인 연마 슬러리와 연마 패드에 의해 결정된다. 특히 연마 패드는 웨이퍼의 표면과 접촉한 상태쎄서 공급된 연마슬러리를 웨이 퍼상에 균일하게 분산시키며 연마슬러리 내부의 연마 입자와 연마 패드의 표면 돌기들에 의해 물리적인 제거 작용이 일어나도록 한다.
이때 웨이퍼와 직접 접촉하는 연마 패드 표면은 연마 슬러리가 포화된 상태를 유지해서 연마 슬러리의 유동이 /원[활하도록 해야 한다. 이를 위해 연마 패드 표면에는 미세한 구멍 (예를 들어 기공)이 형성되도록 하는 기술들이 미국 특허 제 5,578,362호 등에 개시되어 있다.
이처럼 CMP 공정의 연마 패드의 역할 및 성능 증대를 위해서는 연마 패드 내에 연마 슬러리가 포화된 상태를 유지하는 것이 매우 중요한데, 따라서 연마패드상에 큰 슬러리 흐름을 형성하기 위한 여러 가지의 그루브 (GROOVE) 를 형성시키고 이에 더하여 상술한 바와 같이 연마패드 표면에 미세 구멍을 미 세 다공성 물질의 개방에 의해 형성시키고 있는 것이다.
그런데 이 증 그루브 형성과 관련하여서는 다양한 패턴을 시도하는 형 태로 그 기술이 발전되어 왔으나, 미세 구멍의 형성을 위한 다공성 포어 기술 은 특정 포어 형성 방법을 제한적으로 이용하는 것에 국한되고 있는 실정이다. 즉, 종래의 . 어ᅳ ¾성.—방법에―따라 각—장점과— ¾_¾。 ¾재하 ^데 실제 CMP공정에서는 이러한 장단점을 감안하여 공정을 조정하여 사용하고 있다.
하지만 반도체 공정에서의 보다 더 세밀함과 정교함이 요구됨에 따라
CMP 공정 역시 이를 뒷받침하기 위한 한 단계 더 진화된 다공성 포어의 생성 기술에 대한 요구가 커지고 있다.
【발명의 상세한 설명】
본 발명은 상기한 종래의 요청에 부웅하기 위해 안출된 것으로서, 그 목 적은 CMP 공정시 연마 슬러리의 포집과 이용에 의한 연마성능과 평탄화 성능 을 극대화할 수 있는 연마 패드 및 그 제조방법을 제공하는 것이다.
상기한 목적을 달성하기 위해 본 발명에 따른 피연마 대상의 표면과 접 촉하여 이동함으로써 연마 공정을 수행하는 연마 패드는, 상기 연마패드는 연 마층을 포함하여 구성되고, 상기 연마층은 불활성 기체, 캡슐형 발포제, 화학적 발포제와 액상 미소요소 중 적어도 두 가지에 의해 각각 포어 사이즈 컨트롤이 이루어진 두 종류 이상의 다공성 포어를 포함하여 구성되며, 상기 연마층 표면 에는 상기 두 종류 이상의 다공성 포어의 개방에 의한 기공들이 분포하는 것을 특징으로 한다.
또, 상기한 목적을 달성하기 위해 본 발명에 따른 연마 패드의 제조방법 은, 연마층 형성 물질을 혼합하는 단계와; 상기 단계의 혼합물에 포어 사이즈 컨트롤이 각각 가능한불활성 기체, 캡술형 발포제, 화학적 발포제와 액상 미소 요소 증 적어도 두 가지를 혼합하여, 두 종류 이상의 다공성 포어를 형성하는 단계와; 상기 단계를 통해 생성된 혼합물을 겔화 및 경화시켜 상기 두 종류 이 상의 다공성 포어를 포함하는 연마층을 제조하는 단계와; 상기 연마층을 가공 하여 표면에 상기 두 종류 이상의 다 "성 포어의 개방에 의한 기공들을 분포시 키는 단계를 포함하여 이루어진다.
【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에 따른 연마 패드의 단면도이고, 도 2는 도 1의 연마패드 연마층 단면의 확대 영상이고,
도 3은 도 1의 연마꽤드가 장착된 연마 장치의 개략도이고,
도 4는 본 발명의 일 실시에에 따른 연마패드의 연마층 제조 공정의 흐 름도이고,
도 5 및 도 6은 본 발명의 일 실시예에 따른 불활성 기체에 의한 포어 와 액상 미소요소에 의한 포어를 포함하는 연마층의 표면 Pore 이미지이고, _ .7은 본 명쩨 H방식 (실시예 2및_실시예— 3)—에_„의 형섰 마 패드의 연마 효율을 종래 방식과 비교하기 위해 나타낸 도면이다.
【실시예】
이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 연마 패드의 단면도이다.
동 도면에 도시된 바와 같이 본 발명의 일 실시예에 따른 연마 패드 (100)는 지지층 (110) 및 연마층 (120)으로 구성된다. 지지층 (110)은 도 3에 도시 되어 있는 바와 같이, 연마 패드 (100)가 플레이른 (3)에 부착되도록 하는 부분이 다. 지지층 (110)은 플레이른 (3)과 대향하는 헤드 (5)에 로딩되어 있는 피연마 대 상인 실리콘 웨이퍼 (7)를 가압하는 힘에 대웅하여 복원성을 갖는 물질로 구성 되어 그 위에 형성된 연마층 (120)을 실리콘 웨이퍼 (7)에 대웅하여 균일한 탄성 력으로 지지하는 역할을 수행한다. 따라서 주로 비다공성의 고체 균일 탄성체 재질로 이루어지며, 그 위에 형성되는 연마층 (120)보다 경도가 낮다.
또한, 지지층 (110)은 적어도 일부가 투명 또는 반투명하여 피연마대상 표면의 평탄도를 검출하기 위해 사용되는 광빔 (170)의 투과가 가능하다. 도 3에 서는 금속, 절연층 등의 피연마막이 형성되어 있는 웨이퍼 (7)를 피연마 대상으 로 예시하였으나, TFT-LCD가 형성될 기판, 유리 기판, 세라믹 기판, 폴리머 플라스틱 기판 둥 다양한 기판이 피연마 대상으로 사용 가능함은 물론이다. 그 리고 경우에 따라서는 지지층 (110) 없서도 연마 패드 (100)를 구성할 수 있다. 또한 도 3에서는 회전형 연마 장치 (1)에 적합하도록 연마 패드 (100)의 모양이 원형인 경우를 도시하였으나, 연마 장치 (1)의 형태에 따라 직사각형, 정 사각형 둥의 다양한 형태로 변형이 가능함은 물론이다.
연마층 (120)은 도 3에 도시되어 있는 바와 같이 피연마 대상인 웨이퍼 (7)와 직접 접촉하는 부분이다. 연마층 (120)은 소정의 연마층 형성 물질을 혼합 또는 화학적 결합에 의한 이루어질 수 있다. 즉, 연마층 (120)을 형성하는 폴리 머 매트릭스 (130)는 기 공지된 다양한 구성물로 이루어져 있는데, 공지된 재질 및 형성 물질에 대한 설명은 생략한다.
이러한 연마층 (120)은 두 종류 이상의 다공성 포어를 포함할 수 있는데, 이러한 두 종류 이상의 다공성 포어는 불활성 기체, 캡술형 발포제, 화학적 발 포제와 액상 미소요소 증 적어도 두 가지에 의해 각각 포어 사이즈 컨트를이 이루어진 것에 해당한다.
즉, 다공성 포어의 종류는 그 다공성 포어를 형성시킨 방법에 의해 서로 구별될 수 있는데, 불활성 기체에 의해 ^성 ¾— ^_어, 형—발 ^제ᅵ에 .의_해 생 성된 포어, 화학적 발포제에 의해 생성된 포어, 액상 미소요소에 의해 생성된
포어 중 적어도 두 종류의 포어가 본 발명에 따른 연마층 (120)에 포함되어 있 는 것이다.
여기서 각 종류별 포어는 서로 크기가 구별되도록 형성될 수도 있지만, 본 발명이 이에 한정되는 것은 아니다.
이하에서는 본 발명의 일 예로써 연마층 (120)에 두 종류의 다공성 포어 즉, 제 1 다공성 포어와 제 2 다공성 포어가 형성된 것으로 가정하고, 특히 그 중 제 1 다공성 포어는 액상 미소요소에 의해 형성된 것이고 제 2 다공성 포어는 불 활성 기체에 의해 형성된 것으로 가정한다.
이처럼 액상 미소요소에 의한 제 1 다공성 포어가 연마층에 포함된 경우 앞서 언급한 연마층 형성 물질의 혼합 둥에 의해 생성된 물질은 예를 들어 폴 리알킬렌글리콜을 함유하는 친수성 폴리머 매트릭스 (이하 '폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스'라 한다) (130)에 해당할 수 있다.
즉, 연마층은 이러한 폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130) 내에는 일정영역을 차지하며 균일하게 분포된 즉, 임베디드 (embeded)된 액상 미소요소 (이하 '임베디드 액상 미소요소'라 함)로 이루어진 제 1 다공성 포 어 (141)와 임베디드된 불활성 기체를 포함하는 기상 포어인 제 2 다공성 포어 (142)가 포함될 수 있다.
이처럼 연마층에 포함되는 제 1 다공성 포어 (액상 미소요소 포어) (141) 및 제 2 다공성 포어 (기상 포어) (142)의 실제 예는 도 2에 도시된 바와 같다. 웨이퍼 (7)와 직접적으로 접촉하는 연마층 표면 (160)에는 제 1 다공성 포 어 (141)와 제 2 다공성 포어 (142)에 의해 정의되고 개방된 다수의 미세 기공들 (141', 142')이 균일하게 배열되어 있다.
여기서, 기공 (141', 142')이 각 다공성 포어 (141, 142)에 의해 정의되고 개방되었다는 의미는, 연마층 (120)에 임베디드된 액상 미소요소나 불활성 기체 가 외부로 누출됨에 따라 해당 액상 미소요소나 불활성 기체가 포함되어 있던 영역이 기공 (141')으로 남아 외부로부터 소정 물질들을 포획가능하게 되었음을 의미하는 것이다.
연마공정 증에 연마 패드 (100)가 마모됨에 따라 임베디드된 다공성 포어 들 (141, 142)은 연속적으로 연마층 표면 (160)으로 노출되어 기공 (141', 142')을 형성하고 이는 연마 슬러리 (13)에 의해 치환된다. 따라서 연마표면 (160)에는 폴 리 3 L매트 스1 t이—^ _재하므로 미: .패드 (10Q)의―ᅳ 균_일 마 기 _일어나지 .않^ 피연마 대상인 실리콘 웨이퍼 (7)를 균일하게 연마할 수 있다.
폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130)는 평탄화를 위한 화학 용액인 연마 슬러리 (13)에 불용성인 물질로 형성되는 것이 바람직하다. 예 컨대, 도 3과 같이, 연마 장비 (1)의 노즐 (11)을 통해 공급되는 연마 슬러리 (13) 가 침투할 수 없는 물질로 형성된다.
폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130)는 폴리머 매트릭스 형성용 물질, 친수성 물질과, 폴리알킬렌글리콜 화합물간의 화학적 결합 또는 물리적 혼합에 의해 형성될 수 있다.
여기서 폴리머 매트릭스 형성용 물질에 의해 생성되는 폴리머 매트릭스 의 재질은 폴리우레탄, 폴리에테르, 폴리에스테르, 폴리술폰, 폴리아크릴, 폴리 카보네이트, 폴리에틸렌, 폴리메틸 메타크릴레이트, 폴리비닐 아세테이트, 폴리 비닐 클로라이드, 폴리에틸렌 이민, 폴리에테르 술폰, 폴리에테르 이미드, 폴리 케톤, 멜라민, 나일론 및 불화탄화수소로 이루어진 그룹에서 선택된 어느 하나 또는 이들의 혼합물에 해당할 수 있다.
폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130)는 이러한 폴리머 매트릭스에 친수성 물질과 폴리알킬렌글리콜 화합물을 화학적 방법으로 결합시 키거나 물리적 방법으로 혼합시킨 것에 해당한다.
친수성 물질로는 폴리에틸렌글리콜, 폴리에틸렌프로필렌글리콜, 폴리옥 시에틸렌 알킬페놀에테르, 폴리옥시에틸렌 알킬에테르, 폴리에틸렌글리콜 지방 산에스테르, 폴리옥시에틸렌 알킬아민에테르, 글리세린지방산에스테르, 설탕지 방산에스테르, 솔비틀지방산에스테르로 이루어진 그룹에서 선택된 어느 하나 또는 이들의 혼합물 둥을 일 예로 들 수 있다.
폴리알킬렌글리콜 화합물은 물 또는 활성수소를 포함하는 화합물에 알 킬렌옥사이드가 부가된 형태의 화합물로 이루어진 그룹에서 선택된 어느 하나 또는 이들의 혼합물일 수 있다.
상술한 바와 같은 연마층 형성용 물질은 설명한 이외에도 다양한 물질 을 포함하여 구성될 수 있음은 물론이다.
제 1 다공성 포어 (141)를 형성하는 임베디드 액상 미소요소는 폴리알킬렌 글리콜 함유 친수성 폴리머 매트릭스 (130)와 상용성이 없는 액상 물질로 형성 되는데, 지방족 광유, 방향족 광유, 분자 말단에 수산기가 없는 실리콘 오일, 대 두유, 야자유, 팜유, 면실유, 동백유, 경화유로 이루어진 그룹에서 선택된 어느 하1 는 _이들의 *합물 등이 산용될 수 .있다.
임베디드 액상 미소요소에 의한 제 1 다공성 포어 (141)는 미세한 구형으
로 폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130) 내에 분산되어 형성되 는 것이 바람직하다. 구형의 평균 직경은 1 ~ 인 것이 바람직하며, 2 ~ 10 IM 인 것이 더욱 바람직하다. 구형의 직경이 상기 범위내에 있을 때, 연마 슬러 리 (13)의 포집 및 공급에 가장 적합하다. 그러나 사용되는 연마 슬러리 (13)의 종류에 따라 적합한 구형의 직경은 변화할 수 있으며, 임베디드 액상 미소요소
(141)의 크기 또한 이에 맞추어 변화할 수 있다.
임베디드 액상 미소요소에 의한 제 1 다공성 포어 (141)의 형태, 즉 구형 의 평균 직경 및 농도 둥은 폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130)의 친수성 정도의 변화에 의해 용이하고 다양하게 조절될 수 있다.
또, 임베디드 액상 미소요소에 의한 제 1 다공성 포어 (141)의 형태는 액 상 물질의 증량비에 의해 용이하고 다양하게 조절된다. 바람직하게는 폴리머 매트릭스 형성용 물질, 예컨대 폴리 우레탄 기재의 총 증량을 기준으로 20 내 지 50증량 %로, 더욱 바람직하게는 30 내지 40증량 %로 액상 물질을 혼합하여 원하는 형태의 미소요소에 의한 제 1 다공성 포어 (141)를 생성할 수 있다.
임베디드 액상 미소요소에 의한 제 1 다공성 포어 (141) 및 이에 의해 정 의되는 기공 (141')의 크기 및 농도는 폴리알킬렌글리콜 함유 친수성 폴리머 매 트릭스 (130)의 친수성 정도 및 /또는 액상물질의 양에 의해 다양하게 조절이 가 능하므로 피연마 대상의 종류 및 /또는 연마 슬러리 (13)의 종류에 따라 다양한 연마 성능을 가진 연마 패드 (100)의 제조가 가능하다는 장점이 있다.
한편, 제 2 다공성 포어 (142)는 불활성 기체, 캡술형 발포제와, 화학적 발 포제 등의 주입에 의해 형성되는 것이다.
여기서 불활성 기체는 원자가가 '0'이어서 화학적으로 안정된 기체를 의 미할 수 있는데, 헬륨 (He), 네온 (Ne), 알곤 (Ar), 크립톤 (Kr), 제논 (Xe), 라돈 (Rn) 등이 이러한 불활성 기체에 포함된다. 더 나아가 불활성 기체는 주기율표상 8 족 원소 이외에도 N2 둥과 같이 폴리머 매트릭스와 반웅하지 않는, 예를 들어 우레탄 반웅에 참여하지 않는 기체면 모두 해당한다.
그리고 발포제는 소정꾀 원료에 혼합되어 열에 의한 기화 또는 반응에 의해 다량의 기포를 발생시키는 것으로서, 크게는 화학적 발포제와 물리적 발 포제로 구분될 수 있다.
화학적 발포제는 아이소사이아네이트기 (基)의 활성을 이용해 물 등과의 반웅으로 생기는 이산화탄소에서 발포하 7ᅵ 때문에 물이 발 S제로 ^。ᅵ JI, 물리 _ 적 발포제는 기체를 혼입하거나 분해형 또는 증발형 발포제를 사용해 반웅열을
일으킴으로써 기포를 형성하기 때문에 고분자반응에는 참여하지 않는 것이다. 이러한 발포제의 종류 및 특징은 기 공지된 것에 불과하므로 보다 상세한 설명 은 생략한다.
저 12 다공성 포어 (142)는 불활성 기체나 다양한 발포제 (캡술형 발포제나 화학적 발포제)의 혼합에 의해 연마층에 형성되는 것으로서, 제 1 다공성 포어 (141)보다는 더 큰 반경을 가질 수 있고, 바람직하게는 제 2 다공 포어 (142)는 제 1 다공성 포어보다 (141) 10배 이상의 부피를 가지도록 형성된다.
이하에서는 도 4를 참조하여 본 발명의 일 실시예에 따른 연마 패드 (100)의 연마층 (120)의 제조방법의 과정을 설명한다.
먼저, 연마층 (120) 형성용 물질들을 혼합한다 (S100). 구체적으로, 앞서 설명한 폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130) 형성용 물질을 서 로 혼합할 수 있다 (단계 S100).
여기서 폴리알킬렌글리콜 함유 친수성 폴리머 매트릭스 (130) 형성용 물 질은 폴리머 매트릭스 형성용 물질에 친수성 물질과 폴리알킬렌글리콜 화합물 의 흔합 또는 반웅에 의해 생성된 물질이다. 이는 교반 방식에 의해 진행하는 것이 바람직하다.
흔합과정에서, 광유 둥과 같은 액상 물질이 함께 혼합되고, 이때 아르곤 과 같은 불활성 기체 (또는 이를 대체하는 특정 발포제)를 함께 투여하여 흔합 할 수 있다.
여기서 혼합되는 액상 물질 및 불활성 기체의 양은 생성하고자 하는 종 류별 포어 크기에 따라 얼마든지 조절 가능하다.
이어서, 겔화 및 경화 반웅을 진행한다 (S110). 즉, 혼합물을 소정 형상의 주형 내부에 주입하여 겔화 및 경화 과정을 통하여 고체화한다. 이때 겔화 반 웅은 80 내지 90도 에서 5 내지 30분간 진행하고, 경화 반응은 80 내지 120도 에서 20 내지 24시간 진행되도록 할 수도 있지만, 구체적인 공정 온도 및 시간 은 최적 조건을 찾기 위해 다양하게 변화될 수 있음은 물론이다.
마지막으로, 소정 형상으로 경화된 결과물을 가공한다 (S120). 가공은 탈 형, 재단, 표면가공처리 및 세정 과정 등을 포함한다. 먼저, 경화된 반웅물을 주 형에서 꺼내어 소정 두께와 모양 및 형상을 갖도록 절단한다. 생산성의 향상을 위해 주물 및 압출 성형 등의 폴리머 시트 (sheet) 제조 분야의 당업계에 공지 된 ¾의_의 _방법에 의히ᅵ세연마층 (120)을 시트상으로 형성할 수 있음은 물론아 다. 그리고 연마층 (120)의 표면에는 연마 슬러리 (13)가 연마층 (120)의 작업 표면
에 골고루 공급되도록 할 수 있는 다양한 형태의 그루브 (groove)를 형성하는 것이 바람직하다.
그 후, 세정 공정을 거쳐 연마층 (120)을 완성한다. 세정 공정시 연마층 표면 (160)의 액상 미소요소 (141)가 용출되어 연마층 표면 (160)에 개방된 기공 (141')이 분포되게 된다. 이때, 용출된 액상 미소요소 (141)가 연마층 표면 (160) 에 잔류하지 않도록 하는 세정액을 사용하여 세정 공정을 진행하는 것이 바람 직하다.
연마층 (120)만으로도 연마 패드 (100)를 완성할 수도 있으나, 필요에 따라 서는 연마 패드 (100) 제조 공정 분야에서 널리 알려진 방법에 의해 지지층 (110) 을 제조하고 지지층 (110)과 연마층 (120)을 결합시켜 연마 패드 (100)를 완성할 수도 있다.
본 발명에 관한 보다 상세한 내용은 다음의 구체적인 실험예들의 비교 를 통하여 설명하며, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 층분히 기술적으로 유추할 수 있는 것이므로 설명을 생략한다. 물론 이 하의 실험예들에 의해 본 발명의 범주가 제한되는 것은 아니다.
<실험예 1>
200kg 반웅기에 폴리테트라메칠렌글리콜 (분자량 1000) 50kg, 폴리에틸 렌글리콜 (분자량 1000) 50kg, 톨루엔디이소시아네이트 52kg을 투입하고 70 ~ 80°C의 은도에서 4 ~ 5시간 반웅시키며 최종 제품의 NCO함량을 11.0%로 하였 다. 이에 따라 제조된 이소시아네이트 예비중합체의 점도는 6,900 cPs(25°C)였 다.
<실험예 2>
캐스팅 머신 (Casting Machine)을 이용하여 실험예 1의 이소시아네이트 예비중합체 100kg과 광유 (이하 KF-70) (서진화학 제조) 46kg, MOCA 33kg을 5000rpm의 Mixing head를 거쳐 토출하여준다. 이때 불활성기체인 Ar gas를 10% 부피비로 Mixing Head로 투여해 준다.
이 후 혼합물은 곧 바로 사각의 주형에 주입한다. 주입된 반웅액은 30분 동안 겔화시킨 후 100 °C 오븐에서 20시간 동안 경화시킨다.
제조된 경화물을 주형에서 꺼내어 표면을 재단하여 연마 패드의 연마층 을 제조하였다.
런할 연마^의 a면 ; Por_e 이미지¾ 도 에 나타내었다. - 제조된 Pad의 연마성능과 평탄화 성능은 도 7(본 실시예에 따른 연마패
드는 일명 "하이브리드포에")에 나타내었다.
〈실험예 3〉
Casting Machine을 이용하여 실험예 1의 이소시아네이트 예비증합체 100kg과 광유 (이하 KF-70) (서진화학 제조) 46kg, MOCA 33kg을 5000rpm의 Mixing head를 거쳐 토출하여준다. 이 때 불활성기체인 Ar gas를 부피비 20% 로 Mixing Head로 투여해 준다.
이 후 혼합물은 곧 바로 사각의 주형에 주입한다. 주입된 반웅액은 30분 동안 겔화시킨 후 100°C 오본에서 20시간 동안 경화시킨다.
제조된 경화물을 주형에서 꺼내어 표면을 재단하여 연마 패드의 연마층 을 제조하였다.
이러한 연마층의 표면 Pore 이미지는 도 6에 나타내었다.
제조된 Pad의 연마성능과 평탄화 성능은 도 7 (본 실시예에 따른 연마 패드는 알명 "하이브리드포어 2")에 나타내었다. 동 도면들에서 "고상 캡술 포어 "는 본 발명과 같이 서로 다른 종류의 복합 포어 (즉, 거 U다공성 포어 및 저 12 다공성 포어)를 이용하는 것이 아니라 단일의 고상 캡술 포어만을 이용한 연마 패드의 경우를 나타낸 것이고 (여기서 고상 캡슐은 내부가 비어있는 미세 분말 을 의미할 수 있음), "액상 미소 요소 포어" 역시 본 발명과 같이 서로 다른 종 류의 복합 포어 (즉, 제 1 다공성 포어 및 제 2 다공성 포어)를 이용하는 것이 아 니라 단일의 액상 미소 요소만을 포함하는 연마패드의 경우를 나타낸 것이다. 이와 같이 서로 다른 크기를 갖는 복합 포어를 이용하는 경우 상대적으 로 크기가 작은 제 1 다공성 포어는 작은 양의 연마 슬러리 입자를 포집함으로 써 정밀한 연마가 가능하도록 하고 상대적으로 크기가 큰 제 2 다공성 포어는 한꺼번에 많은 양의 연마 슬러리 입자를 포집함으로서 높은 연마 속도의 처리 가 가능하도록 한다.
이처럼 서로 다른 종류의 포어를 동시에 연마패드의 연마층에 포함되도 록 함으로써 보다 정교한 연마 작업이 가능해질 수 있다.
상술한 실시예에서는 두 종류의 다공성 포어가 형성되는 것을 위주로 설명하였으나 본 발명이 이에 한정되는 것이 아님은 앞서 설명한 바와 같다. 즉, 본 발명에 따른 연마패드에는 액상 미소요소에 의해 형성된 포어, 고상 캡슐에 의해 형성된 포어, 불활성 기체의 주입 의해 형성된 포어, 화학적 발포제에 의해 형성된 포어 중 세 종류 이상이 포—할¾수£ ¾ ^ 것이다 이때 생성되는 다공성 포어 종류별 크기 등에 대해서는 앞서 설명한 바와 같을 수도
있고, 포어 형성용 물질의 종류에 따라 또는 연마 효율을 높이기 위해 변경될 수도 있음은 물론이다.
특히 각 포어 형성 방법이 혼합 물질의 농도나 반응 은도 둥에 의해 포 어 사이즈를 컨트롤할 수 있기는 하지만, 각 종류별 포어가 반드시 서로 다른 사이즈를 가져야만 하는 것은 아니다.
한편, 본 발명은 상기한 특정 실시예에 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 변형 및 수정하여 실시할 수 있는 것이다.
【산업상이용가능성】
이상 설명한 바와 같이 본 발명에 따르면, 단일 포어가 아닌 다중 (2증) 포어를 제어함으로써 효율적인 슬러리 포집 및 이송을 가능하게 하여 보다 향 상된 CMP 연마 성능을 구현할 수 있다. 이는 반도체 공정의 미세화에 따라 요 구되는 CMP공정의 정교함을 달성할 수 있게 한다.
Claims
[청구항 1】
(a) 연마층 형성 물질을 혼합하는 단계와;
(b) 상기 (a) 단계의 혼합물에 포어 사이즈 컨트롤이 각각 가능한 불활 성 기체, 캡술형 발포제, 화학적 발포제와 액상 미소요소 중 적어도 두 가지를 혼합하여, 두 종류 이상의 다공성 포어를 형성하는 단계와;
(c) 상기 (b) 단계를 통해 생성된 혼합물을 겔화 및 경화시켜 상기 두 종류 이상의 다공성 포어를 포함하는 연마층을 제조하는 단계와;
(d) 상기 연마층을 가공하여 표면에 상기 두 종류 이상의 다공성 포어 의 개방에 의한 기공들을 분포시키는 단계를 포함하는 것을 특징으로 하는 연 마 패드의 제조방법.
【청구항 2】
제 1항에 있어서, 상기 불활성 기체는 주기율표 8족 원소와, 상기 연마층 형성 물질과 반웅하지 않는 기체 중에서 선택되는 것을 특징'으로 하는 연마 패드의 제조방법.
【청구항 3】
제 1항에 있어서, 상기 액상 미소요소를 구성하는 액상 물질은 지방족 광유, 방향족 광유, 분자말단에 수산기가 없는 실리콘 오일, 대두유, 야자유, 팜유, 면실유, 동백유 및 경화유로 이루어진 그룹에서 선택된 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 연마패드의 제조방법.
【청구항 4】
피연마 대상의 표면과 접촉하여 이동함으로써 연마 공정을 수행하는 연마 패드에 있어서,
상기 연마패드는 연마층을 포함하여 구성되고,
상기 연마층은 불활성 기체, 캡슐형 발포제, 화학적 발포제와 액상 미소 요소 중 적어도 두 가지에 의해 각각 포어 사이즈 컨트를이 이루어진 두 종류 이상의 다공성 포어를 포함하여 구성되며,
상기 연마층 표면에는 상기 두 종류 이상의 다공성 포어의 개방에 의한 기공들이 분포하는 것을 특징으로 하는 연마패드.
【청구항 5】
제 4항0ᅵᅵ 있—어서, :?ᅵᅮ불활^기 는 주기을표_8족ᅭ원„ ^와ᅳ 상기 _연마—춤. 형성 물질과 반웅하지 않는 기체 중에서 선택되는 것을 특징으로 하는 연마
패드.
【청구항 6】
제 4항에 있어서, 상기 액상 미소요소를 구성하는 액상 물질은 지방족 광유, 방향족 광유, 분자말단에 수산기가 없는 실리콘 오일, 대두유, 야자유, 팜유, 면실유, 동백유 및 경화유로 이루어진 그룹에서 선택된 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 연마패드.
【청구항 7】
저 M항에 있어서, 상기 연마층은 상기 액상 미소요소에 의한 제 1 다공성 포어와, 상기 제 1 다공성 포어보다는 크기가 더 크고 상기 불활성 기체의 주입 상기 캡슐형 발포제의 주입, 상기 화학적 발포제의 주입 중 적어도 어느 하나에 의해 형성된 제 2다공성 포어를 포함하는 것을 특징으로 하는 연마패드.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0016845 | 2012-02-20 | ||
KR1020120016845A KR20130095430A (ko) | 2012-02-20 | 2012-02-20 | 연마패드 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125807A1 true WO2013125807A1 (ko) | 2013-08-29 |
Family
ID=48957116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/001083 WO2013125807A1 (ko) | 2012-02-20 | 2013-02-12 | 연마패드 및 그 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20130212951A1 (ko) |
JP (1) | JP5588528B2 (ko) |
KR (1) | KR20130095430A (ko) |
CN (1) | CN103252729A (ko) |
TW (1) | TW201338923A (ko) |
WO (1) | WO2013125807A1 (ko) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI551396B (zh) | 2013-10-03 | 2016-10-01 | 三芳化學工業股份有限公司 | 拋光墊及其製造方法 |
CN104625945B (zh) * | 2013-11-07 | 2017-03-01 | 三芳化学工业股份有限公司 | 抛光垫及其制造方法 |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
JP6545261B2 (ja) | 2014-10-17 | 2019-07-17 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 付加製造プロセスを使用する、複合材料特性を有するcmpパッド構造 |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
US9776361B2 (en) * | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
TWI689406B (zh) * | 2014-10-17 | 2020-04-01 | 美商應用材料股份有限公司 | 研磨墊及製造其之方法 |
KR20230169424A (ko) | 2015-10-30 | 2023-12-15 | 어플라이드 머티어리얼스, 인코포레이티드 | 원하는 제타 전위를 가진 연마 제품을 형성하는 장치 및 방법 |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
TWI612084B (zh) * | 2016-04-05 | 2018-01-21 | Kpx化學股份有限公司 | 研磨墊的製造方法 |
SG11201704554SA (en) * | 2016-04-06 | 2017-11-29 | Kpx Chemical Co Ltd | Method of manufacturing polishing pad |
TWI621501B (zh) * | 2017-01-06 | 2018-04-21 | 三芳化學工業股份有限公司 | 研磨墊及研磨裝置 |
KR101835090B1 (ko) * | 2017-05-29 | 2018-03-06 | 에스케이씨 주식회사 | 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법 |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME |
JP7299970B2 (ja) | 2018-09-04 | 2023-06-28 | アプライド マテリアルズ インコーポレイテッド | 改良型研磨パッドのための配合物 |
US11813712B2 (en) | 2019-12-20 | 2023-11-14 | Applied Materials, Inc. | Polishing pads having selectively arranged porosity |
US20230083287A1 (en) * | 2020-01-31 | 2023-03-16 | 3M Innovative Properties Company | Bonded abrasive articles and methods of manufacture |
US11806829B2 (en) | 2020-06-19 | 2023-11-07 | Applied Materials, Inc. | Advanced polishing pads and related polishing pad manufacturing methods |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
KR102679468B1 (ko) * | 2021-12-17 | 2024-06-28 | 케이피엑스케미칼 주식회사 | 균일하게 분포된 액상 포어를 포함하는 연마 패드 및 이의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070108546A (ko) * | 2005-02-18 | 2007-11-12 | 네오패드 테크놀로지즈 코포레이션 | 화학적 기계적인 평탄화를 위해 적합화된 연마 패드와 그연마 패드의 제조 및 사용 방법 |
JP2011503909A (ja) * | 2007-11-20 | 2011-01-27 | プラクスエア・テクノロジー・インコーポレイテッド | 微小充填材含有制振ポリウレタンcmpパッド |
KR101080572B1 (ko) * | 2009-09-29 | 2011-11-04 | 삼성전자주식회사 | 연마 패드 및 그 제조방법 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3316757B2 (ja) * | 1999-06-04 | 2002-08-19 | 富士紡績株式会社 | 研磨パッド用ウレタン成形物の製造方法及び研磨パッド用ウレタン成形物 |
AU6763800A (en) * | 1999-08-17 | 2001-03-13 | Sachchida N. Singh | Methods for improving the insulating properties of closed celled rigid polyurethane foams |
JP2001244223A (ja) * | 2000-02-29 | 2001-09-07 | Hitachi Chem Co Ltd | 研磨パッド |
WO2001096434A1 (fr) * | 2000-06-13 | 2001-12-20 | Toyo Tire & Rubber Co., Ltd. | Procede de production de mousse de polyurethanne, mousse de polyurethanne et feuille abrasive |
KR100495404B1 (ko) * | 2002-09-17 | 2005-06-14 | 한국포리올 주식회사 | 임베디드 액상 미소요소를 함유하는 연마 패드 및 그 제조방법 |
US7579071B2 (en) * | 2002-09-17 | 2009-08-25 | Korea Polyol Co., Ltd. | Polishing pad containing embedded liquid microelements and method of manufacturing the same |
KR100464570B1 (ko) * | 2002-11-18 | 2005-01-03 | 동성에이앤티 주식회사 | 미세기공이 함유된 폴리우레탄 발포체의 제조방법 및그로부터 제조된 연마패드 |
TW592894B (en) * | 2002-11-19 | 2004-06-21 | Iv Technologies Co Ltd | Method of fabricating a polishing pad |
CN100356516C (zh) * | 2004-05-05 | 2007-12-19 | 智胜科技股份有限公司 | 单层研磨垫及其制造方法 |
JP5072442B2 (ja) * | 2007-06-07 | 2012-11-14 | 富士紡ホールディングス株式会社 | 研磨パッドの製造方法および研磨パッド |
KR20100028294A (ko) * | 2008-09-04 | 2010-03-12 | 주식회사 코오롱 | 연마패드 및 그의 제조방법 |
US8702479B2 (en) * | 2010-10-15 | 2014-04-22 | Nexplanar Corporation | Polishing pad with multi-modal distribution of pore diameters |
-
2012
- 2012-02-20 KR KR1020120016845A patent/KR20130095430A/ko active Application Filing
-
2013
- 2013-02-07 US US13/761,338 patent/US20130212951A1/en not_active Abandoned
- 2013-02-12 WO PCT/KR2013/001083 patent/WO2013125807A1/ko active Application Filing
- 2013-02-17 CN CN201310051674XA patent/CN103252729A/zh active Pending
- 2013-02-20 TW TW102105874A patent/TW201338923A/zh unknown
- 2013-02-20 JP JP2013031493A patent/JP5588528B2/ja active Active
-
2014
- 2014-08-21 US US14/464,985 patent/US20140364044A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070108546A (ko) * | 2005-02-18 | 2007-11-12 | 네오패드 테크놀로지즈 코포레이션 | 화학적 기계적인 평탄화를 위해 적합화된 연마 패드와 그연마 패드의 제조 및 사용 방법 |
JP2011503909A (ja) * | 2007-11-20 | 2011-01-27 | プラクスエア・テクノロジー・インコーポレイテッド | 微小充填材含有制振ポリウレタンcmpパッド |
KR101080572B1 (ko) * | 2009-09-29 | 2011-11-04 | 삼성전자주식회사 | 연마 패드 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20130212951A1 (en) | 2013-08-22 |
US20140364044A1 (en) | 2014-12-11 |
TW201338923A (zh) | 2013-10-01 |
KR20130095430A (ko) | 2013-08-28 |
JP2013169645A (ja) | 2013-09-02 |
JP5588528B2 (ja) | 2014-09-10 |
CN103252729A (zh) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013125807A1 (ko) | 연마패드 및 그 제조방법 | |
JP5959724B2 (ja) | 研磨パッドの製造方法 | |
JP3920829B2 (ja) | 埋め込まれた液状マイクロエレメントを含有する研磨パッドおよびその製造方法 | |
JP3836825B2 (ja) | 一体型研磨パッドおよびその製造方法 | |
JP2009544480A (ja) | 高分子シェルに封入された液状有機物コアを含む化学的機械的研磨パッド及びその製造方法 | |
JP2010274362A (ja) | 発泡ポリウレタンの製造方法および研磨パッドの製造方法 | |
JP2010274361A (ja) | 研磨パッド | |
KR101080572B1 (ko) | 연마 패드 및 그 제조방법 | |
JP5520030B2 (ja) | 研磨パッドおよび研磨パッドの製造方法 | |
KR20170018359A (ko) | 고분자 연마 패드의 원심 성형법 | |
JP7118840B2 (ja) | 研磨パッド | |
JP5936921B2 (ja) | 研磨パッド | |
KR20150024296A (ko) | 연마패드 제조방법 | |
JP6444507B2 (ja) | 研磨パッドの製造方法 | |
KR101217265B1 (ko) | 다공성 시트의 제조방법 및 이에 의해 제조된 다공성 시트 | |
KR20140028089A (ko) | 연마패드 제조방법 | |
KR101863801B1 (ko) | 다공성 폴리우레탄 연마패드의 제조방법 | |
KR102679468B1 (ko) | 균일하게 분포된 액상 포어를 포함하는 연마 패드 및 이의 제조방법 | |
TWI612084B (zh) | 研磨墊的製造方法 | |
JP2018051731A (ja) | 研磨パッドの製造方法及び研磨パッドの製造装置 | |
JP2020163562A (ja) | 研磨パッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13751378 Country of ref document: EP Kind code of ref document: A1 |