Nothing Special   »   [go: up one dir, main page]

WO2013125603A1 - ズームレンズ、撮像装置及び携帯端末 - Google Patents

ズームレンズ、撮像装置及び携帯端末 Download PDF

Info

Publication number
WO2013125603A1
WO2013125603A1 PCT/JP2013/054236 JP2013054236W WO2013125603A1 WO 2013125603 A1 WO2013125603 A1 WO 2013125603A1 JP 2013054236 W JP2013054236 W JP 2013054236W WO 2013125603 A1 WO2013125603 A1 WO 2013125603A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
optical element
zoom
Prior art date
Application number
PCT/JP2013/054236
Other languages
English (en)
French (fr)
Inventor
尾崎雄一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013125603A1 publication Critical patent/WO2013125603A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • the present invention relates to a zoom lens that includes a plurality of lens groups and performs zooming by changing an interval between the lens groups in the optical axis direction, an imaging device including the zoom lens, and a portable terminal including the imaging device.
  • CCD Charge-Coupled Device
  • CMOS Complementary-Metal-Oxide-Semiconductor
  • An imaging apparatus including a system is generally used.
  • imaging devices mounted on mobile terminals are also rapidly increasing in pixel count and functionality, can handle high pixel imaging devices, and can shoot subjects far away from the photographer with a long focal length.
  • a small zoom lens that can be mounted on a mobile terminal such as a mobile phone to enable shooting over a wide range with a short focal length when the distance from the subject cannot be separated as in indoor shooting. Is required.
  • a bending optical system that bends the optical axis by 90 degrees using a reflecting optical element such as a prism is often used, and the reflecting optical element is used for the first lens group.
  • a variable power optical system that is downsized in the thickness direction is known (see Patent Documents 1 to 3).
  • the imaging surface (effective pixel area) of a solid-state imaging device used in an imaging apparatus is often a rectangular shape of 4: 3 or 16: 9, and in a lens relatively close to the solid-state imaging device.
  • the range through which the imaging light bundle passes is often a shape close to a rectangle like the imaging surface of the solid-state imaging device. Therefore, thinning the lens by making the shape of the lens not a circle symmetric with respect to the optical axis but a so-called oval shape by cutting an unused area is a means often used in bending optical systems. It is.
  • the optical range of use of the lens near the aperture stop has a shape close to a circle, so that it cannot be cut.
  • the aperture stop diameter is simply reduced to reduce the thickness, the F number Becomes darker. Therefore, in order to reduce the thickness of the zoom lens, an optical system that reduces the aperture stop diameter without darkening the F number is required.
  • variable magnification optical system having a negative, positive, negative, positive four-group configuration as in Patent Document 1 the first lens group has a negative refractive power, so the diameter of the aperture stop present in the second lens group becomes large.
  • the aperture stop cannot be made small, which is not suitable for downsizing.
  • the optical usage area of the fourth lens group is relatively large and has a shape close to a circle, so that it can be cut.
  • the area is also limited and is not suitable for thinning.
  • variable magnification optical system using the reflective optical element as described in Patent Documents 1 and 2 a lens having a negative refractive power on the object side of the reflective optical element in order to reduce the effective diameter of the first lens group.
  • this lens is a factor that hinders the thinning of the zoom lens. Therefore, in the variable power optical systems shown in Patent Documents 3 and 4, instead of providing a negative lens, the reflective optical element has a negative refractive power so as to be thinned.
  • the first lens group has a negative refractive power as in the technique of Patent Document 1.
  • the diameter of the aperture stop existing in the second lens group becomes large and the F number changes greatly between the wide-angle end and the telephoto end, the aperture stop cannot be made small. The effect of having a negative refractive power is limited.
  • variable magnification optical system of Patent Document 5 has a positive, negative, positive and negative five-group configuration and achieves a certain degree of thinning.
  • the unit Miniaturization is insufficient from the viewpoint of volume.
  • the fifth lens group moves during zooming, so that the distance between the fifth lens group and the solid-state imaging device is reduced, and the final lens is free of dust and scratches. May be susceptible.
  • the fifth lens group moves in addition to the second lens and the fourth lens, subtle optical characteristics can be corrected during zooming.
  • the entire apparatus becomes large. Furthermore, since it is necessary to provide an inter-lens width for moving the three lens groups, the overall length of the entire optical system becomes long.
  • the present invention has been made in view of the above-described background art, and is a zoom lens in which various aberrations are favorably corrected while achieving compactness mainly in the thickness direction, an imaging apparatus using the same, and a portable terminal Is intended to provide.
  • a zoom lens according to the present invention has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the zoom lens includes a third lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and performs zooming.
  • the first lens group is a reflective lens.
  • the first and fifth lens units are fixed and the second lens unit is moved to the image side at the time of zooming from the wide-angle end to the telephoto end, and the following conditional expression is satisfied. . 0.8 ⁇ f3 / fW ⁇ 1.4 (1)
  • f3 focal length of the third lens unit
  • fW focal length of the entire system at the wide-angle end
  • the zoom lens includes, in order from the object side, a first lens group including a reflective optical element having a positive refractive power and a function of bending a light path by reflecting a light beam, and a second lens having a negative refractive power. And a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power.
  • the heat or size in the depth direction of the imaging device can be reduced, and the first lens group has a positive refractive power.
  • the entrance pupil diameter can be made larger than when the first lens group has negative refractive power.
  • the diameter of the actual aperture stop can be reduced while maintaining the F number, which is advantageous for thinning.
  • the change in the F number between the wide-angle end and the telephoto end can be suppressed as compared with the case where the first lens group has a negative refractive power, the F-number at the wide-angle end is made relatively dark for thinning.
  • an increase in the F number at the telephoto end can be suppressed.
  • the third lens group has a positive refractive power and the fourth lens group has a negative refractive power, the light beam converged by the third lens group is bounced up by the fourth lens group. Since the effective diameter of the fourth lens group can be reduced compared to the positive / negative / positive / positive / positive type and the positive / negative / positive / positive / negative type, it is advantageous for thinning.
  • the fifth lens group has a relatively large effective diameter, but its optical effective range is close to a rectangle that is the shape of the solid-state imaging device, and therefore, cutting outside the effective range of the fifth lens group is performed. Thus, it is possible to reduce the thickness. In addition, since the fifth lens group does not move at the time of zooming, a sufficient distance between the fifth lens group and the image pickup device is ensured, and it is easy to suppress the entry of dust and scratches.
  • the conditional expression (1) defines a suitable ratio between the focal length of the third lens group and the focal length at the wide angle end.
  • the third lens group has an appropriate positive refractive power, so that the light beam can be more converged, and thereby the effective diameter of the fourth lens group is reduced. It is small and is advantageous for thinning. Furthermore, the overall length of the entire optical system can be shortened, which is advantageous for downsizing.
  • the value of conditional expression (1) exceeds the lower limit, the excessive refractive power of the third lens group can be suppressed, so that the occurrence of spherical aberration and coma due to the excessive refractive power is suppressed. Is possible.
  • the focal length of the third lens group it is more desirable to satisfy the following conditional expression (1) ′. 0.9 ⁇ f3 / fW ⁇ 1.3 (1) ′
  • the zoom lens satisfies the following conditional expression. 0.2 ⁇ f1 / fT ⁇ 1.0 (2)
  • f1 focal length of the first lens unit
  • fT focal length of the entire system at the telephoto end
  • Conditional expression (2) defines the ratio between the focal length of the first lens group and the focal length of the entire system at the telephoto end.
  • the first lens group is a lens group in which the thickest light beam is incident at the telephoto end.
  • the first lens group falls below the upper limit value of the conditional expression (2), the first lens group has an appropriate refractive power. It is possible to efficiently correct aberrations such as spherical aberration and coma.
  • conditional expression (2) by exceeding the lower limit value of conditional expression (2), it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the first lens group.
  • the reflective optical element reflects a light beam on the inner surface and satisfies the following conditional expression. 1.80 ⁇ nprm ⁇ 2.20 (3) However, nprm: refractive index of the reflective optical element
  • Conditional expression (3) defines the refractive index of the reflective optical element. By exceeding the lower limit of the conditional expression (3), the refraction angle of the light beam incident on the reflecting optical element becomes smaller and passes closer to the optical axis, so the effective diameter of the first lens group becomes smaller. This is advantageous for downsizing. On the other hand, it can comprise with the easily available glass material by being less than the upper limit of conditional expression (3).
  • the reflective optical element reflects a light beam on the inner surface and satisfies the following conditional expression. 1.0 ⁇ d1aPRM / dPRM ⁇ 1.6 (4) However, d1aPRM: distance on the optical axis from the most object side surface of the first lens group to the image side surface of the reflective optical element dPRM: distance on the optical axis from the object side surface of the reflective optical element to the image side surface
  • Conditional expression (4) indicates that the distance on the optical axis from the most object side surface of the first lens group to the image side surface of the reflective optical element and the light from the object side surface of the reflective optical element to the image side surface.
  • the ratio to the distance on the axis is specified.
  • a zoom lens having a reflective optical element as in the present invention, if there is a lens on the object side of the reflective optical element, only that part becomes thicker than the others. Therefore, it is preferable not to provide a lens on the object side of the reflective optical element, or to make it thin even if a lens is provided.
  • the lens is provided on the object side of the reflective optical element, it is possible to suppress an increase in the thickness of the lens portion by falling below the upper limit value of conditional expression (4).
  • Conditional expression (5) defines the ratio between the focal length of the fourth lens group and the focal length intermediate between the wide-angle end and the telephoto end.
  • the first lens group includes an optical element having a negative refractive power closest to the object side, and satisfies the following conditional expression. 1.0 ⁇
  • f1a focal length of the optical element closest to the object side in the first lens group
  • fW focal length of the entire system at the wide angle end
  • Conditional expression (6) defines the ratio between the focal length of the optical element closest to the object side in the first lens group and the focal length of the entire system at the wide angle end.
  • the lens or the reflective optical element has an appropriate negative refractive power, and a wide angle of view can be secured at the wide angle end.
  • the conditional expression (6) it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the lens.
  • the most object side optical element of the first lens group is a lens, it is desirable to satisfy the following conditional expression (6) ′.
  • the fourth lens group moves to the image side upon zooming from the wide-angle end to the telephoto end.
  • the movement of the fourth lens group during zooming is natural and less restrictive than the fourth lens group, the change of the image becomes relatively smooth, and the movement of the actuator that moves the lens group Can be controlled in one direction.
  • increase and fluctuation of the F number can be suppressed relatively easily.
  • the reflecting optical element is a prism and has substantially no refractive power, and the reflecting surface is substantially flat. In this case, the structure and processing of the reflective optical element can be simplified.
  • the fourth lens group moves to the object side after moving to the image side, and the following conditional expression is satisfied.
  • ⁇ 2W Lateral magnification at the wide-angle end of the second lens group
  • ⁇ 2T Lateral magnification at the telephoto end of the second lens group
  • “Movement to the object side after moving to the image side” means “wide-angle in optical design At the time of zooming from the end to the telephoto end, it moves to the object side after moving to the image side. In the embodiment, it moves to the object side after moving to the image side. This includes not only the case where the image is moved, but also the case where the image is moved to the object side and then moved to the object side, so that the amount of movement is very small.
  • conditional expressions (7) and (8) relate to appropriate ranges of the lateral magnifications ⁇ 2W and ⁇ 2T of the second lens group at the wide-angle end and the telephoto end, respectively.
  • a larger actuator is required, which causes a problem that prevents the zoom lens from being thinned.
  • exceeding the lower limit value of conditional expression (7) and falling below the upper limit value of (8) results in the lateral magnification of the second lens group straddling -1 when zooming from the wide-angle end to the telephoto end.
  • the locus of zooming of the fourth lens unit has a point of inflection (a point where the positive / negative of the moving direction is reversed) instead of monotonous fluctuation, and from the wide angle end to the telephoto end.
  • the lens moves to the object side after moving to the image side (hereinafter referred to as a movement by drawing a convex locus on the image side). Therefore, since the moving range of the fourth lens group is narrowed, it is possible to select and use a smaller actuator, and thus it is possible to further reduce the thickness.
  • conditional expression (7) by moving below the upper limit of conditional expression (7), it is possible to suppress the amount of movement of the fourth lens group from the wide-angle end to the inflection point. Further, exceeding the lower limit value of conditional expression (8) makes it possible to suppress the amount of movement of the fourth lens group from the inflection point to the telephoto end.
  • the reflective optical element in the zoom lens in which the fourth lens group moves to the object side after moving to the image side, has substantially no refractive power.
  • the reflective optical element having substantially no refractive power is a prism, and the most object side surface and the reflective surface of the prism are substantially flat.
  • the zoom lens that moves to the object side after the fourth lens group moves to the image side satisfies the following conditional expression. 1.5 ⁇ m2 / m4 ⁇ 12.0 (9)
  • m2 Maximum moving amount of the second lens unit at zooming from the wide angle end to the telephoto end
  • m4 Maximum moving amount of the fourth lens unit at zooming from the wide angle end to the telephoto end
  • Conditional expression (9) defines a ratio between the maximum movement amount of the second lens group and the maximum movement amount of the fourth lens group at the zooming from the wide-angle end to the telephoto end.
  • the maximum amount of movement is the distance from the wide-angle end to the inflection point when the lens group draws a trajectory with the inflection point when zooming from the wide-angle end to the telephoto end when the object distance is infinity. The larger of the travel distance from the inflection point to the telephoto end.
  • the reflective optical element is disposed closest to the object side and has negative refractive power.
  • the negative lens is arranged on the object side of the reflective optical element while suppressing an increase in the effective diameter of the first lens group by arranging the reflective optical element having the negative refractive power on the most object side.
  • the size of the imaging device in the thickness direction can be further reduced.
  • the most object side surface of the reflective optical element is a concave surface.
  • the portion having the negative refractive power of the reflective optical element is disposed on the object side, and the effect of reducing the effective diameter of the first lens group can be enhanced.
  • the fourth lens group moves to the image side upon zooming from the wide angle end to the telephoto end.
  • a zoom lens in which the reflective optical element has negative refractive power satisfies the following conditions. 0.4 ⁇ d11 / fW ⁇ 0.9 (10) However, d11: Distance from the vertex of the most object-side surface of the first lens group to the intersection of the reflecting surface of the reflecting optical element and the optical axis fW: Focal length of the entire zoom lens system at the wide angle end
  • Conditional expression (10) defines the distance from the vertex of the most object-side surface of the first lens unit to the intersection of the reflecting surface of the reflecting optical element and the optical axis, and the ratio of the focal length of the entire system at the wide-angle end. is doing.
  • the value of conditional expression (10) is less than the upper limit, it is possible to reduce the thickness in the vicinity of the reflective optical element that often determines the thickness of the imaging device, thereby reducing the thickness of the imaging device. It becomes possible.
  • the value of conditional expression (10) exceeds the lower limit, excessively thinning of the reflective optical element can be avoided.
  • Equation (10) is effective.
  • a zoom lens in which the reflective optical element has negative refractive power satisfies the following conditions. ⁇ 3.0 ⁇ r1 / d1 ⁇ 1.5 (11)
  • r1 Paraxial radius of curvature of the object-side optical surface of the reflective optical element
  • d1 Distance on the optical axis from the object-side optical surface to the image-side optical surface of the reflective optical element
  • Conditional expression (11) is a preferred ratio between the paraxial radius of curvature of the object-side optical surface of the reflective optical element and the distance on the optical axis from the object-side optical surface to the image-side optical surface of the reflective optical element. Is stipulated. When the value of conditional expression (11) exceeds the lower limit, the object-side optical surface has an appropriate negative refractive power, and the effective diameter of the first lens group can be suppressed. Become. On the other hand, when the value of conditional expression (11) is less than the upper limit, the curvature of the object-side optical surface can be prevented from becoming excessively large with respect to the thickness of the reflective optical element, and after the light beam is reflected by the reflective surface. It is possible to effectively suppress the generation of unnecessary ghosts and the like that are generated by entering the object surface again.
  • a zoom lens in which the reflective optical element has negative refractive power satisfies the following conditions. ⁇ 3.0 ⁇ (r1 + r2) / (r1 ⁇ r2) ⁇ 0.5 (12)
  • r1 Paraxial radius of curvature of the optical surface on the object side of the reflecting optical element
  • r2 Paraxial radius of curvature of the optical surface on the image side of the reflecting optical element
  • Conditional expression (12) defines the shaping factor of the reflective optical element.
  • the first lens group as a whole has a positive refractive power
  • the reflective optical element therein has a negative refractive power.
  • the first lens group has a rear group having positive refractive power on the image side of the reflective optical element. Therefore, it can be said that the first lens group has a retrofocus configuration of two negative positive groups.
  • the principal point of the reflective optical element moves to the object side when the value of the conditional expression (12) is below the upper limit, the effect of retrofocus is further increased and the refractive power of each group is not increased so much.
  • conditional expression (12) exceeds the lower limit, the curvature of the object-side optical surface can be prevented from becoming excessively large, and after the light beam is reflected by the reflecting surface, it enters the object surface again. It is possible to suppress the occurrence of unnecessary ghosts and the like.
  • the zoom lens performs focusing by moving the fourth lens group.
  • the zoom lens performs focusing by moving the fourth lens group.
  • the third lens group does not move in the optical axis direction during zooming or focusing.
  • the third lens group tends to require a large refractive power, it is desirable to use a plurality of lenses in order to suppress the occurrence of aberrations. In such a case, when the third lens group is moved, a larger actuator is required, which hinders the reduction in the thickness of the zoom lens. Therefore, fixing the third lens group is advantageous for downsizing.
  • the fifth lens group does not move in the optical axis direction during focusing.
  • the distance between the final lens and the solid-state image sensor is fixed. Therefore, the solid-state image sensor can be sealed by the fifth lens group and its lens frame, and dust can be removed. The occurrence of contamination and scratches can be suppressed, and the influence of dust and scratches can be suppressed.
  • the third lens group includes at least two lenses having positive refractive power.
  • both the third and fourth lens groups distribute positive refractive power. The force is not so large, and a large aberration often does not occur even with a single lens.
  • the fourth lens group since the fourth lens group has a negative refractive power, it is necessary that only the third lens group has a positive refractive power. Is required.
  • the third lens group has at least three lenses having positive refractive power.
  • an aperture stop is disposed in the third lens group.
  • the configuration of the refractive power in the entire lens system becomes a symmetric system, and various aberrations that can be corrected by symmetrical shapes such as distortion, coma, and lateral chromatic aberration can be effectively corrected.
  • the aperture stop is fixed at the time of zooming or focusing, even when a mechanical shutter, an ND filter or the like is mounted on the aperture stop, an excessive load is not applied to the actuator.
  • the aperture stop may be disposed anywhere on the most object side, inside the lens group, and on the most image side of the third lens group.
  • the fifth lens group is a single lens made of plastic, and at least one surface of the fifth lens group is aspheric.
  • the fifth lens group is a lens group arranged closest to the image side, and the light beam passing through the lens is thinner than the other lens groups. Therefore, the influence of the change in refractive power on the whole is small compared to other lens groups, and even if a single lens made of plastic is used, the influence on the optical performance due to the temperature change can be suppressed.
  • the plastic lens by injection molding can easily manufacture an aspherical lens, each aspherical lens can effectively correct each aberration such as field curvature and distortion.
  • a lens having substantially no power is further included.
  • An image pickup apparatus includes the zoom lens described above and an image pickup element that photoelectrically converts an image formed on the image pickup surface by the zoom lens.
  • a mobile terminal according to the present invention includes the above-described imaging device and a display unit that displays an image.
  • the imaging device of the present invention it is possible to obtain a mobile terminal that is mainly compact in the thickness direction.
  • mobile terminal is a generic term for communication devices (mobile communication devices / terminals) and information devices (portable information devices / terminals) that can be carried and used, including mobile phones, PDAs, smartphones, and the like. It is.
  • FIG. 1 It is a figure explaining an imaging device or a module provided with the zoom lens of a 1st embodiment concerning the present invention. It is a figure explaining an imaging device provided with the zoom lens of a modification. It is a block diagram explaining a portable communication terminal provided with the imaging device of FIG. 1 or FIG. 4A and 4B are perspective views of the front side and the back side of the mobile communication terminal. It is a perspective view which shows the zoom lens etc. of 2nd Embodiment. It is a block diagram of the imaging device which has the zoom lens of 2nd Embodiment. 7A is a cross-sectional view at the wide-angle end of Example 1, FIG. 7B is a cross-sectional view at the middle, and FIG.
  • FIG. 7C is a cross-sectional view at the telephoto end.
  • FIG. 8A is an aberration diagram at the wide-angle end in Example 1
  • FIG. 8B is an aberration diagram at the middle
  • FIG. 8C is an aberration diagram at the telephoto end.
  • 9A is a cross-sectional view at the wide-angle end of Example 2
  • FIG. 9B is a cross-sectional view in the middle
  • FIG. 9C shows that the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group has an inflection point.
  • FIG. 9D is a cross-sectional view at the telephoto end.
  • FIG. 10A is an aberration diagram at the wide-angle end of Example 2
  • FIG. 10B is an aberration diagram at the middle.
  • FIG. 11A is an aberration diagram when the fourth lens group is located at the inflection point
  • FIG. 11B is an aberration diagram at the telephoto end
  • 12A is a cross-sectional view at the wide-angle end of Example 3
  • FIG. 12B is a cross-sectional view in the middle
  • FIG. 12C shows that the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group has an inflection point
  • FIG. 12D is a cross-sectional view at the telephoto end.
  • FIG. 13A is an aberration diagram at the wide-angle end of Example 3
  • FIG. 13B is an aberration diagram at the middle.
  • FIG. 14A is an aberration diagram when the fourth lens group is located at the inflection point
  • FIG. 14A is an aberration diagram when the fourth lens group is located at the inflection point
  • FIG. 14A is an aberration diagram when the fourth lens group is located at the inflection point
  • FIG. 14A is an aberration diagram when the fourth lens
  • FIG. 14B is an aberration diagram at the telephoto end.
  • 15A is a cross-sectional view at the wide-angle end of Example 4, and FIG. 15B is a cross-sectional view when the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group is at the position of the inflection point.
  • 15C is a cross-sectional view in the middle, and FIG. 15D is a cross-sectional view at the telephoto end.
  • FIG. 16A is an aberration diagram at the wide-angle end of Example 4, and FIG. 16B is an aberration diagram when the fourth lens group is located at an inflection point.
  • FIG. 17A is an aberration diagram in the middle, and FIG. 17B is an aberration diagram at the telephoto end.
  • FIG. 18A is a cross-sectional view at the wide-angle end of Example 5
  • FIG. 18B is a cross-sectional view in the middle
  • FIG. 18C shows that the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group has an inflection point.
  • FIG. 18D is a cross-sectional view at the telephoto end.
  • FIG. 19A is an aberration diagram at the wide-angle end of Example 5, and FIG. 19B is an aberration diagram at the middle.
  • FIG. 20A is an aberration diagram when the fourth lens group is located at the inflection point, and FIG. 20B is an aberration diagram at the telephoto end.
  • FIG. 21A is a cross-sectional view at the wide-angle end of Example 6, FIG.
  • FIG. 21B is a cross-sectional view in the middle, and FIG. 21C shows that the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group has an inflection point.
  • FIG. 21D is a cross-sectional view at the telephoto end.
  • FIG. 22A is an aberration diagram at the wide-angle end of Example 6, and FIG. 22B is an aberration diagram at the middle.
  • FIG. 23A is an aberration diagram when the fourth lens group is located at the inflection point, and FIG. 23B is an aberration diagram at the telephoto end.
  • FIG. 24A is a cross-sectional view at the wide-angle end of Example 7, and FIG.
  • 24B is a cross-sectional view when the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group is at the position of the inflection point.
  • 24C is a cross-sectional view in the middle
  • FIG. 24D is a cross-sectional view at the telephoto end.
  • FIG. 25A is an aberration diagram at the wide-angle end of Example 7
  • FIG. 25B is an aberration diagram when the fourth lens group is located at a position of the inflection point.
  • FIG. 26A is an aberration diagram in the middle
  • FIG. 26B is an aberration diagram at the telephoto end.
  • 27A is a cross-sectional view at the wide-angle end of Example 8
  • FIG. 27B is a cross-sectional view in the middle
  • FIG. 27C shows that the lateral magnification of the second lens group is ⁇ 1 and the fourth lens group has an inflection point.
  • FIG. 27D is a cross-sectional view at the telephoto end.
  • FIG. 28A is an aberration diagram at the wide-angle end in Example 8, and
  • FIG. 28B is an aberration diagram at the middle.
  • FIG. 29 is an aberration diagram when the fourth lens group is located at the inflection point, and
  • FIG. 29B is an aberration diagram at the telephoto end.
  • 10 is a cross-sectional view of a zoom lens according to Example 9.
  • FIG. 31A to 31C are cross-sectional views of the zoom lens of Example 9.
  • FIGS. 32A to 32C are aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens of Example 9.
  • FIGS. 33A to 33C are cross-sectional views of the zoom lens of Example 10.
  • FIG. 34A to 34C are aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens of Example 10.
  • FIGS. 35A to 35C are cross-sectional views of the zoom lens of Example 11.
  • FIGS. 36A to 36C are aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens of Example 11.
  • FIGS. 37A to 37C are cross-sectional views of the zoom lens of Example 12.
  • 38A to 38C are aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens according to the twelfth embodiment.
  • 39A to 39C are cross-sectional views of the zoom lens according to the thirteenth embodiment.
  • 40A to 40C are aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens of Example 13.
  • FIG. 1 is a cross-sectional view illustrating a camera module as an imaging apparatus including the zoom lens according to the first embodiment of the present invention.
  • the camera module (imaging device) 50 includes a zoom lens 10 that forms a subject image, an image sensor 51 that photoelectrically converts the subject image formed by the zoom lens 10, and holds the image sensor 51 from behind and wiring and the like.
  • a wiring board 52 having a zoom lens 10 and the like, and a lens barrel portion 54 having an opening OP for allowing light rays from the object side to enter the zoom lens 10 are provided.
  • the zoom lens 10 has a function of forming a subject image on the imaging surface (or projection surface) I of the image sensor 51.
  • This camera module 50 is used by being incorporated in a portable terminal described later.
  • the zoom lens 10 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3 (including an aperture stop S), a fourth lens group Gr4, and a fifth lens group Gr5.
  • Each of the lens groups Gr1 to Gr5 can be composed of a single lens or a plurality of lenses.
  • the first lens group Gr1 incorporates a triangular prismatic reflective optical element PRM that bends the optical path by reflection, and reflects light toward the ⁇ Z direction by an inclined inner surface (or reflecting surface) 12a, thereby 90 °. Bend it in the + Y direction.
  • the optical axis AX extends orthogonally across the inner surface 12a, and has an axis AX1 parallel to the Y axis and an axis AX2 parallel to the Z axis.
  • a first lens L11 having a negative refractive power is disposed so as to cover the reflective optical element PRM.
  • the zoom lens 10 illustrated in FIG. 1 has the same configuration as the zoom lens 11 of Example 1 described later.
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each pixel of RGB, and outputs an analog signal thereof.
  • the surface of the photoelectric conversion unit 51a as the light receiving unit is an imaging surface (projected surface) I.
  • the wiring substrate 52 has a role of aligning and fixing the image pickup device 51 to other members (for example, the lens barrel portion 54) via a support.
  • the wiring board 52 receives supply of voltages and signals for driving the image sensor 51 and the first and second drive mechanisms 55a and 55b from an external circuit, and outputs a detection signal to the external circuit. Is possible.
  • a parallel plate F made of, for example, an IR cut filter, an optical low-pass filter, or the like is disposed and fixed by a holder member (not shown) so as to cover the image pickup device 51 and the like.
  • the lens barrel portion 54 houses and holds the zoom lens 10.
  • the lens barrel portion 54 moves the second and fourth lens groups Gr2 and Gr4 among the lens groups Gr1 to Gr5 constituting the zoom lens 10 along the optical axis AX, thereby changing the magnification and focusing of the zoom lens 10.
  • the first and second drive mechanisms 55a and 55b are provided. Both drive mechanisms 55a and 55b can operate independently.
  • One first drive mechanism 55a reciprocates the second lens group Gr2 along the optical axis AX, and the other second drive mechanism 55b
  • the four lens group Gr4 is reciprocated along the optical axis AX.
  • the first drive mechanism 55a includes, for example, a stepping motor, a tangent screw type power transmission member, and a slide guide.
  • the second drive mechanism 55b includes a voice coil motor and a guide, for example.
  • the drive mechanism is not limited to the above, and the first drive mechanism 55a may be configured by an actuator using a piezoelectric element instead of a stepping motor (see, for example, US 5,589,723), a voice coil motor, or the like.
  • the second drive mechanism 55b may be composed of an actuator using a piezoelectric element, a stepping motor, or the like instead of the voice coil motor.
  • the zoom lens 10 in FIG. 1 forms a subject image on the imaging surface I of the image sensor 51, and in order from the object side, the first lens group Gr1 having a positive refractive power and a negative refractive power.
  • the second lens group Gr2 includes a third lens group Gr3 having a positive refractive power, a fourth lens group Gr4 having a negative refractive power, and a fifth lens group Gr5 having a positive refractive power.
  • the first lens group Gr1 includes, for example, a substantially flat and negative first lens L11, a reflective optical element PRM that is a prism mirror, and a biconvex and positive second lens L12.
  • the second lens group Gr2 includes, for example, a biconcave negative third lens L21, a biconcave negative fourth lens L22, and a biconvex fifth lens L23 which is cemented to the lens L22.
  • the third lens group Gr3 includes, for example, an aperture stop S, a biconvex positive sixth lens L31, a negative seventh lens L32 convex to the object side, and a biconvex positive eighth lens that is cemented to the lens L32. L33.
  • the fourth lens group Gr4 includes, for example, a negative meniscus ninth lens L41 that is convex on the object side.
  • the fifth lens group Gr5 includes, for example, a positive meniscus tenth lens L51 that is convex on the object side.
  • the aperture stop S is not limited to the most object side of the third lens group Gr3, but can be disposed inside the lens group (between the lenses L31 to L33) or the most image side (the image side of the lens L33).
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • the zoom lens 10 in FIG. 1 changes the positions of the second lens group Gr2 and the fourth lens group Gr4 among the first to fifth lens groups Gr1 to Gr5 when zooming from the wide-angle end to the telephoto end. Specifically, during zooming from the wide-angle end to the telephoto end, the first, third, and fifth lens groups Gr1, Gr3, and Gr5 are fixed with respect to the imaging surface I and the like and do not move, and the second lens The group Gr2 moves to the image side, and the fourth lens group Gr4 also moves to the image side.
  • the camera module 50 shown in FIG. 2 is a modified example of the camera module 50 of FIG. 1 and has the same structure. Therefore, the same parts as those of the camera module 50 of FIG. Description is omitted.
  • the zoom lens 10 illustrated in FIG. 2 has the same configuration as the zoom lens 12 of Example 2 described later.
  • the zoom lens 10 shown in FIG. 2 forms a subject image on the imaging surface I of the image sensor 51, and in order from the object side, the first lens group Gr1 having a positive refractive power and a negative refractive power.
  • the first lens group Gr1 includes, for example, a plano-concave negative first lens L11, a reflective optical element PRM that is a prism mirror, and a biconvex positive second lens L12.
  • the second lens group Gr2 includes, for example, a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes, for example, an aperture stop S, a biconvex positive fifth lens L31, a negative sixth lens L32 convex to the object side, and a biconvex positive seventh lens which is cemented to the lens L32. L33.
  • the fourth lens group Gr4 includes, for example, a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes, for example, a positive meniscus ninth lens L51 that is convex on the object side.
  • the aperture stop S is not limited to the most object side of the third lens group Gr3, but can be disposed inside the lens group (between the lenses L31 to L33) or the most image side (image side of the lens L33).
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • the zoom lens 10 in FIG. 2 has a positive, negative, positive, and positive five-group configuration, and the first lens L11 having negative refractive power in the first lens group Gr1 is disposed on the object side of the reflective optical element PRM. Although similar to the zoom lens 10 of FIG. 1, the movement of the lens during zooming is different from that of the zoom lens 10 of FIG.
  • the zoom lens 10 in FIG. 2 changes the positions of the second lens group Gr2 and the fourth lens group Gr4 among the first to fifth lens groups Gr1 to Gr5 when zooming from the wide-angle end to the telephoto end. More specifically, in the case of the zoom lens 10 shown in FIG. 2, the first, third, and fifth lens groups Gr1, Gr3, and Gr5 are fixed with the imaging surface I as a reference when zooming from the wide-angle end to the telephoto end. Thus, the second lens group Gr2 moves to the image side and the fourth lens group Gr4 once moves to the image side, and then moves to the object side in the middle or becomes substantially stationary.
  • FIGS. 3, 4A, and 4B An example of a mobile communication terminal 300 that is a mobile terminal equipped with the camera module 50 illustrated in FIGS. 1 and 2 will be described with reference to FIGS. 3, 4A, and 4B.
  • the mobile communication terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging function unit 200 having a camera module 50 that is an imaging device, and a control unit that comprehensively controls each unit and executes a program corresponding to each process ( CPU) 310, display operation unit 320 that is a touch panel that displays data related to communication, captured images and videos, and receives user operations, an operation unit 330 including a power switch, and the like, via antenna 341
  • a wireless communication unit 340 for realizing various types of information communication with an external server and the like, and a storage unit (ROM that stores necessary data such as a system program, various processing programs, and a terminal ID of the mobile communication terminal 300 360, various processing programs and data executed by the control unit 310, processing data, Includes a temporary storage unit (RAM) 370 or the like used as a work area for temporarily storing the imaging data and the like by the imaging function unit 200.
  • RAM temporary storage unit
  • the imaging function unit 200 includes a control device 74, an optical system driving circuit unit 105a, an imaging element driving device 77, an image storage device 78, and the like in addition to the camera module 50 described above.
  • the control device 74 controls each unit of the imaging function unit 200.
  • the control device 74 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs are read out from the ROM and expanded in the RAM in cooperation with the CPU. Execute the process.
  • the control unit 310 is communicably connected to the control device 74 of the imaging function unit 200, and can exchange control signals and image data.
  • the optical system drive circuit unit 105a operates the first and second drive mechanisms 55a and 55b of the zoom lens 10 to change the state of the zoom lens 10 when performing zooming, focusing, exposure, and the like under the control of the control device 74. To control.
  • the optical system drive circuit unit 105a operates the first drive mechanism 55a to appropriately move the second lens group Gr2 along the optical axis AX, and operates the second drive mechanism 55b to light the fourth lens group Gr4.
  • the zoom lens 10 is caused to perform a zoom operation. That is, during the zoom operation, the first, third, and fifth lens groups Gr1, Gr3, and Gr5 are fixed.
  • the second lens group Gr2 moves to the image side (+ Y side in FIG. 1).
  • the fourth lens group Gr4 moves to the image side (+ Y side in FIG. 1) in the case of the zoom lens 10 corresponding to FIG. 1, and the image side (in FIG. 1) in the case of the zoom lens 10 corresponding to FIG. After moving to the + Y side), it moves to the object side (-Y side in FIG. 1).
  • the fourth lens group Gr4 moves along a locus convex toward the image side.
  • the movement of the fourth lens group Gr4 at the time of zooming from the wide-angle end to the telephoto end is not limited to the case where the fourth lens group Gr4 moves relatively backward after moving to the image side. In some cases, the image becomes substantially stationary at the position closest to the image side (+ Y side in FIG. 1) after moving to.
  • the zoom lens 10 can be focused.
  • the optical system drive circuit unit 105a of the zoom lens 10 shown in FIGS. 1 and 2 operates the second drive mechanism 55b to appropriately move the fourth lens group Gr4 along the optical axis AX, whereby the zoom lens 10 To perform the focusing operation.
  • the first to third and fifth lens groups Gr1 to Gr3 and Gr5 are fixed. It is also possible to move only the second lens group Gr2 during zooming operation and move only the fourth lens group Gr4 during focusing operation.
  • the image sensor driving device 77 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control device 74. Specifically, the image sensor driving device 77 scans and controls the image sensor 51 based on the timing signal. Further, the image sensor driving device 77 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving device 77 can perform various image processing such as distortion correction, color correction, and compression on the image signal sent from the image sensor 51.
  • the image storage device 78 receives the digitized image signal from the image sensor driving device 77 and stores it as readable and writable image data.
  • the photographing operation of the mobile communication terminal 300 including the imaging function unit 200 will be described.
  • subject monitoring through image display
  • image shooting execution are performed.
  • an image of the subject obtained through the zoom lens 10 is formed on the imaging surface I (see FIG. 1 and the like) of the imaging element 51.
  • the image sensor 51 is scanned and driven by the image sensor driving device 77, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
  • This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51.
  • the digital data is subjected to color process processing including pixel interpolation processing and Y correction processing to generate digital luminance signals Y and color difference signals Cb, Cr (image data) and store them in the image storage device 78. .
  • the stored digital data is periodically read out from the image storage device 78 to generate a video signal thereof, and is output to the display operation unit 320 via the control device 74 and the control unit 310.
  • This display operation unit 320 functions as an electronic viewfinder in monitoring, and displays captured images in real time. In this state, zooming, focusing, exposure, and the like of the zoom lens 10 are set by driving the optical system driving circuit unit 105a based on an operation input performed by the user via the display operation unit 320 as needed.
  • imaging function unit 200 is an example of a configuration suitable for the present invention, and the present invention is not limited to this.
  • the camera module 50 that is an imaging device equipped with the zoom lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), tablet personal computer, mobile personal computer, digital still camera, video camera, or the like.
  • PDA Personal Digital Assistant
  • the zoom lens 10 of FIGS. 1 and 2 has the conditional expression (1) already described. 0.8 ⁇ f3 / fW ⁇ 1.4 (1) Satisfied.
  • f3 is the focal length of the third lens group Gr3
  • fW is the focal length of the entire zoom lens 10 system at the wide angle end.
  • the value f3 / fW is more preferably in the range of the following equation. 0.9 ⁇ f3 / fW ⁇ 1.3 (1) ′
  • conditional expression (2) in addition to the conditional expression (1), the conditional expression (2) already described. 0.2 ⁇ f1 / fT ⁇ 1.0 (2) Satisfied.
  • f1 is the focal length of the first lens group Gr1
  • fT is the focal length of the entire zoom lens 10 system at the telephoto end.
  • f1 is the focal length of the first lens group Gr1
  • fT is the focal length of the entire zoom lens 10 system at the telephoto end.
  • d1aPRM is a distance on the optical axis from the object-side surface of the lens L11 closest to the object side of the first lens group Gr1 to the image-side surface 11a of the reflective optical element PRM.
  • conditional expression (5) in addition to the conditional expression (1), the conditional expression (5) already described. ⁇ 1.5 ⁇ f4 / (fW ⁇ fT) 1/2 ⁇ 0.5 (5) Satisfied.
  • f4 is the focal length of the fourth lens group Gr4
  • fT is the focal length of the entire zoom lens 10 system at the telephoto end.
  • conditional expression (6) in addition to the conditional expression (1) and the like, the conditional expression (6) already described.
  • f1a is the focal length of the lens L11 that is the optical element closest to the object side of the first lens group Gr1.
  • the value f3 / fW is more preferably in the range of the following equation. 1.0 ⁇
  • conditional expressions (7) and (8) already described.
  • ⁇ 2W is the lateral magnification at the wide-angle end of the second lens group Gr2
  • ⁇ 2T is the lateral magnification at the telephoto end of the second lens group Gr2.
  • conditional expression (9) in addition to the conditional expression (1), the conditional expression (9) already described. 1.5 ⁇ m2 / m4 ⁇ 12.0 (9) Satisfied.
  • m2 is the maximum movement amount of the second lens group Gr2 at zooming from the wide-angle end to the telephoto end
  • m4 is the maximum movement of the fourth lens group Gr4 at zooming from the wide-angle end to the telephoto end. Amount.
  • FIG. 5 is a perspective view showing only the main part of the image pickup apparatus including the zoom lens according to the present embodiment, but is schematically drawn unlike an actual zoom lens.
  • FIG. 6 is a block diagram of an imaging apparatus incorporating the zoom lens according to the present embodiment.
  • the imaging device shown in FIGS. 5 and 6 can be built in a portable terminal or other devices, as in the case of the first embodiment shown in FIG.
  • the zoom lens ZL of the second embodiment has, in order from the object side, a first lens group Gr1 having a positive refractive power, a second lens group Gr2 having a negative refractive power, and a positive refractive power.
  • the third lens group Gr3 includes a fourth lens group Gr4 having negative refractive power, and a fifth lens group Gr5 having positive refractive power, and zooming is performed by changing the interval between the lens groups. It has become. Specifically, the first lens group Gr1 is fixed and the second lens group Gr2 and the fourth lens group Gr4 move to the image side by zooming from the wide-angle end to the telephoto end.
  • the first lens group Gr1 includes a reflective optical element (prism) PRM having a negative refractive power having an action of bending a light path by reflecting a light beam to the most object side.
  • the zoom lens ZL illustrated in FIG. 6 has the same configuration as the zoom lens of Example 9 described later.
  • the imaging surface I of the rectangular solid-state imaging device has a long side in the vertical direction and a short side in the horizontal direction.
  • the optical axis passing through the center of the imaging surface I is OX
  • the optical axis bent to the object side by the prism PRM is OY (parallel to the short side of the imaging surface I).
  • the prism PRM has an object side optical surface PRM1, an image side optical surface PRM2, and a reflection surface PRM3, and the optical axes OX and OY are orthogonal to each other on the reflection surface PRM3.
  • the object-side optical surface PRM1 has a substantially circular concave surface CP centered on the optical axis OY and a surrounding plane FP.
  • the light beam that has passed through the concave surface CP is received by the rectangular imaging surface I of the solid-state imaging device. Therefore, the contour of the concave surface CP protrudes on the long side of the object side optical surface PRM1, and light rays unnecessary for imaging are not incident.
  • the image side optical surface PRM2 may be a flat surface, or a convex surface or a concave surface.
  • the zoom lens ZL In the zoom lens ZL, at least the most image side lens FLS has an oval shape or an oval shape, and corresponding to the imaging surface I of the solid-state imaging device, both sides on the long side are cut to provide a linear portion (cutting portion) C. It has been. Thereby, the thickness of the zoom lens ZL in the optical axis OY direction can be reduced as much as possible.
  • a solid-state image sensor 102 is an image sensor such as a CCD or a CMOS, and includes an RGB color filter.
  • the solid-state image sensor 102 photoelectrically converts incident light for each of R, G, and B, and outputs an analog signal thereof.
  • the A / D conversion unit 103 converts an analog signal into digital image data.
  • the control unit 104 controls each unit of the imaging apparatus 100.
  • the control unit 104 includes a CPU, a RAM, and a ROM, and executes various processes in cooperation with various programs read from the ROM and expanded in the RAM.
  • the optical system driving unit 105 drives and controls the zoom lens ZL during zooming, focusing, exposure, and the like under the control of the control unit 104.
  • the timing generator 106 outputs a timing signal for analog signal output.
  • the image sensor drive unit 107 performs scanning drive control of the solid-state image sensor 102.
  • the image memory 108 stores image data so as to be readable and writable.
  • the image processing unit 109 performs various image processes on the image data.
  • the image compression unit 110 compresses captured image data by a compression method such as JPEG (Joint Photographic Experts Group).
  • the image recording unit 111 records image data on a recording medium such as a memory card set in a slot (not shown).
  • the monitor LCD 112 is a color liquid crystal panel or the like, and displays image data after shooting, a through image before shooting, various operation screens, and the like.
  • the operation unit 113 outputs information input by the user to the control unit 104 via a button group (not shown).
  • subject photographing subject monitoring (through image display) and image photographing execution are performed.
  • image photographing an image of the subject obtained through the zoom lens ZL is formed on the light receiving surface (imaging surface I) of the solid-state image sensor 102.
  • the solid-state imaging device 102 is scanned and driven by the timing generation unit 106 and the imaging device driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to an optical image formed at regular intervals.
  • the analog signal is appropriately gain-adjusted for each primary color component of RGB, and then converted into digital data by the A / D conversion unit 103.
  • the digital data is subjected to color process processing including pixel interpolation processing and ⁇ correction processing by the image processing unit 109 to generate a digital luminance signal Y and color difference signals Cb, Cr (image data).
  • the image processing unit 109 stores in the image memory 108.
  • the image data stored in the image memory 108 is periodically read out, and the video signal is generated and output to the monitor LCD 112.
  • the control unit 104 as white balance adjustment means adjusts the white balance so that the signal intensity of the blue wavelength component in the image signal is smaller than the signal intensity of other colors.
  • the monitor LCD 112 functions as an electronic viewfinder in monitoring and displays captured images in real time.
  • zooming / focusing, focusing, exposure, etc. of the zoom lens ZL are set by driving the optical system driving unit 105 based on an input through the operation unit 113 made in response to the photographer's release button operation. Is done.
  • conditional expressions (1) to (6) already described are the same as in the case of the first embodiment.
  • f1a is the focal length of the reflective optical element (prism) PRM, which is the optical element closest to the object side of the first lens group Gr1.
  • conditional expression (10) in addition to the conditional expression (1), the conditional expression (10) already described. 0.4 ⁇ d11 / fW ⁇ 0.9 (10) Meet.
  • d11 is the distance from the vertex of the most object-side surface of the first lens group Gr1 to the intersection P2 of the reflecting surface S2 of the reflecting optical element (prism) PRM and the optical axis OX.
  • conditional expression (11) in addition to the conditional expression (1), the conditional expression (11) already described. ⁇ 3.0 ⁇ r1 / d1 ⁇ 1.5 (11) Meet.
  • r1 is the paraxial radius of curvature of the object-side optical surface S1 of the reflective optical element (prism) PRM
  • d1 is from the object-side optical surface S1 to the image-side optical surface S3 of the reflective optical element PRM. The distance on the optical axis.
  • r1 is a paraxial curvature radius of the object-side optical surface S1 of the reflective optical element (prism) PRM
  • r2 is a paraxial curvature radius of the image-side optical surface S3 of the reflective optical element PRM.
  • the imaging device 100 according to the first or second embodiment described above is an example of a configuration suitable for the present invention, and the present invention is not limited to this.
  • the surface described with “*” after each surface number is a surface having an aspherical shape, and the aspherical shape has the apex of the surface as the origin and the optical axis direction. Is expressed by the following “Equation 1” where the height in the direction perpendicular to the optical axis is h.
  • the symbol inf. Means infinity or ⁇ , and the symbol stop means aperture.
  • Ai i-order aspheric coefficient
  • R radius of curvature
  • K conic constant
  • Table 1 shows lens data of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • [Table 1] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 1615.221 0.500 1.92290 20.9 2.66 2 8.613 0.533 2.51 3 inf.
  • the zoom lens 11 of Example 1 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a first lens L11 having a negative meniscus that is convex on the object side close to a plano-concave, a reflective optical element PRM that is a right-angle prism, and a positive second lens L12 that is biconvex. .
  • the second lens group Gr2 includes a biconcave negative third lens L21, a biconcave negative fourth lens L22, and a biconvex positive fifth lens L23 which is cemented to the fourth lens L22.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive sixth lens L31, a negative meniscus seventh lens L32 convex toward the object side, and a biconvex positive positive second lens. 8 lenses L33.
  • the fourth lens group Gr4 includes a negative ninth lens L41 that is biconcave.
  • the fifth lens group Gr5 includes a tenth lens L51 that is convex on the object side and has a positive meniscus.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • symbol F shows the parallel plate which assumed the optical low-pass filter, IR cut filter, the sealing glass of a solid-state image sensor, etc.
  • Reference numeral I denotes an imaging surface that is a projection surface of the imaging device 51.
  • the parallel plate F and the imaging surface I are the same in the second to thirteenth embodiments described below, and will not be described in the future.
  • the reflective optical element PRM is represented as a parallel plate equivalent to the optical path length.
  • the display in which the reflective optical element PRM is expanded along the optical axis is the same in the following Examples 2 to 13, and will not be described in the future.
  • FIG. 7A to 7C respectively show the positions of the zoom lens 11 of the first embodiment during the zoom operation.
  • 7A is a cross-sectional view at the wide-angle end of the zoom lens 11
  • FIG. 7B is a cross-sectional view at the middle
  • FIG. 7C is a cross-sectional view at the telephoto end.
  • FIG. 8A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 11, and FIG. 8B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 8C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • the solid line represents the d line and the dotted line represents the g line
  • the solid line represents the sagittal image plane and the dotted line represents the meridional. It shall represent the image plane.
  • the zoom lens 11 of Example 1 the second lens group Gr2 moves to the object side along the optical axis AX direction and the fourth lens group Gr4 moves to the optical axis AX during zooming from the wide-angle end to the telephoto end. Move to the object side along the direction.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4. It is assumed that the second lens L12, the third lens L21, and the ninth lens L41 are glass mold lenses, the tenth lens L51 is a plastic lens, and the other lenses are polished lenses made of a glass material.
  • Table 4 shows lens data of Example 2.
  • [Table 4] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 inf. 0.400 1.92290 20.9 1.84 2 4.550 0.824 1.64 3 inf. 2.553 2.00070 25.5 1.58 4 inf.0.198 1.55 5 * 4.288 1.074 1.69680 55.5 1.54 6 * -5.694 d1 1.45 7 -4.610 0.300 1.77250 49.6 0.91 8 1.790 0.114 0.80 9 1.764 0.794 1.92290 20.9 0.80 10 2.469 d2 0.65 11 (stop) inf.
  • the lateral magnification ( ⁇ 2) of the second lens group is shown in Table 5 below.
  • the zoom lens 12 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a plano-concave negative first lens L11, a reflective optical element PRM that is a right-angle prism, and a biconvex positive second lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive fifth lens L31, a negative meniscus sixth lens L32 convex toward the object side, and a biconvex positive positive first lens. 7 lens L33.
  • the fourth lens group Gr4 includes a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes a ninth lens L51 that is convex on the object side and has a positive meniscus.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 9A to 9D respectively show the positions of the zoom lens 12 of the second embodiment during the zoom operation.
  • 9A is a cross-sectional view at the wide-angle end of the zoom lens 12
  • FIG. 9B is a cross-sectional view at the middle
  • FIG. 9C shows that the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is the inflection point.
  • FIG. 9D is a cross-sectional view at the telephoto end.
  • FIG. 10A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 12, and FIG. 10B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 11A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 12 when the fourth lens group Gr4 is located at the inflection point
  • FIG. 11B is an aberration diagram at the telephoto end. (Spherical aberration, astigmatism, and distortion).
  • the solid line represents the d line and the dotted line represents the g line
  • the solid line represents the sagittal image plane and the dotted line represents the meridional. It shall represent the image plane.
  • zoom lens 12 of Example 2 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves to the object side along the optical axis AX direction, and the fourth lens group Gr4 moves in the optical axis AX direction. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12 and the fifth lens L31 are assumed to be glass mold lenses
  • the ninth lens L51 is assumed to be a plastic lens as described above
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Table 7 shows lens data of Example 3.
  • [Table 7] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 inf. 0.400 1.92290 20.9 1.96 2 4.967 0.797 1.75 3 inf. 2.907 2.00070 25.5 1.71 4 inf.0.178 1.67 5 * 4.506 1.082 1.69680 55.5 1.66 6 * -6.378 d1 1.58 7 -5.279 0.300 1.77250 49.6 0.98 8 1.881 0.133 0.86 9 1.882 0.791 1.92290 20.9 0.86 10 2.661 d2 0.71 11 (stop) inf.
  • the lateral magnification ( ⁇ 2) of the second lens group is shown in Table 8 below.
  • the zoom lens 13 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a plano-concave negative first lens L11, a reflective optical element PRM that is a right-angle prism, and a biconvex positive second lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive fifth lens L31, a negative meniscus sixth lens L32 convex toward the object side, and a biconvex positive positive first lens. 7 lens L33.
  • the fourth lens group Gr4 includes a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes a ninth lens L51 that is convex on the object side and has a positive meniscus.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIG. 12A to 12D respectively show the positions during the zoom operation of the zoom lens 13 of the third embodiment.
  • 12A is a cross-sectional view of the zoom lens 13 at the wide-angle end
  • FIG. 12B is a cross-sectional view in the middle
  • FIG. 12C shows that the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is the inflection point.
  • FIG. 12D is a cross-sectional view at the telephoto end.
  • FIG. 13A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 13, and FIG. 13B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • . 14A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 13 when the fourth lens group Gr4 is located at the inflection point
  • FIG. 14B is an aberration diagram at the telephoto end. (Spherical aberration, astigmatism, and distortion).
  • the solid line represents the d-line and the dotted line represents the g-line
  • the solid line represents the sagittal image plane and the dotted line represents the meridional image plane.
  • zoom lens 13 of Example 3 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the fourth lens group Gr4 moves in the optical axis AX direction. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12 and the fifth lens L31 are assumed to be glass mold lenses
  • the ninth lens L51 is assumed to be a plastic lens as described above
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Table 10 shows lens data of Example 4.
  • [Table 10] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -19.602 0.400 1.92290 20.9 1.85 2 5.389 0.706 1.72 3 inf. 3.005 2.00070 25.5 1.71 4 inf. 0.280 1.68 5 * 4.305 1.140 1.69680 55.5 1.67 6 * -5.267 d1 1.58 7 -5.967 0.300 1.74330 49.2 1.00 8 1.831 0.105 0.87 9 1.833 0.794 1.92290 20.9 0.87 10 2.494 d2 0.71 11 (stop) inf.
  • Table 11 below shows the lateral magnification ( ⁇ 2) of the second lens group.
  • the zoom lens 14 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a biconcave negative first lens L11, a reflective optical element PRM that is a right angle prism, and a biconvex positive lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive fifth lens L31, a biconcave negative sixth lens L32, and a biconvex positive seventh lens L33 which is cemented to the sixth lens L32.
  • the fourth lens group Gr4 includes an eighth lens L41 that is convex on the object side and has a negative meniscus.
  • the fifth lens group Gr5 includes a ninth lens L51 that is convex on the object side and has a positive meniscus.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 15A to 15D respectively show the positions of the zoom lens 14 of the fourth embodiment during the zoom operation.
  • 15A is a cross-sectional view of the zoom lens 14 at the wide-angle end
  • FIG. 15B is a cross-sectional view when the lateral magnification of the second lens group Gr is ⁇ 1 and the fourth lens group Gr4 is at the position of the inflection point.
  • FIG. 15C is a cross-sectional view in the middle
  • FIG. 15D is a cross-sectional view at the telephoto end.
  • FIG. 16A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 14, and FIG. 16B is an aberration diagram when the fourth lens group Gr4 is at the position of the inflection point (spherical surface).
  • FIG. 17A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 14 in the middle
  • FIG. 17B is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end. It is.
  • the zoom lens 14 of Example 4 the second lens group Gr2 moves toward the object side along the optical axis AX direction and the fourth lens group Gr4 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12, the fifth lens L31, and the seventh lens L33 are glass mold lenses
  • the ninth lens L51 is a plastic lens as described above
  • the other lenses are polished lenses made of a glass material.
  • Table 13 shows lens data of Example 5.
  • [Table 13] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -72.480 0.400 1.92290 20.9 1.85 2 3.394 0.597 1.59 3 inf. 3.532 1.84670 23.8 1.56 4 inf. 0.215 1.61 5 * 4.759 1.101 1.69680 55.5 1.63 6 * -4.759 d1 1.58 7 -5.312 0.300 1.77250 49.6 0.96 8 1.855 0.105 0.85 9 1.884 0.830 1.92290 20.9 0.86 10 2.888 d2 0.71 11 (stop) inf.
  • the lateral magnification ( ⁇ 2) of the second lens group is shown in Table 14 below.
  • the zoom lens 15 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a biconcave negative first lens L11, a reflective optical element PRM that is a right angle prism, and a biconvex positive lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive fifth lens L31, a negative meniscus sixth lens L32 convex toward the object side, and a biconvex positive positive first lens. 7 lens L33.
  • the fourth lens group Gr4 includes a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes a biconvex positive ninth lens L51.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 18A to 18D show the positions of the zoom lens 15 of Example 5 during the zoom operation.
  • 18A is a cross-sectional view at the wide-angle end of the zoom lens 15
  • FIG. 18B is a cross-sectional view at the middle
  • FIG. 18C shows that the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is at the inflection point.
  • FIG. 18D is a cross-sectional view at the telephoto end.
  • FIG. 19A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 15, and FIG. 19B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • . 20A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 15 when the fourth lens group Gr4 is located at the inflection point
  • FIG. 20B is an aberration diagram at the telephoto end. (Spherical aberration, astigmatism, and distortion).
  • zoom lens 15 of Example 5 when zooming from the wide angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the fourth lens group Gr4 moves in the optical axis AX direction. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12 and the fifth lens L31 are assumed to be glass mold lenses
  • the ninth lens L51 is assumed to be a plastic lens as described above
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Table 16 shows lens data of Example 6.
  • the lateral magnification ( ⁇ 2) of the second lens group is shown in Table 17 below.
  • the zoom lens 16 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a biconcave negative first lens L11, a reflective optical element PRM that is a right angle prism, and a biconvex positive lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 is cemented to the aperture stop S, the fifth lens L31 that is convex toward the object side and has a positive meniscus, the sixth lens L32 that is convex toward the object side and is a negative meniscus, and is biconvex. And a positive seventh lens L33.
  • the fourth lens group Gr4 includes a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes a biconvex positive ninth lens L51.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 21A to 21D respectively show the positions of the zoom lens 16 of the sixth embodiment during the zoom operation.
  • 21A is a cross-sectional view at the wide-angle end
  • FIG. 21B is a cross-sectional view in the middle
  • FIG. 21C is when the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is at the position of the inflection point.
  • FIG. 21D is a cross-sectional view at the telephoto end.
  • FIG. 22A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 16, and FIG. 22B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 23A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 16 when the fourth lens group Gr4 is located at the inflection point
  • FIG. 23B is an aberration diagram at the telephoto end. (Spherical aberration, astigmatism, and distortion).
  • zoom lens 16 of Embodiment 6 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the fourth lens group Gr4 moves in the optical axis AX direction. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12, the fifth lens L31, and the seventh lens L33 are glass mold lenses
  • the ninth lens L51 is a plastic lens as described above
  • the other lenses are polished lenses made of a glass material.
  • Table 19 shows lens data of Example 7.
  • [Table 19] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -9.982 0.400 1.92290 20.9 1.60 2 5.629 0.347 1.46 3 inf. 4.000 2.00070 25.5 1.45 4 inf.0.193 1.53 5 * 3.854 1.193 1.69680 55.5 1.56 6 * -5.037 d1 1.45 7 -4.721 0.300 1.77250 49.6 0.88 8 1.785 0.100 0.78 9 1.688 0.752 1.92290 20.9 0.79 10 2.135 d2 0.65 11 (stop) inf.
  • the lateral magnification ( ⁇ 2) of the second lens group is shown in Table 20 below.
  • the zoom lens 17 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a biconcave negative first lens L11, a reflective optical element PRM that is a right angle prism, and a biconvex positive lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive fifth lens L31, a biconcave negative sixth lens L32, and a biconvex positive seventh lens L33 which is cemented to the sixth lens L32.
  • the fourth lens group Gr4 includes an eighth lens L41 that is convex on the object side and has a negative meniscus.
  • the fifth lens group Gr5 includes a biconvex positive ninth lens L51. Both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 24A to 24D respectively show the positions of the zoom lens 17 of the seventh embodiment during the zoom operation.
  • 24A is a cross-sectional view at the wide-angle end of the zoom lens 17
  • FIG. 24B is a cross-sectional view when the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is at the position of the inflection point.
  • FIG. 24C is a cross-sectional view in the middle
  • FIG. 24D is a cross-sectional view at the telephoto end.
  • FIG. 25A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 17, and FIG. 25B shows the zoom lens 17 when the fourth lens group Gr4 is at the position of the inflection point. It is an aberration diagram (spherical aberration, astigmatism, and distortion).
  • FIG. 26A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 17 in the middle
  • FIG. 26B is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end. It is.
  • zoom lens 17 of Example 7 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the fourth lens group Gr4 moves in the optical axis AX direction. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4. It is assumed that the second lens L12, the fifth lens L31, the seventh lens L33, and the ninth lens L51 are glass mold lenses, and the other lenses are polished lenses made of a glass material.
  • Table 22 shows lens data of Example 8.
  • [Table 22] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 inf. 0.400 1.92290 20.9 1.97 2 5.088 0.783 1.82 3 inf. 2.934 2.00070 25.5 1.81 4 inf.
  • the horizontal magnification ( ⁇ 2) of the second lens group is shown in Table 23 below.
  • the zoom lens 18 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, a fourth lens group Gr4, and a fifth lens group Gr5.
  • the first lens group Gr1 includes a biconcave negative first lens L11, a reflective optical element PRM that is a right angle prism, and a biconvex positive lens L12.
  • the second lens group Gr2 includes a biconcave negative third lens L21 and a positive meniscus fourth lens L22 convex toward the object side.
  • the third lens group Gr3 is cemented to the aperture stop S, the fifth lens L31 that is convex toward the object side and has a positive meniscus, the sixth lens L32 that is convex toward the object side and is a negative meniscus, and is biconvex. And a positive seventh lens L33.
  • the fourth lens group Gr4 includes a biconcave negative eighth lens L41.
  • the fifth lens group Gr5 includes a biconvex positive ninth lens L51.
  • the fifth lens group Gr5 is a single lens made of plastic, and both surfaces of the fifth lens group Gr5 are aspheric.
  • FIGS. 27A to 27D respectively show positions at the time of zoom operation of the zoom lens 18 of the eighth embodiment.
  • 27A is a cross-sectional view at the wide-angle end of the zoom lens 18
  • FIG. 27B is a cross-sectional view at the middle
  • FIG. 27C shows that the lateral magnification of the second lens group Gr2 is ⁇ 1 and the fourth lens group Gr4 is the inflection point.
  • FIG. 27D is a cross-sectional view at the telephoto end.
  • FIG. 28A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 18, and FIG. 28B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 29A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) of the zoom lens 18 when the fourth lens group Gr4 is located at the inflection point
  • FIG. 29B is an aberration diagram at the telephoto end. (Spherical aberration, astigmatism, and distortion).
  • the zoom lens 18 of Example 8 the second lens group Gr2 moves toward the object side along the optical axis AX direction and the fourth lens group Gr4 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. It is possible to perform zooming by changing the position or interval of each lens unit by moving along a convex locus that moves to the object side after moving to the image side.
  • the other lens groups Gr1, Gr3, Gr5 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the second lens L12 and the fifth lens L31 are assumed to be glass mold lenses
  • the ninth lens L51 is assumed to be a plastic lens as described above
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Table 25 shows lens data and the like of Example 9.
  • [Table 25] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -10.111 4.600 2.00070 25.5 2.53 2 inf.0.100 2.40 3 * 10.441 1.147 1.88200 37.2 2.38 4 * -10.253 d1 2.35 5 -6.656 0.300 2.00070 25.5 1.34 6 3.699 0.400 1.24 7 * 7.467 0.668 1.68890 31.2 1.31 8 * 10.721 d2 1.38 9 8.131 1.024 1.84670 23.8 1.56 10 -8.446 0.100 1.53 11 (stop) inf.
  • the focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d4) of the entire system at each position (Po) 1 to 3 of the zoom lens of Example 9. ) Is shown in Table 26 below.
  • FIG. 30 and 31A to 31C are sectional views of the lens of Example 9.
  • symbol GR1 is a first lens group having positive refractive power
  • symbol GR2 is a second lens group having negative refractive power
  • symbol GR3 is a third lens group having positive refractive power
  • symbol GR4 is negative.
  • a fourth lens group having refractive power, symbol GR5, indicates a fifth lens group having positive refractive power.
  • the first lens group Gr1 includes, in order from the object side, a reflective optical element (for example, a right angle prism) PRM that can bend a light beam from the object side at a right angle, and a biconvex positive lens L1. Has positive refractive power.
  • the second lens group Gr2 includes, in order from the object side, a biconcave negative lens L3, and a positive lens L3 that is convex on the object side and concave on the image side, and has a negative refractive power as a whole.
  • the third lens group Gr3 includes a biconvex positive lens L4, an aperture stop S, a cemented lens in which the positive lens L5 and the negative lens L6 are combined, and a biconvex positive lens L7, and has a positive refractive power as a whole.
  • the fourth lens group Gr4 includes only a biconcave negative lens L8, and has a negative refracting power as a whole.
  • the fifth lens group Gr5 is composed of only a positive lens L9 that is convex near the optical axis and concave on the peripheral side, and has a positive refracting power as a whole.
  • the reflective optical element PRM has a curvature on the object side surface, the image side surface is a flat surface, and the entire reflective optical element has a negative refractive power.
  • FIG. 30 is a cross-sectional view at the wide-angle end. 31A to 31C and the subsequent cross-sectional views, the reflective optical element PRM is represented as a rotationally symmetric single lens having an equivalent optical path length.
  • the distance from the vertex P1 of the surface S1 closest to the object side of the first lens group to the intersection P2 of the reflecting surface S2 of the reflecting optical element PRM and the optical axis OX is defined as d11.
  • FIG. 31A is a cross-sectional view at the wide-angle end.
  • FIG. 31B is a cross-sectional view in the middle.
  • FIG. 31C is a cross-sectional view at the telephoto end.
  • FIGS. 32A to 32C are aberration diagrams of Example 9 (spherical aberration, astigmatism, distortion aberration).
  • FIG. 32A is an aberration diagram at the wide-angle end
  • FIG. 32B is an aberration diagram at the middle
  • FIG. It is an aberration diagram at the telephoto end.
  • the zoom lens of Example 9 the second lens group Gr2 moves toward the object side along the optical axis direction and the fourth lens group Gr4 moves along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving to the image side and changing the interval between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the first lens L1, the third lens L3, the seventh lens L7, and the eighth lens L8 are glass mold lenses
  • the ninth lens L9 is a plastic lens
  • the other lenses are polished lenses made of a glass material. .
  • Table 28 shows lens data of Example 10.
  • [Table 28] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -10.494 4.568 2.00070 25.5 2.53 2 inf. 0.100 2.33 3 * 8.893 1.223 1.89140 37.5 2.30 4 * -10.795 d1 2.26 5 -7.204 0.300 2.00270 19.3 1.28 6 4.050 0.400 1.19 7 13.645 0.300 1.69470 56.7 1.20 8 5.694 0.331 1.23 9 * 19.634 0.614 1.91180 23.8 1.31 10 * 49.792 d2 1.38 11 (stop) inf.
  • FIG. 33A to 33C are sectional views of the lens of Example 10.
  • symbol GR1 is a first lens group having positive refractive power
  • symbol GR2 is a second lens group having negative refractive power
  • symbol GR3 is a third lens group having positive refractive power
  • symbol GR4 is negative.
  • a fourth lens group having refractive power, symbol GR5, indicates a fifth lens group having positive refractive power.
  • the first lens group Gr1 includes, in order from the object side, a reflective optical element (for example, a right angle prism) PRM that can bend a light beam from the object side at a right angle, and a biconvex positive lens L1. Has positive refractive power.
  • the second lens group Gr2 includes, in order from the object side, a biconcave negative lens L3, a positive lens L3 that is convex on the object side, a concave lens on the image side, and a positive lens L4 that is convex on the object side. It has a negative refractive power as a whole.
  • the third lens group Gr3 includes an aperture stop S, a biconvex positive lens L5, and a cemented lens obtained by combining a negative lens L6 and a positive lens L7, and has a positive refractive power as a whole.
  • the fourth lens group Gr4 includes only a biconcave negative lens L8, and has a negative refracting power as a whole.
  • the fifth lens group Gr5 is composed of only a positive lens L9 that is convex near the optical axis and concave on the peripheral side, and has a positive refracting power as a whole.
  • the reflective optical element PRM has a curvature on the object side surface, the image side surface is a flat surface, and the reflective optical element as a whole has a negative refractive power.
  • FIG. 33A is a cross-sectional view at the wide-angle end.
  • FIG. 33B is a cross-sectional view in the middle.
  • FIG. 33C is a cross-sectional view at the telephoto end.
  • 34A to 34C are aberration diagrams of Example 10 (spherical aberration, astigmatism, distortion),
  • FIG. 34A is an aberration diagram at the wide-angle end,
  • FIG. 34B is an aberration diagram at the middle, and
  • FIG. It is an aberration diagram at the telephoto end.
  • the zoom lens of Example 10 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis direction, and the fourth lens group Gr4 moves along the optical axis direction.
  • the zooming can be performed by moving to the side and changing the interval between the lens groups. The remaining lens groups are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the first lens L1, the fourth lens L4, the fifth lens L5, and the eighth lens L8 are glass mold lenses
  • the ninth lens L9 is a plastic lens
  • the other lenses are polished lenses made of a glass material. .
  • Table 31 shows lens data of Example 11.
  • [Table 31] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -9.961 4.550 2.00070 25.5 2.53 2 inf.0.100 2.37 3 * 10.323 1.228 1.88200 37.2 2.35 4 * -9.397 d1 2.33 5 -6.406 0.300 2.00070 25.5 1.31 6 3.667 0.400 1.21 7 * 9.867 0.635 1.68890 31.2 1.29 8 * 11.746 d2 1.37 9 8.571 0.991 1.84670 23.8 1.56 10 -9.243 0.100 1.53 11 (stop) inf .0.000 1.48 12 6.369 1.437 1.49700 81.6 1.51 13 -3.697 0.010 1.51400 42.8 1.55 14 -3.697 0.375 2.00070 25.5 1.55 15 -34.142 0.400 1.65 16 * 10.195 1.163 1.73080 40.5 1.79 17 * -5.7
  • the focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d4) of the entire system at each position (Po) 1 to 3 of the zoom lens according to the eleventh embodiment. ) Is shown in Table 32 below.
  • Table 32 Po f Fno angle of view 2Y 1 3.73 3.77 63.3 3.914 2 6.23 3.89 40.4 4.600 3 10.51 3.86 23.9 4.600 Po d1 d2 d3 d4 1 0.243 3.686 0.925 3.756 2 2.028 1.902 1.950 2.731 3 3.630 0.300 3.665 1.017
  • 35A to 35C are sectional views of the lens of Example 11.
  • symbol GR1 is a first lens group having positive refractive power
  • symbol GR2 is a second lens group having negative refractive power
  • symbol GR3 is a third lens group having positive refractive power
  • symbol GR4 is negative.
  • a fourth lens group having refractive power, symbol GR5, indicates a fifth lens group having positive refractive power.
  • the first lens group Gr1 includes, in order from the object side, a reflective optical element (for example, a right angle prism) PRM that can bend a light beam from the object side at a right angle, and a biconvex positive lens L1. Has positive refractive power.
  • the second lens group Gr2 includes, in order from the object side, a biconcave negative lens L3, and a positive lens L3 that is convex on the object side and concave on the image side, and has a negative refractive power as a whole.
  • the third lens group Gr3 includes a biconvex positive lens L4, an aperture stop S, a cemented lens in which the positive lens L5 and the negative lens L6 are combined, and a biconvex positive lens L7, and has a positive refractive power as a whole.
  • the fourth lens group Gr4 includes a negative meniscus lens L8 and a positive meniscus lens L9 that are convex on the object side, and has a negative refracting power as a whole.
  • the fifth lens group Gr5 is composed only of a positive lens L10 that is convex on the object side near the optical axis and concave on the peripheral side, and has a positive refracting power as a whole.
  • the reflecting optical element PRM has a curvature on the object side surface, the image side surface is a flat surface, and the entire reflecting optical element has a negative refractive power.
  • FIG. 35A is a cross-sectional view at the wide-angle end.
  • FIG. 35B is a cross-sectional view in the middle.
  • FIG. 35C is a cross-sectional view at the telephoto end.
  • 36A to 36C are aberration diagrams of Example 11 (spherical aberration, astigmatism, distortion),
  • FIG. 36A is an aberration diagram at the wide-angle end,
  • FIG. 36B is an aberration diagram at the middle, and
  • FIG. It is an aberration diagram at the telephoto end.
  • the zoom lens of Example 11 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis direction, and the fourth lens group Gr4 moves along the optical axis direction.
  • the zooming can be performed by moving to the side and changing the interval between the lens groups. The remaining lens groups are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the first lens L1, the third lens L3, the seventh lens L7, and the eighth lens L8 are glass molded lenses, the ninth lens L9 and the tenth lens L10 are plastic lenses, and the other lenses are polished lenses made of a glass material. Is assumed.
  • Table 34 shows lens data of Example 12.
  • [Table 34] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -7.949 4.449 2.00060 25.5 2.43 2 -17.005 0.100 2.42 3 * 14.001 1.117 1.88300 40.8 2.35 4 * -11.304 d1 2.32 5 -6.923 0.300 1.91150 24.1 1.46 6 2.815 0.400 1.33 7 * 5.780 0.868 1.61680 32.8 1.37 8 * 10.834 d2 1.35 9 7.848 1.090 1.72740 26.0 1.59 10 -6.753 0.100 1.55 11 (stop) inf.
  • FIG. 37A to 37C are sectional views of the lens of Example 12.
  • symbol GR1 is a first lens group having positive refractive power
  • symbol GR2 is a second lens group having negative refractive power
  • symbol GR3 is a third lens group having positive refractive power
  • symbol GR4 is negative.
  • a fourth lens group having refractive power, symbol GR5, indicates a fifth lens group having positive refractive power.
  • the first lens group Gr1 includes, in order from the object side, a reflective optical element (for example, a right angle prism) PRM that can bend a light beam from the object side at a right angle, and a biconvex positive lens L1. Has positive refractive power.
  • the second lens group Gr2 includes, in order from the object side, a biconcave negative lens L3, and a positive lens L3 that is convex on the object side and concave on the image side, and has a negative refractive power as a whole.
  • the third lens group Gr3 includes a biconvex positive lens L4, an aperture stop S, a cemented lens in which the positive lens L5 and the negative lens L6 are combined, and a biconvex positive lens L7, and has a positive refractive power as a whole.
  • the fourth lens group Gr4 includes only a biconcave negative lens L8, and has a negative refracting power as a whole.
  • the fifth lens group Gr5 is composed of only a positive lens L9 that is convex near the optical axis and concave on the peripheral side, and has a positive refracting power as a whole.
  • the reflective optical element PRM has an object side surface and a curvature on the object side surface, and the entire reflective optical element has a negative refractive power.
  • FIG. 37A is a cross-sectional view at the wide-angle end.
  • FIG. 36B is a cross-sectional view in the middle.
  • FIG. 36C is a cross-sectional view at the telephoto end.
  • 38A to 38C are aberration diagrams of Example 12 (spherical aberration, astigmatism, distortion aberration),
  • FIG. 38A is an aberration diagram at the wide-angle end,
  • FIG. 38B is an aberration diagram at the middle, and
  • FIG. It is an aberration diagram at the telephoto end.
  • the zoom lens of Example 12 the second lens group Gr2 moves toward the object side along the optical axis direction and the fourth lens group Gr4 moves along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving to the side and changing the interval between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the first lens L1, the fourth lens L4, the fifth lens L5, and the eighth lens L8 are glass mold lenses
  • the ninth lens L9 is a plastic lens
  • the other lenses are polished lenses made of a glass material. .
  • Table 37 shows lens data of Example 13.
  • [Table 37] [Curvature radius, surface spacing, etc.] Surf.N R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 -14.559 5.102 1.97920 25.2 2.90 2 44.854 0.264 2.54 3 * 9.145 1.302 1.88050 40.9 2.50 4 * -10.790 d1 2.46 5 -5.961 0.300 1.90820 25.3 1.20 6 2.922 0.400 1.16 7 * 5.970 0.969 1.63290 31.4 1.27 8 * 7.748 d2 1.37 9 10.959 1.144 1.82370 23.7 1.56 10 -6.576 0.100 1.55 11 (stop) inf.
  • FIG. 39A to 39C are sectional views of the lens of Example 13.
  • symbol GR1 is a first lens group having positive refractive power
  • symbol GR2 is a second lens group having negative refractive power
  • symbol GR3 is a third lens group having positive refractive power
  • symbol GR4 is negative.
  • a fourth lens group having refractive power, symbol GR5, indicates a fifth lens group having positive refractive power.
  • the first lens group Gr1 includes, in order from the object side, a reflective optical element (for example, a right angle prism) PRM that can bend a light beam from the object side at a right angle, and a biconvex positive lens L1. Has positive refractive power.
  • the second lens group Gr2 includes, in order from the object side, a biconcave negative lens L3, and a positive lens L3 that is convex on the object side and concave on the image side, and has a negative refractive power as a whole.
  • the third lens group Gr3 includes a biconvex positive lens L4, an aperture stop S, a cemented lens in which the positive lens L5 and the negative lens L6 are combined, and a biconvex positive lens L7, and has a positive refractive power as a whole.
  • the fourth lens group Gr4 includes only a biconcave negative lens L8, and has a negative refracting power as a whole.
  • the fifth lens group Gr5 is composed of only a positive lens L9 that is convex near the optical axis and concave on the peripheral side, and has a positive refracting power as a whole.
  • the reflective optical element PRM has a curvature on the object side surface and the object side surface in the thirteenth embodiment, and has a negative refractive power in the entire reflective optical element.
  • FIG. 39A is a cross-sectional view at the wide-angle end.
  • FIG. 39B is a cross-sectional view in the middle.
  • FIG. 39C is a cross-sectional view at the telephoto end.
  • 40A to 40C are aberration diagrams of Example 13 (spherical aberration, astigmatism, distortion), FIG. 40A is an aberration diagram at the wide-angle end, FIG. 40B is an aberration diagram at the middle, and FIG. It is an aberration diagram at the telephoto end.
  • the zoom lens of Example 13 the second lens group Gr2 moves toward the object side along the optical axis direction and the fourth lens group Gr4 moves along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving to the side and changing the interval between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance can be performed by moving the fourth lens group Gr4.
  • the first lens L1, the fourth lens L4, the fifth lens L5, and the eighth lens L8 are glass mold lenses
  • the ninth lens L9 is a plastic lens
  • the other lenses are polished lenses made of a glass material. .
  • Table 40 summarizes the values of Examples 1 to 15 corresponding to the conditional expressions (1) to (12) for reference. [Table 40] In the above, the present invention has been described based on the embodiments and examples, but the present invention is not limited to the above-described embodiments and the like.
  • the zoom lens 10 and the entire ZL system It is possible to further suppress the image point position fluctuation at the time of temperature change.
  • the entire zoom lens system is obtained by using a plastic material in which such inorganic particles are dispersed in a plastic lens such as the lenses L51 and L9 (or L10) of the fifth lens group in Examples 1 to 13. It is possible to further suppress the image point position fluctuation at the time of temperature change.
  • an energy curable resin may be used.
  • a reflow process (heating process) is performed on a substrate on which solder is previously potted while an IC chip or other electronic component and an optical element are placed on the substrate.
  • a technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate.
  • it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, a lens using a thermoplastic resin is not suitable. There is a problem that the optical performance deteriorates due to thermal deformation or discoloration.
  • a technology has been proposed that uses a glass mold lens having excellent heat resistance and achieves both miniaturization and optical performance in a high temperature environment.
  • the cost is generally higher than the lens used. Therefore, by using an energy curable resin as the material of the zoom lens (specifically, for example, the ninth lens L51), it is exposed to a higher temperature than a lens using a thermoplastic resin such as polycarbonate or polyolefin. Therefore, it is effective for the reflow process, is easier to manufacture than a glass mold lens, and is inexpensive, and it is possible to achieve both low cost and mass productivity of an imaging apparatus incorporating a zoom lens.
  • the energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 厚さ方向のコンパクト化を達成しつつ、さらに諸収差が良好に補正されたズームレンズ及びそれを用いた撮像装置及び携帯端末を提供することを目的とする。ズームレンズ10は、撮像素子51の撮像面Iに被写体像を結像させるものであって、物体側より順に、正の第1レンズ群Gr1と、負の第2レンズ群Gr2と、正の第3レンズ群Gr3と、負の第4レンズ群Gr4と、正の第5レンズ群Gr5とからなる。広角端から望遠端に至る変倍に際して、第1及び第5レンズ群Gr1,Gr5は固定され、第2レンズ群Gr2は像側に移動する。このズームレンズ10は、条件式 0.8<f3/fW<1.4 … (1)を満足する。ただし、f3は、第3レンズ群Gr3の焦点距離であり、fWは、広角端におけるズームレンズ10全系の焦点距離である。

Description

ズームレンズ、撮像装置及び携帯端末
 本発明は、複数のレンズ群からなり、光軸方向にレンズ群の間隔を変えることで変倍を行うズームレンズ、並びに、かかるズームレンズを備える撮像装置及びかかる撮像装置を備える携帯端末に関する。
 近年、CCD(Charge Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置の高性能化、小型化に伴い、撮像装置を備えた携帯電話等の携帯端末が普及している。これらの機器では、サイズやコストの制約が非常に厳しいことから、通常のデジタルスチルカメラ等に比べて低画素数で小型の固体撮像素子と、1~4枚程度のプラスチックレンズからなる単焦点光学系とを備えた撮像装置が一般的に用いられている。しかしながら、携帯端末に搭載される撮像装置も高画素化・高機能化が急速に進んでおり、高画素撮像素子に対応でき、かつ、撮影者から離れた被写体を長い焦点距離で大きく撮影可能とするだけではなく、室内での撮影のように被写体からの距離を離すことができない場合に短い焦点距離で広い範囲を撮影可能とするために、携帯電話機等の携帯端末に搭載できる小型のズームレンズが要求されている。
 携帯電話等の携帯端末にズームレンズを搭載するためには、小型化のなかでも特に厚さ方向に関して薄くすることが求められている。
 このような厚みが薄いタイプのズームレンズには、プリズム等の反射光学素子を用いて光軸を90度折り曲げる屈曲光学系が多く用いられており、第1レンズ群に上記反射光学素子を用いて厚み方向の小型化を図った変倍光学系が公知となっている(特許文献1~3参照)。
 一般に、撮像装置に用いられる固体撮像素子の撮像面(有効画素領域)は4:3もしくは16:9の長方形の形状となっていることが多く、固体撮像素子に比較的近い位置にあるレンズにおいて撮影光線束の通過する範囲(光学使用範囲)は、固体撮像素子の撮像面と同様に長方形に近い形状になっていることが多い。そこで、そのようなレンズの形状を光軸に対称な円ではなく、使用しない領域をカッティングしたいわゆる小判型の形状にすることによって薄型化を行うことは、屈曲光学系では多く用いられている手段である。それに対し、開口絞りの近くにあるレンズの光学使用範囲は円に近い形状をしているため、カッティングすることができず、また、薄型化のために単純に開口絞り径を小さくすると、Fナンバーが暗くなってしまう。よって、ズームレンズを薄型化するためにはFナンバーを暗くせずに開口絞り径が小さくなるような光学系が必要となってくる。
 それに対し、特許文献1のような負正負正の4群構成の変倍光学系では、第1レンズ群が負の屈折力を有するために第2レンズ群に存在する開口絞りの径が大きくなり、また、広角端と望遠端との間でFナンバーの変化が大きいため、開口絞りを小さくすることもできず、小型化には不向きである。
 また、特許文献2のような正負正正負の5群構成の変倍光学系では、第4レンズ群の光学使用領域も比較的大きい上に円に近い形状をしているため、カッティングできる不使用領域も限定的なものとなってしまい、薄型化には不向きとなっている。
 上述した、特許文献1及び2のように反射光学素子を用いた変倍光学系では、第1レンズ群の有効径を小さくするために、反射光学素子の物体側に負の屈折力を有するレンズを配置することが多いが、このレンズがズームレンズの薄型化を妨げる要因となっている。そこで、特許文献3及び4に示す変倍光学系では、負レンズを設ける代わりに、反射光学素子に負の屈折力を持たせることで薄型化を図っている。
 特許文献3のような負正正の3群構成若しくは負正正正の4群構成の変倍光学系では、特許文献1の技術と同様に、第1レンズ群が負の屈折力を有するために第2レンズ群に存在する開口絞りの径が大きくなり、また、広角端と望遠端とでFナンバーの変化が大きいため、開口絞りを小さくすることもできないこともあって、反射光学素子が負の屈折力を有する効果が限定されてしまう。
 特許文献4のような正負正正正の5群構成の変倍光学系では、特許文献2の技術と同様に、第4レンズ群の光学使用領域が大きくなる上に、第1レンズ群の有効径も大きくなってしまうため、反射光学素子が負の屈折力を有する効果が限定されてしまい薄型化には不向きである。
 また別の例として、特許文献5の変倍光学系では、正負正負正の5群構成となっており或る程度の薄型化を達成しているが、光学系全体の全長が長いため、ユニット体積の観点からは小型化が不十分である。さらに、実施例3においては、第2レンズ、第4レンズに加え第5レンズ群が変倍に際して移動するため、第5レンズ群と固体撮像素子との距離が近づき、最終レンズでもゴミやキズの影響を受けやすくなることがある。特に小型化されたズームレンズでは、より最終レンズと固体撮像素子とが近づくので、その傾向が顕著に表れる。また、第2レンズ、第4レンズに加え第5レンズ群が移動するため、変倍に際し微妙な光学特性の補正は行えるものの、アクチュエーターを3つ必要とするため装置全体が大型化してしまう。さらに、3つのレンズ群を移動させるためのレンズ間幅を設けなければならないため、光学系全体の全長が長くなってしまう。
特開2007-93955号公報 特開2008-65347号公報 特許2003-107356号公報 特開2011-107188号公報 特開2005-215165号公報
 本発明は、上記背景技術に鑑みてなされたものであり、主に厚さ方向のコンパクト化を達成しつつ、さらに諸収差が良好に補正されたズームレンズ、それを用いた撮像装置及び携帯端末を提供することを目的とするものである。
 上記目的を達成するため、本発明に係るズームレンズは、物体側より順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とから構成され、変倍を行うズームレンズであって、第1レンズ群は、反射によって光路を折り曲げる反射光学素子を含み、広角端から望遠端に至る変倍に際して、第1及び第5レンズ群は固定され、第2レンズ群は像側に移動し、以下の条件式を満足する。
 0.8<f3/fW<1.4  …  (1)
 ただし、
  f3:第3レンズ群の焦点距離
  fW:広角端における全系の焦点距離
 上記ズームレンズは、物体側から順に、正の屈折力を有するとともに、光線を反射させることで光路を折り曲げる作用を持つ反射光学素子を備える第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とからなる。このような基本構成によって小型で収差の良好に補正されたズームレンズを提供できる。
 具体的には、第1レンズ群内に反射光学素子を備えることにより、撮像装置の奥行き方向の暑さ又は大きさを小さくすることができるとともに、第1レンズ群が正の屈折力を有することにより、入射瞳径を第1レンズ群が負の屈折力を有する場合よりも大きくすることが可能となる。それにより、Fナンバーを保ちつつ、実際の開口絞りの径を小さくすることができるため、薄型化に有利である。さらに、第1レンズ群が負の屈折力を有する場合に比べ、広角端及び望遠端間のFナンバーの変化を抑えることができるため、薄型化のために広角端のFナンバーを比較的暗くしても、望遠端でのFナンバーの増大を抑えることが可能となる。また、第3レンズ群が正の屈折力を有し、第4レンズ群が負の屈折力を有することで、第3レンズ群で収束した光線を第4レンズ群で跳ね上げる形となり、従来の正負正正正型及び正負正正負型に比べ、第4レンズ群の有効径を小さくすることができるため、薄型化に有利である。また、第5レンズ群については、比較的有効径が大きいものの、その光学有効範囲は固体撮像素子の形状である長方形に近いものとなっているため、第5レンズ群の有効範囲外をカッティングすることによって、薄型化を行うことが可能である。しかも、変倍に際して第5レンズ群が移動しないので、第5レンズ群と撮像素子との距離が十分に確保され、ゴミの混入やキズの発生を抑えやすくなる。
 上記ズームレンズにおいて、条件式(1)は、第3レンズ群の焦点距離と広角端の焦点距離との好適な比を規定している。条件式(1)の値が上限を下回ることによって、第3レンズ群が適切な正の屈折力を有することにより、光線をより収束させることができるため、それにより第4レンズ群の有効径が小さくなり、薄型化に有利である。さらに、光学系全体の全長を短くすることができるため、小型化にも有利である。一方で、条件式(1)の値が下限を上回ることによって、第3レンズ群の過度な屈折力を抑えることができるため、過度な屈折力に起因する球面収差やコマ収差の発生を抑えることが可能となる。
 なお、第3レンズ群の焦点距離に関しては、以下の条件式(1)'を満たすことがより望ましい。
 0.9<f3/fW<1.3  …  (1)'
 本発明の具体的な側面では、上記ズームレンズにおいて、以下の条件式を満足する。
 0.2<f1/fT<1.0  …  (2)
ただし、
  f1:第1レンズ群の焦点距離
  fT:望遠端における全系の焦点距離
 条件式(2)は、第1レンズ群の焦点距離と望遠端における全系の焦点距離との比を規定している。第1レンズ群は、望遠端において、最も太い光線束が入射するレンズ群であり、条件式(2)の上限値を下回ることによって第1レンズ群が適度な屈折力を有し、望遠端における球面収差やコマ収差等の収差を効率的に補正することが可能となる。一方で、条件式(2)の下限値を上回ることで、第1レンズ群の屈折力の増大による収差の発生を抑えることができる。
 本発明の別の側面では、反射光学素子は、内面で光線を反射し、以下の条件式を満足する。
 1.80<nprm<2.20  …  (3)
ただし、
  nprm:反射光学素子の屈折率
 条件式(3)は、反射光学素子の屈折率を規定している。条件式(3)の下限を上回ることで、反射光学素子に入射した光線束の屈折角が小さくなり、より光軸の近くを通過するようになるため、第1レンズ群の有効径が小さくなり、小型化に有利である。一方、条件式(3)の上限を下回ることで、入手しやすい硝材で構成することができる。
 本発明のさらに別の側面では、反射光学素子は、内面で光線を反射し、以下の条件式を満足する。
 1.0≦d1aPRM/dPRM<1.6  …  (4)
ただし、
  d1aPRM:第1レンズ群の最も物体側面から反射光学素子の像側の面までの光軸上の距離
  dPRM:反射光学素子の物体側の面から像側の面までの光軸上の距離
 条件式(4)は、第1レンズ群の最も物体側の面から反射光学素子の像側の面までの光軸上の距離と反射光学素子の物体側の面から像側の面までの光軸上の距離との比を規定したものである。本発明のような反射光学素子を有するズームレンズの場合、反射光学素子の物体側にレンズがあると、その部分だけ他よりも厚くなってしまう。よって、反射光学素子の物体側にレンズを設けないか、レンズを設けても薄くすることが好ましい。反射光学素子の物体側にレンズを設ける場合、条件式(4)の上限値を下回ることによって、レンズ部の厚さの増大を抑えることが可能となる。
 本発明のさらに別の側面では、以下の条件式を満足する。
 -1.5<f4/(fW×fT)1/2<-0.5  …  (5)
ただし、
  f4:第4レンズ群の焦点距離
  fW:広角端における全系の焦点距離
  fT:望遠端における全系の焦点距離
 条件式(5)は、第4レンズ群の焦点距離と、広角端及び望遠端の中間の焦点距離との比を規定している。条件式(5)の上限値を下回ることによって、第4レンズ群による負の跳ね上げの効果が加わるので、それより物体側の第1~3レンズ群を通過する軸外光線がより光軸付近を通過するようになり、小型化が可能となる。一方で、条件式(5)の下限値を上回ることによって第4レンズ群の過度な屈折力による軸外収差の発生を抑えることができる。
 本発明のさらに別の側面では、第1レンズ群は、最も物体側に負の屈折力を持つ光学素子を有し、以下の条件式を満足する。
 1.0<|f1a/fW|<6.0  …  (6)
ただし、
  f1a:第1レンズ群の最も物体側の光学素子の焦点距離
  fW:広角端における全系の焦点距離
 条件式(6)は、第1レンズ群の最も物体側の光学素子の焦点距離と広角端における全系の焦点距離との比を規定している。条件式(6)の上限値を下回ることによって、レンズ又は反射光学素子が適度な負の屈折力を持ち、広角端において、広い画角を確保することができる。一方で、条件式(6)の下限値を上回ることによって、レンズの屈折力の増大による収差の発生を抑えることができる。
 なお、第1レンズ群の最も物体側の光学素子がレンズである場合、以下の条件式(6)'を満たすことが望ましい。
 1.0<|f1a/fW|<3.0  …  (6)'
 第1レンズ群の最も物体側の光学素子がレンズである場合、以下の条件式(6)'を満たすことがより望ましい。
 1.0<|f1a/fW|<2.6  …  (6)"
 本発明のさらに別の側面では、第4レンズ群は、広角端から望遠端に至る変倍に際して像側に移動する。この場合、変倍に際しての第4レンズ群の動きが第4レンズ群に対して自然で制限の少ないものとなるので、像の変化も比較的スムーズとなり、また、レンズ群を移動させるアクチュエーターの動きも一方向ですむため制御が楽になる。また、Fナンバーの増加や変動を比較的簡単に抑えることができる。
 本発明のさらに別の側面では、反射光学素子はプリズムで実質的に屈折力を有さず、反射面は実質的に平面で構成されている。この場合、反射光学素子の構造や加工を簡単なものとできる。
 本発明のさらに別の側面では、広角端から望遠端に至る変倍に際して、第4レンズ群が像側に移動した後に物体側に移動し、以下の条件式を満足する。
 -0.8<β2W<-0.4  …  (7)
 -3.0<β2T<-1.0  …  (8)
 ただし、
  β2W:第2レンズ群の広角端での横倍率
  β2T:第2レンズ群の望遠端での横倍率
 なお、「像側に移動した後に物体側へ移動」とは、「光学設計上において、広角端から望遠端への変倍の際に、像側に移動した後に、微少なりとも物体側へ移動」するということであり、実施される形態においては、像側に移動した後に物体側に移動する場合のみならず、像側に移動した後に物体側に移動する量が極めて微少のため実質的に静止させておく場合も含むものである。
 上記ズームレンズにおいて、条件式(7)及び(8)は、それぞれ広角端及び望遠端での第2レンズ群の横倍率β2W,β2Tの適切な範囲に関するものである。一般に、レンズ群の移動量が大きいと、より大きなアクチュエーターが必要になり、ズームレンズの薄型化を妨げる問題が発生している。それに対し、条件式(7)の下限値を上回り、(8)の上限値を下回ることによって、第2レンズ群の横倍率が広角端から望遠端に至る変倍時に-1をまたぐ結果となるため、第3レンズ群を変倍時に固定とした場合、第4レンズ群の変倍時の軌跡が単調変動ではなく変極点(移動方向の正負が反転する点)を持ち、広角端から望遠端への変倍の際に、像側に移動した後に物体側へ移動(以下、像側に凸状の軌跡を描いて移動という)することになる。よって、第4レンズ群の移動範囲が狭まることにより、より小さなアクチュエーターを選択して使用することが可能となるため、更なる薄型化が可能となる。一方で、条件式(7)の上限値を下回ることで、第4レンズ群の広角端から変極点までの移動量を抑えることが可能となる。また、条件式(8)の下限値を上回ることによって、第4レンズ群の変極点から望遠端までの移動量を抑えることが可能となる。
 本発明のさらに別の側面では、第4レンズ群が像側に移動した後に物体側に移動するズームレンズにおいて、反射光学素子は、実質的に屈折力を有しない。
 本発明のさらに別の側面では、実質的に屈折力を有しない反射光学素子は、プリズムであり、当該プリズムの最も物体側面と反射面とは、実質的に平面である。
 本発明のさらに別の側面では、第4レンズ群が像側に移動した後に物体側に移動するズームレンズにおいて、以下の条件式を満足する。
 1.5<m2/m4<12.0  …  (9)
 ただし、
  m2:広角端から望遠端に至る変倍での第2レンズ群の最大移動量
  m4:広角端から望遠端に至る変倍での第4レンズ群の最大移動量
 条件式(9)は、広角端から望遠端に至る変倍での第2レンズ群の最大移動量と第4レンズ群の最大移動量との比を規定している。ここでいう最大移動量とは、物体距離を無限遠とした際の広角端から望遠端に至る変倍時に、レンズ群が変極点を持つ軌跡を描いた場合、広角端から変極点までと、変極点から望遠端までの移動量とのいずれか大きい方を指す。条件式(9)の下限値を上回ることによって、第4レンズ群の移動量が小さくなり、各種のより小さなアクチュエーターを選択して使用することが可能となるため、更なる薄型化が可能となる。一方で、条件式(9)の上限値を下回ることによって、第2レンズ群の移動量が大きくなることによる全長の増大を抑えることが可能となる。
 本発明のさらに別の側面では、反射光学素子は、最も物体側に配置され、負の屈折力を有する。このように、負の屈折力を有する反射光学素子の最も物体側に配置することにより、第1レンズ群の有効径の増加を抑えつつ、反射光学素子の物体側に負レンズを配置した場合に比べ、より撮像装置の厚さ方向の寸法を小さくすることが可能となる。
 本発明のさらに別の側面では、反射光学素子の最も物体側面は、凹面である。この場合、反射光学素子の負の屈折力を有する部分を物体側に配置することになり、第1レンズ群の有効径を小さくする効果を高めることができる。
 本発明のさらに別の側面では、反射光学素子が負の屈折力を有するズームレンズにおいて、第4レンズ群は、広角端から望遠端に至る変倍に際して像側に移動する。
 本発明のさらに別の側面では、反射光学素子が負の屈折力を有するズームレンズにおいて、以下の条件を満足する。
 0.4<d11/fW<0.9  …  (10)
ただし、
  d11:第1レンズ群の最も物体側の面の頂点から反射光学素子の反射面と光軸との交点までの距離
  fW:広角端におけるズームレンズ全系の焦点距離
 条件式(10)は、第1レンズ群の最も物体側の面の頂点から反射光学素子の反射面と光軸との交点までの距離と、広角端における全系の焦点距離の比とを規定している。条件式(10)の値が上限を下回ることで、撮像装置の厚さを決定することが多い反射光学素子付近の厚さを薄くすることが可能となるため、これにより撮像装置の薄型化が可能となる。一方、条件式(10)の値が下限を上回ると、過度な反射光学素子の薄型化を回避できる。過度な薄型化の推進により光軸に対する反射面の角度が45度を維持できなくなると、反射光学素子の物体側面のカッティング範囲が広がって、大幅な周辺光量の低下を招くから、その観点から条件式(10)は効果がある。
 なお、反射光学素子の物体側面から反射面と光軸との交点までの距離に関しては、以下の条件式(10)'を満たすことが望ましい。
 0.5<d11/fW<0.8  …  (10)'
 本発明のさらに別の側面では、反射光学素子が負の屈折力を有するズームレンズにおいて、以下の条件を満足する。
 -3.0<r1/d1<-1.5  …  (11)
ただし、
  r1:反射光学素子の物体側の光学面の近軸曲率半径
  d1:反射光学素子の物体側の光学面から像側の光学面までの光軸上の距離
 条件式(11)は、反射光学素子の物体側の光学面の近軸曲率半径と、反射光学素子の物体側の光学面から像側の光学面までの光軸上の距離との好適な比を規定している。条件式(11)の値が下限を上回ることで、物体側光学面が適度な負の屈折力を有し、第1レンズ群の有効径を抑えることが可能となるため、薄型化が可能となる。一方、条件式(11)の値が上限を下回ることで、反射光学素子の厚みに対して物体側光学面の曲率が過度に大きくならないようにすることができ、光線が反射面で反射した後に再度物体面に入射することによって発生する不要なゴーストの発生等を効果的に抑えることが可能となる。
 本発明のさらに別の側面では、反射光学素子が負の屈折力を有するズームレンズにおいて、以下の条件を満足する。
 -3.0<(r1+r2)/(r1-r2)<-0.5  …  (12)
ただし、
  r1:反射光学素子の物体側の光学面の近軸曲率半径
  r2:反射光学素子の像側の光学面の近軸曲率半径
 条件式(12)は、反射光学素子のシェーピングファクターを規定している。本発明の基本構成は、第1レンズ群が全体として正の屈折力を有するのに対し、その中の反射光学素子は負の屈折力を有する。これは、第1レンズ群には、反射光学素子の像側に正の屈折力を有する後群が存在することを意味する。よって、第1レンズ群は、負正2群のレトロフォーカス構成となるといえる。かかる場合、条件式(12) の値が上限を下回ることで、反射光学素子の主点が物体側に移動するため、よりレトロフォーカスの効果が大きくなり、各群の屈折力をあまり大きくせずに第1レンズ群の屈折力を大きくすることが可能となるため、収差の発生を抑えることが可能となる。一方、条件式(12)の値が下限を上回ることで、物体側光学面の曲率が過度に大きくならないようにすることができ、光線が反射面で反射した後に再度物体面に入射することによって発生する不要なゴーストの発生等を抑えることが可能となる。
 本発明のさらに別の側面において、上記ズームレンズは、第4レンズ群を移動させることにより合焦を行う。このように、第4レンズ群によって合焦を行うことによって、繰り出しによる光学全長の増加や前玉径の増大を招くことなく、近距離物体まで鮮明な画像を得ることができる。
 本発明のさらに別の側面では、第3レンズ群は、変倍時、合焦時ともに光軸方向に移動しない。
 本発明のような正負正負正5群構成では、第3レンズ群に大きな屈折力が求められがちであるため、収差の発生を抑えるために複数のレンズを用いることが望ましい。かかる場合、第3レンズ群を移動するとより大きなアクチュエーターが必要となり、ズームレンズの薄型化の妨げとなる。従って、第3レンズ群を固定すると小型化に有利である。
 本発明のさらに別の側面では、第5レンズ群は、合焦時に光軸方向に移動しない。この場合、第5レンズ群が移動しないことによって、最終レンズと固体撮像素子との距離が固定されるので、第5レンズ群及びその鏡枠により固体撮像素子を密封状態にすることができゴミの混入やキズの発生を抑え、ゴミやキズの影響を抑えることができる。
 本発明のさらに別の側面では、第3レンズ群は、正の屈折力を有するレンズを少なくとも2つ有する。
 従来の正負正正正5群構成や正負正正負5群構成の変倍光学系では、第3及び第4レンズ群の両方が正の屈折力を分配しているため、第3レンズ群の屈折力はさほど大きくなく、1枚のレンズでも大きな収差が発生しないことが多い。これに対し、本発明のような正負正負正5群構成では、第4レンズ群が負の屈折力を有するため、第3レンズ群のみで正の屈折力を有する必要があり、より大きな屈折力が求められる。そこで、第3レンズ群に正の屈折力を有するレンズを少なくとも2つ有することにより、第3レンズ群の屈折力を大きく確保しようとする場合でも複数のレンズで屈折力を分配できるようになるため、より収差の発生を抑えることが可能となる。第3レンズ群は、正の屈折力を有するレンズを少なくとも3つ有することが、より望ましい。
 本発明のさらに別の側面では、第3レンズ群に開口絞りが配置されている。これにより、レンズ系全体における屈折力の構成が対称系となり、歪曲収差やコマ収差、倍率色収差といった対称形によって補正可能な諸収差を効果的に補正することが可能となる。さらに、開口絞りが変倍時や合焦時に固定されていることにより、開口絞りにメカシャッターやNDフィルター等を搭載した際でも、アクチュエーターに過度の負荷を与えることが無くなる。なお、開口絞りは、第3レンズ群の最も物体側、レンズ群内部、及び最も像側のどこに配置してもよい。
 本発明のさらに別の側面では、第5レンズ群は、プラスチックからなる単レンズであり、第5レンズ群の少なくとも一方の面は、非球面である。第5レンズ群は最も像側に配置されているレンズ群であり、他のレンズ群に比べレンズを通る光線束が細くなる。よって、屈折力の変化が全体へ与える影響は他のレンズ群に比べ小さく、プラスチックによる単レンズを用いても、温度変化による光学性能への影響を抑えることができる。また、射出成形によるプラスチックレンズは非球面レンズを容易に製造することが可能なため、非球面レンズによって、像面湾曲や歪曲収差などの各収差を効果的に補正することが可能となる。
 本発明のさらに別の側面では、実質的にパワーを持たないレンズをさらに有する。
 本発明に係る撮像装置は、上述のズームレンズと、当該ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有する。本発明のズームレンズを用いることで、主に厚さ方向のコンパクト化を達成しつつ、さらに諸収差を良好に抑えた撮像装置を得ることができる。
 本発明に係る携帯端末は、上述の撮像装置と、画像を表示する表示部とを有する。本発明の撮像装置を用いることで、主に厚さ方向のコンパクト化を達成した携帯端末を得ることができる。
 なお、本願でいう「携帯端末」とは、携帯電話、PDA、スマートフォン等を含む、携帯して利用可能な通信機器(携帯通信機器・端末)及び情報機器(携帯情報機器・端末)についての総称である。
本発明に係る第1実施形態のズームレンズを備える撮像装置又はモジュールを説明する図である。 変形例のズームレンズを備える撮像装置を説明する図である。 図1又は図2の撮像装置を備える携帯通信端末を説明するブロック図である。 図4A及び4Bは、携帯通信端末の表面側及び裏面側の斜視図である。 第2実施形態のズームレンズ等を示す斜視図である。 第2実施形態のズームレンズを有する撮像装置のブロック図である。 図7Aは、実施例1の広角端における断面図であり、図7Bは、中間における断面図であり、図7Cは、望遠端における断面図である。 図8Aは、実施例1の広角端における収差図であり、図8Bは、中間における収差図であり、図8Cは、望遠端における収差図である。 図9Aは、実施例2の広角端における断面図であり、図9Bは、中間における断面図であり、図9Cは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図9Dは、望遠端における断面図である。 図10Aは、実施例2の広角端における収差図であり、図10Bは、中間における収差図である。 図11Aは、第4レンズ群が変極点の位置にある時の収差図であり、図11Bは、望遠端における収差図である。 図12Aは、実施例3の広角端における断面図であり、図12Bは、中間における断面図であり、図12Cは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図12Dは、望遠端における断面図である。 図13Aは、実施例3の広角端における収差図であり、図13Bは、中間における収差図である。 図14Aは、第4レンズ群が変極点の位置にある時の収差図であり、図14Bは、望遠端における収差図である。 図15Aは、実施例4の広角端における断面図であり、図15Bは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図15Cは、中間における断面図であり、図15Dは、望遠端における断面図である。 図16Aは、実施例4の広角端における収差図であり、図16Bは、第4レンズ群が変極点の位置にある時の収差図である。 図17Aは、中間における収差図であり、図17Bは、望遠端における収差図である。 図18Aは、実施例5の広角端における断面図であり、図18Bは、中間における断面図であり、図18Cは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図18Dは、望遠端における断面図である。 図19Aは、実施例5の広角端における収差図であり、図19Bは、中間における収差図である。 図20Aは、第4レンズ群が変極点の位置にある時の収差図であり、図20Bは、望遠端における収差図である。 図21Aは、実施例6の広角端における断面図であり、図21Bは、中間における断面図であり、図21Cは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図21Dは、望遠端における断面図である。 図22Aは、実施例6の広角端における収差図であり、図22Bは中間における収差図である。 図23Aは、第4レンズ群が変極点の位置にある時の収差図であり、図23Bは、望遠端における収差図である。 図24Aは、実施例7の広角端における断面図であり、図24Bは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図24Cは、中間における断面図であり、図24Dは、望遠端における断面図である。 図25Aは、実施例7の広角端における収差図であり、図25Bは、第4レンズ群が変極点の位置にある時の収差図である。 図26Aは、中間における収差図であり、図26Bは、望遠端における収差図である。 図27Aは、実施例8の広角端における断面図であり、図27Bは、中間における断面図であり、図27Cは、第2レンズ群の横倍率が-1となり第4レンズ群が変極点の位置にあるときの断面図であり、図27Dは、望遠端における断面図である。 図28Aは、実施例8の広角端における収差図であり、図28Bは中間における収差図である。 図29は、第4レンズ群が変極点の位置にある時の収差図であり、図29Bは、望遠端における収差図である。 実施例9のズームレンズの断面図である。 図31A~31Cは、実施例9のズームレンズの断面図である。 図32A~32Cは、実施例9のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。 図33A~33Cは、実施例10のズームレンズの断面図である。 図34A~34Cは、実施例10のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。 図35A~35Cは、実施例11のズームレンズの断面図である。 図36A~36Cは、実施例11のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。 図37A~37Cは、実施例12のズームレンズの断面図である。 図38A~38Cは、実施例12のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。 図39A~39Cは、実施例13のズームレンズの断面図である。 図40A~40Cは、実施例13のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。
〔第1実施形態〕
 図1は、本発明に係る第1実施形態のズームレンズを備える撮像装置としてのカメラモジュールを説明する断面図である。
 カメラモジュール(撮像装置)50は、被写体像を形成するズームレンズ10と、ズームレンズ10によって形成された被写体像を光電変換する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、ズームレンズ10等を保持するとともにズームレンズ10に物体側からの光線を入射させる開口部OPを有する鏡筒部54とを備える。ズームレンズ10は、被写体像を撮像素子51の撮像面(又は被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する携帯端末に組み込まれて使用される。
 ズームレンズ10は、物体側から順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3(開口絞りSを含む)と、第4レンズ群Gr4と、第5レンズ群Gr5とを備える。各レンズ群Gr1~Gr5は、単一又は複数のレンズからなるものとすることができる。第1レンズ群Gr1には、反射によって光路を折り曲げる三角柱状の反射光学素子PRMが組み込まれており、-Z方向に向かう光線を傾斜した内面(又は反射面)12aで反射させることにより、90°折り曲げて+Y方向に向ける。つまり、光軸AXは、内面12aを挟んで直交して延び、Y軸に平行な軸AX1とZ軸に平行な軸AX2とを有する。第1レンズ群Gr1において、反射光学素子PRMの物体側には、反射光学素子PRMを覆うように配置され負の屈折力を有する第1レンズL11が配置されている。なお、図1に例示したズームレンズ10は、後述する実施例1のズームレンズ11と同一の構成となっている。
 撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGBの各画素毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、撮像面(被投影面)Iとなっている。
 配線基板52は、支持体を介して撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や第1及び第2駆動機構55a,55bを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。
 撮像素子51のズームレンズ10側には、不図示のホルダー部材によって、例えばIRカットフィルター、光学的ローパスフィルター等で構成された平行平板Fが撮像素子51等を覆うように配置・固定されている。
 鏡筒部54は、ズームレンズ10を収納し保持している。鏡筒部54は、ズームレンズ10を構成するレンズ群Gr1~Gr5のうち第2及び第4レンズ群Gr2,Gr4を光軸AXに沿って移動させることにより、ズームレンズ10の変倍及び合焦の動作を可能にするため、第1及び第2駆動機構55a,55bを有している。両駆動機構55a,55bは独立して動作可能であり、一方の第1駆動機構55aは、第2レンズ群Gr2を光軸AXに沿って往復移動させ、他方の第2駆動機構55bは、第4レンズ群Gr4を光軸AXに沿って往復移動させる。第1駆動機構55aは、例えばステッピングモーターと、タンジェントスクリュー型の動力伝達部材と、スライドガイドとを備える。また、第2駆動機構55bは、例えばボイスコイルモーターと、ガイドとを備える。なお、駆動機構は、上記に限るものでなく、第1駆動機構55aをステッピングモーターの代わりに圧電素子を用いたアクチュエーター(例えば、US5,589,723参照)やボイスコイルモーター等で構成してもよいし、第2駆動機構55bをボイスコイルモーターの代わりに同様に圧電素子を用いたアクチュエーターやステッピングモーター等で構成してもよい。
 以下、ズームレンズ10について詳細に説明する。図1のズームレンズ10は、撮像素子51の撮像面Iに被写体像を結像させるものであって、物体側より順に、正の屈折力を有する第1レンズ群Gr1と、負の屈折力を有する第2レンズ群Gr2と、正の屈折力を有する第3レンズ群Gr3と、負の屈折力を有する第4レンズ群Gr4と、正の屈折力を有する第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、例えば略平凹で負の第1レンズL11と、プリズムミラーである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、例えば両凹で負の第3レンズL21と、両凹で負の第4レンズL22と、レンズL22に接合され両凸の第5レンズL23とを含む。第3レンズ群Gr3は、例えば開口絞りSと、両凸で正の第6レンズL31と、物体側に凸で負の第7レンズL32と、レンズL32に接合され両凸で正の第8レンズL33とを含む。第4レンズ群Gr4は、例えば物体側に凸で負メニスカスの第9レンズL41を含む。第5レンズ群Gr5は、例えば物体側に凸で正メニスカスの第10レンズL51を含む。なお、開口絞りSは、第3レンズ群Gr3の最も物体側に限らず、レンズ群内部(レンズL31~L33の間)、又は最も像側(レンズL33の像側)配置することができる。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図1のズームレンズ10は、広角端から望遠端への変倍に際し、第1~第5レンズ群Gr1~Gr5のうち第2レンズ群Gr2と第4レンズ群Gr4の位置を変更する。具体的には、広角端から望遠端に至る変倍に際して、第1、第3、及び第5レンズ群Gr1,Gr3,Gr5が撮像面I等を基準として固定されて移動せず、第2レンズ群Gr2が像側に移動し、第4レンズ群Gr4も像側に移動する。
 図2に示すカメラモジュール50は、図1のカメラモジュール50の変形例であり同様の構造を有しているので、図1のカメラモジュール50と同様の部分については、同一の符号を付して説明を省略する。なお、図2に例示したズームレンズ10は、後述する実施例2のズームレンズ12と同一の構成を有している。
 図2に示すズームレンズ10は、撮像素子51の撮像面Iに被写体像を結像させるものであって、物体側より順に、正の屈折力を有する第1レンズ群Gr1と、負の屈折力を有する第2レンズ群Gr2と、正の屈折力を有する第3レンズ群Gr3と、負の屈折力を有する第4レンズ群Gr4と、正の屈折力を有する第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、例えば平凹で負の第1レンズL11と、プリズムミラーである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、例えば両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、例えば開口絞りSと、両凸で正の第5レンズL31と、物体側に凸で負の第6レンズL32と、レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、例えば両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、例えば物体側に凸で正メニスカスの第9レンズL51を含む。なお、開口絞りSは、第3レンズ群Gr3の最も物体側に限らず、レンズ群内部(レンズL31~L33の間)、又は最も像側(レンズL33の像側)配置することができる。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図2のズームレンズ10は、正負正負正の5群構成であり、第1レンズ群Gr1において負の屈折力を有する第1レンズL11が反射光学素子PRMの物体側に配置されている点等において図1のズームレンズ10と類似するが、変倍時におけるレンズの動きが図1のズームレンズ10と異なるものとなっている。
 図2のズームレンズ10は、広角端から望遠端への変倍に際し、第1~第5レンズ群Gr1~Gr5のうち第2レンズ群Gr2と第4レンズ群Gr4の位置を変更する。より詳細には、図2のズームレンズ10の場合、広角端から望遠端に至る変倍に際して、第1、第3、及び第5レンズ群Gr1,Gr3,Gr5が撮像面I等を基準として固定されて移動せず、第2レンズ群Gr2が像側に移動し、第4レンズ群Gr4が一旦像側に移動した後、途中で物体側に移動し又は略静止した状態となる。
 次に、図3、4A、及び4Bを参照して、図1及び2に例示されるカメラモジュール50を搭載した携帯端末である携帯通信端末300の一例について説明する。
 携帯通信端末300は、スマートフォン型の携帯通信端末であり、撮像装置であるカメラモジュール50を有する撮像機能部200と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した画像・映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバ等との間の各種情報通信を実現するための無線通信部340と、携帯通信端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像機能部200による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370等を備えている。
 撮像機能部200は、既に説明したカメラモジュール50のほかに、制御装置74、光学系駆動回路部105a、撮像素子駆動装置77、画像記憶装置78等を備える。
 制御装置74は、撮像機能部200の各部を制御する。制御装置74は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働で各種処理を実行する。なお、制御部310は、撮像機能部200の制御装置74と通信可能に接続されており、制御信号や画像データの授受が可能になっている。
 光学系駆動回路部105aは、制御装置74の制御により変倍、合焦、露出等を行う際に、ズームレンズ10の第1及び第2駆動機構55a,55bを動作させてズームレンズ10の状態を制御する。光学系駆動回路部105aは、第1駆動機構55aを動作させて第2レンズ群Gr2を光軸AXに沿って適宜移動させるとともに、第2駆動機構55bを動作させて第4レンズ群Gr4を光軸AXに沿って適宜移動させることにより、ズームレンズ10にズーム動作を行わせる。つまり、ズーム動作に際して、第1、第3、第5レンズ群Gr1,Gr3,Gr5は固定されている。広角端から望遠端に至る変倍に際して、第2レンズ群Gr2は、像側(図1の+Y側)に移動する。また、第4レンズ群Gr4は、図1に対応するズームレンズ10の場合、像側(図1の+Y側)に移動し、図2に対応するズームレンズ10の場合、像側(図1の+Y側)に移動した後、物体側(図1の-Y側)に移動する。結果的に、図2に対応するズームレンズ10において、第4レンズ群Gr4は、像側に凸状の軌跡を描いて移動する。図2に対応するズームレンズ10において、広角端から望遠端に至る変倍に際しての第4レンズ群Gr4の移動は、像側に移動した後に比較的大きく逆に移動する場合のみならず、像側に移動した後に最も像側(図1の+Y側)の位置で略静止した状態となる場合もある。一方、ズームレンズ10は合焦動作も可能となっている。つまり、図1及び2に示すズームレンズ10の光学系駆動回路部105aは、第2駆動機構55bを動作させて第4レンズ群Gr4を光軸AXに沿って適宜移動させることにより、ズームレンズ10に合焦動作を行わせる。合焦動作に際して、第1~第3、第5レンズ群Gr1~Gr3,Gr5は固定されている。なお、変倍動作時に第2レンズ群Gr2のみ移動させ、合焦動作時に第4レンズ群Gr4のみ移動させるといった動作も可能である。
 撮像素子駆動装置77は、制御装置74の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動装置77は、タイミング信号に基づいて撮像素子51を走査駆動させてこれを制御する。また、撮像素子駆動装置77は、撮像素子51から出力された検出信号又は光電変換信号としてのアナログ信号をデジタルの画像データに変換する。さらに、撮像素子駆動装置77は、撮像素子51から送出された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。
 画像記憶装置78は、デジタル化された画像信号を撮像素子駆動装置77から受け取って、読み出し及び書き込み可能な画像データとして記憶する。
 ここで、上記撮像機能部200を含む携帯通信端末300の撮影動作を説明する。携帯通信端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、ズームレンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1等参照)に結像される。撮像素子51は、撮像素子駆動装置77によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。
 このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータは、画素補間処理及びY補正処理を含むカラープロセス処理が行なわれて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像記憶装置78に格納される。格納されたデジタルデータは、画像記憶装置78から定期的に読み出されてそのビデオ信号が生成されて、制御装置74及び制御部310を介して、表示操作部320に出力される。
 この表示操作部320は、モニタリングにおいては電子ファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動回路部105aの駆動によりズームレンズ10の変倍、合焦、露出等が設定される。
 このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像記憶装置78に格納された1コマの画像データが読み出されて、撮像素子駆動装置77により圧縮される。その圧縮された画像データは、制御装置74及び制御部310を介して、例えばRAM370等に記録される。
 なお、上述の撮像機能部200は、本発明に好適な構成の一例であり、本発明は、これに限定されるものではない。
 すなわち、ズームレンズ10を搭載した撮像装置であるカメラモジュール50は、スマートフォン型の携帯通信端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。
 以下、図1及び2に示す第1実施形態のズームレンズ10が満たす数値的な条件について説明する。図1及び2のズームレンズ10は、既に説明した条件式(1)
 0.8<f3/fW<1.4  …  (1)
を満足する。ただし、f3は、第3レンズ群Gr3の焦点距離であり、fWは、広角端におけるズームレンズ10全系の焦点距離である。
 なお、値f3/fWについては、より望ましくは下式の範囲とする。
 0.9<f3/fW<1.3  …  (1)'
 第1実施形態のズームレンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)
 0.2<f1/fT<1.0  …  (2)
を満足する。ただし、f1は、第1レンズ群Gr1の焦点距離であり、fTは、望遠端におけるズームレンズ10全系の焦点距離である。
 第1実施形態のズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(3)
 1.80<nprm<2.20  …  (3)
を満足する。ただし、f1は、第1レンズ群Gr1の焦点距離であり、fTは、望遠端におけるズームレンズ10全系の焦点距離である。
 第1実施形態のズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(4)
 1.0≦d1aPRM/dPRM<1.6  …  (4)
を満足する。ただし、d1aPRMは、第1レンズ群Gr1の最も物体側のレンズL11の物体側の面から反射光学素子PRMの像側の面11aまでの光軸上の距離である。
 第1実施形態のズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(5)
 -1.5<f4/(fW×fT)1/2<-0.5  …  (5)
を満足する。ただし、f4は、第4レンズ群Gr4の焦点距離であり、fTは、望遠端におけるズームレンズ10全系の焦点距離である。
 第1実施形態のズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(6)
 1.0<|f1a/fW|<6.0  …  (6)
を満足する。ただし、f1aは、第1レンズ群Gr1の最も物体側の光学素子であるレンズL11の焦点距離である。
 なお、値f3/fWについては、より望ましくは下式の範囲とする。
 1.0<|f1a/fW|<3.0  …  (6)'
 1.0<|f1a/fW|<2.6  …  (6)"
 特に、図1に示すタイプのズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(7)及び(8)
 -0.8<β2W<-0.4  …  (7)
 -3.0<β2T<-1.0  …  (8)
を満足する。ただし、ただし、β2Wは、第2レンズ群Gr2の広角端での横倍率であり、β2Tは、第2レンズ群Gr2の望遠端での横倍率である。
 特に、図1に示すタイプのズームレンズ10は、上記条件式(1)等に加えて、既に説明した条件式(9)
 1.5<m2/m4<12.0  …  (9)
を満足する。ただし、m2は、広角端から望遠端に至る変倍での第2レンズ群Gr2の最大移動量であり、m4は、広角端から望遠端に至る変倍での第4レンズ群Gr4の最大移動量である。
〔第2実施形態〕
 以下、本発明の第2実施形態のズームレンズを図面に基づいて説明する。図5は、本実施形態に係るズームレンズを備えた撮像装置の主要部のみを示す斜視図であるが、実際のズームレンズとは異なり模式的に描かれている。図6は、本実施形態に係るズームレンズを組み込んだ撮像装置のブロック図である。図5及び6に示す撮像装置は、図3に示す第1実施形態の場合と同様に、携帯端末その他の装置に内蔵させることができる。
 図6において、第2実施形態のズームレンズZLは、物体側より順に、正の屈折力を有する第1レンズ群Gr1と、負の屈折力を有する第2レンズ群Gr2と、正の屈折力を有する第3レンズ群Gr3と、負の屈折力を有する第4レンズ群Gr4と、正の屈折力を有する第5レンズ群Gr5から構成され、各レンズ群の間隔を変えることにより変倍を行うようになっている。具体的には、広角端から望遠端に至る変倍で、第1レンズ群Gr1が固定であり、第2レンズ群Gr2と第4レンズ群Gr4とが像側に移動する。さらに、第1レンズ群Gr1は、最も物体側に光線を反射させることで光路を折り曲げる作用を持つ負の屈折力を有する反射光学素子(プリズム)PRMを含む。なお、図6に例示したズームレンズZLは、後述する実施例9のズームレンズと同一の構成となっている。
 図5において、長方形状である固体撮像素子の撮像面Iは、垂直方向に長辺を有し、水平方向に短辺を有する。撮像面Iの中心を通る光軸をOXとし、プリズムPRMで物体側に折り曲げられた光軸をOY(撮像面Iの短辺に平行)とする。プリズムPRMは、物体側光学面PRM1と、像側光学面PRM2と、反射面PRM3とを有し、光軸OX,OYは、反射面PRM3上で直交している。物体側光学面PRM1は光軸OYを中心とした略円形の凹面CPと、その周囲の平面FPとを有する。凹面CPを通過した光線が、固体撮像素子の長方形の撮像面Iに受光される。よって、凹面CPの輪郭は、物体側光学面PRM1の長辺側においてはみ出しており、撮像に不要な光線は入射させないようにしている。像側光学面PRM2は、平面でも良いし、凸面もしくは凹面でも良い。
 ズームレンズZLは、少なくとも最も像側のレンズFLSが小判形又は長円形であり、固体撮像素子の撮像面Iに対応して、長辺側の両側がカッティングされ直線部(カッティング部)Cが設けられている。これにより、光軸OY方向のズームレンズZLの厚みを極力薄くできる。
 図6において、固体撮像素子102は、CCDやCMOS等の撮像素子であり、RGBカラーフィルターを備え、入射光をR、G、B毎に光電変換してそのアナログ信号を出力する。A/D変換部103は、アナログ信号をデジタルの画像データに変換する。
 制御部104は、撮像装置100の各部を制御する。制御部104は、CPU、RAM、及びROMを含み、ROMから読み出されてRAMに展開された各種プログラムと、CPUとの協働で各種処理を実行する。
 光学系駆動部105は、制御部104の制御により、変倍、合焦、露出等において、ズームレンズZLを駆動制御する。タイミング発生部106は、アナログ信号出力用のタイミング信号を出力する。撮像素子駆動部107は、固体撮像素子102を走査駆動制御する。
 画像メモリー108は、画像データを読み出し及び書き込み可能に記憶する。画像処理部109は、画像データに各種画像処理を施す。画像圧縮部110は、JPEG(Joint Photographic Experts Group)等の圧縮方式により、撮像画像データを圧縮する。画像記録部111は、図示しないスロットにセットされた、メモリーカード等の記録メディアに画像データを記録する。
 モニターLCD112は、カラー液晶パネル等であり、撮影後の画像データ、撮影前のスルー画像、各種操作画面等を表示する。動作部113は、不図示の釦群を介して、ユーザーにより操作入力された情報を制御部104に出力する。
 ここで、撮像装置100における動作を説明する。被写体撮影では、被写体のモニタリング(スルー画像表示)と画像撮影実行とが行われる。モニタリングにおいては、ズームレンズZLを介して得られた被写体の像が、固体撮像素子102の受光面(撮像面I)に結像される。さらに、固体撮像素子102が、タイミング発生部106及び撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。
 このアナログ信号は、RGBの各原色成分毎に適宜ゲイン調整された後に、A/D変換部103でデジタルデータに変換される。そのデジタルデータに対しては、画像処理部109により、画素補間処理及びγ補正処理を含むカラープロセス処理が行なわれて、デジタル値の輝度信号Y及び色差信号Cb、Cr(画像データ)が生成されて画像メモリー108に格納される。また、画像メモリー108に格納された画像データは、定期的に読み出され、そのビデオ信号が生成されて、モニターLCD112に出力される。なお、ホワイトバランス調整手段である制御部104は、画像信号における青色の波長成分の信号強度が他の色の信号強度よりも小さくなるようにホワイトバランスを調整する。
 このモニターLCD112は、モニタリングにおいては電子ファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、撮影者のレリーズ釦の操作に応じてなされる操作部113を介する入力に基づいて、光学系駆動部105の駆動によりズームレンズZLの変倍、合焦、露出等が設定される。
 このようなモニタリング状態において、静止画撮影を行ないたいタイミングで、ユーザーがレリーズ釦(不図示)を操作することにより、静止画像データが撮影される。レリーズ釦の操作に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、画像圧縮部110により圧縮される。その圧縮された画像データが、画像記録部111によりリムーバブルメモリーに記録される。
 以下、図5又は6に示す第2実施形態のズームレンズZLが満たす数値的な条件について説明する。第2実施形態のズームレンズZLは、第1実施形態の場合と同様に既に説明した条件式(1)~(6)
 0.8<f3/fW<1.4  …  (1)
 0.2<f1/fT<1.0  …  (2)
 1.80<nprm<2.20  …  (3)
 1.0≦d1aPRM/dPRM<1.6  …  (4)
 -1.5<f4/(fW×fT)1/2<-0.5  …  (5)
 1.0<|f1a/fW|<6.0  …  (6)
を満たす。なお、条件式(6)において、f1aは、第1レンズ群Gr1の最も物体側の光学素子である反射光学素子(プリズム)PRMの焦点距離である。
 第2実施形態のズームレンズZLは、上記条件式(1)等に加えて、既に説明した条件式(10)
 0.4<d11/fW<0.9  …  (10)
を満たす。ただし、d11は、第1レンズ群Gr1の最も物体側の面の頂点から反射光学素子(プリズム)PRMの反射面S2と光軸OXとの交点P2までの距離である。
 第2実施形態のズームレンズZLは、上記条件式(1)等に加えて、既に説明した条件式(11)
 -3.0<r1/d1<-1.5  …  (11)
を満たす。ただし、r1は、反射光学素子(プリズム)PRMの物体側の光学面S1の近軸曲率半径であり、d1は、反射光学素子PRMの物体側の光学面S1から像側の光学面S3までの光軸上の距離である。
 第2実施形態のズームレンズZLは、上記条件式(1)等に加えて、既に説明した条件式(12)
 -3.0<(r1+r2)/(r1-r2)<-0.5  …  (12)
を満たす。ただし、r1は、反射光学素子(プリズム)PRMの物体側の光学面S1の近軸曲率半径であり、r2は、反射光学素子PRMの像側の光学面S3の近軸曲率半径である。
 なお、上述した第1又は第2実施形態の撮像装置100は、本発明に好適な構成の一例であり、本発明は、これに限定されるものではない。
〔実施例〕
 以下、本発明のズームレンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f  :ズームレンズ全系の焦点距離
Fno:Fナンバー
2Y :固体撮像素子の撮像面対角線長
R  :近軸曲率半径
D  :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
β2 :第2レンズ群の横倍率
 各実施例において、各面番号(Surf.N)の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。その他、記号inf.は、無限大又は∞を意味し、記号stopは、絞りを意味する。
〔数1〕
Figure JPOXMLDOC01-appb-I000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
 以下、本発明のズームレンズの具体的な実施例を説明する。
〔実施例1〕
 実施例1のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.85
 レンズ全長=27.206
 実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。
〔表1〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1   1615.221      0.500    1.92290     20.9    2.66
 2      8.613      0.533                        2.51
 3       inf.      4.635    2.00070     25.5    2.49
 4       inf.      0.100                        2.32
 5*     6.049      1.403    1.62260     58.2    2.28
 6*    -7.670      d1                           2.24
 7*    -4.251      0.300    1.85130     40.1    1.24
 8*     4.134      0.532                        1.20
 9    -11.546      0.300    1.80420     46.5    1.26
10      6.679      0.010    1.51400     42.8    1.34
11      6.679      0.801    2.00270     19.3    1.34
12    -18.273      d2                           1.44
13(stop) inf.      0.000                        1.53
14*     4.365      1.049    1.68890     31.2    1.67
15*    -7.536      0.878                        1.72
16     12.673      0.300    2.00270     19.3    1.73
17      3.363      0.010    1.51400     42.8    1.69
18      3.363      1.644    1.49700     81.6    1.69
19     -5.721      d3                           1.79
20*   -46.018      0.350    1.90200     25.1    1.82
21*     7.186      d4                           1.81
22*     4.549      2.000    1.54470     56.2    2.49
23*    26.693      1.455                        2.45
24       inf.      0.210    1.51680     64.2    2.32
25       inf.      0.500                        2.32

[非球面係数]
第5面
K=0.00000E+00, A4=-0.41108E-03, A6=-0.38586E-04, 
A8=0.41053E-05, A10=-0.84725E-06
第6面
K=0.00000E+00, A4=0.13828E-02, A6=-0.58340E-04, 
A8=0.34628E-05, A10=-0.62759E-06
第7面
K=0.00000E+00, A4=-0.79153E-03, A6=0.39983E-02, 
A8=-0.12259E-02, A10=0.14661E-03
第8面
K=0.00000E+00, A4=-0.10227E-01, A6=0.44440E-02, 
A8=-0.12729E-02, A10=0.15039E-03
第14面
K=0.00000E+00, A4=-0.26205E-02, A6=-0.95860E-04, 
A8=-0.25407E-04, A10=0.13247E-04, A12=-0.50479E-05
第15面
K=0.00000E+00, A4=0.25955E-02, A6=-0.17352E-03, 
A8=-0.52299E-04, A10=0.23593E-04, A12=-0.64025E-05
第20面
K=0.00000E+00, A4=0.16234E-01, A6=-0.45553E-02, 
A8=0.53692E-03, A10=-0.12006E-04, A12=-0.31404E-05
第21面
K=0.00000E+00, A4=0.17103E-01, A6=-0.43207E-02, 
A8=0.39979E-03, A10=0.26346E-04, A12=-0.69795E-05
第22面
K=0.00000E+00, A4=0.26716E-03, A6=-0.32086E-03, 
A8=0.20525E-04, A10=0.55244E-06, A12=-0.42377E-06
第23面
K=0.00000E+00, A4=0.24238E-02, A6=-0.10550E-02, 
A8=0.14196E-03, A10=-0.17636E-04, A12=0.69310E-06
 実施例1のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表2に示す。なお、Po=1は、広角端であり、Po=2は、広角端であり、Po=2は、中間であり、Po=3は、望遠端である。
〔表2〕
Po   f      Fno      画角      2Y
1   3.72   3.69      63.4     3.910
2   6.26   3.86      40.4     4.439
3  10.61   3.90      24.5     4.640

Po    d1      d2      d3      d4
1   0.200   3.677   1.010   4.808
2   1.974   1.903   2.560   3.258
3   3.577   0.300   4.631   1.188
 実施例1のズームレンズの各レンズ群のデータ以下の表3に示す。
〔表3〕
    レンズ群     始面         焦点距離(mm)
      1            1            7.50
      2            7           -2.66
      3           13            4.26
      4           20           -6.87
      5           22            9.76
 図7A~7Cは、実施例1のズームレンズ11の断面図である。なお、この実施例1及び以下の実施例において、反射光学素子PRMは、その光路長と等価な平行平板として表されている。
 実施例1のズームレンズ11は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、平凹に近い物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、両凹で負の第4レンズL22と、第4レンズL22に接合され両凸で正の第5レンズL23とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第6レンズL31と、物体側に凸で負メニスカスの第7レンズL32と、第7レンズL32に接合され両凸で正の第8レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第9レンズL41を含む。第5レンズ群Gr5は、物体側に凸で正メニスカスの第10レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。その他、符号Fは、光学的ローパスフィルター、IRカットフィルター、固体撮像素子のシールガラス等を想定した平行平板を示す。また、符号Iは、撮像素子51の被投影面である撮像面を示す。これらの平行平板F及び撮像面Iについては、以下で説明する実施例2~13でも同様であり、今後は説明を省略する。また、実施例の断面図において、反射光学素子PRMは、その光路長と等価な平行平板として表されている。反射光学素子PRMを光軸に沿って展開する表示は以下の実施例2~13でも同様であり、今後は説明を省略する。
 図7A~7Cは、実施例1のズームレンズ11のズーム動作の際のポジションをそれぞれ示している。すなわち、図7Aはズームレンズ11の広角端における断面図であり、図7Bは中間における断面図であり、図7Cは望遠端における断面図である。
 図8Aは、ズームレンズ11の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図8Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図8Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。なお、上記収差図及び以後の収差図において、球面収差図では、実線がd線を表し、点線がg線を表すものとし、非点収差図では、実線がサジタル像面を表し、点線がメリジオナル像面を表すものとする。
 実施例1のズームレンズ11は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、かつ、第4レンズ群Gr4が光軸AX方向に沿って物体側に移動する。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12、第3レンズL21、及び第9レンズL41は、ガラスモールドレンズ、第10レンズL51は、プラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例2〕
 実施例2のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=17.00
 実施例2のレンズデータを表4に示す。
〔表4〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1       inf.      0.400    1.92290     20.9    1.84
 2      4.550      0.824                        1.64
 3       inf.      2.553    2.00070     25.5    1.58
 4       inf.      0.198                        1.55
 5*     4.288      1.074    1.69680     55.5    1.54
 6*    -5.694      d1                           1.45
 7     -4.610      0.300    1.77250     49.6    0.91
 8      1.790      0.114                        0.80
 9      1.764      0.794    1.92290     20.9    0.80
10      2.469      d2                           0.65
11(stop) inf.      0.100                        0.57
12*     3.055      0.837    1.59200     67.0    0.63
13*    -4.594      0.200                        0.73
14     13.139      0.560    1.92290     20.9    0.76
15      6.650      0.961    1.49700     81.6    0.78
16     -4.633      d3                           0.85
17     -4.539      0.350    1.92290     20.9    0.89
18      8.347      d4                           0.95
19*     3.977      0.776    1.54470     56.2    1.37
20*    13.508      0.721                        1.51
21       inf.      0.145    1.51680     64.2    1.61
22       inf.      0.500                        1.62

[非球面係数]
第5面
K=0.00000E+00, A4=-0.48281E-02, A6=0.53031E-03, 
A8=-0.18666E-03, A10=-0.24116E-04
第6面
K=0.00000E+00, A4=-0.15148E-02, A6=0.13168E-02, 
A8=-0.51716E-03, A10=0.32715E-04
第12面
K=0.00000E+00, A4=-0.78007E-02, A6=0.17572E-01, 
A8=-0.55829E-01, A10=0.55601E-01
第13面
K=0.00000E+00, A4=0.59768E-02, A6=0.18877E-01, 
A8=-0.44309E-01, A10=0.35932E-01
第19面
K=0.00000E+00, A4=0.36221E-03, A6=-0.60671E-03, 
A8=-0.27850E-02, A10=-0.11319E-02
第20面
K=0.00000E+00, A4=0.66471E-02, A6=0.93571E-02, 
A8=-0.11461E-01, A10=0.14583E-02
 実施例2のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表5に示す。なお、この実施例2及び以下の実施例3~8において、Po=1は、広角端であり、Po=2は、広角端であり、Po=2は、中間であり、Po=3は、第4レンズ群Gr4が変極点にある状態であり、Po=4は、望遠端である。
〔表5〕
Po   f      Fno      画角      2Y
1   2.65   5.89      63.5     2.788
2   4.30   5.91      41.7     3.172
3   5.53   5.90      33.0     3.284
4   7.29   5.91      25.4     3.377

Po    d1      d2      d3      d4      β2
1   0.200   2.863   1.133   1.399   -0.548
2   1.441   1.622   1.481   1.051   -0.793
3   2.017   1.046   1.555   0.976   -1.000
4   2.605   0.458   1.424   1.107   -1.363
 実施例2のズームレンズの各レンズ群のデータ以下の表6に示す。
〔表6〕
    レンズ群     始面         焦点距離(mm)
      1            1            4.72
      2            7           -2.21
      3           11            2.65
      4           17           -3.15
      5           19           10.06
 図9A~9Dは、実施例2のズームレンズ12の断面図である。ズームレンズ12は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、平凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第5レンズL31と、物体側に凸で負メニスカスの第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、物体側に凸で正メニスカスの第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図9A~9Dは、実施例2のズームレンズ12のズーム動作の際のポジションをそれぞれ示している。図9Aはズームレンズ12の広角端における断面図であり、図9Bは中間における断面図であり、図9Cは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図9Dは望遠端における断面図である。
 図10Aは、ズームレンズ12の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図10Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)である。また、図11Aは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ12の収差図(球面収差、非点収差、及び歪曲収差)であり、図11Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。なお、上記収差図及び以後の収差図において、球面収差図では、実線がd線を表し、点線がg線を表すものとし、非点収差図では、実線がサジタル像面を表し、点線がメリジオナル像面を表すものとする。
 実施例2のズームレンズ12は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例3〕
 実施例3のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=18.00
 実施例3のレンズデータを表7に示す。
〔表7〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1       inf.      0.400    1.92290     20.9    1.96
 2      4.967      0.797                        1.75
 3       inf.      2.907    2.00070     25.5    1.71
 4       inf.      0.178                        1.67
 5*     4.506      1.082    1.69680     55.5    1.66
 6*    -6.378      d1                           1.58
 7     -5.279      0.300    1.77250     49.6    0.98
 8      1.881      0.133                        0.86
 9      1.882      0.791    1.92290     20.9    0.86
10      2.661      d2                           0.71
11(stop) inf.      0.100                        0.61
12*     3.372      0.831    1.59200     67.0    0.67
13*    -4.993      0.200                        0.77
14     17.683      0.570    1.92290     20.9    0.80
15      9.302      0.988    1.49700     81.6    0.83
16     -4.051      d3                           0.91
17     -5.676      0.350    1.92290     20.9    0.93
18      6.240      d4                           0.97
19*     3.858      0.802    1.54470     56.2    1.48
20*     9.702      0.954                        1.63
21       inf.      0.145    1.51680     64.2    1.76
22       inf.      0.500                        1.77

[非球面係数]
第5面
K=0.00000E+00, A4=-0.37157E-02, A6=0.25659E-03, 
A8=-0.24870E-04, A10=-0.19994E-04, 
第6面
K=0.00000E+00, A4=-0.11513E-02, A6=0.88880E-03, 
A8=-0.24112E-03, A10=0.91950E-05, 
第12面
K=0.00000E+00, A4=-0.40904E-02, A6=-0.27954E-02, 
A8=0.32816E-02, A10=0.60791E-03
第13面
K=0.00000E+00, A4=0.74030E-02, A6=0.40973E-02, 
A8=-0.76203E-02, A10=0.65724E-02
第19面
K=0.00000E+00, A4=-0.27897E-02, A6=-0.24593E-02, 
A8=-0.39032E-04, A10=-0.94875E-03
第20面
K=0.00000E+00, A4=-0.25151E-02, A6=0.71849E-02, 
A8=-0.64530E-02, A10=0.64658E-03
 実施例3のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表8に示す。
〔表8〕
Po   f      Fno      画角      2Y 
1   2.88   5.88      63.5     3.03 
2   4.68   5.91      41.7     3.451
3   5.91   5.91      33.6     3.565
4   7.92   5.91      25.4     3.671

Po   d1      d2      d3      d4      β2
1   0.200   3.071   1.115   1.586   -0.557
2   1.544   1.727   1.417   1.285   -0.807
3   2.121   1.150   1.473   1.229   -1.000
4   2.813   0.458   1.338   1.364   -1.401
 実施例3のズームレンズの各レンズ群のデータ以下の表9に示す。
〔表9〕
    レンズ群     始面         焦点距離(mm)
      1            1            5.14
      2            7           -2.42
      3           11            2.76
      4           17           -3.18
      5           19           11.22
 図12A~12Dは、実施例3のズームレンズ13の断面図である。ズームレンズ13は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、平凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第5レンズL31と、物体側に凸で負メニスカスの第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、物体側に凸で正メニスカスの第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図12A~12Dは、実施例3のズームレンズ13のズーム動作の際のポジションをそれぞれ示している。図12Aはズームレンズ13の広角端における断面図であり、図12Bは中間における断面図であり、図12Cは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図12Dは望遠端における断面図である。
 図13Aは、ズームレンズ13の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図13Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)である。また、図14Aは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ13の収差図(球面収差、非点収差、及び歪曲収差)であり、図14Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。なお、球面収差図では、実線がd線を表し、点線がg線を表すものとし、非点収差図では、実線がサジタル像面を表し、点線がメリジオナル像面を表すものとする。
 実施例3のズームレンズ13は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例4〕
 実施例4のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=17.86
 実施例4のレンズデータを表10に示す。
 〔表10〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -19.602      0.400    1.92290     20.9    1.85
 2      5.389      0.706                        1.72
 3       inf.      3.005    2.00070     25.5    1.71
 4       inf.      0.280                        1.68
 5*     4.305      1.140    1.69680     55.5    1.67
 6*    -5.267      d1                           1.58
 7     -5.967      0.300    1.74330     49.2    1.00
 8      1.831      0.105                        0.87
 9      1.833      0.794    1.92290     20.9    0.87
10      2.494      d2                           0.71
11(stop) inf.      0.100                        0.72
12*     2.986      0.956    1.62260     58.2    0.80
13*    -3.626      0.200                        0.87
14    -10.163      0.383    1.91080     35.3    0.88
15      4.785      1.000    1.49710     81.6    0.91
16*    -3.130      d3                           1.00
17     13.020      0.350    1.92290     20.9    1.09
18      2.813      d4                           1.08
19*     5.123      1.041    1.54470     56.2    1.71
20*    18.909      0.500                        1.80
21       inf.      0.145    1.51680     64.2    1.81
22       inf.      0.500                        1.81

[非球面係数]
第5面
K=0.00000E+00, A4=-0.28526E-02, A6=0.93367E-04, 
A8=0.19768E-04, A10=-0.78856E-05
第6面
K=0.00000E+00, A4=0.18130E-02, A6=0.48779E-03, 
A8=-0.10381E-03, A10=0.61860E-05
第12面
K=0.00000E+00, A4=-0.40130E-02, A6=-0.31911E-02, 
A8=0.19773E-02, A10=-0.52894E-02
第13面
K=0.00000E+00, A4=0.15525E-01, A6=-0.81300E-02, 
A8=0.58816E-02, A10=-0.65406E-02
第16面
K=0.00000E+00, A4=0.26182E-0, A6=0.78142E-02, 
A8=-0.54881E-02, A10=0.31592E-02
第19面
K=0.00000E+00, A4=0.14293E-01, A6=-0.13939E-02, 
A8=-0.13408E-02, A10=0.16611E-03
第20面
K=0.00000E+00, A4=0.14190E-01, A6=0.37589E-02, 
A8=-0.47443E-02, A10=0.58791E-03
 実施例4のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表11に示す。
〔表11〕
Po   f      Fno      画角      2Y
1   2.88   4.77      63.4      3.022
2   3.91   4.74      49.1      3.351
3   4.67   4.74      41.8      3.481
4   7.92   4.80      25.4      3.635

Po    d1      d2      d3      d4      β2
1   0.200   2.958   1.832   0.960   -0.754
2   1.027   2.131   1.956   0.836   -1.000
3   1.469   1.689   1.908   0.884   -1.211
4   2.651   0.507   0.935   1.857   -2.788
 実施例4のズームレンズの各レンズ群のデータ以下の表12に示す。
〔表12〕
    レンズ群     始面         焦点距離(mm)
      1            1            4.25
      2            7           -2.53
      3           11            3.15
      4           17           -3.95
      5           19           12.57
 図15A~15Dは、実施例4のズームレンズ14の断面図である。ズームレンズ14は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、両凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第5レンズL31と、両凹で負の第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、物体側に凸で負メニスカスの第8レンズL41を含む。第5レンズ群Gr5は、物体側に凸で正メニスカスの第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図15A~15Dは、実施例4のズームレンズ14のズーム動作の際のポジションをそれぞれ示している。図15Aはズームレンズ14の広角端における断面図であり、図15Bは第2レンズ群Grの横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図15Cは中間における断面図であり、図15Dは望遠端における断面図である。
 図16Aは、ズームレンズ14の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図16Bは、第4レンズ群Gr4が変極点の位置にあるときの収差図(球面収差、非点収差、及び歪曲収差)であり。また、図17Aは、中間におけるズームレンズ14の収差図(球面収差、非点収差、及び歪曲収差)であり、図17Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。
 実施例4のズームレンズ14は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31と第7レンズL33とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例5〕
 実施例5のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=18.46
 実施例5のレンズデータを表13に示す。
〔表13〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -72.480      0.400    1.92290     20.9    1.85
 2      3.394      0.597                        1.59
 3       inf.      3.532    1.84670     23.8    1.56
 4       inf.      0.215                        1.61
 5*     4.759      1.101    1.69680     55.5    1.63
 6*    -4.759      d1                           1.58
 7     -5.312      0.300    1.77250     49.6    0.96
 8      1.855      0.105                        0.85
 9      1.884      0.830    1.92290     20.9    0.86
10      2.888      d2                           0.71
11(stop) inf.      0.100                        0.61
12*     2.853      0.907    1.59200     67.0    0.67
13*    -3.634      0.200                        0.76
14   2613.514      0.519    1.90370     31.3    0.78
15      6.586      1.000    1.49700     81.6    0.80
16     -4.413      d3                           0.87
17     -4.312      0.350    1.92290     20.9    0.90
18      4.801      d4                           0.96
19*     3.518      1.163    1.54470     56.2    1.62
20*   -26.618      0.777                        1.71
21       inf.      0.145    1.51680     64.2    1.78
22       inf.      0.500                        1.79

[非球面係数]
第5面
K=0.00000E+00, A4=-0.41298E-02, A6=0.21093E-03, 
A8=0.28408E-05, A10=-0.15437E-04
第6面
K=0.00000E+00, A4=-0.24169E-03, A6=0.65122E-03, 
A8=-0.13066E-03, A10=0.19137E-05
第12面
K=0.00000E+00, A4=-0.85593E-02, A6=-0.86054E-02, 
A8=0.21907E-01, A10=-0.19551E-01
第13面
K=0.00000E+00, A4=0.98757E-02, A6=0.60379E-04, 
A8=0.64594E-03, A10=-0.68783E-03
第19面
K=0.00000E+00, A4=0.16187E-02, A6=0.67840E-02, 
A8=-0.40896E-02, A10=0.42660E-03
第20面
K=0.00000E+00, A4=-0.26767E-02, A6=0.19645E-01, 
A8=-0.84720E-02, A10=0.88423E-03
 実施例5のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表14に示す。
〔表14〕
Po    f      Fno      画角      2Y
1   2.30   5.87      75.5      2.854
2   3.81   5.91      50.1      3.393
3   4.51   5.91      43.1      3.502
4   6.34   5.91      31.4      3.664

Po    d1      d2      d3      d4      β2
1   0.200   3.154   1.138   1.228   -0.577
2   1.632   1.722   1.384   0.983   -0.854
3   2.068   1.287   1.409   0.958   -1.000
4   2.910   0.444   1.246   1.120   -1.495
 実施例5のズームレンズの各レンズ群のデータ以下の表15に示す。
〔表15〕
    レンズ群     始面      焦点距離(mm)
      1            1            4.20
      2            7           -2.54
      3           11            2.74
      4           17           -2.42
      5           19            5.78
 図18A~18Dは、実施例5のズームレンズ15の断面図である。ズームレンズ15は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、両凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第5レンズL31と、物体側に凸で負メニスカスの第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、両凸で正の第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図18A~18Dは、実施例5のズームレンズ15のズーム動作の際のポジションをそれぞれ示している。図18Aはズームレンズ15の広角端における断面図であり、図18Bは中間における断面図であり、図18Cは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図18Dは望遠端における断面図である。
 図19Aは、ズームレンズ15の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図19Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)である。また、図20Aは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ15の収差図(球面収差、非点収差、及び歪曲収差)であり、図20Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。
 実施例5のズームレンズ15は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例6〕
 実施例6のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=17.40
 実施例6のレンズデータを表16に示す。
〔表16〕
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -27.291      0.400    1.92290     20.9    1.77
 2      3.660      0.512                        1.54
 3       inf.      3.241    2.00070     25.5    1.51
 4       inf.      0.206                        1.51
 5*     4.538      1.106    1.72920     54.7    1.52
 6*    -4.487      d1                           1.45
 7     -4.928      0.300    1.80420     46.5    0.91
 8      1.611      0.166                        0.79
 9      1.679      0.850    1.92290     20.9    0.81
10      2.388      d2                           0.65
11(stop) inf.      0.100                        0.57
12*     2.750      0.733    1.59200     67.0    0.63
13*    27.209      0.200                        0.72
14      4.209      0.565    1.92290     20.9    0.78
15      3.336      0.600    1.49710     81.6    0.79
16*    -2.206      d3                           0.83
17     -3.070      0.350    1.92290     20.9    0.82
18      5.704      d4                           0.88
19*     5.342      1.200    1.54470     56.2    1.55
20*    -5.908      0.500                        1.61
21       inf.      0.145    1.51680     64.2    1.65
22       inf.      0.500                        1.66

[非球面係数]
第5面
K=0.00000E+00, A4=-0.40754E-02, A6=0.67267E-03, 
A8=-0.21081E-03, A10=0.59078E-05
第6面
K=0.00000E+00, A4=0.10818E-02, A6=0.11510E-02, 
A8=-0.40970E-03, A10=0.38374E-04
第12面
K=0.00000E+00, A4=-0.11250E-02, A6=-0.44687E-01, 
A8=0.84551E-01, A10=-0.10073E+00
第13面
K=0.00000E+00, A4=0.16776E-01, A6=-0.45450E-01, 
A8=0.73218E-01, A10=-0.84438E-01
第16面
K=0.00000E+00, A4=0.18660E-01, A6=0.27293E-01, 
A8=-0.38968E-01, A10=0.34324E-01
第19面
K=0.00000E+00, A4=0.23972E-01, A6=0.50889E-04, 
A8=-0.17046E-02, A10=0.13415E-03
第20面
K=0.00000E+00, A4=0.23192E-01, A6=0.15762E-01, 
A8=-0.81507E-02, A10=0.82781E-03
 実施例6のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表17に示す。
〔表17〕
Po   f      Fno      画角      2Y
1   2.12   5.88      75.4      2.623
2   3.42   5.92      51.2      3.13
3   5.12   5.92      35.5      3.342
4   5.83   5.91      31.4      3.383

Po   d1      d2      d3      d4      β2
1   0.200   2.727   1.165   1.635   -0.499
2   1.354   1.572   1.422   1.378   -0.701
3   2.210   0.717   1.541   1.259   -1.000
4   2.467   0.460   1.525   1.276   -1.147
 実施例6のズームレンズの各レンズ群のデータ以下の表18に示す。
〔表18〕
    レンズ群     始面         焦点距離(mm)
      1            1            3.89
      2            7           -2.01
      3           11            2.32
      4           17           -2.12
      5           19            5.35
 図21A~21Dは、実施例6のズームレンズ16の断面図である。ズームレンズ16は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、両凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、物体側に凸で正メニスカスの第5レンズL31と、物体側に凸で負メニスカスの第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、両凸で正の第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図21A~21Dは、実施例6のズームレンズ16のズーム動作の際のポジションをそれぞれ示している。図21Aは広角端における断面図であり、図21Bは中間における断面図であり、図21Cは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図21Dは望遠端における断面図である。
 図22Aは、ズームレンズ16の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図22Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)である。また、図23Aは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ16の収差図(球面収差、非点収差、及び歪曲収差)であり、図23Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。
 実施例6のズームレンズ16は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31と第7レンズL33とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例7〕
 実施例7のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=3.79
 レンズ全長=20.77
 実施例7のレンズデータを表19に示す。
〔表19〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1     -9.982      0.400    1.92290     20.9    1.60
 2      5.629      0.347                        1.46
 3       inf.      4.000    2.00070     25.5    1.45
 4       inf.      0.193                        1.53
 5*     3.854      1.193    1.69680     55.5    1.56
 6*    -5.037      d1                           1.45
 7     -4.721      0.300    1.77250     49.6    0.88
 8      1.785      0.100                        0.78
 9      1.688      0.752    1.92290     20.9    0.79
10      2.135      d2                           0.65
11(stop) inf.      0.388                        0.68
12*     4.505      1.500    1.58310     59.5    0.83
13*    -2.988      0.701                        0.99
14    -84.279      0.436    1.90370     31.3    1.01
15      5.068      1.000    1.49710     81.6    1.02
16*    -4.308      d3                           1.08
17      7.306      0.350    1.92290     20.9    1.04
18      2.188      d4                           1.00
19*     7.672      1.024    1.82080     42.7    1.72
20*  -176.084      0.500                        1.70
21       inf.      0.145    1.51680     64.2    1.65
22       inf.      0.500                        1.64

[非球面係数]
第5面
K=0.00000E+00, A4=-0.31725E-02, A6=0.16967E-02, 
A8=-0.59429E-03, A10=0.17835E-03
第6面
K=0.00000E+00, A4=0.33225E-02, A6=0.23920E-02, 
A8=-0.93272E-03, A10=0.26782E-03
第12面
K=0.00000E+00, A4=0.18965E-02, A6=-0.16867E-01, 
A8=0.23323E-01, A10=-0.17636E-01
第13面
K=0.00000E+00, A4=0.19015E-01, A6=-0.11705E-01, 
A8=0.93750E-02, A10=-0.47765E-02
第16面
K=0.00000E+00, A4=-0.13219E-01, A6=0.12882E-01, 
A8=-0.84575E-02, A10=0.27360E-02
第19面
K=0.00000E+00, A4=-0.14364E-01, A6=0.17931E-01, 
A8=-0.49196E-02, A10=0.44608E-03
第20面
K=0.00000E+00, A4=-0.43247E-01, A6=0.35363E-01, 
A8=-0.10091E-01, A10=0.93992E-03
 実施例7のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表20に示す。
〔表20〕
Po    f       Fno      画角      2Y
1    2.66    5.93      63.4      2.612
2    4.61    5.74      39.1      3.115
3    5.07    5.75      35.8      3.162
4   10.06    6.07      18.5      3.196

Po   d1      d2      d3      d4      β2
1   0.200   3.223   1.812   1.704   -0.605
2   1.541   1.882   2.247   1.269   -1.000
3   1.731   1.693   2.229   1.286   -1.102
4   2.901   0.523   0.890   2.626   -2.950
 実施例7のズームレンズの各レンズ群のデータ以下の表21に示す。
〔表21〕
    レンズ群     始面      焦点距離(mm)
      1            1            3.68
      2            7           -2.06
      3           11            3.38
      4           17           -3.50
      5           19            8.98
 図24A~24Dは、実施例7のズームレンズ17の断面図である。ズームレンズ17は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、両凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、両凸で正の第5レンズL31と、両凹で負の第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、物体側に凸で負メニスカスの第8レンズL41を含む。第5レンズ群Gr5は、両凸で正の第9レンズL51を含む。第5レンズ群Gr5の両面は、非球面である。
 図24A~24Dは、実施例7のズームレンズ17のズーム動作の際のポジションをそれぞれ示している。図24Aはズームレンズ17の広角端における断面図であり、図24Bは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図24Cは中間における断面図であり、図24Dは望遠端における断面図である。
 図25Aは、ズームレンズ17の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図25Bは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ17の収差図(球面収差、非点収差、及び歪曲収差)であり。また、図26Aは、中間におけるズームレンズ17の収差図(球面収差、非点収差、及び歪曲収差)であり、図26Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。
 実施例7のズームレンズ17は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31と第7レンズL33と第9レンズL51とはガラスモールドレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例8〕
 実施例8のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.75
 レンズ全長=18.00
 実施例8のレンズデータを表22に示す。
〔表22〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1       inf.      0.400    1.92290     20.9    1.97
 2      5.088      0.783                        1.82
 3       inf.      2.934    2.00070     25.5    1.81
 4       inf.      0.235                        1.78
 5*     5.284      1.045    1.69680     55.5    1.78
 6*    -6.146      d1                           1.72
 7     -5.061      0.300    1.77250     49.6    1.00
 8      2.073      0.100                        0.89
 9      2.011      0.761    1.92290     20.9    0.89
10      2.831      d2                           0.75
11*     2.920      0.803    1.59200     67.0    0.72
12*    -9.474      0.100                        0.65
13(stop) inf.      0.100                        0.63
14      7.668      0.579    1.92290     20.9    0.65
15      5.610      0.999    1.49700     81.6    0.68
16     -4.135      d3                           0.77
17     -2.732      0.350    1.92290     20.9    0.88
18     22.089      d4                           0.98
19*     3.089      1.012    1.54470     56.2    1.49
20*    13.430      0.838                        1.61
21       inf.      0.145    1.51680     64.2    1.73
22       inf.      0.500                        1.74

[非球面係数]
第5面
K=0.00000E+00, A4=-0.23275E-02, A6=-0.68227E-03, 
A8=0.30376E-03, A10=-0.72796E-04
第6面
K=0.00000E+00, A4=-0.40166E-03, A6=-0.12179E-03, 
A8=0.10224E-03, A10=-0.44363E-04
第11面
K=0.00000E+00, A4=0.26378E-02, A6=-0.16616E-01, 
A8=0.28238E-01, A10=-0.15720E-01
第12面
K=0.00000E+00. A4=0.11633E-01, A6=0.25915E-02, 
A8=-0.21637E-01, A10=0.33638E-01
第19面
K=0.00000E+00, A4=-0.75651E-02, A6=-0.30701E-02, 
A8=0.10501E-02, A10=-0.52350E-03
第20面
K=0.00000E+00, A4=-0.18528E-02, A6=-0.69966E-03, 
A8=-0.77555E-03, A10=-0.86546E-04
 実施例8のズームレンズの各ポジション(Po)1~4における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、群間隔(d1~d4)、及び第2レンズ群の横倍率(β2)を以下の表23に示す。
〔表23〕
Po   f      Fno      画角      2Y
1   2.88   5.71      63.5     3.034
2   4.68   5.88      41.7     3.440
3   7.55   5.92      26.6     3.612
4   7.92   5.92      25.4     3.626

Po    d1      d2      d3      d4      β2
1   0.200   3.127   1.204   1.485   -0.483
2   1.638   1.689   1.597   1.092   -0.666
3   2.900   0.427   1.846   0.843   -1.000
4   3.020   0.307   1.844   0.845   -1.050
 実施例8のズームレンズの各レンズ群のデータ以下の表24に示す。
〔表24〕
    レンズ群    始面      焦点距離(mm)
      1            1            5.76
      2            7           -2.52
      3           11            2.71
      4           17           -2.62
      5           19            7.12
 図27A~27Dは、実施例8のズームレンズ18の断面図である。ズームレンズ18は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4と、第5レンズ群Gr5とからなる。ここで、第1レンズ群Gr1は、両凹で負の第1レンズL11と、直角プリズムである反射光学素子PRMと、両凸で正の第2レンズL12とを含む。第2レンズ群Gr2は、両凹で負の第3レンズL21と、物体側に凸で正メニスカスの第4レンズL22とを含む。第3レンズ群Gr3は、開口絞りSと、物体側に凸で正メニスカスの第5レンズL31と、物体側に凸で負メニスカスの第6レンズL32と、第6レンズL32に接合され両凸で正の第7レンズL33とを含む。第4レンズ群Gr4は、両凹で負の第8レンズL41を含む。第5レンズ群Gr5は、両凸で正の第9レンズL51を含む。第5レンズ群Gr5は、プラスチックからなる単レンズであり、第5レンズの群Gr5の両面は、非球面である。
 図27A~27Dは、実施例8のズームレンズ18のズーム動作の際のポジションをそれぞれ示している。図27Aはズームレンズ18の広角端における断面図であり、図27Bは中間における断面図であり、図27Cは第2レンズ群Gr2の横倍率が-1となり、第4レンズ群Gr4が変極点の位置にあるときの断面図であり、図27Dは望遠端における断面図である。
 図28Aは、ズームレンズ18の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図28Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)である。また、図29Aは、第4レンズ群Gr4が変極点の位置にあるときのズームレンズ18の収差図(球面収差、非点収差、及び歪曲収差)であり、図29Bは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。
 実施例8のズームレンズ18は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第4レンズ群Gr4が光軸AX方向に沿って一旦像側に移動した後に物体側に移動する凸状の軌跡を描いて移動して、各レンズ群の位置又は間隔を変えることにより変倍を行うことができる。他のレンズ群Gr1,Gr3,Gr5は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第2レンズL12と第5レンズL31とはガラスモールドレンズ、第9レンズL51は上述のようにプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例9〕
 実施例9のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.82
 レンズ全長=25.100
 d11=2.100
 実施例9のレンズデータ等を表25に示す。
〔表25〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -10.111      4.600    2.00070     25.5    2.53
 2       inf.      0.100                        2.40
 3*    10.441      1.147    1.88200     37.2    2.38
 4*   -10.253      d1                           2.35
 5     -6.656      0.300    2.00070     25.5    1.34
 6      3.699      0.400                        1.24
 7*     7.467      0.668    1.68890     31.2    1.31
 8*    10.721      d2                           1.38
 9      8.131      1.024    1.84670     23.8    1.56
10     -8.446      0.100                        1.53
11(stop) inf.      0.000                        1.47
12      7.383      1.305    1.49700     81.6    1.49
13     -3.437      0.010    1.51400     42.8    1.51
14     -3.437      0.300    2.00070     25.5    1.52
15    -65.303      0.400                        1.61
16*    14.370      1.131    1.73080     40.5    1.75
17*    -5.142      d3                           1.81
18*   -20.187      0.350    2.00180     19.3    1.55
19*     6.450      d4                           1.55
20*     5.532      1.600    1.54470     56.2    2.11
21*    37.637      0.729                        2.32
22       inf.      0.145    1.51680     64.2    2.30
23       inf.      0.500                        2.30

[非球面係数]
第3面
K=0.00000E+00, A4=-0.10960E-03, A6=-0.38020E-04, 
A8=0.35369E-05, A10=-0.45724E-06
第4面
K=0.00000E+00, A4=0.63937E-03, A6=-0.46204E-04, 
A8=0.33466E-05, A10=-0.39700E-06
第7面
K=0.00000E+00, A4=-0.83277E-03, A6=0.58392E-06, 
A8=0.63622E-03, A10=-0.13337E-03
第8面
K=0.00000E+00, A4=-0.73516E-02, A6=0.25395E-03, 
A8=0.24029E-03, A10=-0.45712E-04
第16面
K=0.00000E+00, A4=-0.23031E-02, A6=0.24298E-03, 
A8=0.49785E-04, A10=0.10095E-04
第17面
K=0.00000E+00, A4=0.72386E-03, A6=0.23746E-03, 
A8=-0.13042E-04, A10=0.19488E-04
第18面
K=0.00000E+00, A4=0.48545E-02, A6=-0.86515E-03, 
A8=0.29946E-05, A10=0.12751E-04
第19面
K=0.00000E+00, A4=0.35400E-02, A6=-0.66012E-03, 
A8=-0.10272E-03, A10=0.29294E-04
第20面
K=0.00000E+00, A4= -0.56514E-02, A6=-0.92814E-03, 
A8=-0.22747E-04, A10=-0.11583E-04
第21面
K=0.00000E+00, A4=-0.18743E-02, A6=-0.17367E-02, 
A8=0.31721E-04, A10=0.51719E-05
 実施例9のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d4)を以下の表26に示す。なお、この実施例9及び以下の実施例10~13において、Po=1は、広角端であり、Po=2は、広角端であり、Po=2は、中間であり、Po=3は、望遠端である。
〔表26〕
Po    f       Fno      画角      2Y
1    3.73    3.77      63.3     3.915
2    6.33    3.92      39.9     4.593
3   10.50    3.86      23.9     4.600

Po   d1      d2      d3      d4
1   0.254   3.951   1.048   5.039
2   2.208   1.997   2.287   3.800
3   3.905   0.300   4.483   1.604
 実施例9のズームレンズの各レンズ群のデータ以下の表27に示す。
〔表27〕
    レンズ群     始面         焦点距離(mm) 
      1            1            8.95
      2            5           -2.49
      3            9            3.75
      4           18           -4.85
      5           20           11.70
 図30及び図31A~31Cは、実施例9のレンズの断面図である。図中、符号GR1は正の屈折力を有する第1レンズ群、符号GR2は負の屈折力を有する第2レンズ群、符号GR3は正の屈折力を有する第3レンズ群、符号GR4は負の屈折力を有する第4レンズ群、符号GR5は正の屈折力を有する第5レンズ群を示す。第1レンズ群Gr1は、物体側より順に、物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)PRMと,両凸の正レンズL1とで構成されており、全体で正の屈折力を有している。第2レンズ群Gr2は、物体側より順に、両凹の負レンズL3と、物体側に凸、像側に凹の正レンズL3と、で構成されており、全体で負の屈折力を有している。第3レンズ群Gr3は、両凸の正レンズL4,開口絞りS,正レンズL5と負レンズL6を組み合わせた接合レンズ、両凸の正レンズL7で構成されており、全体で正の屈折力を有している。第4レンズ群Gr4は、両凹の負レンズL8のみで構成されており、全体で負の屈折力を有している。第5レンズ群Gr5は、物体側に光軸付近で凸、周辺側で凹の正レンズL9のみで構成されており、全体で正の屈折力を有している。反射光学素子PRMは、本実施例9では物体側面に曲率を有し、像側面は平面であり、反射光学素子全体では負の屈折力を有する。
 ここで、図30は広角端における断面図である。なお、図31A~31C以降の断面図においては、反射光学素子PRMは、その光路長が等価となる回転対称な単レンズとして表している。図30において、第1レンズ群の最も物体側の面S1の頂点P1から、反射光学素子PRMの反射面S2と光軸OXとの交点P2までの距離をd11とする。
 図31Aは広角端における断面図である。図31Bは中間における断面図である。図31Cは望遠端における断面図である。図32A~32Cは実施例9の収差図(球面収差、非点収差、歪曲収差)であるが、図32Aは広角端における収差図であり、図32Bは中間における収差図であり、図32Cは望遠端における収差図である。
 実施例9のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸方向に沿って物体側に移動し、かつ第4レンズ群Gr4が光軸方向に沿って像側に移動して、各レンズ群の間隔を変えることにより変倍を行うことができる。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第1レンズL1、第3レンズL3、第7レンズL7、及び第8レンズL8はガラスモールドレンズ、第9レンズL9はプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例10〕
 実施例10のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.82
 レンズ全長=26.568
 d11=2.164
 実施例10のレンズデータを表28に示す。
〔表28〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -10.494      4.568    2.00070     25.5    2.53
 2      inf.       0.100                        2.33
 3*     8.893      1.223    1.89140     37.5    2.30
 4*   -10.795      d1                           2.26
 5     -7.204      0.300    2.00270     19.3    1.28
 6      4.050      0.400                        1.19
 7     13.645      0.300    1.69470     56.7    1.20
 8      5.694      0.331                        1.23
 9*    19.634      0.614    1.91180     23.8    1.31
10*    49.792      d2                           1.38
11(stop) inf.      0.000                        1.45
12*     9.457      1.040    1.64280     31.8    1.50
13*    -5.510      0.300                        1.66
14     18.277      0.600    1.93600     26.7    1.80
15      7.353      0.010    1.51400     42.8    1.84
16      7.353      1.919    1.51080     66.9    1.84
17     -4.147      d3                           2.02
18*   -14.050      0.388    1.99710     19.8    1.71
19*     9.386      d4                           1.72
20*     6.982      1.600    1.54470     56.2    2.27
21*   -10.268      1.088                        2.45
22       inf.      0.145    1.51680     64.2    2.33
23       inf.      0.500                        2.32

[非球面係数]
第3面
K=0.00000E+00, A4=-0.43577E-03, A6=-0.30162E-04, 
A8=0.33086E-05, A10=-0.11091E-05
第4面
K=0.00000E+00, A4=0.39604E-03, A6=-0.16685E-04, 
A8=-0.23403E-05, A10=-0.59115E-06
第9面
K=0.00000E+00, A4=-0.95226E-03, A6=0.86306E-03, 
A8=0.68317E-04, A10=-0.24042E-04
第10面
K=0.00000E+00, A4=-0.52177E-02, A6=0.77604E-03, 
A8=-0.12347E-03, A10=0.19858E-04
第12面
K=0.00000E+00, A4=-0.28717E-02, A6=0.19360E-03, 
A8=-0.77449E-04, A10=0.72804E-05
第13面
K=0.00000E+00, A4=0.24747E-02, A6=0.61242E-04, 
A8=-0.91543E-05, A10=-0.13467E-05
第18面
K=0.00000E+00, A4=0.10902E-01, A6=-0.44332E-02, 
A8=0.97140E-03, A10=-0.10456E-03
第19面
K=0.00000E+00, A4=0.10164E-01, A6=-0.44281E-02, 
A8=0.92159E-03, A10=-0.93717E-04
第20面
K=0.00000E+00, A4=-0.19191E-02, A6=-0.11818E-02, 
A8=0.84505E-04, A10=-0.15870E-04
第21面
K=0.00000E+00, A4=0.18688E-02, A6=-0.14733E-02, 
A8=0.84655E-04, A10=-0.45999E-05
 実施例10のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d4)を以下の表29に示す。
〔表29〕
Po    f       Fno      画角       2Y
1    3.75    3.91      63.1      3.918
2    6.26    4.01      40.4      4.571
3   10.57    3.90      23.9      4.600

Po   d1      d2      d3      d4
1   0.239   3.533   1.862   5.509
2   1.919   1.852   3.299   4.072
3   3.471   0.300   5.762   1.609
 実施例10のズームレンズの各レンズ群のデータ以下の表30に示す。
〔表30〕
    レンズ群     始面         焦点距離(mm)
      1            1            7.84
      2            5           -2.24
      3           11            3.96
      4           18           -5.60
      5           20            7.89
 図33A~33Cは実施例10のレンズの断面図である。図中、符号GR1は正の屈折力を有する第1レンズ群、符号GR2は負の屈折力を有する第2レンズ群、符号GR3は正の屈折力を有する第3レンズ群、符号GR4は負の屈折力を有する第4レンズ群、符号GR5は正の屈折力を有する第5レンズ群を示す。第1レンズ群Gr1は、物体側より順に、物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)PRMと,両凸の正レンズL1とで構成されており、全体で正の屈折力を有している。第2レンズ群Gr2は、物体側より順に、両凹の負レンズL3と、物体側に凸、像側に凹の正レンズL3と、物体側に凸の正レンズL4とで構成されており、全体で負の屈折力を有している。第3レンズ群Gr3は、開口絞りS,両凸の正レンズL5、負レンズL6と正レンズL7を組み合わせた接合レンズで構成されており、全体で正の屈折力を有している。第4レンズ群Gr4は、両凹の負レンズL8のみで構成されており、全体で負の屈折力を有している。第5レンズ群Gr5は、物体側に光軸付近で凸、周辺側で凹の正レンズL9のみで構成されており、全体で正の屈折力を有している。反射光学素子PRMは、本実施例10では物体側面に曲率を有し、像側面は平面であり、反射光学素子全体では負の屈折力を有する。
 ここで、図33Aは広角端における断面図である。図33Bは中間における断面図である。図33Cは望遠端における断面図である。図34A~34Cは実施例10の収差図(球面収差、非点収差、歪曲収差)であが、図34Aは広角端における収差図であり、図34Bは中間における収差図であり、図34Cは望遠端における収差図である。
 実施例10のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸方向に沿って物体側に移動し、第4レンズ群Gr4が光軸方向に沿って像側に移動して、各レンズ群の間隔を変えることにより変倍を行うことができる。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第1レンズL1、第4レンズL4、第5レンズL5、及び第8レンズL8はガラスモールドレンズ、第9レンズL9はプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例11〕
 実施例11のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.82
 レンズ全長=25.050
 d11=2.148
 実施例11のレンズデータを表31に示す。
〔表31〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1     -9.961      4.550    2.00070     25.5    2.53
 2       inf.      0.100                        2.37
 3*    10.323      1.228    1.88200     37.2    2.35
 4*    -9.397      d1                           2.33
 5     -6.406      0.300    2.00070     25.5    1.31
 6      3.667      0.400                        1.21
 7*     9.867      0.635    1.68890     31.2    1.29
 8*    11.746      d2                           1.37
 9      8.571      0.991    1.84670     23.8    1.56
10     -9.243      0.100                        1.53
11(stop) inf .     0.000                        1.48
12      6.369      1.437    1.49700     81.6    1.51
13     -3.697      0.010    1.51400     42.8    1.55
14     -3.697      0.375    2.00070     25.5    1.55
15    -34.142      0.400                        1.65
16*    10.195      1.163    1.73080     40.5    1.79
17*    -5.738      d3                           1.83
18*    14.303      0.383    2.00180     19.3    1.49
19*     3.003      0.506                        1.43
20*     7.607      0.750    1.63470     23.9    1.63
21*     6.956      d4                           1.74
22*     5.375      1.467    1.54470     56.2    2.18
23*   -18.889      1.000                        2.37
24       inf.      0.145    1.51680     64.2    2.32
25       inf.      0.500                        2.32

[非球面係数]
第3面
K=0.00000E+00, A4=-0.27028E-03, A6=-0.76400E-04, 
A8=0.83622E-05, A10=-0.17252E-05
第4面
K=0.00000E+00, A4=0.59880E-03, A6=-0.68370E-04, 
A8=0.29705E-05, A10=-0.11278E-05
第7面
K=0.00000E+00, A4=-0.11419E-02, A6=-0.19745E-03, 
A8=0.82802E-03, A10=-0.17741E-03
第8面
K=0.00000E+00, A4=-0.83739E-02, A6=-0.22834E-03, 
A8=0.49311E-03, A10=-0.10217E-03
第16面
K=0.00000E+00, A4=-0.19071E-02, A6=0.15789E-03, 
A8=0.64990E-04, A10=0.69421E-05
第17面
K=0.00000E+00, A4=0.17301E-02, A6=0.11160E-03, 
A8=0.26892E-04, A10=0.14370E-04
第18面
K=0.00000E+00, A4=-0.37648E-02, A6=-0.12153E-03, 
A8=0.45622E-03, A10=-0.10454E-03
第19面
K=0.00000E+00, A4=0.33590E-02, A6=-0.72571E-03, 
A8=-0.51473E-04, A10=0.13698E-04
第20面
K=0.00000E+00, A4=0.20352E-01, A6=-0.30235E-02, 
A8=-0.46768E-03, A10=0.34028E-04
第21面
K=0.00000E+00, A4=0.54506E-02, A6=-0.19600E-02, 
A8=-0.33545E-03, A10=-0.14945E-05
第22面
K=0.00000E+00, A4=-0.47779E-02, A6=-0.67116E-03, 
A8=-0.65050E-04, A10=-0.12766E-04
第23面
K=0.00000E+00, A4=-0.24340E-02, A6=-0.86129E-03, 
A8=-0.78757E-04, A10=0.66324E-05
 実施例11のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d4)を以下の表32に示す。
 〔表32〕
Po    f       Fno      画角       2Y
1    3.73    3.77      63.3      3.914
2    6.23    3.89      40.4      4.600
3    10.51   3.86      23.9      4.600

Po   d1      d2      d3      d4
1   0.243   3.686   0.925   3.756
2   2.028   1.902   1.950   2.731
3   3.630   0.300   3.665   1.017
 実施例11のズームレンズの各レンズ群のデータ以下の表33に示す。
〔表33〕
    レンズ群     始面         焦点距離(mm)
      1            1            8.25
      2            5           -2.33
      3            9            3.58
      4           18           -3.64
      5           22            7.85
 図35A~35Cは実施例11のレンズの断面図である。図中、符号GR1は正の屈折力を有する第1レンズ群、符号GR2は負の屈折力を有する第2レンズ群、符号GR3は正の屈折力を有する第3レンズ群、符号GR4は負の屈折力を有する第4レンズ群、符号GR5は正の屈折力を有する第5レンズ群を示す。第1レンズ群Gr1は、物体側より順に、物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)PRMと,両凸の正レンズL1とで構成されており、全体で正の屈折力を有している。第2レンズ群Gr2は、物体側より順に、両凹の負レンズL3と、物体側に凸、像側に凹の正レンズL3と、で構成されており、全体で負の屈折力を有している。第3レンズ群Gr3は、両凸の正レンズL4,開口絞りS,正レンズL5と負レンズL6を組み合わせた接合レンズ、両凸の正レンズL7で構成されており、全体で正の屈折力を有している。第4レンズ群Gr4は、それぞれ物体側に凸の負メニスカスレンズL8及び正メニスカスレンズL9で構成されており、全体で負の屈折力を有している。第5レンズ群Gr5は、物体側に光軸付近で凸、周辺側で凹の正レンズL10のみで構成されており、全体で正の屈折力を有している。反射光学素子PRMは、本実施例11では物体側面に曲率を有し、像側面は平面であり、反射光学素子全体では負の屈折力を有する。
 ここで、図35Aは広角端における断面図である。図35Bは中間における断面図である。図35Cは望遠端における断面図である。図36A~36Cは実施例11の収差図(球面収差、非点収差、歪曲収差)であるが、図36Aは広角端における収差図であり、図36Bは中間における収差図であり、図36Cは望遠端における収差図である。
 実施例11のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸方向に沿って物体側に移動し、第4レンズ群Gr4が光軸方向に沿って像側に移動して、各レンズ群の間隔を変えることにより変倍を行うことができる。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第1レンズL1、第3レンズL3、第7レンズL7、及び第8レンズL8はガラスモールドレンズ、第9レンズL9と第10レンズL10はプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例12〕
 実施例12のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.81
 レンズ全長=26.027
 d11=2.013
 実施例12のレンズデータを表34に示す。
〔表34〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1     -7.949      4.449    2.00060     25.5    2.43
 2    -17.005      0.100                        2.42
 3*    14.001      1.117    1.88300     40.8    2.35
 4*   -11.304      d1                           2.32
 5     -6.923      0.300    1.91150     24.1    1.46
 6      2.815      0.400                        1.33
 7*     5.780      0.868    1.61680     32.8    1.37
 8*    10.834      d2                           1.35
 9      7.848      1.090    1.72740     26.0    1.59
10     -6.753      0.100                        1.55
11(stop) inf.      0.000                        1.47
12      7.048      1.475    1.49700     81.6    1.50
13     -2.953      0.010    1.51400     42.8    1.51
14     -2.953      0.400    1.88010     33.0    1.51
15     24.028      0.317                        1.63
16*    15.055      1.288    1.59940     64.6    1.73
17*    -3.909      d3                           1.88
18*   -13.737      0.350    1.89150     33.7    1.69
19*    10.390      d4                           1.70
20*     5.409      1.200    1.54470     56.2    2.18
21*    42.951      1.308                        2.33
22       inf.      0.145    1.51680     64.2    2.29
23       inf.      0.500                        2.29

[非球面係数]
第3面
K=0.00000E+00, A4=-0.24490E-03, A6=-0.62198E-04, 
A8=0.11569E-05, A10=-0.96599E-06
第4面
K=0.00000E+00, A4=0.30753E-03, A6=-0.70682E-04, 
A8=-0.53219E-06, A10=-0.62392E-06
第7面
K=0.00000E+00, A4=0.31181E-02, A6=0.12635E-02, 
A8=0.29864E-03, A10=0.75260E-05
第8面
K=0.00000E+00, A4=-0.72844E-02, A6=0.10195E-02, 
A8=-0.12965E-03, A10=0.86898E-04
第16面
K=0.00000E+00, A4=-0.53889E-02, A6=0.86730E-04, 
A8=-0.51410E-04, A10=0.73181E-05
第17面
K=0.00000E+00, A4=-0.13856E-02, A6=0.27003E-04, 
A8=-0.48975E-04, A10=0.46212E-05
第18面
K=0.00000E+00, A4=0.77865E-02, A6=-0.18266E-02, 
A8=0.21790E-03, A10=-0.14081E-04
第19面
K=0.00000E+00, A4=0.69664E-02, A6=-0.17211E-02, 
A8=0.16360E-03, A10=-0.87225E-05
第20面
K=0.00000E+00, A4=-0.45755E-02, A6=-0.14050E-02, 
A8=0.84100E-04, A10=-0.22026E-04
第21面
K=0.00000E+00, A4=-0.11739E-02, A6=-0.18800E-02, 
A8=0.98179E-04, A10=-0.55378E-05
 実施例12のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d4)を以下の表35に示す。
〔表35〕
Po    f       Fno      画角       2Y
1    3.74    3.77      63.1      3.916
2    6.24    3.92      40.4      4.559
3   10.52    3.87      23.9      4.600

Po   d1      d2      d3      d4
1   0.262   3.682   1.080   5.586
2   2.023   1.921   2.580   4.086
3   3.644   0.300   4.967   1.700
 実施例12のズームレンズの各レンズ群のデータ以下の表36に示す。
〔表36〕
    レンズ群     始面         焦点距離(mm)
      1            1            7.73
      2            5           -2.43
      3            9            4.16
      4           18           -6.59
      5           20           11.23
 図37A~37Cは実施例12のレンズの断面図である。図中、符号GR1は正の屈折力を有する第1レンズ群、符号GR2は負の屈折力を有する第2レンズ群、符号GR3は正の屈折力を有する第3レンズ群、符号GR4は負の屈折力を有する第4レンズ群、符号GR5は正の屈折力を有する第5レンズ群を示す。第1レンズ群Gr1は、物体側より順に、物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)PRMと,両凸の正レンズL1とで構成されており、全体で正の屈折力を有している。第2レンズ群Gr2は、物体側より順に、両凹の負レンズL3と、物体側に凸、像側に凹の正レンズL3と、で構成されており、全体で負の屈折力を有している。第3レンズ群Gr3は、両凸の正レンズL4,開口絞りS,正レンズL5と負レンズL6を組み合わせた接合レンズ、両凸の正レンズL7で構成されており、全体で正の屈折力を有している。第4レンズ群Gr4は、両凹の負レンズL8のみで構成されており、全体で負の屈折力を有している。第5レンズ群Gr5は、物体側に光軸付近で凸、周辺側で凹の正レンズL9のみで構成されており、全体で正の屈折力を有している。反射光学素子PRMは、本実施例12では物体側面及び物体側面に曲率を有し、反射光学素子全体では負の屈折力を有する。
 ここで、図37Aは広角端における断面図である。図36Bは中間における断面図である。図36Cは望遠端における断面図である。図38A~38Cは実施例12の収差図(球面収差、非点収差、歪曲収差)であるが、図38Aは広角端における収差図であり、図38Bは中間における収差図であり、図38Cは望遠端における収差図である。
 実施例12のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸方向に沿って物体側に移動し、第4レンズ群Gr4が光軸方向に沿って像側に移動して、各レンズ群の間隔を変えることにより変倍を行うことができる。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第1レンズL1、第4レンズL4、第5レンズL5、及び第8レンズL8はガラスモールドレンズ、第9レンズL9はプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
〔実施例13〕
 実施例13のズームレンズの基本的な特徴は以下のようなものである。
 ズーム比=2.82
 レンズ全長=27.938
 d11=2.462
 実施例13のレンズデータを表37に示す。
〔表37〕
[曲率半径、面間隔等]
Surf.N  R(mm)      D(mm)    Nd          νd    有効半径(mm)
 1    -14.559      5.102    1.97920     25.2    2.90
 2     44.854      0.264                        2.54
 3*     9.145      1.302    1.88050     40.9    2.50
 4*   -10.790      d1                           2.46
 5     -5.961      0.300    1.90820     25.3    1.20
 6      2.922      0.400                        1.16
 7*     5.970      0.969    1.63290     31.4    1.27
 8*     7.748      d2                           1.37
 9     10.959      1.144    1.82370     23.7    1.56
10     -6.576      0.100                        1.55
11(stop) inf.      0.000                        1.49
12      9.086      1.461    1.49700     81.6    1.51
13     -2.884      0.010    1.51400     42.8    1.56
14     -2.884      0.400    1.90700     25.8    1.57
15    793.304      0.324                        1.72
16*    13.064      1.425    1.59740     34.8    1.86
17*    -3.709      d3                           2.02
18*   -14.435      0.350    1.91730     22.4    1.70
19*     8.925      d4                           1.70
20*     7.212      1.600    1.54470     56.2    2.22
21*   -24.062      1.289                        2.41
22       inf.      0.145    1.51680     64.2    2.33
23       inf.      0.500                        2.32

[非球面係数]
第3面
K=0.00000E+00, A4=-0.11713E-03, A6=-0.41006E-04, 
A8=0.50921E-05, A10=-0.55248E-06
第4面
K=0.00000E+00, A4=0.71117E-03, A6=-0.48604E-04, 
A8=0.45164E-05, A10=-0.48376E-06
第7面
K=0.00000E+00, A4=-0.11579E-02, A6=0.18412E-02, 
A8=0.49967E-04, A10=0.23581E-04
第8面
K=0.00000E+00, A4=-0.11057E-01, A6=0.14590E-02, 
A8=-0.21963E-03, A10=0.52616E-04
第16面
K=0.00000E+00, A4=-0.41863E-02, A6=0.62874E-04, 
A8=-0.47591E-04, A10=0.23398E-05
第17面
K=0.00000E+00, A4=0.29941E-03, A6=-0.26626E-04, 
A8=-0.17350E-04, A10=-0.11563E-05
第18面
K=0.00000E+00, A4=0.72938E-02, A6=-0.21388E-02, 
A8=0.34117E-03, A10=-0.22061E-04
第19面
K=0.00000E+00, A4=0.64788E-02, A6=-0.21802E-02, 
A8=0.34068E-03, A10=-0.23607E-04
第20面
K=0.00000E+00, A4=-0.39661E-02, A6=-0.98144E-03, 
A8=0.51138E-04, A10=-0.10790E-04
第21面
K=0.00000E+00, A4=-0.17003E-02, A6=-0.12746E-02, 
A8=0.91386E-04, A10=-0.40861E-05
 実施例13のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d4)を以下の表38に示す。
〔表38〕
Po    f       Fno      画角       2Y
1    3.74    3.77      63.1      3.917
2    6.35    3.93      39.8      4.600
3   10.55    3.87      23.9      4.600

Po   d1      d2      d3      d4
1   0.284   3.630   1.080   5.860
2   2.064   1.849   2.610   4.330
3   3.608   0.306   5.290   1.650
 実施例13のズームレンズの各レンズ群のデータ以下の表39に示す。
〔表39〕
    レンズ群     始面          焦点距離(mm) 
      1            1            8.41
      2            5           -2.19
      3            9            4.03
      4           18           -5.97
      5           20           10.37
 図39A~39Cは実施例13のレンズの断面図である。図中、符号GR1は正の屈折力を有する第1レンズ群、符号GR2は負の屈折力を有する第2レンズ群、符号GR3は正の屈折力を有する第3レンズ群、符号GR4は負の屈折力を有する第4レンズ群、符号GR5は正の屈折力を有する第5レンズ群を示す。第1レンズ群Gr1は、物体側より順に、物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)PRMと,両凸の正レンズL1とで構成されており、全体で正の屈折力を有している。第2レンズ群Gr2は、物体側より順に、両凹の負レンズL3と、物体側に凸、像側に凹の正レンズL3と、で構成されており、全体で負の屈折力を有している。第3レンズ群Gr3は、両凸の正レンズL4,開口絞りS,正レンズL5と負レンズL6を組み合わせた接合レンズ、両凸の正レンズL7で構成されており、全体で正の屈折力を有している。第4レンズ群Gr4は、両凹の負レンズL8のみで構成されており、全体で負の屈折力を有している。第5レンズ群Gr5は、物体側に光軸付近で凸、周辺側で凹の正レンズL9のみで構成されており、全体で正の屈折力を有している。反射光学素子PRMは、本実施例13では物体側面及び物体側面に曲率を有し、反射光学素子全体では負の屈折力を有する。
 ここで、図39Aは広角端における断面図である。図39Bは中間における断面図である。図39Cは望遠端における断面図である。図40A~40Cは実施例13の収差図(球面収差、非点収差、歪曲収差)であるが、図40Aは広角端における収差図であり、図40Bは中間における収差図であり、図40Cは望遠端における収差図である。
 実施例13のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸方向に沿って物体側に移動し、第4レンズ群Gr4が光軸方向に沿って像側に移動して、各レンズ群の間隔を変えることにより変倍を行うことができる。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群Gr4を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第1レンズL1、第4レンズL4、第5レンズL5、及び第8レンズL8はガラスモールドレンズ、第9レンズL9はプラスチックレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
 以下の表40は、参考のため、各条件式(1)~(12)に対応する各実施例1~15の値をまとめたものである。
〔表40〕
Figure JPOXMLDOC01-appb-I000002
 以上では、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。
 例えば、実施例1~13の第5レンズ群のレンズL51,L9(又はL10)のようなプラスチックレンズの作製に、無機粒子を分散させたプラスチック材料を用いることにより、ズームレンズ10,ZL全系の温度変化時の像点位置変動をより小さく抑えることが可能となる。
 最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光線の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性のきわめて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、実施例1~13の第5レンズ群のレンズL51,L9(又はL10)のようなプラスチックレンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、ズームレンズ全系の温度変化時の像点位置変動をより小さく抑えることが可能となる。
 実施例1~13の第5レンズ群のレンズL51,L9(又はL10)のようなプラスチックレンズの作製に、エネルギー硬化性樹脂を用いてもよい。
 近年、撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。このようなリフロー処理を用いて実装を行うためには、電子部品ととともに光学素子を約200~260℃に加熱する必要があるが、このような高温下では、熱可塑性樹脂を用いたレンズは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりも一般にコストが高い。そこで、ズームレンズ(具体的には例えば第9レンズL51)の材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さいため、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、ズームレンズを組み込んだ撮像装置の低コストと量産性とを両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂及び紫外線硬化性樹脂のいずれをも指すものとする。
 なお、本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、実質的にパワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。

Claims (27)

  1.  物体側より順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     負の屈折力を有する第4レンズ群と、
     正の屈折力を有する第5レンズ群とから構成され、変倍を行うズームレンズであって、
     前記第1レンズ群は、反射によって光路を折り曲げる反射光学素子を含み、
     広角端から望遠端に至る変倍に際して、前記第1及び第5レンズ群は固定され、
     前記第2レンズ群は像側に移動し、
     以下の条件式を満足する、ズームレンズ。
     0.8<f3/fW<1.4  …  (1)
     ただし、
      f3:前記第3レンズ群の焦点距離
      fW:広角端における全系の焦点距離
  2.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     0.2<f1/fT<1.0  …  (2)
    ただし、
      f1:前記第1レンズ群の焦点距離
      fT:望遠端における全系の焦点距離
  3.  前記反射光学素子は、内面で光線を反射し、以下の条件式を満足する、請求項1に記載のズームレンズ。
     1.80<nprm<2.20  …  (3)
    ただし、
      nprm:前記反射光学素子の屈折率
  4.  前記反射光学素子は、内面で光線を反射し、以下の条件式を満足する、請求項1に記載のズームレンズ。
     1.0≦d1aPRM/dPRM<1.6  …  (4)
    ただし、
      d1aPRM:前記第1レンズ群の最も物体側面から前記反射光学素子の像側の面までの光軸上の距離
      dPRM:前記反射光学素子の物体側の面から像側の面までの光軸上の距離
  5.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     -1.5<f4/(fW×fT)1/2<-0.5  …  (5)
    ただし、
      f4:前記第4レンズ群の焦点距離
      fW:広角端における全系の焦点距離
      fT:望遠端における全系の焦点距離
  6.  前記第1レンズ群は、最も物体側に負の屈折力を持つ光学素子を有し、以下の条件式を満足する、請求項1に記載のズームレンズ。
     1.0<|f1a/fW|<6.0  …  (6)
    ただし、
      f1a:前記第1レンズ群の最も物体側の光学素子の焦点距離
      fW:広角端における全系の焦点距離
  7.  前記第4レンズ群は、広角端から望遠端に至る変倍に際して像側に移動する、請求項1に記載のズームレンズ。
  8.  前記反射光学素子は、プリズムで、実質的に屈折力を有さず、反射面は実質的に平面で構成されている、請求項7に記載のズームレンズ。
  9.  広角端から望遠端に至る変倍に際して、前記第4レンズ群が像側に移動した後に物体側に移動し、以下の条件式を満足する、請求項1に記載のズームレンズ。
     -0.8<β2W<-0.4  …  (7)
     -3.0<β2T<-1.0  …  (8)
     ただし、
      β2W:前記第2レンズ群の広角端での横倍率
      β2T:前記第2レンズ群の望遠端での横倍率
  10.  前記反射光学素子は、実質的に屈折力を有しない、請求項9に記載のズームレンズ。
  11.  前記反射光学素子は、プリズムであり、当該プリズムの最も物体側面と反射面とは、実質的に平面である、請求項10に記載のズームレンズ。
  12.  以下の条件式を満足する、請求項9に記載のズームレンズ。
     1.5<m2/m4<12.0  …  (9)
     ただし、
      m2:広角端から望遠端に至る変倍での前記第2レンズ群の最大移動量
      m4:広角端から望遠端に至る変倍での前記第4レンズ群の最大移動量
  13.  前記反射光学素子は、最も物体側に配置され、負の屈折力を有する、請求項1に記載のズームレンズ。
  14.  前記反射光学素子の最も物体側面は、凹面である、請求項13に記載のズームレンズ。
  15.  前記第4レンズ群は、広角端から望遠端に至る変倍に際して像側に移動する、請求項13に記載のズームレンズ。
  16.  以下の条件を満足する、請求項13に記載のズームレンズ。
     0.4<d11/fW<0.9  …  (10)
    ただし、
      d11:前記第1レンズ群の最も物体側の面の頂点から反射光学素子の反射面と光軸との交点までの距離
      fW:広角端における前記ズームレンズ全系の焦点距離
  17.  以下の条件を満足する、請求項13に記載のズームレンズ。
     -3.0<r1/d1<-1.5  …  (11)
    ただし、
      r1:前記反射光学素子の物体側の光学面の近軸曲率半径
      d1:前記反射光学素子の物体側の光学面から像側の光学面までの光軸上の距離
  18.  以下の条件式を満足する、請求項13に記載のズームレンズ。
     -3.0<(r1+r2)/(r1-r2)<-0.5  …  (12)
    ただし、
      r1:前記反射光学素子の物体側の光学面の近軸曲率半径
      r2:前記反射光学素子の像側の光学面の近軸曲率半径
  19.  前記ズームレンズは、前記第4レンズ群を移動させることにより合焦を行う、請求項1に記載のズームレンズ。
  20.  前記第3レンズ群は、変倍時、合焦時ともに光軸方向に移動しない、請求項1に記載のズームレンズ。
  21.  前記第5レンズ群は、合焦時に光軸方向に移動しない、請求項1に記載のズームレンズ。
  22.  前記第3レンズ群は、正の屈折力を有するレンズを少なくとも2つ有する、請求項1に記載のズームレンズ。
  23.  前記第3レンズ群に開口絞りが配置されている、請求項1に記載のズームレンズ。
  24.  前記第5レンズ群は、プラスチックからなる単レンズであり、前記第5レンズ群の少なくとも一方の面は、非球面である、請求項1に記載のズームレンズ。
  25.  実質的にパワーを持たないレンズをさらに有する、請求項1に記載のズームレンズ。
  26.  請求項1から25までのいずれか一項に記載のズームレンズと、前記ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有する、撮像装置。
  27.  請求項26に記載の撮像装置と、画像を表示する表示部を有する、携帯端末。
PCT/JP2013/054236 2012-02-20 2013-02-20 ズームレンズ、撮像装置及び携帯端末 WO2013125603A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-034586 2012-02-20
JP2012034586 2012-02-20
JP2012188226 2012-08-29
JP2012-188226 2012-08-29

Publications (1)

Publication Number Publication Date
WO2013125603A1 true WO2013125603A1 (ja) 2013-08-29

Family

ID=49005785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054236 WO2013125603A1 (ja) 2012-02-20 2013-02-20 ズームレンズ、撮像装置及び携帯端末

Country Status (2)

Country Link
JP (1) JPWO2013125603A1 (ja)
WO (1) WO2013125603A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224082A (ja) * 2015-05-27 2016-12-28 キヤノン株式会社 撮像光学系及びそれを有する撮像装置
JP2018010284A (ja) * 2016-06-08 2018-01-18 揚明光學股▲ふん▼有限公司 光学レンズ
EP3327478A1 (en) * 2016-11-29 2018-05-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging device and electronic device
WO2019067916A1 (en) * 2017-09-29 2019-04-04 Symbol Technologies, Llc PROGRESSIVE MAGNIFICATION IMAGING DEVICES
CN110398872A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 一种镜头模组及照相机
CN111123491A (zh) * 2019-12-19 2020-05-08 嘉兴中润光学科技有限公司 超高清分辨率变焦镜头
US20210063704A1 (en) * 2019-08-30 2021-03-04 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN113325562A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 一种变焦镜头、摄像头模组及移动终端
US20220075155A1 (en) * 2020-09-09 2022-03-10 Raytech Optical (Changzhou) Co., Ltd Camera optical lens
CN115047586A (zh) * 2021-03-09 2022-09-13 亚洲光学股份有限公司 成像镜头
WO2023044730A1 (en) * 2021-09-24 2023-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Optical system
CN116027530A (zh) * 2023-03-29 2023-04-28 深圳市东正光学技术股份有限公司 光学成像系统及光学镜头

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093649A (ja) * 2002-08-29 2004-03-25 Olympus Corp ズームレンズ及びそれを有する電子撮像装置
JP2005215165A (ja) * 2004-01-28 2005-08-11 Sony Corp ズームレンズ及び撮像装置
JP2005321545A (ja) * 2004-05-07 2005-11-17 Sony Corp 撮像装置
JP2007156061A (ja) * 2005-12-05 2007-06-21 Konica Minolta Opto Inc 屈曲光学系、撮像レンズ装置及びデジタル機器
JP2007171456A (ja) * 2005-12-21 2007-07-05 Tamron Co Ltd 屈曲ズームレンズ
JP2010044372A (ja) * 2008-07-15 2010-02-25 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP2010122536A (ja) * 2008-11-20 2010-06-03 Panasonic Corp ズームレンズ
JP2010160240A (ja) * 2009-01-07 2010-07-22 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP2010191336A (ja) * 2009-02-20 2010-09-02 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の製造方法
WO2010098407A1 (ja) * 2009-02-26 2010-09-02 株式会社タムロン ズームレンズ
JP2010197860A (ja) * 2009-02-26 2010-09-09 Tamron Co Ltd ズームレンズ
JP2011133738A (ja) * 2009-12-25 2011-07-07 Canon Inc ズームレンズ及びそれを有する撮像装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093649A (ja) * 2002-08-29 2004-03-25 Olympus Corp ズームレンズ及びそれを有する電子撮像装置
JP2005215165A (ja) * 2004-01-28 2005-08-11 Sony Corp ズームレンズ及び撮像装置
JP2005321545A (ja) * 2004-05-07 2005-11-17 Sony Corp 撮像装置
JP2007156061A (ja) * 2005-12-05 2007-06-21 Konica Minolta Opto Inc 屈曲光学系、撮像レンズ装置及びデジタル機器
JP2007171456A (ja) * 2005-12-21 2007-07-05 Tamron Co Ltd 屈曲ズームレンズ
JP2010044372A (ja) * 2008-07-15 2010-02-25 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP2010122536A (ja) * 2008-11-20 2010-06-03 Panasonic Corp ズームレンズ
JP2010160240A (ja) * 2009-01-07 2010-07-22 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP2010191336A (ja) * 2009-02-20 2010-09-02 Nikon Corp 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の製造方法
WO2010098407A1 (ja) * 2009-02-26 2010-09-02 株式会社タムロン ズームレンズ
JP2010197860A (ja) * 2009-02-26 2010-09-09 Tamron Co Ltd ズームレンズ
JP2011133738A (ja) * 2009-12-25 2011-07-07 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224082A (ja) * 2015-05-27 2016-12-28 キヤノン株式会社 撮像光学系及びそれを有する撮像装置
JP2018010284A (ja) * 2016-06-08 2018-01-18 揚明光學股▲ふん▼有限公司 光学レンズ
US10324279B2 (en) 2016-06-08 2019-06-18 Young Optics Inc. Optical lens
US10362223B2 (en) 2016-11-29 2019-07-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging device and electronic device
EP3327478A1 (en) * 2016-11-29 2018-05-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging device and electronic device
GB2578562A (en) * 2017-09-29 2020-05-13 Symbol Technologies Llc Imaging devices having progressive magnification
US10514524B2 (en) * 2017-09-29 2019-12-24 Symbol Technologies, Llc Imaging devices having progressive magnification
DE112018005480B4 (de) * 2017-09-29 2021-05-20 Symbol Technologies, Llc BILDGEBUNGSBAUGRUPPE UND BILDGEBUNGSSCANNER MIT PROGRESSIVER VERGRÖßERUNG SOWIE VERFAHREN
CN111344619A (zh) * 2017-09-29 2020-06-26 讯宝科技有限责任公司 具有渐进放大的成像设备
GB2578562B (en) * 2017-09-29 2020-12-16 Symbol Technologies Llc Imaging devices having progressive magnification
WO2019067916A1 (en) * 2017-09-29 2019-04-04 Symbol Technologies, Llc PROGRESSIVE MAGNIFICATION IMAGING DEVICES
CN110398872A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 一种镜头模组及照相机
US12047663B2 (en) 2018-04-25 2024-07-23 Huawei Technologies Co., Ltd. Lens module and camera
US20210063704A1 (en) * 2019-08-30 2021-03-04 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11803034B2 (en) * 2019-08-30 2023-10-31 Samsung Electro-Mechanics Co., Ltd. Optical imaging system including six lenses of +---++, or seven lenses of --+-++-, +-+--++, -++-+-- or -++-++- refractive powers
CN111123491A (zh) * 2019-12-19 2020-05-08 嘉兴中润光学科技有限公司 超高清分辨率变焦镜头
CN113325562A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 一种变焦镜头、摄像头模组及移动终端
JP2023515995A (ja) * 2020-02-29 2023-04-17 華為技術有限公司 ズームレンズ、カメラモジュール、および携帯端末
EP4099077A4 (en) * 2020-02-29 2023-07-26 Huawei Technologies Co., Ltd. ZOOM LENS, CAMERA MODULE AND MOBILE DEVICE
JP7522208B2 (ja) 2020-02-29 2024-07-24 華為技術有限公司 ズームレンズ、カメラモジュール、および携帯端末
US20220075155A1 (en) * 2020-09-09 2022-03-10 Raytech Optical (Changzhou) Co., Ltd Camera optical lens
US11867881B2 (en) * 2020-09-09 2024-01-09 Raytech Optical (Changzhou) Co., Ltd. Camera optical lens
CN115047586A (zh) * 2021-03-09 2022-09-13 亚洲光学股份有限公司 成像镜头
CN115047586B (zh) * 2021-03-09 2024-01-19 亚洲光学股份有限公司 成像镜头
WO2023044730A1 (en) * 2021-09-24 2023-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Optical system
CN116027530A (zh) * 2023-03-29 2023-04-28 深圳市东正光学技术股份有限公司 光学成像系统及光学镜头

Also Published As

Publication number Publication date
JPWO2013125603A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6237106B2 (ja) ズームレンズ及び撮像装置
WO2013125603A1 (ja) ズームレンズ、撮像装置及び携帯端末
CN102341737B (zh) 摄像光学系统、摄像光学装置及数码设备
US8405914B2 (en) Zoom lens and image pickup apparatus
US8081253B2 (en) Zoom lens and image pickup apparatus equipped with same
US20060262421A1 (en) Optical unit and image capturing apparatus including the same
JP5692530B2 (ja) ズームレンズ及び撮像装置
US8331035B2 (en) Image pickup apparatus
JP2008281927A (ja) 変倍光学系、撮像装置及びデジタル機器
WO2013161995A1 (ja) ズームレンズ、撮像装置、及びデジタル機器
JP2008310133A (ja) 変倍光学系、撮像装置およびデジタル機器
JP6997600B2 (ja) 撮像レンズ,撮像光学装置及びデジタル機器
JP2006209100A (ja) ズームレンズ及び撮像装置
CN108627959A (zh) 变倍光学系统和具有该变倍光学系统的摄像装置
JP5621782B2 (ja) ズームレンズ及び撮像装置
JP2013044755A (ja) ズームレンズ及び撮像装置
JP2019090947A (ja) 撮像レンズ,撮像光学装置及びデジタル機器
JP2014219609A (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP2014238469A (ja) ズームレンズ及び撮像装置
JP2015222333A (ja) ズームレンズ及び撮像装置
US7433584B2 (en) Variable-magnification optical system and image-taking apparatus therewith
JP2013044757A (ja) ズームレンズ及び撮像装置
CN104884990B (zh) 变焦透镜和摄像装置
JP2006350049A (ja) レンズユニット、およびそれを備える撮像装置
JPWO2012063711A1 (ja) ズームレンズ及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752502

Country of ref document: EP

Kind code of ref document: A1