WO2013125471A1 - Cooling source for circulation cooling system and ion microscope using same - Google Patents
Cooling source for circulation cooling system and ion microscope using same Download PDFInfo
- Publication number
- WO2013125471A1 WO2013125471A1 PCT/JP2013/053789 JP2013053789W WO2013125471A1 WO 2013125471 A1 WO2013125471 A1 WO 2013125471A1 JP 2013053789 W JP2013053789 W JP 2013053789W WO 2013125471 A1 WO2013125471 A1 WO 2013125471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- vacuum
- stage heat
- cooling system
- cryogenic refrigerator
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 102
- 238000005192 partition Methods 0.000 claims abstract description 23
- 239000003507 refrigerant Substances 0.000 claims description 39
- 238000005057 refrigeration Methods 0.000 abstract 2
- 150000002500 ions Chemical class 0.000 description 56
- 239000007789 gas Substances 0.000 description 29
- 239000001307 helium Substances 0.000 description 21
- 229910052734 helium Inorganic materials 0.000 description 21
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 18
- 239000002826 coolant Substances 0.000 description 9
- 238000012423 maintenance Methods 0.000 description 9
- 238000010884 ion-beam technique Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- -1 helium ions Chemical class 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002371 helium Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/002—Cooling arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
Definitions
- the present invention relates to a circulating cooling system using a refrigerant cooled to a cryogenic temperature by a cryogenic refrigerator and an ion microscope using the same in order to cool an object to be cooled to a cryogenic temperature.
- GM Gifford McMahon
- pulse tube refrigerators As commercially available refrigerators. Since these generate large vibrations from the cryogenic refrigerator itself, it is difficult to apply them to cooling ultra-low vibration devices such as ion microscopes.
- the cryogenic refrigerator that has the lowest vibration in the market today is a Stirling refrigerator.
- the compressor In this Stirling refrigerator, the compressor is placed opposite to reduce vibration due to the compressor operation, and a mechanism that applies a reaction force in the opposite phase to the reciprocating motion of the displacer (piston) is provided. The vibration of the head is reduced.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2011-14245 (Patent Document 1) is a technique related to a circulating cooling system of an ion microscope.
- a refrigerator that cools the gas field ion source is installed independently of the ion microscope main body, and the gas field ion source is installed between the gas field ion source and the refrigerator.
- Cryogenic refrigerators used for circulating cooling need regular maintenance.
- a GM refrigerator has been used.
- internal wear parts could be replaced without removing the housing of the GM refrigerator, which is a part of the vacuum vessel.
- the cryogenic refrigerator is temporarily stopped, the worn parts are replaced, or the cryogenic refrigerator itself is replaced. Since the equipment cannot be used while the cryogenic refrigerator is stopped, a reduction in maintenance time is required.
- it is necessary to break the vacuum, and the countercurrent heat exchanger having a large heat capacity disposed in the vacuum vessel must be heated to room temperature. Therefore, there is a problem that it takes time to raise and re-cool the countercurrent heat exchanger, and the maintenance time is prolonged.
- a vacuum vessel includes a first vacuum tank including the stage heat exchanger, and a second counter including the counterflow heat exchanger.
- the vacuum chamber is separated by a vacuum partition.
- Sectional drawing which shows the structure of the circulating cooling system in the Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the circulation cooling system in the Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure before removing the cryogenic refrigerator in the Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure at the time of cryogenic refrigerator removal in the Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the circulation cooling system in another Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the circulation cooling system at the time of removing the cryogenic refrigerator in another Example of this invention.
- Sectional drawing which shows the structure which shows the circulating cooling system in the 3rd Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the circulation cooling system in the 3rd Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the cooling system before removing the refrigerator in the 3rd Example of this invention.
- Detailed sectional drawing which shows the refrigerator attachment / detachment part structure of the cooling system at the time of cryogenic refrigerator removal in the 3rd Example of this invention.
- Sectional drawing which shows the structure of the circulating cooling system in the 4th Example of this invention.
- Sectional drawing which shows the structure of the system at the time of refrigerator removal in the 4th Example of this invention.
- Sectional drawing which shows the detail of the structure of a heat insulation vacuum wall.
- Sectional drawing which shows the detail of the structure of a stage heat exchanger. Sectional drawing of an ion microscope and a cooling system.
- a technology for cooling a refrigerant typified by helium gas to a cryogenic temperature and transporting the refrigerant to cool the device is applied to various systems.
- it is effective in conditions where it is difficult to directly connect a refrigerator, for example, in a strong magnetic field environment or in a system where vibration of the refrigerator is a problem.
- the present invention can be applied to a nuclear magnetic resonance (NMR) apparatus, an MRI (Magnetic Resonance Imaging), and the like.
- NMR nuclear magnetic resonance
- MRI Magnetic Resonance Imaging
- FIG. 1 is a cross-sectional view showing a configuration of a circulating cooling system in an embodiment of the present invention.
- the cooling unit 55 includes a cryogenic refrigerator 1, a stage heat exchanger 4 that is in thermal contact with the cryogenic refrigerator 1, a first countercurrent heat exchanger 6, and a second countercurrent heat exchanger 7.
- the pipes 5 are connected to the heat exchangers.
- Each heat exchanger is stored inside the vacuum vessel 2, and heat conduction from the surrounding room temperature is suppressed by vacuum insulation, and heat intrusion to the low temperature part due to convection is suppressed.
- the cooling unit 55 includes a part in which the stage heat exchanger 4 and the cryogenic refrigerator 1 are stored, and a part in which the two counter-current heat exchangers 6 and 7 are stored. 23. Further, a part or all of the vacuum partition is constituted by a heat insulating vacuum wall 24.
- the transfer tube 50 passes through a pipe (not shown) inside, and has a structure in which the refrigerant flows through the pipe.
- a vacuum is formed between the piping of the transfer tube and the outer wall of the transfer tube, and heat intrusion from the outer wall at room temperature to the cryogenic piping is suppressed by vacuum insulation.
- the object to be cooled 60 cools the object to be cooled 54 to a cryogenic temperature using the refrigerant sent from the cooling unit 55 through the transfer tube 50.
- a heater (not shown) may be used for heating.
- the piping 51 separates the vacuum tank of the body to be cooled 60 from the vacuum tank of the transfer tube 50 and the cooling unit 55.
- the transfer tube 50 is generally made of a plastic laminated heat insulating material. When an ultra-high vacuum is used, gas emission from this plastic becomes a problem. Because.
- the room-temperature refrigerant gas sent from the compressor 100 is cooled to a low temperature by passing through the countercurrent heat exchanger 6.
- the stage heat exchanger 4 that is thermally connected to the cold head 3 of the cryogenic refrigerator 1
- the refrigerant cooled to a low temperature by the stage heat exchanger 4 thermally connected to the cold head 3 of the cryogenic refrigerator 1 is transported to the cooled object 60 through the transfer tube 50, so that the inside of the cooled object 60
- the object 54 can be cooled to a very low temperature.
- FIG. 2 is a detailed cross-sectional view showing the configuration of the refrigerator attaching / detaching portion of the circulating cooling system in the present embodiment.
- the arrow in FIG. 2 represents the refrigerant
- the cryogenic refrigerator 1 has one end fixed to the vacuum vessel 2 and serves as a partition that evacuates the cold head 3 of the cryogenic refrigerator 1.
- the cold head 3 is fixed to the stage heat exchanger 4 with screws. At this time, in order to reduce the contact thermal resistance between the stage heat exchanger 4 and the cold head 3 between the cold head 3 and the stage heat exchanger 4, vacuum grease (not shown) or indium (not shown), or Both are installed.
- the low-vibration type Stirling refrigerator is applied to a system in which vibration is a problem in a commercially available Stirling refrigerator, compared with a pulse tube refrigerator or a GM type refrigerator, which is currently on the market.
- the Stirling refrigerator has a displacer driven by a piston in the cold head, and the vibration level is large with a simple structure. However, it has succeeded in reducing the vibration level by adding vibration that cancels vibration.
- the cryogenic refrigerator 1 is fixed to the lower side of the vacuum vessel 2.
- a compressor (not shown) and a valve switching device (not shown) are mounted on the room temperature portion of the cryogenic refrigerator 1 and serve as a vibration source. By installing the cryogenic refrigerator 1 downward, it becomes easy to fix the vibration source to the floor.
- the vacuum vessel 2 is divided by a partition wall 23 into a vacuum chamber 21 containing the components of the circulating cooling system other than the stage heat exchanger 4 and a vacuum chamber 22 storing the stage heat exchanger 4.
- the piping 5 for transporting the refrigerant passes through the vacuum chamber 21 and the vacuum chamber 22, and in order to reduce the heat load from the partition wall 23 of the vacuum vessel at room temperature to the piping 5, the heat insulating vacuum wall 24 is provided with the partition wall of the vacuum vessel. 23.
- FIG. 13 is a cross-sectional view showing details of the structure of the heat insulating vacuum wall 24.
- the heat insulating vacuum wall 24 is a combination of cylinders having different diameters, and is made of stainless steel or glass fiber reinforced plastic.
- the heat insulating vacuum wall 24 is generally made of stainless steel as a material in a system that performs baking and evacuation, and is made of a polymer material such as glass fiber reinforced plastic when baking is not performed. In addition to baking reasons, it may be made of fiber reinforced plastic for weight reduction.
- the room temperature portion of the heat insulating vacuum wall 24 is integrated with the partition wall 23, but may be fixed with an O-ring and a screw.
- the adiabatic vacuum wall is divided into three stages of room temperature, intermediate temperature, and minimum cooling temperature.
- the adiabatic vacuum wall 24 includes a normal temperature cylinder 241 from a room temperature portion to an intermediate temperature, a low temperature cylinder 242 from an intermediate temperature to a minimum cooling temperature, an intermediate temperature cooling surface 243, and a minimum cooling temperature cooling surface 244.
- the intermediate temperature cooling surface 243 is cooled to an intermediate temperature by the refrigerant pipe 51 cooled to the intermediate temperature.
- the minimum cooling temperature cooling surface 244 is cooled to the minimum cooling temperature by the refrigerant pipe 52 cooled to the minimum temperature.
- the portion where the pipe through which the refrigerant flows is fixed from the vacuum container can have a heat insulating vacuum wall structure. Heat intrusion due to heat conduction to the pipe cooled to a low temperature can be suppressed.
- the heat insulating vacuum wall 24 is not limited to the structure shown in FIG.
- the heat insulating vacuum wall 24 may use a bellows structure in the cylindrical portion.
- FIG. 14 is a cross-sectional view showing details of the structure of the stage heat exchanger 4.
- the stage heat exchanger 4 has a structure in which a copper tube 42 is wound around a copper cylinder 41.
- This circulation cooling system is an indirect cooling structure in which an object to be cooled is cooled by the refrigerant cooled by the cold head 3 of the cryogenic refrigerator 1, and the area of the cold head 3 of the cryogenic refrigerator 1 is small. Since sufficient heat exchange cannot be performed between the two, a stage heat exchanger 4 made of copper is manufactured to expand the heat exchange area.
- the stage heat exchanger 4 may have a structure in which a through hole is provided at the center.
- the length of the copper tube 42 wound around the stage heat exchanger 4 only needs to be longer than the length calculated from the heat exchange amount of refrigerant in the stage heat exchanger 4 and the temperature efficiency.
- the stage heat exchanger 4 has a through hole 43 for coupling to the cryogenic refrigerator 1 and is coupled to the cryogenic refrigerator 1 by screws (not shown). Further, the stage heat exchanger 4 has a through hole or screw hole 44 for attaching the support 200 to the vacuum vessel 2. When the cryogenic refrigerator 1 is removed, this through hole or screw is provided. The support 200 is fixed to the vacuum vessel 2 using the holes 44.
- a stage heat exchanger that performs heat exchange between the refrigerant and the cryogenic refrigerator is supported by a cryogenic refrigerator and a pipe through which the refrigerant flows. It is necessary to suppress the amount of heat penetration from the piping into the cryogenic refrigerator. This pipe is thin and does not have a function of supporting the stage heat exchanger. Therefore, when the cryogenic refrigerator is removed at the time of maintenance, there is a problem that stress due to the weight of the stage heat exchanger is applied to the pipe and damage such as bending of the pipe occurs.
- FIG. 2 is a cross-sectional view showing the configuration of the circulating cooling system in the present embodiment.
- the cold head 3 and the stage heat exchanger 4 of the cryogenic refrigerator 1 are heated by a heater (not shown).
- the temperature is raised to room temperature.
- a valve (not shown) capable of opening and closing the vacuum chamber 22 attached to the vacuum vessel 2 is opened to make the inside of the vacuum chamber 22 equivalent to the atmospheric pressure.
- the lid 11 attached to the vacuum vessel 2 is removed with the valve (not shown) open, so that the cold head 3 and the stage heat exchanger 4 of the cryogenic refrigerator 1 can be seen. To do.
- FIG. 3 is a cross-sectional view showing the configuration before removing the cryogenic refrigerator in this embodiment.
- the arrow in FIG. 3 represents the refrigerant
- the support 200 is inserted between the stage heat exchanger 4 and the vacuum vessel 2 before removing the fixing screw (not shown) that connects the stage heat exchanger 4 and the cold head 3.
- the stage heat exchanger 4 has a structure supported from the cryogenic refrigerator 1 and the vacuum vessel 2.
- the support 200 may be made of a metal such as stainless steel in order to increase the rigidity.
- FIG. 4 is a cross-sectional view showing the configuration when removing the cryogenic refrigerator in this embodiment.
- the arrow in FIG. 4 represents the refrigerant
- the stage heat exchanger 4 is supported only from the vacuum vessel 2 by the support 200.
- the stage heat exchanger 4 is supported by the vacuum vessel 2 and therefore does not move, and the stage heat exchanger
- the pipe 5 is not bent by its own weight. This can prevent damage to the piping due to the weight of the stage heat exchanger when the refrigerator is removed.
- stage heat exchanger 4 when the stage heat exchanger 4 is supported by the cryogenic refrigerator 1 by setting the mounting direction of the cryogenic refrigerator 1 in the vertical direction with respect to the stage heat exchanger 4, the stage heat exchanger 4 is interposed via the stage heat exchanger 4. Therefore, it is possible to prevent the pipe 5 from being bent or damaged by preventing the bending direction force from being applied to the connected pipe 5.
- the stage heat exchanger 4 has a structure supported only from the cryogenic refrigerator 1, has no portion in direct contact with the vacuum vessel 2 at room temperature, and the thermal load received by the stage heat exchanger 4 and the cold head 3 from the vacuum vessel 2. Can be minimized.
- the stage heat exchanger 4 is attached to the cold head 3 with a fixing screw (not shown), the support 200 is removed, and the state shown in FIG. 2 is obtained.
- the lid 11 After attaching the cryogenic refrigerator 1, the lid 11 is attached to the vacuum vessel 2 and the state shown in FIG. 1 is set, and then the vacuum chamber 22 is evacuated by a vacuum pump (not shown). After confirming that the vacuum degree of the vacuum chamber 22 is in a vacuum insulation state by a display value of a vacuum gauge (not shown), the cryogenic refrigerator 1 is started to start circulation cooling.
- the stage heat exchanger When replacing the stage heat exchanger, the stage heat exchanger is supported from the vacuum vessel using a support, and during normal operation, the stage heat exchanger is supported only from the cryogenic refrigerator, so Operation without heat load on the refrigerator is possible.
- the high vacuum degree of the vacuum chamber 21 is maintained without returning the components built in the vacuum chamber 21 to the atmospheric pressure. Moreover, it is not necessary to bake high vacuum parts including the vacuum chamber 21, and the operation of the refrigerator can be resumed even if the vacuum level of the vacuum chamber 22 is worse than that of the vacuum chamber 21. Shorter.
- FIG. 5 is a cross-sectional view showing the configuration of the circulating cooling system in the second embodiment.
- FIG. 6 is a cross-sectional view showing the configuration of the circulating cooling system when the cryogenic refrigerator in Example 2 is removed.
- the arrows in FIG. 5 and FIG. 6 represent the flow direction of the refrigerant pipe and the refrigerant.
- the stage heat exchanger 4 is supported from the vacuum vessel 2 by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2 constituting the vacuum chamber 22 before the cryogenic refrigerator 1 is removed. Is done.
- the support 200 is attached from the same direction as the vacuum vessel surface to which the cryogenic refrigerator 1 is attached. By installing the support 200 below the stage heat exchanger 4, the support 200 disappears above the stage heat exchanger 4, and the stage heat exchanger 4 is removed from the cold head 3 of the cryogenic refrigerator 1. The workability is improved because a space for putting work tools and hands is secured during work.
- the state shown in FIG. 6 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2 and the stage heat exchanger 4 is supported by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2.
- downward refers to a configuration in which the stage heat exchanger 4 is positioned below the cryogenic refrigerator 1 and the cryogenic refrigerator 1 is connected to the lower stage heat exchanger 4.
- FIG. 7 is a cross-sectional view showing the configuration of the circulating cooling system in the third embodiment.
- FIG. 8 is a cross-sectional view showing the configuration of the circulating cooling system in the third embodiment.
- FIG. 9 is a cross-sectional view illustrating the configuration of the cooling system before removing the refrigerator in the third embodiment.
- FIG. 10 is sectional drawing which shows the structure of the cooling system at the time of cryogenic refrigerator removal in Example 3. As shown in FIG.
- the cryogenic refrigerator 1 is fixed to the upper side of the vacuum vessel 2.
- the stage heat exchanger 4 is supported by the support 200 from the vacuum vessel 2.
- the support 200 is inserted from the surface of the vacuum container 2 on the side facing the cryogenic refrigerator 1.
- the stage heat exchanger 4 is supported by the cryogenic refrigerator 1 and the support 200.
- the state shown in FIG. 10 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2 and the stage heat exchanger 4 is supported by the support 200 from the lower surface of the vacuum vessel 2.
- FIG. 11 is a cross-sectional view illustrating a configuration of the circulating cooling system in the fourth embodiment.
- FIG. 12 is sectional drawing which shows the structure of the system at the time of the refrigerator removal in Example 4.
- 11 and 12 indicate the refrigerant piping and the flow direction of the refrigerant.
- the stage heat exchanger 4 has the cryogenic refrigerator 1 fixed to the vacuum vessel 2 by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2 before the cryogenic refrigerator 1 is removed. Supported from the surface side. Thereby, since there is no support body 200 in the side which removes the connection screw with which the stage heat exchanger 4 and the cryogenic refrigerator 1 are not shown in figure, workability
- the state shown in FIG. 12 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2, and the stage heat exchanger 4 is supported by the support 200 from the surface side where the cryogenic refrigerator 1 is attached.
- the structure of the sample surface can be observed.
- SEM scanning electron microscope
- SIM scanning ion microscope
- SIM images using hydrogen or helium ions are more polar samples than SEM images. Sensitive to surface information. Further, from the viewpoint of a microscope, ions are heavier than electrons, and therefore, the diffraction effect can be ignored in the beam focusing, and an image having a very deep depth of focus can be obtained.
- an electron or ion beam is irradiated on a sample and electrons or ions transmitted through the sample are detected, information reflecting the structure inside the sample can be obtained. These are called transmission electron microscopes or transmission ion microscopes. In particular, if a sample is irradiated with a light ion species such as hydrogen or helium, the rate of transmission through the sample increases, which is suitable for observation.
- the gas electrolysis ion source is a suitable ion source for the above-described scanning ion microscope and transmission ion microscope because a fine beam is expected because the ion energy width is narrow and the ion generation source size is small.
- emitter tip cooling means include mechanical vibration generators such as a mechanical refrigerator, and the emitter tip easily vibrates.
- mechanical vibration generators such as a mechanical refrigerator
- the emitter tip easily vibrates.
- the ion beam is shaken and the resolution of sample observation is deteriorated.
- FIG. 15 is a cross-sectional view of an ion microscope and a cooling system in Example 5.
- the ion gun 70 which is the basis of the ion microscope includes an emitter tip 71 and a helium gas filling chamber 72, an electrode 73, a heat exchanger 74 for cooling the emitter tip 71 and the helium gas filling chamber 72, an emitter tip 71 and a helium gas filling chamber.
- a heat shield 75 that surrounds the heat shield 75, a heat exchanger 76 that cools the heat shield 75, and the like are included.
- a vacuum exhaust system (turbo molecular pump, NEG, etc.) and an optical system (not shown) are also included.
- the cryogenic refrigerator 10 is a compressor-integrated Stirling refrigerator.
- the mounting direction may be vertically upward or downward.
- the cryogenic refrigerator 10 is attached to the vacuum vessel 2 vertically upward.
- the helium gas pressurized by the compressor 100 installed in the room temperature portion is sent to the cooling unit 55 and cooled when passing through the counterflow heat exchanger 6.
- the cooled helium gas is cooled by the cryogenic refrigerator 1 in the vacuum chamber 22 separated by the vacuum partition.
- the helium gas that has passed through the vacuum partition and passed through the countercurrent heat exchanger 7 on the vacuum chamber 21 side is further cooled.
- This helium gas is cooled by another cryogenic refrigerator 1 (not shown) in a vacuum chamber 22 separated by a vacuum partition.
- the helium gas cooled to the lowest temperature passes through the vacuum partition, passes through the transfer tube 50, is sent to the ion gun 70, passes through the vacuum partition 77 of the ion gun 70, and the emitter tip 71 and the inside of the ion gun 70. It is sent to a heat exchanger 74 that cools the helium gas filling chamber 72.
- the helium gas whose temperature has risen by cooling the emitter tip 71 and the helium gas filling chamber 72 inside the ion gun 70 passes through the transfer tube 50 and again passes through the countercurrent heat exchanger 7 installed in the vacuum chamber 21. The temperature rises further.
- the helium gas that has passed through the counterflow heat exchanger 7 is again sent to the ion gun 70 side through the transfer tube 50.
- the helium gas is sent to a heat exchanger 76 that cools the shield 75 of the ion gun 70.
- the helium gas that has passed through the heat exchanger that cools the shield 75 and has risen in temperature passes through the transfer tube again to the vacuum chamber 21, passes through the countercurrent heat exchanger 6, and rises in temperature to room temperature. Room temperature helium gas returns to the compressor.
- a vacuum partition wall 77 is also provided on the ion gun 70 side, so that the vacuum tank of the ion gun 70 and the vacuum tank of the transfer tube 50 can be separated.
- the operation of the cryogenic refrigerator 1 and the compressor 100 is stopped at the time of baking, and the helium gas is not circulated so that the amount of heat applied by the ion gun 70 does not propagate to the transfer tube 50 and the cooling unit 55. Yes.
- the vacuum partition walls at two locations (between the ion gun 70 and the transfer tube 50 and inside the cooling unit 55), a high degree of vacuum is maintained during baking and replacement of the cryogenic refrigerator 1. Deterioration of the space can be prevented.
- the vacuum partition wall 77 between the ion gun 70 and the transfer tube 50, the volume of the high vacuum portion can be reduced, and the exhaust characteristics of an exhaust system (not shown) can be improved. As a result, diffusion due to impurity contamination during beam emission can be prevented, and the beam convergence is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Provided is a cooling source for a circulation cooling system in which the cooling source is for preventing damage to piping during refrigeration device attachment/detachment and minimizing a heat load on a stage heat exchanger, wherein adopted is a structure making it possible to partition a vacuum tank for storing a cold head and a stage heat exchanger of a cryogenic cooling machine, and a vacuum tank for storing other portions, and possible to pressurize solely the portions of the cold head and the stage heat exchanger of the cryogenic cooling machine from a vacuum to atmospheric pressure, and also imparted is a structure in which the stage heat exchanger is supported by a vacuum container according to a support element during refrigeration device removal.
Description
本発明は、被冷却物を極低温に冷却するために、極低温冷凍機により極低温に冷却した冷媒を用いる循環冷却システム、およびこれを用いたイオン顕微鏡に関する。
The present invention relates to a circulating cooling system using a refrigerant cooled to a cryogenic temperature by a cryogenic refrigerator and an ion microscope using the same in order to cool an object to be cooled to a cryogenic temperature.
現在市販されている冷凍機としては、ギフォード・マクマホン(GM)型冷凍機、パルス管冷凍機が存在する。これらは極低温冷凍機自体から発生する振動が大きいため、イオン顕微鏡のような超低振動機器の冷却に適用することが困難である。現在市販されている中で最も低振動化されている極低温冷凍機はスターリング型冷凍機である。このスターリング冷凍機では、圧縮機を対向配置することにより圧縮機動作による振動を低減するとともに、ディスプレーサー(ピストン)の往復運動に逆位相の反力を加える機構を持たせることにより、冷凍機コールドヘッド部の低振動化を実現している。
Currently, there are Gifford McMahon (GM) type refrigerators and pulse tube refrigerators as commercially available refrigerators. Since these generate large vibrations from the cryogenic refrigerator itself, it is difficult to apply them to cooling ultra-low vibration devices such as ion microscopes. The cryogenic refrigerator that has the lowest vibration in the market today is a Stirling refrigerator. In this Stirling refrigerator, the compressor is placed opposite to reduce vibration due to the compressor operation, and a mechanism that applies a reaction force in the opposite phase to the reciprocating motion of the displacer (piston) is provided. The vibration of the head is reduced.
また、対象物を冷却する方法として、極低温冷凍機により被冷却物を冷却する直接冷却と、極低温冷凍機で冷却した冷媒を用いて被冷却物を冷却する間接冷却(循環冷却)とが知られている。イオン顕微鏡はその解像度の高さ故に、極めて高い制振性が要求され、極低温冷凍機が発生する振動が問題となることから、冷媒を極低温冷凍機で冷却し、極低温に冷却された冷媒によって被冷却物を冷却する循環冷却の対象となる。
In addition, as a method for cooling an object, there are direct cooling for cooling an object to be cooled by a cryogenic refrigerator and indirect cooling (circulation cooling) for cooling the object to be cooled using a refrigerant cooled by a cryogenic refrigerator. Are known. Due to the high resolution of the ion microscope, extremely high vibration damping performance is required, and vibration generated by the cryogenic refrigerator is a problem, so the refrigerant was cooled by the cryogenic refrigerator and cooled to a very low temperature. It becomes the object of the circulation cooling which cools a to-be-cooled object with a refrigerant | coolant.
イオン顕微鏡の循環冷却システムに関する技術として、特開2011-14245号公報(特許文献1)がある。この公報には、「ガス電界電離イオン源を備えたイオン顕微鏡において、ガス電界電離イオン源を冷却する冷凍機をイオン顕微鏡本体とは独立に設置し、ガス電界電離イオン源と冷凍機の間で冷媒を循環させる冷媒循環回路冷却機構を設けることに関する。本発明により、ガス電界電離イオン源に伝播する冷凍機の機械振動を低減でき、イオン源輝度の向上と、イオンビームの収束性能向上と、を両立できる。」と記載されている。
Japanese Unexamined Patent Application Publication No. 2011-14245 (Patent Document 1) is a technique related to a circulating cooling system of an ion microscope. In this publication, “In an ion microscope equipped with a gas field ion source, a refrigerator that cools the gas field ion source is installed independently of the ion microscope main body, and the gas field ion source is installed between the gas field ion source and the refrigerator. According to the present invention, it is possible to reduce the mechanical vibration of the refrigerator that propagates to the gas field ion source, improve the ion source brightness, improve the ion beam focusing performance, Can be achieved at the same time. "
循環冷却などに使用される極低温冷凍機は、定期的なメンテナンスが必要である。従来はGM型冷凍機を使用していたが、GM型冷凍機では真空容器の一部であるGM型冷凍機の筺体を取り外すことなく、内部の摩耗部品を交換することができた。これに対して、低振動スターリング冷凍機を適用した場合には、冷凍機全体を交換する必要がある。このため、メンテナンス時には、極低温冷凍機を一旦停止して、摩耗した部品を交換したり、極低温冷凍機自体を入れ替えたりしている。極低温冷凍機の停止中は機器が使用できなくなることから、メンテナンス時間の短縮が要求されている。メンテナンスのためには真空を破る必要があり、真空容器内に配置されている熱容量の大きい向流熱交換器を室温まで昇温させなければならない。そのため、向流熱交換器を昇温および再冷却に時間がかかり、メンテナンス時間が長期化するという問題があった。
∙ Cryogenic refrigerators used for circulating cooling need regular maintenance. Conventionally, a GM refrigerator has been used. However, in the GM refrigerator, internal wear parts could be replaced without removing the housing of the GM refrigerator, which is a part of the vacuum vessel. On the other hand, when the low vibration Stirling refrigerator is applied, it is necessary to replace the entire refrigerator. For this reason, at the time of maintenance, the cryogenic refrigerator is temporarily stopped, the worn parts are replaced, or the cryogenic refrigerator itself is replaced. Since the equipment cannot be used while the cryogenic refrigerator is stopped, a reduction in maintenance time is required. For maintenance, it is necessary to break the vacuum, and the countercurrent heat exchanger having a large heat capacity disposed in the vacuum vessel must be heated to room temperature. Therefore, there is a problem that it takes time to raise and re-cool the countercurrent heat exchanger, and the maintenance time is prolonged.
本発明は、循環冷却システムにおけるメンテナンス時間の短期化、およびこの循環冷却システムを用いたイオン顕微鏡の提供を目的とする。
The purpose of the present invention is to shorten the maintenance time in the circulating cooling system and to provide an ion microscope using the circulating cooling system.
上記問題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本題は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、真空容器が、前記ステージ熱交換器を含む第一の真空槽と、前記向流熱交換器を含む第二の真空槽に、真空隔壁で分離されることを特徴とする。
In order to solve the above problem, for example, the configuration described in the claims is adopted. The subject includes a plurality of means for solving the above-described problem. To give an example, a vacuum vessel includes a first vacuum tank including the stage heat exchanger, and a second counter including the counterflow heat exchanger. The vacuum chamber is separated by a vacuum partition.
本発明によれば、循環冷却システムおよびこれを用いたイオン顕微鏡において、真空容器を分割することにより、メンテナンス時に昇温する部品を最低限に抑制することができ、メンテナンス時間が従来に比べて短くなる。
According to the present invention, in a circulating cooling system and an ion microscope using the same, by dividing the vacuum vessel, it is possible to minimize the components that are heated during maintenance, and the maintenance time is shorter than before. Become.
超低振動を要求される機器に対する極低温冷却システムを実現するために、超低振動スターリング冷凍機を適用した循環冷却システムを開発した。
循環 In order to realize a cryogenic cooling system for equipment that requires ultra-low vibration, a circulating cooling system using an ultra-low-vibration Stirling refrigerator was developed.
以下、イオン顕微鏡に適用した場合の実施例を説明するが、本発明の適用はこれに限られない。ヘリウムガスに代表される冷媒を極低温に冷却し、これを輸送して機器を冷却する技術は、様々なシステムに適用される。特に、冷凍機を直結することが難しい条件下、例えば強磁場環境下や冷凍機の振動が問題となるシステムにおいて有効である。例えば、核磁気共鳴(Nuclear Magnetic Resonance:NMR)装置やMRI(Magnetic Resonance Imaging)等にも適用可能である。
Hereinafter, although an embodiment when applied to an ion microscope will be described, application of the present invention is not limited thereto. A technology for cooling a refrigerant typified by helium gas to a cryogenic temperature and transporting the refrigerant to cool the device is applied to various systems. In particular, it is effective in conditions where it is difficult to directly connect a refrigerator, for example, in a strong magnetic field environment or in a system where vibration of the refrigerator is a problem. For example, the present invention can be applied to a nuclear magnetic resonance (NMR) apparatus, an MRI (Magnetic Resonance Imaging), and the like.
本実施例では、循環冷却システムの例を説明する。
In this embodiment, an example of a circulating cooling system will be described.
図1は、本発明の実施例における循環冷却システムの構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a circulating cooling system in an embodiment of the present invention.
循環冷却システムは、冷却ユニット55とトランスファーチューブ50及び被冷却体60により構成されている。図1中の矢印は冷媒配管及び冷媒の流れ方向を表す。
The circulating cooling system includes a cooling unit 55, a transfer tube 50, and an object to be cooled 60. The arrow in FIG. 1 represents the refrigerant | coolant piping and the flow direction of a refrigerant | coolant.
冷却ユニット55は、極低温冷凍機1と極低温冷凍機1に熱的に接触したステージ熱交換器4、及び第一の向流熱交換器6、第二の向流熱交換器7により構成され、各熱交換器を配管5が連結している。各熱交換器は真空容器2の内部に格納されており、真空断熱によって周囲の室温からの熱伝導、対流による低温部への熱侵入を抑制している。
The cooling unit 55 includes a cryogenic refrigerator 1, a stage heat exchanger 4 that is in thermal contact with the cryogenic refrigerator 1, a first countercurrent heat exchanger 6, and a second countercurrent heat exchanger 7. The pipes 5 are connected to the heat exchangers. Each heat exchanger is stored inside the vacuum vessel 2, and heat conduction from the surrounding room temperature is suppressed by vacuum insulation, and heat intrusion to the low temperature part due to convection is suppressed.
本実施例においては、冷却ユニット55は、ステージ熱交換器4と極低温冷凍機1が格納された部分と、2つの向流熱交換器6、7とが格納された部分とが、真空隔壁23により分割されている。また、真空隔壁の一部または全部は断熱真空壁24により構成されている。
In the present embodiment, the cooling unit 55 includes a part in which the stage heat exchanger 4 and the cryogenic refrigerator 1 are stored, and a part in which the two counter-current heat exchangers 6 and 7 are stored. 23. Further, a part or all of the vacuum partition is constituted by a heat insulating vacuum wall 24.
トランスファーチューブ50は内部に図示しない配管を通しており、この配管の中を冷媒が流れる構造となっている。トランスファーチューブの配管とトランスファーチューブの外壁との間は真空となっており、真空断熱により室温の外壁から極低温の配管への熱侵入を抑制している。
The transfer tube 50 passes through a pipe (not shown) inside, and has a structure in which the refrigerant flows through the pipe. A vacuum is formed between the piping of the transfer tube and the outer wall of the transfer tube, and heat intrusion from the outer wall at room temperature to the cryogenic piping is suppressed by vacuum insulation.
被冷却体60は、冷却ユニット55からトランスファーチューブ50を通って送られてきた冷媒を用いて、被冷却物54を極低温に冷却する。被冷却物の温度を調整するために、図示しないヒータを用いて加熱しても良い。被冷却体60の内部を超高真空にする場合には、配管51により、被冷却体60の真空槽と、トランスファーチューブ50及び冷却ユニット55の真空槽とを分離する。トランスファーチューブ50には、配管への輻射熱量を低減するためにプラスチック製の積層断熱材が使用されるのが一般的であり、超高真空にする場合、このプラスチックからのガス放出が問題になるためである。
The object to be cooled 60 cools the object to be cooled 54 to a cryogenic temperature using the refrigerant sent from the cooling unit 55 through the transfer tube 50. In order to adjust the temperature of the object to be cooled, a heater (not shown) may be used for heating. When the inside of the body to be cooled 60 is put into an ultrahigh vacuum, the piping 51 separates the vacuum tank of the body to be cooled 60 from the vacuum tank of the transfer tube 50 and the cooling unit 55. In order to reduce the amount of radiant heat to the piping, the transfer tube 50 is generally made of a plastic laminated heat insulating material. When an ultra-high vacuum is used, gas emission from this plastic becomes a problem. Because.
圧縮機100から送られた室温の冷媒ガスは、向流熱交換器6を通ることにより、低温に冷却される。冷却された冷媒を極低温冷凍機1のコールドヘッド3と熱的に連結したステージ熱交換器4で冷却することにより、冷媒の温度は更に低下する。極低温冷凍機1のコールドヘッド3と熱的に連結したステージ熱交換器4で低温に冷却された冷媒を、トランスファーチューブ50を通して被冷却体60に輸送することにより、被冷却体60の内部の被冷却物54を極低温に冷却することができる。
The room-temperature refrigerant gas sent from the compressor 100 is cooled to a low temperature by passing through the countercurrent heat exchanger 6. By cooling the cooled refrigerant by the stage heat exchanger 4 that is thermally connected to the cold head 3 of the cryogenic refrigerator 1, the temperature of the refrigerant further decreases. The refrigerant cooled to a low temperature by the stage heat exchanger 4 thermally connected to the cold head 3 of the cryogenic refrigerator 1 is transported to the cooled object 60 through the transfer tube 50, so that the inside of the cooled object 60 The object 54 can be cooled to a very low temperature.
図2は、本実施例における循環冷却システムの冷凍機着脱部構成を示す詳細断面図である。図2中の矢印は冷媒配管及び冷媒の流れ方向を表す。
FIG. 2 is a detailed cross-sectional view showing the configuration of the refrigerator attaching / detaching portion of the circulating cooling system in the present embodiment. The arrow in FIG. 2 represents the refrigerant | coolant piping and the flow direction of a refrigerant | coolant.
極低温冷凍機1は、真空容器2に一端が固定され、極低温冷凍機1のコールドヘッド3の周囲を真空にする隔壁の役割を果たしている。コールドヘッド3は、ステージ熱交換器4とネジで固定されている。この時コールドヘッド3とステージ熱交換器4との間には、ステージ熱交換器4とコールドヘッド3との間の接触熱抵抗を小さくするために、図示しない真空グリースもしくは図示しないインジウム、あるいはその両方が設置されている。
The cryogenic refrigerator 1 has one end fixed to the vacuum vessel 2 and serves as a partition that evacuates the cold head 3 of the cryogenic refrigerator 1. The cold head 3 is fixed to the stage heat exchanger 4 with screws. At this time, in order to reduce the contact thermal resistance between the stage heat exchanger 4 and the cold head 3 between the cold head 3 and the stage heat exchanger 4, vacuum grease (not shown) or indium (not shown), or Both are installed.
現在市販されているスターリング冷凍機は、現在市販されているパルス管冷凍機やGM型冷凍機に比べて振動が小さく、振動が問題となるシステムには低振動型スターリング冷凍機が適用される。
The low-vibration type Stirling refrigerator is applied to a system in which vibration is a problem in a commercially available Stirling refrigerator, compared with a pulse tube refrigerator or a GM type refrigerator, which is currently on the market.
パルス管冷凍機は、寒冷を発生する冷凍機コールドヘッドに機械駆動部を持たない特徴があり、機械的なピストン運動をするディスプレーサーを必要とするGM型冷凍機に比べると振動レベルは小さい。しかし、パルス管冷凍機では高低圧を切り替えるためのバルブユニットが必要であり、このバルブユニットの振動が伝播し、対象物の振動が増加する。
The pulse tube refrigerator has a feature that the refrigerator cold head that generates cold does not have a mechanical drive, and the vibration level is small compared to a GM refrigerator that requires a displacer that performs mechanical piston movement. However, the pulse tube refrigerator requires a valve unit for switching between high and low pressure, and the vibration of the valve unit propagates and the vibration of the object increases.
スターリング冷凍機はコールドヘッド内にピストン駆動するディスプレーサーがあり、単純な構造では振動レベルが大きい。しかし、振動を相殺する振動を加えたりすることによって、振動レベルを低減することに成功している。
The Stirling refrigerator has a displacer driven by a piston in the cold head, and the vibration level is large with a simple structure. However, it has succeeded in reducing the vibration level by adding vibration that cancels vibration.
極低温冷凍機1は、真空容器2の下側に固定されている。極低温冷凍機1の室温部には、図示しない圧縮機や図示しないバルブ切り替え装置が搭載されており、振動源となっている。下向きに極低温冷凍機1を設置することにより、振動源を床に固定することが容易となる。
The cryogenic refrigerator 1 is fixed to the lower side of the vacuum vessel 2. A compressor (not shown) and a valve switching device (not shown) are mounted on the room temperature portion of the cryogenic refrigerator 1 and serve as a vibration source. By installing the cryogenic refrigerator 1 downward, it becomes easy to fix the vibration source to the floor.
真空容器2は、ステージ熱交換器4以外の循環冷却システムの構成要素を内蔵する真空槽21と、ステージ熱交換器4を格納する真空槽22とに隔壁23によって分割されている。冷媒を輸送する配管5が真空槽21と真空槽22を貫通しており、室温である真空容器の隔壁23から配管5への熱負荷を低減するために、断熱真空壁24が真空容器の隔壁23に設置されている。真空槽22に取り付けられた蓋11を取り外すことにより、真空槽22の内部での作業が可能となる。
The vacuum vessel 2 is divided by a partition wall 23 into a vacuum chamber 21 containing the components of the circulating cooling system other than the stage heat exchanger 4 and a vacuum chamber 22 storing the stage heat exchanger 4. The piping 5 for transporting the refrigerant passes through the vacuum chamber 21 and the vacuum chamber 22, and in order to reduce the heat load from the partition wall 23 of the vacuum vessel at room temperature to the piping 5, the heat insulating vacuum wall 24 is provided with the partition wall of the vacuum vessel. 23. By removing the lid 11 attached to the vacuum chamber 22, it is possible to work inside the vacuum chamber 22.
図13は、断熱真空壁24の構造の詳細を示す断面図である。断熱真空壁24は、直径の異なる円筒を組み合わせたものであり、材質はステンレスやガラス繊維強化プラスチックである。断熱真空壁24は、一般的にベーキングを行って真空排気を行うシステムでは、材質にステンレスが採用され、ベーキングを行わない場合には、材質にガラス繊維強化プラスチックなどの高分子材料で製作する。ベーキングの理由以外に、軽量化のために繊維強化プラスチックで製作される場合がある。
FIG. 13 is a cross-sectional view showing details of the structure of the heat insulating vacuum wall 24. The heat insulating vacuum wall 24 is a combination of cylinders having different diameters, and is made of stainless steel or glass fiber reinforced plastic. The heat insulating vacuum wall 24 is generally made of stainless steel as a material in a system that performs baking and evacuation, and is made of a polymer material such as glass fiber reinforced plastic when baking is not performed. In addition to baking reasons, it may be made of fiber reinforced plastic for weight reduction.
断熱真空壁24の室温部は隔壁23と一体化しているが、Oリングとネジで固定してもよい。断熱真空壁は室温部、中間温度、最低冷却温度の3段階の温度に分けられる。
The room temperature portion of the heat insulating vacuum wall 24 is integrated with the partition wall 23, but may be fixed with an O-ring and a screw. The adiabatic vacuum wall is divided into three stages of room temperature, intermediate temperature, and minimum cooling temperature.
断熱真空壁24は、室温部から中間温度までの常温円筒241と、中間温度から最低冷却温度までの低温円筒242と、中間温度冷却面243と、最低冷却温度冷却面244で構成されている。
The adiabatic vacuum wall 24 includes a normal temperature cylinder 241 from a room temperature portion to an intermediate temperature, a low temperature cylinder 242 from an intermediate temperature to a minimum cooling temperature, an intermediate temperature cooling surface 243, and a minimum cooling temperature cooling surface 244.
中間温度冷却面243は、中間温度に冷却された冷媒の配管51により中間温度に冷却されている。また、最低冷却温度冷却面244は、最低温度に冷却された冷媒の配管52により最低冷却温度に冷却されている。
The intermediate temperature cooling surface 243 is cooled to an intermediate temperature by the refrigerant pipe 51 cooled to the intermediate temperature. The minimum cooling temperature cooling surface 244 is cooled to the minimum cooling temperature by the refrigerant pipe 52 cooled to the minimum temperature.
以上のように、断熱真空壁24を隔壁23の全部または一部に用いることで、冷媒が流れる配管が真空容器から固定される部分を断熱真空壁構造とできるので、室温である真空容器から極低温に冷却された配管への熱伝導による熱侵入を抑制することができる。
As described above, by using the heat insulating vacuum wall 24 for all or a part of the partition wall 23, the portion where the pipe through which the refrigerant flows is fixed from the vacuum container can have a heat insulating vacuum wall structure. Heat intrusion due to heat conduction to the pipe cooled to a low temperature can be suppressed.
断熱真空壁24は、図13に示した構造に限定するものでは無い。断熱真空壁24は、円筒部にベローズ構造を使用しても良い。
The heat insulating vacuum wall 24 is not limited to the structure shown in FIG. The heat insulating vacuum wall 24 may use a bellows structure in the cylindrical portion.
図14は、ステージ熱交換器4の構造の詳細を示す断面図である。ステージ熱交換器4は、銅製円筒41の周囲に銅管42を巻きつけた構造となっている。これは、循環冷却方式は、極低温冷凍機1のコールドヘッド3により冷却された冷媒によって被冷却物を冷却する間接冷却構造であり、極低温冷凍機1のコールドヘッド3の面積が小さく、冷媒との間で十分な熱交換ができないため、銅製のステージ熱交換器4を製作し、熱交換面積を拡大するものである。
FIG. 14 is a cross-sectional view showing details of the structure of the stage heat exchanger 4. The stage heat exchanger 4 has a structure in which a copper tube 42 is wound around a copper cylinder 41. This circulation cooling system is an indirect cooling structure in which an object to be cooled is cooled by the refrigerant cooled by the cold head 3 of the cryogenic refrigerator 1, and the area of the cold head 3 of the cryogenic refrigerator 1 is small. Since sufficient heat exchange cannot be performed between the two, a stage heat exchanger 4 made of copper is manufactured to expand the heat exchange area.
2段式の極低温冷凍機を用いる場合には、ステージ熱交換器4は中心に貫通穴を設けた構造としてもよい。ステージ熱交換器4に巻きつける銅管42の長さは、ステージ熱交換器4における冷媒の熱交換量と温度効率から算出される長さよりも長ければよい。ステージ熱交換器4には極低温冷凍機1と結合するための貫通穴43があり、図示しないネジによって極低温冷凍機1と結合される。また、ステージ熱交換器4には、真空容器2との間に支持体200を取り付けるための貫通穴又はネジ穴44があり、極低温冷凍機1を取り外した際には、この貫通穴又はネジ穴44を利用して支持体200を真空容器2に固定している。
When using a two-stage cryogenic refrigerator, the stage heat exchanger 4 may have a structure in which a through hole is provided at the center. The length of the copper tube 42 wound around the stage heat exchanger 4 only needs to be longer than the length calculated from the heat exchange amount of refrigerant in the stage heat exchanger 4 and the temperature efficiency. The stage heat exchanger 4 has a through hole 43 for coupling to the cryogenic refrigerator 1 and is coupled to the cryogenic refrigerator 1 by screws (not shown). Further, the stage heat exchanger 4 has a through hole or screw hole 44 for attaching the support 200 to the vacuum vessel 2. When the cryogenic refrigerator 1 is removed, this through hole or screw is provided. The support 200 is fixed to the vacuum vessel 2 using the holes 44.
次に極低温冷凍機の着脱方法について記述する。
Next, the method for attaching and detaching the cryogenic refrigerator will be described.
循環冷却システムでは、冷媒と極低温冷凍機との間で熱交換を行うステージ熱交換器が、極低温冷凍機及び冷媒が流れる配管によって支持される構造となっている。配管から極低温冷凍機への熱侵入量は小さく抑制する必要がある。この配管の肉厚は薄く、ステージ熱交換器を支持する機能は有さない。したがって、メンテナンス時に極低温冷凍機を取り外した状態では、配管にステージ熱交換器の自重による応力が加わり、配管の曲がりが発生するなどの損傷が生じるという問題があった。
In the circulating cooling system, a stage heat exchanger that performs heat exchange between the refrigerant and the cryogenic refrigerator is supported by a cryogenic refrigerator and a pipe through which the refrigerant flows. It is necessary to suppress the amount of heat penetration from the piping into the cryogenic refrigerator. This pipe is thin and does not have a function of supporting the stage heat exchanger. Therefore, when the cryogenic refrigerator is removed at the time of maintenance, there is a problem that stress due to the weight of the stage heat exchanger is applied to the pipe and damage such as bending of the pipe occurs.
また、配管が別の配管と接触し、配管内を流れる冷媒への熱侵入が生じるという問題があった。これを回避するために、配管の肉厚を厚くして強度を増すと、配管からの熱伝導による熱負荷が増大し、熱交換効率が低下するという問題があった。
In addition, there is a problem that the pipe comes into contact with another pipe and heat enters the refrigerant flowing in the pipe. In order to avoid this, if the strength of the pipe is increased by increasing the thickness of the pipe, there is a problem that the heat load due to heat conduction from the pipe increases and the heat exchange efficiency decreases.
また、ステージ熱交換器の自重による配管の曲がりを防ぐために、ステージ熱交換器を真空容器から支持した場合、常温である真空容器から極低温に冷却されたステージ熱交換器に向かって熱が移動し、ステージ熱交換器が受ける熱負荷が増大し、ステージ熱交換器の温度が上昇するという問題があった。
In addition, in order to prevent bending of the pipe due to the weight of the stage heat exchanger, when the stage heat exchanger is supported from the vacuum vessel, heat moves from the vacuum vessel at room temperature toward the stage heat exchanger cooled to a cryogenic temperature. However, there is a problem that the heat load received by the stage heat exchanger increases and the temperature of the stage heat exchanger rises.
更に、ステージ熱交換器の自重による配管の曲がりを防ぐために、シール方式の継手で配管をステージ熱交換器ごと分割する方法があるが、内部に封入した冷媒ガスを放出・再充填する必要があり、手間がかかるという問題があった。
Furthermore, in order to prevent bending of the pipe due to the weight of the stage heat exchanger, there is a method of dividing the pipe with the stage heat exchanger with a seal type joint, but it is necessary to discharge and refill the refrigerant gas enclosed inside There was a problem that it took time and effort.
図2は、本実施例における循環冷却システムの構成を示す断面図である。
FIG. 2 is a cross-sectional view showing the configuration of the circulating cooling system in the present embodiment.
ステージ熱交換器4と極低温冷凍機1とを分離し、極低温冷凍機1を真空容器2から取り外す場合には、図示しないヒータにより極低温冷凍機1のコールドヘッド3及びステージ熱交換器4を室温まで昇温する。十分に室温まで昇温したことを確認した後、真空容器2に取り付けられた真空槽22を開閉操作可能な図示しないバルブを開き、真空槽22の内部を大気圧と同等にする。支持体200を取り付け可能とするため、図示しないバルブを開いた状態で、真空容器2に取り付けられた蓋11を取り外し、極低温冷凍機1のコールドヘッド3とステージ熱交換器4が見える状態にする。
When the stage heat exchanger 4 and the cryogenic refrigerator 1 are separated and the cryogenic refrigerator 1 is detached from the vacuum vessel 2, the cold head 3 and the stage heat exchanger 4 of the cryogenic refrigerator 1 are heated by a heater (not shown). The temperature is raised to room temperature. After confirming that the temperature has been sufficiently raised to room temperature, a valve (not shown) capable of opening and closing the vacuum chamber 22 attached to the vacuum vessel 2 is opened to make the inside of the vacuum chamber 22 equivalent to the atmospheric pressure. In order to allow the support 200 to be attached, the lid 11 attached to the vacuum vessel 2 is removed with the valve (not shown) open, so that the cold head 3 and the stage heat exchanger 4 of the cryogenic refrigerator 1 can be seen. To do.
図3は本実施例における極低温冷凍機を取り外す前の構成を示す断面図である。図3中の矢印は冷媒配管及び冷媒の流れ方向を表す。
FIG. 3 is a cross-sectional view showing the configuration before removing the cryogenic refrigerator in this embodiment. The arrow in FIG. 3 represents the refrigerant | coolant piping and the flow direction of a refrigerant | coolant.
ステージ熱交換器4とコールドヘッド3とを連結する図示しない固定ネジを取り外す前に、支持体200をステージ熱交換器4と真空容器2との間に挿入する。これにより、ステージ熱交換器4は、極低温冷凍機1と真空容器2から支持された構造となる。この支持体200は、剛性を高くするためにステンレスなどの金属で製作してもよい。
The support 200 is inserted between the stage heat exchanger 4 and the vacuum vessel 2 before removing the fixing screw (not shown) that connects the stage heat exchanger 4 and the cold head 3. Thereby, the stage heat exchanger 4 has a structure supported from the cryogenic refrigerator 1 and the vacuum vessel 2. The support 200 may be made of a metal such as stainless steel in order to increase the rigidity.
図4は、本実施例における極低温冷凍機取り外しの際の構成を示す断面図である。図4中の矢印は冷媒配管及び冷媒の流れ方向を表す。
FIG. 4 is a cross-sectional view showing the configuration when removing the cryogenic refrigerator in this embodiment. The arrow in FIG. 4 represents the refrigerant | coolant piping and the flow direction of a refrigerant | coolant.
ステージ熱交換器4とコールドヘッド3とを連結する図示しない固定ネジを取り外すことにより、ステージ熱交換器4は支持体200によって真空容器2からのみ支持された構造となる。
By removing a fixing screw (not shown) that connects the stage heat exchanger 4 and the cold head 3, the stage heat exchanger 4 is supported only from the vacuum vessel 2 by the support 200.
極低温冷凍機1を交換するために、極低温冷凍機1を真空容器2から取り外しても、ステージ熱交換器4は真空容器2から支持されているため、動くことがなく、ステージ熱交換器4の自重により配管5を曲げたりすることはない。これによって、冷凍機取り外し時におけるステージ熱交換器の自重による配管の損傷を防止することができる。
Even if the cryogenic refrigerator 1 is removed from the vacuum vessel 2 in order to replace the cryogenic refrigerator 1, the stage heat exchanger 4 is supported by the vacuum vessel 2 and therefore does not move, and the stage heat exchanger The pipe 5 is not bent by its own weight. This can prevent damage to the piping due to the weight of the stage heat exchanger when the refrigerator is removed.
更に、極低温冷凍機1の取り付け方向をステージ熱交換器4に対して上下方向とすることにより、ステージ熱交換器4を極低温冷凍機1で支持する際に、ステージ熱交換器4を介して接続されている配管5に曲げ方向の力が加わらないようにすることで、配管5の曲がりまたは損傷することを防止することができる。
Furthermore, when the stage heat exchanger 4 is supported by the cryogenic refrigerator 1 by setting the mounting direction of the cryogenic refrigerator 1 in the vertical direction with respect to the stage heat exchanger 4, the stage heat exchanger 4 is interposed via the stage heat exchanger 4. Therefore, it is possible to prevent the pipe 5 from being bent or damaged by preventing the bending direction force from being applied to the connected pipe 5.
ステージ熱交換器4は極低温冷凍機1からのみ支持された構造となり、室温である真空容器2と直接接触する部分がなく、真空容器2からステージ熱交換器4及びコールドヘッド3が受ける熱負荷を最少に抑制することができる。
The stage heat exchanger 4 has a structure supported only from the cryogenic refrigerator 1, has no portion in direct contact with the vacuum vessel 2 at room temperature, and the thermal load received by the stage heat exchanger 4 and the cold head 3 from the vacuum vessel 2. Can be minimized.
極低温冷凍機1の入れ替え作業が終了すると、ステージ熱交換器4はコールドヘッド3に図示しない固定ネジによって取り付けられ、支持体200が取り外され、図2の状態となる。
When the replacement work of the cryogenic refrigerator 1 is completed, the stage heat exchanger 4 is attached to the cold head 3 with a fixing screw (not shown), the support 200 is removed, and the state shown in FIG. 2 is obtained.
極低温冷凍機1を取り付けた後、真空容器2に蓋11を取り付け、図1の状態にした後、真空槽22を図示しない真空ポンプによって真空排気する。真空槽22の真空度が真空断熱状態となることを図示しない真空計の表示値で確認した後、極低温冷凍機1を起動させることにより、循環冷却を開始することができる。
After attaching the cryogenic refrigerator 1, the lid 11 is attached to the vacuum vessel 2 and the state shown in FIG. 1 is set, and then the vacuum chamber 22 is evacuated by a vacuum pump (not shown). After confirming that the vacuum degree of the vacuum chamber 22 is in a vacuum insulation state by a display value of a vacuum gauge (not shown), the cryogenic refrigerator 1 is started to start circulation cooling.
ステージ熱交換器を交換する際に、ステージ熱交換器を真空容器から支持体を用いて支持し、通常運転時にはステージ熱交換器は極低温冷凍機からのみ支持することで、支持体から極低温冷凍機への熱負荷が無い運転が可能となる。
When replacing the stage heat exchanger, the stage heat exchanger is supported from the vacuum vessel using a support, and during normal operation, the stage heat exchanger is supported only from the cryogenic refrigerator, so Operation without heat load on the refrigerator is possible.
以上、実施例1に示したとおり、隔壁23を設けることにより、真空槽21に内蔵された部品を大気圧まで戻すことがなく、真空槽21の高い真空度が維持される。また、真空槽21を含む高真空部品をベーキングする必要が無く、真空槽22の真空度が真空槽21よりも悪い真空度であっても冷凍機の運転を再開することができ、メンテナンス時間が短くなる。
As described above, by providing the partition wall 23 as shown in the first embodiment, the high vacuum degree of the vacuum chamber 21 is maintained without returning the components built in the vacuum chamber 21 to the atmospheric pressure. Moreover, it is not necessary to bake high vacuum parts including the vacuum chamber 21, and the operation of the refrigerator can be resumed even if the vacuum level of the vacuum chamber 22 is worse than that of the vacuum chamber 21. Shorter.
本実施例では、第一の実施例の別の形態の実施例を示す。
In this embodiment, another embodiment of the first embodiment will be described.
図5は、実施例2における循環冷却システムの構成を示す断面図である。また、図6は実施例2における極低温冷凍機を取り外し時の循環冷却システムの構成を示す断面図である。図5中及び図6中の矢印は冷媒配管及び冷媒の流れ方向を表す。
FIG. 5 is a cross-sectional view showing the configuration of the circulating cooling system in the second embodiment. FIG. 6 is a cross-sectional view showing the configuration of the circulating cooling system when the cryogenic refrigerator in Example 2 is removed. The arrows in FIG. 5 and FIG. 6 represent the flow direction of the refrigerant pipe and the refrigerant.
図5及び図6の循環冷却システムのうち、既に説明した図2に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。
In the circulating cooling system of FIG. 5 and FIG. 6, the description of the part having the same function as the configuration denoted by the same reference numeral shown in FIG.
図5に示すように、ステージ熱交換器4は、極低温冷凍機1が取り外される前に、真空槽22を構成する真空容器2の極低温冷凍機側から支持体200によって真空容器2から支持される。支持体200は、極低温冷凍機1が取り付けられている真空容器面と同じ方向から取り付けられる。ステージ熱交換器4の下側に支持体200が設置されることにより、ステージ熱交換器4の上側に支持体200が無くなり、ステージ熱交換器4を極低温冷凍機1のコールドヘッド3から取り外す作業時に、作業工具や手を入れるスペースが確保されるため、作業性が向上する。
As shown in FIG. 5, the stage heat exchanger 4 is supported from the vacuum vessel 2 by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2 constituting the vacuum chamber 22 before the cryogenic refrigerator 1 is removed. Is done. The support 200 is attached from the same direction as the vacuum vessel surface to which the cryogenic refrigerator 1 is attached. By installing the support 200 below the stage heat exchanger 4, the support 200 disappears above the stage heat exchanger 4, and the stage heat exchanger 4 is removed from the cold head 3 of the cryogenic refrigerator 1. The workability is improved because a space for putting work tools and hands is secured during work.
極低温冷凍機1を取り外すと、図6の状態となる。すなわち、極低温冷凍機1は真空容器2から取り外され、ステージ熱交換器4は支持体200によって真空容器2の極低温冷凍機側から支持される構造となる。
When the cryogenic refrigerator 1 is removed, the state shown in FIG. 6 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2 and the stage heat exchanger 4 is supported by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2.
本実施例では、第三の実施例として極低温冷凍機を下向きに取り付けた循環冷却システムの例を説明する。ここで下向きとは、極低温冷凍機1の下方にステージ熱交換器4が位置するような配置で、極低温冷凍機1が下方のステージ熱交換器4に接続されている構成をいう。
In this embodiment, an example of a circulating cooling system in which a cryogenic refrigerator is attached downward will be described as a third embodiment. Here, downward refers to a configuration in which the stage heat exchanger 4 is positioned below the cryogenic refrigerator 1 and the cryogenic refrigerator 1 is connected to the lower stage heat exchanger 4.
図7は、実施例3における循環冷却システムの構成を示す断面図である。
FIG. 7 is a cross-sectional view showing the configuration of the circulating cooling system in the third embodiment.
図8は、実施例3における循環冷却システムを示す構成を示す断面図である。図9は、実施例3における冷凍機を取り外す前の冷却システム構成を示す断面図である。また、図10は、実施例3における極低温冷凍機取り外し時の冷却システムの構成を示す断面図である。
FIG. 8 is a cross-sectional view showing the configuration of the circulating cooling system in the third embodiment. FIG. 9 is a cross-sectional view illustrating the configuration of the cooling system before removing the refrigerator in the third embodiment. Moreover, FIG. 10 is sectional drawing which shows the structure of the cooling system at the time of cryogenic refrigerator removal in Example 3. As shown in FIG.
図7~図10中の矢印は冷媒配管及び冷媒の流れ方向を表す。
7 to 10 indicate the refrigerant piping and the flow direction of the refrigerant.
図8、図9及び図10の循環冷却システムのうち、既に説明した図3に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。
8. Of the circulating cooling system of FIGS. 8, 9 and 10, the description of the parts having the same functions as those of the configuration denoted by the same reference numerals shown in FIG.
図7、図8に示すように、極低温冷凍機1は、真空容器2の上側に固定されている。極低温冷凍機1を上方から設置することにより、極低温冷凍機1の寒冷発生部が下方にあるため、自然対流が抑制され、極低温冷凍機の温度が安定するというメリットがある。
7 and 8, the cryogenic refrigerator 1 is fixed to the upper side of the vacuum vessel 2. By installing the cryogenic refrigerator 1 from above, since the cold generating part of the cryogenic refrigerator 1 is below, there is an advantage that natural convection is suppressed and the temperature of the cryogenic refrigerator is stabilized.
図9に示すように、極低温冷凍機1とステージ熱交換器4を切り離す前に、ステージ熱交換器4を真空容器2から支持体200で支持する。支持体200は、真空容器2の、極低温冷凍機1と対向する側の面から挿入する。この時ステージ熱交換器4は、極低温冷凍機1と支持体200から支持された形となる。極低温冷凍機を取り外すと、図10の状態となる。すなわち、極低温冷凍機1は真空容器2から取り外され、ステージ熱交換器4は真空容器2の下面から支持体200によって支持された形となる。
As shown in FIG. 9, before separating the cryogenic refrigerator 1 and the stage heat exchanger 4, the stage heat exchanger 4 is supported by the support 200 from the vacuum vessel 2. The support 200 is inserted from the surface of the vacuum container 2 on the side facing the cryogenic refrigerator 1. At this time, the stage heat exchanger 4 is supported by the cryogenic refrigerator 1 and the support 200. When the cryogenic refrigerator is removed, the state shown in FIG. 10 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2 and the stage heat exchanger 4 is supported by the support 200 from the lower surface of the vacuum vessel 2.
本実施例では、第四の実施例として、実施例3における支持体の支持方向を変化させた形態の実施例を示す。図11は、実施例4における循環冷却システムの構成を示す断面図である。また、図12は実施例4における冷凍機取り外し時のシステムの構成を示す断面図である。
In this example, as a fourth example, an example in which the support direction of the support in Example 3 is changed is shown. FIG. 11 is a cross-sectional view illustrating a configuration of the circulating cooling system in the fourth embodiment. Moreover, FIG. 12 is sectional drawing which shows the structure of the system at the time of the refrigerator removal in Example 4. FIG.
図11、図12中の矢印は冷媒配管及び冷媒の流れ方向を表す。
11 and 12 indicate the refrigerant piping and the flow direction of the refrigerant.
図11及び図12に示す循環冷却システムのうち、既に説明した図3に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。
In the circulating cooling system shown in FIG. 11 and FIG. 12, the description of the portions having the same functions as those in the already-referenced configuration shown in FIG. 3 is omitted.
図11に示すように、ステージ熱交換器4は、極低温冷凍機1が取り外される前に、真空容器2の極低温冷凍機側から支持体200によって真空容器2に極低温冷凍機1の固定面側から支持される。これにより、ステージ熱交換器4を極低温冷凍機1との図示しない連結ネジを取り外す側に支持体200が無いため、作業性が向上する。
As shown in FIG. 11, the stage heat exchanger 4 has the cryogenic refrigerator 1 fixed to the vacuum vessel 2 by the support 200 from the cryogenic refrigerator side of the vacuum vessel 2 before the cryogenic refrigerator 1 is removed. Supported from the surface side. Thereby, since there is no support body 200 in the side which removes the connection screw with which the stage heat exchanger 4 and the cryogenic refrigerator 1 are not shown in figure, workability | operativity improves.
極低温冷凍機を取り外すと図12の状態となる。すなわち、極低温冷凍機1は真空容器2から取り外され、ステージ熱交換器4は支持体200によって極低温冷凍機1を取り付ける面側から支持されている。
When the cryogenic refrigerator is removed, the state shown in FIG. 12 is obtained. That is, the cryogenic refrigerator 1 is removed from the vacuum vessel 2, and the stage heat exchanger 4 is supported by the support 200 from the surface side where the cryogenic refrigerator 1 is attached.
電子を走査しながら試料に照射して、試料から放出される二次荷電粒子を検出すれば、試料表面の構造を観察することができる。これは走査電子顕微鏡(Scanning Electron Microscope以下、SEMと略記)と呼ばれる。一方、イオンビームを走査しながら試料に照射して、試料から放出される二次荷電粒子を検出しても、試料表面の構造を観察することができる。これは走査イオン顕微鏡(Scanning Ion Microscope以下、SIMと略記)と呼ばれる。特に、水素やヘリウムなどの質量の軽いイオン種を試料に照射すれば、相対的にスパッタ作用は小さくなり試料を観察するのに好適となる。ここで、水素やヘリウムイオンの試料表面への侵入による二次電子の励起領域が電子照射に比べ試料表面により局在することから、水素やヘリウムイオンを利用したSIM画像はSEM画像以上に極試料表面情報に敏感になる。さらに、顕微鏡の観点では、イオンは電子に比べて重いため、そのビーム集束において回折効果を無視でき、焦点深度の非常に深い像が得られるという特徴もある。また、電子、又はイオンビームを試料に照射して、試料を透過した電子、又はイオンを検出すれば、試料内部の構造を反映した情報を得ることもできる。これらは、透過電子顕微鏡、又は透過イオン顕微鏡と呼ばれる。特に、水素やヘリウムなどの質量の軽いイオン種を試料に照射すれば、試料を透過する割合が大きくなり観察するのに好適となる。
If the sample is irradiated while scanning with electrons to detect secondary charged particles emitted from the sample, the structure of the sample surface can be observed. This is called a scanning electron microscope (hereinafter abbreviated as SEM). On the other hand, the structure of the sample surface can also be observed by irradiating the sample while scanning with an ion beam and detecting secondary charged particles emitted from the sample. This is called a scanning ion microscope (hereinafter, abbreviated as SIM). In particular, if the sample is irradiated with a light ion species such as hydrogen or helium, the sputtering effect becomes relatively small, which is suitable for observing the sample. Here, since an excitation region of secondary electrons due to penetration of hydrogen or helium ions into the sample surface is localized on the sample surface as compared with electron irradiation, SIM images using hydrogen or helium ions are more polar samples than SEM images. Sensitive to surface information. Further, from the viewpoint of a microscope, ions are heavier than electrons, and therefore, the diffraction effect can be ignored in the beam focusing, and an image having a very deep depth of focus can be obtained. In addition, if an electron or ion beam is irradiated on a sample and electrons or ions transmitted through the sample are detected, information reflecting the structure inside the sample can be obtained. These are called transmission electron microscopes or transmission ion microscopes. In particular, if a sample is irradiated with a light ion species such as hydrogen or helium, the rate of transmission through the sample increases, which is suitable for observation.
ガス電解電離イオン源は、イオンのエネルギー幅が狭いこと、及びイオン発生源サイズが小さいことから、微細なビームが期待され、上記の走査イオン顕微鏡、及び透過イオン顕微鏡に好適なイオン源である。
The gas electrolysis ion source is a suitable ion source for the above-described scanning ion microscope and transmission ion microscope because a fine beam is expected because the ion energy width is narrow and the ion generation source size is small.
電界電離イオン源を用いたイオン顕微鏡において、試料上で大きな電流密度のイオンビームが得られれば、高信号/ノイズ比で試料を観察することができる。試料上でより大きな電流密度を得るためには、電界電離イオン源のイオン放射角電流密度が大きいほど良い。イオン放射角電流密度を大きくするためには、エミッタティップを極低温に冷却し、エミッタティップ周辺のイオン材料ガス圧力を10-2~10Pa程度まで高めることが望ましい。
In an ion microscope using a field ionization ion source, if an ion beam having a large current density is obtained on the sample, the sample can be observed with a high signal / noise ratio. In order to obtain a larger current density on the sample, the larger the ion emission angular current density of the field ion source, the better. In order to increase the ion radiation angle current density, it is desirable to cool the emitter tip to a very low temperature and increase the ion material gas pressure around the emitter tip to about 10 −2 to 10 Pa.
ガス電界電離イオン源を搭載したイオン顕微鏡においては、エミッタティップ冷却手段に、機械式冷凍機のような機械振動を発生するものを含むものが多く、エミッタティップが振動しやすい。エミッタティップが振動すると、イオンビームが振れ、試料観察の分解能が劣化するという問題が起こる。このエミッタティップの機械振動を低減し、高分解能な試料観察を可能とするイオン顕微鏡を提供する必要がある。
In an ion microscope equipped with a gas field ion source, many emitter tip cooling means include mechanical vibration generators such as a mechanical refrigerator, and the emitter tip easily vibrates. When the emitter tip vibrates, there arises a problem that the ion beam is shaken and the resolution of sample observation is deteriorated. There is a need to provide an ion microscope that reduces the mechanical vibration of the emitter tip and enables high-resolution sample observation.
本実施例では、第五の実施例としてイオン顕微鏡に本発明を適用した実施例を示す。図15は実施例5におけるイオン顕微鏡及び冷却システムの断面図である。イオン顕微鏡の根幹であるイオン銃70は、エミッタティップ71及びヘリウムガス充填室72、電極73、エミッタティップ71及びヘリウムガス充填室72を冷却する熱交換器74、エミッタティップ71及びヘリウムガス充填室の周りを囲む熱シールド75、熱シールド75を冷却する熱交換器76などで構成されている。他に図示しない真空排気系(ターボ分子ポンプ、NEGなど)や光学系なども含まれる。
In this example, an example in which the present invention is applied to an ion microscope is shown as a fifth example. FIG. 15 is a cross-sectional view of an ion microscope and a cooling system in Example 5. The ion gun 70 which is the basis of the ion microscope includes an emitter tip 71 and a helium gas filling chamber 72, an electrode 73, a heat exchanger 74 for cooling the emitter tip 71 and the helium gas filling chamber 72, an emitter tip 71 and a helium gas filling chamber. A heat shield 75 that surrounds the heat shield 75, a heat exchanger 76 that cools the heat shield 75, and the like are included. In addition, a vacuum exhaust system (turbo molecular pump, NEG, etc.) and an optical system (not shown) are also included.
極低温冷凍機10は、圧縮機一体型のスターリング冷凍機である。取り付け方向は鉛直上向きでも下向きでも良い。実施例5では、鉛直上向きに極低温冷凍機10を真空容器2に取り付けている。室温部に設置した圧縮機100で加圧されたヘリウムガスは、冷却ユニット55に送られ、向流熱交換器6を通過する際に冷却される。この冷却されたヘリウムガスは、真空隔壁で隔てられた真空槽22にある極低温冷凍機1で冷却される。真空隔壁を貫通し、真空槽21側にある向流熱交換器7を通過したヘリウムガスは更に冷却される。このヘリウムガスは、真空隔壁で隔てられた真空槽22にある図示しないもう一台の極低温冷凍機1で冷却される。最低温度に冷却されたヘリウムガスは、真空隔壁を通過し、トランスファーチューブ50を通ってイオン銃70に送られ、イオン銃70の真空隔壁77を貫通してイオン銃70の内部のエミッタティップ71及びヘリウムガス充填室72を冷却する熱交換器74に送られる。イオン銃70の内部のエミッタティップ71及びヘリウムガス充填室72を冷却して温度が上昇したヘリウムガスは、トランスファーチューブ50を通って再び真空槽21に設置された向流熱交換器7を通り、温度が更に上昇する。向流熱交換器7を通過したヘリウムガスは、再びトランスファーチューブ50を通ってイオン銃70側に送られる。ヘリウムガスはイオン銃70のシールド75を冷却する熱交換器76に送られる。シールド75を冷却する熱交換器を通過し、温度が上昇したヘリウムガスは、再びトランスファーチューブを通って真空槽21に送られ、向流熱交換器6を通過し、室温まで温度が上昇する。室温のヘリウムガスは圧縮機に戻る。
The cryogenic refrigerator 10 is a compressor-integrated Stirling refrigerator. The mounting direction may be vertically upward or downward. In Example 5, the cryogenic refrigerator 10 is attached to the vacuum vessel 2 vertically upward. The helium gas pressurized by the compressor 100 installed in the room temperature portion is sent to the cooling unit 55 and cooled when passing through the counterflow heat exchanger 6. The cooled helium gas is cooled by the cryogenic refrigerator 1 in the vacuum chamber 22 separated by the vacuum partition. The helium gas that has passed through the vacuum partition and passed through the countercurrent heat exchanger 7 on the vacuum chamber 21 side is further cooled. This helium gas is cooled by another cryogenic refrigerator 1 (not shown) in a vacuum chamber 22 separated by a vacuum partition. The helium gas cooled to the lowest temperature passes through the vacuum partition, passes through the transfer tube 50, is sent to the ion gun 70, passes through the vacuum partition 77 of the ion gun 70, and the emitter tip 71 and the inside of the ion gun 70. It is sent to a heat exchanger 74 that cools the helium gas filling chamber 72. The helium gas whose temperature has risen by cooling the emitter tip 71 and the helium gas filling chamber 72 inside the ion gun 70 passes through the transfer tube 50 and again passes through the countercurrent heat exchanger 7 installed in the vacuum chamber 21. The temperature rises further. The helium gas that has passed through the counterflow heat exchanger 7 is again sent to the ion gun 70 side through the transfer tube 50. The helium gas is sent to a heat exchanger 76 that cools the shield 75 of the ion gun 70. The helium gas that has passed through the heat exchanger that cools the shield 75 and has risen in temperature passes through the transfer tube again to the vacuum chamber 21, passes through the countercurrent heat exchanger 6, and rises in temperature to room temperature. Room temperature helium gas returns to the compressor.
このような冷媒を輸送してイオン銃の各所を冷却することにより、冷却源の振動の伝播が抑制され、ビーム強度と収束度の高いイオンビームを得ることができる。
By transporting such a refrigerant and cooling various parts of the ion gun, propagation of vibration of the cooling source is suppressed, and an ion beam having high beam intensity and high convergence can be obtained.
イオン顕微鏡70では、高い真空度を得るために200℃程度の温度でイオン銃全体をベーキングする必要がある。ベーキング温度は冷却ユニット55及びトランスファーチューブ50で採用されている多層断熱材からのガス放出を促進するため、冷却ユニット55及びトランスファーチューブ50がイオン銃により加熱されると、大量のアウトガスが発生するだけでなく、冷却ユニット55及びトランスファーチューブ50に搭載されている多層断熱材を溶かしてしまう可能性がある。そこで、イオン銃70側にも真空隔壁77を設置し、イオン銃70の真空槽とトランスファーチューブ50の真空槽を分離することを可能としている。すなわち、ベーキング時には極低温冷凍機1及び圧縮機100の運転を停止し、ヘリウムガスを循環させないことで、イオン銃70で加えられた熱量がトランスファーチューブ50及び冷却ユニット55に伝播しない構造となっている。このように真空隔壁を2ヵ所(イオン銃70とトランスファーチューブ50の間、冷却ユニット55の内部)に設置することにより、ベーキングや極低温冷凍機1の交換作業時において、高真空度を維持する空間の劣化を防止することができる。
In the ion microscope 70, it is necessary to bake the entire ion gun at a temperature of about 200 ° C. in order to obtain a high degree of vacuum. Since the baking temperature promotes gas release from the multilayer insulation material employed in the cooling unit 55 and the transfer tube 50, when the cooling unit 55 and the transfer tube 50 are heated by the ion gun, only a large amount of outgas is generated. In addition, the multilayer heat insulating material mounted on the cooling unit 55 and the transfer tube 50 may be melted. Therefore, a vacuum partition wall 77 is also provided on the ion gun 70 side, so that the vacuum tank of the ion gun 70 and the vacuum tank of the transfer tube 50 can be separated. That is, the operation of the cryogenic refrigerator 1 and the compressor 100 is stopped at the time of baking, and the helium gas is not circulated so that the amount of heat applied by the ion gun 70 does not propagate to the transfer tube 50 and the cooling unit 55. Yes. Thus, by installing the vacuum partition walls at two locations (between the ion gun 70 and the transfer tube 50 and inside the cooling unit 55), a high degree of vacuum is maintained during baking and replacement of the cryogenic refrigerator 1. Deterioration of the space can be prevented.
また、イオン銃70とトランスファーチューブ50の間に真空隔壁77を設置することにより、高真空度部分の体積を減少させることができ、図示しない排気系の排気特性を向上することができる。これにより、ビーム放出時の不純物混入による拡散を防止することができ、ビームの収束度が向上する。
In addition, by installing the vacuum partition wall 77 between the ion gun 70 and the transfer tube 50, the volume of the high vacuum portion can be reduced, and the exhaust characteristics of an exhaust system (not shown) can be improved. As a result, diffusion due to impurity contamination during beam emission can be prevented, and the beam convergence is improved.
1 極低温冷凍機
2 真空容器
3 コールドヘッド
4 ステージ熱交換器
5 配管
11 蓋
21、22 真空槽
23 隔壁
24 断熱真空壁
50 トランスファーチューブ
51 配管
55 冷却ユニット
60 被冷却体
100 圧縮機
200 支持体 DESCRIPTION OFSYMBOLS 1 Cryogenic refrigerator 2 Vacuum container 3 Cold head 4 Stage heat exchanger 5 Piping 11 Lid | 21, 22 Vacuum tank 23 Bulkhead 24 Insulating vacuum wall 50 Transfer tube 51 Piping 55 Cooling unit 60 Cooling object 100 Compressor 200 Support body
2 真空容器
3 コールドヘッド
4 ステージ熱交換器
5 配管
11 蓋
21、22 真空槽
23 隔壁
24 断熱真空壁
50 トランスファーチューブ
51 配管
55 冷却ユニット
60 被冷却体
100 圧縮機
200 支持体 DESCRIPTION OF
Claims (6)
- 真空容器と、
前記真空容器に取り付けられた極低温冷凍機と、
前記極低温冷凍機のコールドヘッドに熱的に結合されるステージ熱交換器と、
前記ステージ熱交換器に連結され内部に冷媒が流れる配管と、
前記配管と連結された向流熱交換器で構成される冷却源を持つ循環冷却システムであって、
前記真空容器が、前記ステージ熱交換器を含む第一の真空槽と、前記向流熱交換器を含む第二の真空槽に、真空隔壁で分離されたことを特徴とする循環冷却システム。 A vacuum vessel;
A cryogenic refrigerator attached to the vacuum vessel;
A stage heat exchanger thermally coupled to the cold head of the cryogenic refrigerator;
A pipe connected to the stage heat exchanger and through which a refrigerant flows;
A circulating cooling system having a cooling source composed of a counter-current heat exchanger connected to the pipe,
The circulating cooling system, wherein the vacuum container is separated by a vacuum partition into a first vacuum chamber including the stage heat exchanger and a second vacuum chamber including the countercurrent heat exchanger. - 請求項1に記載の循環冷却システムであって、
前記極低温冷凍機を着脱する場合には、前記ステージ熱交換器が前記真空容器から支持され、前記極低温冷凍機が真空容器に固定されている場合には、前記ステージ熱交換器が前記真空容器から支持されたことを特徴とする循環冷却システム。 The circulating cooling system according to claim 1,
When the cryogenic refrigerator is attached or detached, the stage heat exchanger is supported from the vacuum vessel, and when the cryogenic refrigerator is fixed to the vacuum vessel, the stage heat exchanger is the vacuum A circulating cooling system supported by a container. - 請求項1に記載の循環冷却システムの冷却源構造であって、
前記配管が貫通する隔壁の少なくとも一部が断熱真空壁であることを特徴とする循環冷却システムの冷却源構造。 The cooling source structure of the circulating cooling system according to claim 1,
A cooling source structure for a circulating cooling system, wherein at least a part of a partition wall through which the pipe passes is a heat insulating vacuum wall. - 請求項1に記載の循環冷却システムの冷却源構造であって、
前記冷凍機が取り付けられたときの配置方向が前記ステージ熱交換器に対して上下方向であることを特徴とする循環冷却システム冷却源構造。 The cooling source structure of the circulating cooling system according to claim 1,
A circulating cooling system cooling source structure characterized in that an arrangement direction when the refrigerator is attached is a vertical direction with respect to the stage heat exchanger. - 循環冷却システムによって冷却されるイオン源を有するイオン顕微鏡であって、
前記循環冷却システムは、
真空容器と、
前記真空容器に取り付けられた極低温冷凍機と、
前記極低温冷凍機のコールドヘッドに熱的に結合されるステージ熱交換器と、
前記ステージ熱交換器に連結され内部に冷媒が流れる配管と、
前記配管と連結された向流熱交換器で構成される冷却源を有し、
前記真空容器が、前記ステージ熱交換器を含む第一の真空槽と、前記向流熱交換器を含む第二の真空槽に、真空隔壁で分離されたことを特徴とするイオン顕微鏡。 An ion microscope having an ion source cooled by a circulating cooling system,
The circulating cooling system includes:
A vacuum vessel;
A cryogenic refrigerator attached to the vacuum vessel;
A stage heat exchanger thermally coupled to the cold head of the cryogenic refrigerator;
A pipe connected to the stage heat exchanger and through which a refrigerant flows;
Having a cooling source composed of a countercurrent heat exchanger connected to the pipe;
An ion microscope, wherein the vacuum vessel is separated by a vacuum partition into a first vacuum chamber including the stage heat exchanger and a second vacuum chamber including the countercurrent heat exchanger. - 請求項5に記載のイオン顕微鏡であって、さらに、
前記イオン源を冷却する熱交換器を有し、
前記イオン源を冷却する熱交換器と前記真空隔壁との間に第二の真空隔壁が設けられることを特徴とするイオン顕微鏡。 The ion microscope according to claim 5, further comprising:
A heat exchanger for cooling the ion source;
An ion microscope, wherein a second vacuum partition is provided between the heat exchanger for cooling the ion source and the vacuum partition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012034625A JP2015111010A (en) | 2012-02-21 | 2012-02-21 | Cooling source of cycle cooling system and ion microscope using the same |
JP2012-034625 | 2012-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125471A1 true WO2013125471A1 (en) | 2013-08-29 |
Family
ID=49005657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053789 WO2013125471A1 (en) | 2012-02-21 | 2013-02-18 | Cooling source for circulation cooling system and ion microscope using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015111010A (en) |
WO (1) | WO2013125471A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105151535A (en) * | 2015-07-29 | 2015-12-16 | 程路 | Cold-chain logistics box with refrigeration function |
CN106440481A (en) * | 2016-11-30 | 2017-02-22 | 无锡溥汇机械科技有限公司 | Ultrasonic mist spraying refrigeration device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6371881B1 (en) * | 2017-03-15 | 2018-08-08 | 大陽日酸株式会社 | Gas cooling system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075893A (en) * | 2006-09-19 | 2008-04-03 | Hitachi Ltd | Cryogenic cooling system |
JP2011014245A (en) * | 2009-06-30 | 2011-01-20 | Hitachi High-Technologies Corp | Ion microscope |
-
2012
- 2012-02-21 JP JP2012034625A patent/JP2015111010A/en active Pending
-
2013
- 2013-02-18 WO PCT/JP2013/053789 patent/WO2013125471A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075893A (en) * | 2006-09-19 | 2008-04-03 | Hitachi Ltd | Cryogenic cooling system |
JP2011014245A (en) * | 2009-06-30 | 2011-01-20 | Hitachi High-Technologies Corp | Ion microscope |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105151535A (en) * | 2015-07-29 | 2015-12-16 | 程路 | Cold-chain logistics box with refrigeration function |
CN106440481A (en) * | 2016-11-30 | 2017-02-22 | 无锡溥汇机械科技有限公司 | Ultrasonic mist spraying refrigeration device |
Also Published As
Publication number | Publication date |
---|---|
JP2015111010A (en) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6338755B2 (en) | A cryostat device having a vacuum vessel and an object to be cooled with a evacuable cavity | |
JP3996935B2 (en) | Cryostat structure | |
US6864770B2 (en) | Super conductive magnet apparatus | |
JPH0629635Y2 (en) | Cryostat | |
JP5033844B2 (en) | Ion microscope | |
JP4031121B2 (en) | Cryostat equipment | |
US5934082A (en) | Indirect cooling system for an electrical device | |
JP2008111666A (en) | Cryogenic cooler | |
WO2013125471A1 (en) | Cooling source for circulation cooling system and ion microscope using same | |
US8989827B2 (en) | Superconducting magnet | |
EP0467558B1 (en) | A cryostat and nuclear magnetic resonance imaging apparatus including a cryostat | |
JP6164409B2 (en) | NMR system | |
JP5936430B2 (en) | Charged particle microscope | |
WO2013069410A1 (en) | Cooling device, ion microscope, and observation device or inspection device | |
JP2007080698A (en) | Sample analyzer | |
JP2010016025A (en) | Superconducting device | |
US11977139B2 (en) | Accelerated cooldown of low-cryogen magnetic resonance imaging (MRI) magnets | |
JP2009156528A (en) | Cooling apparatus and vacuum cooling apparatus | |
JP6207884B2 (en) | Charged particle beam equipment | |
KR101969593B1 (en) | System | |
WO2014203827A1 (en) | Mri system | |
JPS643171Y2 (en) | ||
KR20200071641A (en) | System | |
JP2005055003A (en) | Freezer mounting structure, freezer cooling type superconductor magnet device, condenser with freezer mounting structure and mounting method of freezer | |
JP5658419B2 (en) | Refrigerator, cooling trap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13752377 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13752377 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |