Nothing Special   »   [go: up one dir, main page]

WO2013121838A1 - Protective sheet for solar cell, method for manufacturing same, and solar cell module - Google Patents

Protective sheet for solar cell, method for manufacturing same, and solar cell module Download PDF

Info

Publication number
WO2013121838A1
WO2013121838A1 PCT/JP2013/051262 JP2013051262W WO2013121838A1 WO 2013121838 A1 WO2013121838 A1 WO 2013121838A1 JP 2013051262 W JP2013051262 W JP 2013051262W WO 2013121838 A1 WO2013121838 A1 WO 2013121838A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
solar cell
protective sheet
layer
resin layer
Prior art date
Application number
PCT/JP2013/051262
Other languages
French (fr)
Japanese (ja)
Inventor
誉也 ▲高▼梨
卓也 鉄本
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2013121838A1 publication Critical patent/WO2013121838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell protective sheet used as a surface protective sheet or a back surface protective sheet of a solar cell module, a method for producing the same, and a solar cell module using the solar cell protective sheet.
  • Solar cell modules that convert solar light energy into electrical energy are attracting attention as a clean energy source that can generate electricity without discharging carbon dioxide in response to environmental problems such as air pollution and global warming.
  • a solar cell module is composed of a solar cell made of crystalline silicon, amorphous silicon or the like that performs photoelectric conversion, a sealing material (filler) made of an electrical insulator that seals the solar cell, and the surface of the sealing material. It is comprised from the surface protection sheet (front sheet) laminated
  • the solar cell module and sealing material are protected from wind, rain, moisture, dust, mechanical shock, etc. It is necessary to keep the inside of the interior sealed from the outside air. For this reason, the protection sheet for solar cells is required to have moisture resistance and weather resistance that can withstand long-term use.
  • Patent Document 1 discloses a solar cell module in which a silicon power generation element is sealed with a sealing material made of an ethylene-vinyl acetate copolymer sheet, and a back sheet is laminated on the back surface of the sealing material.
  • a back sheet a sheet in which a fluorine-based plastic film having weather resistance (Tedlar film manufactured by DuPont) is bonded to one side or both sides of a layer that prevents water vapor permeation, such as metal, is disclosed. This back sheet is heat-bonded to the sealing material.
  • Patent Document 1 has a problem that the back sheet peels off from the sealing material and water vapor enters the sealing material because of low adhesion to the sealing material. Therefore, it has been proposed to provide a heat-sealable layer on the back sheet to improve the adhesion to the above-mentioned sealing material.
  • Patent Document 2 discloses a back sheet laminated on the back surface of a filler in a solar cell module using an ethylene-vinyl acetate copolymer as a filler, and includes an epoxy compound and / or a silane compound.
  • a heat-fusible layer made of a heat-fusible resin composed mainly of a graft-modified ethylene- (meth) acrylate copolymer, ethylene-vinyl acetate copolymer, or a mixture thereof is laminated on a heat-resistant film.
  • Patent Document 2 when manufacturing a back sheet, a heat-fusible layer is laminated on a heat-resistant film by an extrusion coating method.
  • Such a method of forming a heat-fusible layer has high productivity, but has a problem that shrinkage occurs due to cooling of the heat-fusible layer and curls occur in the width direction or the flow direction of the roll. If the solar cell module is warped along with the curl of the back sheet, not only will the malfunction occur when the solar cell module is installed, but the solar cell module may be damaged.
  • Such curling occurs not only in a laminate in which a heat-fusible layer is laminated on a backsheet, but also, for example, a backsheet and a sealing material on the back side as described in Patent Documents 3 to 5 are laminated. This also causes a problem in the integrated backsheet.
  • a solar cell module normally contains a plurality of solar cells, and these cells are also referred to as metal wiring (in this specification, “tab line”). ) Are electrically connected to each other. Therefore, at least one of the tab wires is encapsulated with a plurality of solar cells. This tab line may be hidden by a backsheet colored white or black.
  • This invention is made
  • thermoplastic resin composition constituting the thermoplastic resin layer provided in the solar cell protective sheet is a relatively low density thermoplastic resin
  • the shrinkage rate when produced by extrusion coating is reduced. Therefore, the curl amount of the protective sheet for solar cells is reduced, and the occurrence of warpage of the solar cell module including such a sheet is suppressed. This point is also disclosed in Patent Documents 3 to 5.
  • thermoplastic resin layer made of such a thermoplastic resin composition tends to be highly flexible, the amount of deformation of the backsheet around the tab wire becomes excessive when placed in a high temperature environment as described above. Cheap. As a result, the presence of the tab line can be recognized.
  • thermoplastic resin composition constituting the thermoplastic resin layer is preferable from the viewpoint of avoiding the occurrence of line traces, but the thermoplastic resin contained in the thermoplastic resin composition is simply hard. If it changes into a thing, the curvature amount mentioned above will become large and the curvature of a solar cell module provided with the protection sheet for solar cells will become remarkable.
  • the resin component contained in the thermoplastic resin composition is not limited to a relatively low density thermoplastic resin, but is compatible with the low density thermoplastic resin and has a relatively high density. By including a thermoplastic resin, it is possible to simultaneously achieve suppression of warpage and suppression of occurrence of line traces in the solar cell module.
  • the present invention completed based on such knowledge is, firstly, a solar cell protective sheet comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material.
  • the plastic resin layer is composed of a thermoplastic resin composition including a thermoplastic resin A and a thermoplastic resin B, and the thermoplastic resin A is composed of an olefin resin having a density of less than 920 kg / m 3 , and the thermoplastic resin.
  • the resin B has a higher density than the thermoplastic resin A and is made of a resin that is compatible with the thermoplastic resin A.
  • the thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less. And the melting peak temperature is 95 degreeC or more,
  • the protective sheet for solar cells characterized by the above-mentioned is provided (invention 1).
  • the present invention is a solar cell protective sheet comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material, the thermoplastic resin providing the thermoplastic resin layer
  • the resin composition includes a thermoplastic resin A and a thermoplastic resin B.
  • the thermoplastic resin A is made of an olefin resin having a density of less than 920 kg / m 3
  • the thermoplastic resin B is the thermoplastic resin.
  • the thermoplastic resin composition has a higher density than A and is compatible with the thermoplastic resin A, and the thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less, and is stored at 80 ° C.
  • a protective sheet for a solar cell having an elastic modulus of 3 MPa or more (Invention 2).
  • thermoplastic resin layer according to the above inventions is composed of a plurality of thermoplastic resin compositions that are compatible as described above, the characteristics of each resin composition (easy to relieve stress) As a synergistic effect such as excellent heat resistance, it is possible to simultaneously achieve suppression of warpage and suppression of occurrence of line traces.
  • thermoplastic resin composition preferably has a melting peak temperature of 95 ° C. or more (Invention 3). In this case, it is possible to more stably achieve the simultaneous suppression of warpage and suppression of occurrence of line traces.
  • thermoplastic resin A preferably contains 60% by mass or more and 100% by mass or less of ethylene as a monomer unit (Invention 4). In this case, it becomes easy to satisfy the conditions required for the thermoplastic resin A.
  • the melting peak temperature of the thermoplastic resin B is preferably 95 ° C. or higher (Invention 5). In this case, it becomes easy to satisfy the conditions required for the thermoplastic resin composition.
  • thermoplastic resin composition may contain a coloring material (Invention 6). In this case, it is easy to hide the tab lines and the like.
  • thermoplastic resin layer is preferably formed by laminating the thermoplastic resin composition on one surface of the substrate by extrusion coating. (Invention 7). In this case, the adhesive force between the thermoplastic resin layer and the base material is increased, and the possibility that they peel off can be reduced.
  • an intervening layer made of an adhesive composition having adhesion to the thermoplastic resin layer and the substrate may be provided (Invention 8). Also in this case, the adhesive force between the thermoplastic resin layer and the base material is increased, and the possibility that they peel off can be reduced.
  • the adhesive composition mainly comprises a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate. It is preferable to use as a component (Invention 9). Since these copolymers have adhesiveness to the base material and the thermoplastic resin layer, they are suitable as an intervening layer.
  • thermoplastic resin layer and the intervening layer are formed by coextrusion coating of the thermoplastic resin composition and the adhesive composition on the substrate. It is preferable that it is made (Invention 10). In this case, the adhesive force of the intervening layer to the thermoplastic resin layer can be particularly increased, and the possibility that the base material and the thermoplastic resin layer are peeled can be further reduced.
  • thermoplastic resin layer may be a layer bonded to a sealing material constituting the solar cell module (Invention 11). Since the thermoplastic resin layer is excellent in adhesiveness with the sealing material, the protective sheet for solar cell is difficult to peel from the sealing material.
  • the present invention is a method for producing a protective sheet for a solar cell comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material.
  • a method for producing a protective sheet for a solar cell, wherein the thermoplastic resin layer is formed by extrusion-coating the thermoplastic resin composition according to any one of 6 to 6 on at least one surface of the substrate. (Invention 12).
  • thermoplastic resin layer Since the adhesive force between the thermoplastic resin layer and the substrate is increased by forming the thermoplastic resin layer by extrusion coating, it is possible to reduce the possibility of these peeling.
  • the present invention comprises a base material, a thermoplastic resin layer, an adhesive composition having adhesiveness to the base material and the thermoplastic resin layer, and one surface of the base material and the plastic resin layer.
  • a protective sheet for a solar cell comprising an intervening layer laminated between one surface of the thermoplastic resin composition according to any one of the inventions (Inventions 1 to 6), Provided is a method for producing a protective sheet for a solar cell, which comprises coextruding an adhesive composition on at least one surface of the substrate to form the intervening layer and the thermoplastic resin layer. (Invention 13).
  • the adhesive force between the intervening layer and the thermoplastic resin layer and the adhesive force between the thermoplastic resin layer and the base material are increased, so that they may peel off. Can be reduced.
  • the adhesive composition is mainly composed of a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate. (Invention 14) Since these copolymers have adhesiveness to the base material and the thermoplastic resin layer, they are suitable as an intervening layer.
  • the present invention provides a plurality of solar cells, electrical wiring for electrically connecting the plurality of solar cells, and sealing that encloses the plurality of solar cells and at least one of the electrical wirings.
  • a solar cell module comprising two protective members stacked on each of the main surfaces of the sealing material, wherein at least one of the protective members is a solar cell according to any one of the above inventions (Inventions 1 to 10)
  • a solar cell module comprising a battery protective sheet, wherein the thermoplastic resin layer provided in the solar cell protective sheet forms part or all of the sealing material (Invention 15).
  • the solar cell protective sheet according to any one of the inventions (Inventions 1 to 10) has excellent adhesion to a sealing material or the like, a solar cell module provided with such a solar cell protective sheet is While having the effect based on the protective sheet for solar cells that hardly manifests, it is difficult to cause a change in quality over time.
  • the solar cell protective sheet according to the present invention has a small curl amount because the density of the thermoplastic resin layer is low. Therefore, warpage occurring in the solar cell module is suppressed.
  • the thermoplastic resin forming the main surface on one side of the sheet has a high melting peak temperature and / or a high storage elastic modulus at a high temperature although the density is relatively low. Even if a solar cell module using the protective sheet as a front sheet and / or a back sheet is left in a high-temperature environment, it is difficult for line traces to appear.
  • a protective sheet 1 for a solar cell is a thermoplastic layered on a base material 11 and one surface (upper surface in FIG. 1) of the base material 11. And a resin layer 12.
  • the solar cell protective sheet 1 has a thermoplastic resin layer 12 functioning as a heat-fusible layer to a sealing material, and a solar cell module surface protective sheet (front sheet) or back surface protective sheet ( Back sheet).
  • the thermoplastic resin layer 12 substantially has a function of a sealing material, and is an integrated sheet of a sealing material and a front sheet or a sealing material.
  • thermoplastic resin layer 12 also substantially has a function of a sealing material will be described as appropriate.
  • the base material 11 may be any material as long as it has electrical insulation and can be laminated with the thermoplastic resin layer 12, and a material mainly composed of a resin film is usually used.
  • a resin film generally used as a resin film in a solar cell module back sheet is selected.
  • resin films include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyamide resins such as nylon (trade name), polycarbonate resins, and polystyrene.
  • PET polyethylene terephthalate
  • a film made of a resin such as a resin, a polyacrylonitrile resin, a polyvinyl chloride resin, a polyvinyl acetal resin, a polyphenylene sulfide resin, or a polyphenylene ether resin is used.
  • a film made of a polyester resin is preferable, and a PET film is particularly preferable.
  • the said resin film may contain various additives, such as a pigment, a ultraviolet absorber, a ultraviolet stabilizer, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and an antiblocking agent, as needed.
  • a pigment examples include titanium dioxide and carbon black.
  • the ultraviolet absorber examples include benzophenone series, benzotriazole series, oxalic acid anilide series, cyanoacrylate series, and triazine series.
  • the resin film preferably contains a pigment that reflects visible light.
  • the solar cell protective sheet 1 according to the present embodiment it is preferable not to contain a pigment that reduces the light transmittance in the visible light region, thereby improving the weather resistance. It is more preferable to contain an ultraviolet absorber for the purpose.
  • thermoplastic resin layer 12 In order to improve the adhesion to the thermoplastic resin layer 12 on the surface of the resin film on which the thermoplastic resin layer 12 is laminated, surface treatment such as corona treatment, plasma treatment, primer treatment, etc. is used as an easy adhesion treatment. It is preferable to apply.
  • the thickness of the substrate 11 is appropriately set based on the electrical insulation required for the solar cell module.
  • the thickness is preferably 10 ⁇ m or more and 300 ⁇ m or less. More specifically, when the substrate 11 is a PET film, the thickness is preferably 10 ⁇ m or more and 300 ⁇ m or less, and 20 ⁇ m or more and 250 ⁇ m or less from the viewpoint of electrical insulation and weight reduction. It is more preferable that it is 30 ⁇ m or more and 200 ⁇ m or less.
  • thermoplastic resin layer 12 in the present embodiment is bonded to a sealing material, whereby the solar cell protective sheet 1 including the substrate 11 is solar cell module. It is for fixing to.
  • thermoplastic resin layer 12 substantially has a function of a sealing material, and encloses solar cells and the like to protect them, while in other sealing materials and other protective sheets. It is for adhering to a heat-fusible layer, a base material of another protective sheet, or the like.
  • thermoplastic resin layer 12 in the present embodiment is composed of a thermoplastic resin composition, and this thermoplastic resin composition is composed of a thermoplastic resin A and a thermoplastic resin B (details of these resins are described in detail). Will be described later).
  • the thermoplastic resin composition according to this embodiment has a density of 875 kg / m 3 or more and 920 kg / m 3 or less. The density is a value obtained by measurement according to JIS K7112.
  • the thermoplastic resin composition satisfies at least one of the melting peak temperature of 95 ° C. or higher and the storage elastic modulus at 80 ° C. of 3 MPa or higher, preferably both.
  • the melting peak temperature can be measured with a differential scanning calorimeter, and the storage elastic modulus can be measured with a dynamic viscoelasticity measuring device.
  • the solar cell protective sheet 1 provided with the thermoplastic resin layer 12 obtained from this thermoplastic resin composition can be curled even if manufactured by extrusion coating. Since the amount is reduced, the warpage of the solar cell module including such a sheet is suppressed. Specifically, when the solar cell protective sheet 1 is cut into a 300 mm ⁇ 300 mm square and placed on a horizontal table, the warpage of the solar cell module is suppressed when the vertical curl amount is 20 mm or less. Although it is possible, the solar cell protective sheet 1 according to this embodiment can suppress the curl amount to 20 mm or less even when the solar cell protective sheet 1 includes the base material 11 and the thermoplastic resin layer 12.
  • thermoplastic resin composition when the density of the thermoplastic resin composition is 875 kg / m 3 or more, problems that occur when the solar cell protective sheet 1 is a wound body are less likely to occur. Specifically, when the thermoplastic resin layer 12 is tucked and the solar cell protective sheet 1 is wound up, blocking occurs, and the solar cell protective sheet 1 fed out has a blocking mark or is wound up. It is suppressed that the protective sheet 1 for solar cells cannot be paid out. Moreover, when the density of a thermoplastic resin composition is 875 kg / m ⁇ 3 > or more, it becomes easy to make the storage elastic modulus in 80 degreeC of a thermoplastic resin composition into 3 MPa or more (it mentions later for details).
  • the density of the thermoplastic resin composition is preferably 875 kg / m 3 or more and 920 kg / m 3 or less, and 880 kg / m 3. and particularly preferably 3 or more 910 kg / m 3 or less.
  • thermoplastic resin composition since the thermoplastic resins A and B are compatible as described later, the melting peak temperature becomes one.
  • “the thermoplastic resins A and B are compatible” means a melting peak obtained by measuring a resin composition obtained by mixing the thermoplastic resin A and the thermoplastic resin B with a differential scanning calorimeter. It means that the temperature is substantially a single peak.
  • the melting peak temperature of the thermoplastic resin composition is preferably 100 ° C or higher, and more preferably 105 ° C or higher.
  • the upper limit of the melting peak temperature is not particularly limited, but since the upper limit is set for the density of the thermoplastic resin composition as described above, it is actually difficult to reach 140 ° C. or higher.
  • the storage elastic modulus at 80 ° C. of the thermoplastic resin composition is 3 MPa or more, the thermoplastic resin layer 12 may be excessively deformed around the tab wire even if a heat resistance evaluation test is performed under high temperature conditions. It is suppressed. For this reason, the solar cell protective sheet 1 that hardly causes line traces in the solar cell module is obtained. From the viewpoint of further stably suppressing the occurrence of line traces, the storage elastic modulus at 80 ° C. of the thermoplastic resin composition is preferably 3 MPa or more, more preferably 5 MPa or more, and particularly preferably 10 MPa or more. preferable.
  • the upper limit of the storage elastic modulus at 80 ° C. is not particularly limited, but since the upper limit is set for the density of the thermoplastic resin composition as described above, it is actually difficult to be 50 MPa or more.
  • the blending ratio of the thermoplastic resins A and B contained in the thermoplastic resin composition is such that the thermoplastic resin composition satisfies the conditions regarding the above density, and the melting peak temperature and / or the storage elastic modulus at 80 ° C. As long as it is satisfied, there is no particular limitation. Based on the above conditions and the compositions of the thermoplastic resins A and B, the range of this blending ratio should be determined, and the content of the thermoplastic resin A in the thermoplastic resin composition is that of the thermoplastic resin B. In many cases, it is equal to or more than the content.
  • An example of the blending ratio (mass ratio) of the thermoplastic resin B to the thermoplastic resin A in such a case is in the range of 0.05 to 1.0.
  • thermoplastic resin layer 12 in this embodiment is a single layer, since it can suppress generation
  • the thermoplastic resin composition constituting the thermoplastic resin layer 12 includes, as necessary, a coloring material such as titanium dioxide, an antiblocking agent such as silica particles, and a benzophenone.
  • a coloring material such as titanium dioxide
  • an antiblocking agent such as silica particles
  • a benzophenone Various additives such as an ultraviolet absorber, an ultraviolet stabilizer, a flame retardant, a plasticizer, an antistatic agent and a lubricant may be contained.
  • the thickness of the thermoplastic resin layer 12 is not particularly limited as long as it exhibits desired adhesion to the adherend and does not impair the effects of the present invention.
  • the thickness of the thermoplastic resin layer 12 when used as a heat-fusible layer is preferably 1 ⁇ m or more and 200 ⁇ m or less, and 10 ⁇ m or more and 180 ⁇ m or less from the viewpoint of electrical insulation and weight reduction. Is more preferably 50 ⁇ m or more and 150 ⁇ m or less, and particularly preferably 80 ⁇ m or more and 120 ⁇ m or less.
  • the thickness may be about 1 mm at the maximum.
  • thermoplastic resin A contained in the thermoplastic resin composition is an olefin resin having a density of less than 920 kg / m 3 .
  • the density of the thermoplastic resin A is preferably at 915 kg / m 3 or less, more preferably 910 kg / m 3 or less.
  • the density of the thermoplastic resin A is preferably more than 875 kg / m 3, and more preferably 880 kg / m 3 or more.
  • the olefin-based resin is a homopolymer or copolymer composed of a monomer composed of olefin, and a copolymer composed of a monomer composed of an olefin and a molecule other than olefin,
  • the thermoplastic resin whose mass ratio of the part based on the olefin unit in resin is 1.0 mass% or more is meant.
  • thermoplastic resin layer 12 made of a thermoplastic resin composition containing the thermoplastic resin A, which is an olefin resin, has high adhesion to the sealing material of the solar cell module due to the excellent heat-sealing action of the olefin resin.
  • thermoplastic resin A which is an olefin resin
  • thermoplastic resin A include polyethylene resin, polypropylene resin (PP), polyethylene-polypropylene polymer, olefin elastomer (TPO), cycloolefin resin, and ethylene-vinyl acetate copolymer (EVA).
  • Ethylene-vinyl acetate-maleic anhydride copolymer ethylene- (meth) acrylic acid copolymer, ethylene-butyl acrylate copolymer (EBA), ethylene- (meth) acrylic acid ester-maleic anhydride copolymer
  • EBA ethylene- (meth) acrylic acid ester-maleic anhydride copolymer
  • (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • the monomer constituting the thermoplastic resin A which is an olefin resin, is preferably mainly composed of ethylene, and specifically, preferably contains 60% by mass to 100% by mass of ethylene as a monomer unit. .
  • the ethylene content is less than 60% by mass, it is difficult to adjust the density of the thermoplastic resin A within the above range, and the adhesiveness of the solar cell module to the sealing material decreases. The possibility increases. From the viewpoint of easily satisfying the density range of the thermoplastic resin A and increasing the adhesion to the sealing material, the higher the ethylene content, the more preferable, specifically 70 mass or more. It is preferable that it is 80 mass% or more. All of the monomers constituting the thermoplastic resin A may be ethylene.
  • thermoplastic resin A In the case of using a monomer other than ethylene from the viewpoint of increasing the affinity with the material constituting the encapsulant, a high content of the monomer is preferable from the viewpoint of increasing the adhesiveness of the encapsulant.
  • the upper limit of the content of the monomer in the thermoplastic resin A is determined so as to satisfy other conditions such as the above-described density range to be satisfied by the thermoplastic resin A.
  • the polymer constituting the thermoplastic resin A may be a single type or a blend of a plurality of types of polymers.
  • the types of polymers are different from the states of branching (that is, polymer architecture), molecular weight, blending balance of monomers constituting the polymer, and composition of the monomers constituting the polymer, and It means that these combinations are different to the extent that they have a great influence on physical properties.
  • the degree of branching per polymer is small.
  • a preferred example of such a polymer having a low degree of branching is a metallocene linear low density polyethylene.
  • Such polyethylene is synthesized using a metallocene catalyst, which is a single site catalyst, and is a linear polymer with a low degree of branching. For this reason, it becomes easy to make the density of the thermoplastic resin A into said range.
  • the olefin resin is preferably low density polyethylene (LDPE) or very low density polyethylene (VLDPE), and is a linear low density polyethylene synthesized using a metallocene catalyst and has a density of 875 kg / m 3 or more. More preferably, it is less than 920 kg / m 3 .
  • the thermoplastic resin A may have a crosslinked structure.
  • the kind of the crosslinking agent that brings about the crosslinked structure is arbitrary, and a compound having an organic peroxide such as dicumyl peroxide or an epoxy group is typical.
  • the density of the crosslinked structure in the thermoplastic resin A is small, and the thermoplastic resin A substantially has a crosslinked structure. More preferably not.
  • thermoplastic resin A is not particularly limited, but from the viewpoint of stably realizing the melting peak temperature of the thermoplastic resin composition at 95 ° C. or higher, the melting peak temperature of the thermoplastic resin A is 85 ° C. It is preferable that the temperature is lower than 95 ° C.
  • the thermoplastic resin A has a melt flow rate value of 1 g / 10 min or more and 40 g / 10 min or less at a temperature of 230 ° C. and a load of 2.16 kgf based on JIS K7210: 1999 from the viewpoint of workability and the like. preferable.
  • the melt flow rate is preferably 2 g / 10 min or more and 20 g / 10 min or less.
  • thermoplastic resin B has a higher density than the thermoplastic resin A and is compatible with the thermoplastic resin A. As long as the thermoplastic resin B satisfies the above-described conditions, and the thermoplastic resin composition containing the thermoplastic resin A and the thermoplastic resin B satisfies the above-described conditions, other structural and physical properties of the thermoplastic resin B Features are not limited.
  • the thermoplastic resin B is preferably made of an olefin resin in the same manner as the thermoplastic resin A from the viewpoint of satisfying the compatibility condition with the thermoplastic resin A described above. Moreover, when the monomer which comprises the olefin resin which concerns on the thermoplastic resin A has ethylene as a main component, the single quantity which comprises the thermoplastic resin B from a compatible viewpoint to this ethylene-based polymer.
  • the body is also preferably composed mainly of ethylene.
  • the thermoplastic resin B is 920 kg / m 3 or more 970 kg / m 3 or less of polyethylene, more preferably a 920 kg / m 3 or more 965 kg / m 3 or less of polyethylene.
  • the thermoplastic resin B may have a crosslinked structure, but it is preferable that the thermoplastic resin B substantially does not have a crosslinked structure. From the viewpoint of increasing the compatibility with the thermoplastic resin A, the density of the crosslinked structure in the thermoplastic resin B is present. Is preferable, and it is further preferable that the thermoplastic resin B does not substantially have a crosslinked structure.
  • the thermoplastic resin B preferably has a melting peak temperature of 95 ° C. or higher, more preferably 110 ° C. or higher, from the viewpoint that the thermoplastic resin composition stably satisfies the above-described conditions regarding the melting peak temperature. More preferably, the temperature is 120 ° C. or higher.
  • the upper limit of the melting peak temperature of the thermoplastic resin B is not particularly limited, but if it is excessively high, it is difficult for the thermoplastic resin B to be compatible with the thermoplastic resin A. The degree is the upper limit.
  • the thermoplastic resin B has a melt flow rate value of 0.1 g / 10 min or more and 20 g / 10 min or less at a temperature of 230 ° C. and a load of 2.16 kgf based on JIS K7210: 1999. It is preferable from the viewpoint.
  • the melt flow rate is preferably 2 g / 10 min or more and 10 g / 10 min or less.
  • the solar cell protective sheet 1 is provided between the base material 11 and the thermoplastic resin layer 12 as shown in FIG.
  • An intervening layer 12 ′ made of an adhesive composition having adhesiveness may be provided.
  • the intervening layer 12 ′ is laminated between one surface of the base material 11 and one surface of the thermoplastic resin layer 12.
  • the intervening layer is used to firmly bond the base material 11 and the thermoplastic resin layer 12, and may be referred to as a tie layer.
  • the intervening layer 12 ′ is a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate (hereinafter referred to as “copolymer F”).
  • the main component is.
  • “having the main component” means that the copolymer F is contained to such an extent that the characteristics derived from the copolymer F are dominant for the characteristics of the intervening layer 12 ′.
  • the specific content of the copolymer F in the adhesive composition is not definitely determined because of the influence of other components.
  • the content of the copolymer F in the adhesive composition Is more than 50% by mass, and the higher the content, the better.
  • the intervening layer 12 'made of the above material has a high adhesive force to the base material 11, particularly the base material 11 made of a resin film, and further to the base material 11 made of a PET film.
  • the copolymer F which is the main component of the intervening layer 12 ', is amorphous (non-crystalline) at room temperature and has elasticity. Therefore, even if the thermoplastic resin layer 12 containing an olefin resin as a main component shrinks when cooled from the heat-melted state, the shrinkage stress can be relaxed by the intervening layer 12 ′. Therefore, even when the thermoplastic resin layer 12 and the intervening layer 12 ′ are formed on the base material 11 by coextrusion coating, the stress acting on the base material 11 is not easily generated. The amount will be small.
  • the intervening layer 12 ′ contains the copolymer F as a main component, preferably a copolymer of ethylene and (meth) acrylic acid, a copolymer of ethylene and (meth) acrylic ester, or ethylene and acetic acid.
  • a copolymer of vinyl as a main component and particularly preferably, a copolymer of ethylene and (meth) acrylic acid ester or a copolymer of ethylene and vinyl acetate as a main component.
  • Species can be used alone or in combination of two or more.
  • (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
  • the (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Examples thereof include propyl acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate and the like. Among these, methyl acrylate, butyl acrylate, ethyl hexyl acrylate, and methyl methacrylate are preferable, and one kind can be used alone, or two or more kinds can be used in combination.
  • the total content of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate as monomer units in the copolymer F is preferably 3.5 mol% or more and 15 mol% or less, More preferably, it is 4 mol% or more and 14 mol% or less. That is, in the copolymer of ethylene and (meth) acrylic acid, the content of (meth) acrylic acid, in the copolymer of ethylene and (meth) acrylic acid ester, the content of (meth) acrylic acid ester, ethylene and In the copolymer with vinyl acetate, the vinyl acetate content is preferably 3.5 mol% or more and 15 mol% or less, and more preferably 4 mol% or more and 14 mol% or less.
  • Interposition layer 12 ' should just contain the said copolymer F as a main component, Specifically, it is preferable to contain the said copolymer F 60 mass% or more, and to contain 80 mass% or more. Is more preferable, and it is particularly preferable to contain 90% by mass or more. Of course, the intervening layer 12 ′ may be composed only of the copolymer F.
  • the thickness of the intervening layer 12 ′ is not particularly limited as long as the desired adhesion to the substrate 11 and the preferred embodiment exhibit stress relaxation and do not impair the effects of the present invention. Specifically, the thickness of the intervening layer 12 ′ is preferably 5 ⁇ m or more and 150 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 75 ⁇ m or less.
  • the solar cell protective sheet 1 is provided on the surface of the substrate 11 on which the thermoplastic resin layer 12 is not laminated (the lower surface in FIG. 3).
  • the fluororesin layer 13 may be provided.
  • the weather resistance of the solar cell protective sheet 1 is improved.
  • the base material 11 consists of a resin film
  • stacked has a corona treatment and a plasma treatment. It is preferable that surface treatment (easy adhesion treatment) such as primer treatment is performed.
  • the fluororesin layer 13 is not particularly limited as long as it contains fluorine.
  • the fluororesin layer 13 is constituted by a sheet having a fluorine-containing resin (fluorine-containing resin sheet), a coating film formed by applying a paint containing the fluorine-containing resin, or the like. Is done.
  • a coating film formed by applying a paint having a fluorine-containing resin is preferable.
  • the fluorine-containing resin sheet for example, a sheet obtained by processing a resin mainly composed of polyvinyl fluoride (PVF), ethylene chlorotrifluoroethylene (ECTFE), or ethylene tetrafluoroethylene (ETFE) is used.
  • PVF polyvinyl fluoride
  • ECTFE ethylene chlorotrifluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • the fluororesin layer 13 is a fluorine-containing resin sheet
  • the fluororesin layer 13 is laminated on the substrate 11 through an adhesive layer.
  • the layer having adhesiveness is composed of an adhesive having adhesiveness to the substrate 11 and the fluorine-containing resin sheet.
  • adhesives include acrylic adhesives, polyurethane adhesives, epoxy adhesives, polyester adhesives, and polyester polyurethane adhesives. These adhesives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fluororesin layer 13 is a coating film formed by applying a paint having a fluorine-containing resin
  • the paint containing the fluorine-containing resin is directly applied to the substrate 11 without using an adhesive layer. By doing so, the fluororesin layer 13 is laminated on the substrate 11.
  • the coating material containing the fluorine-containing resin is not particularly limited as long as it is dissolved in a solvent or dispersed in water and can be applied.
  • the fluorine-containing resin contained in the paint is not particularly limited as long as it does not impair the effects of the present invention and contains fluorine. However, it is usually soluble in a paint solvent (organic solvent or water) and can be crosslinked. Things are used.
  • a fluoroolefin resin having a crosslinkable functional group examples include a hydroxyl group, a carboxyl group, an amino group, and a glycidyl group.
  • the fluoroolefin resin include chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and pentafluoropropylene.
  • fluoroolefin resin having a crosslinkable functional group examples include “LUMIFLON” (product name) manufactured by Asahi Glass Co., Ltd., “CEFRAL COAT” (product name) manufactured by Central Glass Co., Ltd., and “FLUONATE” (product manufactured by DIC Corporation). Name) and other polymers based on chlorotrifluoroethylene (CTFE) as a main component, and polymers based on tetrafluoroethylene (TFE) such as “ZEFFLE” (trade name) manufactured by Daikin Industries, Ltd. .
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • the paint may contain a crosslinking agent, a crosslinking catalyst, a solvent, and the like in addition to the above-described fluorine-containing resin. These contents may be appropriately set in consideration of the characteristics and thickness of the coating film.
  • the coating film of fluorine-containing resin is preferably cross-linked with a cross-linking agent in order to improve weather resistance and scratch resistance.
  • the crosslinking agent is not particularly limited as long as the effects of the present invention are not impaired, and metal chelates, silanes, isocyanates, or melamines are preferably used. Assuming that the solar cell protective sheet 1 is used outdoors for a long period of time, aliphatic isocyanates are preferable as the crosslinking agent from the viewpoint of weather resistance.
  • the coating material to the substrate 11 As a method for applying the coating material to the substrate 11, a known method is used. For example, the coating is performed so that the obtained fluororesin layer 13 has a desired thickness by a bar coating method, a die coating method, a gravure coating method or the like. do it.
  • the thickness of the fluororesin layer 13 is set in consideration of weather resistance, chemical resistance, weight reduction, and the like, and is preferably 5 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the protective sheet 1 for solar cells has a base 11 on the surface of the base 11 on which the thermoplastic resin layer 12 is not laminated.
  • a vapor deposition layer 14 may be provided between the metal sheet 16 and the fluororesin layer 13, or a metal sheet 16 may be laminated via an adhesive layer 15 as shown in FIG.
  • the fluororesin layer 13 described above may be provided on the lower surface in FIGS.
  • the “metal sheet” means a sheet-like member made of a metal-based material (that is, a material containing a metal element).
  • stacked is a corona.
  • Surface treatment such as treatment, plasma treatment, and primer treatment is preferably performed.
  • the vapor deposition layer 14 is comprised from inorganic materials, such as a metal or a semimetal, or an oxide, nitride, silicide, etc. of a metal or a semimetal, By being comprised from such material, the base material 11 (protective sheet for solar cells) It is possible to impart moisture resistance (water vapor barrier property) and weather resistance to 1).
  • Examples of the vapor deposition method for forming the vapor deposition layer 14 include chemical vapor deposition such as plasma chemical vapor deposition, thermal chemical vapor deposition, and photochemical vapor deposition, or vacuum vapor deposition, sputtering, and ion plating.
  • a physical vapor phase method such as a method is used.
  • the sputtering method is preferable in consideration of operability and controllability of the layer thickness.
  • Examples of the metal used as the raw material of the vapor deposition layer 14 include aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium rim (Na), titanium (Ti), and lead. (Pb), zirconium (Zr), yttrium (Y) and the like.
  • Examples of the semimetal include silicon (Si) and boron (B).
  • Examples of these metal or metalloid oxides, nitrides, and oxynitrides include aluminum oxide, tin oxide, silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxynitride.
  • the vapor deposition layer 14 may be made of one kind of inorganic material or may be made of a plurality of kinds of inorganic materials.
  • the vapor deposition layer 14 may be a vapor deposition layer having a laminated structure in which the layers made of the respective inorganic materials are sequentially vapor deposited, or may be a vapor deposition layer in which a plurality of types of inorganic materials are vapor deposited simultaneously. May be.
  • the thickness of the vapor deposition layer 14 is appropriately set in consideration of the water vapor barrier property, and is changed depending on the type of inorganic material used, vapor deposition density, and the like. Usually, the thickness of the vapor deposition layer 14 is preferably 5 nm or more and 200 nm or less, and particularly preferably 10 nm or more and 100 nm or less.
  • the metal sheet 16 can also impart moisture resistance (water vapor barrier property) and weather resistance to the base material 11 (protective sheet 1 for solar cells), similarly to the vapor deposition layer 14.
  • the material of the metal sheet 16 is not particularly limited as long as it has such a function, and examples thereof include metals such as aluminum and aluminum alloys such as aluminum-iron alloys.
  • the thickness of the metal sheet 16 is not particularly limited as long as the effects of the present invention are not impaired, but from the viewpoint of low pinhole occurrence frequency, high mechanical strength, high water vapor barrier properties, and weight reduction, etc. It is preferably 5 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the adhesive layer 15 is composed of an adhesive having adhesiveness to the base material 11 and the metal sheet 16.
  • an acrylic adhesive, a polyurethane adhesive, an epoxy adhesive, a polyester adhesive, a polyester polyurethane adhesive, or the like is used as the adhesive constituting the adhesive layer 15. These adhesives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the adhesive layer 15 is not particularly limited as long as the effects of the present invention are not impaired, but it is usually preferably 1 ⁇ m or more and 20 ⁇ m or less, and particularly preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • thermoplastic resin layer 12 in which the thermoplastic resin layer 12 was laminated on one surface of the base material 11 was illustrated, the solar cell protective sheet of the present invention is not limited thereto.
  • the thermoplastic resin layer may also be laminated on the other surface of the substrate 11 (the surface opposite to the one surface).
  • thermoplastic resin constituting thermoplastic resin layer 12 is produced. It is preferable to form the thermoplastic resin layer 12 on the base material 11 by extrusion coating the resin composition on at least one surface of the base material 11. According to such an extrusion coating method, the protection sheet 1 for solar cells can be manufactured with high productivity and at low cost. Moreover, since it is not necessary to separately provide an adhesive layer for adhering the solar cell protective sheet 1 to the sealing material of the solar cell module, it is possible to prevent deterioration over time due to decomposition of the adhesive or the like.
  • thermoplastic resin composition containing the thermoplastic resins A and B is melted and kneaded, and the base material 11 is moved at a constant speed while the base material 11 is moved.
  • the thermoplastic resin layer 12 is formed on the base material 11 by extruding and laminating the molten thermoplastic resin composition on one surface of 11 to obtain the protective sheet 1 for solar cells.
  • thermoplastic resin layer 12 may be formed on the intervening layer 12 ′.
  • the adhesive composition and the thermoplastic resin composition are extruded together from two parallel slits (at this time, the discharge port of the adhesive composition is disposed closer to the substrate 11. ) And layers (intervening layer 12 ′ and thermoplastic resin layer 12) made of each composition may be simultaneously formed on the substrate 11.
  • This co-extrusion coating has the advantage of the production process that the solar cell protective sheet 1 can be obtained in a single lamination process, and immediately after co-extrusion, the adhesive composition and the thermoplastic that give the intervening layer 12 '. Since the thermoplastic resin composition that provides the resin layer 12 is in contact with the thermoplastic resin composition in a molten state, there is an advantage that the interaction easily occurs and the adhesion between the obtained intervening layer 12 ′ and the thermoplastic resin layer 12 is increased. Further, if the constituent material of the adhesive composition is appropriately selected and the intervening layer 12 ′ has elasticity, even if the thermoplastic resin layer 12 contracts when cooled from the heated and melted state, the intervening layer 12 The shrinkage stress can be relieved by '.
  • the protective sheet 1 for a solar cell can be easily obtained because the stress acting from the thermoplastic resin layer 12 toward the base material 11 hardly occurs and the curl amount is small. Therefore, when manufacturing the protection sheet 1 for solar cells provided with the structure shown by FIG. 2, manufacturing by coextrusion coating is preferable.
  • thermoplastic resin layer 12 As shown in FIGS. 3 to 5, when another layer is formed on the substrate 11, the thermoplastic resin layer 12 and the surface of the substrate 11 on the side where the other layer is not formed are provided. What is necessary is just to form intervening layer 12 '.
  • the temperature at which the resin composition constituting the thermoplastic resin layer 12 is melted and the temperature at which the adhesive composition constituting the intervening layer 12 ′ used is melted as required are such that these compositions are in a molten state and are melted.
  • the base material 11 is not deformed by the heat of these compositions in a state, preferably 80 ° C. or higher and 350 ° C. or lower, and particularly preferably 150 ° C. or higher and 300 ° C. or lower.
  • the discharge amount of the resin composition forming the thermoplastic resin layer 12 from the T-die extruder is appropriately adjusted according to the desired thickness of the thermoplastic resin layer 12 and the moving speed of the substrate 11.
  • the base material 11 is transported in the longitudinal direction at a constant speed by, for example, a roll-to-roll method, and the transport speed is equal to the discharge amount of the resin material forming the thermoplastic resin layer 12 from the T-die extruder. It is adjusted accordingly.
  • the resin composition for forming the thermoplastic resin layer 12 melted from the T-die extruder is extruded and laminated on one surface of the substrate 11.
  • the thermoplastic resin layer 12 can be firmly bonded, and the solar cell protective sheet 1 can be manufactured with high productivity.
  • FIG. 6 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • the solar cell module 10 according to the present embodiment includes a plurality of solar cells 2 made of crystalline silicon, amorphous silicon, or the like, which are photoelectric conversion elements, and tab wires 21 that electrically connect each of the plurality of solar cells 2 ( In FIG. 6, one of the tab wires is provided with a reference numeral.), A sealing material 3 made of an electrical insulator that seals at least one of the solar cells 2 and the tab wire 21, and a sealing material 3 for the solar cell as a back surface protection sheet (back sheet) laminated on the glass plate 4 laminated on the front surface (upper surface in FIG. 6) and the back surface (lower surface in FIG.
  • back sheet back surface protection sheet laminated on the glass plate 4 laminated on the front surface (upper surface in FIG. 6) and the back surface (lower surface in FIG.
  • the sealing material 3 It consists of a sheet 1.
  • a part of the tab wire 21 may be exposed to the outside without being sealed.
  • the tab wire 21 is entirely sealed, but the wiring connected to one terminal may be connected to the other terminal of the terminal block exposed to the outside without being sealed.
  • the protective sheet 1 for solar cells is laminated
  • the solar cell protective sheet 1 in the present embodiment has a small amount of curl, warping of the obtained solar cell module 10 is suppressed. Therefore, it is possible to prevent problems caused when the solar cell module 10 is installed or damage of the solar cell module 10 due to warpage of the solar cell module 10.
  • the material of the sealing material 3 is preferably an olefin resin, and for example, the material exemplified as the olefin resin constituting the thermoplastic resin A contained in the thermoplastic resin layer 12 is preferable.
  • an ethylene-vinyl acetate copolymer (EVA) is particularly preferable from the viewpoints of high gas barrier properties against oxygen and the like, easy crosslinking, and availability.
  • the method for manufacturing the solar cell module 10 is not particularly limited.
  • the solar cell 2 and the tab wire 21 are sandwiched between two sheets constituting the sealing material 3, and the solar cell module 10 is exposed to the sun on one exposed surface of the sheet.
  • the solar cell module 10 can be manufactured by installing the glass plate 4 on the battery protective sheet 1 and the other exposed surface, and pressing and integrating them while heating.
  • the protective sheet 1 for solar cells is joined to the sealing material 3 by thermal fusion of the thermoplastic resin layer 12 and the sealing material 3.
  • the protection sheet 1 for solar cells can replace with the glass plate 4 and can also use the protection sheet 1 for solar cells as a surface protection sheet (front sheet).
  • a flexible substrate is used for the solar battery cell, a solar battery module having flexibility can be obtained.
  • the flexible solar cell module can be fitted to an object having an arched or parabolic wall surface, it can be installed on a dome-shaped building or a soundproof wall of a highway. .
  • the thermoplastic resin layer 12 in the solar cell protective sheet 1 may have a function of a sealing material.
  • the solar cell module 10 includes a plurality of solar cells 2, tab wires 21 that electrically connect the plurality of solar cells, the plurality of solar cells 2, and at least one tab wire 21.
  • the enclosing sealing material 3 and the two protective members laminated on each of the main surfaces of the encapsulating material 3 are provided. At least one of these protective members is composed of the solar cell protective sheet 1, and the thermoplastic resin layer 12 provided in the solar cell protective sheet 1 constitutes part or all of the sealing material 3.
  • the thermoplastic resin layer 12 forms part of the sealing material 3
  • the solar cell protective sheet 1 is bonded to the sealing material 3 by thermal fusion.
  • the glass plate 4 (configuration in FIG. 6) corresponding to the other of the above protective members or other solar cell protective sheet 1 (FIG. 7). The structure is joined by thermal fusion.
  • Example 1 One side of a polyethylene terephthalate film (Lumirror X10S manufactured by Toray Industries, Inc., thickness 125 ⁇ m) as a substrate is subjected to corona treatment (output 2000 W), and a T-die extruder (cylinder temperature: 230 to 280 ° C., T-die temperature: 300) ), 70 parts by mass of a thermoplastic resin A made of polyethylene having a density of 900 kg / m 3 (Evolue-P SP00100 made by Prime Polymer, melting peak temperature 92 ° C.), and polyethylene having a density of 940 kg / m 3 (Prime Polymer Co., Ltd.) 30 parts by mass of thermoplastic resin B made of Evolue-H SP4005, melting peak temperature of 127 ° C., and 10 parts by mass of titanium dioxide so that the thickness becomes 100 ⁇ m.
  • a thermoplastic resin A made of polyethylene having a density of 900 kg / m 3
  • Example 2 In Example 1, the content of the thermoplastic resin layer A was changed to 50 parts by mass instead of 70 parts by mass, and the content of the thermoplastic resin layer B was changed to 50 parts by mass instead of 30 parts by mass. Except having prepared, operation similar to Example 1 was performed and the solar cell protective sheet of the structure shown in FIG. 1 was obtained.
  • Example 3 In Example 1, the thermoplastic resin layer A content was changed to 90 parts by mass instead of 70 parts by mass, and the thermoplastic resin layer B content was changed to 10 parts by mass instead of 30 parts by mass. Except having prepared, operation similar to Example 1 was performed and the solar cell protective sheet of the structure shown in FIG. 1 was obtained.
  • Example 4 In Example 1, the type of the resin constituting the thermoplastic resin layer B was changed to polyethylene having a density of 963 kg / m 3 (Nippon Polyethylene Co., Ltd., Novatec HD HF560, melting peak temperature 134 ° C.) and the thermoplastic resin composition. Except that was prepared, the same operation as in Example 1 was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
  • Example 5 In Example 1, the type of the resin constituting the thermoplastic resin layer B is changed to polyethylene having a density of 922 kg / m 3 (Nippon Polyethylene Co., Ltd., Novatec LL UE320, melting peak temperature 122 ° C.), and a thermoplastic resin composition is obtained. Except that was prepared, the same operation as in Example 1 was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
  • Example 6 One side of a polyester film (X10S manufactured by Toray Industries Inc., thickness 125 ⁇ m) as a substrate is subjected to corona treatment (output 2000 W), and a T-die film forming machine (cylinder temperature: 230 ° C. or higher and 280 ° C.
  • corona treatment output 2000 W
  • T-die film forming machine cylinder temperature: 230 ° C. or higher and 280 ° C.
  • thermoplastic resin composition comprising an ethylene-butyl acrylate copolymer (Lotryl17BA07 manufactured by Arkema) and a polyethylene having a density of 900 kg / m 3 (Evolue-P SP00100 manufactured by Prime Polymer, melting peak temperature 92 ° C) 70 parts by mass of thermoplastic resin A, 30 parts by mass of thermoplastic resin B consisting of polyethylene (Prime Polymer, Evolue-H SP4005, melting peak temperature 127 ° C.) having a density of 940 kg / m 3 , and titanium oxide 10 parts by mass of a thermoplastic resin composition
  • the discharge port of the above-mentioned adhesive composition by coextrusion coating with two 2 layer arranged so that proximal to the substrate side was laminated to the corona treated surface of the polyester film.
  • Example 1 In Example 1, the content of the thermoplastic resin layer A was changed to 100 parts by mass instead of 70 parts by mass, and the thermoplastic resin composition was prepared without containing the thermoplastic resin layer B. The same operation was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
  • Example 2 In Example 1, the content of the thermoplastic resin layer B was changed to 100 parts by mass instead of 30 parts by mass, and the thermoplastic resin composition was prepared without containing the thermoplastic resin layer A. The same operation was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
  • thermoplastic resin composition which comprises the thermoplastic resin layer in an Example and a comparative example, and the thermoplastic resins A and B contained in the said composition, it is a differential scanning calorimeter (the product made from a TA instrument company, model number) : Q2000), the melting peak temperature was determined based on JIS K7121 (ISO 3146). -Condition adjustment of test piece It heated at 10 degreeC / min from 0 degreeC to 200 degreeC, and kept at 200 degreeC for 10 minutes, Then, it cooled at 10 degreeC / minute to 0 degreeC. -Differential scanning calorimetry It heated at 10 degreeC / min from 0 degreeC to 200 degreeC, and drawn the DSC curve. The melting peak temperature (° C.) was determined from the obtained DSC curve. The results are shown in Table 1.
  • thermoplastic resin composition produced in the example or comparative example was extrusion coated on the release surface of a release sheet (manufactured by Lintec Corporation, product name: SP-PET38T103-1, thickness 38 ⁇ m), and the film thickness was 100 ⁇ m.
  • a laminate in which a thermoplastic resin layer was laminated on a release sheet was obtained.
  • a dynamic viscoelasticity measuring device manufactured by A & D, RHEOVIBRON, conforming to ISO 6721-4 (JIS K7244-4)
  • DDV-01FP was used to determine the storage modulus at mode: tensile, frequency: 1 Hz, temperature: 80 ° C. The measurement results are shown in Table 1.
  • test sample was heated in an oven at 120 ° C. for 24 hours, imitating a heat resistance evaluation test. After completion of the simulation heat resistance evaluation test, the test sample was visually observed from the glass surface, and the presence or absence of occurrence of line traces was evaluated according to the following evaluation criteria. The case where it was determined as “C” was regarded as unacceptable.
  • the evaluation results are shown in Table 1.
  • the solar cell protective sheet of the example satisfying the conditions of the present invention has a small curl amount, and even when a heat resistance evaluation is performed on a test sample manufactured using such a sheet, the line trace becomes apparent. The occurrence of was suppressed.
  • the solar cell protective sheet according to the present invention is suitably used as a back sheet or a front sheet of a solar cell module, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

In order to provide a protective sheet for a solar cell, with which warping can be suppressed and the exposure of wire tracks can be prevented in a solar cell module equipped with this sheet, even when the sheet is manufactured by extrusion coating, this protective sheet (1) for a solar cell is equipped with a base material (11) and a thermoplastic resin layer (12) laminated on at least one surface of the base material (11). The thermoplastic resin layer (12) contains a thermoplastic resin (A) and a thermoplastic resin (B), with the thermoplastic resin (A) comprising an olefin-based resin having a density of less than 920 kg/m3 and the thermoplastic resin (B) comprising a resin having a higher density than the thermoplastic resin (A) and compatible with the thermoplastic resin (A), and the thermoplastic resin layer has a density of 875-920 kg/m3 and a peak melting temperature of 95°C or less.

Description

太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュールProtective sheet for solar cell, method for producing the same, and solar cell module
 本発明は、太陽電池モジュールの表面保護シートまたは裏面保護シートとして用いられる太陽電池用保護シートおよびその製造方法、ならびに当該太陽電池用保護シートを用いた太陽電池モジュールに関するものである。 The present invention relates to a solar cell protective sheet used as a surface protective sheet or a back surface protective sheet of a solar cell module, a method for producing the same, and a solar cell module using the solar cell protective sheet.
 太陽の光エネルギーを電気エネルギーに変換する太陽電池モジュールは、大気汚染や地球温暖化などの環境問題に対応して、二酸化炭素を排出せずに発電できるクリーンなエネルギー源として注目されている。 Solar cell modules that convert solar light energy into electrical energy are attracting attention as a clean energy source that can generate electricity without discharging carbon dioxide in response to environmental problems such as air pollution and global warming.
 一般に、太陽電池モジュールは、結晶シリコン、アモルファスシリコンなどからなり光電変換を行う太陽電池セルと、太陽電池セルを封止する電気絶縁体からなる封止材(充填材)と、封止材の表面(受光面)に積層された表面保護シート(フロントシート)と、封止材の裏面に積層された裏面保護シート(バックシート)とから構成されている。屋外において長期間の使用に耐えうる耐候性および耐久性を太陽電池モジュールに持たせるためには、太陽電池セルおよび封止材を風雨、湿気、砂埃、機械的な衝撃などから守り、太陽電池モジュールの内部を外気から遮断して密閉した状態に保つことが必要である。このため、太陽電池用保護シートには、長期間の使用に耐え得る耐湿性と耐候性とが要求される。 In general, a solar cell module is composed of a solar cell made of crystalline silicon, amorphous silicon or the like that performs photoelectric conversion, a sealing material (filler) made of an electrical insulator that seals the solar cell, and the surface of the sealing material. It is comprised from the surface protection sheet (front sheet) laminated | stacked on (light-receiving surface) and the back surface protection sheet (back sheet) laminated | stacked on the back surface of the sealing material. In order to provide the solar cell module with the weather resistance and durability that can withstand long-term use outdoors, the solar cell module and sealing material are protected from wind, rain, moisture, dust, mechanical shock, etc. It is necessary to keep the inside of the interior sealed from the outside air. For this reason, the protection sheet for solar cells is required to have moisture resistance and weather resistance that can withstand long-term use.
 特許文献1には、エチレン-酢酸ビニル共重合体シートからなる封止材によってシリコン発電素子を封止し、その封止材の裏面にバックシートが積層された太陽電池モジュールが開示されている。バックシートとしては、金属などの水蒸気透過を防止する層の片面または両面に、耐候性を有するフッ素系プラスチックフィルム(デュポン社製のテドラーフィルム)を接着したものが開示されている。このバックシートは、上記の封止材に対して加熱圧着される。 Patent Document 1 discloses a solar cell module in which a silicon power generation element is sealed with a sealing material made of an ethylene-vinyl acetate copolymer sheet, and a back sheet is laminated on the back surface of the sealing material. As a back sheet, a sheet in which a fluorine-based plastic film having weather resistance (Tedlar film manufactured by DuPont) is bonded to one side or both sides of a layer that prevents water vapor permeation, such as metal, is disclosed. This back sheet is heat-bonded to the sealing material.
 しかしながら、特許文献1のような従来のバックシートでは、封止材に対する接着性が低いため、バックシートが封止材から剥離して、封止材内に水蒸気が入り込むという問題があった。そこで、バックシートに熱融着性層を設けて、上記の封止材に対する接着性を向上させることが提案されている。 However, the conventional back sheet as in Patent Document 1 has a problem that the back sheet peels off from the sealing material and water vapor enters the sealing material because of low adhesion to the sealing material. Therefore, it has been proposed to provide a heat-sealable layer on the back sheet to improve the adhesion to the above-mentioned sealing material.
 具体的に、特許文献2には、エチレン-酢酸ビニル共重合体を充填材として用いた太陽電池モジュールにおける当該充填材の裏面に積層されたバックシートであって、エポキシ化合物および/またはシラン化合物によりグラフト変成したエチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体、またはこれらの混合物を主成分する熱融着性樹脂からなる熱融着性層を、耐熱性フィルムに積層したものが開示されている。 Specifically, Patent Document 2 discloses a back sheet laminated on the back surface of a filler in a solar cell module using an ethylene-vinyl acetate copolymer as a filler, and includes an epoxy compound and / or a silane compound. A heat-fusible layer made of a heat-fusible resin composed mainly of a graft-modified ethylene- (meth) acrylate copolymer, ethylene-vinyl acetate copolymer, or a mixture thereof is laminated on a heat-resistant film. Has been disclosed.
 特許文献2では、バックシートを製造するにあたり、耐熱性フィルムに対し、熱融着性層を押出コーティング法によって積層する。かかる熱融着性層の成形方法は、生産性が高い一方で、熱融着性層の冷却により収縮が生じ、ロールの幅方向または流れ方向にカールが生じるという問題がある。バックシートのカールに伴って太陽電池モジュールが反ると、太陽電池モジュールの設置時に不具合を生じるばかりでなく、太陽電池モジュールが破損するおそれがある。 In Patent Document 2, when manufacturing a back sheet, a heat-fusible layer is laminated on a heat-resistant film by an extrusion coating method. Such a method of forming a heat-fusible layer has high productivity, but has a problem that shrinkage occurs due to cooling of the heat-fusible layer and curls occur in the width direction or the flow direction of the roll. If the solar cell module is warped along with the curl of the back sheet, not only will the malfunction occur when the solar cell module is installed, but the solar cell module may be damaged.
 このようなカールの発生は、バックシートに熱融着性層を積層した積層体においてのみならず、例えば特許文献3から5に記載されるようなバックシートと裏面側の封止材とを積層してなる一体化バックシートにおいても問題となる。 Such curling occurs not only in a laminate in which a heat-fusible layer is laminated on a backsheet, but also, for example, a backsheet and a sealing material on the back side as described in Patent Documents 3 to 5 are laminated. This also causes a problem in the integrated backsheet.
特開平6-177412号公報Japanese Patent Application Laid-Open No. 6-177412 特開2008-108947号公報JP 2008-108947 A 特開2011-35289号公報JP 2011-35289 A 特開2011-49227号公報JP 2011-49227 A 特開2011-49228号公報JP 2011-49228 A
 また、近年、製品としての意匠性および品質を高めることついての要求が強くなっているため、次に説明する現象の発生が問題視されてきている。 In recent years, since the demand for improving the design and quality of products has been increasing, the occurrence of the phenomenon described below has been regarded as a problem.
 特許文献2の図1にも示されるように、太陽電池モジュールには通常複数個の太陽電池セルが封入され、これらの複数のセルは金属配線(本明細書において、「タブ線」ともいう。)により互いに電気的に接続されている。したがって、タブ線の少なくとも一つは複数個の太陽電池とともに封入されている。このタブ線は、白または黒に着色されたバックシートによって隠蔽される場合がある。 As shown also in FIG. 1 of Patent Document 2, a solar cell module normally contains a plurality of solar cells, and these cells are also referred to as metal wiring (in this specification, “tab line”). ) Are electrically connected to each other. Therefore, at least one of the tab wires is encapsulated with a plurality of solar cells. This tab line may be hidden by a backsheet colored white or black.
 太陽電池モジュールを加熱し封止する工程において、バックシートの隠ぺい性が低下し、タブ線が透けて見える現象(本明細書においてこの現象を「線跡顕在化」ともいう。)が生じる場合があった。 In the process of heating and sealing the solar cell module, the concealability of the backsheet is reduced, and a phenomenon in which the tab wire can be seen through (this phenomenon is also referred to as “line trace manifestation” in this specification) may occur. there were.
 本発明は、このような実状に鑑みてなされたものであり、熱可塑性樹脂層と基材とを備えた太陽電池用保護シートであって、押出コーティングにより製造された場合でも、かかるシートを備える太陽電池モジュールにおける反り発生および上記の線跡顕在化の発生を抑制することができる太陽電池用保護シート、そのシートの製造方法、およびかかる太陽電池用保護シートを備える太陽電池モジュールを提供することを目的とする。 This invention is made | formed in view of such an actual condition, Comprising: It is a protection sheet for solar cells provided with the thermoplastic resin layer and the base material, Comprising: Even when manufactured by extrusion coating, this sheet | seat is provided. Providing a solar cell protective sheet capable of suppressing the occurrence of warpage and the occurrence of line traces in the solar cell module, a method for producing the sheet, and a solar cell module provided with such a solar cell protective sheet. Objective.
 上記目的を達成するために、本発明者らが検討したところ、次の知見を得た。
 太陽電池用保護シートが備える熱可塑性樹脂層を構成する熱可塑性樹脂組成物の主成分となる樹脂を比較的低密度の熱可塑性樹脂とすると、押出コーティングにより製造された場合における収縮率が低下するため、太陽電池用保護シートのカール量は少なくなって、かかるシートを備える太陽電池モジュールの反りの発生は抑制される。この点は特許文献3から5にも開示されるとおりである。
When the present inventors examined in order to achieve the said objective, the following knowledge was acquired.
When the resin as the main component of the thermoplastic resin composition constituting the thermoplastic resin layer provided in the solar cell protective sheet is a relatively low density thermoplastic resin, the shrinkage rate when produced by extrusion coating is reduced. Therefore, the curl amount of the protective sheet for solar cells is reduced, and the occurrence of warpage of the solar cell module including such a sheet is suppressed. This point is also disclosed in Patent Documents 3 to 5.
 しかしながら、そのような熱可塑性樹脂組成物からなる熱可塑性樹脂層は柔軟性が高くなる傾向があるため、前述のような高温環境下に置かれるとタブ線周辺のバックシートの変形量が過大となりやすい。その結果、タブ線の存在を認識できるようになってしまう。 However, since the thermoplastic resin layer made of such a thermoplastic resin composition tends to be highly flexible, the amount of deformation of the backsheet around the tab wire becomes excessive when placed in a high temperature environment as described above. Cheap. As a result, the presence of the tab line can be recognized.
 上記の熱可塑性樹脂層を構成する熱可塑性樹脂組成物を硬質化することが線跡顕在化の発生を回避する観点から好ましいが、熱可塑性樹脂組成物に含有される熱可塑性樹脂を単に硬質なものに変更すると、前述の収縮量が大きくなって太陽電池用保護シートを備える太陽電池モジュールの反りが顕著となってしまう。 Hardening the thermoplastic resin composition constituting the thermoplastic resin layer is preferable from the viewpoint of avoiding the occurrence of line traces, but the thermoplastic resin contained in the thermoplastic resin composition is simply hard. If it changes into a thing, the curvature amount mentioned above will become large and the curvature of a solar cell module provided with the protection sheet for solar cells will become remarkable.
 上記の熱可塑性樹脂組成物に含有される樹脂成分を比較的低密度の熱可塑性樹脂のみとするのではなく、かかる低密度の熱可塑性樹脂に相溶するものであって相対的に高密度な熱可塑性樹脂をも含有させることによって、太陽電池モジュールにおける反りの抑制と線跡顕在化の発生の抑制とを同時に達成することができる。 The resin component contained in the thermoplastic resin composition is not limited to a relatively low density thermoplastic resin, but is compatible with the low density thermoplastic resin and has a relatively high density. By including a thermoplastic resin, it is possible to simultaneously achieve suppression of warpage and suppression of occurrence of line traces in the solar cell module.
 かかる知見に基づき完成された本発明は、第1に、基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートであって、前記熱可塑性樹脂層は、熱可塑性樹脂Aと熱可塑性樹脂Bとを含む熱可塑性樹脂組成物から構成され、前記熱可塑性樹脂Aは、密度が920kg/m未満のオレフィン系樹脂からなり、前記熱可塑性樹脂Bは、前記熱可塑性樹脂Aよりも高密度であって、前記熱可塑性樹脂Aに相溶する樹脂からなり、前記熱可塑性樹脂組成物は、密度が875kg/m以上920kg/m以下であって、融解ピーク温度が95℃以上であることを特徴とする太陽電池用保護シートを提供する(発明1)。 The present invention completed based on such knowledge is, firstly, a solar cell protective sheet comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material. The plastic resin layer is composed of a thermoplastic resin composition including a thermoplastic resin A and a thermoplastic resin B, and the thermoplastic resin A is composed of an olefin resin having a density of less than 920 kg / m 3 , and the thermoplastic resin. The resin B has a higher density than the thermoplastic resin A and is made of a resin that is compatible with the thermoplastic resin A. The thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less. And the melting peak temperature is 95 degreeC or more, The protective sheet for solar cells characterized by the above-mentioned is provided (invention 1).
 本発明は、第2に、基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートであって、前記熱可塑性樹脂層を与える熱可塑性樹脂組成物は、熱可塑性樹脂Aと熱可塑性樹脂Bとを含み、前記熱可塑性樹脂Aは、密度が920kg/m未満のオレフィン系樹脂からなり、前記熱可塑性樹脂Bは、前記熱可塑性樹脂Aよりも高密度であって、前記熱可塑性樹脂Aに相溶する樹脂からなり、前記熱可塑性樹脂組成物は、密度が875kg/m以上920kg/m以下であって、80℃における貯蔵弾性率が3MPa以上であることを特徴とする太陽電池用保護シートを提供する(発明2)。 Second, the present invention is a solar cell protective sheet comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material, the thermoplastic resin providing the thermoplastic resin layer The resin composition includes a thermoplastic resin A and a thermoplastic resin B. The thermoplastic resin A is made of an olefin resin having a density of less than 920 kg / m 3 , and the thermoplastic resin B is the thermoplastic resin. The thermoplastic resin composition has a higher density than A and is compatible with the thermoplastic resin A, and the thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less, and is stored at 80 ° C. Provided is a protective sheet for a solar cell having an elastic modulus of 3 MPa or more (Invention 2).
 上記の発明(発明1,2)に係る熱可塑性樹脂層は上記のように相溶する複数の熱可塑性樹脂組成物から構成されるため、それぞれの樹脂組成物が有する特徴(応力緩和しやすい、耐熱性に優れるなど)の相乗効果として、反りの抑制と線跡顕在化の発生の抑制とを同時に達成することができる。 Since the thermoplastic resin layer according to the above inventions (Inventions 1 and 2) is composed of a plurality of thermoplastic resin compositions that are compatible as described above, the characteristics of each resin composition (easy to relieve stress) As a synergistic effect such as excellent heat resistance, it is possible to simultaneously achieve suppression of warpage and suppression of occurrence of line traces.
 上記の発明(発明2)において、前記熱可塑性樹脂組成物の融解ピーク温度が95℃以上であることが好ましい(発明3)。この場合には、反りの抑制と線跡顕在化の発生の抑制とを同時に達成することがより安定的に実現される。 In the above invention (Invention 2), the thermoplastic resin composition preferably has a melting peak temperature of 95 ° C. or more (Invention 3). In this case, it is possible to more stably achieve the simultaneous suppression of warpage and suppression of occurrence of line traces.
 上記の発明(発明1~3)において、前記熱可塑性樹脂Aは、単量体単位としてエチレンを60質量%以上100質量%以下含有することが好ましい(発明4)。この場合には、上記の熱可塑性樹脂Aに求められる条件を満たすことが容易となる。 In the above inventions (Inventions 1 to 3), the thermoplastic resin A preferably contains 60% by mass or more and 100% by mass or less of ethylene as a monomer unit (Invention 4). In this case, it becomes easy to satisfy the conditions required for the thermoplastic resin A.
 上記の発明(発明1~4)において、前記熱可塑性樹脂Bの融解ピーク温度が95℃以上であることが好ましい(発明5)。この場合には、上記の熱可塑性樹脂組成物に求められる条件を満たすことが容易となる。 In the above inventions (Inventions 1 to 4), the melting peak temperature of the thermoplastic resin B is preferably 95 ° C. or higher (Invention 5). In this case, it becomes easy to satisfy the conditions required for the thermoplastic resin composition.
 上記の発明(発明1~5)において、前記熱可塑性樹脂組成物は着色材料を含有してもよい(発明6)。この場合には、タブ線などを隠ぺいすることが容易となる。 In the above inventions (Inventions 1 to 5), the thermoplastic resin composition may contain a coloring material (Invention 6). In this case, it is easy to hide the tab lines and the like.
 上記の発明(発明1~6)において、前記熱可塑性樹脂層は、前記熱可塑性樹脂組成物が押出コーティングにより前記基材の一方の面に積層されたものであることが好ましい。(発明7)。この場合には、熱可塑性樹脂層と基材との接着力が高まり、これらが剥離する可能性を低減させることできる。 In the above inventions (Inventions 1 to 6), the thermoplastic resin layer is preferably formed by laminating the thermoplastic resin composition on one surface of the substrate by extrusion coating. (Invention 7). In this case, the adhesive force between the thermoplastic resin layer and the base material is increased, and the possibility that they peel off can be reduced.
 上記の発明(発明1~7)において、前記熱可塑性樹脂層と前記基材との間に、これらに対する接着性を有する接着性組成物からなる介在層を備えてもよい(発明8)。この場合も、熱可塑性樹脂層と基材との接着力が高まり、これらが剥離する可能性を低減させることできる。 In the above inventions (Inventions 1 to 7), an intervening layer made of an adhesive composition having adhesion to the thermoplastic resin layer and the substrate may be provided (Invention 8). Also in this case, the adhesive force between the thermoplastic resin layer and the base material is increased, and the possibility that they peel off can be reduced.
 上記の発明(発明8)において、前記接着性組成物は、エチレンと、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルからなる群から選ばれる少なくとも1種との共重合体を主成分とすることが好ましい(発明9)。これらの共重合体は基材および熱可塑性樹脂層に対して接着性を有するため、介在層として好適である。 In the above invention (Invention 8), the adhesive composition mainly comprises a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate. It is preferable to use as a component (Invention 9). Since these copolymers have adhesiveness to the base material and the thermoplastic resin layer, they are suitable as an intervening layer.
 上記の発明(発明8,9)において、前記熱可塑性樹脂層および前記介在層は、前記熱可塑性樹脂組成物と前記接着性組成物とが前記基材に対して共押出コーティングされることにより形成されたものであることが好ましい(発明10)。この場合には、介在層の熱可塑性樹脂層に対する接着力を特に高めることができ、基材と熱可塑性樹脂層とが剥離する可能性をさらに低減することができる。 In the above inventions (Inventions 8 and 9), the thermoplastic resin layer and the intervening layer are formed by coextrusion coating of the thermoplastic resin composition and the adhesive composition on the substrate. It is preferable that it is made (Invention 10). In this case, the adhesive force of the intervening layer to the thermoplastic resin layer can be particularly increased, and the possibility that the base material and the thermoplastic resin layer are peeled can be further reduced.
 上記の発明(発明1~10)において、前記熱可塑性樹脂層は、太陽電池モジュールを構成する封止材と接着される層であってもよい(発明11)。熱可塑性樹脂層は封止材との接着性に優れるため、太陽電池用保護シートは封止材から剥離しにくい。 In the above inventions (Inventions 1 to 10), the thermoplastic resin layer may be a layer bonded to a sealing material constituting the solar cell module (Invention 11). Since the thermoplastic resin layer is excellent in adhesiveness with the sealing material, the protective sheet for solar cell is difficult to peel from the sealing material.
 本発明は、第3に、基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートの製造方法であって、上記の発明(発明1から6)のいずれかに係る熱可塑性樹脂組成物を、前記基材の少なくとも一方の面に押出コーティングして、前記熱可塑性樹脂層を形成することを特徴とする太陽電池用保護シートの製造方法を提供する(発明12)。 Thirdly, the present invention is a method for producing a protective sheet for a solar cell comprising a base material and a thermoplastic resin layer laminated on at least one surface of the base material. To 6), a method for producing a protective sheet for a solar cell, wherein the thermoplastic resin layer is formed by extrusion-coating the thermoplastic resin composition according to any one of 6 to 6 on at least one surface of the substrate. (Invention 12).
 押出コーティングにて熱可塑性樹脂層を形成することにより熱可塑性樹脂層と基材との接着力が高まるため、これらが剥離する可能性を低減させることできる。 Since the adhesive force between the thermoplastic resin layer and the substrate is increased by forming the thermoplastic resin layer by extrusion coating, it is possible to reduce the possibility of these peeling.
 本発明は、第4に、基材と、熱可塑性樹脂層と、前記基材および前記熱可塑性樹脂層に対する接着性を有する接着性組成物からなり前記基材の一方の面および前記可塑性樹脂層の一方の面の間に積層された介在層とを備えた太陽電池用保護シートの製造方法であって、上記の発明(発明1~6)のいずれかに係る熱可塑性樹脂組成物と、前記接着性組成物とを、前記基材の少なくとも一方の面に共押出コーティングして、前記介在層および前記熱可塑性樹脂層を形成することを特徴とする太陽電池用保護シートの製造方法を提供する(発明13)。 Fourthly, the present invention comprises a base material, a thermoplastic resin layer, an adhesive composition having adhesiveness to the base material and the thermoplastic resin layer, and one surface of the base material and the plastic resin layer. A protective sheet for a solar cell comprising an intervening layer laminated between one surface of the thermoplastic resin composition according to any one of the inventions (Inventions 1 to 6), Provided is a method for producing a protective sheet for a solar cell, which comprises coextruding an adhesive composition on at least one surface of the substrate to form the intervening layer and the thermoplastic resin layer. (Invention 13).
 押出コーティングにて介在層および熱可塑性樹脂層を形成することにより、介在層と熱可塑性樹脂層との接着力および熱可塑性樹脂層と基材との接着力が高まるため、これらが剥離する可能性を低減させることできる。 By forming the intervening layer and the thermoplastic resin layer by extrusion coating, the adhesive force between the intervening layer and the thermoplastic resin layer and the adhesive force between the thermoplastic resin layer and the base material are increased, so that they may peel off. Can be reduced.
 上記発明(発明13)において、前記接着性組成物は、エチレンと、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルからなる群から選ばれる少なくとも1種との共重合体を主成分とすることが好ましい(発明14)。これらの共重合体は基材および熱可塑性樹脂層に対して接着性を有するため、介在層として好適である。 In the above invention (Invention 13), the adhesive composition is mainly composed of a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate. (Invention 14) Since these copolymers have adhesiveness to the base material and the thermoplastic resin layer, they are suitable as an intervening layer.
 本発明は、第5に、複数の太陽電池セル、前記複数の太陽電池セル間を電気的に接続する電気配線、これらの前記複数の太陽電池セルおよび少なくとも一つの前記電気配線を包容する封止材、ならびに封止材の主面のそれぞれに積層される二つの保護部材を備える太陽電池モジュールであって、前記保護部材の少なくとも一方は上記の発明(発明1~10)のいずれかに係る太陽電池用保護シートからなり、前記太陽電池用保護シートが備える前記熱可塑性樹脂層は前記封止材の一部または全部をなすことを特徴とする太陽電池モジュールを提供する(発明15)。 Fifth, the present invention provides a plurality of solar cells, electrical wiring for electrically connecting the plurality of solar cells, and sealing that encloses the plurality of solar cells and at least one of the electrical wirings. And a solar cell module comprising two protective members stacked on each of the main surfaces of the sealing material, wherein at least one of the protective members is a solar cell according to any one of the above inventions (Inventions 1 to 10) Provided is a solar cell module comprising a battery protective sheet, wherein the thermoplastic resin layer provided in the solar cell protective sheet forms part or all of the sealing material (Invention 15).
 上記の発明(発明1~10)のいずれかに係る太陽電池用保護シートは封止材などに対して優れた接着性を有するため、かかる太陽電池用保護シートを備える太陽電池モジュールは、線跡顕在化が生じにくいという太陽電池用保護シートに基づく効果を有するとともに、品質の経時変化が生じにくい。 Since the solar cell protective sheet according to any one of the inventions (Inventions 1 to 10) has excellent adhesion to a sealing material or the like, a solar cell module provided with such a solar cell protective sheet is While having the effect based on the protective sheet for solar cells that hardly manifests, it is difficult to cause a change in quality over time.
 本発明に係る太陽電池用保護シートは、熱可塑性樹脂層の密度が低いためカール量が小さい。それゆえ、太陽電池モジュールに生じる反りが抑制されている。しかも、シートの一方側の主面をなす熱可塑性樹脂が、密度が比較的低いにも関わらず融解ピーク温度が高いおよび/または高温での貯蔵弾性率が高いため、本発明に係る太陽電池用保護シートをフロントシートおよび/またはバックシートとして用いてなる太陽電池モジュールは高温環境下に放置されても、線跡顕在化が生じにくい。 The solar cell protective sheet according to the present invention has a small curl amount because the density of the thermoplastic resin layer is low. Therefore, warpage occurring in the solar cell module is suppressed. In addition, the thermoplastic resin forming the main surface on one side of the sheet has a high melting peak temperature and / or a high storage elastic modulus at a high temperature although the density is relatively low. Even if a solar cell module using the protective sheet as a front sheet and / or a back sheet is left in a high-temperature environment, it is difficult for line traces to appear.
本発明の一実施形態に係る太陽電池用保護シートの概略断面図である。It is a schematic sectional drawing of the protection sheet for solar cells which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る、介在層を備える太陽電池用保護シートの概略断面図である。It is a schematic sectional drawing of the protection sheet for solar cells provided with the intervening layer based on other embodiment of this invention. 本発明の他の実施形態に係る、フッ素樹脂層を備える太陽電池用保護シートの概略断面図である。It is a schematic sectional drawing of the protection sheet for solar cells provided with the fluororesin layer based on other embodiment of this invention. 本発明の他の実施形態に係る、蒸着層を備える太陽電池用保護シートの概略断面図である。It is a schematic sectional drawing of the protection sheet for solar cells provided with a vapor deposition layer based on other embodiment of this invention. 本発明の他の実施形態に係る、接着層および金属シートを備える太陽電池用保護シートの概略断面図である。It is a schematic sectional drawing of the protection sheet for solar cells provided with the contact bonding layer and metal sheet based on other embodiment of this invention. 本発明の一実施形態に係る太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る、フロントシートおよびバックシートが本実施形態に係る太陽電池用保護シートからなる太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module which the front seat and back seat | sheet concerning other embodiment of this invention consist of the protection sheet for solar cells which concerns on this embodiment.
 以下、本発明の実施形態について説明する。
1.太陽電池用保護シート
 図1に示すように、本実施形態に係る太陽電池用保護シート1は、基材11と、基材11の一方の面(図1中では上面)に積層された熱可塑性樹脂層12とを備えている。この太陽電池用保護シート1は、一具体例において、熱可塑性樹脂層12が封止材への熱融着性層として機能し、太陽電池モジュールの表面保護シート(フロントシート)または裏面保護シート(バックシート)として用いられるものである。また、別の一具体例において、太陽電池用保護シート1は熱可塑性樹脂層12が実質的に封止材の機能も有し、封止材とフロントシートとの一体化シートまたは封止材とバックシートとの一体化シートとして用いられるものである。以下、太陽電池用保護シート1がフロントシートまたはバックシートとして用いられる場合について主として説明し、熱可塑性樹脂層12が実質的に封止材の機能も有する場合についても適宜説明する。
Hereinafter, embodiments of the present invention will be described.
1. Protective sheet for solar cell As shown in FIG. 1, a protective sheet 1 for a solar cell according to the present embodiment is a thermoplastic layered on a base material 11 and one surface (upper surface in FIG. 1) of the base material 11. And a resin layer 12. In one specific example, the solar cell protective sheet 1 has a thermoplastic resin layer 12 functioning as a heat-fusible layer to a sealing material, and a solar cell module surface protective sheet (front sheet) or back surface protective sheet ( Back sheet). In another specific example, in the solar cell protective sheet 1, the thermoplastic resin layer 12 substantially has a function of a sealing material, and is an integrated sheet of a sealing material and a front sheet or a sealing material. It is used as an integrated sheet with a back sheet. Hereinafter, a case where the solar cell protective sheet 1 is used as a front sheet or a back sheet will be mainly described, and a case where the thermoplastic resin layer 12 also substantially has a function of a sealing material will be described as appropriate.
(1)基材
 基材11としては、電気絶縁性を有し、かつ熱可塑性樹脂層12が積層可能なものであればよく、通常は、樹脂フィルムを主体とするものが用いられる。
(1) Base Material The base material 11 may be any material as long as it has electrical insulation and can be laminated with the thermoplastic resin layer 12, and a material mainly composed of a resin film is usually used.
 基材11に用いられる樹脂フィルムとしては、一般に太陽電池モジュール用バックシートにおける樹脂フィルムとして用いられているものが選択される。このような樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル系樹脂、ナイロン(商品名)などのポリアミド系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリアクリロニトリル系樹脂、ポリ塩化ビニル系樹脂、ポリビニルアセタール系樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂などの樹脂からなるフィルムが用いられる。これらの樹脂フィルムのなかでも、ポリエステル系樹脂からなるフィルムが好ましく、特にPETフィルムが好ましい。 As the resin film used for the substrate 11, a resin film generally used as a resin film in a solar cell module back sheet is selected. Examples of such resin films include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyamide resins such as nylon (trade name), polycarbonate resins, and polystyrene. A film made of a resin such as a resin, a polyacrylonitrile resin, a polyvinyl chloride resin, a polyvinyl acetal resin, a polyphenylene sulfide resin, or a polyphenylene ether resin is used. Among these resin films, a film made of a polyester resin is preferable, and a PET film is particularly preferable.
 なお、上記樹脂フィルムは、必要に応じて、顔料、紫外線吸収剤、紫外線安定剤、難燃剤、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤等の各種添加剤を含んでいてもよい。顔料としては、例えば、二酸化チタン、カーボンブラック等が挙げられる。また、紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、蓚酸アニリド系、シアノアクリレート系、トリアジン系等が挙げられる。 In addition, the said resin film may contain various additives, such as a pigment, a ultraviolet absorber, a ultraviolet stabilizer, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and an antiblocking agent, as needed. Examples of the pigment include titanium dioxide and carbon black. Examples of the ultraviolet absorber include benzophenone series, benzotriazole series, oxalic acid anilide series, cyanoacrylate series, and triazine series.
 ここで、本実施形態に係る太陽電池用保護シート1を太陽電池モジュールのバックシートとして使用する場合には、樹脂フィルムは、可視光を反射させる顔料を含有することが好ましい。また、本実施形態に係る太陽電池用保護シート1を太陽電池モジュールのフロントシートとして使用する場合は、可視光領域の光の透過率を低下させる顔料を含有しないことが好ましく、耐候性の向上を目的として紫外線吸収剤を含有することがより好ましい。 Here, when the solar cell protective sheet 1 according to this embodiment is used as a back sheet of a solar cell module, the resin film preferably contains a pigment that reflects visible light. Moreover, when using the solar cell protective sheet 1 according to the present embodiment as a front sheet of a solar cell module, it is preferable not to contain a pigment that reduces the light transmittance in the visible light region, thereby improving the weather resistance. It is more preferable to contain an ultraviolet absorber for the purpose.
 樹脂フィルムの熱可塑性樹脂層12が積層される側の面には、熱可塑性樹脂層12との密着性を向上させるために、コロナ処理、プラズマ処理、プライマー処理等の表面処理を易接着処理として施すことが好ましい。 In order to improve the adhesion to the thermoplastic resin layer 12 on the surface of the resin film on which the thermoplastic resin layer 12 is laminated, surface treatment such as corona treatment, plasma treatment, primer treatment, etc. is used as an easy adhesion treatment. It is preferable to apply.
 基材11の厚さは、太陽電池モジュールに要求される電気絶縁性に基づいて適宜設定される。例えば、基材11が樹脂フィルムである場合、その厚さは10μm以上300μm以下であることが好ましい。より具体的に説明すれば、基材11がPETフィルムである場合には、電気絶縁性および軽量化の観点から、その厚さは10μm以上300μm以下であることが好ましく、20μm以上250μm以下であることがより好ましく、30μm以上200μm以下であることが特に好ましい。 The thickness of the substrate 11 is appropriately set based on the electrical insulation required for the solar cell module. For example, when the substrate 11 is a resin film, the thickness is preferably 10 μm or more and 300 μm or less. More specifically, when the substrate 11 is a PET film, the thickness is preferably 10 μm or more and 300 μm or less, and 20 μm or more and 250 μm or less from the viewpoint of electrical insulation and weight reduction. It is more preferable that it is 30 μm or more and 200 μm or less.
(2)熱可塑性樹脂層
 本実施形態における熱可塑性樹脂層12は、その一具体例において、封止材に対して接着することによって、基材11を含む太陽電池用保護シート1を太陽電池モジュールに固定するためのものである。別の一具体例において、熱可塑性樹脂層12は実質的に封止材の機能を有し、太陽電池セルなどを包容してこれらを保護しつつ、他の封止材、他の保護シートにおける熱融着性層、他の保護シートの基材などに対して接着するためのものである。
(2) Thermoplastic resin layer In one specific example, the thermoplastic resin layer 12 in the present embodiment is bonded to a sealing material, whereby the solar cell protective sheet 1 including the substrate 11 is solar cell module. It is for fixing to. In another specific example, the thermoplastic resin layer 12 substantially has a function of a sealing material, and encloses solar cells and the like to protect them, while in other sealing materials and other protective sheets. It is for adhering to a heat-fusible layer, a base material of another protective sheet, or the like.
i)熱可塑性樹脂組成物
 本実施形態における熱可塑性樹脂層12は熱可塑性樹脂組成物から構成され、この熱可塑性樹脂組成物は熱可塑性樹脂Aおよび熱可塑性樹脂B(これらの樹脂についての詳細は後述する。)を含む。
 本実施形態に係る熱可塑性樹脂組成物は、密度が875kg/m以上920kg/m以下である。なお、密度は、JIS K7112に準じて測定して得られる値とする。また、この熱可塑性樹脂組成物は、融解ピーク温度が95℃以上であることおよび80℃における貯蔵弾性率が3MPa以上であることの少なくとも一方、好ましくは双方を満たす。なお、融解ピーク温度は示差走査熱量計により測定することができ、貯蔵弾性率は動的粘弾性測定装置により測定することができる。
i) Thermoplastic Resin Composition The thermoplastic resin layer 12 in the present embodiment is composed of a thermoplastic resin composition, and this thermoplastic resin composition is composed of a thermoplastic resin A and a thermoplastic resin B (details of these resins are described in detail). Will be described later).
The thermoplastic resin composition according to this embodiment has a density of 875 kg / m 3 or more and 920 kg / m 3 or less. The density is a value obtained by measurement according to JIS K7112. The thermoplastic resin composition satisfies at least one of the melting peak temperature of 95 ° C. or higher and the storage elastic modulus at 80 ° C. of 3 MPa or higher, preferably both. The melting peak temperature can be measured with a differential scanning calorimeter, and the storage elastic modulus can be measured with a dynamic viscoelasticity measuring device.
 熱可塑性樹脂組成物の密度が920kg/m以下であることにより、この熱可塑性樹脂組成物から得られる熱可塑性樹脂層12を備える太陽電池用保護シート1は、押出コーティングにより製造されてもカール量が少なくなるため、かかるシートを備える太陽電池モジュールの反りが抑制される。具体的には、太陽電池用保護シート1を300mm×300mmの正方形に切り出して水平なテーブルに載置した際、垂直方向へのカール量が20mm以下であると、太陽電池モジュールの反りを抑制することができるが、本実施形態に係る太陽電池用保護シート1は、基材11と熱可塑性樹脂層12とから構成される場合であっても、当該カール量を20mm以下に抑えることができる。 When the density of the thermoplastic resin composition is 920 kg / m 3 or less, the solar cell protective sheet 1 provided with the thermoplastic resin layer 12 obtained from this thermoplastic resin composition can be curled even if manufactured by extrusion coating. Since the amount is reduced, the warpage of the solar cell module including such a sheet is suppressed. Specifically, when the solar cell protective sheet 1 is cut into a 300 mm × 300 mm square and placed on a horizontal table, the warpage of the solar cell module is suppressed when the vertical curl amount is 20 mm or less. Although it is possible, the solar cell protective sheet 1 according to this embodiment can suppress the curl amount to 20 mm or less even when the solar cell protective sheet 1 includes the base material 11 and the thermoplastic resin layer 12.
 一方、熱可塑性樹脂組成物の密度が875kg/m以上であることにより、太陽電池用保護シート1を巻取体としたときに発生する不具合が発生しにくくなる。具体的には、熱可塑性樹脂層12にタックが生じて太陽電池用保護シート1を巻き取ったときにブロッキングが発生し、繰り出した太陽電池用保護シート1にブロッキング跡が付いたり、巻き取った太陽電池用保護シート1を繰り出すことができなくなったりすることが抑制される。また、熱可塑性樹脂組成物の密度が875kg/m以上であることにより、熱可塑性樹脂組成物の80℃における貯蔵弾性率を3MPa以上とすること(詳細は後述。)が容易となる。 On the other hand, when the density of the thermoplastic resin composition is 875 kg / m 3 or more, problems that occur when the solar cell protective sheet 1 is a wound body are less likely to occur. Specifically, when the thermoplastic resin layer 12 is tucked and the solar cell protective sheet 1 is wound up, blocking occurs, and the solar cell protective sheet 1 fed out has a blocking mark or is wound up. It is suppressed that the protective sheet 1 for solar cells cannot be paid out. Moreover, when the density of a thermoplastic resin composition is 875 kg / m < 3 > or more, it becomes easy to make the storage elastic modulus in 80 degreeC of a thermoplastic resin composition into 3 MPa or more (it mentions later for details).
 上記の反りの発生と巻取り時の不具合発生とをより安定的に抑制する観点から、熱可塑性樹脂組成物の密度は875kg/m以上920kg/m以下であることが好ましく、880kg/m以上910kg/m以下であることが特に好ましい。 From the viewpoint of more stably suppressing the occurrence of warpage and the occurrence of problems during winding, the density of the thermoplastic resin composition is preferably 875 kg / m 3 or more and 920 kg / m 3 or less, and 880 kg / m 3. and particularly preferably 3 or more 910 kg / m 3 or less.
 熱可塑性樹脂組成物は、後述するように熱可塑性樹脂AおよびBが相溶するため、融解ピーク温度は一つとなる。本実施形態において「熱可塑性樹脂AおよびBが相溶する」とは、熱可塑性樹脂Aと熱可塑性樹脂Bとを混合させてなる樹脂組成物を示差走査熱量計により測定して得られる融解ピーク温度が実質的にシングルピークとなることを意味する。 In the thermoplastic resin composition, since the thermoplastic resins A and B are compatible as described later, the melting peak temperature becomes one. In this embodiment, “the thermoplastic resins A and B are compatible” means a melting peak obtained by measuring a resin composition obtained by mixing the thermoplastic resin A and the thermoplastic resin B with a differential scanning calorimeter. It means that the temperature is substantially a single peak.
 この融解ピーク温度が95℃以上である場合には、熱可塑性樹脂組成物中の熱可塑性樹脂Bの含有量が適切な範囲となる。このため、熱可塑性樹脂Bに基づいて、高温条件で耐熱性評価試験が行われても熱可塑性樹脂層12の過大な変形が抑制される。それゆえ、かかる特性を有する熱可塑性樹脂組成物からなる熱可塑性樹脂層を備える太陽電池用保護シート1を構成要素として含む太陽電池モジュールは、高温条件での耐熱性評価試験が行われても線跡顕在化が発生しにくい。線跡顕在化の発生を安定的に抑制する観点から、熱可塑性樹脂組成物の融解ピーク温度は100℃以上であることが好ましく、105℃以上であればさらに好ましい。 When the melting peak temperature is 95 ° C. or higher, the content of the thermoplastic resin B in the thermoplastic resin composition is in an appropriate range. For this reason, excessive deformation of the thermoplastic resin layer 12 is suppressed even if a heat resistance evaluation test is performed under a high temperature condition based on the thermoplastic resin B. Therefore, a solar cell module including the protective sheet 1 for a solar cell provided with a thermoplastic resin layer made of a thermoplastic resin composition having such characteristics as a constituent element is not subjected to a heat resistance evaluation test under a high temperature condition. Traces are unlikely to occur. From the viewpoint of stably suppressing the occurrence of line traces, the melting peak temperature of the thermoplastic resin composition is preferably 100 ° C or higher, and more preferably 105 ° C or higher.
 融解ピーク温度の上限は特に限定されないが、上記のように熱可塑性樹脂組成物の密度に上限が設定されているため、140℃以上となることは現実には困難である。 The upper limit of the melting peak temperature is not particularly limited, but since the upper limit is set for the density of the thermoplastic resin composition as described above, it is actually difficult to reach 140 ° C. or higher.
 熱可塑性樹脂組成物の80℃における貯蔵弾性率が3MPa以上である場合には、高温条件で耐熱性評価試験が行われても熱可塑性樹脂層12がタブ線の周辺で過度に変形することが抑制される。このため、太陽電池モジュールにおいて線跡顕在化を発生させにくい太陽電池用保護シート1が得られる。線跡顕在化の発生をさらに安定的に抑制する観点から、熱可塑性樹脂組成物の80℃における貯蔵弾性率は3MPa以上であることが好ましく、5MPa以上であることが更に好ましく、10MPa以上が特に好ましい。 When the storage elastic modulus at 80 ° C. of the thermoplastic resin composition is 3 MPa or more, the thermoplastic resin layer 12 may be excessively deformed around the tab wire even if a heat resistance evaluation test is performed under high temperature conditions. It is suppressed. For this reason, the solar cell protective sheet 1 that hardly causes line traces in the solar cell module is obtained. From the viewpoint of further stably suppressing the occurrence of line traces, the storage elastic modulus at 80 ° C. of the thermoplastic resin composition is preferably 3 MPa or more, more preferably 5 MPa or more, and particularly preferably 10 MPa or more. preferable.
 80℃における貯蔵弾性率の上限は特に限定されないが、上記のように熱可塑性樹脂組成物の密度に上限が設定されているため、50MPa以上となることは現実には困難である。 The upper limit of the storage elastic modulus at 80 ° C. is not particularly limited, but since the upper limit is set for the density of the thermoplastic resin composition as described above, it is actually difficult to be 50 MPa or more.
 熱可塑性樹脂組成物における上記の融解ピーク温度の条件と80℃における貯蔵弾性率の条件とは、どちらか一方を満たせば、太陽電池モジュールにおける線跡顕在化の発生を抑制するという効果を得ることができるが、双方を満たせば、線跡顕在化の発生をより安定的に抑制することができ、好ましい。 Obtaining the effect of suppressing the occurrence of line traces in the solar cell module if either the above melting peak temperature condition or the storage elastic modulus condition at 80 ° C. in the thermoplastic resin composition is satisfied. However, it is preferable to satisfy both of the conditions because the occurrence of line traces can be more stably suppressed.
 また、熱可塑性樹脂組成物に含有される熱可塑性樹脂AおよびBの配合比率は、熱可塑性樹脂組成物が上記の密度に関する条件、ならびに融解ピーク温度および/または80℃における貯蔵弾性率に関する条件を満たす限り、特に限定されない。上記の条件と熱可塑性樹脂AおよびBの組成とに基づき、この配合比率の範囲は決定されるべきものであって、熱可塑性樹脂組成物において熱可塑性樹脂Aの含有量は熱可塑性樹脂Bの含有量と同等以上となる場合が多い。そのような場合における熱可塑性樹脂Aに対する熱可塑性樹脂Bの配合比(質量比率)の一例を挙げれば、0.05~1.0の範囲である。 Further, the blending ratio of the thermoplastic resins A and B contained in the thermoplastic resin composition is such that the thermoplastic resin composition satisfies the conditions regarding the above density, and the melting peak temperature and / or the storage elastic modulus at 80 ° C. As long as it is satisfied, there is no particular limitation. Based on the above conditions and the compositions of the thermoplastic resins A and B, the range of this blending ratio should be determined, and the content of the thermoplastic resin A in the thermoplastic resin composition is that of the thermoplastic resin B. In many cases, it is equal to or more than the content. An example of the blending ratio (mass ratio) of the thermoplastic resin B to the thermoplastic resin A in such a case is in the range of 0.05 to 1.0.
 本実施形態における熱可塑性樹脂層12は、単層であっても太陽電池用保護シート1を備える太陽電池モジュールにおける反りの発生を抑えることができるため、材料コストおよび製造コストの面からも単層であることが好ましい。 Even if the thermoplastic resin layer 12 in this embodiment is a single layer, since it can suppress generation | occurrence | production of curvature in a solar cell module provided with the protection sheet 1 for solar cells, it is a single layer also from the surface of material cost and manufacturing cost. It is preferable that
 熱可塑性樹脂層12を構成する熱可塑性樹脂組成物は、後述する熱可塑性樹脂AおよびBに加えて、必要に応じて、二酸化チタンなどの着色材料、シリカ粒子などのブロッキング防止剤、ベンゾフェノンなどの紫外線吸収剤、紫外線安定剤、難燃剤、可塑剤、帯電防止剤、滑剤等の各種添加剤を含んでいてもよい。 In addition to the thermoplastic resins A and B described later, the thermoplastic resin composition constituting the thermoplastic resin layer 12 includes, as necessary, a coloring material such as titanium dioxide, an antiblocking agent such as silica particles, and a benzophenone. Various additives such as an ultraviolet absorber, an ultraviolet stabilizer, a flame retardant, a plasticizer, an antistatic agent and a lubricant may be contained.
 熱可塑性樹脂層12の厚さは、被着体に対して所望の接着性を発揮するとともに、本発明の効果を損なわない限り特に制限されない。具体的には、熱融着性層として使用する場合における熱可塑性樹脂層12の厚さは、1μm以上200μm以下であることが好ましく、電気絶縁性および軽量化などの観点から、10μm以上180μm以下であることがより好ましく、50μm以上150μm以下であることがさらに好ましく、80μm以上120μm以下であることが特に好ましい。熱可塑性樹脂層12を封止材としても使用する場合には、その厚さは最大1mm程度になってもよい。 The thickness of the thermoplastic resin layer 12 is not particularly limited as long as it exhibits desired adhesion to the adherend and does not impair the effects of the present invention. Specifically, the thickness of the thermoplastic resin layer 12 when used as a heat-fusible layer is preferably 1 μm or more and 200 μm or less, and 10 μm or more and 180 μm or less from the viewpoint of electrical insulation and weight reduction. Is more preferably 50 μm or more and 150 μm or less, and particularly preferably 80 μm or more and 120 μm or less. When the thermoplastic resin layer 12 is also used as a sealing material, the thickness may be about 1 mm at the maximum.
ii)熱可塑性樹脂A
 熱可塑性樹脂組成物が含有する熱可塑性樹脂Aは、密度が920kg/m未満のオレフィン系樹脂である。
ii) Thermoplastic resin A
The thermoplastic resin A contained in the thermoplastic resin composition is an olefin resin having a density of less than 920 kg / m 3 .
 熱可塑性樹脂Aの密度が過度に高い場合には太陽電池用保護シート1を備える太陽電池モジュールに反りが発生する可能性が高まる。上記の反りをより安定的に抑制する観点から、熱可塑性樹脂Aの密度は、915kg/m以下であることが好ましく、910kg/m以下であることがより好ましい。一方、熱可塑性樹脂Aの密度が過度に低い場合には熱可塑性樹脂組成物としての密度も低くなって、前述のような巻取り時の不具合および/または線跡顕在化が発生する可能性が高まる。したがって、熱可塑性樹脂Aの密度は、875kg/m超であることが好ましく、880kg/m以上であることがより好ましい。 When the density of the thermoplastic resin A is excessively high, the possibility that the solar cell module including the solar cell protective sheet 1 is warped increases. From more stably suppressing the warpage, the density of the thermoplastic resin A is preferably at 915 kg / m 3 or less, more preferably 910 kg / m 3 or less. On the other hand, when the density of the thermoplastic resin A is excessively low, the density as the thermoplastic resin composition is also low, and there is a possibility that the above-described problems during winding and / or line traces may occur. Rise. Accordingly, the density of the thermoplastic resin A is preferably more than 875 kg / m 3, and more preferably 880 kg / m 3 or more.
 本実施形態において、オレフィン系樹脂とは、オレフィンからなる単量体から構成されるホモポリマーおよびコポリマー、ならびにオレフィンとオレフィン以外の分子とからなる単量体から構成されるコポリマーであって重合後の樹脂におけるオレフィン単位に基づく部分の質量比率が1.0質量%以上である熱可塑性樹脂を意味する。 In the present embodiment, the olefin-based resin is a homopolymer or copolymer composed of a monomer composed of olefin, and a copolymer composed of a monomer composed of an olefin and a molecule other than olefin, The thermoplastic resin whose mass ratio of the part based on the olefin unit in resin is 1.0 mass% or more is meant.
 オレフィン系樹脂である熱可塑性樹脂Aを含む熱可塑性樹脂組成物からなる熱可塑性樹脂層12は、オレフィン系樹脂の優れた熱融着作用により、太陽電池モジュールの封止材に対する接着性が高い。 The thermoplastic resin layer 12 made of a thermoplastic resin composition containing the thermoplastic resin A, which is an olefin resin, has high adhesion to the sealing material of the solar cell module due to the excellent heat-sealing action of the olefin resin.
 オレフィン系樹脂である熱可塑性樹脂Aの具体例として、ポリエチレン樹脂、ポリプロピレン樹脂(PP)、ポリエチレン-ポリプロピレン重合体、オレフィン系エラストマー(TPO)、シクロオレフィン樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-酢酸ビニル-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-アクリル酸ブチル共重合体(EBA)、エチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体などが挙げられる。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語も同様である。 Specific examples of thermoplastic resin A, which is an olefin resin, include polyethylene resin, polypropylene resin (PP), polyethylene-polypropylene polymer, olefin elastomer (TPO), cycloolefin resin, and ethylene-vinyl acetate copolymer (EVA). , Ethylene-vinyl acetate-maleic anhydride copolymer, ethylene- (meth) acrylic acid copolymer, ethylene-butyl acrylate copolymer (EBA), ethylene- (meth) acrylic acid ester-maleic anhydride copolymer Examples include coalescence. In addition, in this specification, (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
 オレフィン系樹脂である熱可塑性樹脂Aを構成する単量体はエチレンが主体であることが好ましく、具体的には、単量体単位としてエチレンを60質量%以上100質量%以下含有することが好ましい。エチレンの含有量が60質量%未満となると熱可塑性樹脂Aの密度を上記の範囲に調整することが困難となる可能性が高まるうえに、太陽電池モジュールの封止材への接着性が低下する可能性が高まる。上記の熱可塑性樹脂Aの密度範囲を満足することを容易にしたり、封止材への接着性を高めたりする観点から、エチレンの含有量は高ければ高いほど好ましく、具体的には70質量以上であることが好ましく、80質量%以上であることがさらに好ましい。熱可塑性樹脂Aを構成する単量体の全てがエチレンであってもよい。封止材を構成する材料との親和性を高める観点からエチレン以外の単量体を用いる場合には、その単量体の含有量が高いことが封止材の接着性を高める観点から好ましいが、熱可塑性樹脂Aが満たすべき上記の密度の範囲など他の条件を満足するように、その単量体の熱可塑性樹脂A中の含有量の上限は決定される。 The monomer constituting the thermoplastic resin A, which is an olefin resin, is preferably mainly composed of ethylene, and specifically, preferably contains 60% by mass to 100% by mass of ethylene as a monomer unit. . When the ethylene content is less than 60% by mass, it is difficult to adjust the density of the thermoplastic resin A within the above range, and the adhesiveness of the solar cell module to the sealing material decreases. The possibility increases. From the viewpoint of easily satisfying the density range of the thermoplastic resin A and increasing the adhesion to the sealing material, the higher the ethylene content, the more preferable, specifically 70 mass or more. It is preferable that it is 80 mass% or more. All of the monomers constituting the thermoplastic resin A may be ethylene. In the case of using a monomer other than ethylene from the viewpoint of increasing the affinity with the material constituting the encapsulant, a high content of the monomer is preferable from the viewpoint of increasing the adhesiveness of the encapsulant. The upper limit of the content of the monomer in the thermoplastic resin A is determined so as to satisfy other conditions such as the above-described density range to be satisfied by the thermoplastic resin A.
 熱可塑性樹脂Aを構成する重合体は、一種類であってもよいし、複数種類の重合体をブレンドしてなるものであってもよい。ここで、重合体の種類が異なるとは、分岐の状態(すなわち、重合体のアーキテクチャー)、分子量、重合体を構成する単量体の配合バランスおよび重合体を構成する単量体の組成ならびにこれらの組み合わせが物理特性などに大きな影響を与える程度に異なることをいう。 The polymer constituting the thermoplastic resin A may be a single type or a blend of a plurality of types of polymers. Here, the types of polymers are different from the states of branching (that is, polymer architecture), molecular weight, blending balance of monomers constituting the polymer, and composition of the monomers constituting the polymer, and It means that these combinations are different to the extent that they have a great influence on physical properties.
 分岐の状態に関し、熱可塑性樹脂Aの密度を上記の範囲にすることを安定的に満足する観点から、重合体あたりの分岐の程度は少ない方が好ましい。そのような分岐の程度の少ない重合体の好ましい一例として、メタロセン系直鎖状低密度ポリエチレンが挙げられる。かかるポリエチレンは、シングルサイト触媒であるメタロセン触媒を用いて合成されたものであって、分岐の程度が少ない直鎖状の重合体である。このため、熱可塑性樹脂Aの密度を上記の範囲とすることが容易となる。 From the viewpoint of stably satisfying that the density of the thermoplastic resin A is within the above range with respect to the branched state, it is preferable that the degree of branching per polymer is small. A preferred example of such a polymer having a low degree of branching is a metallocene linear low density polyethylene. Such polyethylene is synthesized using a metallocene catalyst, which is a single site catalyst, and is a linear polymer with a low degree of branching. For this reason, it becomes easy to make the density of the thermoplastic resin A into said range.
 前述の熱可塑性樹脂組成物が満たすべき条件、上記の熱可塑性樹脂Aの密度範囲に関する条件および後述する熱可塑性樹脂Bが満たすべき条件を満足することが容易となる観点から、熱可塑性樹脂Aに係るオレフィン系樹脂は、低密度ポリエチレン(LDPE)または超低密度ポリエチレン(VLDPE)であることが好ましく、メタロセン触媒を用いて合成された直鎖状低密度ポリエチレンであって密度が875kg/m以上920kg/m未満のものであることがさらに好ましい。 From the viewpoint of easily satisfying the conditions to be satisfied by the above-described thermoplastic resin composition, the conditions relating to the density range of the above-described thermoplastic resin A, and the conditions to be satisfied by the thermoplastic resin B described later, The olefin resin is preferably low density polyethylene (LDPE) or very low density polyethylene (VLDPE), and is a linear low density polyethylene synthesized using a metallocene catalyst and has a density of 875 kg / m 3 or more. More preferably, it is less than 920 kg / m 3 .
 熱可塑性樹脂Aは架橋構造を有していてもよい。架橋構造をもたらす架橋剤の種類は任意であり、ジクミルパーオキサイドのような有機過酸化物やエポキシ基を有する化合物が典型的である。しかしながら、熱可塑性樹脂Aの密度範囲を上記の範囲にすることを容易にする観点から、熱可塑性樹脂Aにおける架橋構造の存在密度は少ない方が好ましく、熱可塑性樹脂Aは架橋構造を実質的に有さないことがさらに好ましい。 The thermoplastic resin A may have a crosslinked structure. The kind of the crosslinking agent that brings about the crosslinked structure is arbitrary, and a compound having an organic peroxide such as dicumyl peroxide or an epoxy group is typical. However, from the viewpoint of facilitating the density range of the thermoplastic resin A to be within the above range, it is preferable that the density of the crosslinked structure in the thermoplastic resin A is small, and the thermoplastic resin A substantially has a crosslinked structure. More preferably not.
 熱可塑性樹脂Aのその他の特性は特に限定されないが、熱可塑性樹脂組成物の融解ピーク温度を95℃以上とすることを安定的に実現する観点から、熱可塑性樹脂Aの融解ピーク温度は85℃以上95℃未満とすることが好ましい。 Other characteristics of the thermoplastic resin A are not particularly limited, but from the viewpoint of stably realizing the melting peak temperature of the thermoplastic resin composition at 95 ° C. or higher, the melting peak temperature of the thermoplastic resin A is 85 ° C. It is preferable that the temperature is lower than 95 ° C.
 また、熱可塑性樹脂Aは、JIS K7210:1999に準拠した、温度230℃、荷重2.16kgfにおけるメルトフローレートの値が、1g/10min以上40g/10min以下であることが加工性等の観点から好ましい。特に、押出コーティングによる熱可塑性樹脂層12の加工を安定的に行う観点から、このメルトフローレートは2g/10min以上20g/10min以下であることが好ましい。 The thermoplastic resin A has a melt flow rate value of 1 g / 10 min or more and 40 g / 10 min or less at a temperature of 230 ° C. and a load of 2.16 kgf based on JIS K7210: 1999 from the viewpoint of workability and the like. preferable. In particular, from the viewpoint of stably processing the thermoplastic resin layer 12 by extrusion coating, the melt flow rate is preferably 2 g / 10 min or more and 20 g / 10 min or less.
iii)熱可塑性樹脂B
 熱可塑性樹脂Bは熱可塑性樹脂Aよりも高密度であって、熱可塑性樹脂Aに相溶する樹脂である。熱可塑性樹脂Bが上記の条件を満たし、熱可塑性樹脂Aと熱可塑性樹脂Bとを含む熱可塑性樹脂組成物が前述の条件を満たす限り、熱可塑性樹脂Bにおける他の構造上、物理特性上の特徴は限定されない。
iii) Thermoplastic resin B
The thermoplastic resin B has a higher density than the thermoplastic resin A and is compatible with the thermoplastic resin A. As long as the thermoplastic resin B satisfies the above-described conditions, and the thermoplastic resin composition containing the thermoplastic resin A and the thermoplastic resin B satisfies the above-described conditions, other structural and physical properties of the thermoplastic resin B Features are not limited.
 熱可塑性樹脂Bは、上記の熱可塑性樹脂Aに対する相溶性の条件を満たす観点から、熱可塑性樹脂Aと同様にオレフィン系樹脂からなることが好ましい。また、熱可塑性樹脂Aに係るオレフィン系樹脂を構成する単量体がエチレンを主体とする場合には、このエチレン主体の重合体への相溶性の観点から、熱可塑性樹脂Bを構成する単量体もエチレンが主体であることが好ましい。熱可塑性樹脂Aに係るオレフィン系樹脂が前述のメタロセン触媒を用いて合成された直鎖状低密度ポリエチレンであって密度が875kg/m以上920kg/m未満のものである場合には、熱可塑性樹脂Bは920kg/m以上970kg/m以下のポリエチレンであることが好ましく、920kg/m以上965kg/m以下のポリエチレンであることがさらに好ましい。 The thermoplastic resin B is preferably made of an olefin resin in the same manner as the thermoplastic resin A from the viewpoint of satisfying the compatibility condition with the thermoplastic resin A described above. Moreover, when the monomer which comprises the olefin resin which concerns on the thermoplastic resin A has ethylene as a main component, the single quantity which comprises the thermoplastic resin B from a compatible viewpoint to this ethylene-based polymer. The body is also preferably composed mainly of ethylene. When the olefin resin related to the thermoplastic resin A is a linear low density polyethylene synthesized using the metallocene catalyst described above and has a density of 875 kg / m 3 or more and less than 920 kg / m 3 , preferably the thermoplastic resin B is 920 kg / m 3 or more 970 kg / m 3 or less of polyethylene, more preferably a 920 kg / m 3 or more 965 kg / m 3 or less of polyethylene.
 熱可塑性樹脂Bは架橋構造を有していてもよいが、架橋構造を実質的に有さないことが好ましい熱可塑性樹脂Aに対する相溶性を高める観点から、熱可塑性樹脂Bにおける架橋構造の存在密度は少ない方が好ましく、熱可塑性樹脂Bも架橋構造を実質的に有さないことがさらに好ましい。 The thermoplastic resin B may have a crosslinked structure, but it is preferable that the thermoplastic resin B substantially does not have a crosslinked structure. From the viewpoint of increasing the compatibility with the thermoplastic resin A, the density of the crosslinked structure in the thermoplastic resin B is present. Is preferable, and it is further preferable that the thermoplastic resin B does not substantially have a crosslinked structure.
 熱可塑性樹脂Bは、熱可塑性樹脂組成物が前述の融解ピーク温度に関する条件を安定的に満たす観点から、その融解ピーク温度が95℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。熱可塑性樹脂Bの融解ピーク温度の上限は特に限定されないが、過度に高い場合には熱可塑性樹脂Bが熱可塑性樹脂Aに対して相溶性を有することが困難となるため、現実には160℃程度が上限となる。 The thermoplastic resin B preferably has a melting peak temperature of 95 ° C. or higher, more preferably 110 ° C. or higher, from the viewpoint that the thermoplastic resin composition stably satisfies the above-described conditions regarding the melting peak temperature. More preferably, the temperature is 120 ° C. or higher. The upper limit of the melting peak temperature of the thermoplastic resin B is not particularly limited, but if it is excessively high, it is difficult for the thermoplastic resin B to be compatible with the thermoplastic resin A. The degree is the upper limit.
 また、熱可塑性樹脂Bは、JIS K7210:1999に準拠した、温度230℃、荷重2.16kgfにおけるメルトフローレートの値が、0.1g/10min以上20g/10min以下であることが加工性等の観点から好ましい。特に、押出コーティングによる熱可塑性樹脂層12の加工を安定的に行う観点から、このメルトフローレートは2g/10min以上10g/10min以下であることが好ましい。 In addition, the thermoplastic resin B has a melt flow rate value of 0.1 g / 10 min or more and 20 g / 10 min or less at a temperature of 230 ° C. and a load of 2.16 kgf based on JIS K7210: 1999. It is preferable from the viewpoint. In particular, from the viewpoint of stably processing the thermoplastic resin layer 12 by extrusion coating, the melt flow rate is preferably 2 g / 10 min or more and 10 g / 10 min or less.
(3)介在層
 本発明に係る太陽電池用保護シート1は、他の一実施形態として、図2に示されるように、基材11と熱可塑性樹脂層12との間に、これらのそれぞれに対する接着性を有する接着性組成物からなる介在層12’を備えていてもよい。換言すれば、介在層12’は、基材11の一方の面および熱可塑性樹脂層12の一方の面の間に積層されている。なお、介在層は基材11と熱可塑性樹脂層12とを強固に接着させるためのものであるから、タイレイヤー(tie layer)という場合もある。
 介在層12’は、エチレンと、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルからなる群から選ばれる少なくとも1種との共重合体(以下、「共重合体F」ということがある。)を主成分とすることが好ましい。ここで、「主成分とする」とは、共重合体Fに由来する特性が介在層12’の特性にとって支配的になる程度に共重合体Fを含有していることを意味する。具体的な共重合体Fの接着性組成物中の含有量は他の成分の影響もあるため確定的に決定されないが、一例を挙げれば、共重合体Fの接着性組成物中の含有量が50質量%超であり、この含有量は高ければ高いほど好ましい。上記材料からなる介在層12’は、基材11、特に樹脂フィルムからなる基材11、さらにはPETフィルムからなる基材11に対する接着力が高い。
(3) Intervening Layer As shown in FIG. 2, the solar cell protective sheet 1 according to the present invention is provided between the base material 11 and the thermoplastic resin layer 12 as shown in FIG. An intervening layer 12 ′ made of an adhesive composition having adhesiveness may be provided. In other words, the intervening layer 12 ′ is laminated between one surface of the base material 11 and one surface of the thermoplastic resin layer 12. The intervening layer is used to firmly bond the base material 11 and the thermoplastic resin layer 12, and may be referred to as a tie layer.
The intervening layer 12 ′ is a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate (hereinafter referred to as “copolymer F”). It is preferable that the main component is. Here, “having the main component” means that the copolymer F is contained to such an extent that the characteristics derived from the copolymer F are dominant for the characteristics of the intervening layer 12 ′. The specific content of the copolymer F in the adhesive composition is not definitely determined because of the influence of other components. For example, the content of the copolymer F in the adhesive composition Is more than 50% by mass, and the higher the content, the better. The intervening layer 12 'made of the above material has a high adhesive force to the base material 11, particularly the base material 11 made of a resin film, and further to the base material 11 made of a PET film.
 また、介在層12’の主成分である共重合体Fは、常温でアモルファス(非結晶)であり、弾性を有するものである。したがって、オレフィン系樹脂を主成分とする熱可塑性樹脂層12が、加熱溶融状態から冷却したときに収縮したとしても、介在層12’によってその収縮応力を緩和することができる。そのため、熱可塑性樹脂層12および介在層12’の基材11への形成を共押出コーティングによって行ったときでも、基材11に向かって働く応力が生じ難く、したがって太陽電池用保護シート1のカール量は小さいものとなる。
 介在層12’は、上記共重合体Fを主成分とし、好ましくは、エチレンと(メタ)アクリル酸との共重合体、エチレンと(メタ)アクリル酸エステルとの共重合体、またはエチレンと酢酸ビニルとの共重合体を主成分とし、特に好ましくは、エチレンと(メタ)アクリル酸エステルとの共重合体、またはエチレンと酢酸ビニルとの共重合体を主成分とし、それら共重合体の1種を単独で、または2種以上を組み合わせて使用することができる。なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステルおよびメタクリル酸エステルの両方を意味する。他の類似用語も同様である。
The copolymer F, which is the main component of the intervening layer 12 ', is amorphous (non-crystalline) at room temperature and has elasticity. Therefore, even if the thermoplastic resin layer 12 containing an olefin resin as a main component shrinks when cooled from the heat-melted state, the shrinkage stress can be relaxed by the intervening layer 12 ′. Therefore, even when the thermoplastic resin layer 12 and the intervening layer 12 ′ are formed on the base material 11 by coextrusion coating, the stress acting on the base material 11 is not easily generated. The amount will be small.
The intervening layer 12 ′ contains the copolymer F as a main component, preferably a copolymer of ethylene and (meth) acrylic acid, a copolymer of ethylene and (meth) acrylic ester, or ethylene and acetic acid. A copolymer of vinyl as a main component, and particularly preferably, a copolymer of ethylene and (meth) acrylic acid ester or a copolymer of ethylene and vinyl acetate as a main component. Species can be used alone or in combination of two or more. In addition, in this specification, (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
 (メタ)アクリル酸エステルとしては、アルキル基の炭素数が1以上18以下である(メタ)アクリル酸アルキルエステルが好ましく、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、アクリル酸2-エチルヘキシル等が挙げられる。これらの中でも、アクリル酸メチル、アクリル酸ブチル、アクリル酸エチルヘキシルおよびメタアクリル酸メチルが好ましく、1種を単独でまたは2種以上を組み合わせて使用することができる。 The (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Examples thereof include propyl acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate and the like. Among these, methyl acrylate, butyl acrylate, ethyl hexyl acrylate, and methyl methacrylate are preferable, and one kind can be used alone, or two or more kinds can be used in combination.
 上記共重合体F中における単量体単位としての(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルの合計含有量は、3.5モル%以上15モル%以下であることが好ましく、4モル%以上14モル%以下であることがより好ましい。すなわち、エチレンと(メタ)アクリル酸との共重合体では(メタ)アクリル酸の含有量、エチレンと(メタ)アクリル酸エステルとの共重合体では(メタ)アクリル酸エステルの含有量、エチレンと酢酸ビニルとの共重合体では酢酸ビニルの含有量は、3.5モル%以上15モル%以下であることが好ましく、4モル%以上14モル%以下であることがより好ましい。 The total content of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate as monomer units in the copolymer F is preferably 3.5 mol% or more and 15 mol% or less, More preferably, it is 4 mol% or more and 14 mol% or less. That is, in the copolymer of ethylene and (meth) acrylic acid, the content of (meth) acrylic acid, in the copolymer of ethylene and (meth) acrylic acid ester, the content of (meth) acrylic acid ester, ethylene and In the copolymer with vinyl acetate, the vinyl acetate content is preferably 3.5 mol% or more and 15 mol% or less, and more preferably 4 mol% or more and 14 mol% or less.
 (メタ)アクリル酸、(メタ)アクリル酸エステルまたは酢酸ビニルの含有量が上記範囲内にあることで、前述した基材11に対する高い接着力およびカール抑制効果がより顕著なものとなる。なお、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルの含有量が3.5モル%未満の場合は、基材11および熱可塑性樹脂層12に対する接着力が低くなる場合があり、15モル%以上の場合は、十分な凝集力が得られず、太陽電池用保護シート1を巻き取ったときに、巻きずれが発生するおそれがある。 When the content of (meth) acrylic acid, (meth) acrylic acid ester or vinyl acetate is within the above range, the above-described high adhesive force and curl suppressing effect on the substrate 11 become more remarkable. In addition, when the content of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate is less than 3.5 mol%, the adhesive force to the base material 11 and the thermoplastic resin layer 12 may be low, In the case of 15 mol% or more, sufficient cohesive force cannot be obtained, and when the solar cell protective sheet 1 is wound up, there is a possibility that winding deviation occurs.
 介在層12’は、上記共重合体Fを主成分として含有していればよく、具体的には、当該共重合体Fを60質量%以上含有することが好ましく、80質量%以上含有することがさらに好ましく、90質量%以上含有することが特に好ましい。介在層12’は、当然、共重合体Fのみからなるものであってもよい。 Interposition layer 12 'should just contain the said copolymer F as a main component, Specifically, it is preferable to contain the said copolymer F 60 mass% or more, and to contain 80 mass% or more. Is more preferable, and it is particularly preferable to contain 90% by mass or more. Of course, the intervening layer 12 ′ may be composed only of the copolymer F.
 介在層12’の厚さは、基材11に対する所望の接着性および好適態様においては応力緩和性を発揮するとともに、本発明の効果を損なわない限り特に制限されない。具体的には、介在層12’の厚さは、5μm以上150μm以下であることが好ましく、10μm以上100μm以下であることがさらに好ましく、15μm以上75μm以下であることが特に好ましい。 The thickness of the intervening layer 12 ′ is not particularly limited as long as the desired adhesion to the substrate 11 and the preferred embodiment exhibit stress relaxation and do not impair the effects of the present invention. Specifically, the thickness of the intervening layer 12 ′ is preferably 5 μm or more and 150 μm or less, more preferably 10 μm or more and 100 μm or less, and particularly preferably 15 μm or more and 75 μm or less.
(4)フッ素樹脂層
 本実施形態に係る太陽電池用保護シート1は、図3に示すように、基材11における上記熱可塑性樹脂層12が積層されない側の面(図3中では下面)には、フッ素樹脂層13が設けられていてもよい。このようにフッ素樹脂層13を設けることで、太陽電池用保護シート1の耐候性が向上する。なお、基材11が樹脂フィルムからなる場合には、当該樹脂フィルムのフッ素樹脂層13が積層される側の面は、フッ素樹脂層13との接着性を向上させるために、コロナ処理、プラズマ処理、プライマー処理等の表面処理(易接着処理)が施されることが好ましい。
(4) Fluororesin Layer As shown in FIG. 3, the solar cell protective sheet 1 according to this embodiment is provided on the surface of the substrate 11 on which the thermoplastic resin layer 12 is not laminated (the lower surface in FIG. 3). The fluororesin layer 13 may be provided. By providing the fluororesin layer 13 in this manner, the weather resistance of the solar cell protective sheet 1 is improved. In addition, when the base material 11 consists of a resin film, in order to improve the adhesiveness with the fluororesin layer 13, the surface by which the fluororesin layer 13 of the said resin film is laminated | stacked has a corona treatment and a plasma treatment. It is preferable that surface treatment (easy adhesion treatment) such as primer treatment is performed.
 フッ素樹脂層13は、フッ素を含む層であれば特に制限されず、例えば、フッ素含有樹脂を有するシート(フッ素含有樹脂シート)や、フッ素含有樹脂を含む塗料を塗布してなる塗膜などによって構成される。これらの中でも、太陽電池用保護シート1の軽量化のため、フッ素樹脂層13をより薄くする観点から、フッ素含有樹脂を有する塗料を塗布してなる塗膜が好ましい。 The fluororesin layer 13 is not particularly limited as long as it contains fluorine. For example, the fluororesin layer 13 is constituted by a sheet having a fluorine-containing resin (fluorine-containing resin sheet), a coating film formed by applying a paint containing the fluorine-containing resin, or the like. Is done. Among these, from the viewpoint of making the fluororesin layer 13 thinner in order to reduce the weight of the solar cell protective sheet 1, a coating film formed by applying a paint having a fluorine-containing resin is preferable.
 フッ素含有樹脂シートとしては、例えば、ポリフッ化ビニル(PVF)、エチレンクロロトリフルオロエチレン(ECTFE)またはエチレンテトラフルオロエチレン(ETFE)を主成分とする樹脂をシート状に加工したものが用いられる。PVFを主成分とする樹脂としては、例えば、E.I.du Pont de Nemours and Company社製の「Tedlar」(商品名)が挙げられる。ECTFEを主成分とする樹脂としては、例えば、Solvay Solexis社製の「Halar」(商品名)が挙げられる。ETFEを主成分とする樹脂としては、例えば、旭硝子社製の「Fluon」(商品名)が挙げられる。 As the fluorine-containing resin sheet, for example, a sheet obtained by processing a resin mainly composed of polyvinyl fluoride (PVF), ethylene chlorotrifluoroethylene (ECTFE), or ethylene tetrafluoroethylene (ETFE) is used. Examples of the resin mainly composed of PVF include E.I. I. “Tedlar” (trade name) manufactured by du Pont de Nemours and Company. Examples of the resin mainly composed of ECTFE include “Halar” (trade name) manufactured by Solvay Solexis. Examples of the resin mainly composed of ETFE include “Fluon” (trade name) manufactured by Asahi Glass Co., Ltd.
 フッ素樹脂層13がフッ素含有樹脂シートである場合、接着性を有する層を介して、基材11にフッ素樹脂層13が積層される。接着性を有する層は、基材11およびフッ素含有樹脂シートに対して接着性を有する接着剤から構成される。かかる接着剤としては、例えば、アクリル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤、ポリエステルポリウレタン系接着剤などが用いられる。これらの接着剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 When the fluororesin layer 13 is a fluorine-containing resin sheet, the fluororesin layer 13 is laminated on the substrate 11 through an adhesive layer. The layer having adhesiveness is composed of an adhesive having adhesiveness to the substrate 11 and the fluorine-containing resin sheet. Examples of such adhesives include acrylic adhesives, polyurethane adhesives, epoxy adhesives, polyester adhesives, and polyester polyurethane adhesives. These adhesives may be used individually by 1 type, and may be used in combination of 2 or more type.
 一方、フッ素樹脂層13がフッ素含有樹脂を有する塗料を塗布してなる塗膜である場合、通常、接着性を有する層を介することなく、フッ素含有樹脂を含有した塗料を基材11に直接塗布することにより、基材11にフッ素樹脂層13が積層される。 On the other hand, when the fluororesin layer 13 is a coating film formed by applying a paint having a fluorine-containing resin, usually, the paint containing the fluorine-containing resin is directly applied to the substrate 11 without using an adhesive layer. By doing so, the fluororesin layer 13 is laminated on the substrate 11.
 フッ素含有樹脂を含有する塗料としては、溶剤に溶解または水に分散されたものであって、塗布可能なものであれば特に限定されない。 The coating material containing the fluorine-containing resin is not particularly limited as long as it is dissolved in a solvent or dispersed in water and can be applied.
 塗料に含まれるフッ素含有樹脂としては、本発明の効果を損なわず、フッ素を含有する樹脂であれば特に限定されないが、通常、塗料の溶媒(有機溶媒または水)に溶解し、架橋可能であるものが用いられる。フッ素含有樹脂としては、架橋性官能基を有するフルオロオレフィン樹脂を用いることが好ましい。架橋性官能基としては、水酸基、カルボキシル基、アミノ基、グリシジル基などが挙げられる。フルオロオレフィン樹脂としては、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、ペンタフルオロプロピレンなどが挙げられる。 The fluorine-containing resin contained in the paint is not particularly limited as long as it does not impair the effects of the present invention and contains fluorine. However, it is usually soluble in a paint solvent (organic solvent or water) and can be crosslinked. Things are used. As the fluorine-containing resin, it is preferable to use a fluoroolefin resin having a crosslinkable functional group. Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, an amino group, and a glycidyl group. Examples of the fluoroolefin resin include chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and pentafluoropropylene.
 架橋性官能基を有するフルオロオレフィン樹脂の具体例としては、旭硝子社製の「LUMIFLON」(商品名)、セントラル硝子社製の「CEFRAL COAT」(商品名)、DIC社製の「FLUONATE」(商品名)などのクロロトリフルオロエチレン(CTFE)を主成分としたポリマー類、ダイキン工業社製の「ZEFFLE」(商品名)などのテトラフルオロエチレン(TFE)を主成分としたポリマー類などが挙げられる。 Specific examples of the fluoroolefin resin having a crosslinkable functional group include “LUMIFLON” (product name) manufactured by Asahi Glass Co., Ltd., “CEFRAL COAT” (product name) manufactured by Central Glass Co., Ltd., and “FLUONATE” (product manufactured by DIC Corporation). Name) and other polymers based on chlorotrifluoroethylene (CTFE) as a main component, and polymers based on tetrafluoroethylene (TFE) such as “ZEFFLE” (trade name) manufactured by Daikin Industries, Ltd. .
 塗料は、上述したフッ素含有樹脂の他に、架橋剤、架橋触媒、溶媒等を含んでもよい。これらの含有量は塗膜の特性や厚さなどを考慮して適宜設定すればよい。 The paint may contain a crosslinking agent, a crosslinking catalyst, a solvent, and the like in addition to the above-described fluorine-containing resin. These contents may be appropriately set in consideration of the characteristics and thickness of the coating film.
 フッ素含有樹脂の塗膜は、耐候性および耐擦傷性を向上させるため、架橋剤により架橋していることが好ましい。架橋剤としては、本発明の効果を損なうものでなければ特に限定されず、金属キレート類、シラン類、イソシアネート類またはメラミン類が好適に用いられる。太陽電池用保護シート1を屋外において長期間使用することを想定した場合、耐候性の観点から、架橋剤としては、脂肪族のイソシアネート類が好ましい。 The coating film of fluorine-containing resin is preferably cross-linked with a cross-linking agent in order to improve weather resistance and scratch resistance. The crosslinking agent is not particularly limited as long as the effects of the present invention are not impaired, and metal chelates, silanes, isocyanates, or melamines are preferably used. Assuming that the solar cell protective sheet 1 is used outdoors for a long period of time, aliphatic isocyanates are preferable as the crosslinking agent from the viewpoint of weather resistance.
 塗料を基材11に塗布する方法としては、公知の方法が用いられ、例えば、バーコート法、ダイコート法、グラビアコート法等によって、得られるフッ素樹脂層13が所望の厚さになるように塗布すればよい。 As a method for applying the coating material to the substrate 11, a known method is used. For example, the coating is performed so that the obtained fluororesin layer 13 has a desired thickness by a bar coating method, a die coating method, a gravure coating method or the like. do it.
 フッ素樹脂層13の厚さは、耐候性、耐薬品性、軽量化などを考慮して設定され、5μm以上50μm以下であることが好ましく、特に10μm以上30μm以下であることが好ましい。 The thickness of the fluororesin layer 13 is set in consideration of weather resistance, chemical resistance, weight reduction, and the like, and is preferably 5 μm or more and 50 μm or less, and particularly preferably 10 μm or more and 30 μm or less.
(5)蒸着層、金属シート
 本実施形態に係る太陽電池用保護シート1は、基材11における上記熱可塑性樹脂層12が積層されない側の面には、図4に示すように、基材11とフッ素樹脂層13との間に蒸着層14が設けられてもよいし、図5に示すように、接着層15を介して金属シート16が積層されてもよいし、金属シート16の表面(図4および図5中では下面)には、上述したフッ素樹脂層13が設けられてもよい。このように蒸着層14または金属シート16を設けることで、太陽電池用保護シート1の防湿性および耐候性を向上させることができる。なお、本実施形態において「金属シート」とは、金属系材料(すなわち金属元素を含む材料)からなるシート状の部材を意味する。
(5) Vapor deposition layer, metal sheet As shown in FIG. 4, the protective sheet 1 for solar cells according to this embodiment has a base 11 on the surface of the base 11 on which the thermoplastic resin layer 12 is not laminated. A vapor deposition layer 14 may be provided between the metal sheet 16 and the fluororesin layer 13, or a metal sheet 16 may be laminated via an adhesive layer 15 as shown in FIG. The fluororesin layer 13 described above may be provided on the lower surface in FIGS. Thus, by providing the vapor deposition layer 14 or the metal sheet 16, the moisture-proof property and weather resistance of the protection sheet 1 for solar cells can be improved. In the present embodiment, the “metal sheet” means a sheet-like member made of a metal-based material (that is, a material containing a metal element).
 なお、基材11が樹脂フィルムからなる場合、当該樹脂フィルムの蒸着層14または接着層15が積層される側の面は、蒸着層14または接着層15との密着性を向上させるために、コロナ処理、プラズマ処理、プライマー処理等の表面処理が施されることが好ましい。 In addition, when the base material 11 consists of a resin film, in order to improve the adhesiveness with the vapor deposition layer 14 or the contact bonding layer 15, the surface by which the vapor deposition layer 14 or the contact bonding layer 15 of the said resin film is laminated | stacked is a corona. Surface treatment such as treatment, plasma treatment, and primer treatment is preferably performed.
 蒸着層14は、金属もしくは半金属、または金属もしくは半金属の酸化物、窒化物、珪化物などの無機材料から構成され、かかる材料から構成されることで、基材11(太陽電池用保護シート1)に防湿性(水蒸気バリア性)および耐候性を付与することができる。 The vapor deposition layer 14 is comprised from inorganic materials, such as a metal or a semimetal, or an oxide, nitride, silicide, etc. of a metal or a semimetal, By being comprised from such material, the base material 11 (protective sheet for solar cells) It is possible to impart moisture resistance (water vapor barrier property) and weather resistance to 1).
 蒸着層14を形成する蒸着方法としては、例えば、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法などの化学気相法、または真空蒸着法、スパッタリング法、イオンプレーティング法などの物理気相法が用いられる。これらの方法の中でも、操作性や層厚の制御性を考慮した場合、スパッタリング法が好ましい。 Examples of the vapor deposition method for forming the vapor deposition layer 14 include chemical vapor deposition such as plasma chemical vapor deposition, thermal chemical vapor deposition, and photochemical vapor deposition, or vacuum vapor deposition, sputtering, and ion plating. A physical vapor phase method such as a method is used. Among these methods, the sputtering method is preferable in consideration of operability and controllability of the layer thickness.
 この蒸着層14の原料となる金属としては、例えば、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトウリム(Na)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)などが挙げられる。半金属としては、例えば、ケイ素(Si)、ホウ素(B)どが挙げられる。これらの金属または半金属の酸化物、窒化物、酸窒化物としては、例えば、酸化アルミニウム、酸化スズ、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、酸窒化アルミニウムなどが挙げられる。 Examples of the metal used as the raw material of the vapor deposition layer 14 include aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium rim (Na), titanium (Ti), and lead. (Pb), zirconium (Zr), yttrium (Y) and the like. Examples of the semimetal include silicon (Si) and boron (B). Examples of these metal or metalloid oxides, nitrides, and oxynitrides include aluminum oxide, tin oxide, silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxynitride.
 蒸着層14は、一種の無機材料からなるものであっても、複数種の無機材料からなるものであってもよい。蒸着層14が複数種の無機材料からなる場合、各無機材料からなる層が順に蒸着された積層構造の蒸着層であってもよいし、複数種の無機材料が同時に蒸着された蒸着層であってもよい。 The vapor deposition layer 14 may be made of one kind of inorganic material or may be made of a plurality of kinds of inorganic materials. When the vapor deposition layer 14 is made of a plurality of types of inorganic materials, it may be a vapor deposition layer having a laminated structure in which the layers made of the respective inorganic materials are sequentially vapor deposited, or may be a vapor deposition layer in which a plurality of types of inorganic materials are vapor deposited simultaneously. May be.
 蒸着層14の厚さは、水蒸気バリア性を考慮して適宜設定され、用いる無機材料の種類や蒸着密度などによって変更される。通常、蒸着層14の厚さは、5nm以上200nm以下であることが好ましく、特に10nm以上100nm以下であることが好ましい。 The thickness of the vapor deposition layer 14 is appropriately set in consideration of the water vapor barrier property, and is changed depending on the type of inorganic material used, vapor deposition density, and the like. Usually, the thickness of the vapor deposition layer 14 is preferably 5 nm or more and 200 nm or less, and particularly preferably 10 nm or more and 100 nm or less.
 一方、金属シート16も、上記蒸着層14と同様に、基材11(太陽電池用保護シート1)に防湿性(水蒸気バリア性)および耐候性を付与することができる。金属シート16の材料としては、かかる機能を有するものであれば特に制限されず、例えば、アルミニウム、アルミニウム-鉄合金等のアルミニウム合金などの金属が挙げられる。 On the other hand, the metal sheet 16 can also impart moisture resistance (water vapor barrier property) and weather resistance to the base material 11 (protective sheet 1 for solar cells), similarly to the vapor deposition layer 14. The material of the metal sheet 16 is not particularly limited as long as it has such a function, and examples thereof include metals such as aluminum and aluminum alloys such as aluminum-iron alloys.
 金属シート16の厚さは、本発明の効果を損なわない限り特に限定されないが、ピンホール発生頻度の低さ、機械強度の強さ、水蒸気バリア性の高さ、および軽量化などの観点から、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることが特に好ましい。 The thickness of the metal sheet 16 is not particularly limited as long as the effects of the present invention are not impaired, but from the viewpoint of low pinhole occurrence frequency, high mechanical strength, high water vapor barrier properties, and weight reduction, etc. It is preferably 5 μm or more and 100 μm or less, and particularly preferably 10 μm or more and 50 μm or less.
 接着層15は、基材11および金属シート16に対して接着性を有する接着剤から構成される。接着層15を構成する接着剤としては、例えば、アクリル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤、ポリエステルポリウレタン系接着剤などが用いられる。これらの接着剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The adhesive layer 15 is composed of an adhesive having adhesiveness to the base material 11 and the metal sheet 16. As the adhesive constituting the adhesive layer 15, for example, an acrylic adhesive, a polyurethane adhesive, an epoxy adhesive, a polyester adhesive, a polyester polyurethane adhesive, or the like is used. These adhesives may be used individually by 1 type, and may be used in combination of 2 or more type.
 接着層15の厚さは、本発明の効果を損なわない限り特に限定されないが、通常は、1μm以上20μm以下であることが好ましく、3μm以上10μm以下であることが特に好ましい。 The thickness of the adhesive layer 15 is not particularly limited as long as the effects of the present invention are not impaired, but it is usually preferably 1 μm or more and 20 μm or less, and particularly preferably 3 μm or more and 10 μm or less.
 なお、以上の実施形態では、基材11の一方の面に熱可塑性樹脂層12が積層された太陽電池用保護シート1を例示したが、本発明の太陽電池用保護シートはこれに限定されず、基材11の他方の面(上記一方の面とは反対側の面)にも熱可塑性樹脂層が積層されてもよい。 In addition, in the above embodiment, although the solar cell protective sheet 1 in which the thermoplastic resin layer 12 was laminated on one surface of the base material 11 was illustrated, the solar cell protective sheet of the present invention is not limited thereto. The thermoplastic resin layer may also be laminated on the other surface of the substrate 11 (the surface opposite to the one surface).
2.太陽電池用保護シートの製造方法
 本実施形態に係る太陽電池用保護シート1(一例として図1に示す太陽電池用保護シート1)を製造するには、上記熱可塑性樹脂層12を構成する熱可塑性樹脂組成物を、基材11の少なくとも一方の面に押出コーティングして、基材11に熱可塑性樹脂層12を形成することが好ましい。このような押出コーティング法によれば、高い生産性で安価に太陽電池用保護シート1を製造することができる。また、太陽電池モジュールの封止材に対して太陽電池用保護シート1を接着するための接着剤層を別途設ける必要がないため、当該接着剤の分解等による経時劣化を防止することができる。
2. Method for Producing Solar Cell Protective Sheet To produce solar cell protective sheet 1 according to this embodiment (as an example, solar cell protective sheet 1 shown in FIG. 1), the thermoplastic resin constituting thermoplastic resin layer 12 is produced. It is preferable to form the thermoplastic resin layer 12 on the base material 11 by extrusion coating the resin composition on at least one surface of the base material 11. According to such an extrusion coating method, the protection sheet 1 for solar cells can be manufactured with high productivity and at low cost. Moreover, since it is not necessary to separately provide an adhesive layer for adhering the solar cell protective sheet 1 to the sealing material of the solar cell module, it is possible to prevent deterioration over time due to decomposition of the adhesive or the like.
 具体的には、Tダイ押出機等を使用して、熱可塑性樹脂AおよびBを含む熱可塑性樹脂組成物を溶融・混練し、基材11を一定の速度にて移動させながら、その基材11の一方の面に、溶融した熱可塑性樹脂組成物を押し出して積層することによって、基材11上に熱可塑性樹脂層12を形成し、太陽電池用保護シート1を得る。 Specifically, using a T-die extruder or the like, the thermoplastic resin composition containing the thermoplastic resins A and B is melted and kneaded, and the base material 11 is moved at a constant speed while the base material 11 is moved. The thermoplastic resin layer 12 is formed on the base material 11 by extruding and laminating the molten thermoplastic resin composition on one surface of 11 to obtain the protective sheet 1 for solar cells.
 図2に示すように、基材11の一方の面上に介在層12’および熱可塑性樹脂層12の積層体を積層するためには、まず上記の押出コーティングによって基材11の一方の面上に介在層12’を与える接着性組成物からなる層を積層して介在層12’を形成し、その基材11側と反対側の露出する面上に、上記の熱可塑性樹脂組成物を押し出して積層することによって、介在層12’上に熱可塑性樹脂層12を形成してもよい。あるいは、接着性組成物と熱可塑性樹脂組成物とを平行した2つのスリットから共に押出し(このとき、接着性組成物の吐出口の方が基材11に近位となるように配置される。)、各組成物からなる層(介在層12’および熱可塑性樹脂層12)を同時に基材11上に形成してもよい。 As shown in FIG. 2, in order to laminate the laminate of the intervening layer 12 ′ and the thermoplastic resin layer 12 on one surface of the base material 11, first, on one surface of the base material 11 by the above-described extrusion coating. A layer made of an adhesive composition that gives the intervening layer 12 ′ is laminated to form the intervening layer 12 ′, and the above thermoplastic resin composition is extruded onto the exposed surface opposite to the substrate 11 side. Thus, the thermoplastic resin layer 12 may be formed on the intervening layer 12 ′. Alternatively, the adhesive composition and the thermoplastic resin composition are extruded together from two parallel slits (at this time, the discharge port of the adhesive composition is disposed closer to the substrate 11. ) And layers (intervening layer 12 ′ and thermoplastic resin layer 12) made of each composition may be simultaneously formed on the substrate 11.
 この共押出コーティングは、一回の積層工程で太陽電池用保護シート1が得られるという製造工程上の利点に加え、共押出しされた直後は、介在層12’を与える接着性組成物と熱可塑性樹脂層12を与える熱可塑性樹脂組成物とが溶融状態で接するため、相互作用が容易に生じ、得られた介在層12’と熱可塑性樹脂層12との密着力が高まるという利点もある。また、接着性組成物の構成材料を適切に選択して介在層12’が弾性を有するものとすれば、熱可塑性樹脂層12が加熱溶融状態から冷却したときに収縮したとしても、介在層12’によってその収縮応力を緩和することができる。それゆえ、熱可塑性樹脂層12から基材11に向かって働く応力が生じ難く、カール量が小さい太陽電池用保護シート1が容易に得られるという利点もある。したがって、図2に示される構造を備える太陽電池用保護シート1を製造する場合には、共押出コーティングにより製造することが好ましい。 This co-extrusion coating has the advantage of the production process that the solar cell protective sheet 1 can be obtained in a single lamination process, and immediately after co-extrusion, the adhesive composition and the thermoplastic that give the intervening layer 12 '. Since the thermoplastic resin composition that provides the resin layer 12 is in contact with the thermoplastic resin composition in a molten state, there is an advantage that the interaction easily occurs and the adhesion between the obtained intervening layer 12 ′ and the thermoplastic resin layer 12 is increased. Further, if the constituent material of the adhesive composition is appropriately selected and the intervening layer 12 ′ has elasticity, even if the thermoplastic resin layer 12 contracts when cooled from the heated and melted state, the intervening layer 12 The shrinkage stress can be relieved by '. Therefore, there is an advantage that the protective sheet 1 for a solar cell can be easily obtained because the stress acting from the thermoplastic resin layer 12 toward the base material 11 hardly occurs and the curl amount is small. Therefore, when manufacturing the protection sheet 1 for solar cells provided with the structure shown by FIG. 2, manufacturing by coextrusion coating is preferable.
 図3から図5に示すように、基材11に他の層が形成されている場合には、基材11の当該他の層が形成されていない側の面に、熱可塑性樹脂層12および/または介在層12’を形成すればよい。 As shown in FIGS. 3 to 5, when another layer is formed on the substrate 11, the thermoplastic resin layer 12 and the surface of the substrate 11 on the side where the other layer is not formed are provided. What is necessary is just to form intervening layer 12 '.
 熱可塑性樹脂層12を構成する樹脂組成物を溶融する温度および必要に応じ用いられる介在層12’を構成する接着性組成物を溶融する温度は、これらの組成物が溶融状態にあり、かつ溶融状態にあるこれらの組成物の熱によって基材11が変形しない程度とし、80℃以上350℃以下であることが好ましく、150℃以上300℃以下であることが特に好ましい。また、樹脂組成物および/または接着性組成物が変質しやすい場合には、変質の影響を最小限にするよう、温度の上限を低下させることが好ましい。 The temperature at which the resin composition constituting the thermoplastic resin layer 12 is melted and the temperature at which the adhesive composition constituting the intervening layer 12 ′ used is melted as required are such that these compositions are in a molten state and are melted. The base material 11 is not deformed by the heat of these compositions in a state, preferably 80 ° C. or higher and 350 ° C. or lower, and particularly preferably 150 ° C. or higher and 300 ° C. or lower. In addition, when the resin composition and / or the adhesive composition is likely to be altered, it is preferable to lower the upper limit of the temperature so as to minimize the influence of the alteration.
 また、熱可塑性樹脂層12を形成する樹脂組成物のTダイ押出機からの吐出量は、目的とする熱可塑性樹脂層12の厚みや基材11の移動速度に応じて適宜調整される。 Further, the discharge amount of the resin composition forming the thermoplastic resin layer 12 from the T-die extruder is appropriately adjusted according to the desired thickness of the thermoplastic resin layer 12 and the moving speed of the substrate 11.
 基材11は、例えば、ロール・トゥ・ロール方式により一定速度にて、長手方向に搬送され、その搬送速度は、熱可塑性樹脂層12を形成する樹脂材料のTダイ押出機からの吐出量に応じて適宜調整される。 The base material 11 is transported in the longitudinal direction at a constant speed by, for example, a roll-to-roll method, and the transport speed is equal to the discharge amount of the resin material forming the thermoplastic resin layer 12 from the T-die extruder. It is adjusted accordingly.
 上記のような押出コーティング法によれば、基材11の一方の面に、Tダイ押出機から溶融した熱可塑性樹脂層12を形成する樹脂組成物を押し出して積層するだけで、基材11に熱可塑性樹脂層12を強固に接合することができ、高い生産性で太陽電池用保護シート1を製造することができる。 According to the extrusion coating method as described above, the resin composition for forming the thermoplastic resin layer 12 melted from the T-die extruder is extruded and laminated on one surface of the substrate 11. The thermoplastic resin layer 12 can be firmly bonded, and the solar cell protective sheet 1 can be manufactured with high productivity.
3.太陽電池モジュール
 図6は、本発明の一実施形態に係る太陽電池モジュールの概略断面図である。本実施形態に係る太陽電池モジュール10は、光電変換素子である結晶シリコン、アモルファスシリコン等からなる複数の太陽電池セル2と、複数の太陽電池セル2のそれぞれを電気的に接続するタブ線21(図6ではタブ線の一つに符号を付している。)と、それら太陽電池セル2およびタブ線21の少なくとも一つを封止する電気絶縁体からなる封止材3と、封止材3の表面(図6中では上面)に積層されたガラス板4と、封止材3の裏面(図6中では下面)に積層された、裏面保護シート(バックシート)としての太陽電池用保護シート1とから構成されている。なお、タブ線21は、太陽電池セル2において発生した光起電力を外部に出力するために、その一部が封止されずに外部に露出していてもよい。あるいは、タブ線21はその全部が封止されているが、一方の端子に接続された配線が封止されずに外部に露出している端子台の他方の端子に接続されていてもよい。
3. Solar Cell Module FIG. 6 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention. The solar cell module 10 according to the present embodiment includes a plurality of solar cells 2 made of crystalline silicon, amorphous silicon, or the like, which are photoelectric conversion elements, and tab wires 21 that electrically connect each of the plurality of solar cells 2 ( In FIG. 6, one of the tab wires is provided with a reference numeral.), A sealing material 3 made of an electrical insulator that seals at least one of the solar cells 2 and the tab wire 21, and a sealing material 3 for the solar cell as a back surface protection sheet (back sheet) laminated on the glass plate 4 laminated on the front surface (upper surface in FIG. 6) and the back surface (lower surface in FIG. 6) of the sealing material 3 It consists of a sheet 1. In addition, in order to output the photovoltaic power generated in the solar battery cell 2 to the outside, a part of the tab wire 21 may be exposed to the outside without being sealed. Alternatively, the tab wire 21 is entirely sealed, but the wiring connected to one terminal may be connected to the other terminal of the terminal block exposed to the outside without being sealed.
 なお、太陽電池用保護シート1は、熱可塑性樹脂層12が封止材3側となるように、封止材3に積層されており、かかる熱可塑性樹脂層12によって、封止材3に対する接着力は高いものとなっている。また、本実施形態における太陽電池用保護シート1はカール量が小さいため、得られる太陽電池モジュール10に反りが生じることは抑制されている。したがって、太陽電池モジュール10の反りに起因して、太陽電池モジュール10の設置時に不具合を生じたり、太陽電池モジュール10が破損したりすることは防止される。 In addition, the protective sheet 1 for solar cells is laminated | stacked on the sealing material 3 so that the thermoplastic resin layer 12 may become the sealing material 3 side, and it adheres with respect to the sealing material 3 by this thermoplastic resin layer 12 Power is high. Moreover, since the solar cell protective sheet 1 in the present embodiment has a small amount of curl, warping of the obtained solar cell module 10 is suppressed. Therefore, it is possible to prevent problems caused when the solar cell module 10 is installed or damage of the solar cell module 10 due to warpage of the solar cell module 10.
 封止材3の材料は、オレフィン系樹脂であることが好ましく、例えば、熱可塑性樹脂層12に含有される熱可塑性樹脂Aを構成するオレフィン系樹脂として例示したものであることが好ましい。これらの樹脂の中でも、酸素等に対するガスバリア性が高いこと、架橋が容易であること、入手のし易さ等の観点から、エチレン-酢酸ビニル共重合体(EVA)であることが特に好ましい。封止材3の材料がオレフィン系樹脂であると、オレフィン系樹脂である熱可塑性樹脂Aを含有する熱可塑性樹脂層12との親和性が大きくなり、熱可塑性樹脂層12と封止材3との接着力がより高くなる。 The material of the sealing material 3 is preferably an olefin resin, and for example, the material exemplified as the olefin resin constituting the thermoplastic resin A contained in the thermoplastic resin layer 12 is preferable. Among these resins, an ethylene-vinyl acetate copolymer (EVA) is particularly preferable from the viewpoints of high gas barrier properties against oxygen and the like, easy crosslinking, and availability. When the material of the sealing material 3 is an olefin resin, the affinity with the thermoplastic resin layer 12 containing the thermoplastic resin A, which is an olefin resin, increases, and the thermoplastic resin layer 12 and the sealing material 3 The adhesive strength of becomes higher.
 上記太陽電池モジュール10を製造する方法は特に限定されず、例えば、封止材3を構成する2枚のシートで太陽電池セル2およびタブ線21をサンドイッチし、当該シートの一方の露出面に太陽電池用保護シート1、他方の露出面にガラス板4を設置し、それらを加熱しながらプレスして一体化することにより、太陽電池モジュール10を製造することができる。このとき、太陽電池用保護シート1は、熱可塑性樹脂層12と封止材3との熱融着により、封止材3に接合されることとなる。 The method for manufacturing the solar cell module 10 is not particularly limited. For example, the solar cell 2 and the tab wire 21 are sandwiched between two sheets constituting the sealing material 3, and the solar cell module 10 is exposed to the sun on one exposed surface of the sheet. The solar cell module 10 can be manufactured by installing the glass plate 4 on the battery protective sheet 1 and the other exposed surface, and pressing and integrating them while heating. At this time, the protective sheet 1 for solar cells is joined to the sealing material 3 by thermal fusion of the thermoplastic resin layer 12 and the sealing material 3.
 なお、図7に示すように、ガラス板4に代えて、太陽電池用保護シート1を表面保護シート(フロントシート)として使用することもできる。この場合、太陽電池セルにフレキシブル基板を用いれば、フレキシブル性を有する太陽電池モジュールを得ることができる。このように、太陽電池モジュールをフレキシブル化することにより、ロール・トゥ・ロールで大量生産することが可能となる。また、フレキシブル性を有する太陽電池モジュールは、アーチ状や放物線状の壁面を有する物体にもフィットさせることができるので、ドーム状の建築物や高速道路の防音壁などに設置することが可能となる。 In addition, as shown in FIG. 7, it can replace with the glass plate 4 and can also use the protection sheet 1 for solar cells as a surface protection sheet (front sheet). In this case, if a flexible substrate is used for the solar battery cell, a solar battery module having flexibility can be obtained. Thus, by making the solar cell module flexible, it becomes possible to mass-produce by roll-to-roll. In addition, since the flexible solar cell module can be fitted to an object having an arched or parabolic wall surface, it can be installed on a dome-shaped building or a soundproof wall of a highway. .
 あるいは、太陽電池用保護シート1における熱可塑性樹脂層12が封止材の機能を有していてもよい。この場合には、太陽電池モジュール10は、複数の太陽電池セル2、複数の太陽電池セル間を電気的に接続するタブ線21、これらの複数の太陽電池セル2および少なくとも一つのタブ線21を包容する封止材3、ならびに封止材3の主面のそれぞれに積層される二つの保護部材を備える構成となる。これらの保護部材の少なくとも一方は太陽電池用保護シート1から構成され、この太陽電池用保護シート1が備える熱可塑性樹脂層12は、封止材3の一部または全部をなしている。熱可塑性樹脂層12が封止材3の一部をなしている場合には、太陽電池用保護シート1は封止材3に対して熱融着により接合される。熱可塑性樹脂層12が封止材3の全部をなしている場合には、上記の保護部材の他方に相当するガラス板4(図6の構成)または他の太陽電池用保護シート1(図7の構成)に対して熱融着により接合される。 Alternatively, the thermoplastic resin layer 12 in the solar cell protective sheet 1 may have a function of a sealing material. In this case, the solar cell module 10 includes a plurality of solar cells 2, tab wires 21 that electrically connect the plurality of solar cells, the plurality of solar cells 2, and at least one tab wire 21. The enclosing sealing material 3 and the two protective members laminated on each of the main surfaces of the encapsulating material 3 are provided. At least one of these protective members is composed of the solar cell protective sheet 1, and the thermoplastic resin layer 12 provided in the solar cell protective sheet 1 constitutes part or all of the sealing material 3. When the thermoplastic resin layer 12 forms part of the sealing material 3, the solar cell protective sheet 1 is bonded to the sealing material 3 by thermal fusion. When the thermoplastic resin layer 12 forms the entire sealing material 3, the glass plate 4 (configuration in FIG. 6) corresponding to the other of the above protective members or other solar cell protective sheet 1 (FIG. 7). The structure is joined by thermal fusion.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
 基材としてのポリエチレンテレフタレートフィルム(東レ社製ルミラーX10S、厚さ125μm)の一方の面にコロナ処理(出力2000W)を施し、Tダイ押出機(シリンダー温度:230~280℃,Tダイ温度:300℃)により、密度900kg/mのポリエチレン(プライムポリマー社製Evolue-P SP00100、融解ピーク温度92℃)からなる熱可塑性樹脂Aを70質量部、および密度940kg/mのポリエチレン(プライムポリマー社製、Evolue-H SP4005、融解ピーク温度127℃)からなる熱可塑性樹脂Bを30質量部、ならびに二酸化チタンを10質量部が混練されてなる熱可塑性樹脂組成物を、厚さ100μmとなるように上記のポリエステルフィルムのコロナ処理面に押出コーティングして熱可塑性樹脂層を形成し、図1に示す構成の太陽電池用保護シートを得た。なお、上記の密度は後述する試験例2に基づき測定したものである(以下同じ。)。
[Example 1]
One side of a polyethylene terephthalate film (Lumirror X10S manufactured by Toray Industries, Inc., thickness 125 μm) as a substrate is subjected to corona treatment (output 2000 W), and a T-die extruder (cylinder temperature: 230 to 280 ° C., T-die temperature: 300) ), 70 parts by mass of a thermoplastic resin A made of polyethylene having a density of 900 kg / m 3 (Evolue-P SP00100 made by Prime Polymer, melting peak temperature 92 ° C.), and polyethylene having a density of 940 kg / m 3 (Prime Polymer Co., Ltd.) 30 parts by mass of thermoplastic resin B made of Evolue-H SP4005, melting peak temperature of 127 ° C., and 10 parts by mass of titanium dioxide so that the thickness becomes 100 μm. Extrusion coating on the corona-treated surface of the above polyester film Ring to form a thermoplastic resin layer to obtain a protective sheet for a solar cell of the configuration shown in FIG. In addition, said density was measured based on Test Example 2 mentioned later (hereinafter the same).
〔実施例2〕
 実施例1において、熱可塑性樹脂層Aの含有量を70質量部に代えて50質量部とし、熱可塑性樹脂層Bの含有量を30質量部に代えて50質量部として熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
[Example 2]
In Example 1, the content of the thermoplastic resin layer A was changed to 50 parts by mass instead of 70 parts by mass, and the content of the thermoplastic resin layer B was changed to 50 parts by mass instead of 30 parts by mass. Except having prepared, operation similar to Example 1 was performed and the solar cell protective sheet of the structure shown in FIG. 1 was obtained.
〔実施例3〕
 実施例1において、熱可塑性樹脂層Aの含有量を70質量部に代えて90質量部とし、熱可塑性樹脂層Bの含有量を30質量部に代えて10質量部として熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
Example 3
In Example 1, the thermoplastic resin layer A content was changed to 90 parts by mass instead of 70 parts by mass, and the thermoplastic resin layer B content was changed to 10 parts by mass instead of 30 parts by mass. Except having prepared, operation similar to Example 1 was performed and the solar cell protective sheet of the structure shown in FIG. 1 was obtained.
〔実施例4〕
 実施例1において、熱可塑性樹脂層Bを構成する樹脂の種類を、密度963kg/mのポリエチレン(日本ポリエチレン社製、ノバテックHD HF560、融解ピーク温度134℃)に変更して熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
Example 4
In Example 1, the type of the resin constituting the thermoplastic resin layer B was changed to polyethylene having a density of 963 kg / m 3 (Nippon Polyethylene Co., Ltd., Novatec HD HF560, melting peak temperature 134 ° C.) and the thermoplastic resin composition. Except that was prepared, the same operation as in Example 1 was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
〔実施例5〕
 実施例1において、熱可塑性樹脂層Bを構成する樹脂の種類を、密度922kg/mのポリエチレン(日本ポリエチレン社製、ノバテックLL UE320、融解ピーク温度122℃)に変更して熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
Example 5
In Example 1, the type of the resin constituting the thermoplastic resin layer B is changed to polyethylene having a density of 922 kg / m 3 (Nippon Polyethylene Co., Ltd., Novatec LL UE320, melting peak temperature 122 ° C.), and a thermoplastic resin composition is obtained. Except that was prepared, the same operation as in Example 1 was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
〔実施例6〕
 基材としてのポリエステルフィルム(東レ社製X10S、厚さ125μm)の一方の面にコロナ処理(出力2000W)を施し、Tダイ製膜機(シリンダー温度:230℃以上280℃以下,Tダイ温度:300℃)により、エチレン―アクリル酸ブチル共重合体(アルケマ社製Lotryl17BA07)からなる接着性組成物と、密度900kg/mのポリエチレン(プライムポリマー社製Evolue-P SP00100、融解ピーク温度92℃)からなる熱可塑性樹脂Aを70質量部、および密度940kg/mのポリエチレン(プライムポリマー社製、Evolue-H SP4005、融解ピーク温度127℃)からなる熱可塑性樹脂Bを30質量部、ならびに酸化チタンを10質量部が混練されてなる熱可塑性樹脂組成物とを、上記の接着性組成物の吐出口が基材側に近位なるように配置した2種2層による共押出コーティングによって、上記のポリエステルフィルムのコロナ処理面に積層した。その結果、基材上に厚さ20μmの介在層および厚さ100μmの熱可塑性樹脂層からなる積層体が、介在層が基材に接するように形成され、図2に示す構成の太陽電池用保護シートが得られた。
Example 6
One side of a polyester film (X10S manufactured by Toray Industries Inc., thickness 125 μm) as a substrate is subjected to corona treatment (output 2000 W), and a T-die film forming machine (cylinder temperature: 230 ° C. or higher and 280 ° C. or lower, T die temperature: 300 ° C), an adhesive composition comprising an ethylene-butyl acrylate copolymer (Lotryl17BA07 manufactured by Arkema) and a polyethylene having a density of 900 kg / m 3 (Evolue-P SP00100 manufactured by Prime Polymer, melting peak temperature 92 ° C) 70 parts by mass of thermoplastic resin A, 30 parts by mass of thermoplastic resin B consisting of polyethylene (Prime Polymer, Evolue-H SP4005, melting peak temperature 127 ° C.) having a density of 940 kg / m 3 , and titanium oxide 10 parts by mass of a thermoplastic resin composition The discharge port of the above-mentioned adhesive composition by coextrusion coating with two 2 layer arranged so that proximal to the substrate side was laminated to the corona treated surface of the polyester film. As a result, a laminate composed of an intervening layer having a thickness of 20 μm and a thermoplastic resin layer having a thickness of 100 μm is formed on the substrate so that the intervening layer is in contact with the substrate, and the solar cell protection having the configuration shown in FIG. A sheet was obtained.
〔比較例1〕
 実施例1において、熱可塑性樹脂層Aの含有量を70質量部に代えて100質量部とし、熱可塑性樹脂層Bを含有させずに熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
[Comparative Example 1]
In Example 1, the content of the thermoplastic resin layer A was changed to 100 parts by mass instead of 70 parts by mass, and the thermoplastic resin composition was prepared without containing the thermoplastic resin layer B. The same operation was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
〔比較例2〕
 実施例1において、熱可塑性樹脂層Bの含有量を30質量部に代えて100質量部とし、熱可塑性樹脂層Aを含有させずに熱可塑性樹脂組成物を調製した以外は、実施例1と同様の操作を行い、図1に示す構成の太陽電池用保護シートを得た。
[Comparative Example 2]
In Example 1, the content of the thermoplastic resin layer B was changed to 100 parts by mass instead of 30 parts by mass, and the thermoplastic resin composition was prepared without containing the thermoplastic resin layer A. The same operation was performed to obtain a solar cell protective sheet having the configuration shown in FIG.
〔試験例1〕<融解ピーク温度測定>
 実施例および比較例における熱可塑性樹脂層を構成する熱可塑性樹脂組成物および当該組成物に含有される熱可塑性樹脂AおよびBについて、示差走査熱量計(ティー・エイ・インスツルメント社製,型番:Q2000)を用いて、JIS K7121(ISO3146)に基づいて融解ピーク温度を求めた。
・試験片の状態調節
 0℃から200℃まで毎分10℃で加熱し、200℃で10分間保った後、0℃まで毎分10℃で冷却した。
・示差走査熱量測定
 0℃から200℃まで毎分10℃で加熱し、DSC曲線を描いた。得られたDSC曲線から融解ピーク温度(℃)を求めた。結果を表1に示す。
[Test Example 1] <Melting peak temperature measurement>
About the thermoplastic resin composition which comprises the thermoplastic resin layer in an Example and a comparative example, and the thermoplastic resins A and B contained in the said composition, it is a differential scanning calorimeter (the product made from a TA instrument company, model number) : Q2000), the melting peak temperature was determined based on JIS K7121 (ISO 3146).
-Condition adjustment of test piece It heated at 10 degreeC / min from 0 degreeC to 200 degreeC, and kept at 200 degreeC for 10 minutes, Then, it cooled at 10 degreeC / minute to 0 degreeC.
-Differential scanning calorimetry It heated at 10 degreeC / min from 0 degreeC to 200 degreeC, and drawn the DSC curve. The melting peak temperature (° C.) was determined from the obtained DSC curve. The results are shown in Table 1.
〔試験例2〕<密度測定>
 実施例および比較例における熱可塑性樹脂層を構成するオレフィン系樹脂について、JIS K7112に準じて密度(kg/m)の測定を行った。なお、2種以上の樹脂のブレンド物を測定する場合には、二軸混練機(東洋精機製作所社製,製品名:ラボプラストミル)にて210℃で混練し、水槽で急冷を行った後に再度ペレット状に加工したものについて、測定を実施した。結果は表1のとおりである。
[Test Example 2] <Density measurement>
About the olefin resin which comprises the thermoplastic resin layer in an Example and a comparative example, the density (kg / m < 3 >) was measured according to JISK7112. When measuring a blend of two or more kinds of resins, after kneading at 210 ° C. with a biaxial kneader (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name: Labo Plast Mill) and quenching in a water bath Measurements were again made on the pellets processed again. The results are shown in Table 1.
〔試験例3〕<貯蔵弾性率測定>
 実施例または比較例で作製した熱可塑性樹脂組成物を、剥離シート(リンテック社製、製品名:SP-PET38T103-1、厚さ38μm)の剥離面上に押出コーティングして、膜厚が100μmの熱可塑性樹脂層が剥離シート上に積層された積層体を得た。
 この積層体から剥離シートを剥離してなる厚さ100mmの熱可塑性樹脂層について、ISO6721-4(JIS K7244-4)に準じて、動的粘弾性測定装置(エイ・アンド・デイ社製、RHEOVIBRON DDV-01FP)を用いて、モード:引張、周波数:1Hz、温度:80℃における貯蔵弾性率を求めた。測定結果を表1に示す。
[Test Example 3] <Storage elastic modulus measurement>
The thermoplastic resin composition produced in the example or comparative example was extrusion coated on the release surface of a release sheet (manufactured by Lintec Corporation, product name: SP-PET38T103-1, thickness 38 μm), and the film thickness was 100 μm. A laminate in which a thermoplastic resin layer was laminated on a release sheet was obtained.
With respect to a thermoplastic resin layer having a thickness of 100 mm formed by peeling the release sheet from the laminate, a dynamic viscoelasticity measuring device (manufactured by A & D, RHEOVIBRON, conforming to ISO 6721-4 (JIS K7244-4)) is used. DDV-01FP) was used to determine the storage modulus at mode: tensile, frequency: 1 Hz, temperature: 80 ° C. The measurement results are shown in Table 1.
〔試験例4〕<カール量測定>
 実施例または比較例で作製した太陽電池用保護シートを300mm×300mmの正方形に切り出し、水平なテーブルに置き、四隅のテーブル面からの垂直距離(mm)を測定した。得られた4箇所の各距離の平均値を算出し、これをカール量(mm)とした。結果を表1に示す。
[Test Example 4] <Measurement of curl amount>
The protective sheet for a solar cell produced in the example or the comparative example was cut into a 300 mm × 300 mm square, placed on a horizontal table, and the vertical distance (mm) from the table surfaces at the four corners was measured. The average value of each distance of the obtained four places was calculated, and this was taken as the curl amount (mm). The results are shown in Table 1.
〔試験例5〕<耐熱性評価>
 ガラス板の上に設けられた厚さ400μmのエチレン-酢酸ビニル共重合体系封止材(サンビック社製、ウルトラパール)上に、幅6mm厚さ150μmのタブ線を載置し、タブ線が載置された封止材上に実施例または比較例で作製した保護シートを重ね、続いて、これら全体(ガラス/封止材/タブ線/保護シート)を減圧環境下にて脱気した後、圧力1atm、温度135℃で6分間圧着することによりテストサンプルを得た。
[Test Example 5] <Heat resistance evaluation>
A tab wire having a width of 6 mm and a thickness of 150 μm was placed on a 400 μm thick ethylene-vinyl acetate copolymer sealing material (Sanvik, Ultra Pearl) provided on a glass plate. After the protective sheet produced in the example or comparative example was overlaid on the placed sealing material, and then the whole (glass / sealing material / tab wire / protective sheet) was degassed under reduced pressure, A test sample was obtained by pressure bonding at a pressure of 1 atm and a temperature of 135 ° C. for 6 minutes.
 得られたテストサンプルに対して、耐熱性評価試験を模して120℃のオーブンにて24時間加熱した。この模擬耐熱性評価試験の終了後、テストサンプルをガラス面から目視にて観察し、線跡顕在化の発生の有無を次の評価基準にて評価した。「C」と判定された場合を不合格とした。
  A:タブ線が見えない、
  B:タブ線のエッジ部が一部確認できる、および
  C:タブ線のエッジ部が全面確認できる。
 評価結果を表1に示す。
The obtained test sample was heated in an oven at 120 ° C. for 24 hours, imitating a heat resistance evaluation test. After completion of the simulation heat resistance evaluation test, the test sample was visually observed from the glass surface, and the presence or absence of occurrence of line traces was evaluated according to the following evaluation criteria. The case where it was determined as “C” was regarded as unacceptable.
A: Tab line is not visible,
B: A part of the edge portion of the tab line can be confirmed, and C: The entire edge portion of the tab line can be confirmed.
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、本発明の条件を満たす実施例の太陽電池用保護シートはカール量が小さく、かかるシートを用いて製造したテストサンプルについて耐熱性評価を行った場合においても線跡顕在化の発生が抑制された。 As can be seen from Table 1, the solar cell protective sheet of the example satisfying the conditions of the present invention has a small curl amount, and even when a heat resistance evaluation is performed on a test sample manufactured using such a sheet, the line trace becomes apparent. The occurrence of was suppressed.
 本発明に係る太陽電池用保護シートは、例えば太陽電池モジュールのバックシートまたはフロントシートとして好適に用いられる。 The solar cell protective sheet according to the present invention is suitably used as a back sheet or a front sheet of a solar cell module, for example.
1…太陽電池用保護シート
 11…基材
 12…熱可塑性樹脂層
 12’…介在層
 13…フッ素樹脂層
 14…蒸着層
 15…接着層
 16…金属シート
2…太陽電池セル
21…タブ線
3…封止材
4…ガラス板
10…太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 ... Protective sheet for solar cells 11 ... Base material 12 ... Thermoplastic resin layer 12 '... Intervening layer 13 ... Fluorine resin layer 14 ... Deposition layer 15 ... Adhesive layer 16 ... Metal sheet 2 ... Solar cell 21 ... Tab wire 3 ... Sealing material 4 ... Glass plate 10 ... Solar cell module

Claims (15)

  1.  基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートであって、
     前記熱可塑性樹脂層は、熱可塑性樹脂Aと熱可塑性樹脂Bとを含む熱可塑性樹脂組成物から構成され、
     前記熱可塑性樹脂Aは、密度が920kg/m未満のオレフィン系樹脂からなり、
     前記熱可塑性樹脂Bは、前記熱可塑性樹脂Aよりも高密度であって、前記熱可塑性樹脂Aに相溶する樹脂からなり、
     前記熱可塑性樹脂組成物は、密度が875kg/m以上920kg/m以下であって、融解ピーク温度が95℃以上であることを特徴とする太陽電池用保護シート。
    A solar cell protective sheet comprising a substrate and a thermoplastic resin layer laminated on at least one surface of the substrate,
    The thermoplastic resin layer is composed of a thermoplastic resin composition containing a thermoplastic resin A and a thermoplastic resin B,
    The thermoplastic resin A is composed of an olefin resin having a density of less than 920 kg / m 3 ,
    The thermoplastic resin B has a higher density than the thermoplastic resin A and is made of a resin compatible with the thermoplastic resin A,
    The thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less, and a melting peak temperature of 95 ° C. or more.
  2.  基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートであって、
     前記熱可塑性樹脂層を与える熱可塑性樹脂組成物は、熱可塑性樹脂Aと熱可塑性樹脂Bとを含み、
     前記熱可塑性樹脂Aは、密度が920kg/m未満のオレフィン系樹脂からなり、
     前記熱可塑性樹脂Bは、前記熱可塑性樹脂Aよりも高密度であって、前記熱可塑性樹脂Aに相溶する樹脂からなり、
     前記熱可塑性樹脂組成物は、密度が875kg/m以上920kg/m以下であって、80℃における貯蔵弾性率が3MPa以上であることを特徴とする太陽電池用保護シート。
    A solar cell protective sheet comprising a substrate and a thermoplastic resin layer laminated on at least one surface of the substrate,
    The thermoplastic resin composition for providing the thermoplastic resin layer includes a thermoplastic resin A and a thermoplastic resin B,
    The thermoplastic resin A is composed of an olefin resin having a density of less than 920 kg / m 3 ,
    The thermoplastic resin B has a higher density than the thermoplastic resin A and is made of a resin compatible with the thermoplastic resin A,
    The thermoplastic resin composition has a density of 875 kg / m 3 or more and 920 kg / m 3 or less and a storage elastic modulus at 80 ° C. of 3 MPa or more.
  3.  前記熱可塑性樹脂組成物の融解ピーク温度が95℃以上である請求項2に記載の太陽電池用保護シート。 The solar cell protective sheet according to claim 2, wherein a melting peak temperature of the thermoplastic resin composition is 95 ° C or higher.
  4.  前記熱可塑性樹脂Aは、単量体単位としてエチレンを60質量%以上100質量%以下含有する請求項1から3のいずれか一項に記載の太陽電池用保護シート。 The said thermoplastic resin A is a protective sheet for solar cells as described in any one of Claim 1 to 3 which contains ethylene 60 mass% or more and 100 mass% or less as a monomer unit.
  5.  前記熱可塑性樹脂Bの融解ピーク温度が95℃以上である請求項1から4のいずれか一項に記載の太陽電池用保護シート。 The solar cell protective sheet according to any one of claims 1 to 4, wherein a melting peak temperature of the thermoplastic resin B is 95 ° C or higher.
  6.  前記熱可塑性樹脂組成物は着色材料を含有する請求項1から5のいずれか一項に記載の太陽電池用保護シート。 The solar cell protective sheet according to any one of claims 1 to 5, wherein the thermoplastic resin composition contains a coloring material.
  7.  前記熱可塑性樹脂層は、前記熱可塑性樹脂組成物が押出コーティングにより前記基材の一方の面に積層されたものである請求項1から6のいずれか一項に記載の太陽電池用保護シート。 The solar cell protective sheet according to any one of claims 1 to 6, wherein the thermoplastic resin layer is obtained by laminating the thermoplastic resin composition on one surface of the base material by extrusion coating.
  8.  前記熱可塑性樹脂層と前記基材との間に、これらに対する接着性を有する接着性組成物からなる介在層を備える請求項1から7のいずれか一項に記載の太陽電池用保護シート。 The solar cell protective sheet according to any one of claims 1 to 7, further comprising an intervening layer formed of an adhesive composition having adhesiveness to the thermoplastic resin layer and the base material.
  9.  前記接着性組成物は、エチレンと、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルからなる群から選ばれる少なくとも1種との共重合体を主成分とする請求項8に記載の太陽電池用保護シート。 The said adhesive composition is based on the copolymer of ethylene and at least 1 sort (s) chosen from the group which consists of (meth) acrylic acid, (meth) acrylic acid ester, and vinyl acetate as a main component. Protection sheet for solar cells.
  10.  前記熱可塑性樹脂層および前記介在層は、前記熱可塑性樹脂組成物と前記接着性組成物とが前記基材に対して共押出コーティングされることにより形成されたものである請求項8または9に記載の太陽電池用保護シート。 The thermoplastic resin layer and the intervening layer are formed by coextrusion coating of the thermoplastic resin composition and the adhesive composition on the substrate. The protective sheet for solar cells as described.
  11.  前記熱可塑性樹脂層は、太陽電池モジュールを構成する封止材と接着される層であることを特徴とする請求項1から10のいずれか一項に記載の太陽電池用保護シート。 The said thermoplastic resin layer is a layer adhere | attached with the sealing material which comprises a solar cell module, The solar cell protective sheet as described in any one of Claim 1 to 10 characterized by the above-mentioned.
  12.  基材と、前記基材の少なくとも一方の面に積層された熱可塑性樹脂層とを備えた太陽電池用保護シートの製造方法であって、
     請求項1から6のいずれか一項に記載される熱可塑性樹脂組成物を、前記基材の少なくとも一方の面に押出コーティングして、前記熱可塑性樹脂層を形成する
    ことを特徴とする太陽電池用保護シートの製造方法。
    A method for producing a protective sheet for a solar cell, comprising: a base material; and a thermoplastic resin layer laminated on at least one surface of the base material,
    7. The solar cell, wherein the thermoplastic resin layer is formed by extrusion coating the thermoplastic resin composition according to any one of claims 1 to 6 on at least one surface of the substrate. Method of manufacturing protective sheet.
  13.  基材と、熱可塑性樹脂層と、前記基材および前記熱可塑性樹脂層に対する接着性を有する接着性組成物からなり前記基材の一方の面および前記可塑性樹脂層の一方の面の間に積層された介在層とを備えた太陽電池用保護シートの製造方法であって、
     請求項1から6のいずれか一項に記載される熱可塑性樹脂組成物と、前記接着性組成物とを、前記基材の少なくとも一方の面に共押出コーティングして、前記介在層および前記熱可塑性樹脂層を形成する
    ことを特徴とする太陽電池用保護シートの製造方法。
    A base material, a thermoplastic resin layer, and an adhesive composition having adhesiveness to the base material and the thermoplastic resin layer are laminated between one surface of the base material and one surface of the plastic resin layer. A method for producing a protective sheet for a solar cell comprising an interposed layer,
    The thermoplastic resin composition according to any one of claims 1 to 6 and the adhesive composition are coextrusion coated on at least one surface of the substrate, and the intervening layer and the heat are coated. A method for producing a protective sheet for a solar cell, comprising forming a plastic resin layer.
  14.  前記接着性組成物は、エチレンと、(メタ)アクリル酸、(メタ)アクリル酸エステルおよび酢酸ビニルからなる群から選ばれる少なくとも1種との共重合体を主成分とすることを特徴とする請求項13に記載の太陽電池用保護シートの製造方法。 The adhesive composition is mainly composed of a copolymer of ethylene and at least one selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and vinyl acetate. Item 14. A method for producing a solar cell protective sheet according to Item 13.
  15.  複数の太陽電池セル、前記複数の太陽電池セル間を電気的に接続する電気配線、これらの前記複数の太陽電池セルおよび少なくとも一つの前記電気配線を包容する封止材、ならびに封止材の主面のそれぞれに積層される二つの保護部材を備える太陽電池モジュールであって、
     前記保護部材の少なくとも一方は請求項1から10のいずれか一項に記載される太陽電池用保護シートからなり、
     前記太陽電池用保護シートが備える前記熱可塑性樹脂層は前記封止材の一部または全部をなすことを特徴とする太陽電池モジュール。
    A plurality of solar cells, an electrical wiring for electrically connecting the plurality of solar cells, a sealing material enclosing the plurality of solar cells and at least one of the electrical wirings, and a main of the sealing material A solar cell module comprising two protective members stacked on each of the surfaces,
    At least one of the protective members is composed of the protective sheet for solar cells described in any one of claims 1 to 10,
    The said thermoplastic resin layer with which the said protection sheet for solar cells is provided makes a part or all of the said sealing material, The solar cell module characterized by the above-mentioned.
PCT/JP2013/051262 2012-02-15 2013-01-23 Protective sheet for solar cell, method for manufacturing same, and solar cell module WO2013121838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031169A JP2013168523A (en) 2012-02-15 2012-02-15 Protective sheet for solar cell, method for manufacturing the same, and solar cell module
JP2012-031169 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121838A1 true WO2013121838A1 (en) 2013-08-22

Family

ID=48983963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051262 WO2013121838A1 (en) 2012-02-15 2013-01-23 Protective sheet for solar cell, method for manufacturing same, and solar cell module

Country Status (3)

Country Link
JP (1) JP2013168523A (en)
TW (1) TW201342646A (en)
WO (1) WO2013121838A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497736B (en) * 2013-12-19 2015-08-21 Nat Inst Chung Shan Science & Technology A Process Method for Anti - reflective Packaging Film of Solar Cell
TWI647862B (en) * 2017-12-05 2019-01-11 財團法人工業技術研究院 Package structure and solar cell module
TWI650871B (en) * 2017-12-12 2019-02-11 茂迪股份有限公司 Encapsulation material of lamination type solar cell module and method for manufacturing solar cell module
JP7135939B2 (en) * 2019-02-28 2022-09-13 大日本印刷株式会社 Encapsulant-integrated back protective sheet for solar cell module and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061030A1 (en) * 2005-11-25 2007-05-31 Mitsui Chemicals, Inc. Sealing material for solar cell, sheet for solar-cell sealing, and solar cell module employing these
JP2010021498A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Thin film solar cell, solar cell unit, and solar cell structure
JP2010034489A (en) * 2008-06-30 2010-02-12 Mitsubishi Chemicals Corp Film type solar cell and solar cell panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061030A1 (en) * 2005-11-25 2007-05-31 Mitsui Chemicals, Inc. Sealing material for solar cell, sheet for solar-cell sealing, and solar cell module employing these
JP2010034489A (en) * 2008-06-30 2010-02-12 Mitsubishi Chemicals Corp Film type solar cell and solar cell panel
JP2010021498A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Thin film solar cell, solar cell unit, and solar cell structure

Also Published As

Publication number Publication date
TW201342646A (en) 2013-10-16
JP2013168523A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5714959B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP5623325B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP5769723B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
WO2010116650A1 (en) Protective sheet for solar cell modules, manufacturing method therefor, and solar cell module
WO2011118727A1 (en) Protective sheet for solar cell module, and solar cell module
WO2010109896A1 (en) Protective sheet for solar cell module and solar cell module comprising the same
WO2013118570A1 (en) Protective sheet for solar cell, and solar cell module
WO2013121838A1 (en) Protective sheet for solar cell, method for manufacturing same, and solar cell module
JP2013183098A (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2011204880A (en) Protective sheet for solar cell module and the solar cell module
JP6547463B2 (en) Sealing material sheet for solar cell module and sealing material integrated back surface protection sheet using the same
JP2012209375A (en) Sealing material/surface protective material laminate for solar cell
JP5696172B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
WO2014208758A1 (en) Protective material for solar cell
JP2014229870A (en) Protective sheet for solar cell and solar cell module
JP2012089632A (en) Protective sheet for solar cells, manufacturing method of the same, and solar cell module
JP6547464B2 (en) Sealant-integrated back surface protection sheet for solar cell module and solar cell module using the same
JP2014194985A (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2012015264A (en) Protective sheet for solar cell module, and solar cell module
JP2012089631A (en) Protective sheet for solar cells, manufacturing method of the same, and solar cell module
JP2017112245A (en) Method for laminate temperature decision in solar battery module production, and method for solar battery module production by using the same
JP2012209371A (en) Surface protection sheet for solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748847

Country of ref document: EP

Kind code of ref document: A1