WO2013118962A1 - Method and apparatus for determining optimal operating information using optimal information - Google Patents
Method and apparatus for determining optimal operating information using optimal information Download PDFInfo
- Publication number
- WO2013118962A1 WO2013118962A1 PCT/KR2012/010370 KR2012010370W WO2013118962A1 WO 2013118962 A1 WO2013118962 A1 WO 2013118962A1 KR 2012010370 W KR2012010370 W KR 2012010370W WO 2013118962 A1 WO2013118962 A1 WO 2013118962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- olev
- line
- value
- segment
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/32—Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/64—Optimising energy costs, e.g. responding to electricity rates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
Definitions
- the present embodiment relates to a method and apparatus for determining optimal driving information using optimal information. More specifically, the battery capacity of the moving body, the value according to whether the feed line is buried on the running line, the number of moving vehicles and the dwell time for feeding the station on the running line, which are necessary to charge the electricity while driving the line.
- the present invention relates to a method and apparatus for determining optimal driving information using optimal information for setting at least one of the information according to a power feeding method on a route and minimizing the cost.
- On-line electric vehicles (hereinafter referred to as OLEVs), unlike conventional electric vehicles, are a new concept of electric vehicles that are powered by a wireless method from a cable buried in a road while driving and stopping.
- OLEVs When the OLEV is driving a cable-embedded section, it is supplied with electricity by a wireless method to deliver electricity to the motor, and the remaining electricity is sent to the battery to charge the battery.
- OLEVs operate by supplying electricity from batteries.
- an inverter that generates electricity and a cable that delivers it must be buried on the road.
- One inverter is installed together in one independent cable buried section, and OLEV is wirelessly supplied with cable power through a pick-up device installed at the bottom.
- the battery is a high-cost item, so that the battery price is more than 40% of the price of the electric vehicle, the more the battery is installed in the electric vehicle, the more expensive the battery, the more the weight of the vehicle increases It also consumes more.
- Electric vehicle systems are largely always powered from a cable by means of contact (eg, trains, streetcars) and when powered from their own battery without charging / charging while driving (b, eg, general electricity). Car), and can be divided into two.
- the electricity is always supplied from the cable in a contact manner (a)
- the battery capacity and cost need not be considered because the battery is not installed. Since cables must be installed in all sections of the road, no consideration is needed. However, there are aesthetic and environmental problems due to many cable constructions.
- B If the battery is supplied from its own battery without charging / charging while driving, the battery capacity should be taken into account, but this is often determined by the use of the vehicle rather than the cost side, and directly affects the selling price of the electric vehicle.
- the present embodiment provides at least one or more information of a battery capacity of a moving object, a value according to whether a feed line is laid on a running route, a moving number of moving bodies, and dwell time information for feeding a station on a running route.
- the main purpose is to provide a method and apparatus for determining optimal driving information using optimal information for setting according to the power feeding method of the phase and minimizing the cost accordingly.
- the value of the on-line electric vehicle (OLEV) battery capacity value the value according to whether the feed line is laid on the OLEV route, the number of OLEV operation and the station on the OLEV route
- An initial population group setting unit configured to generate initial population information in which a predetermined number of chromosomes including at least one or more values of residence time information for feeding powers as coefficients;
- a fitness measurer for calculating cost information by applying predetermined objective functions and constraints to each of the chromosomes;
- a selection unit generating minimum cost chromosome information based on at least one of the initial individual information and the cost information;
- a crossover unit configured to generate crossover information by crossovering a part of a value depending on whether a feed line is embedded on the OLEV line included in the least cost chromosome;
- a transition unit for generating transition information in which any one of the OLEV battery capacity value included in the crossover information and a value depending on whether the feed line is buried is changed to another value;
- An end determination unit for terminat
- At least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line are counted.
- the battery capacity of the moving body, the value according to whether the feed line is laid on the running route, the number of moving bodies and the station on the running route, which are necessary for charging electricity while moving At least one or more information of the residence time information for power supply of the line is set according to the power supply method on the route, and thus the cost can be minimized.
- the present embodiment therefore, there is an effect that an optimal OLEV operating system can be constructed at a minimum investment cost.
- FIG. 1 is a block diagram schematically illustrating an apparatus for determining optimal driving information using optimal information according to the present embodiment
- FIG. 2 is a flowchart illustrating a method of determining optimal driving information using optimal information according to the present embodiment
- FIG. 3 is an exemplary diagram for explaining an OLEV line and a segment according to the present embodiment
- FIG 5 is an exemplary view showing the speed according to the time of operation of the OLEV line according to the present embodiment.
- FIG. 1 is a block diagram schematically illustrating an apparatus for determining optimum driving information using optimal information according to the present embodiment.
- the field to be applied to the optimum driving information determining apparatus 100 may be an OLEV field.
- the general principle of the operation of OLEV is as follows. When the high-speed electric power is supplied to the power feeding device provided on the road while the online electric vehicle is traveling on the road, the electric power required for driving is supplied by the principle of electromagnetic induction between the power feeding device and the current collecting device provided in the electric vehicle.
- on-line electric vehicles are very expensive in two factors, which are necessary for embedding a feed line on a battery and a road provided in the on-line electric vehicle.
- Such a section of the battery provided in the online electric vehicle and the feeder line embedded in the road should be extracted optimally, but the online electric vehicle may be operated at the minimum cost.
- the lower the cost of embedding a feed line on a battery and a road provided in an online electric vehicle the more the investment cost in the OLEV field can be minimized.
- a driving route is preset.
- a place where online electric vehicles can be applied may be applied to a predetermined route such as a bus lane, an amusement park train, an airport train, and an administrative city.
- An online electric vehicle includes a current collector, which refers to a device that forms an induced electromotive force by a power supply device embedded in a road and supplies power to the online electric vehicle. That is, the current collector may be installed in a moving body (for example, an electric vehicle).
- the moving body is preferably a vehicle, but is not necessarily limited thereto, and may be widely applied to a bus, a train, a crane, or a motorbike that can be electrically driven.
- the current collector coupled to the moving body is equipped with a voltage regulator (Regulator). At this time, in order to obtain the DC power, the voltage adjusting unit rectifies the rectifying element and adjusts the voltage or current according to the load.
- a voltage regulator Regulator
- the current collector includes a current collector unit, which refers to a part of the current collector that supplies power to an electric vehicle that is running.
- a current collecting unit power is supplied from a power feeding device (electric supply path) embedded in the road while the electric vehicle is traveling.
- a power supply device electrical supply path
- Such a power supply device is a plurality of wires that are continuously installed at regular intervals in the direction of the electric vehicle, and are arranged in the gap between the wires adjacent to each other and magnetically and electrically insulates the wires adjacent to each other.
- An insulating magnetic body is provided.
- the current collector includes a current collector core in which magnetic flux is induced and a current collector cable wound on the current collector core, and is supplied with an induced electromotive force formed from the power feeding device by using the current collector unit magnetically coupled by the power supply unit and the magnetic flux.
- the power supply device may be implemented corresponding to the line of the online electric vehicle, and includes a power supply.
- the power supply means an inverter. It may also be partially embedded in asphalt, which is the interior of the lane (ie road). That is, when a power feeding device including a power feeding core and a power supply power is embedded on the road to charge electric power required for driving the electric vehicle, electric current flows through the feed cable when the electric vehicle runs to supply power. have.
- a feed cable can be implemented by dividing into several segments (segments), it is possible to supply power to the electric vehicle in progress. In this case, one feeding power (inverter) may be applied per continuous segment.
- Such a power supply device receives a power supply unit including a power supply core supplied with electric power from a provided power supply power source and providing a path of magnetic flux generated by a current flowing through a power supply cable connected to the power supply power supply, and a power supply cable wound around the power supply core.
- the optimum driving information determining apparatus 100 includes an initial population group setting unit 110, a fitness measuring unit 120, a selection unit 130, a crossover unit 140, a transition unit 150, and an end determination.
- the unit 160 and the optimum information determiner 170 is included.
- the optimum driving information determining apparatus 100 includes an initial population group setting unit 110, a fitness measuring unit 120, a selection unit 130, a crossover unit 140, a transition unit 150, and an end determination unit.
- the OLEV route according to the present embodiment is preset route information, which is divided into N segments, includes a preset station position value on the route information, and each segment has a different length value. Each segment has a value depending on whether a feed line is buried.
- the OLEV battery capacity value is set to a battery SOC that does not exceed I high at an end point of the i th segment of the segment on the OLEV line and maintains I low or more.
- the OLEV battery capacity value has a real number, and the value according to whether the feed line is buried on the OLEV line has a binary number.
- the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 10 segments, a value depending on whether the feed line is buried on the OLEV line may be 10 binary numbers.
- the value according to whether the feed line is buried on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment.
- an inductive cable for power feeding may be installed in the feed line.
- the initial population setting unit 110 counts at least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV route, a number of OLEV service numbers, and dwell time information for feeding a station on an OLEV route.
- Initial object information is set in which a predetermined number of chromosomes are included.
- the initial population setting unit 110 may be set to about 100 chromosomes, but is not necessarily limited thereto. Meanwhile, to describe the process of setting the chromosome, the initial population setting unit 110 may set the chromosome randomly or set by a user's manipulation or command.
- the initial population setting unit 110 sets the chromosome using any one of the first model method or the second model method, and arranges the coefficients included in the chromosome according to the first model method or the second model method.
- the first model method refers to a method in which the OLEV secures a battery state of charge (SOC) by feeding power from a terminal station in a state where all stations on the OLEV line have been completed once.
- the second model method refers to a method of securing battery SOC through power supply when OLEV stays at each station on an OLEV line while driving.
- the initial population setting unit 110 when the first model method using the OLEV battery capacity value, the OLEV running number value, the power supply at the destination station on the OLEV route
- the coefficients included in the salt sector are arranged in the order of the residence time information and the value according to whether the feed line is laid on the OLEV line.
- the initial population setting unit 110 in order of the OLEV battery capacity value, the number of OLEV operation number, the residence time information for feeding the station on the OLEV line and the value depending on whether or not the feed line is laid on the OLEV line Arrange the coefficients included in the salt sector.
- the chromosome is a kind of initial individual information for extracting the optimum value of the OLEV battery capacity value and the value depending on whether the feed line is buried on the OLEV line, the fitness measure unit 120, the selector 130, the crossover unit 140 ), Since the corresponding value is changed through the transition unit 150, the termination determination unit 160, and the like, the present invention will be described as being defined as a chromosome.
- the fitness measurer 120 calculates cost information by applying a predetermined objective function and constraints to each chromosome set through the initial population setter 110. For example, the fitness measurer 120 may apply an objective formula and a pharmaceutical formula to each of about 100 chromosomes, and calculate about 100 cost information for each of about 100 chromosomes.
- the selector 130 generates minimum cost chromosome information based on at least one or more of initial object information generated by the initial population setter 110 and cost information generated by the fitness measurer 120.
- the selector 130 randomly selects a first chromosome which is a plurality of chromosomes among initial individual information, and generates minimum cost chromosome information on which a chromosome having a minimum cost is selected based on each cost information of the selected first chromosome. .
- the selector 130 randomly selects the first chromosome, which is two chromosomes, among the initial individual information, and selects one chromosome having the minimum cost among the two chromosomes based on the cost information of each of the selected two chromosomes.
- the minimum cost chromosome information is generated by repeating the process of selecting the minimum cost chromosome a predetermined number of times.
- the selector 130 randomly selects the first chromosome, which is two chromosomes, from among about 100 initial individual information, and selects one of the two chromosomes having the minimum cost based on the cost information of each of the two selected chromosomes. Selecting a chromosome may be performed about 100 times to generate minimum cost chromosome information including about 100 chromosomes.
- the crossover unit 140 generates crossover information that crosses a part of values depending on whether a feed line is embedded on an OLEV line included in the minimum cost chromosome generated by the selector 130.
- the crossover unit 140 randomly selects a second chromosome, which is a pair of chromosomes, and selects a part of the OLEV battery capacity value between the pair of chromosomes and the value depending on whether the feed line is laid on the OLEV multi-line. Generates crossover information that has been crossover.
- the crossover unit 140 generates a first random number for each of the minimum cost chromosome information, generates first probability information that selects only chromosomes within a predetermined probability among random numbers, and generates first probability information. Randomly selects two chromosomes, the second chromosome, crosses some of the values depending on whether the feed line is laid on the OLEV line between the two chromosomes, and generates crossover information by repeating the crossover a predetermined number of times; do. For example, the crossover unit 140 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 70%) among the random numbers.
- first probability information Generates first probability information, randomly selects a second chromosome from the first probability information (within about 70%), and selects a part of values according to whether or not the feed line is buried on the OLEV line between the two chromosomes ( For example, crossover of the second to fourth segments may be performed about 50 times to generate crossover information including about 100 chromosomes.
- the first random number refers to the generation of random numbers, which is a set of numbers arranged to collect the samples without any bias and have a certain probability when collecting various samples in a disorderly scattered set.
- the crossover unit 140 randomly sets a range among values according to whether a feed line is embedded on an OLEV line included in each of the two chromosomes, and crossovers a value corresponding to the set range.
- the crossover unit 140 may randomly position (range) a value of a value according to whether a feed line is embedded on an OLEV line included in each of two randomly selected chromosomes among first probability information (within about 70%). ) And crossover the value corresponding to the set segment position (range).
- the transition unit 150 generates transition information in which any one of an OLEV battery capacity value included in the crossover information and a value depending on whether a feed line is embedded is changed to another value.
- the mutation unit 150 randomly selects a third chromosome from the crossover information generated by the crossover unit 140, and selects one of the OLEV battery capacity included in the third chromosome and a value according to whether a feed line is embedded. Generates variation information in which V is mutated to another value.
- the variation unit 150 generates a second random number for each of the crossover information generated through the crossover unit 140 and second probability information that selects only chromosomes corresponding to a predetermined probability among random numbers. And randomly select only one chromosome as the third chromosome among the second probability information, and change one of the OLEV battery capacity value included in the selected chromosome and the value depending on whether the feed line is buried on the OLEV line to another value. And generating variation information by repeating the variation process a predetermined number of times.
- the second random number means the generation of a random number which is a set of numbers arranged to collect the samples without any bias and have a certain probability when collecting various samples in a disorderly scattered set.
- the variation unit 150 generates a second random number for each of the crossover information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 5%) among the random numbers. Generate probability information, randomly select one chromosome among the second probability information (chromosome information within about 5%) as the third chromosome, and embed the OLEV battery capacity value included in the selected chromosome and the feed line on the OLEV line. One of the values according to the variable is transformed to another value, and the variation information is generated by performing this variation process about 100 times.
- the variation unit 150 corresponds to the OLEV battery capacity value when changing the OLEV battery capacity value contained in the selected chromosome to another value Mutes one of the mistakes. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the variation unit 150 is '0 to 20' when the OLEV battery capacity value included in the selected chromosome is '15'. Is to change to a value other than '15'.
- the transition unit 150 when the value of whether to embed the feed line on the OLEV line is changed to another value Change to another value among the set binary numbers.
- the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and if the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value, the transition unit 150 The value according to whether the feed line embedded in the second to sixth segments of the segments on the OLEV route included in the selected chromosome may be changed to another value (0 ⁇ 1, 1 ⁇ 0).
- the end determination unit 160 generates the variation information through the transition unit 150, and when the variation information is the same as the preset percentage or more, the generation of the variation information is terminated. That is, the termination determination unit 160 generates about 100 transition information, and when the OLEV battery capacity value included in the variation information and the value according to the position of the feed line embedding position on the OLEV line become equal to each other by about 95% or more, The generation of the variation information through the variation unit 150 may be stopped. If not equal to or greater than 95%, the fitness measurement unit 120 returns to the fitness measurement unit 120 based on the chromosome (group) included in the current variation information and repeats the fitness measurement, selection, crossover, and variation again.
- the optimum information determiner 170 determines the OLEV battery capacity value included in the same variation information by a predetermined percentage or more, a value according to whether a feed line is laid on an OLEV line, the number of running OLEV values, and a residence time for feeding a station on an OLEV line. At least one or more values of the information are determined as optimal values, and the optimum values are determined as optimal driving information. That is, when the variation information becomes equal to about 95% or more, the optimal information determiner 170 substantially includes the initial population setter 110, the fitness measure 120, the selector 130, and the crossover 140.
- the variation information generated through the operation of the transition unit 150 are substantially the same, and the value according to whether or not the OLEV battery capacity value included in the same variation information is 95% or more and whether the feed line is buried on the OLEV line.
- the optimal value can be determined.
- FIG. 2 is a flowchart illustrating a method of determining optimal driving information using optimal information according to the present embodiment.
- the operation of the optimum driving information determining apparatus 100 for extracting the optimal battery capacity provided in the online electric vehicle and the optimum embedding section of the feed cable implemented in correspondence with the route of the online electric vehicle is shown in FIG. 2.
- FIG. 2 The operation of the optimum driving information determining apparatus 100 for extracting the optimal battery capacity provided in the online electric vehicle and the optimum embedding section of the feed cable implemented in correspondence with the route of the online electric vehicle is shown in FIG. 2.
- the optimum driving information determining apparatus 100 includes, as a coefficient, at least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line as a coefficient.
- Initial object information is set in which a chromosome is set to a predetermined number (S210).
- the optimum driving information determining apparatus 100 may set the number of chromosomes to about 100 but is not limited thereto. Meanwhile, the optimum driving information determining apparatus 100 may set chromosomes randomly or by a user's manipulation or command.
- the optimum driving information determining apparatus 100 sets the chromosome by using any one of the first model method and the second model method, and calculates coefficients included in the chromosome according to the first model method or the second model method.
- the first model method refers to a method in which the OLEV secures a battery state of charge (SOC) by feeding power from a terminal station in a state where all stations on the OLEV line have been completed once.
- the second model method refers to a method of securing battery SOC through power supply when OLEV stays at each station on an OLEV line while driving.
- the optimum driving information determining apparatus 100 when using the first model method, the OLEV battery capacity value, the OLEV running number value, the power supply at the destination station on the OLEV route
- the coefficients included in the salt sector are arranged in the order of the residence time information and the value according to whether the feed line is laid on the OLEV line.
- the optimum driving information determining apparatus 100 determines the order of the values according to the OLEV battery capacity value, the OLEV running number value, the residence time information for feeding the station on the OLEV line, and whether the feeding line is laid on the OLEV line. Arrange the coefficients contained in the salt sector.
- the optimum driving information determining apparatus 100 calculates cost information by applying the predetermined objective and constraint equations to the respective chromosomes set through step S210 (S220). For example, the optimum driving information determining apparatus 100 may apply an objective formula and a pharmaceutical formula to each of about 100 chromosomes, and calculate about 100 cost information for each of about 100 chromosomes.
- the objective equation is the same as [Equation 1]
- the constraint is the same as [Equation 2].
- the optimal driving information determining apparatus 100 sets the cost information of the chromosome to a value exceeding a normal range so that the selection unit 130 performs the selection. It is possible to lower the probability of being selected as the least cost chromosome information.
- the optimum driving information determining apparatus 100 generates minimum cost chromosome information based on at least one or more information among initial individual information generated in step S210 and cost information generated in step S220 (S230).
- the optimum driving information determining apparatus 100 selects a first chromosome which is a plurality of chromosomes randomly among initial individual information, and selects a chromosome having a minimum cost based on each cost information of the selected first chromosome. Generate cost chromosome information.
- the apparatus 100 for determining optimal driving information randomly selects the first chromosome, which is two chromosomes, among the initial individual information, and based on the cost information of each of the selected two chromosomes, one device having the minimum cost among the two chromosomes.
- the chromosome is selected and the minimum cost chromosome information is generated by repeating the process of selecting the minimum cost chromosome a predetermined number of times.
- the optimal driving information determining apparatus 100 randomly selects the first chromosome, which is two chromosomes, from among about 100 initial individual information, and selects the minimum cost of the two chromosomes based on the cost information of each of the selected two chromosomes.
- the process of selecting one chromosome having about 100 times may be performed to generate minimum cost chromosome information including about 100 chromosomes.
- the apparatus 100 for determining optimal driving information generates crossover information obtained by crossovering a part of values depending on whether a feed line is embedded on an OLEV line included in the minimum cost chromosome generated in operation S230 (S240).
- the apparatus 100 for determining optimal driving information randomly selects a second chromosome which is a pair of chromosomes among the least cost chromosomes, and crosses some of the values according to whether a pair of chromosomes are embedded with a feed line on an OLEV line. Generates excess crossover information.
- the optimum driving information determining apparatus 100 generates a first random number for each of the minimum cost chromosome information, generates first probability information that selects only chromosomes corresponding to a predetermined probability among random numbers, and generates a first random number.
- the second chromosome which is randomly selected from two chromosomes, is randomly selected from the probability information, the crossover information of the two chromosomes crosses a part of the values depending on whether the feed line is laid on the OLEV line, and the crossover is repeated a predetermined number of times.
- the optimum driving information determining apparatus 100 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes, and only chromosomes corresponding to within a predetermined probability (about 70%) among random numbers are included. Generates the selected first probability information, randomly selects the second chromosome among the first probability information (within about 70%), and selects the second chromosome from among the values according to whether the feed lines are laid on the OLEV line between the two chromosomes. Crossover of a portion (eg, the second to fourth segments) may be performed about 50 times to generate crossover information including about 100 chromosomes.
- the optimum driving information determining apparatus 100 randomly sets a range among values according to whether a feed line is embedded on an OLEV line included in each of two chromosomes, and crosses over a value corresponding to the set range.
- the crossover unit 140 may randomly position (range) a value of a value according to whether a feed line is embedded on an OLEV line included in each of two randomly selected chromosomes among first probability information (within about 70%). ) And crossover the value corresponding to the set segment position (range).
- the optimum driving information determining apparatus 100 generates shift information in which any one of the OLEV battery capacity value included in the crossover information and a value according to whether the feed line is buried is changed to another value (S250).
- the apparatus 100 for determining optimal driving information randomly selects a third chromosome from the crossover information generated through operation S240, and selects an OLEV battery capacity value included in the third chromosome and a value according to whether a feed line is embedded. Generates variation information in which one is changed to another value.
- the optimum driving information determining apparatus 100 generates a second random number for each of the crossover information generated through step S240, and selects the second probability information that selects only chromosomes corresponding to a predetermined probability among the random numbers. And randomly select only one chromosome among the second probability information as the third chromosome, and change one of the OLEV battery capacity value included in the selected chromosome and a value depending on whether the feed line is buried on the OLEV line to another value.
- variation information is generated by repeating the variation process a predetermined number of times.
- the optimum driving information determining apparatus 100 generates a second random number for each of crossover information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 5%) among the random numbers. Generate one second probability information, randomly select one chromosome among the second probability information (chromosome information within about 5%) as the third chromosome, and feed the OLEV battery capacity value and the OLEV route contained in the selected chromosome. One of the values according to whether the track is buried is changed to another value, and the variation information is generated by performing the transformation process about 100 times.
- the optimum driving information determining apparatus 100 shifts the OLEV battery capacity value included in the selected chromosome to a different value by mistake of any real number corresponding to the OLEV battery capacity value. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the optimum driving information determining apparatus 100 determines a value of '0' when the OLEV battery capacity value included in the selected chromosome is '15'. To 20 'except for' 15 '.
- the optimum driving information determining apparatus 100 shifts the value according to whether or not the feed line is laid on the OLEV line to another value among the set binary numbers.
- the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value
- the optimum operation information determination device ( 100 may change the value depending on whether the feed line is embedded in the second to sixth segments of the segment on the OLEV route included in the selected chromosome to another value (0 ⁇ 1, 1 ⁇ 0).
- the optimum driving information determining apparatus 100 In operation S250, the optimum driving information determining apparatus 100 generates the variation information as much as a predetermined number of times and when the variation information is equal to or more than a preset percentage, the generation of the variation information is terminated (S260). In operation S260, the optimum driving information determining apparatus 100 generates about 100 transition information, and the OLEV battery capacity value included in the variation information and the value according to the position of the feed line embedding position on the OLEV line are equal to or greater than about 95%. If it is, the generation of the variation information through the transition unit 150 to stop.
- the optimum driving information determining apparatus 100 is a OLEV battery capacity value included in the same variation information by a predetermined percentage or more, a value according to whether the feed line is buried on the OLEV line, the number of OLEV running numbers, and a stay for feeding the station on the OLEV line. At least one or more values of the time information are determined as optimal values, and the optimal values are determined as optimal driving information (S270).
- the optimum driving information determining apparatus 100 determines that the variation information generated through the operation of steps S210 to S260 is substantially the same, and thus 95%
- an optimal value may be determined based on an OLEV battery capacity value included in the same variation information and a value depending on whether a feed line is laid on an OLEV line.
- steps S210 to S270 are sequentially executed.
- this is merely illustrative of the technical idea of the present embodiment, and a person having ordinary knowledge in the technical field to which the present embodiment belongs may use the present embodiment.
- 2 may be modified and modified in various ways, such as by changing the order described in FIG. 2 or executing one or more steps of steps S210 to S270 in parallel without departing from the essential characteristics, and thus, FIG. It is not limited.
- the method for determining optimal driving information using the optimal information according to the present embodiment described in FIG. 2 may be implemented in a program and recorded in a computer-readable recording medium.
- a computer-readable recording medium having recorded thereon a program for implementing the method of determining optimal driving information using the optimal information according to the present embodiment includes all kinds of recording devices storing data that can be read by a computer system. Examples of such computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, and are implemented in the form of a carrier wave (for example, transmission over the Internet). It includes being.
- the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. Also, functional programs, codes, and code segments for implementing the present embodiment may be easily inferred by programmers in the art to which the present embodiment belongs.
- FIG 3 is an exemplary diagram for describing an OLEV line and a segment according to the present embodiment.
- a driving route may be preset.
- a route may be a predetermined route, such as a bus-only lane, an amusement park train, an airport train, or an administrative city.
- the OLEV route is divided into N segments as preset route information, and includes a preset station position value on the route information, and each segment is different. It has a length value, and each segment has a value depending on whether a feed line is buried.
- the OLEV battery capacity value is set to a battery SOC that does not exceed I high at an end point of the i th segment of the segment on the OLEV line and maintains I low or more.
- each segment has a value according to whether a feed line is installed and has an OLEV battery capacity value. That is, each coefficient shown in (c) of FIG. 3 will be described below.
- l (i) is set to length information in the ith segment
- x (i) is set to 1 when inductive cable is installed in i th segment and 0 when not installed.
- the OLEV battery capacity value has a real number
- the value according to whether the feed line is buried on the OLEV line has a binary number.
- the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 25 segments, a value depending on whether the feed line is buried on the OLEV line may be 25 binary numbers.
- the value according to whether the feed line is embedded on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment. In this case, an inductive cable for feeding power may be installed in the feed line.
- FIG. 4 is an exemplary diagram for explaining initial entity setting, crossover, and variation according to the present embodiment.
- the apparatus 100 for determining optimal driving information initially sets the chromosome including the OLEV battery capacity value and the value according to whether or not the feed line is laid on the OLEV line as a predetermined number. Create entity information.
- the apparatus 100 for determining optimal driving information may be set to about 100 chromosomes, but is not necessarily limited thereto.
- the initial population setting unit 110 may set the optimal driving information determiner 100 at random or by a user's operation or command.
- the OLEV battery capacity value of the chromosome shown in FIG. 4A has a real number, and the value according to whether the feed line is buried on the OLEV line has a binary number.
- the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 10 segments, a value depending on whether the feed line is buried on the OLEV line may be 10 binary numbers.
- the value according to whether the feed line is buried on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment. In this case, an inductive cable for power feeding may be installed in the feed line.
- the optimum driving information determining apparatus 100 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes. , Generating first probability information that selects only chromosomes within a predetermined probability (about 70%) among random numbers, and randomly generates two random information as shown in FIG. 4 (b) of the first probability information (about 70%).
- the second chromosome which is a chromosome, is selected, and some of the values depending on whether or not the feed line is buried on the OLEV line between the two chromosomes (for example, the second to fourth segments) are crossover (shown in FIG. 4 (b)).
- a process of performing 0,0,0 ⁇ 1,1,1,1,1,1 ⁇ 0,0,0 may be performed about 50 times to generate crossover information including about 100 chromosomes.
- the apparatus 100 for determining optimal driving information randomly positions a segment among values according to whether a feed line is buried on an OLEV line included in each of two chromosomes randomly selected among first probability information (within about 70%). (Range) can be set, and the value corresponding to the set segment position (range) can be crossover.
- the optimal driving information determining apparatus 100 generates a second random number for each of crossover information including about 100 chromosomes, and generates a random number.
- Generate second probability information that selects only chromosomes within a predetermined probability (about 5%), and randomly selects one of the second probability information (chromosome information within about 5%) as shown in FIG. Only the chromosome is selected as the third chromosome, and one of the OLEV battery capacity values included in the selected chromosome and the value depending on whether or not the feed line is laid on the OLEV line is changed to another value, and the mutation process is performed about 100 times. Generate information.
- the optimum driving information determining apparatus 100 may shift the OLEV battery capacity value included in the selected chromosome to any other real number corresponding to the OLEV battery capacity value. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the variation unit 150 is '0 to 20' when the OLEV battery capacity value included in the selected chromosome is '15'. Is to change to a value other than '15'.
- the optimum driving information determining apparatus 100 may change the value according to whether the feed line is buried on the OLEV line to another value among the set binary numbers.
- the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and if the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value, the transition unit 150 The value depending on whether or not the feed line embedded in the second to sixth segments of the segments on the OLEV route included in the selected chromosome is set to another value (as shown in (c) of FIG. 4, 0,1,0,1, 1 ⁇ 1,0,1,0,0).
- FIG 5 is an exemplary view showing the speed according to the time of operation of the OLEV line according to the present embodiment.
- FIG. 5 is a graph showing speed according to time when a mobile vehicle (online electric vehicle) runs on an OLEV line, and the mobile vehicle (online electric vehicle) may achieve the same speed as the graph shown according to a preset route of the OLEV route. That is, the OLEV route is preset route information, and includes a preset station position value on the route information and starts again after a certain time stops (stays) for each corresponding station.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
The present invention relates to a method and apparatus for determining optimal operating information using optimal information, which involve setting at least one piece of information including the battery capacity of a moving body, a value depending on whether or not power feeding lines are embedded in a service route, the number of moving bodies, and stopover time information for power feeding at a station on the operating route, which are necessary for operating along the designated route and for electrically charging while moving, thereby minimizing costs.
Description
본 실시예는 최적 정보를 이용한 최적 운행 정보 결정 방법 및 장치에 관한 것이다. 더욱 상세하게는, 이동중에 전기를 충전하여 정해진 노선을 운행하기 위해 필요한, 이동체의 배터리 용량, 운행 노선 상의 급전 선로 매설 여부에 따른 값, 이동체 운행 댓수값 및 운행 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 정보를 노선 상의 급전 방식에 따라 설정하고, 그에 따른 비용을 최소화하기 위한 최적 정보를 이용한 최적 운행 정보 결정 방법 및 장치에 관한 것이다.The present embodiment relates to a method and apparatus for determining optimal driving information using optimal information. More specifically, the battery capacity of the moving body, the value according to whether the feed line is buried on the running line, the number of moving vehicles and the dwell time for feeding the station on the running line, which are necessary to charge the electricity while driving the line. The present invention relates to a method and apparatus for determining optimal driving information using optimal information for setting at least one of the information according to a power feeding method on a route and minimizing the cost.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the present embodiment and do not constitute a prior art.
온라인 전기 자동차(On-Line Electric Vehicle, 이하, OLEV라 함)는 기존의 전기 자동차와는 달리 운행 및 정차 중 도로에 매설된 케이블로부터 무선 방식으로 전기를 공급받아 운행하는 새로운 개념의 전기 자동차이다. OLEV가 케이블이 매설된 구간을 운행할 경우에는 무선 방식으로 전기를 공급받아 모터에 전기를 전달하고, 남는 전기는 배터리로 보내져 충전을 하게 되고, 케이블이 매설되지 않은 일반 도로 구간을 운행할 경우에는 보통의 전기 자동차처럼 배터리에서 모터로 전기를 공급하여 OLEV가 운행된다.On-line electric vehicles (hereinafter referred to as OLEVs), unlike conventional electric vehicles, are a new concept of electric vehicles that are powered by a wireless method from a cable buried in a road while driving and stopping. When the OLEV is driving a cable-embedded section, it is supplied with electricity by a wireless method to deliver electricity to the motor, and the remaining electricity is sent to the battery to charge the battery. Like ordinary electric cars, OLEVs operate by supplying electricity from batteries.
무선 충/급전을 위해서는 전기를 생성하는 인버터와 그것을 전달하는 케이블을 도로에 매설하여야 한다. 하나의 독립된 케이블 매설 구간에는 하나의 인버터가 함께 설치되고, OLEV는 하단에 설치된 픽업 장치(Pick-Up Device)를 통해 케이블의 전기를 무선 방식으로 공급받는다. 일반적으로 배터리 가격이 전기 자동차 가격의 40% 이상을 차지할 정도로 배터리는 비용이 높은 아이템이며, 전기자동차에 배터리를 많이 설치하면 설치할수록 배터리 비용도 많이 소요될 뿐만 아니라, 차량의 무게도 증가하여 운행시 전기 소모도 심해진다.For wireless charging / charging, an inverter that generates electricity and a cable that delivers it must be buried on the road. One inverter is installed together in one independent cable buried section, and OLEV is wirelessly supplied with cable power through a pick-up device installed at the bottom. In general, the battery is a high-cost item, so that the battery price is more than 40% of the price of the electric vehicle, the more the battery is installed in the electric vehicle, the more expensive the battery, the more the weight of the vehicle increases It also consumes more.
전기 자동차 시스템은 크게, 항상 케이블로부터 접촉 방식으로 전기를 공급받는 경우(a, 예컨대, 전철, 노면전차)와, 운행 중 충/급전 없이 자체 배터리로부터 전기를 공급받는 경우(b, 예컨대, 일반적인 전기 자동차), 이렇게 2가지로 구분할 수 있다. 항상 케이블로부터 접촉 방식으로 전기를 공급받는 경우(a)는 배터리가 장착되어 있지 않기 때문에 배터리 용량 및 비용을 고려할 필요가 없다. 운행하는 모든 구간에 케이블을 설치해야 하기 때문에 케이블 설치 여부에 대한 고려도 불필요하다. 하지만, 많은 케이블 구축으로 인한 미관, 환경상의 문제가 있다. 운행 중 충/급전 없이 자체 배터리로부터 전기를 공급받는 경우(b)에는 배터리 용량을 고려해야 하지만 이는 비용 측면보다 자동차의 용도에 의해 결정되는 경우가 대부분이고, 전기 자동차의 판매가에 직접적으로 영향을 준다(예컨대, 공장 내, 골프장 등 단거리 주행용: 작은 배터리 용량, 도시 내에서만 운행되는 시티형 전기 자동차: 중간 정도의 배터리 용량, 일반적인 자동차 용도의 전기 자동차: 큰 배터리 용량). 그러므로 이 경우 비용측면에서의 케이블 구축 및 배터리 용량 결정은 크게 고려할 사항이 아니다.Electric vehicle systems are largely always powered from a cable by means of contact (eg, trains, streetcars) and when powered from their own battery without charging / charging while driving (b, eg, general electricity). Car), and can be divided into two. In the case where the electricity is always supplied from the cable in a contact manner (a), the battery capacity and cost need not be considered because the battery is not installed. Since cables must be installed in all sections of the road, no consideration is needed. However, there are aesthetic and environmental problems due to many cable constructions. (B) If the battery is supplied from its own battery without charging / charging while driving, the battery capacity should be taken into account, but this is often determined by the use of the vehicle rather than the cost side, and directly affects the selling price of the electric vehicle. For example, for short-distance driving in factories, golf courses, etc .: small battery capacity, city-type electric vehicles running only in cities: medium battery capacity, electric vehicles for general automotive use: large battery capacity). Therefore, in this case, cable construction and battery capacity determination in terms of cost are not a big consideration.
신 개념의 전기 자동차인 OLEV의 경우 위의 두 가지 형태의 절충형으로, 두 가지 형태의 장점을 취할 수 있어 최소의 비용 및 여러 장점을 가진 친환경적인 전기 자동차 운행 체계를 갖출 수 있을 것으로 판단되나, 비용 최소화를 극대화하기 위해서는 위의 두 가지 형태와는 달리 최적의 배터리 용량과, 충/급전 케이블의 매설 구간을 결정해야 할 필요가 있다.In the case of OLEV, a new concept electric vehicle, it is possible to have two types of trade-offs, which can take advantage of two types of eco-friendly electric vehicle operation system with minimum cost and many advantages. In order to maximize cost minimization, it is necessary to determine the optimal battery capacity and the charging / discharging section of the charging cable, unlike the above two types.
전술한 문제점을 해결하기 위해 본 실시예는 이동체의 배터리 용량, 운행 노선 상의 급전 선로 매설 여부에 따른 값, 이동체 운행 댓수값 및 운행 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 정보를 노선 상의 급전 방식에 따라 설정하고, 그에 따른 비용을 최소화하기 위한 최적 정보를 이용한 최적 운행 정보 결정 방법 및 장치를 제공하는 데 주된 목적이 있다.In order to solve the above-described problems, the present embodiment provides at least one or more information of a battery capacity of a moving object, a value according to whether a feed line is laid on a running route, a moving number of moving bodies, and dwell time information for feeding a station on a running route. The main purpose is to provide a method and apparatus for determining optimal driving information using optimal information for setting according to the power feeding method of the phase and minimizing the cost accordingly.
전술한 목적을 달성하기 위해 본 실시예의 일 측면에 의하면, OLEV(On-Line Electric Vehicle) 배터리 용량값, OLEV 노선(Route) 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체(Chromosome)를 기 설정된 개수로 설정한 초기 개체 정보를 생성하는 초기 개체군 설정부; 기 설정된 목적식(Objective Function)과 제약식(Constraints)을 각각의 상기 염색체에 적용하여 비용 정보를 산출하는 적합도 측정부; 상기 초기 개체 정보와 상기 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성하는 선택부; 상기 최소 비용 염색체에 포함된 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성하는 크로스오버부; 상기 크로스오버 정보에 포함된 상기 OLEV 배터리 용량값과 상기 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성하는 변이부; 상기 변이 정보가 기 설정된 개수만큼 생성되고, 상기 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 상기 변이 정보의 생성을 종료하는 종료 결정부; 및 상기 기 설정된 퍼센트 이상으로 동일한 상기 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 상기 최적값을 최적 운행 정보로 결정하는 최적 정보 결정부를 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치를 제공한다.According to an aspect of the present embodiment to achieve the above object, the value of the on-line electric vehicle (OLEV) battery capacity value, the value according to whether the feed line is laid on the OLEV route, the number of OLEV operation and the station on the OLEV route An initial population group setting unit configured to generate initial population information in which a predetermined number of chromosomes including at least one or more values of residence time information for feeding powers as coefficients; A fitness measurer for calculating cost information by applying predetermined objective functions and constraints to each of the chromosomes; A selection unit generating minimum cost chromosome information based on at least one of the initial individual information and the cost information; A crossover unit configured to generate crossover information by crossovering a part of a value depending on whether a feed line is embedded on the OLEV line included in the least cost chromosome; A transition unit for generating transition information in which any one of the OLEV battery capacity value included in the crossover information and a value depending on whether the feed line is buried is changed to another value; An end determination unit for terminating generation of the variation information when the variation information is generated by a predetermined number and the variation information is equal to or more than a preset percentage; And at least one of an OLEV battery capacity value included in the variation information equal to or more than the preset percentage, a value according to whether a feed line is buried on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line. According to the present invention, there is provided an optimum driving information determining apparatus using the optimum information, characterized in that it comprises an optimal information determining unit for determining the optimum value as the optimum driving information.
또한, 본 실시에의 다른 측면에 의하면, OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체를 기 설정된 개수로 설정한 초기 개체 정보를 생성하는 초기 개체군 설정 과정(Initial Population); 기 설정된 목적식과 제약식을 각각의 상기 염색체에 적용하여 비용 정보를 산출하는 적합도 측정 과정(Fitness Function); 상기 초기 개체 정보와 상기 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성하는 선택 과정(Selection); 상기 최소 비용 염색체에 포함된 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성하는 크로스오버 과정(Crossover); 상기 크로스오버 정보에 포함된 상기 OLEV 배터리 용량값과 상기 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성하는 변이 과정(Mutation); 상기 변이 정보가 기 설정된 개수만큼 생성되고, 상기 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 상기 변이 정보의 생성을 종료하는 종료 결정 과정(End Criterion); 및 상기 기 설정된 퍼센트 이상으로 동일한 상기 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 상기 최적값을 최적 운행 정보로 결정하는 최적 정보 결정 과정을 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법을 제공한다.According to another aspect of the present embodiment, at least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line are counted. An initial population setting process of generating initial object information in which initial object information is set to a predetermined number of chromosomes including an initial population; A fitness function measuring process of calculating cost information by applying a predetermined objective and a constraint to each of the chromosomes; A selection process of generating minimum cost chromosome information based on at least one of the initial individual information and the cost information; A crossover process of generating crossover information by crossing over a part of values according to whether a feed line is embedded on the OLEV line included in the least cost chromosome; A mutation process of generating variation information in which any one of the OLEV battery capacity value included in the crossover information and a value according to whether the feed line is buried is changed to another value; An end determination process of ending generation of the variation information when the variation information is generated by a predetermined number and the variation information is equal to or more than a preset percentage; And at least one of an OLEV battery capacity value included in the variation information equal to or more than the preset percentage, a value according to whether a feed line is buried on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line. The present invention provides a method for determining optimal driving information using optimal information, comprising: determining a value as an optimal value, and determining an optimal information as the optimal driving information.
이상에서 설명한 바와 같이 본 실시예에 의하면, 이동중에 전기를 충전하여 정해진 노선을 운행하기 위해 필요한, 이동체의 배터리 용량, 운행 노선 상의 급전 선로 매설 여부에 따른 값, 이동체 운행 댓수값 및 운행 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 정보를 노선 상의 급전 방식에 따라 설정하고, 그에 따른 비용을 최소화할 수 있는 효과가 있다. 또한, 본 실시예에 의하면, 따라서 최소의 투자비로 최적의 OLEV 운행 체계를 구축할 수 있는 효과가 있다.As described above, according to the present embodiment, the battery capacity of the moving body, the value according to whether the feed line is laid on the running route, the number of moving bodies and the station on the running route, which are necessary for charging electricity while moving At least one or more information of the residence time information for power supply of the line is set according to the power supply method on the route, and thus the cost can be minimized. In addition, according to the present embodiment, therefore, there is an effect that an optimal OLEV operating system can be constructed at a minimum investment cost.
도 1은 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 장치를 개략적으로 나타낸 블럭 구성도,1 is a block diagram schematically illustrating an apparatus for determining optimal driving information using optimal information according to the present embodiment;
도 2는 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 방법을 설명하기 위한 순서도,2 is a flowchart illustrating a method of determining optimal driving information using optimal information according to the present embodiment;
도 3은 본 실시예에 따른 OLEV 노선과 세그먼트를 설명하기 위한 예시도,3 is an exemplary diagram for explaining an OLEV line and a segment according to the present embodiment;
도 4는 본 실시예에 따른 초기 개체 설정, 크로스오버 및 변이를 설명하기 위한 예시도,4 is an exemplary diagram for explaining initial entity setting, crossover, and variation according to the present embodiment;
도 5는 본 실시예에 따른 OLEV 노선의 운행시 시간에 따른 속도를 나타낸 예시도이다.5 is an exemplary view showing the speed according to the time of operation of the OLEV line according to the present embodiment.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings.
도 1은 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 장치를 개략적으로 나타낸 블럭 구성도이다.1 is a block diagram schematically illustrating an apparatus for determining optimum driving information using optimal information according to the present embodiment.
본 실시예에 따른 최적 운행 정보 결정 장치(100)가 적용할 분야는 OLEV 분야가 될 수 있다. OLEV의 동작 원리에 대해 개략적으로 설명하자면 다음과 같다. 온라인 전기 자동차가 도로 위를 주행하는 중에 도로에 구비된 급전 장치에 고주파의 전력이 공급되면 급전 장치와 전기 자동차에 구비된 집전 장치 사이의 전자기유도의 원리에 의해 주행에 필요한 전력을 공급받게 된다.The field to be applied to the optimum driving information determining apparatus 100 according to the present embodiment may be an OLEV field. The general principle of the operation of OLEV is as follows. When the high-speed electric power is supplied to the power feeding device provided on the road while the online electric vehicle is traveling on the road, the electric power required for driving is supplied by the principle of electromagnetic induction between the power feeding device and the current collecting device provided in the electric vehicle.
이러한, OLEV 분야에서 온라인 전기 자동차가 노선으로 운행되기 위해서는 크게 두 가지 요소에서 많은 비용이 소요되는데, 온라인 전기 자동차에 구비되는 배터리와 도로에 급전 선로를 매설하기 위해 필요한 비용이다. 이러한, 온라인 전기 자동차에 구비되는 배터리와 도로에 매설되는 급전 선로의 구간을 최적으로 추출해야지만, 온라인 전기 자동차가 최소의 비용으로 최적의 운행이 가능한 것이다. 즉, 온라인 전기 자동차에 구비되는 배터리와 도로에 급전 선로를 매설하기 위해 필요한 비용을 절감할수록 OLEV 분야에 투자 비용을 최소화할 수 있다.In the field of OLEV, on-line electric vehicles are very expensive in two factors, which are necessary for embedding a feed line on a battery and a road provided in the on-line electric vehicle. Such a section of the battery provided in the online electric vehicle and the feeder line embedded in the road should be extracted optimally, but the online electric vehicle may be operated at the minimum cost. In other words, the lower the cost of embedding a feed line on a battery and a road provided in an online electric vehicle, the more the investment cost in the OLEV field can be minimized.
본 실시예에서의 온라인 전기 자동차의 경우 운행 노선이 기 설정된 것으로 가정한다. 즉, 온라인 전기 자동차가 적용될 수 있다고 판단되는 장소를 보건대 '버스 전용차선', '놀이공원 열차', '공항 내 열차', '행정중심복합도시' 등과 같이 노선이 기 설정된 곳에 적용될 여지가 높다.In the case of the online electric vehicle according to the present embodiment, it is assumed that a driving route is preset. In other words, there is a high possibility that a place where online electric vehicles can be applied may be applied to a predetermined route such as a bus lane, an amusement park train, an airport train, and an administrative city.
한편, 본 실시예에 따른 온라인 전기 자동차와 도로에 매설된 급전 선로의 동작 원리에 대해 설명하자면 다음과 같다. 온라인 전기 자동차는 집전 장치를 구비하는데, 이러한 집전 장치는 도로에 매설되는 급전 장치에 의한 유도기전력을 형성하여 온라인 전기 자동차로 전원을 공급하는 장치를 말한다. 즉, 집전 장치는 이동체(예컨대 전기 자동차)에 설치될 수 있다. 이동체는 차량인 것이 바람직하나, 반드시 이에 한정되는 것은 아니며, 전기로 구동될 수 있는 버스, 기차, 크레인 또는 모토바이크 등에 폭넓게 적용될 수 있을 것이다. 한편, 이동체에 결합되는 집전 장치에는 전압 조절부(Regulator)가 탑재된다. 이때, 전압 조절부는 직류 전력을 얻기 위해서, 정류 소자로 정류한 후 부하(Load)에 맞게 전압 또는 전류를 조절한다.On the other hand, the operation principle of the on-line electric vehicle and the feed line embedded in the road according to the present embodiment are as follows. An online electric vehicle includes a current collector, which refers to a device that forms an induced electromotive force by a power supply device embedded in a road and supplies power to the online electric vehicle. That is, the current collector may be installed in a moving body (for example, an electric vehicle). The moving body is preferably a vehicle, but is not necessarily limited thereto, and may be widely applied to a bus, a train, a crane, or a motorbike that can be electrically driven. On the other hand, the current collector coupled to the moving body is equipped with a voltage regulator (Regulator). At this time, in order to obtain the DC power, the voltage adjusting unit rectifies the rectifying element and adjusts the voltage or current according to the load.
여기서, 집전 장치는 집전 유닛을 포함하는데, 집전 유닛이란 주행 중인 전기 자동차에 전원을 공급하는 집전 장치의 일부를 말한다. 이러한, 전기 자동차에서의 집전 유닛에 대해 간략히 설명하자면, 전기 자동차가 주행하는 중에 도로에 매설된 급전 장치(전기 공급로)부터 전원을 공급받는다. 이러한 급전 장치(전기 공급로)는 전기 자동차의 진행방향으로 일정한 간격을 두고 연속하여 설치되는 다수의 전선과, 서로 이웃하는 전선 사이의 간격에 배치되며 자성을 갖고 서로 이웃하는 전선을 전기적으로 절연시키는 절연 자성체를 구비한다. 즉, 집전 장치는 자속이 유기되는 집전 코어 및 집전 코어에 권취되는 집전 케이블을 포함하며 급전 유닛과 자속에 의해 자기적으로 커플링되는 집전 유닛을 이용하여 급전 장치로부터 형성된 유도기전력을 공급받는다. Here, the current collector includes a current collector unit, which refers to a part of the current collector that supplies power to an electric vehicle that is running. To briefly describe the current collecting unit in the electric vehicle, power is supplied from a power feeding device (electric supply path) embedded in the road while the electric vehicle is traveling. Such a power supply device (electric supply path) is a plurality of wires that are continuously installed at regular intervals in the direction of the electric vehicle, and are arranged in the gap between the wires adjacent to each other and magnetically and electrically insulates the wires adjacent to each other. An insulating magnetic body is provided. That is, the current collector includes a current collector core in which magnetic flux is induced and a current collector cable wound on the current collector core, and is supplied with an induced electromotive force formed from the power feeding device by using the current collector unit magnetically coupled by the power supply unit and the magnetic flux.
한편, 급전 장치는 온라인 전기 자동차의 노선에 대응되어 구현될 수 있으며, 급전 전원을 포함한다. 여기서, 급전 전원은 인버터를 말한다. 또한, 차로(즉, 도로)의 내부인 아스팔트에 일부 매설될 수 있다. 즉, 도로 상에 급전 코어 및 급전 전원을 포함하는 급전 장치를 매설하여 전기 자동차의 운행에 필요한 전력을 충전하는 방식을 사용하는 경우, 전기 자동차가 주행할 때 급전 케이블에 전류가 흘러 전력을 공급할 수 있다. 한편, 이러한, 급전 케이블을 여러 개의 세그먼트(Segments)로 나누어 구현될 수 있으며, 진행중인 전기 자동차에 전력을 공급할 수 있다. 이때, 연속된 세그먼트 당 하나의 급전 전원(인버터)이 인가될 수 있다. 이러한, 급전 장치는 구비된 급전 전원으로부터 전력을 공급받고, 급전 전원에 연결된 급전 케이블에 흐르는 전류에 의해 발생되는 자속의 경로를 제공하는 급전 코어 및 급전 코어에 권취되는 급전 케이블을 포함하는 급전 유닛을 이용하여 자기유도 방식으로 온라인 전기 자동차에 전력을 공급한다. On the other hand, the power supply device may be implemented corresponding to the line of the online electric vehicle, and includes a power supply. Here, the power supply means an inverter. It may also be partially embedded in asphalt, which is the interior of the lane (ie road). That is, when a power feeding device including a power feeding core and a power supply power is embedded on the road to charge electric power required for driving the electric vehicle, electric current flows through the feed cable when the electric vehicle runs to supply power. have. On the other hand, such a feed cable can be implemented by dividing into several segments (segments), it is possible to supply power to the electric vehicle in progress. In this case, one feeding power (inverter) may be applied per continuous segment. Such a power supply device receives a power supply unit including a power supply core supplied with electric power from a provided power supply power source and providing a path of magnetic flux generated by a current flowing through a power supply cable connected to the power supply power supply, and a power supply cable wound around the power supply core. To power an online electric vehicle in a self-induced manner.
이하에서는, 이러한, 온라인 전기 자동차에 구비되는 최적의 배터리 용량과 온라인 전기 자동차의 노선에 대응되어 구현되는 급전 케이블의 최적의 매설 구간을 추출하기 위한 알고리즘(Algorithm)을 수행하기 위한 최적 운행 정보 결정 장치(100)에 대해 구체적으로 설명하도록 한다.Hereinafter, an apparatus for determining optimal driving information for performing an algorithm for extracting an optimal battery capacity included in an online electric vehicle and an optimal embedding section of a feeding cable implemented corresponding to a route of an online electric vehicle It will be described in detail with respect to (100).
본 실시예에 따른 최적 운행 정보 결정 장치(100)는 초기 개체군 설정부(110), 적합도 측정부(120), 선택부(130), 크로스오버부(140), 변이부(150), 종료 결정부(160) 및 최적 정보 결정부(170)를 포함한다. 본 실시예에서는 최적 운행 정보 결정 장치(100)가 초기 개체군 설정부(110), 적합도 측정부(120), 선택부(130), 크로스오버부(140), 변이부(150), 종료 결정부(160) 및 최적 정보 결정부(170)만을 포함하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 최적 운행 정보 결정 장치(100)에 포함되는 구성 요소에 대하여 다양하게 수정 및 변형하여 적용 가능할 것이다.The optimum driving information determining apparatus 100 according to the present embodiment includes an initial population group setting unit 110, a fitness measuring unit 120, a selection unit 130, a crossover unit 140, a transition unit 150, and an end determination. The unit 160 and the optimum information determiner 170 is included. In the present exemplary embodiment, the optimum driving information determining apparatus 100 includes an initial population group setting unit 110, a fitness measuring unit 120, a selection unit 130, a crossover unit 140, a transition unit 150, and an end determination unit. Although it is described as including only the 160 and the optimum information determiner 170, which is merely illustrative of the technical idea of the present embodiment, those skilled in the art to which this embodiment belongs Various modifications and variations to the components included in the optimum driving information determining apparatus 100 may be applied without departing from the essential characteristics of the examples.
한편, 본 실시예에 따른 OLEV 노선은 기 설정된 경로 정보로서, N 개의 세그먼트로 나누어져 있으며, 경로 정보 상에 기 설정된 스테이션 위치값을 포함하며, 각각의 세그먼트는 각기 다른 길이값을 가지며, 각각의 세그먼트마다 급전 선로 매설 여부에 따른 값을 갖는다. 이때, OLEV 배터리 용량값은 OLEV 노선 상의 세그먼트 중 ith 세그먼트의 끝 지점에서 Ihigh를 초과하지 않고, Ilow 이상을 유지하는 배터리 SOC로 설정된다. 또한, OLEV 배터리 용량값은 실수를 가지며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수를 갖는다. 예컨대, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가질 수 있으며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있다. 즉, OLEV 노선이 약 10개의 세그먼트로 구분된 경우, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 10개의 이진수로 이루어질 수 있는 것이다. 또한, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트마다 급전을 위한 급전 선로의 설치 여부에 따라 0 또는 1의 값을 갖는다. 여기서, 급전 선로에는 급전을 위한 인덕티브 케이블(Inductive Cable)이 설치될 수 있다.Meanwhile, the OLEV route according to the present embodiment is preset route information, which is divided into N segments, includes a preset station position value on the route information, and each segment has a different length value. Each segment has a value depending on whether a feed line is buried. At this time, the OLEV battery capacity value is set to a battery SOC that does not exceed I high at an end point of the i th segment of the segment on the OLEV line and maintains I low or more. In addition, the OLEV battery capacity value has a real number, and the value according to whether the feed line is buried on the OLEV line has a binary number. For example, the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 10 segments, a value depending on whether the feed line is buried on the OLEV line may be 10 binary numbers. In addition, the value according to whether the feed line is buried on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment. Here, an inductive cable for power feeding may be installed in the feed line.
초기 개체군 설정부(110)는 OLEV 배터리 용량값, OLEV 노선(Route) 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체(Chromosome)를 기 설정된 개수로 설정한 초기 개체 정보를 생성한다. 여기서, 초기 개체군 설정부(110)는 염색체를 약 100개의 개수로 설정할 수 있으나 반드시 이에 한정되는 것은 아니다. 한편, 초기 개체군 설정부(110)는 염색체를 설정하는 과정을 설명하자면, 초기 개체군 설정부(110)는 염색체를 랜덤(Random)하게 설정하거나 사용자의 조작 또는 명령에 의해 설정할 수 있다.The initial population setting unit 110 counts at least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV route, a number of OLEV service numbers, and dwell time information for feeding a station on an OLEV route. Initial object information is set in which a predetermined number of chromosomes are included. Here, the initial population setting unit 110 may be set to about 100 chromosomes, but is not necessarily limited thereto. Meanwhile, to describe the process of setting the chromosome, the initial population setting unit 110 may set the chromosome randomly or set by a user's manipulation or command.
또한, 초기 개체군 설정부(110)는 제 1 모델 방식 또는 제 2 모델 방식 중 어느 하나의 방식을 이용하여 염색체를 설정하되, 제 1 모델 방식 또는 제 2 모델 방식에 따라 염색체에 포함되는 계수를 배열한다. 여기서, 제 1 모델 방식이란 OLEV가 OLEV 노선 상의 모든 스테이션을 일회 완주한 상태에서 종착 스테이션에서 급전을 통해 배터리 SOC(State Of Charge)를 확보하는 방식을 말한다. 한편, 제 2 모델 방식이란 OLEV가 운행 중에 OLEV 노선 상 각각의 스테이션마다 체류할 때 급전을 통해 배터리 SOC를 확보하는 방식을 말한다.In addition, the initial population setting unit 110 sets the chromosome using any one of the first model method or the second model method, and arranges the coefficients included in the chromosome according to the first model method or the second model method. do. Here, the first model method refers to a method in which the OLEV secures a battery state of charge (SOC) by feeding power from a terminal station in a state where all stations on the OLEV line have been completed once. Meanwhile, the second model method refers to a method of securing battery SOC through power supply when OLEV stays at each station on an OLEV line while driving.
한편, 염색체에 포함되는 계수 배열 과정에 대해 보다 구체적으로 설명하자면, 초기 개체군 설정부(110)는 제 1 모델 방식을 이용하는 경우 OLEV 배터리 용량값, OLEV 운행 댓수값, OLEV 노선 상 종착 스테이션에서 급전을 위한 체류 시간 정보 및 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 염섹체에 포함되는 계수를 배열한다. 초기 개체군 설정부(110)는 제 2 모델 방식을 이용하는 경우 OLEV 배터리 용량값, OLEV 운행 댓수값, OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 및 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 염섹체에 포함되는 계수를 배열한다.On the other hand, in more detail with respect to the counting arrangement included in the chromosome, the initial population setting unit 110 when the first model method using the OLEV battery capacity value, the OLEV running number value, the power supply at the destination station on the OLEV route The coefficients included in the salt sector are arranged in the order of the residence time information and the value according to whether the feed line is laid on the OLEV line. When using the second model, the initial population setting unit 110 in order of the OLEV battery capacity value, the number of OLEV operation number, the residence time information for feeding the station on the OLEV line and the value depending on whether or not the feed line is laid on the OLEV line Arrange the coefficients included in the salt sector.
한편, 염색체란 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 최적값을 추출하기 위한 일종의 초기 개체 정보로서, 적합도 측정부(120), 선택부(130), 크로스오버부(140), 변이부(150) 및 종료 결정부(160) 등을 거쳐 해당 값이 변화되므로, 본 실시예에서는 염색체로 정의하여 설명토록 한다.On the other hand, the chromosome is a kind of initial individual information for extracting the optimum value of the OLEV battery capacity value and the value depending on whether the feed line is buried on the OLEV line, the fitness measure unit 120, the selector 130, the crossover unit 140 ), Since the corresponding value is changed through the transition unit 150, the termination determination unit 160, and the like, the present invention will be described as being defined as a chromosome.
적합도 측정부(120)는 기 설정된 목적식(Objective Function)과 제약식(Constraints)을 초기 개체군 설정부(110)를 통해 설정된 각각의 염색체에 적용하여 비용 정보를 산출한다. 가령, 적합도 측정부(120)는 약 100개의 염색체 각각에 목적식과 제약식을 적용할 수 있으며, 약 100개의 염색체 각각에 대한 약 100개의 비용 정보를 산출할 수 있다.The fitness measurer 120 calculates cost information by applying a predetermined objective function and constraints to each chromosome set through the initial population setter 110. For example, the fitness measurer 120 may apply an objective formula and a pharmaceutical formula to each of about 100 chromosomes, and calculate about 100 cost information for each of about 100 chromosomes.
한편, 적합도 측정부(120)에서 적용하는 목적식은 [수학식 1]과 같다.On the other hand, the objective formula applied by the fitness measure unit 120 is the same as [Equation 1].
(k: OLEV의 운행 댓 수, Cvehicle: OLEV 기본 가격, Cbattery: OLEV 단위당 OLEV 배터리의 용량당 가격, Imax: OLEV 배터리 용량, Cinverter: 인버터 개당 가격, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0, Ccable: OLEV 경로상 매설되는 케이블 단위 미터당 가격, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, l(i): ith 세그먼트에 길이 정보)(k: OLEV operation, C vehicle : OLEV base price, C battery : OLEV battery price per unit of capacity, I max : OLEV battery capacity, C inverter : price per inverter , y (i): i th segment 1, 0 when not installed, C cable : price per meter of cable buried in the OLEV path, x (i): i th 1 when inductive cable is installed in segment, 0, l (i): i th Length information on the segment)
한편, 적합도 측정부(120)에서 제 1 모델에 따라 적용하는 제약식은 [수학식 2]와 같다.On the other hand, the constraint applied by the fitness measurer 120 according to the first model is as shown in [Equation 2].
(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, s(i): ith 세그먼트에서의 배터리 급전량, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, d(i): ith 세그먼트에서의 배터리 소모량, tcs: 종착 스테이션에서의 급전 시간 정보, ICS: OLEV가 급전 선로(인덕티브 케이블) 상에 존재할 때, 단위시간당 급전량, T: OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, s (i): battery feed at i th segment, x (i): 1 when inductive cable is installed on i th segment, 0 when not installed, d (i): Battery consumption in segment i th , t cs : Feed time information at destination station, I CS : Feed amount per unit time when OLEV is on feed line (inductive cable), T: OLEV line Time required to complete all stations on the network once, t interval : Information on the time interval of the OLEV running, L: total line length information, y (i): 1 when the inverter is installed on the i th segment, 0 when not installed)
한편, 적합도 측정부(120)에서 제 2 모델에 따라 적용하는 제약식은 [수학식 3]과 같다.On the other hand, the constraint applied by the fitness measurer 120 according to the second model is the same as [Equation 3].
(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, s(i): ith 세그먼트에서의 배터리 급전량, z(i): ith 세그먼트에서 스테이션 존재시 1, 미존재시 0, tcs(i): 각 스테이션에서의 급전 시간 정보, d(i): ith 세그먼트에서의 배터리 소모량, T: OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, k: OLEV의 운행 댓 수, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, x (i): 1 with inductive cable installed on i th segment, 0 without, s (i): battery feed at i th segment, z (i): 1 in station i in segment i th , 0 in absence, t cs (i): Feed time information in each station, d (i): battery consumption in segment i th , T: OLEV route time information required to once finish to all stations on, k: number of station daet of OLEV, t interval: Service time interval OLEV that vehicle management information, L: entire line length information, y (i): inverter for i th segment 1 when installed, 0 when not installed)
선택부(130)는 초기 개체군 설정부(110)를 통해 생성된 초기 개체 정보와 적합도 측정부(120)를 통해 생성된 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성한다. 여기서, 선택부(130)가 최소 비용 염색체 정보를 생성하는 과정에 대해 보다 구체적으로 설명하자면 다음과 같다. 선택부(130)는 초기 개체 정보 중 랜덤하게 복수의 염색체인 제 1 염색체를 선별하고, 선별된 제 1 염색체의 각각의 비용 정보에 근거하여 최소 비용을 갖는 염색체를 선택한 최소 비용 염색체 정보를 생성한다. The selector 130 generates minimum cost chromosome information based on at least one or more of initial object information generated by the initial population setter 110 and cost information generated by the fitness measurer 120. Here, the process of generating the minimum cost chromosome information by the selector 130 will be described in more detail as follows. The selector 130 randomly selects a first chromosome which is a plurality of chromosomes among initial individual information, and generates minimum cost chromosome information on which a chromosome having a minimum cost is selected based on each cost information of the selected first chromosome. .
즉, 선택부(130)는 초기 개체 정보 중 랜덤하게 두 개의 염색체인 제 1 염색체를 선별하고, 선별된 두 개의 염색체 각각의 비용 정보에 근거하여 두 개의 염색체 중 최소 비용을 갖는 한 개의 염색체를 선택하며, 최소 비용 염색체를 선별하는 과정을 기 설정된 횟수만큼 반복한 최소 비용 염색체 정보를 생성한다. 예컨대, 선택부(130)는 약 100개의 초기 개체 정보 중 랜덤하게 두 개의 염색체인 제 1 염색체를 선별하고, 선별된 두 개의 염색체 각각의 비용 정보에 근거하여 두 개의 염색체 중 최소 비용을 갖는 한 개의 염색체를 선택하는 과정을 약 100번 수행하여 약 100개의 염색체를 포함하는 최소 비용 염색체 정보를 생성할 수 있다.That is, the selector 130 randomly selects the first chromosome, which is two chromosomes, among the initial individual information, and selects one chromosome having the minimum cost among the two chromosomes based on the cost information of each of the selected two chromosomes. The minimum cost chromosome information is generated by repeating the process of selecting the minimum cost chromosome a predetermined number of times. For example, the selector 130 randomly selects the first chromosome, which is two chromosomes, from among about 100 initial individual information, and selects one of the two chromosomes having the minimum cost based on the cost information of each of the two selected chromosomes. Selecting a chromosome may be performed about 100 times to generate minimum cost chromosome information including about 100 chromosomes.
크로스오버부(140)는 선택부(130)를 통해 생성된 최소 비용 염색체에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성한다. 여기서, 크로스오버부(140)가 크로스오버 정보를 생성하는 과정을 보다 구체적으로 설명하자면 다음과 같다. 크로스오버부(140)는 최소 비용 염색체 중 랜덤하게 한 쌍의 염색체인 제 2 염색체를 선별하고, 한 쌍의 염색체 상호 간에 OLEV 배터리 용량값 및 OLEV 멀티 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성한다. The crossover unit 140 generates crossover information that crosses a part of values depending on whether a feed line is embedded on an OLEV line included in the minimum cost chromosome generated by the selector 130. Here, the process of generating the crossover information by the crossover unit 140 will be described in more detail as follows. The crossover unit 140 randomly selects a second chromosome, which is a pair of chromosomes, and selects a part of the OLEV battery capacity value between the pair of chromosomes and the value depending on whether the feed line is laid on the OLEV multi-line. Generates crossover information that has been crossover.
즉, 크로스오버부(140)는 최소 비용 염색체 정보의 각각에 대한 제 1 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률 이내에 해당하는 염색체만을 선별한 제 1 확률 정보를 생성하고, 제 1 확률 정보 중 랜덤하게 두 개의 염색체인 제 2 염색체를 선별하고, 두 개의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버하며, 크로스오버를 기 설정된 횟수만큼 반복한 크로스오버 정보를 생성한다. 예컨대, 크로스오버부(140)는 약 100개의 염색체를 포함하는 최소 비용 염색체 정보의 각각에 대한 제 1 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 70 %) 이내에 해당하는 염색체만을 선별한 제 1 확률 정보를 생성하고, 제 1 확률 정보(약 70 % 이내) 중 랜덤하게 두 개의 염색체인 제 2 염색체를 선별하고, 두 개의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부(예컨대, 두 번째 세그먼트 내지 네 번째 세그먼트)를 크로스오버하는 과정을 약 50번 수행하여 약 100개의 염색체를 포함하는 크로스오버 정보를 생성할 수 있다. 여기서, 제 1 랜덤 넘버는 무질서하게 흩어져 있는 집합 속에서 여러가지 샘플을 수집하고자 할 때 어떤 확률을 가지고, 한쪽으로 치우침없이 샘플을 수집할 수 있도록 배열된 수의 집합인 난수의 발생을 의미한다.That is, the crossover unit 140 generates a first random number for each of the minimum cost chromosome information, generates first probability information that selects only chromosomes within a predetermined probability among random numbers, and generates first probability information. Randomly selects two chromosomes, the second chromosome, crosses some of the values depending on whether the feed line is laid on the OLEV line between the two chromosomes, and generates crossover information by repeating the crossover a predetermined number of times; do. For example, the crossover unit 140 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 70%) among the random numbers. Generates first probability information, randomly selects a second chromosome from the first probability information (within about 70%), and selects a part of values according to whether or not the feed line is buried on the OLEV line between the two chromosomes ( For example, crossover of the second to fourth segments may be performed about 50 times to generate crossover information including about 100 chromosomes. Here, the first random number refers to the generation of random numbers, which is a set of numbers arranged to collect the samples without any bias and have a certain probability when collecting various samples in a disorderly scattered set.
한편, 크로스오버부(140)는 두 개의 염색체의 각각에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 랜덤하게 범위를 설정하며, 설정된 범위에 해당하는 값을 크로스오버한다. 가령, 크로스오버부(140)는 제 1 확률 정보(약 70 % 이내) 중 랜덤하게 선별된 두 개의 염색체의 각각에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 랜덤하게 세그먼트의 위치(범위)를 설정하며, 설정된 세그먼트 위치(범위)에 해당하는 값을 크로스오버할 수 있다.Meanwhile, the crossover unit 140 randomly sets a range among values according to whether a feed line is embedded on an OLEV line included in each of the two chromosomes, and crossovers a value corresponding to the set range. For example, the crossover unit 140 may randomly position (range) a value of a value according to whether a feed line is embedded on an OLEV line included in each of two randomly selected chromosomes among first probability information (within about 70%). ) And crossover the value corresponding to the set segment position (range).
변이부(150)는 크로스오버 정보에 포함된 OLEV 배터리 용량값과 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성한다. 여기서, 변이부(150)가 변이 정보를 생성하는 과정에 대해 보다 구체적으로 설명하자면 다음과 같다. 변이부(150)는 크로스오버부(140)를 통해 생성된 크로스오버 정보 중 랜덤하게 제 3 염색체를 선택하고, 제 3 염색체 내에 포함된 OLEV 배터리 용량값과 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성한다.The transition unit 150 generates transition information in which any one of an OLEV battery capacity value included in the crossover information and a value depending on whether a feed line is embedded is changed to another value. Here, the process of generating the variation information by the variation unit 150 will be described in more detail as follows. The mutation unit 150 randomly selects a third chromosome from the crossover information generated by the crossover unit 140, and selects one of the OLEV battery capacity included in the third chromosome and a value according to whether a feed line is embedded. Generates variation information in which V is mutated to another value.
즉, 변이부(150)는 크로스오버부(140)를 통해 생성된 크로스오버 정보의 각각에 대한 제 2 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률 이내에 해당하는 염색체만을 선별한 제 2 확률 정보를 생성하고, 제 2 확률 정보 중 랜덤하게 한 개의 염색체만을 제 3 염색체로 선택하고, 선택된 염색체 내에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이시키며, 이러한 변이 과정을 기 설정된 횟수만큼 반복한 변이 정보를 생성한다. 여기서, 제 2 랜덤 넘버는 무질서하게 흩어져 있는 집합 속에서 여러가지 샘플을 수집하고자 할 때 어떤 확률을 가지고, 한쪽으로 치우침없이 샘플을 수집할 수 있도록 배열된 수의 집합인 난수의 발생을 의미한다. 예컨대, 변이부(150)는 약 100개의 염색체를 포함하는 크로스오버 정보의 각각에 대한 제 2 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 5 %) 이내에 해당하는 염색체만을 선별한 제 2 확률 정보를 생성하고, 제 2 확률 정보(약 5 % 이내의 염색체 정보) 중 랜덤하게 한 개의 염색체만을 제 3 염색체로 선택하고, 선택된 염색체 내에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이시키며, 이러한 변이 과정을 약 100번을 수행한 변이 정보를 생성한다.That is, the variation unit 150 generates a second random number for each of the crossover information generated through the crossover unit 140 and second probability information that selects only chromosomes corresponding to a predetermined probability among random numbers. And randomly select only one chromosome as the third chromosome among the second probability information, and change one of the OLEV battery capacity value included in the selected chromosome and the value depending on whether the feed line is buried on the OLEV line to another value. And generating variation information by repeating the variation process a predetermined number of times. Here, the second random number means the generation of a random number which is a set of numbers arranged to collect the samples without any bias and have a certain probability when collecting various samples in a disorderly scattered set. For example, the variation unit 150 generates a second random number for each of the crossover information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 5%) among the random numbers. Generate probability information, randomly select one chromosome among the second probability information (chromosome information within about 5%) as the third chromosome, and embed the OLEV battery capacity value included in the selected chromosome and the feed line on the OLEV line. One of the values according to the variable is transformed to another value, and the variation information is generated by performing this variation process about 100 times.
한편, 변이부(150)가 OLEV 배터리 용량값을 변이하는 과정에 대해 설명하자면, 변이부(150)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값을 다른값으로 변이할 때 OLEV 배터리 용량값에 해당하는 실수 중 어느 하나의 실수로 변이시킨다. 가령, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가지는 것으로 가정하는 경우, 변이부(150)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값이 '15'인 경우 '0 내지 20' 중 '15'를 제외한 다른값으로 변이시키는 것이다.On the other hand, to explain the process of the variation unit 150 to change the OLEV battery capacity value, the variation unit 150 corresponds to the OLEV battery capacity value when changing the OLEV battery capacity value contained in the selected chromosome to another value Mutes one of the mistakes. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the variation unit 150 is '0 to 20' when the OLEV battery capacity value included in the selected chromosome is '15'. Is to change to a value other than '15'.
한편, 변이부(150)가 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 변이하는 과정에 대해 설명하자면, 변이부(150)는 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 다른 값으로 변이할 때 설정된 이진수 중 다른 값으로 변이시킨다. 가령, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있으며, 세그먼트별로 OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수 값을 갖는 것으로 가정하는 경우, 변이부(150)는 선택된 염색체 내에 포함된 OLEV 노선 상의 세그먼트 중 두 번째 세그먼트 내지 여섯 번째 세그먼트에 포함된 급전 선로 매설 여부에 따른 값을 다른 값(0→1, 1→0)으로 변이시킬 수 있다.On the other hand, if the transition unit 150 to explain the process of changing the value according to whether the feed line is buried on the OLEV line, the transition unit 150 when the value of whether to embed the feed line on the OLEV line is changed to another value Change to another value among the set binary numbers. For example, the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and if the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value, the transition unit 150 The value according to whether the feed line embedded in the second to sixth segments of the segments on the OLEV route included in the selected chromosome may be changed to another value (0 → 1, 1 → 0).
종료 결정부(160)는 변이부(150)를 통해 변이 정보가 기 설정된 개수만큼 생성되고, 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 변이 정보의 생성을 종료한다. 즉, 종료 결정부(160)는 약 100개의 변이 정보를 생성한 후 변이 정보에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 위치 위치에 따른 값이 서로 약 95 %이상으로 동일해지는 경우, 변이부(150)를 통한 변이 정보의 생성을 중단하도록 한다. 만약, 95 %이상 동일 하지 않은 경우 현재의 변이 정보에 포함된 염색체 (집단)를 바탕으로 적합도 측정부(120)로 돌아가 적합도측정, 선택, 크로스오버, 변이를 다시 반복한다.The end determination unit 160 generates the variation information through the transition unit 150, and when the variation information is the same as the preset percentage or more, the generation of the variation information is terminated. That is, the termination determination unit 160 generates about 100 transition information, and when the OLEV battery capacity value included in the variation information and the value according to the position of the feed line embedding position on the OLEV line become equal to each other by about 95% or more, The generation of the variation information through the variation unit 150 may be stopped. If not equal to or greater than 95%, the fitness measurement unit 120 returns to the fitness measurement unit 120 based on the chromosome (group) included in the current variation information and repeats the fitness measurement, selection, crossover, and variation again.
최적 정보 결정부(170)는 기 설정된 퍼센트 이상으로 동일한 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 최적값을 최적 운행 정보로 결정한다. 즉, 최적 정보 결정부(170)는 약 95 % 이상으로 변이 정보가 동일해지는 경우, 실질적으로 초기 개체군 설정부(110), 적합도 측정부(120), 선택부(130), 크로스오버부(140) 및 변이부(150)의 동작 과정을 거쳐 생성된 변이 정보가 실질적으로 동일한 것으로 판단하여, 95 % 이상으로 동일한 변이 정보에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 최적값으로 결정할 수 있다.The optimum information determiner 170 determines the OLEV battery capacity value included in the same variation information by a predetermined percentage or more, a value according to whether a feed line is laid on an OLEV line, the number of running OLEV values, and a residence time for feeding a station on an OLEV line. At least one or more values of the information are determined as optimal values, and the optimum values are determined as optimal driving information. That is, when the variation information becomes equal to about 95% or more, the optimal information determiner 170 substantially includes the initial population setter 110, the fitness measure 120, the selector 130, and the crossover 140. And the variation information generated through the operation of the transition unit 150 are substantially the same, and the value according to whether or not the OLEV battery capacity value included in the same variation information is 95% or more and whether the feed line is buried on the OLEV line. The optimal value can be determined.
도 2는 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 방법을 설명하기 위한 순서도이다.2 is a flowchart illustrating a method of determining optimal driving information using optimal information according to the present embodiment.
온라인 전기 자동차에 구비되는 최적의 배터리 용량과 온라인 전기 자동차의 노선에 대응되어 구현되는 급전 케이블의 최적의 매설 구간을 추출하기 위한 최적 운행 정보 결정 장치(100)가 동작하는 과정에 대해 도 2를 통해 설명하도록 한다.The operation of the optimum driving information determining apparatus 100 for extracting the optimal battery capacity provided in the online electric vehicle and the optimum embedding section of the feed cable implemented in correspondence with the route of the online electric vehicle is shown in FIG. 2. Explain.
최적 운행 정보 결정 장치(100)는 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체를 기 설정된 개수로 설정한 초기 개체 정보를 생성한다(S210). 단계 S210에서, 최적 운행 정보 결정 장치(100)는 염색체를 약 100개의 개수로 설정할 수 있으나 반드시 이에 한정되는 것은 아니다. 한편, 최적 운행 정보 결정 장치(100)는 염색체를 랜덤하게 설정하거나 사용자의 조작 또는 명령에 의해 설정할 수 있다. The optimum driving information determining apparatus 100 includes, as a coefficient, at least one or more of an OLEV battery capacity value, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line as a coefficient. Initial object information is set in which a chromosome is set to a predetermined number (S210). In operation S210, the optimum driving information determining apparatus 100 may set the number of chromosomes to about 100 but is not limited thereto. Meanwhile, the optimum driving information determining apparatus 100 may set chromosomes randomly or by a user's manipulation or command.
이때, 최적 운행 정보 결정 장치(100)는 제 1 모델 방식 또는 제 2 모델 방식 중 어느 하나의 방식을 이용하여 염색체를 설정하되, 제 1 모델 방식 또는 제 2 모델 방식에 따라 염색체에 포함되는 계수를 배열한다. 여기서, 제 1 모델 방식이란 OLEV가 OLEV 노선 상의 모든 스테이션을 일회 완주한 상태에서 종착 스테이션에서 급전을 통해 배터리 SOC(State Of Charge)를 확보하는 방식을 말한다. 한편, 제 2 모델 방식이란 OLEV가 운행 중에 OLEV 노선 상 각각의 스테이션마다 체류할 때 급전을 통해 배터리 SOC를 확보하는 방식을 말한다.At this time, the optimum driving information determining apparatus 100 sets the chromosome by using any one of the first model method and the second model method, and calculates coefficients included in the chromosome according to the first model method or the second model method. Arrange. Here, the first model method refers to a method in which the OLEV secures a battery state of charge (SOC) by feeding power from a terminal station in a state where all stations on the OLEV line have been completed once. Meanwhile, the second model method refers to a method of securing battery SOC through power supply when OLEV stays at each station on an OLEV line while driving.
한편, 염색체에 포함되는 계수 배열 과정에 대해 보다 구체적으로 설명하자면, 최적 운행 정보 결정 장치(100)는 제 1 모델 방식을 이용하는 경우 OLEV 배터리 용량값, OLEV 운행 댓수값, OLEV 노선 상 종착 스테이션에서 급전을 위한 체류 시간 정보 및 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 염섹체에 포함되는 계수를 배열한다. 최적 운행 정보 결정 장치(100)는 제 2 모델 방식을 이용하는 경우 OLEV 배터리 용량값, OLEV 운행 댓수값, OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 및 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 염섹체에 포함되는 계수를 배열한다.On the other hand, the coefficient arrangement process included in the chromosome to be described in more detail, the optimum driving information determining apparatus 100, when using the first model method, the OLEV battery capacity value, the OLEV running number value, the power supply at the destination station on the OLEV route The coefficients included in the salt sector are arranged in the order of the residence time information and the value according to whether the feed line is laid on the OLEV line. When using the second model method, the optimum driving information determining apparatus 100 determines the order of the values according to the OLEV battery capacity value, the OLEV running number value, the residence time information for feeding the station on the OLEV line, and whether the feeding line is laid on the OLEV line. Arrange the coefficients contained in the salt sector.
최적 운행 정보 결정 장치(100)는 기 설정된 목적식과 제약식을 단계 S210을 통해 설정된 각각의 염색체에 적용하여 비용 정보를 산출한다(S220). 가령, 최적 운행 정보 결정 장치(100)는 약 100개의 염색체 각각에 목적식과 제약식을 적용할 수 있으며, 약 100개의 염색체 각각에 대한 약 100개의 비용 정보를 산출할 수 있다. 한편, 단계 S220에서 목적식은 [수학식 1]과 같으며, 제약식은 [수학식 2]와 같다. 이때, 최적 운행 정보 결정 장치(100)는 염색체가 [수학식 2]와 같은 제약식을 만족하지 못하는 경우, 해당 염색체의 비용 정보가 정상 범위를 초과하는 값으로 설정되도록 하여 선택부(130)에서 최소 비용 염색체 정보로 선택될 확률이 낮아지도록 할 수 있다.The optimum driving information determining apparatus 100 calculates cost information by applying the predetermined objective and constraint equations to the respective chromosomes set through step S210 (S220). For example, the optimum driving information determining apparatus 100 may apply an objective formula and a pharmaceutical formula to each of about 100 chromosomes, and calculate about 100 cost information for each of about 100 chromosomes. On the other hand, in step S220, the objective equation is the same as [Equation 1], the constraint is the same as [Equation 2]. In this case, when the chromosome does not satisfy the constraint such as [Equation 2], the optimal driving information determining apparatus 100 sets the cost information of the chromosome to a value exceeding a normal range so that the selection unit 130 performs the selection. It is possible to lower the probability of being selected as the least cost chromosome information.
최적 운행 정보 결정 장치(100)는 단계 S210을 통해 생성된 초기 개체 정보와 단계 S220을 통해 생성된 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성한다(S230). 단계 S230에서 최적 운행 정보 결정 장치(100)는 초기 개체 정보 중 랜덤하게 복수의 염색체인 제 1 염색체를 선별하고, 선별된 제 1 염색체의 각각의 비용 정보에 근거하여 최소 비용을 갖는 염색체를 선택한 최소 비용 염색체 정보를 생성한다. 즉, 최적 운행 정보 결정 장치(100)는 초기 개체 정보 중 랜덤하게 두 개의 염색체인 제 1 염색체를 선별하고, 선별된 두 개의 염색체 각각의 비용 정보에 근거하여 두 개의 염색체 중 최소 비용을 갖는 한 개의 염색체를 선택하며, 최소 비용 염색체를 선별하는 과정을 기 설정된 횟수만큼 반복한 최소 비용 염색체 정보를 생성한다. 예컨대, 최적 운행 정보 결정 장치(100)는 약 100개의 초기 개체 정보 중 랜덤하게 두 개의 염색체인 제 1 염색체를 선별하고, 선별된 두 개의 염색체 각각의 비용 정보에 근거하여 두 개의 염색체 중 최소 비용을 갖는 한 개의 염색체를 선택하는 과정을 약 100번 수행하여 약 100개의 염색체를 포함하는 최소 비용 염색체 정보를 생성할 수 있다.The optimum driving information determining apparatus 100 generates minimum cost chromosome information based on at least one or more information among initial individual information generated in step S210 and cost information generated in step S220 (S230). In operation S230, the optimum driving information determining apparatus 100 selects a first chromosome which is a plurality of chromosomes randomly among initial individual information, and selects a chromosome having a minimum cost based on each cost information of the selected first chromosome. Generate cost chromosome information. That is, the apparatus 100 for determining optimal driving information randomly selects the first chromosome, which is two chromosomes, among the initial individual information, and based on the cost information of each of the selected two chromosomes, one device having the minimum cost among the two chromosomes. The chromosome is selected and the minimum cost chromosome information is generated by repeating the process of selecting the minimum cost chromosome a predetermined number of times. For example, the optimal driving information determining apparatus 100 randomly selects the first chromosome, which is two chromosomes, from among about 100 initial individual information, and selects the minimum cost of the two chromosomes based on the cost information of each of the selected two chromosomes. The process of selecting one chromosome having about 100 times may be performed to generate minimum cost chromosome information including about 100 chromosomes.
최적 운행 정보 결정 장치(100)는 단계 S230을 통해 생성된 최소 비용 염색체에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성한다(S240). 단계 S240에서 최적 운행 정보 결정 장치(100)는 최소 비용 염색체 중 랜덤하게 한 쌍의 염색체인 제 2 염색체를 선별하고, 한 쌍의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성한다. 즉, 최적 운행 정보 결정 장치(100)는 최소 비용 염색체 정보의 각각에 대한 제 1 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률 이내에 해당하는 염색체만을 선별한 제 1 확률 정보를 생성하고, 제 1 확률 정보 중 랜덤하게 두 개의 염색체인 제 2 염색체를 선별하고, 두 개의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버하며, 크로스오버를 기 설정된 횟수만큼 반복한 크로스오버 정보를 생성한다. 예컨대, 최적 운행 정보 결정 장치(100)는 약 100개의 염색체를 포함하는 최소 비용 염색체 정보의 각각에 대한 제 1 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 70 %) 이내에 해당하는 염색체만을 선별한 제 1 확률 정보를 생성하고, 제 1 확률 정보(약 70 % 이내) 중 랜덤하게 두 개의 염색체인 제 2 염색체를 선별하고, 두 개의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부(예컨대, 두 번째 세그먼트 내지 네 번째 세그먼트)를 크로스오버하는 과정을 약 50번 수행하여 약 100개의 염색체를 포함하는 크로스오버 정보를 생성할 수 있다.The apparatus 100 for determining optimal driving information generates crossover information obtained by crossovering a part of values depending on whether a feed line is embedded on an OLEV line included in the minimum cost chromosome generated in operation S230 (S240). In operation S240, the apparatus 100 for determining optimal driving information randomly selects a second chromosome which is a pair of chromosomes among the least cost chromosomes, and crosses some of the values according to whether a pair of chromosomes are embedded with a feed line on an OLEV line. Generates excess crossover information. That is, the optimum driving information determining apparatus 100 generates a first random number for each of the minimum cost chromosome information, generates first probability information that selects only chromosomes corresponding to a predetermined probability among random numbers, and generates a first random number. The second chromosome, which is randomly selected from two chromosomes, is randomly selected from the probability information, the crossover information of the two chromosomes crosses a part of the values depending on whether the feed line is laid on the OLEV line, and the crossover is repeated a predetermined number of times. Create For example, the optimum driving information determining apparatus 100 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes, and only chromosomes corresponding to within a predetermined probability (about 70%) among random numbers are included. Generates the selected first probability information, randomly selects the second chromosome among the first probability information (within about 70%), and selects the second chromosome from among the values according to whether the feed lines are laid on the OLEV line between the two chromosomes. Crossover of a portion (eg, the second to fourth segments) may be performed about 50 times to generate crossover information including about 100 chromosomes.
한편, 최적 운행 정보 결정 장치(100)는 두 개의 염색체의 각각에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 랜덤하게 범위를 설정하며, 설정된 범위에 해당하는 값을 크로스오버한다. 가령, 크로스오버부(140)는 제 1 확률 정보(약 70 % 이내) 중 랜덤하게 선별된 두 개의 염색체의 각각에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 랜덤하게 세그먼트의 위치(범위)를 설정하며, 설정된 세그먼트 위치(범위)에 해당하는 값을 크로스오버할 수 있다.Meanwhile, the optimum driving information determining apparatus 100 randomly sets a range among values according to whether a feed line is embedded on an OLEV line included in each of two chromosomes, and crosses over a value corresponding to the set range. For example, the crossover unit 140 may randomly position (range) a value of a value according to whether a feed line is embedded on an OLEV line included in each of two randomly selected chromosomes among first probability information (within about 70%). ) And crossover the value corresponding to the set segment position (range).
최적 운행 정보 결정 장치(100)는 크로스오버 정보에 포함된 OLEV 배터리 용량값과 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성한다(S250). 단계 S250에서 최적 운행 정보 결정 장치(100)는 단계 S240을 통해 생성된 크로스오버 정보 중 랜덤하게 제 3 염색체를 선택하고, 제 3 염색체 내에 포함된 OLEV 배터리 용량값과 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성한다. The optimum driving information determining apparatus 100 generates shift information in which any one of the OLEV battery capacity value included in the crossover information and a value according to whether the feed line is buried is changed to another value (S250). In operation S250, the apparatus 100 for determining optimal driving information randomly selects a third chromosome from the crossover information generated through operation S240, and selects an OLEV battery capacity value included in the third chromosome and a value according to whether a feed line is embedded. Generates variation information in which one is changed to another value.
즉, 최적 운행 정보 결정 장치(100)는 단계 S240을 통해 생성된 크로스오버 정보의 각각에 대한 제 2 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률 이내에 해당하는 염색체만을 선별한 제 2 확률 정보를 생성하고, 제 2 확률 정보 중 랜덤하게 한 개의 염색체만을 제 3 염색체로 선택하고, 선택된 염색체 내에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이시키며, 이러한 변이 과정을 기 설정된 횟수만큼 반복한 변이 정보를 생성한다. 예컨대, 최적 운행 정보 결정 장치(100)는 약 100개의 염색체를 포함하는 크로스오버 정보의 각각에 대한 제 2 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 5 %) 이내에 해당하는 염색체만을 선별한 제 2 확률 정보를 생성하고, 제 2 확률 정보(약 5 % 이내의 염색체 정보) 중 랜덤하게 한 개의 염색체만을 제 3 염색체로 선택하고, 선택된 염색체 내에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이시키며, 이러한 변이 과정을 약 100번을 수행한 변이 정보를 생성한다.That is, the optimum driving information determining apparatus 100 generates a second random number for each of the crossover information generated through step S240, and selects the second probability information that selects only chromosomes corresponding to a predetermined probability among the random numbers. And randomly select only one chromosome among the second probability information as the third chromosome, and change one of the OLEV battery capacity value included in the selected chromosome and a value depending on whether the feed line is buried on the OLEV line to another value. In addition, variation information is generated by repeating the variation process a predetermined number of times. For example, the optimum driving information determining apparatus 100 generates a second random number for each of crossover information including about 100 chromosomes, and selects only the chromosomes corresponding to within a predetermined probability (about 5%) among the random numbers. Generate one second probability information, randomly select one chromosome among the second probability information (chromosome information within about 5%) as the third chromosome, and feed the OLEV battery capacity value and the OLEV route contained in the selected chromosome. One of the values according to whether the track is buried is changed to another value, and the variation information is generated by performing the transformation process about 100 times.
한편, 단계 S250에서 최적 운행 정보 결정 장치(100)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값을 다른값으로 변이할 때 OLEV 배터리 용량값에 해당하는 실수 중 어느 하나의 실수로 변이시킨다. 가령, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가지는 것으로 가정하는 경우, 최적 운행 정보 결정 장치(100)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값이 '15'인 경우 '0 내지 20' 중 '15'를 제외한 다른값으로 변이시키는 것이다.Meanwhile, in operation S250, the optimum driving information determining apparatus 100 shifts the OLEV battery capacity value included in the selected chromosome to a different value by mistake of any real number corresponding to the OLEV battery capacity value. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the optimum driving information determining apparatus 100 determines a value of '0' when the OLEV battery capacity value included in the selected chromosome is '15'. To 20 'except for' 15 '.
한편, 단계 S250에서 최적 운행 정보 결정 장치(100)는 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 다른 값으로 변이할 때 설정된 이진수 중 다른 값으로 변이시킨다. 가령, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있으며, 세그먼트별로 OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수 값을 갖는 것으로 가정하는 경우, 최적 운행 정보 결정 장치(100)는 선택된 염색체 내에 포함된 OLEV 노선 상의 세그먼트 중 두 번째 세그먼트 내지 여섯 번째 세그먼트에 포함된 급전 선로 매설 여부에 따른 값을 다른 값(0→1, 1→0)으로 변이시킬 수 있다.Meanwhile, in operation S250, the optimum driving information determining apparatus 100 shifts the value according to whether or not the feed line is laid on the OLEV line to another value among the set binary numbers. For example, the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value, the optimum operation information determination device ( 100 may change the value depending on whether the feed line is embedded in the second to sixth segments of the segment on the OLEV route included in the selected chromosome to another value (0 → 1, 1 → 0).
최적 운행 정보 결정 장치(100)는 단계 S250을 통해 변이 정보가 기 설정된 개수만큼 생성되고, 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 변이 정보의 생성을 종료한다(S260). 단계 S260에서 최적 운행 정보 결정 장치(100)는 약 100개의 변이 정보를 생성한 후 변이 정보에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 위치 위치에 따른 값이 서로 약 95 %이상으로 동일해지는 경우, 변이부(150)를 통한 변이 정보의 생성을 중단하도록 한다.In operation S250, the optimum driving information determining apparatus 100 generates the variation information as much as a predetermined number of times and when the variation information is equal to or more than a preset percentage, the generation of the variation information is terminated (S260). In operation S260, the optimum driving information determining apparatus 100 generates about 100 transition information, and the OLEV battery capacity value included in the variation information and the value according to the position of the feed line embedding position on the OLEV line are equal to or greater than about 95%. If it is, the generation of the variation information through the transition unit 150 to stop.
최적 운행 정보 결정 장치(100)는 기 설정된 퍼센트 이상으로 동일한 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 최적값을 최적 운행 정보로 결정한다(S270). 단계 S270에서 최적 운행 정보 결정 장치(100)는 약 95 % 이상으로 변이 정보가 동일해지는 경우, 실질적으로 단계 S210 내지 단계 S260의 동작 과정을 거쳐 생성된 변이 정보가 실질적으로 동일한 것으로 판단하여, 95 % 이상으로 동일한 변이 정보에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 최적값으로 결정할 수 있다.The optimum driving information determining apparatus 100 is a OLEV battery capacity value included in the same variation information by a predetermined percentage or more, a value according to whether the feed line is buried on the OLEV line, the number of OLEV running numbers, and a stay for feeding the station on the OLEV line. At least one or more values of the time information are determined as optimal values, and the optimal values are determined as optimal driving information (S270). In operation S270, when the variation information is equal to about 95% or more, the optimum driving information determining apparatus 100 determines that the variation information generated through the operation of steps S210 to S260 is substantially the same, and thus 95% As described above, an optimal value may be determined based on an OLEV battery capacity value included in the same variation information and a value depending on whether a feed line is laid on an OLEV line.
도 2에서는 단계 S210 내지 단계 S270을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 2에 기재된 순서를 변경하여 실행하거나 단계 S210 내지 단계 S270 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 2는 시계열적인 순서로 한정되는 것은 아니다.In FIG. 2, steps S210 to S270 are sequentially executed. However, this is merely illustrative of the technical idea of the present embodiment, and a person having ordinary knowledge in the technical field to which the present embodiment belongs may use the present embodiment. 2 may be modified and modified in various ways, such as by changing the order described in FIG. 2 or executing one or more steps of steps S210 to S270 in parallel without departing from the essential characteristics, and thus, FIG. It is not limited.
전술한 바와 같이 도 2에 기재된 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 방법은 프로그램으로 구현되고 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 최적 정보를 이용한 최적 운행 정보 결정 방법을 구현하기 위한 프로그램이 기록되고 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 이러한 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다. 또한, 본 실시예를 구현하기 위한 기능적인(Functional) 프로그램, 코드 및 코드 세그먼트들은 본 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있을 것이다.As described above, the method for determining optimal driving information using the optimal information according to the present embodiment described in FIG. 2 may be implemented in a program and recorded in a computer-readable recording medium. A computer-readable recording medium having recorded thereon a program for implementing the method of determining optimal driving information using the optimal information according to the present embodiment includes all kinds of recording devices storing data that can be read by a computer system. Examples of such computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, and are implemented in the form of a carrier wave (for example, transmission over the Internet). It includes being. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. Also, functional programs, codes, and code segments for implementing the present embodiment may be easily inferred by programmers in the art to which the present embodiment belongs.
도 3은 본 실시예에 따른 OLEV 노선과 세그먼트를 설명하기 위한 예시도이다.3 is an exemplary diagram for describing an OLEV line and a segment according to the present embodiment.
도 3의 (a)에 도시된 바와 같이, 온라인 전기 자동차의 경우 운행 노선이 기 설정될 수 있다. 예컨대, '버스 전용차선', '놀이공원 열차', '공항 내 열차', '행정중심복합도시' 등과 같이 노선이 기 설정된 곳이 될 수 있다. 또한, 도 3의 (b)에 도시된 바와 같이, OLEV 노선은 기 설정된 경로 정보로서, N 개의 세그먼트로 나누어져 있으며, 경로 정보 상에 기 설정된 스테이션 위치값을 포함하며, 각각의 세그먼트는 각기 다른 길이값을 가지며, 각각의 세그먼트마다 급전 선로 매설 여부에 따른 값을 갖는다. 이때, OLEV 배터리 용량값은 OLEV 노선 상의 세그먼트 중 ith 세그먼트의 끝 지점에서 Ihigh를 초과하지 않고, Ilow 이상을 유지하는 배터리 SOC로 설정된다.As shown in (a) of FIG. 3, in the case of an online electric vehicle, a driving route may be preset. For example, a route may be a predetermined route, such as a bus-only lane, an amusement park train, an airport train, or an administrative city. In addition, as shown in (b) of FIG. 3, the OLEV route is divided into N segments as preset route information, and includes a preset station position value on the route information, and each segment is different. It has a length value, and each segment has a value depending on whether a feed line is buried. At this time, the OLEV battery capacity value is set to a battery SOC that does not exceed I high at an end point of the i th segment of the segment on the OLEV line and maintains I low or more.
또한, 도 3의 (c)에 도시된 바와 같이, OLEV 노선은 약 25 개의 세그먼트로 구분되는 것으로 가정하면, 각 세그먼트 당 급전 선로 설치 여부에 따른 값을 가지며, OLEV 배터리 용량값을 가진다. 즉, 도 3의 (c)에 도시된 각 계수를 설명하면 다음과 같다. l(i)는 ith 세그먼트에 길이 정보가 설정되며, x(i)는 ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0으로 설정된다. 여기서, OLEV 배터리 용량값은 실수를 가지며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수를 갖는다. 예컨대, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가질 수 있으며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있다. 즉, OLEV 노선이 약 25개의 세그먼트로 구분된 경우, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 25개의 이진수로 이루어질 수 있는 것이다. 또한, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트마다 급전을 위한 급전 선로의 설치 여부에 따라 0 또는 1의 값을 갖는다. 여기서, 급전 선로에는 급전을 위한 인덕티브 케이블이 설치될 수 있다.In addition, as shown in (c) of FIG. 3, if the OLEV line is assumed to be divided into about 25 segments, each segment has a value according to whether a feed line is installed and has an OLEV battery capacity value. That is, each coefficient shown in (c) of FIG. 3 will be described below. l (i) is set to length information in the ith segment, and x (i) is set to 1 when inductive cable is installed in i th segment and 0 when not installed. Here, the OLEV battery capacity value has a real number, and the value according to whether the feed line is buried on the OLEV line has a binary number. For example, the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 25 segments, a value depending on whether the feed line is buried on the OLEV line may be 25 binary numbers. In addition, the value according to whether the feed line is embedded on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment. In this case, an inductive cable for feeding power may be installed in the feed line.
도 4는 본 실시예에 따른 초기 개체 설정, 크로스오버 및 변이를 설명하기 위한 예시도이다.4 is an exemplary diagram for explaining initial entity setting, crossover, and variation according to the present embodiment.
도 4의 (a)에 도시된 바와 같이, 최적 운행 정보 결정 장치(100)가 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 계수로 포함하는 염색체를 기 설정된 개수로 설정한 초기 개체 정보를 생성한다. 여기서, 최적 운행 정보 결정 장치(100)는 염색체를 약 100개의 개수로 설정할 수 있으나 반드시 이에 한정되는 것은 아니다. 한편, 초기 개체군 설정부(110)는 염색체를 설정하는 과정을 설명하자면, 최적 운행 정보 결정 장치(100)는 염색체를 랜덤하게 설정하거나 사용자의 조작 또는 명령에 의해 설정할 수 있다.As shown in (a) of FIG. 4, the apparatus 100 for determining optimal driving information initially sets the chromosome including the OLEV battery capacity value and the value according to whether or not the feed line is laid on the OLEV line as a predetermined number. Create entity information. Here, the apparatus 100 for determining optimal driving information may be set to about 100 chromosomes, but is not necessarily limited thereto. Meanwhile, to describe the process of setting the chromosome, the initial population setting unit 110 may set the optimal driving information determiner 100 at random or by a user's operation or command.
도 4의 (a)에 도시된 염색체 중 OLEV 배터리 용량값은 실수를 가지며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수를 갖는다. 예컨대, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가질 수 있으며, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있다. 즉, OLEV 노선이 약 10개의 세그먼트로 구분된 경우, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 10개의 이진수로 이루어질 수 있는 것이다. 또한, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트마다 급전을 위한 급전 선로의 설치 여부에 따라 0 또는 1의 값을 갖는다. 여기서, 급전 선로에는 급전을 위한 인덕티브 케이블이 설치될 수 있다.The OLEV battery capacity value of the chromosome shown in FIG. 4A has a real number, and the value according to whether the feed line is buried on the OLEV line has a binary number. For example, the OLEV battery capacity value may have a real value of any one of 0 to 20, and a value according to whether a feed line is buried on an OLEV line may be divided by the number of segments. That is, when the OLEV line is divided into about 10 segments, a value depending on whether the feed line is buried on the OLEV line may be 10 binary numbers. In addition, the value according to whether the feed line is buried on the OLEV line has a value of 0 or 1 depending on whether a feed line for feeding power is installed for each segment. In this case, an inductive cable for power feeding may be installed in the feed line.
한편, 도 4의 (b)를 통해 크로스오버하는 과정에 대해 설명하자면, 최적 운행 정보 결정 장치(100)는 약 100개의 염색체를 포함하는 최소 비용 염색체 정보의 각각에 대한 제 1 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 70 %) 이내에 해당하는 염색체만을 선별한 제 1 확률 정보를 생성하고, 제 1 확률 정보(약 70 % 이내) 중 도 4의 (b)와 같이 랜덤하게 두 개의 염색체인 제 2 염색체를 선별하고, 두 개의 염색체 상호 간에 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부(예컨대, 두 번째 세그먼트 내지 네 번째 세그먼트)를 크로스오버(도 4의 (b)에 도시된 바와 같이 0,0,0→1,1,1, 1,1,1→0,0,0)하는 과정을 약 50번 수행하여 약 100개의 염색체를 포함하는 크로스오버 정보를 생성할 수 있다. 여기서, 최적 운행 정보 결정 장치(100)는 제 1 확률 정보(약 70 % 이내) 중 랜덤하게 선별된 두 개의 염색체의 각각에 포함된 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 랜덤하게 세그먼트의 위치(범위)를 설정하며, 설정된 세그먼트 위치(범위)에 해당하는 값을 크로스오버할 수 있다.Meanwhile, referring to the process of crossover through FIG. 4B, the optimum driving information determining apparatus 100 generates a first random number for each of the least cost chromosomal information including about 100 chromosomes. , Generating first probability information that selects only chromosomes within a predetermined probability (about 70%) among random numbers, and randomly generates two random information as shown in FIG. 4 (b) of the first probability information (about 70%). The second chromosome, which is a chromosome, is selected, and some of the values depending on whether or not the feed line is buried on the OLEV line between the two chromosomes (for example, the second to fourth segments) are crossover (shown in FIG. 4 (b)). As described above, a process of performing 0,0,0 → 1,1,1,1,1,1 → 0,0,0) may be performed about 50 times to generate crossover information including about 100 chromosomes. Here, the apparatus 100 for determining optimal driving information randomly positions a segment among values according to whether a feed line is buried on an OLEV line included in each of two chromosomes randomly selected among first probability information (within about 70%). (Range) can be set, and the value corresponding to the set segment position (range) can be crossover.
한편, 도 4의 (c)를 통해 변이 과정에 대해 설명하자면, 최적 운행 정보 결정 장치(100)는 약 100개의 염색체를 포함하는 크로스오버 정보의 각각에 대한 제 2 랜덤 넘버를 발생하고, 랜덤 넘버 중 기 설정된 확률(약 5 %) 이내에 해당하는 염색체만을 선별한 제 2 확률 정보를 생성하고, 제 2 확률 정보(약 5 % 이내의 염색체 정보) 중 도 4의 (c)와 같이 랜덤하게 한 개의 염색체만을 제 3 염색체로 선택하고, 선택된 염색체 내에 포함된 OLEV 배터리 용량값과 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이시키며, 이러한 변이 과정을 약 100번을 수행한 변이 정보를 생성한다.Meanwhile, referring to (c) of FIG. 4, the optimal driving information determining apparatus 100 generates a second random number for each of crossover information including about 100 chromosomes, and generates a random number. Generate second probability information that selects only chromosomes within a predetermined probability (about 5%), and randomly selects one of the second probability information (chromosome information within about 5%) as shown in FIG. Only the chromosome is selected as the third chromosome, and one of the OLEV battery capacity values included in the selected chromosome and the value depending on whether or not the feed line is laid on the OLEV line is changed to another value, and the mutation process is performed about 100 times. Generate information.
즉, 최적 운행 정보 결정 장치(100)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값을 다른값으로 변이할 때 OLEV 배터리 용량값에 해당하는 실수 중 어느 하나의 실수로 변이시킬 수 있다. 가령, OLEV 배터리 용량값은 0 내지 20 중 어느 하나의 실수의 값을 가지는 것으로 가정하는 경우, 변이부(150)는 선택된 염색체 내에 포함된 OLEV 배터리 용량값이 '15'인 경우 '0 내지 20' 중 '15'를 제외한 다른값으로 변이시키는 것이다.That is, the optimum driving information determining apparatus 100 may shift the OLEV battery capacity value included in the selected chromosome to any other real number corresponding to the OLEV battery capacity value. For example, when it is assumed that the OLEV battery capacity value has a real value of any one of 0 to 20, the variation unit 150 is '0 to 20' when the OLEV battery capacity value included in the selected chromosome is '15'. Is to change to a value other than '15'.
또한, 최적 운행 정보 결정 장치(100)는 OLEV 노선 상의 급전 선로 매설 여부에 따른 값을 다른 값으로 변이할 때 설정된 이진수 중 다른 값으로 변이시킬 수 있다. 가령, OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 세그먼트만큼의 수로 구분될 수 있으며, 세그먼트별로 OLEV 노선 상의 급전 선로 매설 여부에 따른 값은 이진수 값을 갖는 것으로 가정하는 경우, 변이부(150)는 선택된 염색체 내에 포함된 OLEV 노선 상의 세그먼트 중 두 번째 세그먼트 내지 여섯 번째 세그먼트에 포함된 급전 선로 매설 여부에 따른 값을 다른 값(도 4의 (c)에 도시된 바와 같이 0,1,0,1,1→1,0,1,0,0)으로 변이시킬 수 있다.In addition, the optimum driving information determining apparatus 100 may change the value according to whether the feed line is buried on the OLEV line to another value among the set binary numbers. For example, the value according to whether the feed line is buried on the OLEV line can be divided by the number of segments, and if the value according to whether the feed line is buried on the OLEV line for each segment is assumed to have a binary value, the transition unit 150 The value depending on whether or not the feed line embedded in the second to sixth segments of the segments on the OLEV route included in the selected chromosome is set to another value (as shown in (c) of FIG. 4, 0,1,0,1, 1 → 1,0,1,0,0).
도 5는 본 실시예에 따른 OLEV 노선의 운행시 시간에 따른 속도를 나타낸 예시도이다.5 is an exemplary view showing the speed according to the time of operation of the OLEV line according to the present embodiment.
도 5는 OLEV 노선을 이동체(온라인 전기 자동차)가 운행 시 시간에 따른 속도를 나타낸 그래프로서, 이동체(온라인 전기 자동차)는 OLEV 노선의 기 설정된 경로에 따라 도시된 그래프와 같은 속도를 낼 수 있다. 즉, OLEV 노선은 기 설정된 경로 정보로서, 경로 정보 상에 기 설정된 스테이션 위치값을 포함하며, 해당 스테이션마다 일정 시간을 정차(체류)한 후 다시 출발함을 알 수 있다.FIG. 5 is a graph showing speed according to time when a mobile vehicle (online electric vehicle) runs on an OLEV line, and the mobile vehicle (online electric vehicle) may achieve the same speed as the graph shown according to a preset route of the OLEV route. That is, the OLEV route is preset route information, and includes a preset station position value on the route information and starts again after a certain time stops (stays) for each corresponding station.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which the present embodiment belongs may make various modifications and changes without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment but to describe the present invention, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
(부호의 설명)(Explanation of the sign)
100: 최적 운행 정보 결정 장치100: optimum driving information determination device
110: 초기 개체군 설정부 120: 적합도 측정부110: initial population set unit 120: fitness measure unit
130: 선택부 140: 크로스오버부130: selection section 140: crossover section
150: 변이부 160: 종료 결정부150: mutation unit 160: termination determination unit
170: 최적 정보 결정부170: optimal information determination unit
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 02월 06일 한국에 출원한 특허출원번호 제 10-2012-0012010 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under Patent Application No. 10-2012-0012010 No. 10-2012-0012010 filed to South Korea on February 06, 2012, pursuant to 35 USC § 119 (a). All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.
Claims (22)
- OLEV(On-Line Electric Vehicle) 배터리 용량값, OLEV 노선(Route) 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체(Chromosome)를 기 설정된 개수로 설정한 초기 개체 정보를 생성하는 초기 개체군 설정부;On-Line Electric Vehicle (OLEV) battery capacity value, the value according to whether the feed line is laid on the OLEV route, the number of OLEV service, and the residence time information for feeding the station on the OLEV line as a coefficient An initial population group setting unit for generating initial population information in which a predetermined number of chromosomes is included;기 설정된 목적식(Objective Function)과 제약식(Constraints)을 각각의 상기 염색체에 적용하여 비용 정보를 산출하는 적합도 측정부;A fitness measurer for calculating cost information by applying predetermined objective functions and constraints to each of the chromosomes;상기 초기 개체 정보와 상기 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성하는 선택부;A selection unit generating minimum cost chromosome information based on at least one of the initial individual information and the cost information;상기 최소 비용 염색체에 포함된 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성하는 크로스오버부;A crossover unit configured to generate crossover information by crossovering a part of a value depending on whether a feed line is embedded on the OLEV line included in the least cost chromosome;상기 크로스오버 정보에 포함된 상기 OLEV 배터리 용량값과 상기 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성하는 변이부;A transition unit for generating transition information in which any one of the OLEV battery capacity value included in the crossover information and a value depending on whether the feed line is buried is changed to another value;상기 변이 정보가 기 설정된 개수만큼 생성되고, 상기 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 상기 변이 정보의 생성을 종료하는 종료 결정부; 및An end determination unit for terminating generation of the variation information when the variation information is generated by a predetermined number and the variation information is equal to or more than a preset percentage; And상기 기 설정된 퍼센트 이상으로 동일한 상기 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 상기 최적값을 최적 운행 정보로 결정하는 최적 정보 결정부At least one or more of an OLEV battery capacity value included in the variation information equal to or more than the preset percentage, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line Is determined to be an optimum value, and the optimum information determination unit for determining the optimum value as the optimum driving information를 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.Apparatus for determining optimal driving information using optimal information comprising a.
- 제 1 항에 있어서,The method of claim 1,상기 초기 개체군 설정부는,The initial population group setting unit,제 1 모델 방식 또는 제 2 모델 방식 중 어느 하나의 방식을 이용하여 상기 염색체를 설정하되, 상기 제 1 모델 방식 또는 상기 제 2 모델 방식에 따라 상기 염색체에 포함되는 계수를 배열하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.The chromosome is set using any one of a first model method and a second model method, and the coefficients included in the chromosome are arranged according to the first model method or the second model method. Device for determining optimal driving information using information.
- 제 2 항에 있어서,The method of claim 2,상기 초기 개체군 설정부는,The initial population group setting unit,상기 제 1 모델 방식을 이용하는 경우 상기 OLEV 배터리 용량값, 상기 OLEV 운행 댓수값, 상기 OLEV 노선 상 종착 스테이션에서 급전을 위한 체류 시간 정보 및 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 상기 염섹체에 포함되는 계수를 배열하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.When using the first model method, the salt in the order of the value according to the OLEV battery capacity value, the OLEV running number value, the residence time information for power supply at the end station on the OLEV line and whether the feed line is buried on the OLEV line An apparatus for determining optimal driving information using optimal information, comprising arranging coefficients included in a sector.
- 제 2 항에 있어서,The method of claim 2,상기 제 1 모델 방식은, The first model method,상기 OLEV가 상기 OLEV 노선 상의 모든 스테이션을 일회 완주한 상태에서 종착 스테이션에서 급전을 통해 배터리 SOC(State Of Charge)를 확보하는 방식인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.And a method of securing a battery state of charge (SOC) by feeding power from a termination station in a state where the OLEV completes all stations on the OLEV line once.
- 제 2 항에 있어서,The method of claim 2,상기 제 1 모델에 따른 상기 제약식은,The constraint according to the first model is,(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, s(i): ith 세그먼트에서의 배터리 급전량, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, d(i): ith 세그먼트에서의 배터리 소모량, tcs: 종착 스테이션에서의 급전 시간 정보, ICS: OLEV가 급전 선로 상에 존재할 때, 단위시간당 급전량, T: 상기 OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, s (i): battery feed at i th segment, x (i): 1 when inductive cable is installed on i th segment, 0 when not installed, d (i): Battery consumption in segment i th , t cs : Feed time information at destination station, I CS : Feed amount per unit time when OLEV exists on feed line, T: All stations on the OLEV line Information on the time required to complete one time, t interval : Information on the time interval of the OLEV running, L: Overall line length information, y (i): 1 when the inverter is installed on the i th segment, 0 when not installed)인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.An apparatus for determining optimal driving information using optimal information, characterized in that.
- 제 2 항에 있어서,The method of claim 2,상기 초기 개체군 설정부는,The initial population group setting unit,상기 제 2 모델 방식을 이용하는 경우 상기 OLEV 배터리 용량값, 상기 OLEV 운행 댓수값, 상기 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 및 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 상기 염섹체에 포함되는 계수를 배열하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.In the case of using the second model method, the salt sector in the order of the OLEV battery capacity value, the OLEV running number value, the residence time information for feeding the station on the OLEV line, and the value according to whether the feed line is buried on the OLEV line. Optimal driving information determining apparatus using the optimum information, characterized in that the coefficients included in the arrangement.
- 제 2 항에 있어서,The method of claim 2,상기 제 2 모델 방식은, The second model method is상기 OLEV가 운행 중에 상기 OLEV 노선 상 각각의 스테이션마다 체류할 때 급전을 통해 배터리 SOC를 확보하는 방식인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.And a method for securing battery SOC through power supply when the OLEV stays at each station on the OLEV line during operation.
- 제 2 항에 있어서,The method of claim 2,상기 제 2 모델에 따른 상기 제약식은,The constraint according to the second model is,(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, s(i): ith 세그먼트에서의 배터리 급전량, z(i): ith 세그먼트에서 스테이션 존재시 1, 미존재시 0, tcs(i): 각 스테이션에서의 급전 시간 정보, d(i): ith 세그먼트에서의 배터리 소모량, T: 상기 OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, k: OLEV의 운행 댓 수, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, x (i): 1 with inductive cable installed on i th segment, 0 without, s (i): battery feed at i th segment, z (i): 1 when station is present in segment i th , 0 when not present, t cs (i): feeding time information at each station, d (i): battery consumption in segment i th , T: OLEV Time information for one-time completion of all stations on the route, k: number of OLEVs operated, t interval : time interval information of OLEVs operated, L: total line length information, y (i): i th segment 1 when inverter is installed, 0 when not installed인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.An apparatus for determining optimal driving information using optimal information, characterized in that.
- 제 1 항에 있어서,The method of claim 1,상기 OLEV 노선은 기 설정된 경로 정보로서, N 개의 세그먼트로 나누어져 있으며, 상기 경로 정보 상에 기 설정된 스테이션 위치값을 포함하며, 각각의 상기 세그먼트는 각기 다른 길이값을 가지며, 각각의 상기 세그먼트마다 상기 급전 선로 매설 여부에 따른 값을 갖는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.The OLEV route is divided into N segments as preset route information, and includes a preset station position value on the route information, and each of the segments has a different length value, and each of the segments Apparatus for determining optimal running information using optimum information, characterized in that it has a value according to whether the feed line is embedded.
- 제 9 항에 있어서,The method of claim 9,상기 OLEV 배터리 용량값은,The OLEV battery capacity value is,상기 세그먼트 중 ith 세그먼트의 끝 지점에서 Ihigh를 초과하지 않고, Ilow 이상을 유지하는 배터리 SOC로 설정되는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.And a battery SOC that does not exceed I high at an end point of an i th segment among the segments and maintains I low or more.
- 제 1 항에 있어서,The method of claim 1,상기 목적식은,The objective formula is,(k: OLEV의 운행 댓 수, Cvehicle: OLEV 기본 가격, Cbattery: OLEV 단위당 상기 OLEV 배터리의 용량당 가격, Imax: OLEV 배터리 용량, Cinverter: 인버터 개당 가격, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0, Ccable: 상기 OLEV 경로상 매설되는 케이블 단위 미터당 가격, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, l(i): ith 세그먼트에 길이 정보)(k: OLEV operation, C vehicle : OLEV base price, C battery : price per capacity of the OLEV battery per OLEV unit, I max : OLEV battery capacity, C inverter : price per inverter , y (i): i th 1 when the inverter is installed on the segment, 0 when not installed, C cable : price per meter of cable buried in the OLEV path, x (i): i th 1 when inductive cable is installed on the segment, 0, l (i): length information in i th segment)인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 장치.An apparatus for determining optimal driving information using optimal information, characterized in that.
- OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 계수로 포함하는 염색체를 기 설정된 개수로 설정한 초기 개체 정보를 생성하는 초기 개체군 설정 과정(Initial Population);A predetermined number of chromosomes including at least one of the capacity of the OLEV battery, the value of whether or not the feed line is laid on the OLEV line, the number of OLEV operations, and the residence time information for feeding the station on the OLEV line are set to a predetermined number. Initial population setting process for generating initial object information (Initial Population);기 설정된 목적식과 제약식을 각각의 상기 염색체에 적용하여 비용 정보를 산출하는 적합도 측정 과정(Fitness Function);A fitness function measuring process of calculating cost information by applying a predetermined objective and a constraint to each of the chromosomes;상기 초기 개체 정보와 상기 비용 정보 중 적어도 하나 이상의 정보에 근거하여 최소 비용 염색체 정보를 생성하는 선택 과정(Selection);A selection process of generating minimum cost chromosome information based on at least one of the initial individual information and the cost information;상기 최소 비용 염색체에 포함된 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값 중 일부를 크로스오버한 크로스오버 정보를 생성하는 크로스오버 과정(Crossover);A crossover process of generating crossover information by crossing over a part of values according to whether a feed line is embedded on the OLEV line included in the least cost chromosome;상기 크로스오버 정보에 포함된 상기 OLEV 배터리 용량값과 상기 급전 선로 매설 여부에 따른 값 중 어느 하나를 다른 값으로 변이한 변이 정보를 생성하는 변이 과정(Mutation);A mutation process of generating variation information in which any one of the OLEV battery capacity value included in the crossover information and a value according to whether the feed line is buried is changed to another value;상기 변이 정보가 기 설정된 개수만큼 생성되고, 상기 변이 정보가 기 설정된 퍼센트 이상으로 동일한 경우, 상기 변이 정보의 생성을 종료하는 종료 결정 과정(End Criterion); 및An end determination process of ending generation of the variation information when the variation information is generated by a predetermined number and the variation information is equal to or more than a preset percentage; And상기 기 설정된 퍼센트 이상으로 동일한 상기 변이 정보에 포함된 OLEV 배터리 용량값, OLEV 노선 상의 급전 선로 매설 여부에 따른 값, OLEV 운행 댓수값 및 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 중 적어도 하나 이상의 값을 최적값으로 결정하고, 상기 최적값을 최적 운행 정보로 결정하는 최적 정보 결정 과정At least one or more of an OLEV battery capacity value included in the variation information equal to or more than the preset percentage, a value according to whether a feed line is laid on an OLEV line, a number of OLEV running numbers, and dwell time information for feeding a station on an OLEV line Determining the optimal value and determining the optimal value as the optimal operation information을 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.Optimal driving information determination method using the optimal information comprising a.
- 제 12 항에 있어서,The method of claim 12,상기 초기 개체군 설정 과정은,The initial population setting process,제 1 모델 방식 또는 제 2 모델 방식 중 어느 하나의 방식을 이용하여 상기 염색체를 설정하되, 상기 제 1 모델 방식 또는 상기 제 2 모델 방식에 따라 상기 염색체에 포함되는 계수를 배열하는 과정을 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.Setting the chromosome using any one of a first model method and a second model method, and arranging coefficients included in the chromosome according to the first model method or the second model method. A method of determining optimal driving information using the optimal information characterized in that.
- 제 13 항에 있어서,The method of claim 13,상기 초기 개체군 설정 과정은,The initial population setting process,상기 제 1 모델 방식을 이용하는 경우 상기 OLEV 배터리 용량값, 상기 OLEV 운행 댓수값, 상기 OLEV 노선 상 종착 스테이션에서 급전을 위한 체류 시간 정보 및 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 상기 염섹체에 포함되는 계수를 배열하는 과정을 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.When using the first model method, the salt in the order of the value according to the OLEV battery capacity value, the OLEV running number value, the residence time information for power supply at the end station on the OLEV line and whether the feed line is buried on the OLEV line A method of determining optimal driving information using optimal information, comprising the step of arranging coefficients included in a sector.
- 제 13 항에 있어서,The method of claim 13,상기 제 1 모델 방식은, The first model method,상기 OLEV가 상기 OLEV 노선 상의 모든 스테이션을 일회 완주한 상태에서 종착 스테이션에서 급전을 통해 배터리 SOC(State Of Charge)를 확보하는 방식인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.And a method of securing a battery state of charge (SOC) by feeding power from a termination station while the OLEV completes all stations on the OLEV line once.
- 제 13 항에 있어서,The method of claim 13,상기 제 1 모델에 따른 상기 제약식은,The constraint according to the first model is,(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, s(i): ith 세그먼트에서의 배터리 급전량, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, d(i): ith 세그먼트에서의 배터리 소모량, tcs: 종착 스테이션에서의 급전 시간 정보, ICS: OLEV가 급전 선로 상에 존재할 때, 단위시간당 급전량, T: 상기 OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, s (i): battery feed at i th segment, x (i): 1 when inductive cable is installed on i th segment, 0 when not installed, d (i): Battery consumption in segment i th , t cs : Feed time information at destination station, I CS : Feed amount per unit time when OLEV exists on feed line, T: All stations on the OLEV line Information on the time required to complete one time, t interval : Information on the time interval of the OLEV running, L: Overall line length information, y (i): 1 when the inverter is installed on the i th segment, 0 when not installed)인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.Optimal driving information determination method using the optimal information, characterized in that.
- 제 13 항에 있어서,The method of claim 13,상기 초기 개체군 설정 과정은,The initial population setting process,상기 제 2 모델 방식을 이용하는 경우 상기 OLEV 배터리 용량값, 상기 OLEV 운행 댓수값, 상기 OLEV 노선 상 스테이션의 급전을 위한 체류 시간 정보 및 상기 OLEV 노선 상의 급전 선로 매설 여부에 따른 값의 순서로 상기 염섹체에 포함되는 계수를 배열하는 과정을 포함하는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.When using the second model method, the salt sector in the order of the value according to the OLEV battery capacity value, the OLEV running number value, the residence time information for power supply of the station on the OLEV line and the value of whether or not to feed the feed line on the OLEV line Optimal driving information determination method using the optimal information comprising the step of arranging the coefficients included in.
- 제 13 항에 있어서,The method of claim 13,상기 제 2 모델 방식은, The second model method is상기 OLEV가 운행 중에 상기 OLEV 노선 상 각각의 스테이션마다 체류할 때 급전을 통해 배터리 SOC를 확보하는 방식인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.And a method of securing battery SOC through power supply when the OLEV stays for each station on the OLEV line during operation.
- 제 13 항에 있어서,The method of claim 13,상기 제 2 모델에 따른 상기 제약식은,The constraint according to the second model is,(I(i): ith 세그먼트 끝 지점에서의 배터리 SOC, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, s(i): ith 세그먼트에서의 배터리 급전량, z(i): ith 세그먼트에서 스테이션 존재시 1, 미존재시 0, tcs(i): 각 스테이션에서의 급전 시간 정보, d(i): ith 세그먼트에서의 배터리 소모량, T: 상기 OLEV 노선 상의 모든 스테이션을 일회 완주하는 데 소요되는 시간 정보, k: OLEV의 운행 댓 수, tinterval: 운행되는 OLEV의 운행 시간 간격 정보, L: 전체 노선 길이 정보, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0)(I (i): battery SOC at i th segment end, x (i): 1 with inductive cable installed on i th segment, 0 without, s (i): battery feed at i th segment, z (i): 1 when station is present in segment i th , 0 when not present, t cs (i): feeding time information at each station, d (i): battery consumption in segment i th , T: OLEV Time information for one-time completion of all stations on the route, k: number of OLEVs operated, t interval : time interval information of OLEVs operated, L: total line length information, y (i): i th segment 1 when inverter is installed, 0 when not installed인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.Optimal driving information determination method using the optimal information, characterized in that.
- 제 12 항에 있어서,The method of claim 12,상기 OLEV 노선은 기 설정된 경로 정보로서, N 개의 세그먼트로 나누어져 있으며, 상기 경로 정보 상에 기 설정된 스테이션 위치값을 포함하며, 각각의 상기 세그먼트는 각기 다른 길이값을 가지며, 각각의 상기 세그먼트마다 상기 급전 선로 매설 여부에 따른 값을 갖는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.The OLEV route is divided into N segments as preset route information, and includes a preset station position value on the route information, and each of the segments has a different length value, and each of the segments Optimal driving information determination method using the optimum information, characterized in that having a value depending on whether the feed line is embedded.
- 제 21 항에 있어서,The method of claim 21,상기 OLEV 배터리 용량값은,The OLEV battery capacity value is,상기 세그먼트 중 ith 세그먼트의 끝 지점에서 Ihigh를 초과하지 않고, Ilow 이상을 유지하는 배터리 SOC로 설정되는 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.And a battery SOC that does not exceed I high and maintains I low at an end point of the i th segment among the segments.
- 제 12 항에 있어서,The method of claim 12,상기 목적식은,The objective formula is,(k: OLEV의 운행 댓 수, Cvehicle: OLEV 기본 가격, Cbattery: OLEV 단위당 상기 OLEV 배터리의 용량당 가격, Imax: OLEV 배터리 용량, Cinverter: 인버터 개당 가격, y(i): ith 세그먼트에 인버터 설치시 1, 미설치시 0, Ccable: 상기 OLEV 경로상 매설되는 케이블 단위 미터당 가격, x(i): ith 세그먼트에 인덕티브 케이블 설치시 1, 미설치시 0, l(i): ith 세그먼트에 길이 정보)(k: OLEV operation, C vehicle : OLEV base price, C battery : price per capacity of the OLEV battery per OLEV unit, I max : OLEV battery capacity, C inverter : price per inverter , y (i): i th 1 when the inverter is installed on the segment, 0 when not installed, C cable : price per meter of cable buried in the OLEV path, x (i): i th 1 when inductive cable is installed on the segment, 0, l (i): length information in i th segment)인 것을 특징으로 하는 최적 정보를 이용한 최적 운행 정보 결정 방법.Optimal driving information determination method using the optimal information, characterized in that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0012010 | 2012-02-06 | ||
KR1020120012010A KR101337002B1 (en) | 2012-02-06 | 2012-02-06 | Method And Apparatus for Determining Optimal Driving Information by Using Optimal Information |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118962A1 true WO2013118962A1 (en) | 2013-08-15 |
Family
ID=48947698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/010370 WO2013118962A1 (en) | 2012-02-06 | 2012-12-03 | Method and apparatus for determining optimal operating information using optimal information |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101337002B1 (en) |
WO (1) | WO2013118962A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6879889B2 (en) * | 1994-05-05 | 2005-04-12 | H.R. Ross Industries, Inc. | Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features |
KR20110041307A (en) * | 2009-10-15 | 2011-04-21 | 한국과학기술원 | Method and device for segmented power supplying for electric vehicle |
KR20110068424A (en) * | 2009-12-16 | 2011-06-22 | 한국과학기술원 | Module-structured power supply device for electric vehicle |
KR20110070759A (en) * | 2009-12-18 | 2011-06-24 | 한국과학기술원 | Road segment control apparatus and method for online electric vehicle |
KR20110070536A (en) * | 2009-12-18 | 2011-06-24 | 한국과학기술원 | The construction method of dual type power supply module structure for electric vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833490B1 (en) * | 2005-12-08 | 2008-05-29 | 한국전자통신연구원 | Method and apparatus for searching for optimal route using trajectory information and method for providing traffic information using the trajectory information |
US9878629B2 (en) * | 2009-12-17 | 2018-01-30 | Chargepoint, Inc. | Method and apparatus for electric vehicle charging station load management in a residence |
-
2012
- 2012-02-06 KR KR1020120012010A patent/KR101337002B1/en not_active IP Right Cessation
- 2012-12-03 WO PCT/KR2012/010370 patent/WO2013118962A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6879889B2 (en) * | 1994-05-05 | 2005-04-12 | H.R. Ross Industries, Inc. | Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features |
KR20110041307A (en) * | 2009-10-15 | 2011-04-21 | 한국과학기술원 | Method and device for segmented power supplying for electric vehicle |
KR20110068424A (en) * | 2009-12-16 | 2011-06-22 | 한국과학기술원 | Module-structured power supply device for electric vehicle |
KR20110070759A (en) * | 2009-12-18 | 2011-06-24 | 한국과학기술원 | Road segment control apparatus and method for online electric vehicle |
KR20110070536A (en) * | 2009-12-18 | 2011-06-24 | 한국과학기술원 | The construction method of dual type power supply module structure for electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
KR20130090691A (en) | 2013-08-14 |
KR101337002B1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jang et al. | System optimization of the On-Line Electric Vehicle operating in a closed environment | |
Miller et al. | ORNL experience and challenges facing dynamic wireless power charging of EV's | |
Ko et al. | The optimal system design of the online electric vehicle utilizing wireless power transmission technology | |
RU2481968C2 (en) | Transmission of electric power to vehicle | |
CA2737076C (en) | Inductively receiving electric energy for a vehicle | |
US8544622B2 (en) | Producing electromagnetic fields for transferring electric energy to a vehicle | |
WO2013122703A1 (en) | Wireless power charging using point of load controlled high frequency power converters | |
US20160321631A1 (en) | Method And Device For The Energy Billing Of Mobile Energy Consumers In An Electrical Energy Supply Network | |
CN107554317A (en) | Wireless power transmission method, wireless charging method and electric vehicle | |
DK2552740T3 (en) | ELECTRIC VEHICLE OVERLOAD LIMIT | |
CN206141349U (en) | Wireless electric pile of filling and install this wireless electric pile's of filling stereo garage | |
CN1294038C (en) | Battery charging system for station charging style trolley bus | |
CN102306421B (en) | Motorway charging system of EV (electric vehicle) | |
Risch | Planning and production concepts for contactless power transfer systems for electric vehicles | |
WO2013118962A1 (en) | Method and apparatus for determining optimal operating information using optimal information | |
CN109532527A (en) | Electric car V2X dynamic radio energy bidirectional pushing system and method | |
KR101242753B1 (en) | Method and apparatus for controlling wireless charging of bycycles | |
Gunji et al. | Basic study on arrangement design of in-motion charging facility on urban roads | |
KR101355989B1 (en) | Method And Apparatus for Determining Optimal Driving Information | |
KR101318389B1 (en) | Method And Apparatus for Extracting Optimal Infra Data According to Single Route | |
KR101316790B1 (en) | Method And Apparatus for Extracting Optimal Infra Data According to Multiple Route | |
KR101356030B1 (en) | System for Charging And Pick-up, Collector Device And Power Supply Structure Therefor | |
KR102050790B1 (en) | Method and apparatus for determining optimal driving information of wirelessly charged electric vehicle | |
WO2022086165A1 (en) | Wired and wireless vehicle charging system and wired and wireless charging control method | |
KR101281731B1 (en) | Park-and-ride system and method with charging facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867790 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867790 Country of ref document: EP Kind code of ref document: A1 |