Nothing Special   »   [go: up one dir, main page]

WO2013115018A1 - Optical coherence tomography device and optical coherence tomography method - Google Patents

Optical coherence tomography device and optical coherence tomography method Download PDF

Info

Publication number
WO2013115018A1
WO2013115018A1 PCT/JP2013/051248 JP2013051248W WO2013115018A1 WO 2013115018 A1 WO2013115018 A1 WO 2013115018A1 JP 2013051248 W JP2013051248 W JP 2013051248W WO 2013115018 A1 WO2013115018 A1 WO 2013115018A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
peak value
intensity
interference
time
Prior art date
Application number
PCT/JP2013/051248
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013115018A9 (en
Inventor
山田 朋宏
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to US13/919,836 priority Critical patent/US9551564B2/en
Publication of WO2013115018A1 publication Critical patent/WO2013115018A1/en
Publication of WO2013115018A9 publication Critical patent/WO2013115018A9/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector

Definitions

  • the present invention relates to an optical coherence tomography apparatus and an optical coherence tomography method.
  • an object is irradiated with light, the wavelength of the irradiated light is continuously changed, and the reference light And the reflected light returning from different depths of the object.
  • a tomographic image of the object is obtained by analyzing the frequency component included in the time waveform of the intensity of the interference light (hereinafter abbreviated as interference spectrum).
  • interference spectrum the frequency component included in the time waveform of the intensity of the interference light
  • the analysis of the frequency component is performed by Fourier transforming the interference spectrum.
  • a part of the irradiation light is branched and monitored by a detector through an interferometer such as an etalon, thereby determining the wave number selection timing.
  • a system k trigger generation unit
  • a system k trigger generation unit
  • a system measuring system
  • sampling is performed by synchronizing them.
  • the k trigger generation unit samples an interference spectrum at equal wave number intervals by inputting a k trigger (sampling trigger) signal to the measurement system at equal wave number intervals (see Patent Document 1).
  • An optical coherence tomographic imaging apparatus divides into a light source unit that changes the wavelength of light, irradiation light that irradiates the object with light from the light source unit, and reference light, and irradiates the object Information of the object is obtained based on an interference optical system that generates interference light by reflected light of the reflected light and the reference light, a light detection unit that receives the interference light, and a time waveform of the intensity of the interference light
  • An optical coherence tomography apparatus having an information acquisition unit that further includes a wavelength selector provided on an optical path between the light source unit and the light detection unit and having wavelength selection characteristics at equal frequency intervals. The information acquisition unit acquires a peak value of a time waveform of the intensity of the interference light, and acquires information on the object based on the acquired peak value.
  • the light from the light source is detected by the light detection unit through the wavelength selector having the wavelength selection characteristics at equal wave number intervals.
  • the wavelength selector having the wavelength selection characteristics at equal wave number intervals.
  • an optical coherence tomographic imaging apparatus (hereinafter abbreviated as an OCT apparatus) according to an embodiment of the present invention will be described below, the present invention is not limited thereto.
  • the OCT apparatus is configured to include at least a light source unit 101, an interference optical system 102, a light detection unit 103, an information acquisition unit 104, and a wavelength selector 105 having wavelength selection characteristics at equal wave number intervals.
  • the information acquisition unit 104 acquires information on the measurement target object.
  • the information acquisition unit 104 preferably includes a Fourier transformer.
  • the information acquisition unit 104 has a Fourier transformer, the form is not particularly limited as long as the information acquisition unit 104 has a function of performing Fourier transform on the input data.
  • An example is a case where the information acquisition unit 104 has a calculation unit, and the calculation unit has a function of performing Fourier transform.
  • the arithmetic unit is a computer having a CPU, and this computer incorporates an application having a Fourier transform function.
  • the information acquisition unit 104 includes a Fourier transform circuit having a Fourier transform function.
  • the light emitted from the light source unit 101 passes through the interference optical system 102 and is output as interference light having information on the object 113 to be measured.
  • the interference light passes through a wavelength selector (hereinafter simply referred to as a wavelength selector) 105 having wavelength selection characteristics with equal wave number intervals, and is received by the light detection unit 103 at equal wave number intervals.
  • the light detection unit 103 may be a differential detection type or a simple intensity monitor type.
  • Information on the time waveform of the intensity of the interference light received at equal wave intervals is sent from the light detection unit 103 to the information acquisition unit 104.
  • the information acquisition unit 104 acquires the peak value of the time waveform of the intensity of the interference light received at equal wave intervals and performs Fourier transform to acquire information on the object 113 (for example, information on a tomographic image).
  • the object information can be obtained without using the k-trigger generator, high-precision synchronization can be achieved.
  • components other than the light source unit 101, the interference optical system 102, the light detection unit 103, the information acquisition unit 104, and the wavelength selector 105 can be arbitrarily provided as long as the object of the present invention is achieved.
  • information on an object may be acquired using the maximum entropy method (MEM).
  • MEM maximum entropy method
  • the light emitted from the light source unit 101 that changes the wavelength of the light passes through the fiber 106 and enters the coupler 107 to be irradiated light passing through the irradiation light fiber 108 and reference light passing through the reference light fiber 109. Branch off. Irradiation light passes through the collimator 110 to become parallel light and is reflected by the mirror 111. The light reflected by the mirror 111 is irradiated to the object 113 through the lens 112 and is reflected from each layer in the depth direction of the object 113. On the other hand, the reference light is reflected by the mirror 115 through the collimator 114. In the coupler 107, the reflected light from the object 113 interferes with the reflected light from the mirror 115. The interfered light passes through the fiber 116, passes through the collimator 117, becomes parallel light, and enters the wavelength selector 105.
  • the time waveform of the intensity of the interference light (L1 in FIG. 1) before entering the wavelength selector 105 is represented in FIG.
  • sampling is performed by sampling the time waveform of the intensity of the interference light represented in FIG. 2A at equal intervals with respect to the time axis.
  • the obtained data has an equal wave number interval.
  • the sampled data does not have an equal wave number interval.
  • the wavelength selector 105 having the characteristic that the transmittance becomes a maximum value at equal wave number intervals is used.
  • the wavelength selector 105 for example, as shown in FIG. 2B, a wavelength selector 105 having a property of having a maximum value 1 of transmittance at equal wave number intervals can be used.
  • the interference light (L2 in FIG. 1) that has passed through the wavelength selector 105 having such characteristics peaks at equal wave intervals are superimposed (FIG. 2 (c)).
  • the peak values in the graph of FIG. 2C are at equal wavenumber intervals.
  • the interference light on which peaks at equal wave intervals are superimposed is collected through the collimator 118 and received by the light detection unit 103.
  • Information on the intensity of the interference light received by the light detection unit 103 is converted into electrical information such as a voltage and sent to the information acquisition unit 104.
  • the information acquisition unit 104 reads the peak value of the time waveform of the intensity of the interference light.
  • the time waveform of the intensity of the interference light is converted into the time waveform of the light reception voltage by the light detection unit 103, the peak value of the time waveform of the light reception voltage is read out. For example, when the information acquisition unit 104 acquires information on the received light voltage having the time waveform shown in FIG. 2D, the peak value indicated by the white circle in FIG.
  • Information on a tomographic image of the object 113 is obtained by subjecting the read peak value to Fourier transform using a Fourier transformer.
  • a value obtained by Fourier transforming the peak value corresponds to a frequency component included in the interference light.
  • the frequency component is reflected from the coupler 107 on the object surface and reaches the coupler 107, and from the coupler 107 to the mirror 115. It is proportional to the difference between the length of the optical path reflected by and reaching the coupler 107. Therefore, as information on the tomographic image of the object 113, for example, information on the relationship between the length in the depth direction from the object surface and the intensity of reflected light from each layer of the object 113 can be obtained (FIG. 2 (e)). .
  • the information of the tomographic image may be sent from the information acquisition unit 104 to the image display unit 119 and displayed as an image.
  • a three-dimensional tomographic image of the object 113 to be measured can be obtained by scanning the mirror 112 in a plane perpendicular to the direction in which the irradiation light is incident.
  • the information acquisition unit 104 may control the light source unit 101 via the electric circuit 120.
  • the intensity of light emitted from the light source unit 101 may be monitored sequentially, and the data may be used for amplitude correction of the signal of the intensity of interference light.
  • the time waveform data of the intensity of the interference light acquired by the light detection unit 103 is obtained. Is an equal wave number interval. That is, the intensity data of the interference light acquired by the light detection unit 103 is data of equiwavenumber intervals, the peak value (white circle in FIG. 2 (d)) is sampled, and Fourier transform is performed to obtain object information. can get. Therefore, the k-trigger generation unit which has been conventionally required is unnecessary, the timing error is suppressed, and high-precision synchronization can be performed.
  • the wavelength selector 105 only needs to be provided on the optical path between the light source unit 101 and the light detection unit 103.
  • it may be provided on the optical path between the light source unit 101 and the coupler 107, may be provided on the optical path between the coupler 107 and the mirror 115, and is provided between the coupler 107 and the object 113. It may be done.
  • the wavelength selector 105 is provided on the optical path between the optical interference system 102 and the light detection unit 103 as shown in FIG. This is because when the wavelength selector 105 is provided between the light source unit 101 and the coupler 107, the amount of light incident on the interference optical system 102 from the light source unit 101 may be reduced, resulting in the coupler 107.
  • the intensity of the interference light may be reduced.
  • the amount of emitted light required for the light source unit 101 increases.
  • the object 113 is a living body such as an eyeball
  • the intensity of reflected light from the object 113 is weak. Therefore, if the wavelength selector 105 is provided between the coupler 107 and the object 113, the intensity of the reflected light will be further reduced.
  • the wavelength selector 105 is provided between the coupler 107 and the mirror 115, or when the wavelength selector 105 is between the coupler 107 and the object 113, the wavelength selector 105 is provided only on one arm of the interference optical system. It will be inserted. In this case, noise generated due to the vibration of the wavelength selector 105 becomes noise that cannot be removed even if a differential detection system is used.
  • the peak value is a maximum value of the intensity of the interference light (light reception voltage). However, if each peak value is an equal wave number interval, a peak value near a maximum value slightly deviated from the maximum value may be used as the peak value. Good.
  • the white circle in FIG. 2 Only the peak value of the intensity of the interference light (light reception voltage) shown is received (detected) by the light detection unit 103 and becomes 0 between the peaks.
  • the actual wavelength selector 105 has a transmittance value between 0 and 1 at the wave number between them even if the transmittance is 1 at regular wave number intervals. Therefore, as shown in FIG. 2C, interference light other than the peak value is also received. Therefore, it is necessary to read out the maximum value (white circle in FIG. 2D) of each peak as the peak value.
  • the actual maximum transmittance of the wavelength selector is slightly lower than 1 due to absorption of the medium, but this is not a problem in the present invention.
  • the peak value of the time waveform of the intensity of the interference light acquired by the information acquisition unit 104 is the data of the time waveform of the intensity of the interference light received by the light detection unit 103 from the one having the greater intensity of the interference light. It is preferable that the number is as many as the maximum value of the transmittance of the wavelength selector 105.
  • the wavelength selector in the present embodiment is not particularly limited as long as it is an optical element or optical system having wavelength selection characteristics with equal wave number intervals.
  • a wavelength selector having a maximum value of transmittance at equal wave number intervals can be used.
  • the light that has passed through such a wavelength selector becomes light having peaks at equal frequency intervals on the spectrum.
  • the intensity value of the interference light (light reception voltage) is sampled at the maximum value of the transmittance, it is preferable that the line width of the peak of the maximum value of the transmittance is narrow.
  • the filter has a narrow band. This is because as the line width of the peak of the maximum value of the transmittance is narrower, it is easier to sample the intensity value of the interference light at equal frequency intervals.
  • the line width of the peak of the maximum value of the transmittance of the Fabry-Perot filter is preferably 1/10 or less, and preferably 1/100 or less. Further preferred. This is realized by setting the reflectance of the reflecting mirrors at both ends constituting the Fabry-Perot filter to 75% or more and 97% or more, respectively.
  • the wave number intervals are preferably equal to each other, but may be different from each other to the extent that the effects of the present invention are achieved.
  • the line width of the peak of the transmittance maximum value of the filter is narrower than the line width of the light source.
  • the line width is described by the wavelength width ⁇ and the frequency width ⁇ , and indicates the full width at half maximum or 1 / e ⁇ 2 full width of the emission spectrum of the light source and the transmittance spectrum of the filter. In the following, the line width will be described as the full width at half maximum of the peak of the wavelength spectrum.
  • the line width ⁇ of the light source is obtained by using an OCT image of a bright object such as a mirror, for example, and changing the optical path length difference between the mirror and the reference mirror of the OCT interferometer so that the brightness of the OCT image becomes 1/2.
  • the coherence length ⁇ z is defined, and can be obtained from the following equation (1) from ⁇ z.
  • the interference signal By passing the interference signal through a filter having a peak width narrower than the line width of the light source, light having a line width narrower than that of the light source can be extracted from the light included in the interference signal. It is.
  • the obtained interference signal is also an interference signal between lights having a line width narrower than the line width of the light source.
  • interference signals between light with narrow line widths means that even with respect to the distance at which an OCT image can be acquired, an object is irradiated with light with a narrow band width and the reflected light is acquired to obtain the interference spectrum. It has an effect similar to that obtained.
  • the distance in the depth direction where the OCT image can be obtained can be increased by cutting out the interference light into a narrow band with the filter before light reception.
  • the imageable depth range ⁇ z in the depth direction when the emission wavelength is ⁇ 0 with respect to the full width at half maximum ⁇ of the peak wavelength of the filter is This is the value represented by (2).
  • the narrow line width of the peak of the filter corresponds to the small ⁇ in the above equation, and as a result, the value of the OCT image obtainable range ⁇ z becomes large.
  • the requirements regarding the emission line width can be relaxed from the viewpoint of easy development of the light source.
  • the type of the wavelength selector is not particularly limited, and an optical element such as a Fabry-Perot filter, an optical system such as a Mach-Zehnder interferometer, and a Michelson interferometer can be used. Alternatively, a half mirror facing through an air gap may be used, or a multiple reflection film mirror (Distributed Bragg Reflector, hereinafter abbreviated as DBR) facing each other in an optical fiber may be produced.
  • a Fabry-Perot filter that easily increases finesse is preferable.
  • An example of the Fabry-Perot filter is a Fabry-Perot etalon.
  • the Fabry-Perot etalon will be described with reference to FIG.
  • An example of a Fabry-Perot etalon has a configuration in which DBRs 302 are provided on both surfaces of a glass substrate 301.
  • the DBR is composed of a plurality of dielectric films, and the reflectance of the Fabry-Perot etalon can be changed by changing the number of dielectric films and the refractive index of each dielectric film. Increasing the reflectivity increases finesse and increases the wavelength selectivity at equal wave intervals.
  • the glass substrate 301 is not particularly limited, and BK7 or the like can be used.
  • the light detection unit in this embodiment will be described.
  • strength of interference light is converted into the intensity
  • Information on the time waveform of the intensity of the interference light is converted into information on the time waveform of the received light voltage by this light detection unit.
  • Information on the time waveform of the received light voltage is sent to an information acquisition unit described below.
  • time waveform information of analog received light voltage (information of interference light intensity time waveform) sent from the light detection unit 103 is digitally converted by the A / D converter 401.
  • the received light voltage is converted into time waveform information.
  • Information on the time waveform of the digital light reception voltage is stored in the memory 402 and sent to the calculation unit 403.
  • the arithmetic unit 403 obtains the peak value from the time waveform of the digital light reception voltage, and obtains information on the object 113 by Fourier transforming the peak value.
  • the information acquisition unit 104 has a Fourier transformer.
  • the light detection unit 103 receives light and acquires information on the time waveform of the voltage (S501 in FIG. 5 and FIG. 6A). Since it passes through the wavelength selector 105 described above, the time waveform of the intensity of the received light voltage also has an equal wave number interval.
  • the A / D board 401 converts the received light voltage from an analog signal to a digital signal (S502 in FIG. 5, FIG. 6B).
  • the received light voltage information (interference light intensity information) converted into a digital signal is stored in the memory 402 (S503 in FIG. 5). This corresponds to storing data represented by white circles in FIG.
  • the peak value of the received light voltage stored in the memory 402 is sampled, and the peak value is Fourier transformed by the calculation unit 403. Through such steps, object information can be obtained.
  • the sampling method of the peak value of the received light voltage stored in the memory 402 is not particularly limited, but it is necessary to acquire a significant maximum value that is not noise. For example, it is possible to provide a threshold value for a value larger than noise and extract a local maximum value having a value equal to or greater than the threshold value. As an example, when the information on the intensity of the received light voltage (interference light) stored in the memory is represented as shown in FIG. 7, when the received light voltage is a value higher than the received light voltage “5”, Is a peak value.
  • Threshold setting is not limited to a specific method. For example, when there are m maximum values of the transmittance of the wavelength selector 105 in the wavelength sweep band for acquiring a signal, m values are selected from the largest in the time waveform of the intensity of the received light voltage obtained. . The maximum value among the remaining maximum values not selected is regarded as the maximum value of noise, and a value larger than the maximum value of noise and the minimum value or more of the maximum values can be set as a threshold value. .
  • the wavelength of the maximum value of each transmittance of the wavelength selector is determined from the interval of the maximum value of the transmittance of the wavelength selector 105.
  • the time when the light source unit 101 emits light can be estimated. Moreover, it can be set as the peak value for obtaining the maximum value among the local maximum values included in the time waveform obtained in the vicinity of each estimated time. Then, m can be selected from those having larger peak values.
  • the wavelength sweep speed of the light source unit 101 does not vary greatly, there should be no significant variation in the data time interval. Accordingly, as shown in FIG. 8, between the data of two points there is a time interval of the data (FIG. 8 time between t 2 and time t 4 of (a)) by a time interval of the signal obtained at the time of the surrounding If it is about twice open, it can be considered that the received light voltage obtained at that time (time t 3 in FIG. 8A) is “0”. Therefore, with respect to the sampling data to produce a sampled data inserting a 0 at time t 3. Such insertion of a “0” value is necessary particularly when an interference signal is acquired by performing differential detection.
  • the information acquisition unit performs the time T 1 when the intensity peak value (the peak value of the interference light intensity) P 1 of the received light voltage is acquired, and the time after the time when the peak value P 1 is acquired. in the time interval between time T 2, the peak value P 2 is acquired, in which case the peak value in the vicinity of at least 1.99 times the average time interval ⁇ T that is obtained, preferably 1.9 times or more
  • calculation may be performed assuming that the intensity of the received light voltage (interference light intensity) at time T ′ between T 1 and T 2 is 0 (FIG. 8B).
  • This wavelength sweep rate at time T 1, T 2 If the varying within 10% of the wavelength sweep rate at time T 0 or T 3, when it is more than 1.9 times the time interval ⁇ T of the average This is because the intensity of the received light voltage at time T ′ may be regarded as 0. Similarly, when it fluctuates within 1%, it is sufficient to consider that the intensity of the received light voltage is 0 when it is 1.99 times or more.
  • the intensity of the received light voltage (interference light intensity) at time T ′ between T 1 and T 2. Is assumed to be 0 (FIG. 8B).
  • the peak value in the vicinity is, for example, the peak value (P 0 ) at the time (T 0 ) immediately before the peak value P 1 is acquired, and the peak value (T ⁇ 1 ) at the previous time (T ⁇ 1 ) ( P -1), the peak value in one after the time (T 3) (P 3) , the peak value of the two after the time (T 4) (P 4) , a.
  • the average time interval ⁇ T in which the neighboring peak values are acquired can be the average of the value of T 0 -T -1 and the value of T 4 -T 3 .
  • the average time interval is calculated using the four peak values, the number of peak values used for the calculation may be more than that.
  • the intensity of the interference light at each time when the time interval between T 1 and T 2 is equally divided into three is 0. It is considered.
  • the intensity of the interference light at each time when the time interval between T 1 and T 2 is equally divided into N is considered to be zero.
  • the light detection unit 103 When there is a point with the interference signal amplitude of 0 as described above, when the light detection unit 103 is a differential detection type, the light detection unit 103 outputs a voltage of 0 as described above. In the case of a simple light intensity detection type, the light amount of the non-interference component is detected and a non-zero value is output. Therefore, the interpolation of 0 value is an operation necessary when the light detection unit 103 is a differential detection type. Therefore, it is possible to detect the point of the interference component 0 as described above, for example, by measuring by using a differential detection type light detection unit and a simple light intensity detector together.
  • the wavelength selector 105 For the data acquired at a time interval that is clearly shorter than the time interval of other data, for example, about half the time interval of the signal obtained at the surrounding time, the wavelength selector 105 There is a high possibility of sampling other than the maximum value of the transmittance (FIG. 8C). In this case, deleting the data which the time interval is jammed (data obtained at time t 4 in FIG. 8 (c)). Through these, m pieces of sampling data having substantially equal time intervals can be formed. If there are a plurality of data with a short time interval, the data with a short time interval may be deleted a plurality of times as described above until the data with a short time interval disappears.
  • the information acquisition unit includes the time T 1 when the peak value of the intensity of the received light voltage (peak value of the intensity of the interference light) P 1 and the time when the peak value P 1 is acquired.
  • the time interval from the time T 2 when the next peak value P 2 is acquired is equal to or less than 0.9 times the average time interval ⁇ T at which the neighboring peak values are acquired, the peak value P 2 Data need not be acquired (FIG. 8D).
  • the peak value in the vicinity is, for example, the peak value (P 0 ) at the time (T 0 ) immediately before the peak value P 1 is acquired, and the peak value (T ⁇ 1 ) at the previous time (T ⁇ 1 ) ( P -1), the peak value in one after the time (T 3) (P 3) , the peak value of the two after the time (T 4) (P 4) , a.
  • the average time interval ⁇ T in which the neighboring peak values are acquired can be the average of the value of T 0 -T -1 and the value of T 4 -T 3 .
  • the average time interval is calculated using the four peak values, the number of peak values used for the calculation may be more than that.
  • the light source unit 101 is not particularly limited as long as it is a light source that changes the wavelength of light. In order to obtain information on the object 113 using the OCT apparatus, it is necessary to continuously change the wavelength of light emitted from the light source unit.
  • an external resonator type wavelength swept light source using a diffraction grating, a prism, or the like, or various external resonator type light sources using a Fabry-Perot tunable filter with a variable resonator length may be used. it can.
  • an SSG-DBR that changes the wavelength using a sampled grating, a tunable MEMS-VCSEL, or the like can also be used.
  • a fiber laser can also be used.
  • the fiber laser may be a dispersion tuning method or a Fourier domain mode lock method.
  • a resonator As an external resonator type wavelength sweep light source using a diffraction grating, a prism, etc., a resonator is provided with a diffraction grating to disperse light, and a polygon mirror or a striped reflection mirror is provided on a rotating disk.
  • a wavelength swept light source or the like may be used by continuously changing the wavelength of light emitted by using.
  • the object is a measurement target by the OCT apparatus according to the present embodiment, and the type is not particularly limited.
  • living bodies such as eyeballs, skin, and teeth can be mentioned.
  • the OCT apparatus can be used for ophthalmic photography, dental photography, skin photography, etc. for obtaining a tomographic image of the fundus.
  • FIG. 1 shows a simple configuration of the OCT apparatus, but an optical system for differentially detecting interference signals as shown in FIG. 9 may be used.
  • a wavelength tunable light source 901 an isolator 902, a reference light optical path fiber 906, a polarization controller 918, a fiber coupler 905 for branching light oscillated from the light source into reference light and irradiation light, and a reflection mirror 907 are provided.
  • an inspection light optical path fiber 914, a polarization controller 919, an irradiation condensing optical system 915, and an irradiation position scanning mirror 908 that constitute a measurement unit of the object 909 are connected.
  • a fiber coupler 903, a fiber coupler 904, a light receiving fiber 916, a light receiving fiber 917, a differential detector 910, a signal processing device 911 constituting an information acquisition unit, and an image output monitor 913 are connected.
  • an optical tomographic imaging apparatus can be configured by connecting a light source control device 912 that constitutes a light source unit.
  • Reference numerals 921, 922, 923, 924, 925, and 926 are collimators.
  • the Fabry-Perot filter 220 which is a wavelength selector, is provided in front of the differential detector 910, the light detected by the operation detector 910 is at equal wave intervals.
  • FIG. 9 shows a configuration in which one Fabry-Perot filter 220 is provided, one light on the optical path between the collimator 922 and the collimator 924 and light between the collimator 923 and the collimator 925 are shown. A total of two configurations may be provided on the road. In this case, the two Fabry-Perot filters need to have the same FSR (Free Spectral Range, free spectral range). In this way, by using the differential detector 910 in the light detection unit and simultaneously inputting the interference signals from the two ports of the interference optical system, the common-mode noise can be eliminated, and the object with low noise can be eliminated. A tomographic image can be obtained.
  • FSR Free Spectral Range
  • An optical coherence tomography method is an optical tomography method using the above-described optical coherence tomography apparatus, the step of temporally changing the wavelength of light emitted from the light source unit, and the interference optics Receiving at least the interference light generated in the system by the light detection unit, and acquiring the object information based on the peak value of the time waveform of the intensity of the received interference light.
  • the step of acquiring the object information preferably includes a step of acquiring a peak value of the time waveform of the intensity of the interference light and performing a Fourier transform. Further, when acquiring object information, an operation using the maximum entropy principle may be performed instead of Fourier transform.
  • a step of transmitting data obtained by Fourier transform to the image display unit may be included. By having such a process, a tomographic image of the object to be measured can be displayed.
  • the configuration of the OCT apparatus according to the present example is as described in the first embodiment.
  • a wavelength swept light source is used as the light source unit 101
  • a photo detector hereinafter referred to as PD
  • a Fabry-Perot etalon is used as the wavelength selector 105.
  • the wavelength swept light source sweeps the wavelength from 800 nm to 880 nm at a cycle of 5 ns and repeats this operation. This corresponds to a sweep frequency of 200 kHz.
  • the optical path length from the point where the light from the light source unit 101 is emitted to the mirror 115 is made equal to the optical path length from the point where the light from the light source unit 101 is emitted to the surface of the object 113, Observation is performed from the surface of the object to a portion of 4 mm in the optical axis direction of the irradiation light.
  • the obtained spectrum of interference intensity becomes a signal whose intensity increases at every frequency of 37.5 GHz (FIG. 10). If this is regarded as a sine wave having a frequency of 37.5 GHz, in order to analyze the frequency component of this signal, it is necessary to sample the intensity value of the interference light at a frequency interval of at least half this frequency interval. That is, it is necessary to sample at a frequency interval of 18.75 GHz or less.
  • the frequency of the signal whose frequency is to be analyzed is a signal of 37.5 GHz or less, and thus the frequency of 18.75 GHz or less. If signals are acquired at intervals, a signal in a frequency band necessary for obtaining a tomographic image can be obtained.
  • this sampling interval is defined by a Fabry-Perot etalon inserted in the optical path.
  • the interval between the maximum values of the transmittance of the Fabry-Perot etalon is set to be equal wave number intervals and less than 18.7 GHz. This is equivalent to setting the optical path length of the Fabry-Perot etalon to 8 mm or more.
  • the optical path length of the Fabry-Perot filter etalon is 8 mm. The optical path length may be longer than 8 mm.
  • FIG. 11 shows a time waveform of the intensity of the received light voltage obtained by the PD using the OCT apparatus according to the present embodiment.
  • the signal obtained by the light detection unit 103 has a waveform in which the transmittance of the Fabry-Perot filter is superimposed on the interference signal waveform. It is necessary to read the peak value in FIG. 11 and acquire the data as signal values at equal frequency intervals.
  • the time waveform of the voltage intensity acquired by light detection is taken into the memory of the information acquisition unit 104 via the AD converter.
  • the peak value is read from this data, and sampling data to be subjected to Fourier transform is produced.
  • a threshold value is provided for a value equal to or higher than noise, and a local maximum value having a value equal to or higher than the threshold value is extracted.
  • the maximum value m of the transmittance of the Fabry-Perot etalon is 1818. This is because the frequency interval between wavelengths of 800 nm and 880 nm is 34.07 THz, while the frequency interval of the maximum transmittance of the Fabry-Perot etalon is 18.74 GHz and the ratio thereof is 1818. Therefore, a tomographic image of an object can be acquired by performing Fourier transform using the local maximum values from 18 to 1818 received by the PD as sampling data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

With a conventional OCT device, a k-trigger emission unit and a measurement assembly for obtaining a coherence light beam having information of an object are separate, requiring sending a trigger signal for sampling from the k-trigger emission unit to the measurement assembly, thus making it easier for timing errors from a plurality of electrical devices to accumulate, and complicating high-precision synchronization. Provided is an OCT device, comprising: a light source unit which changes a wavelength of light; a coherent optical assembly which splits a light beam from the light source unit into an illumination light beam which illuminates an object and a reference light beam, and causes a coherent light from reflected light of the light beam with which the object is illuminated and the reference light beam; an optical detection unit which receives the coherent light beam; and an information acquisition unit which acquires information of the object on the basis of a time waveform of the intensity of the coherent light beam. The OCT device further comprises a wavelength selection apparatus which is disposed upon a light beam path between the light source unit and the optical detection unit and which has an equal frequency gap wavelength selection feature. The information acquisition unit acquires a peak value of the time waveform of the intensity of the coherent light beam and acquires information of the object on the basis of the acquired peak value.

Description

光干渉断層撮像装置及び光干渉断層撮像方法Optical coherence tomography apparatus and optical coherence tomography method
 本発明は、光干渉断層撮像装置及び光干渉断層撮像方法に関する。 The present invention relates to an optical coherence tomography apparatus and an optical coherence tomography method.
 従来の、波長可変光源を用いた光干渉断層撮像(Optical CoherenceTomography、OCT)装置(以下、OCT装置と略す)では、物体へ光を照射し、照射光の波長を連続的に変化させ、参照光と物体の異なる深さから戻ってくる反射光とを干渉させる。そして干渉光の強度の時間波形(以下、干渉スペクトルと略す)に含まれる周波数成分を分析することによって物体の断層像を得る。周波数成分の分析は、干渉スペクトルをフーリエ変換することで行うが、歪みやノイズの少ない断層像を得るために等波数間隔で干渉スペクトルをサンプリングしてフーリエ変換する必要がある。 In a conventional optical coherence tomography (OCT) apparatus (hereinafter abbreviated as an OCT apparatus) using a wavelength tunable light source, an object is irradiated with light, the wavelength of the irradiated light is continuously changed, and the reference light And the reflected light returning from different depths of the object. Then, a tomographic image of the object is obtained by analyzing the frequency component included in the time waveform of the intensity of the interference light (hereinafter abbreviated as interference spectrum). The analysis of the frequency component is performed by Fourier transforming the interference spectrum. However, in order to obtain a tomographic image with less distortion and noise, it is necessary to sample the interference spectrum at equal wave intervals and perform the Fourier transform.
 従来は、干渉スペクトルから等波数間隔でサンプリングするために、照射光の一部を分岐してエタロンなどの干渉計を通してディテクタでモニタすることによって、波数選択のタイミングを決めていた。このように波数選択のタイミングを決める系(kトリガ発生部)と干渉光の強度を検出する系(測定系)とが別々にあり、それらの間で同期をとることでサンプリングしていた。具体的には、kトリガ発生部が、等波数間隔でkトリガ(サンプリングトリガ)信号を測定系へ入力することで、等波数間隔で干渉スペクトルをサンプリングしていた(特許文献1参照)。 Conventionally, in order to sample at an equal wave number interval from the interference spectrum, a part of the irradiation light is branched and monitored by a detector through an interferometer such as an etalon, thereby determining the wave number selection timing. In this way, there are a system (k trigger generation unit) that determines the timing of wave number selection and a system (measurement system) that detects the intensity of interference light, and sampling is performed by synchronizing them. Specifically, the k trigger generation unit samples an interference spectrum at equal wave number intervals by inputting a k trigger (sampling trigger) signal to the measurement system at equal wave number intervals (see Patent Document 1).
特開2007-24677号公報JP 2007-24677 A
 しかし、上記のように従来のOCT装置では、kトリガ発生部と測定系が別なので、サンプリングのためのトリガ信号をkトリガ発生部が測定系へ入力する必要があり、多数の電気デバイスによるタイミング誤差が蓄積しやすく、高精度な同期を難しくしていた。 However, in the conventional OCT apparatus as described above, since the k trigger generation unit and the measurement system are separate, it is necessary for the k trigger generation unit to input a trigger signal for sampling to the measurement system. Errors are easy to accumulate, making high-precision synchronization difficult.
 本発明に係る光干渉断層撮像装置(OCT装置)は、光の波長を変化させる光源部と、前記光源部からの光を物体へ照射する照射光と参照光とに分岐し、前記物体に照射された光の反射光と前記参照光による干渉光を発生させる干渉光学系と、前記干渉光を受光する光検出部と、前記干渉光の強度の時間波形に基づいて、前記物体の情報を取得する情報取得部と、を有する光干渉断層撮像装置において、前記光源部と、前記光検出部との間の光路上に設けられた、等波数間隔の波長選択特性を有する波長選択器をさらに有し、前記情報取得部は、前記干渉光の強度の時間波形のピーク値を取得し、取得した前記ピーク値に基づいて前記物体の情報を取得することを特徴とする。 An optical coherence tomographic imaging apparatus (OCT apparatus) according to the present invention divides into a light source unit that changes the wavelength of light, irradiation light that irradiates the object with light from the light source unit, and reference light, and irradiates the object Information of the object is obtained based on an interference optical system that generates interference light by reflected light of the reflected light and the reference light, a light detection unit that receives the interference light, and a time waveform of the intensity of the interference light An optical coherence tomography apparatus having an information acquisition unit that further includes a wavelength selector provided on an optical path between the light source unit and the light detection unit and having wavelength selection characteristics at equal frequency intervals. The information acquisition unit acquires a peak value of a time waveform of the intensity of the interference light, and acquires information on the object based on the acquired peak value.
 本発明に係るOCT装置によれば、光源からの光が、等波数間隔の波長選択特性を有する波長選択器を通って光検出部によって検出される。その結果、等波数間隔の干渉光の強度のデータが得られる。したがって、kトリガ発生部と測定系とを別の光学系として設ける必要がないため、タイミング誤差が抑制され、高精度な同期ができるようになる。 According to the OCT apparatus according to the present invention, the light from the light source is detected by the light detection unit through the wavelength selector having the wavelength selection characteristics at equal wave number intervals. As a result, data on the intensity of the interference light at regular wave intervals is obtained. Therefore, since it is not necessary to provide the k trigger generation unit and the measurement system as separate optical systems, timing errors are suppressed and high-precision synchronization can be achieved.
本発明の実施形態1に係るOCT装置の構成を示した図である。It is the figure which showed the structure of the OCT apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るOCT装置を用いて、干渉光(受光電圧)の強度のピーク値を取得する方法について説明するための図である。It is a figure for demonstrating the method to acquire the peak value of the intensity | strength of interference light (light reception voltage) using the OCT apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1におけるファブリーペローエタロンの構成の一例について説明するための図である。It is a figure for demonstrating an example of a structure of the Fabry-Perot etalon in Embodiment 1 of this invention. 本発明の実施形態1における情報取得部の構成を示した図である。It is the figure which showed the structure of the information acquisition part in Embodiment 1 of this invention. 本発明の実施形態1において物体の断層像を得るまでに情報取得部で行う工程のフローを示した図である。It is the figure which showed the flow of the process performed in an information acquisition part before obtaining the tomogram of an object in Embodiment 1 of this invention. 本発明の実施形態1における受光電圧の強度のデータがA/D変換器に入る前と入った後のグラフの一例を示す図である。It is a figure which shows an example of the graph after the data of the intensity | strength of the received light voltage in Embodiment 1 of this invention before entering into an A / D converter. 本発明の実施形態1におけるメモリで格納される受光電圧のデータの一例示す図である。It is a figure which shows an example of the data of the received light voltage stored in the memory in Embodiment 1 of this invention. 本発明の実施形態1におけるサンプリングデータを作成する方法の一例について説明するための図である。It is a figure for demonstrating an example of the method of producing the sampling data in Embodiment 1 of this invention. 本発明の実施形態2に係るOCT装置の構成を示した図である。It is the figure which showed the structure of the OCT apparatus which concerns on Embodiment 2 of this invention. 本発明の実施例においてフォトディテクタで検出される受光電圧と周波数との関係を説明するための図である。It is a figure for demonstrating the relationship between the received light voltage and frequency which are detected with the photodetector in the Example of this invention. 本発明の実施例において情報取得部で得られる受光電圧の時間波形を示す図である。It is a figure which shows the time waveform of the received light voltage obtained by the information acquisition part in the Example of this invention.
 本発明の実施形態に係る光干渉断層撮像装置(以下、OCT装置と略す)について以下に説明するが、本発明はこれらに限られない。 Although an optical coherence tomographic imaging apparatus (hereinafter abbreviated as an OCT apparatus) according to an embodiment of the present invention will be described below, the present invention is not limited thereto.
 (実施形態1)
 (OCT装置)
 実施形態1に係るOCT装置について図1及び図2を用いて説明する。なお、図中の矢印は光の進む方向を示している。
(Embodiment 1)
(OCT equipment)
The OCT apparatus according to the first embodiment will be described with reference to FIGS. In addition, the arrow in a figure has shown the direction where light travels.
 実施形態1に係るOCT装置は、光源部101、干渉光学系102、光検出部103、情報取得部104、等波数間隔の波長選択特性を有する波長選択器105、を少なくとも有する構成である。また、図示していないが、情報取得部104は測定対象物体の情報を取得する。また、情報取得部104はフーリエ変換器を有することが好ましい。ここで、情報取得部104がフーリエ変換器を有するとは、情報取得部が入力されたデータに対してフーリエ変換する機能を有していれば形態は特に限定されない。一例は、情報取得部104が演算部を有し、該演算部がフーリエ変換する機能を有する場合である。具体的には、該演算部がCPUを有するコンピュータであり、このコンピュータが、フーリエ変換機能を有するアプリケーションを内蔵する場合である。他の例は、情報取得部104がフーリエ変換機能を有するフーリエ変換回路を有する場合である。光源部101から出た光は干渉光学系102を経て測定対象の物体113の情報を有する干渉光となって出力される。干渉光は等波数間隔の波長選択特性を有する波長選択器(以下、単に波長選択器と呼ぶ)105を通り、光検出部103において等波数間隔で受光される。なお光検出部103は差動検出型でも良いし単純な強度モニタ型でも良い。等波数間隔で受光された干渉光の強度の時間波形の情報は光検出部103から情報取得部104に送られる。情報取得部104では、等波数間隔で受光された干渉光の強度の時間波形のピーク値を取得してフーリエ変換をし、物体113の情報(例えば断層像の情報)を取得する。このように、kトリガ発生部を用いずに、物体の情報を得ることができるため、高精度な同期をすることができる。なお、本発明の目的を達成する範囲において、ここで挙げた光源部101、干渉光学系102、光検出部103、情報取得部104、波長選択器105以外のものを任意に設けることができる。 The OCT apparatus according to the first embodiment is configured to include at least a light source unit 101, an interference optical system 102, a light detection unit 103, an information acquisition unit 104, and a wavelength selector 105 having wavelength selection characteristics at equal wave number intervals. Although not shown, the information acquisition unit 104 acquires information on the measurement target object. In addition, the information acquisition unit 104 preferably includes a Fourier transformer. Here, if the information acquisition unit 104 has a Fourier transformer, the form is not particularly limited as long as the information acquisition unit 104 has a function of performing Fourier transform on the input data. An example is a case where the information acquisition unit 104 has a calculation unit, and the calculation unit has a function of performing Fourier transform. Specifically, this is a case where the arithmetic unit is a computer having a CPU, and this computer incorporates an application having a Fourier transform function. Another example is a case where the information acquisition unit 104 includes a Fourier transform circuit having a Fourier transform function. The light emitted from the light source unit 101 passes through the interference optical system 102 and is output as interference light having information on the object 113 to be measured. The interference light passes through a wavelength selector (hereinafter simply referred to as a wavelength selector) 105 having wavelength selection characteristics with equal wave number intervals, and is received by the light detection unit 103 at equal wave number intervals. The light detection unit 103 may be a differential detection type or a simple intensity monitor type. Information on the time waveform of the intensity of the interference light received at equal wave intervals is sent from the light detection unit 103 to the information acquisition unit 104. The information acquisition unit 104 acquires the peak value of the time waveform of the intensity of the interference light received at equal wave intervals and performs Fourier transform to acquire information on the object 113 (for example, information on a tomographic image). As described above, since the object information can be obtained without using the k-trigger generator, high-precision synchronization can be achieved. Note that components other than the light source unit 101, the interference optical system 102, the light detection unit 103, the information acquisition unit 104, and the wavelength selector 105 can be arbitrarily provided as long as the object of the present invention is achieved.
 また、情報取得部104がフーリエ変換器を有しない場合、最大エントロピー原理(Maximum Entropy Method、MEM)を用いて物体の情報を取得してもよい。 In addition, when the information acquisition unit 104 does not have a Fourier transformer, information on an object may be acquired using the maximum entropy method (MEM).
 以下、光源部101にて光が発生してから、測定対象の物体の断層像の情報を得るまでについて詳細に説明する。 Hereinafter, a detailed description will be given of the process from the generation of light by the light source unit 101 to the acquisition of tomographic image information of the object to be measured.
 光の波長を変化させる光源部101から出た光は、ファイバ106を通って、カップラ107に入り、照射光用のファイバ108を通る照射光と、参照光用のファイバ109を通る参照光とに分岐される。照射光はコリメーター110を通って平行光になり、ミラー111で反射される。ミラー111で反射された光はレンズ112を通って物体113に照射され、物体113の奥行き方向の各層から反射される。一方、参照光はコリメーター114を通ってミラー115で反射される。カップラ107では、物体113からの反射光とミラー115からの反射光を干渉させる。干渉した光はファイバ116を通り、コリメーター117を通って平行光となって、波長選択器105に入射する。 The light emitted from the light source unit 101 that changes the wavelength of the light passes through the fiber 106 and enters the coupler 107 to be irradiated light passing through the irradiation light fiber 108 and reference light passing through the reference light fiber 109. Branch off. Irradiation light passes through the collimator 110 to become parallel light and is reflected by the mirror 111. The light reflected by the mirror 111 is irradiated to the object 113 through the lens 112 and is reflected from each layer in the depth direction of the object 113. On the other hand, the reference light is reflected by the mirror 115 through the collimator 114. In the coupler 107, the reflected light from the object 113 interferes with the reflected light from the mirror 115. The interfered light passes through the fiber 116, passes through the collimator 117, becomes parallel light, and enters the wavelength selector 105.
 波長選択器105を経た干渉光のスペクトル上には、等波数間隔のピークが重畳される。例えば、波長選択器105に入射する前の干渉光(図1のL1)の強度の時間波形が図2(a)で表されるとする。光源部101から出る光の波数と時刻とが線形の関係にある場合、図2(a)で表される干渉光の強度の時間波形について、時間軸に対して等間隔にサンプリングすれば、サンプリングされたデータは等波数間隔となっている。しかし、光源部101から出る光の波数と時刻とが線形の関係にない場合、サンプリングされたデータは等波数間隔とならない。 On the spectrum of the interference light that has passed through the wavelength selector 105, peaks at equal wave intervals are superimposed. For example, it is assumed that the time waveform of the intensity of the interference light (L1 in FIG. 1) before entering the wavelength selector 105 is represented in FIG. When the wave number of the light emitted from the light source unit 101 and the time are in a linear relationship, sampling is performed by sampling the time waveform of the intensity of the interference light represented in FIG. 2A at equal intervals with respect to the time axis. The obtained data has an equal wave number interval. However, when the wave number of light emitted from the light source unit 101 and the time are not in a linear relationship, the sampled data does not have an equal wave number interval.
 そこで、等波数間隔で透過率が極大値となる特性をもつ波長選択器105を用いる。波長選択器105は、例えば、図2(b)に示すように、等波数間隔に透過率の極大値1を有する性質をもつものを用いることができる。このような特性をもつ波長選択器105を通った干渉光(図1のL2)は、等波数間隔のピークが重畳される(図2(c))。図2(c)のグラフのピーク値同士は等波数間隔になっている。 Therefore, the wavelength selector 105 having the characteristic that the transmittance becomes a maximum value at equal wave number intervals is used. As the wavelength selector 105, for example, as shown in FIG. 2B, a wavelength selector 105 having a property of having a maximum value 1 of transmittance at equal wave number intervals can be used. In the interference light (L2 in FIG. 1) that has passed through the wavelength selector 105 having such characteristics, peaks at equal wave intervals are superimposed (FIG. 2 (c)). The peak values in the graph of FIG. 2C are at equal wavenumber intervals.
 等波数間隔のピークが重畳された干渉光は、コリメーター118を通って集光され、光検出部103で受光される。光検出部103で受光された干渉光の強度の情報は電圧などの電気的な情報に変換されて、情報取得部104に送られる。情報取得部104では、干渉光の強度の時間波形のピーク値を読み出す。実際に干渉光の強度の時間波形は、光検出部103を受光電圧の時間波形へと変換されるため、受光電圧の時間波形のピーク値を読みだす。例えば、情報取得部104によって、図2(d)で示される時間波形をもつ受光電圧の情報が取得された場合、図2(d)の白丸で示すピーク値を読み出す。読み出したピーク値についてフーリエ変換器によってフーリエ変換することによって、物体113の断層像の情報を得る。ピーク値をフーリエ変換して得られる値は、干渉光に含まれる周波数成分に相当し、周波数成分は、カップラ107から物体表面で反射されカップラ107へ到達する光路の長さと、カップラ107からミラー115で反射されてカップラ107に到達する光路の長さとの差に比例する。したがって、物体113断層像の情報として、例えば、物体表面からの奥行き方向の長さと、物体113の各層からの反射光の強度との関係についての情報を得ることができる(図2(e))。 The interference light on which peaks at equal wave intervals are superimposed is collected through the collimator 118 and received by the light detection unit 103. Information on the intensity of the interference light received by the light detection unit 103 is converted into electrical information such as a voltage and sent to the information acquisition unit 104. The information acquisition unit 104 reads the peak value of the time waveform of the intensity of the interference light. Actually, since the time waveform of the intensity of the interference light is converted into the time waveform of the light reception voltage by the light detection unit 103, the peak value of the time waveform of the light reception voltage is read out. For example, when the information acquisition unit 104 acquires information on the received light voltage having the time waveform shown in FIG. 2D, the peak value indicated by the white circle in FIG. Information on a tomographic image of the object 113 is obtained by subjecting the read peak value to Fourier transform using a Fourier transformer. A value obtained by Fourier transforming the peak value corresponds to a frequency component included in the interference light. The frequency component is reflected from the coupler 107 on the object surface and reaches the coupler 107, and from the coupler 107 to the mirror 115. It is proportional to the difference between the length of the optical path reflected by and reaching the coupler 107. Therefore, as information on the tomographic image of the object 113, for example, information on the relationship between the length in the depth direction from the object surface and the intensity of reflected light from each layer of the object 113 can be obtained (FIG. 2 (e)). .
 断層像の情報は、情報取得部104から画像表示部119に送って画像として表示させてもよい。なお、ミラー112を照射光の入射する方向と垂直な平面内で走査することで、測定対象の物体113の3次元の断層像を得ることができる。また、光源部101の制御は情報取得部104が電気回路120を介して行ってもよい。また図示しないが、光源部101から出る光の強度を逐次モニタリングし、そのデータを干渉光の強度の信号の振幅補正に用いてもよい。 The information of the tomographic image may be sent from the information acquisition unit 104 to the image display unit 119 and displayed as an image. A three-dimensional tomographic image of the object 113 to be measured can be obtained by scanning the mirror 112 in a plane perpendicular to the direction in which the irradiation light is incident. The information acquisition unit 104 may control the light source unit 101 via the electric circuit 120. Although not shown, the intensity of light emitted from the light source unit 101 may be monitored sequentially, and the data may be used for amplitude correction of the signal of the intensity of interference light.
 このように、本実施形態に係るOCT装置は、干渉光が等波数間隔の波長選択特性を有する波長選択器105を通るため、光検出部103で取得される干渉光の強度の時間波形のデータは、等波数間隔である。すなわち、光検出部103で取得される干渉光の強度のデータは、等波数間隔のデータであり、ピーク値(図2(d)の白丸)をサンプリングし、フーリエ変換をして物体の情報が得られる。したがって、従来必要としていたkトリガ発生部が不要であり、タイミング誤差が抑制され、高精度な同期ができるようになる。 As described above, in the OCT apparatus according to the present embodiment, since the interference light passes through the wavelength selector 105 having the wavelength selection characteristics with equal wave number intervals, the time waveform data of the intensity of the interference light acquired by the light detection unit 103 is obtained. Is an equal wave number interval. That is, the intensity data of the interference light acquired by the light detection unit 103 is data of equiwavenumber intervals, the peak value (white circle in FIG. 2 (d)) is sampled, and Fourier transform is performed to obtain object information. can get. Therefore, the k-trigger generation unit which has been conventionally required is unnecessary, the timing error is suppressed, and high-precision synchronization can be performed.
 なお、波長選択器105は、光源部101と光検出部103との間の光路上に設けられていればよい。例えば、光源部101とカップラ107との間の光路上に設けられていてもよく、カップラ107とミラー115との間の光路上に設けられていてもよく、カップラ107と物体113の間に設けられていてもよい。好ましくは、波長選択器105が、図1のように、光学干渉系102と光検出部103の間の光路上に設けられている場合である。なぜなら、波長選択器105が光源部101とカップラ107の間に設けられている場合、光源部101から干渉光学系102へ入射する光量が低下する可能性があり、結果的にカップラ107で発生する干渉光の強度が小さくなる可能性があるからである。あるいは物体113などに規定の光量を照射する場合、光源部101に要求される発光光量が大きくなるからである。また、物体113が眼球など生体である場合、物体113からの反射光の強度は弱い。そのため、波長選択器105をカップラ107と物体113の間に設けてしまうと、反射光の強度はさらに弱くなってしまう。また、波長選択器105がカップラ107とミラー115の間に設けられている場合、あるいは波長選択器105がカップラ107と物体113の間にある場合、干渉光学系の片腕にのみ波長選択器105が挿入されている事になる。この場合、波長選択器105が振動するなどの理由で発生するノイズは差動検出系を使っても取り除けないノイズとなるためである。 The wavelength selector 105 only needs to be provided on the optical path between the light source unit 101 and the light detection unit 103. For example, it may be provided on the optical path between the light source unit 101 and the coupler 107, may be provided on the optical path between the coupler 107 and the mirror 115, and is provided between the coupler 107 and the object 113. It may be done. Preferably, the wavelength selector 105 is provided on the optical path between the optical interference system 102 and the light detection unit 103 as shown in FIG. This is because when the wavelength selector 105 is provided between the light source unit 101 and the coupler 107, the amount of light incident on the interference optical system 102 from the light source unit 101 may be reduced, resulting in the coupler 107. This is because the intensity of the interference light may be reduced. Alternatively, when the prescribed amount of light is applied to the object 113 or the like, the amount of emitted light required for the light source unit 101 increases. When the object 113 is a living body such as an eyeball, the intensity of reflected light from the object 113 is weak. Therefore, if the wavelength selector 105 is provided between the coupler 107 and the object 113, the intensity of the reflected light will be further reduced. When the wavelength selector 105 is provided between the coupler 107 and the mirror 115, or when the wavelength selector 105 is between the coupler 107 and the object 113, the wavelength selector 105 is provided only on one arm of the interference optical system. It will be inserted. In this case, noise generated due to the vibration of the wavelength selector 105 becomes noise that cannot be removed even if a differential detection system is used.
 (ピーク値)
 本実施形態においてピーク値とは、干渉光(受光電圧)の強度の極大値であるが、各々のピーク値が等波数間隔であれば、極大値から少しずれた極大値近傍をピーク値としてもよい。
(Peak value)
In the present embodiment, the peak value is a maximum value of the intensity of the interference light (light reception voltage). However, if each peak value is an equal wave number interval, a peak value near a maximum value slightly deviated from the maximum value may be used as the peak value. Good.
 ここで、波長選択器105が、等波数間隔で透過率が1の値を有し、それ以外の波数では0の値を有する特性をもつものである場合は、図2(d)の白丸で示される、干渉光(受光電圧)の強度のピーク値のみが光検出部103で受光(検出)され、ピーク間では0となる。しかし、実際の波長選択器105は図2(b)で示すように、等波数間隔で透過率1であっても、その間の波数において0と1の間の透過率の値をもつ。そのため、図2(c)で示すようにピーク値以外の干渉光も受光されてしまう。そこで、各々のピークの極大値(図2(d)の白丸)をピーク値として読み出す必要がある。また実際の波長選択器の透過率最大値は媒質の吸収などにより1を若干下回る値になるが、本発明ではその点は問題にならない。 Here, when the wavelength selector 105 has a characteristic in which the transmittance has a value of 1 at equal wave number intervals and a value of 0 at other wave numbers, the white circle in FIG. Only the peak value of the intensity of the interference light (light reception voltage) shown is received (detected) by the light detection unit 103 and becomes 0 between the peaks. However, as shown in FIG. 2B, the actual wavelength selector 105 has a transmittance value between 0 and 1 at the wave number between them even if the transmittance is 1 at regular wave number intervals. Therefore, as shown in FIG. 2C, interference light other than the peak value is also received. Therefore, it is necessary to read out the maximum value (white circle in FIG. 2D) of each peak as the peak value. In addition, the actual maximum transmittance of the wavelength selector is slightly lower than 1 due to absorption of the medium, but this is not a problem in the present invention.
 また、情報取得部104が取得する干渉光の強度の時間波形のピーク値は、光検出部103で受光された干渉光の強度の時間波形のデータのうち、干渉光の強度の大きい方から、波長選択器105の有する透過率の極大値の個数分までとすることが好ましい。 In addition, the peak value of the time waveform of the intensity of the interference light acquired by the information acquisition unit 104 is the data of the time waveform of the intensity of the interference light received by the light detection unit 103 from the one having the greater intensity of the interference light. It is preferable that the number is as many as the maximum value of the transmittance of the wavelength selector 105.
 (等波数間隔の波長選択特性を有する波長選択器)
 本実施形態における波長選択器としては、等波数間隔の波長選択特性を有する光学素子または光学系であれば特に限定されない。例えば、図2(b)に示すように、等波数間隔で透過率の極大値を有する波長選択器を用いることができる。このような波長選択器を通った光は、スペクトル上で等波数間隔のピークを有する光となる。また、この透過率の極大値において干渉光(受光電圧)の強度の値をサンプリングするので、透過率の極大値のピークの線幅が狭いことが好ましい。すなわち、波長選択器がファブリーペローフィルタである場合、フィルタが狭帯域であることが好ましい。これは、透過率の極大値のピークの線幅が細いほど、正確に、等周波数間隔で干渉光の強度の値のサンプリングをしやすいからである。例えば、サンプリングする光の周波数間隔が18.7GHzである場合、ファブリーペローフィルタの透過率の極大値のピークの線幅はその1/10以下であることが好ましく、1/100以下であることがさらに好ましい。これは、ファブリーペローフィルタを構成する両端の反射鏡の反射率をそれぞれ、75%以上、97%以上に設定することで実現する。なお、波数間隔は互いに等しいことが好ましいが、本発明の効果を奏する程度に互いに異なっていてもよい。
(Wavelength selector with wavelength selection characteristics at equal frequency intervals)
The wavelength selector in the present embodiment is not particularly limited as long as it is an optical element or optical system having wavelength selection characteristics with equal wave number intervals. For example, as shown in FIG. 2B, a wavelength selector having a maximum value of transmittance at equal wave number intervals can be used. The light that has passed through such a wavelength selector becomes light having peaks at equal frequency intervals on the spectrum. Further, since the intensity value of the interference light (light reception voltage) is sampled at the maximum value of the transmittance, it is preferable that the line width of the peak of the maximum value of the transmittance is narrow. That is, when the wavelength selector is a Fabry-Perot filter, it is preferable that the filter has a narrow band. This is because as the line width of the peak of the maximum value of the transmittance is narrower, it is easier to sample the intensity value of the interference light at equal frequency intervals. For example, when the frequency interval of the sampling light is 18.7 GHz, the line width of the peak of the maximum value of the transmittance of the Fabry-Perot filter is preferably 1/10 or less, and preferably 1/100 or less. Further preferred. This is realized by setting the reflectance of the reflecting mirrors at both ends constituting the Fabry-Perot filter to 75% or more and 97% or more, respectively. The wave number intervals are preferably equal to each other, but may be different from each other to the extent that the effects of the present invention are achieved.
 また、フィルタの透過率極大値のピークの線幅が光源の線幅より狭帯域であることも好適である。 It is also preferable that the line width of the peak of the transmittance maximum value of the filter is narrower than the line width of the light source.
 線幅は波長幅Δλや周波数幅Δνで記述し、光源の発光スペクトルやフィルタの透過率スペクトルのピークの半値全幅あるいは1/e^2全幅の事を指す。以下では線幅を波長スペクトルのピークの半値全幅で説明する。 The line width is described by the wavelength width Δλ and the frequency width Δν, and indicates the full width at half maximum or 1 / e ^ 2 full width of the emission spectrum of the light source and the transmittance spectrum of the filter. In the following, the line width will be described as the full width at half maximum of the peak of the wavelength spectrum.
 光源の線幅Δλは、例えばミラー等の明るい物体のOCT像を用い、ミラーとOCT干渉計の参照ミラーとの光路長差を変化させOCT像の明るさが1/2になる光路長差を以てコヒーレンス長Δzを定義し、Δzから下記式(1)より求めることが可能である。 The line width Δλ of the light source is obtained by using an OCT image of a bright object such as a mirror, for example, and changing the optical path length difference between the mirror and the reference mirror of the OCT interferometer so that the brightness of the OCT image becomes 1/2. The coherence length Δz is defined, and can be obtained from the following equation (1) from Δz.
Figure JPOXMLDOC01-appb-M000001

                     (1)
Figure JPOXMLDOC01-appb-M000001

(1)
 干渉信号を、光源の線幅よりも狭帯域なピーク幅を有するフィルタに通すことで干渉信号に含まれる光の中から光源の線幅よりも狭帯域な線幅の光を抽出することが可能である。この場合、得られる干渉信号も光源の線幅よりも狭帯域な線幅の光同士の干渉信号となる。 By passing the interference signal through a filter having a peak width narrower than the line width of the light source, light having a line width narrower than that of the light source can be extracted from the light included in the interference signal. It is. In this case, the obtained interference signal is also an interference signal between lights having a line width narrower than the line width of the light source.
 狭帯域な線幅の光同士の干渉信号が得られるということは、OCT像の取得可能距離に関しても、もともと狭帯域な線幅の光を物体に照射しその反射光を取得して干渉スペクトルを得るのと同様の効果を有する。 The fact that interference signals between light with narrow line widths can be obtained means that even with respect to the distance at which an OCT image can be acquired, an object is irradiated with light with a narrow band width and the reflected light is acquired to obtain the interference spectrum. It has an effect similar to that obtained.
 つまり元の光源の線幅よりもフィルタの線幅が細い場合、受光前に干渉光をフィルタで狭帯域に切り出すことにより、OCT像が得られる深さ方向の距離を長く出来る効果を有する。 In other words, when the line width of the filter is narrower than the line width of the original light source, the distance in the depth direction where the OCT image can be obtained can be increased by cutting out the interference light into a narrow band with the filter before light reception.
 たとえば、フィルタにより切り出すスペクトルの形状が略ガウシアンであると仮定すると、フィルタのピークの波長の半値全幅Δλに対して、発光波長をλ0とする時深さ方向の撮像可能深さ範囲Δzは下記式(2)であらわされる値となる。 For example, assuming that the shape of the spectrum cut out by the filter is approximately Gaussian, the imageable depth range Δz in the depth direction when the emission wavelength is λ0 with respect to the full width at half maximum Δλ of the peak wavelength of the filter is This is the value represented by (2).
Figure JPOXMLDOC01-appb-M000002

          (2)
Figure JPOXMLDOC01-appb-M000002

(2)
 式からわかるように、フィルタのピークの線幅が狭帯域である事は、上式のΔλが小さい事に対応し、結果的にOCT像の取得可能範囲Δzの値は大きくなる。 As can be seen from the equation, the narrow line width of the peak of the filter corresponds to the small Δλ in the above equation, and as a result, the value of the OCT image obtainable range Δz becomes large.
 一般的に、広帯域な波長範囲を高速に掃引可能な狭線幅光源は、それ自体が実現が難しいため、このような高性能な光源の開発自体が大きな課題となる事もある。 In general, it is difficult to realize a narrow line width light source capable of sweeping a wide wavelength range at a high speed. Therefore, development of such a high-performance light source itself may be a big problem.
 したがって、本発明により、光源に求められる上記の性能のうち、発光線幅に関しての要求を緩和することが可能となる事は、光源の開発が容易になるという点でも好適である。 Therefore, according to the present invention, among the above-mentioned performances required for the light source, it is preferable that the requirements regarding the emission line width can be relaxed from the viewpoint of easy development of the light source.
 波長選択器の種類は、特に限定されず、ファブリーペローフィルタなどの光学素子、マッハツェンダー干渉計、マイケルソン干渉計などの光学系を用いることができる。また、エアギャップを介して対向するハーフミラーを用いても良く、光ファイバ内に対向する多重反射膜ミラー(Distributed Bragg Reflector、以下DBRと略すことがある)を作製したものであってもよい。本実施形態に係る波長選択器の中で、フィネスを高くしやすいファブリーペローフィルタが好ましい。ファブリーペローフィルタとして例えばファブリーペローエタロンが挙げられる。 The type of the wavelength selector is not particularly limited, and an optical element such as a Fabry-Perot filter, an optical system such as a Mach-Zehnder interferometer, and a Michelson interferometer can be used. Alternatively, a half mirror facing through an air gap may be used, or a multiple reflection film mirror (Distributed Bragg Reflector, hereinafter abbreviated as DBR) facing each other in an optical fiber may be produced. Among the wavelength selectors according to the present embodiment, a Fabry-Perot filter that easily increases finesse is preferable. An example of the Fabry-Perot filter is a Fabry-Perot etalon.
 (ファブリーペローエタロン)
 ファブリーペローエタロンについて図3を用いて説明する。
 ファブリーペローエタロンの一例は、ガラス基板301の両面にDBR302を設けた構成となっている。DBRは複数層の誘電体膜からなり、誘電体膜の数や、それぞれの誘電体膜の屈折率を変えることで、ファブリーペローエタロンの反射率を変えることができる。反射率を高くすることでフィネスは高くなり、等波数間隔の波長選択性は高くなる。上記のガラス基板301は特に限定されず、BK7などを用いることができる。
(Fabry Perot Etalon)
The Fabry-Perot etalon will be described with reference to FIG.
An example of a Fabry-Perot etalon has a configuration in which DBRs 302 are provided on both surfaces of a glass substrate 301. The DBR is composed of a plurality of dielectric films, and the reflectance of the Fabry-Perot etalon can be changed by changing the number of dielectric films and the refractive index of each dielectric film. Increasing the reflectivity increases finesse and increases the wavelength selectivity at equal wave intervals. The glass substrate 301 is not particularly limited, and BK7 or the like can be used.
 (光検出部)
 本実施形態における光検出部について説明する。本実施形態における光検出部では、干渉光の強度を電圧などの電気の強度に変換するものであれば特に限定されない。干渉光の強度の時間波形の情報は、この光検出部で受光電圧の時間波形の情報へと変換される。受光電圧の時間波形の情報は、次に説明する情報取得部へと送られる。
(Light detector)
The light detection unit in this embodiment will be described. In the light detection part in this embodiment, if the intensity | strength of interference light is converted into the intensity | strength of electricity, such as a voltage, it will not specifically limit. Information on the time waveform of the intensity of the interference light is converted into information on the time waveform of the received light voltage by this light detection unit. Information on the time waveform of the received light voltage is sent to an information acquisition unit described below.
 (情報取得部)
 本実施形態における情報取得部104の構成の一例について図4を用いて説明する。本実施形態における情報取得部104の一例では、光検出部103から送られてきたアナログの受光電圧の時間波形の情報(干渉光の強度の時間波形の情報)はA/D変換器401でデジタルの受光電圧の時間波形の情報へと変換される。デジタルの受光電圧の時間波形の情報は、メモリ402に格納され、演算部403に送られる。演算部403では、デジタルの受光電圧の時間波形から、ピーク値を取得し、そのピーク値をフーリエ変換することで、物体113の情報を得る。情報取得部104はフーリエ変換器を有している。
(Information acquisition unit)
An example of the configuration of the information acquisition unit 104 in the present embodiment will be described with reference to FIG. In an example of the information acquisition unit 104 in the present embodiment, time waveform information of analog received light voltage (information of interference light intensity time waveform) sent from the light detection unit 103 is digitally converted by the A / D converter 401. The received light voltage is converted into time waveform information. Information on the time waveform of the digital light reception voltage is stored in the memory 402 and sent to the calculation unit 403. The arithmetic unit 403 obtains the peak value from the time waveform of the digital light reception voltage, and obtains information on the object 113 by Fourier transforming the peak value. The information acquisition unit 104 has a Fourier transformer.
 次に、上記情報取得部104における、物体113の情報を取得するためのフローの一例について図5、6を用いて詳細に説明する。まず、光検出部103で受光し電圧の時間波形の情報を取得する(図5のS501、図6(a))。上記の波長選択器105を通っているので、受光電圧の強度の時間波形も等波数間隔となっている。次に、A/Dボード401で、受光電圧をアナログ信号からデジタル信号に変換する(図5のS502、図6(b))。デジタル信号に変換された受光電圧の情報(干渉光の強度の情報)をメモリ402に格納する(図5のS503)。これは、図6(b)の白丸で表されるデータを格納することに相当する。メモリ402に格納された受光電圧のピーク値をサンプリングし、ピーク値について演算部403によってフーリエ変換する。このような工程を経て、物体の情報を得ることができる。 Next, an example of a flow for acquiring information on the object 113 in the information acquisition unit 104 will be described in detail with reference to FIGS. First, the light detection unit 103 receives light and acquires information on the time waveform of the voltage (S501 in FIG. 5 and FIG. 6A). Since it passes through the wavelength selector 105 described above, the time waveform of the intensity of the received light voltage also has an equal wave number interval. Next, the A / D board 401 converts the received light voltage from an analog signal to a digital signal (S502 in FIG. 5, FIG. 6B). The received light voltage information (interference light intensity information) converted into a digital signal is stored in the memory 402 (S503 in FIG. 5). This corresponds to storing data represented by white circles in FIG. The peak value of the received light voltage stored in the memory 402 is sampled, and the peak value is Fourier transformed by the calculation unit 403. Through such steps, object information can be obtained.
 メモリ402に格納された受光電圧のピーク値のサンプリング方法は特に限定されないが、ノイズではない有意な極大値を取得する必要がある。たとえばノイズより大きい値に閾値を設け、閾値以上の値を有する極大値を抽出することが可能である。一例として、メモリに格納された受光電圧(干渉光)の強度の情報が、図7のように表される場合、受光電圧「5」を閾値として、受光電圧がそれ以上の値である場合、をピーク値であるとみなす処理方法などである。 The sampling method of the peak value of the received light voltage stored in the memory 402 is not particularly limited, but it is necessary to acquire a significant maximum value that is not noise. For example, it is possible to provide a threshold value for a value larger than noise and extract a local maximum value having a value equal to or greater than the threshold value. As an example, when the information on the intensity of the received light voltage (interference light) stored in the memory is represented as shown in FIG. 7, when the received light voltage is a value higher than the received light voltage “5”, Is a peak value.
 閾値の設定は特定の手法に限定するものではない。例えば、信号を取得する波長掃引帯域内に波長選択器105の透過率の極大値がm個存在する場合、得られる受光電圧の強度の時間波形に含まれる極大値を大きい方からm個選択する。そして選択されなかった残りの極大値のうち最大値をノイズの最大値であると見なし、ノイズの最大値より大きい値で、かつ、極大値のうち最小の値以上を閾値として設定することができる。 Threshold setting is not limited to a specific method. For example, when there are m maximum values of the transmittance of the wavelength selector 105 in the wavelength sweep band for acquiring a signal, m values are selected from the largest in the time waveform of the intensity of the received light voltage obtained. . The maximum value among the remaining maximum values not selected is regarded as the maximum value of noise, and a value larger than the maximum value of noise and the minimum value or more of the maximum values can be set as a threshold value. .
 また、波長の掃引速度がほぼ一定であるとわかっている光源部101を用いる場合には、波長選択器105の透過率の極大値の間隔から、波長選択器の各透過率の極大値の波長で光源部101が発光する時刻を推測できる。また推測される各時刻の近傍で得られた時間波形に含まれる極大値のうち最大のものを求めるピーク値とすることができる。そして、それらのピーク値の大きい方からm個を選択することができる。 Further, when using the light source unit 101 whose wavelength sweep speed is known to be substantially constant, the wavelength of the maximum value of each transmittance of the wavelength selector is determined from the interval of the maximum value of the transmittance of the wavelength selector 105. The time when the light source unit 101 emits light can be estimated. Moreover, it can be set as the peak value for obtaining the maximum value among the local maximum values included in the time waveform obtained in the vicinity of each estimated time. Then, m can be selected from those having larger peak values.
 ここで、光源部101の波長掃引速度が大きく変動しない場合、データの時間間隔には大きな変動は無いはずである。従って図8に示すように、データの時間間隔がある2点のデータ間(図8(a)の時刻tと時刻tの間)だけその周囲の時刻で得られた信号の時間間隔の2倍程度開いている場合にはその間の時刻(図8(a)の時刻t)に取得した受光電圧が「0」であるとみなせる。そこで、サンプリングデータに対し、時刻tに0を挿入したサンプリングデータを作製する。このような「0」値の挿入は特に差動検出を行って干渉信号を取得する場合に必要である。 Here, if the wavelength sweep speed of the light source unit 101 does not vary greatly, there should be no significant variation in the data time interval. Accordingly, as shown in FIG. 8, between the data of two points there is a time interval of the data (FIG. 8 time between t 2 and time t 4 of (a)) by a time interval of the signal obtained at the time of the surrounding If it is about twice open, it can be considered that the received light voltage obtained at that time (time t 3 in FIG. 8A) is “0”. Therefore, with respect to the sampling data to produce a sampled data inserting a 0 at time t 3. Such insertion of a “0” value is necessary particularly when an interference signal is acquired by performing differential detection.
 すなわち、本実施形態における情報取得部は、受光電圧の強度ピーク値(干渉光の強度のピーク値)Pが取得された時刻Tと、前記ピーク値Pが取得された前記時刻の次のピーク値Pが取得された時刻Tとの時間間隔が、その近傍のピーク値が取得される平均の時間間隔ΔTの1.99倍以上である場合、好ましくは1.9倍以上である場合に、前記Tと前記Tの間の時刻T’における受光電圧の強度(干渉光の強度)が0であるとみなす演算を行ってもよい(図8(b))。これは、時刻T、Tにおける波長掃引速度が、時刻TあるいはTにおける波長掃引速度の10%以内で変動する場合、上記平均の時間間隔ΔTの1.9倍以上である場合に、時刻T’における受光電圧の強度が0であるとみなせばよいからである。同様に、1%以内で変動する場合、1.99倍以上である場合に受光電圧の強度が0であるとみなせばよいからである。 That is, the information acquisition unit according to the present embodiment performs the time T 1 when the intensity peak value (the peak value of the interference light intensity) P 1 of the received light voltage is acquired, and the time after the time when the peak value P 1 is acquired. in the time interval between time T 2, the peak value P 2 is acquired, in which case the peak value in the vicinity of at least 1.99 times the average time interval ΔT that is obtained, preferably 1.9 times or more In some cases, calculation may be performed assuming that the intensity of the received light voltage (interference light intensity) at time T ′ between T 1 and T 2 is 0 (FIG. 8B). This wavelength sweep rate at time T 1, T 2 If the varying within 10% of the wavelength sweep rate at time T 0 or T 3, when it is more than 1.9 times the time interval ΔT of the average This is because the intensity of the received light voltage at time T ′ may be regarded as 0. Similarly, when it fluctuates within 1%, it is sufficient to consider that the intensity of the received light voltage is 0 when it is 1.99 times or more.
 例えば、平均の時間間隔の2倍程度(1.9倍以上2.1倍以下)である場合、前記Tと前記Tの中間の時刻T’における受光電圧の強度(干渉光の強度)が0であるとみなす(図8(b))。 For example, when the average time interval is about twice (1.9 times or more and 2.1 times or less), the intensity of the received light voltage (interference light intensity) at time T ′ between T 1 and T 2. Is assumed to be 0 (FIG. 8B).
 ここで、近傍のピーク値とは例えば、上記ピーク値P1が取得される1つ前の時刻(T)におけるピーク値(P)、2つ前の時刻(T-1)におけるピーク値(P-1)、1つ後の時刻(T)におけるピーク値(P)、2つ後の時刻(T)におけるピーク値(P)、である。このとき、近傍のピーク値が取得される平均の時間間隔ΔTは、T-T-1の値と、T-Tの値との平均とすることができる。なお、4つのピーク値を用いて平均の時間間隔を算出したが、演算に用いるピーク値の個数はそれ以上であってもよい。 Here, the peak value in the vicinity is, for example, the peak value (P 0 ) at the time (T 0 ) immediately before the peak value P 1 is acquired, and the peak value (T −1 ) at the previous time (T −1 ) ( P -1), the peak value in one after the time (T 3) (P 3) , the peak value of the two after the time (T 4) (P 4) , a. At this time, the average time interval ΔT in which the neighboring peak values are acquired can be the average of the value of T 0 -T -1 and the value of T 4 -T 3 . Although the average time interval is calculated using the four peak values, the number of peak values used for the calculation may be more than that.
 また、平均の時間間隔の3倍程度(2.9倍以上3.1倍以下)である場合、前記Tと前記Tの時間間隔を3等分した各時刻における干渉光の強度が0であるとみなす。同様に、平均の時間間隔のN倍程度である場合、前記Tと前記Tの時間間隔をN等分した各時刻における干渉光の強度が0であるとみなす。 When the average time interval is about three times (2.9 times or more and 3.1 times or less), the intensity of the interference light at each time when the time interval between T 1 and T 2 is equally divided into three is 0. It is considered. Similarly, when it is about N times the average time interval, the intensity of the interference light at each time when the time interval between T 1 and T 2 is equally divided into N is considered to be zero.
 なお、上記のような干渉信号振幅が0の点が存在する場合、光検出部103が差動検出型の場合は光検出部103は上述のように電圧0を出力するが、光検出部が単純な光強度検出型の場合は、非干渉成分の光量を検知し0でない値を出力する。したがって上記0値の補間は光検出部103が差動検出型の場合に必要な操作である。したがって、例えば差動検出型の光検出部と単純な光強度検出器を併用することで測定する事で、上記のような干渉成分0の点を検知する事も可能である。 When there is a point with the interference signal amplitude of 0 as described above, when the light detection unit 103 is a differential detection type, the light detection unit 103 outputs a voltage of 0 as described above. In the case of a simple light intensity detection type, the light amount of the non-interference component is detected and a non-zero value is output. Therefore, the interpolation of 0 value is an operation necessary when the light detection unit 103 is a differential detection type. Therefore, it is possible to detect the point of the interference component 0 as described above, for example, by measuring by using a differential detection type light detection unit and a simple light intensity detector together.
 また、明らかに他のデータの時間間隔よりも詰まった時間間隔、例えばその周囲の時刻で得られた信号の時間間隔の半分程度の時間間隔で取得されているデータについても、波長選択器105の透過率の極大値以外でのサンプリングである可能性が高い(図8(c))。この場合は上記時間間隔が詰まっているデータ(図8(c)の時刻tで得られたデータ)を削除する。これらを経てほぼ時間間隔が等しいm個のサンプリングデータを形成することができる。なお、時間間隔が詰まっているデータが複数ある場合は、上記と同様に、時間間隔が詰まっているデータの削除を複数回行い、時間間隔が詰まっているデータが消えるまで行ってもよい。 Also, for the data acquired at a time interval that is clearly shorter than the time interval of other data, for example, about half the time interval of the signal obtained at the surrounding time, the wavelength selector 105 There is a high possibility of sampling other than the maximum value of the transmittance (FIG. 8C). In this case, deleting the data which the time interval is jammed (data obtained at time t 4 in FIG. 8 (c)). Through these, m pieces of sampling data having substantially equal time intervals can be formed. If there are a plurality of data with a short time interval, the data with a short time interval may be deleted a plurality of times as described above until the data with a short time interval disappears.
 すなわち、本実施形態における情報取得部は、受光電圧の強度のピーク値(干渉光の強度のピーク値)Pが取得された時刻Tと、前記ピーク値Pが取得された前記時刻の次のピーク値Pが取得された時刻Tとの時間間隔が、その近傍のピーク値が取得される平均の時間間隔ΔTの0.9倍以下である場合に、前記ピーク値Pのデータを取得しなくてもよい(図8(d))。ここで、近傍のピーク値とは例えば、上記ピーク値P1が取得される1つ前の時刻(T)におけるピーク値(P)、2つ前の時刻(T-1)におけるピーク値(P-1)、1つ後の時刻(T)におけるピーク値(P)、2つ後の時刻(T)におけるピーク値(P)、である。このとき、近傍のピーク値が取得される平均の時間間隔ΔTは、T-T-1の値と、T-Tの値との平均とすることができる。なお、4つのピーク値を用いて平均の時間間隔を算出したが、演算に用いるピーク値の個数はそれ以上であってもよい。 That is, the information acquisition unit according to the present embodiment includes the time T 1 when the peak value of the intensity of the received light voltage (peak value of the intensity of the interference light) P 1 and the time when the peak value P 1 is acquired. When the time interval from the time T 2 when the next peak value P 2 is acquired is equal to or less than 0.9 times the average time interval ΔT at which the neighboring peak values are acquired, the peak value P 2 Data need not be acquired (FIG. 8D). Here, the peak value in the vicinity is, for example, the peak value (P 0 ) at the time (T 0 ) immediately before the peak value P 1 is acquired, and the peak value (T −1 ) at the previous time (T −1 ) ( P -1), the peak value in one after the time (T 3) (P 3) , the peak value of the two after the time (T 4) (P 4) , a. At this time, the average time interval ΔT in which the neighboring peak values are acquired can be the average of the value of T 0 -T -1 and the value of T 4 -T 3 . Although the average time interval is calculated using the four peak values, the number of peak values used for the calculation may be more than that.
 (光源部)
 本実施形態において、光源部101は光の波長を変化させる光源であれば特に限定されない。OCT装置を用いて物体113の情報を得るためには、この光源部から出る光の波長を連続的に変化させる必要がある。
(Light source)
In the present embodiment, the light source unit 101 is not particularly limited as long as it is a light source that changes the wavelength of light. In order to obtain information on the object 113 using the OCT apparatus, it is necessary to continuously change the wavelength of light emitted from the light source unit.
 本実施形態における光源部101として例えば、回折格子やプリズム等を用いた外部共振器型の波長掃引光源、共振器長可変のファブリペローチューナブルフィルタを用いる各種外部共振器型光源をもちいることができる。あるいは、サンプルドグレーティングを用いて波長を変化させるSSG-DBRや波長可変のMEMS-VCSELなどを用いることもできる。また、ファイバレーザーを用いることもできる。ファイバレーザーとしては、分散チューニング方式でもよく、フーリエドメインモードロック方式であってもよい。 As the light source unit 101 in the present embodiment, for example, an external resonator type wavelength swept light source using a diffraction grating, a prism, or the like, or various external resonator type light sources using a Fabry-Perot tunable filter with a variable resonator length may be used. it can. Alternatively, an SSG-DBR that changes the wavelength using a sampled grating, a tunable MEMS-VCSEL, or the like can also be used. A fiber laser can also be used. The fiber laser may be a dispersion tuning method or a Fourier domain mode lock method.
 回折格子やプリズム等を用いた外部共振器型の波長掃引光源としては、共振器に回折格子を設けて光を分光させ、ポリゴンミラーや、回転する円盤上にストライプ状の反射ミラーを設けたものを用いて出射させる波長を連続的に変え波長掃引光源などが挙げられる。 As an external resonator type wavelength sweep light source using a diffraction grating, a prism, etc., a resonator is provided with a diffraction grating to disperse light, and a polygon mirror or a striped reflection mirror is provided on a rotating disk. A wavelength swept light source or the like may be used by continuously changing the wavelength of light emitted by using.
 (物体)
 本実施形態において物体とは、本実施形態に係るOCT装置による測定の対象となるものであり種類は特に限定されない。例えば、眼球、皮膚、歯などの生体が挙げられる。
(object)
In the present embodiment, the object is a measurement target by the OCT apparatus according to the present embodiment, and the type is not particularly limited. For example, living bodies such as eyeballs, skin, and teeth can be mentioned.
 (用途)
 上記本実施形態に係るOCT装置は、眼底の断層像を得る等眼科撮影、歯科撮影、皮膚撮影などに用いることができる。
(Use)
The OCT apparatus according to the present embodiment can be used for ophthalmic photography, dental photography, skin photography, etc. for obtaining a tomographic image of the fundus.
 (実施形態2)
 OCT装置の他の例について説明する。本実施形態のOCT装置の各構成要素について実施形態1と共通するものは、ここでは説明を省略する。
(Embodiment 2)
Another example of the OCT apparatus will be described. Descriptions of components of the OCT apparatus according to the present embodiment that are the same as those of the first embodiment are omitted here.
 図1ではOCT装置の簡易な構成を示したが、例えば図9に示すような、干渉信号を差動検出するための光学系で構成しても良い。図9においては、波長可変光源901と、アイソレータ902、参照光光路用ファイバ906、偏波コントローラ918、光源から発振された光を参照光と照射光とに分岐させるファイバカップラ905、反射ミラー907を配置する。さらに物体909の測定部を構成する検査光光路用ファイバ914、偏波コントローラ919、照射集光光学系915、照射位置走査用ミラー908を接続する。これに加え光検出部を構成するファイバカップラ903、ファイバカップラ904、受光用ファイバ916、受光用ファイバ917、差動検出器910、情報取得部を構成する信号処理装置911、画像出力モニタ913を接続する。さらに光源部を構成する光源制御装置912を接続した構成により光断層撮像装置を構成できる。なお、921、922、923、924、925、926はコリメーターである。 FIG. 1 shows a simple configuration of the OCT apparatus, but an optical system for differentially detecting interference signals as shown in FIG. 9 may be used. In FIG. 9, a wavelength tunable light source 901, an isolator 902, a reference light optical path fiber 906, a polarization controller 918, a fiber coupler 905 for branching light oscillated from the light source into reference light and irradiation light, and a reflection mirror 907 are provided. Deploy. Further, an inspection light optical path fiber 914, a polarization controller 919, an irradiation condensing optical system 915, and an irradiation position scanning mirror 908 that constitute a measurement unit of the object 909 are connected. In addition, a fiber coupler 903, a fiber coupler 904, a light receiving fiber 916, a light receiving fiber 917, a differential detector 910, a signal processing device 911 constituting an information acquisition unit, and an image output monitor 913 are connected. To do. Furthermore, an optical tomographic imaging apparatus can be configured by connecting a light source control device 912 that constitutes a light source unit. Reference numerals 921, 922, 923, 924, 925, and 926 are collimators.
 波長選択器である、ファブリーペローフィルタ220が差動検出器910の手前に設けられているため、作動検出器910で検出される光は等波数間隔である。なお、図9ではファブリーぺローフィルタ220が1つ設けられた構成を示しているが、コリメーター922とコリメーター924の間の光路上に1つ、コリメーター923とコリメーター925の間の光路上に1つの計2つ設けられた構成であってもよい。この場合、二つのファブリーペローフィルタのFSR(Free Spectral Range、自由スペクトル領域)が等しい必要がある。このように、光検出部において差動検出器910を用い、干渉光学系の二つのポートからの干渉信号を同時に入力する形にすることで、同相ノイズを消去可能であり、ノイズが少ない物体の断層像を得ることができる。 Since the Fabry-Perot filter 220, which is a wavelength selector, is provided in front of the differential detector 910, the light detected by the operation detector 910 is at equal wave intervals. Although FIG. 9 shows a configuration in which one Fabry-Perot filter 220 is provided, one light on the optical path between the collimator 922 and the collimator 924 and light between the collimator 923 and the collimator 925 are shown. A total of two configurations may be provided on the road. In this case, the two Fabry-Perot filters need to have the same FSR (Free Spectral Range, free spectral range). In this way, by using the differential detector 910 in the light detection unit and simultaneously inputting the interference signals from the two ports of the interference optical system, the common-mode noise can be eliminated, and the object with low noise can be eliminated. A tomographic image can be obtained.
 (実施形態3)
 実施形態3では光干渉断層撮像方法について説明する。以下に説明する光干渉断層撮像方法は一例であり、本発明はこれに限定されない。
(Embodiment 3)
In the third embodiment, an optical coherence tomography method will be described. The optical coherence tomography method described below is an example, and the present invention is not limited to this.
 (光干渉断層撮像方法)
 本実施形態に係る光干渉断層撮像方法は、上記の光干渉断層撮像装置を用いた光断層撮像方法であって、前記光源部から出る光の波長を時間的に変化させる工程と、前記干渉光学系において発生した干渉光を前記光検出部で受光する工程と、受光した前記干渉光の強度の時間波形のピーク値に基づいて前記物体の情報を取得する工程と、を少なくとも有する。物体の情報を取得する工程は、干渉光の強度の時間波形のピーク値を取得してフーリエ変換する工程を有することが好ましい。また、物体の情報を取得する際に、フーリエ変換する代わりに、最大エントロピー原理を用いた演算を行ってもよい。
(Optical coherence tomography method)
An optical coherence tomography method according to the present embodiment is an optical tomography method using the above-described optical coherence tomography apparatus, the step of temporally changing the wavelength of light emitted from the light source unit, and the interference optics Receiving at least the interference light generated in the system by the light detection unit, and acquiring the object information based on the peak value of the time waveform of the intensity of the received interference light. The step of acquiring the object information preferably includes a step of acquiring a peak value of the time waveform of the intensity of the interference light and performing a Fourier transform. Further, when acquiring object information, an operation using the maximum entropy principle may be performed instead of Fourier transform.
 また、フーリエ変換して得たデータを画像表示部に送信する工程を有していてもよい。このような工程を有することで測定対象の物体の断層像を表示することができる。 Further, a step of transmitting data obtained by Fourier transform to the image display unit may be included. By having such a process, a tomographic image of the object to be measured can be displayed.
 以下、本発明の実施例について図1を用いて説明するが、本発明はこれらに限られない。 Hereinafter, although the Example of this invention is described using FIG. 1, this invention is not limited to these.
 本実施例に係るOCT装置の構成は、実施形態1で説明した通りである。ただし、光源部101として波長掃引光源、光検出部103としてフォトディテクタ(Photo detector、以下PDと略す)、波長選択器105として、ファブリーペローエタロンを用いる。 The configuration of the OCT apparatus according to the present example is as described in the first embodiment. However, a wavelength swept light source is used as the light source unit 101, a photo detector (hereinafter referred to as PD) is used as the light detection unit 103, and a Fabry-Perot etalon is used as the wavelength selector 105.
 波長掃引光源は波長800nmから880nmまでを周期5nsで掃引しこれを繰り返す動作をおこなう。これは掃引周波数にして200kHzに相当する。本実施例に係るOCT装置では光源部101の光が出射される点からミラー115までの光路長と、光源部101の光が出射される点から物体113の表面までの光路長を等しくし、物体の表面から照射光の光軸方向に4mmの部位まで観察する。 The wavelength swept light source sweeps the wavelength from 800 nm to 880 nm at a cycle of 5 ns and repeats this operation. This corresponds to a sweep frequency of 200 kHz. In the OCT apparatus according to the present embodiment, the optical path length from the point where the light from the light source unit 101 is emitted to the mirror 115 is made equal to the optical path length from the point where the light from the light source unit 101 is emitted to the surface of the object 113, Observation is performed from the surface of the object to a portion of 4 mm in the optical axis direction of the irradiation light.
 物体の表面から照射光の光軸方向に4mmの位置に単一の反射物体がある場合、得られる干渉強度のスペクトルは周波数37.5GHz毎に強度が強まる信号となる(図10)。これを周波数37.5GHzのサイン波と見なすならば、この信号の周波数成分を解析するためには少なくともこの半分の周波数間隔以下で干渉光の強度の値をサンプリングする必要がある。つまり18.75GHz以下の周波数間隔でサンプリングする必要がある。 When there is a single reflecting object at a position of 4 mm from the surface of the object in the direction of the optical axis of the irradiation light, the obtained spectrum of interference intensity becomes a signal whose intensity increases at every frequency of 37.5 GHz (FIG. 10). If this is regarded as a sine wave having a frequency of 37.5 GHz, in order to analyze the frequency component of this signal, it is necessary to sample the intensity value of the interference light at a frequency interval of at least half this frequency interval. That is, it is necessary to sample at a frequency interval of 18.75 GHz or less.
 物体の表面から照射光の光軸方向に4mmまでが最大の深さであると想定すると、周波数を解析すべき信号の周波数は37.5GHz以下の信号となるため、上記18.75GHz以下の周波数間隔にて信号を取得すれば、断層像を得るために必要な周波数帯域の信号は得られる。 Assuming that the maximum depth is 4 mm in the optical axis direction of the irradiation light from the surface of the object, the frequency of the signal whose frequency is to be analyzed is a signal of 37.5 GHz or less, and thus the frequency of 18.75 GHz or less. If signals are acquired at intervals, a signal in a frequency band necessary for obtaining a tomographic image can be obtained.
 本実施例では、このサンプリング間隔を、光路に挿入するファブリーペローエタロンにて規定する。具体的には、ファブリーペローエタロンの透過率の極大値の間隔が等波数間隔、かつ、18.7GHz未満になるように設定する。このことはファブリーペローエタロンの光路長を8mm以上に設定する事に相当する。本実施例ではファブリーペローフィルタエタロンの光路長を8mmにする。なお光路長は8mmより長くても良い。 In this embodiment, this sampling interval is defined by a Fabry-Perot etalon inserted in the optical path. Specifically, the interval between the maximum values of the transmittance of the Fabry-Perot etalon is set to be equal wave number intervals and less than 18.7 GHz. This is equivalent to setting the optical path length of the Fabry-Perot etalon to 8 mm or more. In this embodiment, the optical path length of the Fabry-Perot filter etalon is 8 mm. The optical path length may be longer than 8 mm.
 次に、本実施例に係るOCT装置を用いてPDで得られる受光電圧の強度の時間波形を図11に示す。光検出部103にて得られる信号は干渉信号波形にファブリーペローフィルタの透過率を重畳した波形になっている。図11中のピーク値を読み出し、これを等周波数間隔の信号値としてデータ取得する必要がある。 Next, FIG. 11 shows a time waveform of the intensity of the received light voltage obtained by the PD using the OCT apparatus according to the present embodiment. The signal obtained by the light detection unit 103 has a waveform in which the transmittance of the Fabry-Perot filter is superimposed on the interference signal waveform. It is necessary to read the peak value in FIG. 11 and acquire the data as signal values at equal frequency intervals.
 このためにはまず光検出で取得する電圧強度の時間波形をAD変換器を経由して情報取得部104のメモリに取り込む。次にこのデータからピーク値を読みだして、フーリエ変換に掛けるサンプリングデータを作製する。ここで、ノイズ以上の値に閾値を設け、閾値以上の値を有する極大値を抽出する。 For this purpose, first, the time waveform of the voltage intensity acquired by light detection is taken into the memory of the information acquisition unit 104 via the AD converter. Next, the peak value is read from this data, and sampling data to be subjected to Fourier transform is produced. Here, a threshold value is provided for a value equal to or higher than noise, and a local maximum value having a value equal to or higher than the threshold value is extracted.
 また本実施例ではファブリーペローエタロンの透過率の極大値の数mは、1818となる。それは、波長800nmから880nmの間の周波数間隔が34.07THzであり、一方ファブリーペローエタロンの透過率極大の周波数間隔が18.74GHzでありこれらの比が1818である事による。したがって、PDで受光された受光電圧の大きいデータから1818までの極大値をサンプリングデータとして使用しフーリエ変換する事で物体の断層像を取得出来る。 In this example, the maximum value m of the transmittance of the Fabry-Perot etalon is 1818. This is because the frequency interval between wavelengths of 800 nm and 880 nm is 34.07 THz, while the frequency interval of the maximum transmittance of the Fabry-Perot etalon is 18.74 GHz and the ratio thereof is 1818. Therefore, a tomographic image of an object can be acquired by performing Fourier transform using the local maximum values from 18 to 1818 received by the PD as sampling data.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2012年01月31日提出の日本国特許出願特願2012-018821及び2013年01月22日提出の日本国特許出願特願2013-009526を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2012-018821 filed on Jan. 31, 2012 and Japanese Patent Application No. 2013-009526 filed on Jan. 22, 2013. All the descriptions are incorporated herein.
 101 光源部
 102 干渉光学系
 103 光検出部
 104 情報取得部
 105 波長選択器
 
DESCRIPTION OF SYMBOLS 101 Light source part 102 Interference optical system 103 Photodetection part 104 Information acquisition part 105 Wavelength selector

Claims (11)

  1.  光の波長を変化させる光源部と、
     前記光源部からの光を物体へ照射する照射光と参照光とに分岐し、前記物体に照射された光の反射光と前記参照光による干渉光を発生させる干渉光学系と、
     前記干渉光を受光する光検出部と、
     前記干渉光の強度の時間波形に基づいて、前記物体の情報を取得する情報取得部と、
    を有する光干渉断層撮像装置において、
     前記光源部と、前記光検出部との間の光路上に設けられた、等波数間隔の波長選択特性を有する波長選択器をさらに有し、
     前記情報取得部は、前記干渉光の強度の時間波形のピーク値を取得し、取得した前記ピーク値に基づいて前記物体の情報を取得すること
    を特徴とする光干渉断層撮像装置。
    A light source unit that changes the wavelength of light;
    An interference optical system that divides the light from the light source unit into irradiation light for irradiating the object and reference light, and generates reflected light of the light irradiated to the object and interference light by the reference light;
    A light detector that receives the interference light;
    Based on the time waveform of the intensity of the interference light, an information acquisition unit that acquires information of the object;
    In an optical coherence tomography apparatus having
    A wavelength selector provided on an optical path between the light source unit and the light detection unit and having wavelength selection characteristics at equal wave number intervals;
    The information acquisition unit acquires a peak value of a temporal waveform of the intensity of the interference light, and acquires information on the object based on the acquired peak value.
  2.  前記情報取得部は、前記干渉光の強度の時間波形のピーク値を取得してフーリエ変換するフーリエ変換器を有することを特徴とする請求項1に記載の光干渉断層撮像装置。 The optical coherence tomography apparatus according to claim 1, wherein the information acquisition unit includes a Fourier transformer that acquires a peak value of a time waveform of the intensity of the interference light and performs a Fourier transform.
  3.  前記波長選択器が前記光学干渉系と前記光検出部との間の光路上に設けられていることを特徴とする請求項1または2に記載の光干渉断層撮像装置。 The optical coherence tomographic imaging apparatus according to claim 1 or 2, wherein the wavelength selector is provided on an optical path between the optical interference system and the light detection unit.
  4.  前記波長選択器が等波数間隔で透過率の極大値を有することを特徴とする請求項1乃至3のいずれか一項に記載の光干渉断層撮像装置。 The optical coherence tomography apparatus according to any one of claims 1 to 3, wherein the wavelength selector has a maximum value of transmittance at equal wave number intervals.
  5.  前記波長選択器が有する透過率の極大値の線幅が、前記光源部から発生する光の線幅よりも細いことを特徴とする請求項4に記載の光干渉断層撮像装置。 5. The optical coherence tomography apparatus according to claim 4, wherein a line width of a maximum value of the transmittance of the wavelength selector is narrower than a line width of light generated from the light source unit.
  6.  前記波長選択器がファブリーペローフィルタであることを特徴とする請求項4または5に記載の光干渉断層撮像装置。 The optical coherence tomography apparatus according to claim 4 or 5, wherein the wavelength selector is a Fabry-Perot filter.
  7.  前記情報取得部が取得する前記干渉光の強度の時間波形のピーク値は、前記光検出部で受光された干渉光の強度の時間波形のデータのうち、干渉光の強度の大きい方から、前記波長選択器の有する透過率の極大値の個数分までとすることを特徴とする請求項1乃至6のいずれか一項に記載の光干渉断層撮像装置。 The peak value of the time waveform of the intensity of the interference light acquired by the information acquisition unit is the data of the time waveform of the intensity of the interference light received by the light detection unit, from the one having the greater intensity of the interference light, The optical coherence tomographic imaging apparatus according to claim 1, wherein the number of the maximum of the transmittance of the wavelength selector is as many as the number.
  8.  前記情報取得部は、干渉光の強度のピーク値Pが取得された時刻Tと、前記ピーク値Pが取得された前記時刻の次のピーク値Pが取得された時刻Tとの時間間隔が、その近傍のピーク値が取得される平均の時間間隔ΔTの1.9倍以上である場合に、前記Tと前記Tの中間の時刻における干渉光の強度が0であるとみなす演算を行うことを特徴とする請求項1乃至7のいずれか一項に記載の光干渉断層撮像装置。 The information acquisition unit includes a time T 1 at which the peak value P 1 of the intensity of interference light is acquired, and a time T 2 at which the next peak value P 2 after the time at which the peak value P 1 is acquired is acquired. Is equal to or greater than 1.9 times the average time interval ΔT from which the peak value in the vicinity is acquired, the intensity of the interference light at the time between T 1 and T 2 is zero. The optical coherence tomographic imaging apparatus according to any one of claims 1 to 7, characterized in that an operation that is considered to be performed is performed.
  9.  前記情報取得部は、干渉光の強度のピーク値Pが取得された時刻Tと、前記ピーク値Pが取得された前記時刻の次のピーク値Pが取得された時刻Tとの時間間隔が、その近傍のピーク値が取得される平均の時間間隔ΔTの0.9倍以下である場合に、前記ピーク値Pのデータを取得しないことを特徴とする請求項1乃至8のいずれか一項に記載の光干渉断層撮像装置。 The information acquisition unit includes a time T 1 at which the peak value P 1 of the intensity of interference light is acquired, and a time T 2 at which the next peak value P 2 after the time at which the peak value P 1 is acquired is acquired. It claims 1 to 8 in the time interval, when the peak value in the vicinity is less than 0.9 times the average time interval ΔT acquired, characterized in that it does not get the data of the peak value P 2 The optical coherence tomographic imaging apparatus according to any one of the above.
  10.  請求項1乃至9のいずれか一項に記載の光干渉断層撮像装置を用いた光断層撮像方法であって、
     前記光源部から出る光の波長を時間的に変化させる工程と、
     前記干渉光学系において発生した干渉光を前記光検出部で受光する工程と、
     受光した前記干渉光の強度の時間波形のピーク値に基づいて前記物体の情報を取得する工程と、を有することを特徴とする光干渉断層撮像方法。
    An optical tomography method using the optical coherence tomography apparatus according to any one of claims 1 to 9,
    Changing the wavelength of the light emitted from the light source part over time;
    Receiving the interference light generated in the interference optical system by the light detection unit;
    And a step of acquiring information of the object based on a peak value of a time waveform of the intensity of the received interference light.
  11.  前記物体の情報を取得する工程は、前記干渉光の強度の時間波形のピーク値を取得してフーリエ変換する工程を有することを特徴とする請求項10に記載の光干渉断層撮像方法。 11. The optical coherence tomographic imaging method according to claim 10, wherein the step of acquiring information on the object includes a step of acquiring a peak value of a time waveform of the intensity of the interference light and performing a Fourier transform.
PCT/JP2013/051248 2012-01-31 2013-01-23 Optical coherence tomography device and optical coherence tomography method WO2013115018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/919,836 US9551564B2 (en) 2012-01-31 2013-06-17 Optical coherence tomography apparatus and optical coherence tomography method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012018821 2012-01-31
JP2012-018821 2012-01-31
JP2013009526A JP5984693B2 (en) 2012-01-31 2013-01-22 Optical coherence tomography apparatus and optical coherence tomography method
JP2013-009526 2013-01-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/919,836 Continuation-In-Part US9551564B2 (en) 2012-01-31 2013-06-17 Optical coherence tomography apparatus and optical coherence tomography method
US13/919,836 Continuation US9551564B2 (en) 2012-01-31 2013-06-17 Optical coherence tomography apparatus and optical coherence tomography method

Publications (2)

Publication Number Publication Date
WO2013115018A1 true WO2013115018A1 (en) 2013-08-08
WO2013115018A9 WO2013115018A9 (en) 2014-07-03

Family

ID=48905060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051248 WO2013115018A1 (en) 2012-01-31 2013-01-23 Optical coherence tomography device and optical coherence tomography method

Country Status (3)

Country Link
US (1) US9551564B2 (en)
JP (1) JP5984693B2 (en)
WO (1) WO2013115018A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069106A1 (en) * 2011-11-09 2013-05-16 キヤノン株式会社 Light source device and image capture device employing same
JP2015035596A (en) * 2013-07-12 2015-02-19 キヤノン株式会社 Surface-emitting laser and optical coherence tomographic image acquisition apparatus
JP6271967B2 (en) * 2013-11-23 2018-01-31 キヤノン株式会社 Tunable light source
US9778018B2 (en) * 2014-02-14 2017-10-03 Carl Zeiss Meditec, Inc. Swept source interferometric imaging systems and methods
KR101609365B1 (en) * 2014-05-27 2016-04-21 주식회사 고영테크놀러지 Removable optical coherence tomography apparatus
EP2963744B1 (en) * 2014-06-30 2019-04-03 Canon Kabushiki Kaisha Surface emitting laser and optical coherence tomography apparatus including the same
JP6548365B2 (en) * 2014-07-11 2019-07-24 キヤノン株式会社 Surface emitting laser and optical coherence tomography
JP7217446B2 (en) * 2017-08-31 2023-02-03 学校法人総持学園 Optical coherence tomography imaging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275528A (en) * 2007-05-02 2008-11-13 Fujifilm Corp Compensation table forming method, device, program, and tomographic image processing apparatus using the same
JP2010032426A (en) * 2008-07-30 2010-02-12 Canon Inc Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
JP2011206374A (en) * 2010-03-30 2011-10-20 Terumo Corp Light image diagnostic device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914055A (en) * 1974-05-23 1975-10-21 Lansing Research Corp Instrument for high resolution spectral analysis with large optical throughput
US7224464B2 (en) * 1998-11-04 2007-05-29 Manning Christopher J Fourier-transform spectrometers
US20080252901A1 (en) * 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
US7061618B2 (en) * 2003-10-17 2006-06-13 Axsun Technologies, Inc. Integrated spectroscopy system
US20060072632A1 (en) * 2004-09-29 2006-04-06 Axsun Technologies, Inc. Semiconductor laser with tilted fabry-perot tunable filter
US7336366B2 (en) * 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
JP4804820B2 (en) 2005-07-15 2011-11-02 サンテック株式会社 Optical tomographic image display system
EP2597457B1 (en) * 2005-07-28 2018-03-14 Bioptigen, Inc. Frequency-domain optical coherence tomography imaging system
US7554668B2 (en) * 2005-09-06 2009-06-30 Carl Zeiss Meditec, Inc. Light source for swept source optical coherence tomography based on cascaded distributed feedback lasers with engineered band gaps
JP4869895B2 (en) * 2006-12-07 2012-02-08 富士フイルム株式会社 Optical tomographic imaging system
US8441648B2 (en) * 2008-02-07 2013-05-14 Fujifilm Corporation Calibration jig for optical tomographic imaging apparatus and method for generating a calibration conversion table
US8797551B2 (en) * 2009-11-09 2014-08-05 Netra Systems Inc Compact, affordable optical test, measurement or imaging device
US8625104B2 (en) * 2009-10-23 2014-01-07 Bioptigen, Inc. Systems for comprehensive fourier domain optical coherence tomography (FDOCT) and related methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275528A (en) * 2007-05-02 2008-11-13 Fujifilm Corp Compensation table forming method, device, program, and tomographic image processing apparatus using the same
JP2010032426A (en) * 2008-07-30 2010-02-12 Canon Inc Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
JP2011206374A (en) * 2010-03-30 2011-10-20 Terumo Corp Light image diagnostic device

Also Published As

Publication number Publication date
US9551564B2 (en) 2017-01-24
JP2013178235A (en) 2013-09-09
WO2013115018A9 (en) 2014-07-03
JP5984693B2 (en) 2016-09-06
US20130278935A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5984693B2 (en) Optical coherence tomography apparatus and optical coherence tomography method
JP5939866B2 (en) Optical coherence tomography imaging apparatus and imaging method
US7911621B2 (en) Apparatus and method for controlling ranging depth in optical frequency domain imaging
JP4378533B2 (en) Calibration method for components of optical coherence tomography
US7570364B2 (en) Optical tomographic imaging apparatus
JP4804820B2 (en) Optical tomographic image display system
JP4429886B2 (en) Optical tomography system
EP1744119A1 (en) Swept-source optical coherence tomography
JP2005516187A (en) Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
JP2007101249A (en) Optical tomographic imaging method and apparatus
WO2013010046A1 (en) System and method for improved resolution, higher scan speeds and reduced processing time in scans involving swept-wavelength interferometry
JP2008128710A (en) Tomographic image processing method, tomographic image processing device, program and optical tomographic imaging system using it
CN107567305B (en) Image pickup apparatus
KR101919957B1 (en) Instantaneous time domain optical coherence tomography
US20150330769A1 (en) Oct apparatus, ss-oct apparatus, and method of acquiring ss-oct image
JP2016031294A (en) Optical coherence tomography device
JP2008304314A (en) Optical coherence tomography system
JP2017078677A (en) Distance measurement device and method thereof
CN111227797A (en) Nonlinear effect enhanced sweep frequency light source
JP5891955B2 (en) Timing generation apparatus for Fourier transform spectrometer and method, Fourier transform spectrometer and method
JP6679340B2 (en) Optical coherence tomography
JP2014092425A (en) Optical interference tomographic imaging apparatus and optical interference tomographic imaging method
JP6259370B2 (en) Optical coherence tomography device
JP2005537475A6 (en) Phase measurement method and multi-frequency interferometer
JP2005537475A (en) Phase measurement method and multi-frequency interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743885

Country of ref document: EP

Kind code of ref document: A1