WO2013108613A1 - 動画像符号化方法、動画像復号化方法、動画像符号化装置、動画像復号化装置および動画像符号化復号化装置 - Google Patents
動画像符号化方法、動画像復号化方法、動画像符号化装置、動画像復号化装置および動画像符号化復号化装置 Download PDFInfo
- Publication number
- WO2013108613A1 WO2013108613A1 PCT/JP2013/000126 JP2013000126W WO2013108613A1 WO 2013108613 A1 WO2013108613 A1 WO 2013108613A1 JP 2013000126 W JP2013000126 W JP 2013000126W WO 2013108613 A1 WO2013108613 A1 WO 2013108613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motion vector
- candidate
- block
- prediction
- encoding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
Definitions
- the present invention relates to a moving image encoding method, a moving image decoding method, and the like.
- the amount of information is compressed using redundancy in the spatial direction and temporal direction of a moving image.
- a method of using redundancy in the spatial direction conversion to the frequency domain is used, and as a method of using redundancy in the temporal direction, inter-picture prediction (hereinafter referred to as inter prediction) encoding is used. Processing is used.
- inter prediction encoding process when a certain picture is encoded, an encoded picture that is ahead or behind in the display time order with respect to the encoding target picture is used as a reference picture.
- a motion vector is derived, and the difference between the predicted image data obtained by performing motion compensation based on the motion vector and the image data of the encoding target picture is obtained.
- redundancy in the time direction is removed.
- motion detection a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is set as a reference block.
- a motion vector is detected using the encoding target block and the reference block.
- the present invention provides a moving picture coding method and a moving picture decoding method that improve coding efficiency.
- the moving image encoding method encodes a motion vector of the encoding target block from at least one adjacent block which is a block spatially or temporally adjacent to the encoding target block.
- a motion picture encoding method for calculating a predicted motion vector for encoding and encoding the target block for encoding, wherein the first predicted motion for calculating a first predicted motion vector candidate from the at least one adjacent block A second step of calculating a second predicted motion vector candidate having a motion vector of a value 0 or a third predicted motion vector candidate having a disparity vector for a reference picture belonging to a view different from the encoding target picture; A predicted motion vector calculating step; the first predicted motion vector candidate; and the second predicted motion vector.
- a prediction motion vector determining step for determining the prediction motion vector used for encoding the motion vector of the encoding target block from among the candidates or the third prediction motion vector candidate; and specifying the prediction motion vector And an index encoding step for attaching an index to the bitstream.
- a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
- the system, method, integrated circuit, computer program, and You may implement
- the moving picture coding method and the moving picture decoding method of one aspect of the present invention it is possible to improve coding efficiency.
- FIG. 1 is a diagram for explaining an example of a reference picture list in a B picture.
- FIG. 2 is a diagram for explaining an inter prediction coding method in the temporal motion vector predictor mode.
- FIG. 3 is a diagram illustrating an example of a motion vector of an adjacent block used in the predicted motion vector designation mode.
- FIG. 4 is a diagram illustrating an example of a motion vector predictor candidate list in the prediction direction 0.
- FIG. 5 is a diagram illustrating an example of a motion vector predictor candidate list in the prediction direction 1.
- FIG. 6 is a diagram illustrating an example of assignment of a bit string to a motion vector predictor index.
- FIG. 7 is a flowchart illustrating an example of an encoding process flow when the motion vector predictor designation mode is used.
- FIG. 1 is a diagram for explaining an example of a reference picture list in a B picture.
- FIG. 2 is a diagram for explaining an inter prediction coding method in the temporal motion vector predictor mode.
- FIG. 3
- FIG. 8A is a diagram illustrating a calculation example of a predicted motion vector.
- FIG. 8B is a diagram illustrating a calculation example of a predicted motion vector.
- FIG. 9 is a flowchart illustrating an example of a decoding process when the predicted motion vector designation mode is used.
- FIG. 10 is a diagram illustrating a syntax for attaching a motion vector predictor index to a bitstream.
- FIG. 11 is a block diagram illustrating an example of a configuration of a video encoding device using the video encoding method according to Embodiment 1.
- FIG. 12 is a flowchart showing the processing operation of the video encoding apparatus according to Embodiment 1.
- FIG. 13 is a diagram illustrating an example of a motion vector predictor candidate list in the prediction direction 0 in the first embodiment.
- FIG. 14 is a diagram illustrating an example of a motion vector predictor candidate list in the prediction direction 1 according to the first embodiment.
- FIG. 15 is a flowchart illustrating a process of calculating a motion vector predictor candidate and a motion vector predictor candidate list size according to the first embodiment.
- FIG. 16 is a diagram illustrating an example of a reference relationship in the first embodiment.
- FIG. 17 is a flowchart showing a processing operation for determining whether or not the prediction block candidate [N] in the first embodiment is a predictable candidate.
- FIG. 18 is a flowchart showing detailed processing in step S114b of FIG. 15 in the first embodiment.
- FIG. 19 is a flowchart showing detailed processing of step S114c of FIG. 15 in the first embodiment.
- FIG. 20 is a flowchart showing detailed processing in step S103 of FIG. 12 in the first embodiment.
- FIG. 21 is a flowchart showing detailed processing in step S105 of FIG. 12 in the first embodiment.
- FIG. 22 is a diagram illustrating an example of a disparity vector for each view in the first embodiment.
- FIG. 23 is a diagram illustrating an example of a disparity vector for each view in the first embodiment.
- FIG. 24 is a block diagram illustrating an example of a configuration of a video decoding device using the video decoding method according to Embodiment 2.
- FIG. 25 is a flowchart showing the processing operation of the video decoding apparatus according to Embodiment 2.
- FIG. 25 is a flowchart showing the processing operation of the video decoding apparatus according to Embodiment 2.
- FIG. 26 is a diagram illustrating an example of syntax when adding a disparity vector to a slice header in the second embodiment.
- FIG. 27 is a block diagram showing a configuration of a moving picture encoding apparatus according to Embodiment 3.
- FIG. 28 is a flowchart showing processing operations of the video encoding apparatus according to Embodiment 3.
- FIG. 29 is a diagram illustrating an example of the motion vector predictor candidate list in the prediction direction 0 in the third embodiment.
- FIG. 30 is a diagram illustrating an example of the motion vector predictor candidate list in the prediction direction 1 according to the third embodiment.
- FIG. 31 is a flowchart illustrating a process of calculating a motion vector predictor candidate and a motion vector predictor candidate list size according to the third embodiment.
- FIG. 32 is a flowchart illustrating processing for determining whether or not a prediction block candidate [N] is a predictable candidate and updating the number of predictable candidates in the third embodiment.
- FIG. 33 is a flowchart showing processing for adding a new candidate in the third embodiment.
- FIG. 34 is a block diagram showing a configuration of a video decoding apparatus according to Embodiment 4.
- FIG. 35 is a flowchart showing processing operations of the video decoding apparatus according to Embodiment 4.
- FIG. 36 is a flowchart illustrating processing for determining whether or not a prediction block candidate [N] is predictable and calculating the number of predictable candidates in the fourth embodiment.
- FIG. 37 is a flowchart illustrating calculation processing of a motion vector predictor candidate according to the fourth embodiment.
- FIG. 38 is a diagram illustrating an example of syntax for attaching a motion vector predictor index to a bitstream according to the fourth embodiment.
- FIG. 39 is a diagram illustrating an example of syntax when the motion vector predictor candidate list size is fixed to the maximum number of motion vector predictor candidate numbers in the fourth embodiment.
- FIG. 40 is an overall configuration diagram of a content supply system that implements a content distribution service.
- FIG. 41 is an overall configuration diagram of a digital broadcasting system.
- FIG. 42 is a block diagram illustrating a configuration example of a television.
- FIG. 43 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
- FIG. 44 is a diagram illustrating a structure example of a recording medium that is an optical disk.
- FIG. 45A illustrates an example of a mobile phone.
- FIG. 45B is a block diagram illustrating a configuration example of a mobile phone.
- FIG. 46 shows a structure of multiplexed data.
- FIG. 47 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
- FIG. 48 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
- FIG. 49 is a diagram showing the structure of TS packets and source packets in multiplexed data.
- FIG. 50 is a diagram illustrating a data structure of the PMT.
- FIG. 51 is a diagram showing an internal configuration of multiplexed data information.
- FIG. 52 shows the internal structure of stream attribute information.
- FIG. 53 is a diagram showing steps for identifying video data.
- FIG. 54 is a block diagram illustrating a configuration example of an integrated circuit that implements the moving picture coding method and the moving picture decoding method according to each embodiment.
- FIG. 55 is a diagram showing a configuration for switching the drive frequency.
- FIG. 56 is a diagram showing steps for identifying video data and switching between driving frequencies.
- FIG. 57 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
- FIG. 58A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
- FIG. 58B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
- An I picture is a picture that does not perform inter prediction encoding processing, that is, performs intra prediction (hereinafter referred to as intra prediction) encoding processing.
- a P picture is a picture that is subjected to inter prediction encoding with reference to one already encoded picture in front of or behind the current picture in display time order.
- the B picture is a picture that performs inter prediction encoding with reference to two already encoded pictures that are in front of or behind the encoding target picture in display time order.
- a reference picture list for specifying a reference picture is generated.
- the reference picture list is a list in which a reference picture index is assigned to an encoded reference picture that is referred to in inter prediction. For example, since B picture can be encoded with reference to two pictures, two reference picture lists (L0, L1) are held.
- FIG. 1 is a diagram for explaining an example of a reference picture list in a B picture.
- a reference picture list 0 (L0) in FIG. 1 is an example of a reference picture list in a prediction direction 0 in bi-directional prediction.
- the reference picture index 0 has a value 0 of the reference picture 0 and the reference picture index 0 has a reference picture index 0 value.
- Reference picture 1 in display order 1 is assigned to 1
- reference picture 2 in display order 0 is assigned to value 2 of reference picture index 0. That is, the reference picture index is assigned to the encoding target picture in the order of time in display order.
- the reference picture list 1 (L1) is an example of the reference picture list in the prediction direction 1 in the bi-directional prediction.
- the reference picture index 1 has a value 0 of the reference picture 1 and the reference picture index 1 has a value 1 of the reference picture index 1.
- Reference picture 0 in display order 2 and reference picture 2 in display order 0 are assigned to value 2 of reference picture index 2.
- H In the moving picture coding method called H.264, as the inter prediction coding mode of each coding target block in a B picture, a difference value between predicted image data and the coding target block, and prediction image data generation are used. There is a motion vector detection mode that encodes a motion vector. In the motion vector detection mode, bi-directional prediction for generating a prediction image with reference to two already-encoded pictures in front of or behind the current picture to be encoded as a prediction direction, and already in front or rear of the encoding One-way prediction for generating a prediction image with reference to one completed picture can be selected.
- a coding mode called a temporal prediction motion vector mode can be selected.
- FIG. 2 is a diagram for explaining an inter prediction encoding method in the temporal prediction motion vector mode.
- FIG. 2 is an explanatory diagram showing motion vectors in the temporal prediction motion vector mode, and shows a case where the block a of the picture B2 is encoded in the temporal prediction motion vector mode.
- the motion vector vb used when the block b (hereinafter referred to as a co-located block) at the same position as the block a in the picture P3 which is the reference picture behind the picture B2 is encoded.
- the motion vector vb is a motion vector used when the block b is encoded, and refers to the picture P1.
- the block a is encoded by obtaining a reference block from a picture P1 that is a forward reference picture and a picture P3 that is a backward reference picture using a motion vector parallel to the motion vector vb, and performing bi-directional prediction.
- the motion vector used when coding the block a is the motion vector va1 for the picture P1 and the motion vector va2 for the picture P3.
- a predictive motion vector designation mode is being studied as a method for coding the motion vector of each coding target block in a B picture or a P picture.
- a prediction motion vector candidate is generated from each adjacent block of the encoding target block, a prediction motion vector is selected, and the motion vector of the encoding target block is encoded.
- the index of the selected motion vector predictor is attached to the bit stream, the same motion vector predictor can be selected at the time of decoding.
- FIG. 3 is a diagram illustrating an example of a motion vector of an adjacent block used in the predicted motion vector designation mode.
- the encoded block adjacent to the left of the encoding target block is the adjacent block A
- the encoded block adjacent above the encoding target block is the adjacent block B
- adjacent to the upper right of the encoding target block is the adjacent block C
- the encoded block adjacent to the lower left of the encoding target block is the adjacent block D.
- the encoding target block has a motion vector MvL0 in the prediction direction 0 and a reference picture index in the prediction direction 1 with respect to the reference picture indicated by the reference picture index RefL0 in the prediction direction 0 as a result of motion detection or the like. It is a block encoded with bi-prediction having a motion vector MvL1 in the prediction direction 1 with respect to the reference picture of RefL1.
- MvL0 is a motion vector that refers to the reference picture specified by reference picture list 0 (L0)
- MvL1 is a motion vector that refers to the reference picture specified by reference picture list 1 (L1). .
- Adjacent block A is a block encoded by unidirectional prediction in prediction direction 0, and has a motion vector MvL0_A in prediction direction 0 with respect to the reference picture indicated by reference picture index RefL0_A in prediction direction 0.
- the adjacent block B is a block encoded by unidirectional prediction in the prediction direction 1, and has a motion vector MvL1_B in the prediction direction 1 with respect to the reference picture indicated by the reference picture index RefL1_B in the prediction direction 1.
- Adjacent block C is a block encoded by intra prediction.
- the adjacent block D is a block encoded by unidirectional prediction in the prediction direction 0, and has a motion vector MvL0_D in the prediction direction 0 with respect to the reference picture indicated by the reference picture index RefL0_D in the prediction direction 0.
- the motion vector of the adjacent blocks A, B, C, and D and the temporal motion vector predictor mode obtained using the co-located block are used as the motion vector predictor of the encoding target block.
- a prediction motion vector that can most efficiently encode the motion vector of the encoding target block is selected from prediction motion vector candidates generated from the motion vector.
- a motion vector predictor index representing the selected motion vector predictor is attached to the bitstream. For example, when the motion vector MvL0 in the prediction direction 0 of the encoding target block is encoded, the prediction motion vector candidate generated from the motion vector MvL0_A in the prediction direction 0 of the adjacent block A is selected as the prediction motion vector. As shown in FIG.
- FIG. 4 is a diagram showing an example of a motion vector predictor candidate list in the prediction direction 0.
- the value matches a candidate for which a predicted motion vector cannot be generated (hereinafter referred to as an unpredictable candidate) and other predicted motion vector candidates.
- Such candidates hereinafter referred to as duplication candidates
- the prediction candidate of the motion vector predictor index 3 is an unpredictable candidate and is deleted from the motion vector predictor candidate list.
- the prediction candidate of the predicted motion vector index 4 is predicted. It is deleted from the motion vector candidate list.
- the number of motion vector predictor candidates in the prediction direction 0 is 3, and the list size of the motion vector predictor candidate list in the prediction direction 0 is set to 3.
- FIG. 5 is a diagram showing an example of a motion vector predictor candidate list in the prediction direction 1.
- the number of motion vector predictor candidates in the prediction direction 1 is finally set to 2 by deleting the unpredictable candidates and the overlap candidates, and the list size of the motion vector predictor candidate list in the prediction direction 1 is set to 2. Is done.
- a bit string is assigned to the motion vector predictor index according to the size of the motion vector predictor candidate list size.
- the motion vector predictor index is variable length encoded.
- the predicted motion vector candidate list size is 1, the predicted motion vector index is not attached to the bit stream, and the value 0 is estimated on the decoding side.
- the bit amount assigned to the motion vector predictor index is changed according to the size of the motion vector predictor candidate list size, thereby reducing the code amount.
- FIG. 7 is a flowchart illustrating an example of an encoding process flow when the motion vector predictor designation mode is used.
- a prediction motion vector candidate in the prediction direction X is calculated from the adjacent block and the co-located block (hereinafter referred to as a prediction block candidate).
- X takes a value of 0 or 1, and represents the prediction direction 0 or the prediction direction 1, respectively.
- the prediction motion vector candidate sMvLX in the prediction direction X is calculated by the following equation using the motion vector MvLX_N of the prediction block candidate, the reference picture index RefLX_N, and the reference picture index RefLX of the encoding target block.
- sMvLX MvLX_N ⁇ (POC (RefLX) ⁇ curPOC) / (POC (RefLX_N) ⁇ curPOC)
- POC indicates the display order of the reference picture indicated by the reference picture index RefLX
- POC indicates the display order of the reference picture indicated by the reference picture index RefLX_N
- curPOC indicates the display order of the encoding target picture. Show.
- the prediction block candidate does not have the motion vector MvLX_N in the prediction direction X
- the motion vector MvL (1-X) _N in the prediction direction (1-X) and the reference picture index RefL (1-X) _N are used.
- the predicted motion vector sMvLX is calculated by Equation 2.
- sMvLX MvL (1-X) _N ⁇ (POC (RefLX) -curPOC) / (POC (RefL (1-X) _N) -curPOC)
- FIG. 8A and FIG. 8B show examples of calculation of predicted motion vectors according to equations 1 and 2. Note that scaling can be omitted when the values of POC (RefLX) and POC (RefLX_N) are the same as shown in Equations 1 and 2, that is, when referring to the same picture.
- step S1002 duplicate candidates and unpredictable candidates are deleted from the predicted motion vector candidates in the prediction direction X, and in step S1003, the number of predicted motion vector candidates after the deletion process is set to the predicted motion vector candidate list size.
- step S1004 a prediction motion vector index used for motion vector encoding in the prediction direction 0 of the encoding target block is determined.
- step S1005 the determined prediction motion vector index is a bit string determined by the prediction motion vector candidate list size. Is used to perform variable length coding.
- FIG. 9 is a flowchart showing an example of a decoding process flow when the predicted motion vector designation mode is used.
- step S2001 a prediction motion vector candidate in the prediction direction X is calculated from the adjacent block and the co-located block (prediction block candidate).
- step S2002 duplicate candidates and unpredictable candidates are deleted from the predicted motion vector candidates.
- step S2003 the number of predicted motion vector candidates after the deletion process is set to the predicted motion vector candidate list size.
- step S2004 the motion vector predictor index used for decoding the decoding target block from the bitstream is decoded using the motion vector predictor candidate list size.
- step S2005 the motion vector predictor candidate indicated by the decoded motion vector predictor index is decoded.
- a motion vector is calculated by adding the difference motion vector, a predicted image is generated using the calculated motion vector, and a decoding process is performed.
- FIG. 10 is a diagram showing a syntax for attaching a motion vector predictor index to a bitstream.
- inter_pred_flag represents a prediction direction flag for inter prediction
- mvp_idx represents a motion vector predictor index.
- NumMVPCand represents the predicted motion vector candidate list size, and the number of predicted motion vector candidates after the unpredictable candidate and the duplicate candidate are deleted from the predicted motion vector candidates is set.
- the prediction motion vector for encoding the motion vector of the encoding target block is calculated from the adjacent block or the like of the encoding target block.
- the prediction motion vector is affected by the moving object region, so that the prediction motion vector for efficiently encoding the motion vector of the encoding target block having a relatively small value is May not exist in the motion vector predictor candidates, and the coding efficiency may be reduced.
- an image encoding apparatus may encode a non-base view picture with reference to a base view picture.
- MVC Multiview Video Coding
- two pictures having a reference relationship (a base view picture and a non-base view picture) coincide temporally.
- a motion vector predictor for encoding a motion vector referring to a picture of the base view does not exist in a motion vector predictor candidate calculated from an adjacent block or the like, resulting in a decrease in encoding efficiency. is there.
- one aspect of the present invention provides an image coding method that improves coding efficiency by adding a motion vector for a still region to a motion vector predictor candidate list.
- an image coding method is provided that improves the coding efficiency by adding a disparity vector corresponding to the view to a predicted motion vector candidate.
- the motion vector of the coding target block is coded from at least one neighboring block that is a block spatially or temporally adjacent to the coding target block.
- a motion picture encoding method for calculating a prediction motion vector for encoding and encoding the target block, wherein a first prediction motion vector candidate is calculated from the at least one adjacent block A predictive motion vector calculating step; a second predictive motion vector candidate having a motion vector of value 0; or a third predictive motion vector candidate having a disparity vector for a reference picture belonging to a view different from the encoding target picture 2 predicted motion vector calculation steps, the first predicted motion vector candidate, and the second predicted motion vector
- the encoding efficiency can be improved.
- the third prediction motion vector calculation step if the reference picture referenced by the motion vector of the coding target block and the coding target picture belong to different views, the third prediction motion vector calculation step. Motion vector candidates may be calculated.
- the third motion vector predictor candidate having a disparity vector can be determined as a motion vector predictor, encoding efficiency can be improved.
- the second motion vector predictor is calculated when the number of the first motion vector predictor candidates calculated in the first motion vector predictor calculating step is smaller than a predetermined value.
- a motion vector candidate or the third predicted motion vector candidate may be calculated.
- the video encoding method further calculates, as the predetermined value, the number of adjacent block candidates that are adjacent blocks that can be used for calculating the prediction motion vector among the at least one adjacent block.
- a candidate number calculating step wherein the candidate number calculating step calculates the candidate number by performing an update step for updating the candidate number for each adjacent block, and the updating step includes: (i) intra Whether the block is encoded by prediction, (ii) a block located outside the boundary of the slice or picture including the encoding target block, and (iii) a block that has not been encoded yet If the determination result in the first determination step and the first determination step is true, A determination step that determines that the adjacent block cannot be used for calculation of the motion vector, and determines that the adjacent block can be used for calculation of the predicted motion vector if the determination result is false; In the step, a second determination is made to determine whether or not the adjacent block can be used for calculating the prediction motion vector, or whether or not the adjacent block is a temporally adjacent block If the determination result in the second
- the moving picture decoding method decodes a motion vector of the decoding target block from at least one adjacent block that is spatially or temporally adjacent to the decoding target block.
- a motion picture decoding method for calculating a prediction motion vector for converting to a decoding target block, wherein a first prediction motion vector candidate is calculated from the at least one adjacent block A predictive motion vector calculating step; a second predictive motion vector candidate having a motion vector of value 0; or a third predictive motion vector candidate having a disparity vector for a reference picture belonging to a view different from the decoding target picture 2 predicted motion vector calculation steps, the first predicted motion vector candidate, and the second predicted motion vector.
- An acquisition step of acquiring an index for specifying a toll candidate or the third predicted motion vector candidate from a bitstream, and the first predicted motion vector candidate and the second predicted motion vector specified by the index A decoding step of decoding the block to be decoded using the candidate or the third motion vector predictor candidate.
- the first predicted motion vector candidate but also the second predicted motion vector candidate having a motion vector of 0 or the third predicted motion vector candidate having a disparity vector can be predicted motion. Since the vector is determined, it is possible to appropriately decode a bitstream that is improved in encoding efficiency.
- the third prediction motion vector calculation step if the reference picture referred to by the motion vector of the decoding target block and the decoding target picture belong to different views, the third prediction motion vector calculation step is performed. Motion vector candidates may be calculated.
- the decoding target block can be decoded using the third prediction motion vector candidate having a disparity vector as a prediction motion vector, and therefore, it is possible to appropriately decode a bitstream with improved encoding efficiency. it can.
- the second motion vector predictor is calculated when the number of the first motion vector predictor candidates calculated in the first motion vector predictor calculating step is smaller than a predetermined value.
- a motion vector candidate or the third predicted motion vector candidate may be calculated.
- the moving picture decoding method further calculates, as the predetermined value, the number of adjacent block candidates that are adjacent blocks that can be used for calculating the prediction motion vector among the at least one adjacent block.
- a candidate number calculating step wherein the candidate number calculating step calculates the candidate number by performing an update step for updating the candidate number for each adjacent block, and the updating step includes: (i) intra Whether the block is encoded by prediction, (ii) a block located outside the boundary of the slice or picture including the decoding target block, and (iii) a block that has not been decoded yet If the determination result in the first determination step and the first determination step is true, A determination step that determines that the adjacent block cannot be used for calculation of the motion vector, and determines that the adjacent block can be used for calculation of the predicted motion vector if the determination result is false; In the step, a second determination is made to determine whether or not the adjacent block can be used for calculating the prediction motion vector, or whether or not the adjacent block is a temporally adjacent block If the determination result in the second
- FIG. 11 is a block diagram illustrating an example of a configuration of a video encoding device using the video encoding method according to Embodiment 1.
- the moving image coding apparatus 100 includes a subtraction unit 101, an orthogonal transformation unit 102, a quantization unit 103, an inverse quantization unit 104, an inverse orthogonal transformation unit 105, an addition unit 106, a block memory 107, a frame Memory 108, intra prediction unit 109, inter prediction unit 110, inter prediction control unit 111, disparity vector calculation unit 117, picture type determination unit 112, switch 113, prediction motion vector candidate calculation unit 114, colPic memory 115, and variable length code
- the conversion unit 116 is provided.
- the subtraction unit 101 generates prediction error data by subtracting predicted image data from input image data included in the input image sequence for each block.
- the orthogonal transformation unit 102 performs transformation from the image domain to the frequency domain on the generated prediction error data.
- the quantization unit 103 performs a quantization process on the prediction error data converted into the frequency domain.
- the inverse quantization unit 104 performs inverse quantization processing on the prediction error data quantized by the quantization unit 103.
- the inverse orthogonal transform unit 105 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
- the addition unit 106 generates reconstructed image data by adding the prediction image data and the prediction error data subjected to the inverse quantization processing by the inverse orthogonal transform unit 105 for each encoding target block.
- the block memory 107 stores the reconstructed image data in units of blocks.
- the frame memory 108 stores the reconstructed image data in units of frames.
- the picture type determination unit 112 determines which of the I picture, B picture, and P picture is used to encode the input image data, and generates picture type information.
- the intra prediction unit 109 generates intra prediction image data of the encoding target block by performing intra prediction using the reconstructed image data in units of blocks stored in the block memory 107.
- the inter prediction unit 110 performs inter prediction using the reconstructed image data in units of frames stored in the frame memory 108 and the motion vector derived by motion detection or the like, so that the inter prediction image of the encoding target block Generate data.
- the switch 113 When the encoding target block is subjected to intra prediction encoding, the switch 113 outputs the intra prediction image data generated by the intra prediction unit 109 to the subtraction unit 101 and the addition unit 106 as prediction image data of the encoding target block. To do. On the other hand, when the encoding target block is subjected to inter prediction encoding, the switch 113 uses the inter prediction image data generated by the inter prediction unit 110 as the prediction image data of the encoding target block. Output to.
- the predicted motion vector candidate calculation unit 114 uses the colPic information such as the motion vector of the adjacent block of the encoding target block and the motion vector of the co-located block stored in the colPic memory 115 to specify the predicted motion vector.
- a mode motion vector predictor candidate is derived, and the number of motion vector predictor candidates is calculated by a method described later. Further, the motion vector predictor candidate calculation unit 114 assigns the value of the motion vector predictor index to the derived motion vector predictor candidate. Then, the motion vector predictor candidate calculation unit 114 sends the motion vector predictor candidate and the motion vector predictor index to the inter prediction control unit 111. Also, the motion vector predictor candidate calculation unit 114 transmits the calculated number of motion vector predictor candidates to the variable length coding unit 116.
- the inter prediction control unit 111 controls the inter prediction unit 110 to perform inter prediction encoding using an inter prediction image generated using a motion vector derived by motion detection.
- the inter prediction control unit 111 selects a motion vector predictor candidate that is optimal for coding the motion vector used for the inter prediction coding by a method described later.
- the inter prediction control unit 111 sends a prediction motion vector index corresponding to the selected prediction motion vector candidate and prediction error information (difference motion vector) to the variable length encoding unit 116.
- the inter prediction control unit 111 transfers colPic information including the motion vector of the encoding target block to the colPic memory 115.
- the disparity vector calculation unit 117 calculates a disparity vector for each view by using a motion vector used for inter prediction encoding by a method described later.
- variable length coding unit 116 generates a bitstream by performing variable length coding processing on the prediction error data, the prediction direction flag, the picture type information, and the difference motion vector that have been quantized. Further, the variable length coding unit 116 sets the number of motion vector predictor candidates to the motion vector predictor candidate list size, and adds a bit string corresponding to the motion vector predictor candidate list size to the motion vector predictor index used for motion vector coding. Allocate and perform variable length coding.
- the motion vector predictor candidate calculation unit 114 is configured as the first motion vector predictor calculation unit, and the constituent element group including the motion vector predictor candidate calculation unit 114 and the parallax vector calculation unit 117 is the second.
- the prediction motion vector calculation unit is configured.
- the inter prediction control unit 111 is configured as a motion vector predictor determining unit, and the variable length encoding unit 116 is configured as an index encoding unit.
- FIG. 12 is a flowchart showing the processing operation of the moving picture coding apparatus 100 according to the first embodiment.
- the inter prediction control unit 111 determines a prediction direction, a reference picture index, and a motion vector of an encoding target block by motion detection.
- motion detection for example, a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is determined as a reference block.
- a motion vector is obtained from a coding target block position and a reference block position using a method for obtaining a motion vector.
- D represents encoding distortion, and a pixel value obtained by encoding and decoding a block to be encoded using a prediction image generated with a certain motion vector, and an original pixel value of the block to be encoded The sum of absolute differences is used.
- R represents the generated code amount, and the code amount necessary for encoding the motion vector used for predictive image generation is used.
- ⁇ is Lagrange's undetermined multiplier.
- the motion vector predictor candidate calculation unit 114 generates a motion vector predictor candidate from the adjacent block and the co-located block of the encoding target block, and calculates a motion vector predictor candidate list size by a method described later. .
- the motion vector predictor candidate calculation unit 114 selects, for example, motion vectors of adjacent blocks A, B, C, and D as motion vector predictor candidates for the encoding target block.
- the predicted motion vector candidate calculation unit 114 calculates a motion vector or the like calculated by the temporal prediction mode from the motion vector of the co-located block as a predicted motion vector candidate.
- the motion vector predictor candidate calculation unit 114 assigns motion vector predictor indexes to motion vector predictor candidates in the prediction direction 0 and the prediction direction 1 as shown in FIG. 13 (a) and FIG. 14 (a). Then, the motion vector predictor candidate calculation unit 114 deletes the non-predictable candidate and the overlap candidate and adds a zero candidate or a disparity vector candidate by a method described later, thereby performing (b) and FIG.
- the motion vector predictor candidate list and the motion vector predictor candidate list size as in (b) of FIG. 14 are calculated.
- a zero candidate is a motion vector having a value of zero.
- the motion vector predictor candidate calculation unit 114 measures, for example, the number of times selected as a motion vector predictor for each motion vector predictor candidate, and assigns a motion vector predictor index having a small value to the motion vector predictor candidate with a large number of times. It may be assigned. Specifically, it is conceivable that the predicted motion vector selected in the adjacent block is specified, and the value of the predicted motion vector index for the specified predicted motion vector candidate is reduced when the target block is encoded.
- an adjacent block does not hold information such as a motion vector (when it is a block encoded by intra prediction or when it is located outside the boundary of a picture or a slice, it is a block that has not been encoded yet) In some cases, it cannot be used as a motion vector predictor candidate.
- the fact that it cannot be used as a motion vector predictor candidate is called an unpredictable candidate. Also, the fact that it can be used as a motion vector predictor candidate is called a predictable candidate. In addition, among a plurality of motion vector predictor candidates, a motion vector predictor candidate whose value matches that of any other motion vector predictor candidate is referred to as a duplication candidate.
- the prediction motion vector sMvL0_D in the prediction direction 0 generated from the adjacent block D has the same value as the prediction motion vector MvL0_A in the prediction direction 0 generated from the adjacent block A, and is assumed to be a duplication candidate.
- step S103 the inter prediction control unit 111 determines the value of the motion vector predictor index used for motion vector coding in the prediction direction X by a method described later.
- step S104 the variable length encoding unit 116 adds a bit string corresponding to the predicted motion vector candidate list size as shown in FIG. 6 to the predicted motion vector index of the predicted motion vector candidate used for motion vector encoding in the prediction direction X. Assign and perform variable length coding.
- the disparity vector calculation unit 117 updates the disparity vector for each view using the motion vector used for the inter prediction encoding by a method described later.
- “0” is assigned as the value of the motion vector predictor index corresponding to adjacent block A, and it corresponds to adjacent block B.
- “1” is assigned as the value of the predicted motion vector index to be performed
- “2” is assigned as the value of the predicted motion vector index corresponding to the co-located block
- “2” is assigned as the value of the predicted motion vector index corresponding to the adjacent block C.
- 3 is assigned and“ 4 ”is assigned as the value of the predicted motion vector index corresponding to the adjacent block D, but the method of assigning the predicted motion vector index is not necessarily limited to this example.
- variable length encoding unit 116 assigns a small value to the original motion vector predictor candidate when a zero candidate or a disparity vector candidate is added using a method described later.
- the predicted motion vector index with a smaller value may be assigned in preference to the original predicted motion vector candidate so that a larger value is assigned to the disparity vector candidate.
- the motion vector predictor candidates are not necessarily limited to the positions of adjacent blocks A, B, C, and D.
- an adjacent block or the like located above the lower left adjacent block D may be used as a predicted motion vector candidate.
- it is not necessarily limited to using all adjacent blocks. For example, only adjacent blocks A and B may be used as motion vector predictor candidates, or if adjacent block D is an unpredictable candidate, You may make it scan an adjacent block in order, such as using the block A.
- variable length coding unit 116 adds the motion vector predictor index to the bitstream in step S104 of FIG. 12, but when the motion vector predictor candidate list size is 1, the motion vector predictor There is no need to add an index. Thereby, the information amount of a motion vector predictor index can be reduced.
- FIG. 15 is a flowchart showing detailed processing of step S102 of FIG. Specifically, FIG. 15 illustrates a method of calculating a motion vector predictor candidate and a motion vector predictor candidate list size. Hereinafter, FIG. 15 will be described.
- step S111a the motion vector predictor candidate calculation unit 114 determines whether the prediction block candidate [N] is a predictable candidate by a method described later.
- N is an index value for representing each prediction block candidate, and takes a value from 0 to 4 in the present embodiment.
- the prediction block candidate [0] includes the adjacent block A in FIG. 3
- the prediction block candidate [1] includes the adjacent block B in FIG. 3
- the prediction block candidate [2] includes the co-located block and the prediction block. 3 is allocated to the candidate [3]
- the adjacent block D of FIG. 3 is allocated to the prediction block candidate [4].
- step S112 the motion vector predictor candidate calculation unit 114 calculates a motion vector predictor candidate in the prediction direction X from the prediction block candidate [N] using the above formulas 1 and 2, and the motion vector predictor candidate list. Add to In step S113, the motion vector predictor candidate calculation unit 114 cannot predict from the motion vector predictor candidate list as shown in FIGS. 13A and 13B and FIGS. 14A and 14B. Search for candidates and duplicate candidates and delete them. In step S114a, the motion vector predictor candidate calculation unit 114 determines whether the reference picture referred to by the motion vector calculated in step S101 of FIG. 12 and the encoding target picture belong to the same view.
- step S144b the motion vector predictor candidate calculation unit 114 adds a zero candidate to the motion vector predictor candidate list by a method described later.
- step S114c the motion vector predictor candidate calculation unit 114 adds a disparity vector candidate for the view to which the reference picture belongs to the motion vector predictor candidate list using a method described later.
- the predicted motion vector candidate calculation unit 114 assigns a small predicted motion vector index to the original predicted motion vector candidate.
- Reassignment is performed so that a predicted motion vector index having a large value is assigned to a zero candidate or a disparity vector candidate.
- the motion vector predictor candidate calculation unit 114 may prioritize a motion vector predictor candidate that is originally present. Thereby, the code amount of the motion vector predictor index can be reduced.
- step S115 the motion vector predictor candidate calculation unit 114 sets, as the motion vector predictor candidate list size, the number of motion vector candidates after adding the zero candidates calculated in step S114b or step S114c or the parallax vector candidates.
- the number of motion vector predictor candidates in the prediction direction 0 is “4” by the method described later, and the prediction direction 0
- the predicted motion vector candidate list size is set to “4”.
- the number of motion vector predictor candidates in the prediction direction 1 is “3”
- the motion vector predictor candidate list size in the prediction direction 1 is set to “3”.
- the zero candidate or the disparity depends on whether the reference picture and the encoding target picture belong to the same view. Coding efficiency can be improved by adding vector candidates.
- FIG. 16 is a diagram illustrating an example of a reference relationship according to the present embodiment.
- FIG. 16 shows three views: a base view, a non-base view 1, and a non-base view 2.
- Each of the three views is composed of a plurality of pictures.
- the three views are three videos with different viewpoints.
- Video encoding apparatus 100 according to the present embodiment may have an MVC function for encoding multi-view video.
- the moving image encoding apparatus 100 having the MVC function refers to pictures belonging to different viewpoints, such as a base view or a non-base view 1 picture, to generate a non-base view 2.
- the picture of the base view 2 can be encoded.
- each picture is encoded in the order of P0, P1,... P8.
- P5 belonging to the non-base view 2 is encoded, not only P2 belonging to the same view as P5 but also P3 belonging to the base view and P4 belonging to the non-base view 1 are referred as reference pictures. Is possible.
- the picture P5 When the picture P5 is encoded, for example, as a method of calculating a disparity vector with respect to the base view, it is conceivable to calculate an average of motion vectors when each encoding target block in the picture P5 refers to the base view. . Similarly, as a method of calculating a disparity vector for the non-base view 1, it is conceivable to obtain an average of motion vectors when each encoding target block in the picture P5 refers to the non-base view 1.
- the disparity vector for each view calculated in this way is added to the motion vector predictor candidate list when the next picture P8 belonging to the same view as the picture P5 is encoded.
- the disparity vector calculating unit 117 calculates a disparity vector for each view by the method as described above, and the predicted motion vector candidate calculating unit 114 adds the calculated disparity vector to the predicted motion vector candidate list.
- the motion vector predictor candidate calculation unit 114 Zero candidates are added to the motion vector predictor candidate list.
- the motion vector predictor candidate calculation unit 114 adds the disparity vector candidate of the corresponding view to the motion vector predictor candidate list. For example, when the motion vector of the encoding target block refers to the picture P7, the predicted motion vector candidate calculation unit 114 adds the disparity vector for the non-base view 1 to the predicted motion vector candidate list.
- the motion vector predictor candidate calculation unit 114 adds the zero candidate as the motion vector predictor candidate, and the reference picture of the encoding target picture is different.
- the predicted motion vector candidate calculation unit 114 adds the disparity vector candidate corresponding to the view calculated by the disparity vector calculation unit 117 to the predicted motion vector candidate list.
- the coding efficiency can be improved by adding zero candidates to the motion vector predictor candidate list.
- encoding efficiency is improved by adding a parallax vector to the predicted motion vector candidate list in order to take into account the parallax caused by the difference in shooting position. Can be improved.
- FIG. 17 is a flowchart showing detailed processing of step S111a in FIG. Specifically, FIG. 17 illustrates a method for determining whether or not the prediction block candidate [N] is a predictable candidate.
- the motion vector predictor candidate calculation unit 114 is a block in which the prediction block candidate [N] is encoded by intra prediction, a block located outside the slice or picture boundary, or a block that has not been encoded yet. It is determined whether or not. If the result of the determination is true (Yes in S121), the motion vector predictor candidate calculation unit 114 sets the predicted block candidate [N] as an unpredictable candidate in step S122. On the other hand, if the determination result in step S121 is false (No in S121), in step S123, the motion vector predictor candidate calculation unit 114 sets the prediction block candidate [N] as a predictable candidate.
- FIG. 18 is a flowchart showing detailed processing of step S114b of FIG. Hereinafter, FIG. 18 will be described.
- step S131a the motion vector predictor candidate calculation unit 114 determines whether the number of motion vector predictor candidates has reached the maximum number of motion vector predictor candidates. If the determination result is true (Yes in S131a), in step S132a, the motion vector predictor candidate calculation unit 114 determines whether a zero candidate having a motion vector of 0 is not a duplication candidate. If the determination results in steps S131a and S132a are true (Yes in S132a), in step S133a, the motion vector predictor candidate calculation unit 114 assigns a motion vector predictor index to the zero candidate. Furthermore, the motion vector predictor candidate calculation unit 114 adds the zero candidate and the motion vector predictor index to the motion vector predictor candidate list, and adds 1 to the number of motion vector predictor candidates in step S134.
- step S131a determines whether the number of motion vector predictor candidates has reached the maximum number of motion vector predictor candidates (No in S131a), or if it is determined in step S132a that the zero candidate is a duplication candidate.
- step S132a it is determined whether a zero candidate having a motion vector of 0 is not a duplication candidate. If the zero candidate is a duplication candidate, the zero candidate is added to the predicted motion vector candidate list. This is not necessarily limited to this. For example, the process of step S132a may be omitted, and if the determination result in step S131a is true, a zero candidate may be always added to the motion vector predictor candidate list. Thereby, the processing amount for duplication candidate confirmation can be reduced.
- FIG. 19 is a flowchart showing detailed processing of step S114c of FIG. Hereinafter, FIG. 19 will be described.
- step S131b the motion vector predictor candidate calculation unit 114 determines whether the number of motion vector predictor candidates has reached the maximum number of motion vector predictor candidates. If the determination result is true (Yes in S131b), in step S132b, the motion vector predictor candidate calculation unit 114 determines whether the disparity vector candidate for the view to which the reference picture belongs is not a duplication candidate. If the determination results in steps S131b and S132b are true (Yes in S132b), in step S133b, the motion vector predictor candidate calculation unit 114 assigns a motion vector predictor index to the parallax vector candidate. Further, the predicted motion vector candidate calculation unit 114 adds the disparity vector candidate and the predicted motion vector index to the predicted motion vector candidate list, and adds 1 to the number of predicted motion vector candidates in step S134.
- step S131b when it is determined in step S131b that the number of motion vector predictor candidates has reached the maximum number of motion vector predictor candidates (No in step S131b), or in step 132b, it is determined that the disparity vector candidate is a duplication candidate. In the case (No in step S132b), the motion vector predictor candidate calculation unit 114 ends the disparity vector candidate addition process. In the present embodiment, in step S132b, it is determined whether the disparity vector candidate for the view to which the reference picture belongs is not an overlap candidate. If the disparity vector candidate is an overlap candidate, the disparity vector candidate is selected as a motion vector predictor candidate list.
- the processing in step S132b may be omitted, and if the determination result in step S131b is true, the disparity vector candidates may always be added to the motion vector predictor candidate list. Thereby, the processing amount for duplication candidate confirmation can be reduced.
- FIG. 20 is a flowchart showing detailed processing of step S103 of FIG. Hereinafter, FIG. 20 will be described.
- step S141 the inter prediction control unit 111 sets 0 as the motion vector predictor candidate index mvp_idx and sets the maximum value of the value as the minimum differential motion vector as initialization.
- step S142 the inter prediction control unit 111 determines whether or not the value of the motion vector predictor candidate index mvp_idx is smaller than the number of motion vector predictor candidates. That is, the inter prediction control unit 111 determines whether or not the differential motion vectors of all motion vector predictor candidates have been calculated.
- step S143 the inter prediction control unit 111 selects motion vector predictor candidates from motion vectors (motion detection result vectors) obtained by motion detection. By subtracting, a differential motion vector is calculated.
- step S144 the inter prediction control unit 111 determines whether or not the difference motion vector obtained in step S143 is smaller than the minimum difference motion vector.
- step S145 the inter prediction control unit 111 updates the values of the minimum difference motion vector and the predicted motion vector index.
- the determination result in step S144 is false (No in S144)
- the inter prediction control unit 111 does not update the values of the minimum difference motion vector and the predicted motion vector index.
- step S146 the inter prediction control unit 111 updates the motion vector predictor candidate index by +1, and returns to step S142 to determine whether there is a next motion vector predictor candidate.
- step S142 if it is determined in step S142 that differential motion vectors have been calculated for all prediction motion vector candidates (No in S142), the inter prediction control unit 111 finally sets the minimum set in step S147. A differential motion vector and a predicted motion vector index are determined.
- FIG. 21 is a flowchart showing detailed processing of step S105 in FIG. Hereinafter, FIG. 21 will be described.
- step S151 the disparity vector calculation unit 117 determines whether the reference picture referred to by the motion vector calculated in step S101 in FIG. 12 belongs to a view different from the encoding target picture (encoding target block). If the determination result is true (Yes in S151), in step S152, the disparity vector calculation unit 117 updates the disparity vector of the view to which the picture to which the motion vector refers belongs. For example, the motion vector calculated in step S101 in FIG. 12 may be averaged with the disparity vector of the corresponding view. On the other hand, if the determination result in step S151 is false (No in S151), the disparity vector calculation unit 117 does not update the disparity vector.
- FIG. 22 and 23 are diagrams illustrating an example of a disparity vector for each view when a picture having a structure as illustrated in FIG. 16 is encoded.
- the non-base view 2 When the non-base view 2 is encoded, the base view and the non-base view 1 are referred to. Therefore, as shown in FIG. 22, the disparity vector of the non-base view 2 for each view is converted into a disparity vector calculation unit 117. Is managed and memorized.
- the disparity vector calculation unit 117 manages and stores the disparity vector of the non-base view 1 corresponding to the base view in order to refer to the base view. is doing.
- the example in which the disparity vector for each view is calculated using the motion vector calculated by the motion detection is not limited to this.
- the parallax vector may be calculated from the shooting position.
- the depth information of each picture is known, the depth information The parallax vector may be calculated from the above.
- the parallax vector may be calculated by a combination of (1), (2), and (3). Thereby, a more accurate parallax vector can be calculated and encoding efficiency can be improved.
- moving picture coding apparatus 100 it is possible to improve coding efficiency by adding a motion vector for a still region to a motion vector predictor candidate list. Become. Also, when referring to pictures belonging to different views, it is possible to improve coding efficiency by adding a disparity vector corresponding to the view to the motion vector predictor candidate list. More specifically, when the number of motion vector predictor candidates does not reach the maximum number of motion vector predictor candidates, a motion with a value of 0 depends on whether the reference picture and the current picture to be coded belong to the same view. Coding efficiency can be improved by adding zero candidates having vectors or disparity vector candidates for each view.
- an example in which a zero candidate having a motion vector of 0 as a motion vector for a still region is added to a predicted motion vector candidate when referring to the same view is not necessarily limited thereto.
- a motion vector (0, 1) or a value slightly larger than or slightly smaller than a motion vector (0, 0) having a value of 0 is predicted motion vector. You may make it add to a candidate.
- an offset parameter (OffsetX, OffsetY) or the like may be added to a sequence, picture, or slice header, and a motion vector (OffsetX, OffsetY) may be added to a predicted motion vector candidate.
- an example using a prediction motion vector designation mode in which a motion vector predictor candidate is generated from an adjacent block of an encoding target block and a motion vector of the encoding target block is encoded has been shown. It is not necessarily limited to this. For example, by selecting a predicted motion vector from predicted motion vector candidates created as shown in FIGS. 13B and 14B, and directly generating a predicted image using the selected predicted motion vector as a motion vector, The difference motion vector may not be added to the bitstream (direct mode, skip mode, merge mode, etc.).
- the disparity vector for each view calculated by the disparity vector calculating unit 117 is not added to the header, but the present invention is not necessarily limited thereto.
- a disparity vector may be added to header information such as SPS (sequence parameter set), PPS (picture parameter set), or slice header.
- the moving image decoding apparatus does not need to include the disparity vector calculating unit 117, and can obtain a disparity vector by decoding the disparity vector for each view added to the header. Processing of the decryption device can be reduced. For example, when a picture having the structure shown in FIG. 16 is encoded, the disparity for each view of the non-base view 2 as shown in FIG. 22 obtained after encoding the picture P5 in the slice header of the picture P8 or the like. It is conceivable to encode the picture P8 by adding a vector.
- step S151 in FIG. 21 when the picture to which the motion vector refers belongs to the same view, the disparity vector is not calculated using the motion vector, but this is not necessarily the case. .
- an average value of motion vectors for each reference picture belonging to the same view is calculated by addition averaging or the like.
- step S114b of FIG. 15 the same value is used instead of the zero candidate. You may make it add the average value of the motion vector of each reference picture which belongs to a view. This makes it possible to improve the encoding efficiency when referring to the same view when encoding video that pans and tilts in a certain direction.
- the average value of motion vectors for each reference picture belonging to the same view may be added to header information such as SPS (sequence parameter set), PPS (picture parameter set), or slice header, for example.
- header information such as SPS (sequence parameter set), PPS (picture parameter set), or slice header, for example.
- the moving picture decoding apparatus does not need to calculate the average value of the motion vectors for each reference picture belonging to the same view, and the average value of the motion vectors for each reference picture belonging to the same view added to the header is calculated.
- decoding it is possible to obtain an average value of motion vectors for each reference picture belonging to the same view, and the processing of the video decoding device can be reduced.
- the moving picture encoding method encodes the motion vector of the encoding target block from at least one adjacent block that is spatially or temporally adjacent to the encoding target block.
- This is a moving picture encoding method for calculating a prediction motion vector for encoding and encoding the encoding target block.
- the moving image encoding method includes a first predicted motion vector calculation step (S111a) for calculating a first predicted motion vector candidate from the at least one adjacent block, and a second motion vector having a value of 0.
- the predicted motion vector used for encoding the motion vector of the encoding target block is determined from the predicted motion vector candidates and the second predicted motion vector candidates or the third predicted motion vector candidates.
- the third motion vector predictor candidate is calculated.
- the number of first predicted motion vector candidates calculated in the first predicted motion vector calculation step (S111a) is smaller than a predetermined value. In this case, the second motion vector predictor candidate or the third motion vector predictor candidate is calculated.
- each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
- the software that realizes the image coding apparatus according to the present embodiment is a program that causes a computer to execute each process included in the above-described moving image coding method.
- FIG. 24 is a block diagram illustrating an example of a configuration of a video decoding device using the video decoding method according to Embodiment 2.
- the moving picture decoding apparatus 300 includes a variable length decoding unit 301, an inverse quantization unit 302, an inverse orthogonal transform unit 303, an addition unit 304, a block memory 305, a frame memory 306, and an intra prediction unit 307.
- variable length decoding unit 301 performs variable length decoding processing on the input bitstream to generate picture type information, a prediction direction flag, a quantization coefficient, and a difference motion vector. In addition, the variable length decoding unit 301 performs a variable length decoding process on the motion vector predictor index using the number of motion vector predictor candidates acquired from the motion vector predictor candidate calculation unit 311.
- the inverse quantization unit 302 performs an inverse quantization process on the quantized coefficient obtained by the variable length decoding process.
- the inverse orthogonal transform unit 303 generates prediction error data by transforming the orthogonal transform coefficient obtained by the inverse quantization process from the frequency domain to the image domain.
- the block memory 305 stores decoded image data generated by adding the prediction error data and the prediction image data in units of blocks.
- the frame memory 306 stores decoded image data in units of frames.
- the intra prediction unit 307 generates predicted image data of the decoding target block by performing intra prediction using the decoded image data in units of blocks stored in the block memory 305.
- the inter prediction unit 308 generates predicted image data of a decoding target block by performing inter prediction using the decoded image data in units of frames stored in the frame memory 306.
- the switch 310 When the decoding target block is subjected to intra prediction decoding, the switch 310 outputs the intra prediction image data generated by the intra prediction unit 307 to the adding unit 304 as prediction image data of the decoding target block. On the other hand, when the decoding target block is subjected to inter prediction decoding, the switch 310 outputs the inter prediction image data generated by the inter prediction unit 308 to the adding unit 304 as prediction image data of the decoding target block.
- the predicted motion vector candidate calculation unit 311 uses the colPic information such as the motion vector of the adjacent block of the decoding target block and the motion vector of the co-located block stored in the colPic memory 312 to specify the predicted motion vector.
- the predicted motion vector candidates and the number of predicted motion vector candidates for the mode are derived by the method described later.
- the predicted motion vector candidate calculation unit 311 assigns a value of the predicted motion vector index to each derived predicted motion vector candidate.
- the motion vector predictor candidate calculation unit 311 sends the motion vector predictor candidate and the motion vector predictor index to the inter prediction control unit 309. Also, the motion vector predictor candidate calculation unit 311 sends the number of motion vector predictor candidates to the variable length decoding unit 301.
- the inter prediction control unit 309 selects a prediction motion vector used for inter prediction based on the decoded prediction motion vector index from the prediction motion vector candidates. Then, the inter prediction control unit 309 calculates a motion vector of the decoding target block from the prediction motion vector and the difference motion vector. Then, the inter prediction control unit 309 causes the inter prediction unit 308 to generate an inter prediction image using the calculated motion vector. Also, the inter prediction control unit 309 transfers colPic information including the motion vector of the decoding target block to the colPic memory 312.
- the disparity vector calculation unit 313 calculates disparity vectors for each view using a motion vector used for inter prediction by a method described later.
- the adding unit 304 generates decoded image data by adding the predicted image data and the prediction error data.
- the motion vector predictor candidate calculation unit 311 is configured as the first motion vector predictor calculation unit, and the constituent element group including the motion vector predictor candidate calculation unit 311 and the parallax vector calculation unit 313 is the second.
- the prediction motion vector calculation unit is configured.
- the variable length decoding unit 301 is configured as an acquisition unit, and a component group including at least the inter prediction unit 308 is configured as a decoding unit.
- FIG. 25 is a flowchart showing the processing operation of the moving picture decoding apparatus 300 according to the second embodiment.
- step S301 the variable length decoding unit 301 decodes the prediction direction flag and the reference picture index. Then, the value of the prediction direction X is determined according to the decoded prediction direction flag, and the following processing from step S302a to step S306 is performed.
- step S302a the motion vector predictor candidate calculation unit 311 determines a motion vector predictor candidate from the neighboring block and the co-located block of the decoding target block by the same method as in step S102 of FIG. Further, the motion vector predictor candidate calculation unit 311 adds a zero candidate or a parallax vector candidate to calculate a motion vector predictor candidate list size.
- step S303 the variable length decoding unit 301 performs variable length decoding on the motion vector predictor index in the bitstream using the calculated motion vector predictor candidate list size.
- step S305 the inter prediction control unit 309 adds the decoded differential motion vector to the predicted motion vector candidate indicated by the decoded predicted motion vector index, and calculates a motion vector. Then, the inter prediction control unit 309 causes the inter prediction unit 308 to generate an inter prediction image using the calculated motion vector. If the predicted motion vector candidate list size calculated in step S302a is “1”, the predicted motion vector index may be estimated as 0 without being decoded.
- step S306 the disparity vector calculation unit 313 updates the disparity vector for each view using the motion vector used for inter prediction in the same manner as in step S105 in FIG.
- a bit stream with improved coding efficiency is appropriately added by adding a motion vector for a still region to the motion vector predictor candidate list. Can be decrypted.
- a disparity vector for each view may be obtained by decoding a disparity vector added to header information such as SPS (sequence parameter set), PPS (picture parameter set), or slice header.
- the video decoding device 300 does not need to include the disparity vector calculation unit 313, and can obtain the disparity vector by decoding the disparity vector for each view added to the header. Processing of the decryption apparatus 300 can be reduced. For example, when a picture having a structure as shown in FIG. 16 is decoded, a disparity vector for each view of the non-base view 2 as shown in FIG. It is conceivable to decode P8.
- FIG. 26 is a diagram illustrating an example of syntax when a disparity vector is added to a slice header.
- the disparity vector may be added with both the horizontal component and the vertical component, or only the horizontal component may be added and the vertical component may be regarded as zero.
- step S151 in FIG. 21 when the picture to which the motion vector refers belongs to the same view, the disparity vector is not calculated using the motion vector, but this is not necessarily the case. .
- an average value of motion vectors for each reference picture belonging to the same view is calculated by addition averaging or the like.
- step S114b of FIG. 15 the same value is used instead of the zero candidate. You may make it add the average value of the motion vector of each reference picture which belongs to a view. This makes it possible to appropriately decode a bitstream with improved encoding efficiency when referring to the same view when encoding video that pans and tilts in a certain direction.
- the average value of motion vectors for each reference picture belonging to the same view may be obtained from the bitstream. For example, by decoding an average value of motion vectors for each reference picture belonging to the same view, which is added to header information such as SPS (sequence parameter set), PPS (picture parameter set), or slice header, the average is obtained. Get the value.
- the moving picture decoding apparatus 300 does not need to calculate the average value of motion vectors for each reference picture belonging to the same view, and is added to the header, and the average value of motion vectors for each reference picture belonging to the same view , It is possible to obtain an average value of motion vectors for each reference picture belonging to the same view, and the processing of the moving picture decoding apparatus 300 can be reduced.
- the moving picture decoding method decodes the motion vector of the decoding target block from at least one adjacent block that is spatially or temporally adjacent to the decoding target block.
- This is a moving picture decoding method for calculating a prediction motion vector for conversion into a decoding target block and decoding the decoding target block.
- the moving picture decoding method includes a first motion vector predictor calculating step (S111a) for calculating a first motion vector predictor candidate from the at least one adjacent block, and a second motion vector having a motion vector of 0.
- the third motion vector predictor candidate is calculated.
- the number of first predicted motion vector candidates calculated in the first predicted motion vector calculation step (S111a) is smaller than a predetermined value. In this case, the second motion vector predictor candidate or the third motion vector predictor candidate is calculated.
- each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
- the software that realizes the image decoding apparatus according to the present embodiment is a program that causes a computer to execute each process included in the above-described moving image decoding method.
- Embodiment 3 In the present embodiment, a method for deriving the motion vector predictor candidate list size used in Embodiment 1 will be described in detail.
- a prediction motion vector candidate list size used when encoding or decoding a prediction motion vector index is determined using reference picture information including a co-located block or the like, a non-predictable candidate or an overlap. Candidates are deleted, and the number of predicted motion vector candidates after deletion is set to the predicted motion vector candidate list size. For this reason, when a mismatch occurs in the number of motion vector predictor candidates between the video image encoding device and the video image decoding device, the video image encoding device and the video image decoding device use a bit string assigned to the predicted motion vector index. There is a problem that a mismatch occurs and the bitstream cannot be correctly decoded.
- the method for deriving the predicted motion vector candidate list size described in the present embodiment uses the predicted motion vector candidate list size used when encoding or decoding the predicted motion vector index as a co-located block or the like. Since the calculation is performed by a method that does not depend on the included reference picture information, error tolerance can be improved.
- FIG. 27 is a block diagram showing a configuration of the moving picture coding apparatus 100a according to the third embodiment.
- the moving image encoding apparatus 100 includes a subtraction unit 101, an orthogonal transformation unit 102, a quantization unit 103, an inverse quantization unit 104, an inverse orthogonal transformation unit 105, an addition unit 106, a block memory 107, a frame A memory 108, an intra prediction unit 109, an inter prediction unit 110, an inter prediction control unit 111, a picture type determination unit 112, a switch 113, a motion vector predictor candidate calculation unit 114, a colPic memory 115, and a variable length coding unit 116 are provided. Yes.
- the subtraction unit 101 generates prediction error data by subtracting predicted image data from input image data included in the input image sequence for each block.
- the orthogonal transformation unit 102 performs transformation from the image domain to the frequency domain on the generated prediction error data.
- the quantization unit 103 performs a quantization process on the prediction error data converted into the frequency domain.
- the inverse quantization unit 104 performs inverse quantization processing on the prediction error data quantized by the quantization unit 103.
- the inverse orthogonal transform unit 105 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
- the addition unit 106 generates reconstructed image data by adding the prediction image data and the prediction error data subjected to the inverse quantization processing by the inverse orthogonal transform unit 105 for each encoding target block.
- the block memory 107 stores the reconstructed image data in units of blocks.
- the frame memory 108 stores the reconstructed image data in units of frames.
- the picture type determination unit 112 determines which of the I picture, B picture, and P picture is used to encode the input image data, and generates picture type information.
- the intra prediction unit 109 generates intra prediction image data of the encoding target block by performing intra prediction using the reconstructed image data in units of blocks stored in the block memory 107.
- the inter prediction unit 110 performs inter prediction using the reconstructed image data in units of frames stored in the frame memory 108 and the motion vector derived by motion detection or the like, so that the inter prediction image of the encoding target block Generate data.
- the switch 113 When the encoding target block is subjected to intra prediction encoding, the switch 113 outputs the intra prediction image data generated by the intra prediction unit 109 to the subtraction unit 101 and the addition unit 106 as prediction image data of the encoding target block. To do. On the other hand, when the encoding target block is subjected to inter prediction encoding, the switch 113 uses the inter prediction image data generated by the inter prediction unit 110 as the prediction image data of the encoding target block. Output to.
- the motion vector predictor candidate calculation unit 114 uses the colPic information such as the motion vector of the adjacent block of the encoding target block and the motion vector of the co-located block stored in the colPic memory 115 to specify the motion vector predictor.
- the mode motion vector predictor candidates are derived.
- the motion vector predictor candidate calculation unit 114 calculates the number of predictable candidates by a method described later.
- the motion vector predictor candidate calculation unit 114 assigns the value of the motion vector predictor index to the derived motion vector predictor candidate.
- the motion vector predictor candidate calculation unit 114 sends the motion vector predictor candidate and the motion vector predictor index to the inter prediction control unit 111. Further, the motion vector predictor candidate calculation unit 114 transmits the calculated number of predictable candidates to the variable length coding unit 116.
- the inter prediction control unit 111 controls the inter prediction unit 110 to perform inter prediction encoding using an inter prediction image generated using a motion vector derived by motion detection.
- the inter prediction control unit 111 selects a motion vector predictor candidate that is optimal for coding the motion vector used for the inter prediction coding by a method described later.
- the inter prediction control unit 111 sends a prediction motion vector index corresponding to the selected prediction motion vector candidate and prediction error information (difference motion vector) to the variable length encoding unit 116.
- the inter prediction control unit 111 transfers colPic information including the motion vector of the encoding target block to the colPic memory 115.
- variable length coding unit 116 generates a bitstream by performing variable length coding processing on the prediction error data, the prediction direction flag, the picture type information, and the differential motion vector that have been quantized. In addition, the variable length coding unit 116 sets the number of predictable candidates to the predicted motion vector candidate list size. Then, the variable length coding unit 116 performs variable length coding by assigning a bit string corresponding to the motion vector predictor candidate list size to the motion vector predictor index used for motion vector coding.
- FIG. 28 is a flowchart showing the processing operation of the video encoding apparatus 100a according to the third embodiment.
- the inter prediction control unit 111 determines the prediction direction, the reference picture index, and the motion vector of the encoding target block by motion detection.
- motion detection for example, a difference value between a block to be encoded in the encoded picture and a block in the reference picture is calculated, and a block in the reference picture having the smallest difference value is determined as a reference block. .
- a motion vector is obtained from a coding target block position and a reference block position using a method for obtaining a motion vector.
- the inter prediction control unit 111 performs motion detection on the reference pictures of the prediction direction 0 and the prediction direction 1 respectively, and determines whether or not to select the prediction direction 0, the prediction direction 1, or the bidirectional prediction. For example, it is calculated by the above (formula 3) of the RD optimization model.
- the motion vector predictor candidate calculation unit 114 derives motion vector predictor candidates from the adjacent block and the co-located block of the encoding target block. Further, the motion vector predictor candidate calculation unit 114 calculates the motion vector predictor candidate list size by a method described later. For example, in the case of FIG. 3, the motion vector predictor candidate calculation unit 114 selects, for example, motion vectors of adjacent blocks A, B, C, and D as motion vector predictor candidates for the encoding target block. Further, the predicted motion vector candidate calculation unit 114 calculates a motion vector or the like calculated by the temporal prediction mode from the motion vector of the co-located block as a predicted motion vector candidate.
- the prediction motion vector candidate calculation unit 114 assigns a prediction motion vector index to the prediction motion vector candidates in the prediction direction 0 and the prediction direction 1 as shown in FIGS. 29 (a) and 30 (a). Then, the motion vector predictor candidate calculation unit 114 deletes the unpredictable candidate and the duplicate candidate and adds a new candidate by a method to be described later, as shown in (b) of FIG. 29 and (b) of FIG. A predicted motion vector candidate list and a predicted motion vector candidate list size are calculated.
- the predicted motion vector index is assigned a shorter code as the value is smaller. That is, when the value of the motion vector predictor index is small, the amount of information required for the motion vector predictor index is reduced. On the other hand, as the value of the motion vector predictor index increases, the amount of information required for the motion vector predictor index increases. Therefore, when a motion vector predictor index having a small value is assigned to a motion vector predictor candidate that is likely to be a motion vector predictor with higher accuracy, the coding efficiency is increased.
- the motion vector predictor candidate calculation unit 114 measures, for example, the number of times selected as a motion vector predictor for each motion vector predictor candidate, and assigns a motion vector predictor index having a small value to the motion vector predictor candidate with a large number of times. It may be assigned. Specifically, it is conceivable that the predicted motion vector selected in the adjacent block is specified, and the value of the predicted motion vector index for the specified predicted motion vector candidate is reduced when the target block is encoded.
- the adjacent block has no information such as a motion vector (if it is a block encoded by intra prediction, if it is a block located outside the boundary of a picture or slice, etc., the block that has not been encoded yet In the case of (or the like), it cannot be used as a motion vector predictor candidate.
- the fact that it cannot be used as a motion vector predictor candidate is called an unpredictable candidate. Also, the fact that it can be used as a motion vector predictor candidate is called a predictable candidate. In addition, among a plurality of motion vector predictor candidates, a candidate whose value matches that of any other motion vector predictor is referred to as a duplicate candidate.
- the prediction motion vector sMvL0_D in the prediction direction 0 generated from the adjacent block D has the same value as the prediction motion vector MvL0_A in the prediction direction 0 generated from the adjacent block A, and is assumed to be a duplication candidate.
- step S103 the inter prediction control unit 111 determines the value of the motion vector predictor index used for motion vector coding in the prediction direction X by a method described later.
- step S104 the variable length coding unit 116 assigns a bit string corresponding to the predicted motion vector candidate list size as shown in FIG. 6 to the predicted motion vector index of the predicted motion vector candidate used for motion vector coding in the prediction direction X. Then, variable length coding is performed.
- “0” is assigned as the value of the predicted motion vector index for the adjacent block A as shown in FIG. 29 (a) and FIG. 30 (a). Further, “1” is assigned as the value of the motion vector predictor index corresponding to the adjacent block B. Further, “2” is assigned as the value of the motion vector predictor index corresponding to the co-located block. Also, “3” is assigned as the value of the predicted motion vector index corresponding to the adjacent block C. Further, “4” is assigned as the value of the predicted motion vector index corresponding to the adjacent block D.
- the method of assigning the value of the motion vector predictor index is not necessarily limited to this example.
- the variable length encoding unit 116 assigns a small value to the original motion vector predictor candidate.
- a large value may be assigned to the new candidate. That is, the variable-length encoding unit 116 may assign a small predicted motion vector index in preference to the original predicted motion vector candidate.
- the motion vector predictor candidates are not necessarily limited to the positions of adjacent blocks A, B, C, and D.
- an adjacent block or the like located above the lower left adjacent block D may be used as a predicted motion vector candidate.
- not all adjacent blocks need to be used as motion vector predictor candidates.
- only adjacent blocks A and B may be used as motion vector predictor candidates.
- the adjacent block may be scanned in order, such as using the adjacent block A.
- step S104 in FIG. 28 the variable-length encoding unit 116 adds the motion vector predictor index to the bitstream, but it is not always necessary to add the motion vector predictor index to the bitstream.
- the variable length coding unit 116 may not add the motion vector predictor index to the bitstream. Thereby, the information amount of a motion vector predictor index can be reduced.
- FIG. 31 is a flowchart showing detailed processing of step S102 of FIG. Specifically, FIG. 31 illustrates a method of calculating a predicted motion vector candidate and a predicted motion vector candidate list size. Hereinafter, FIG. 31 will be described.
- step S111 the motion vector predictor candidate calculation unit 114 determines whether or not the prediction block candidate [N] is a predictable candidate by a method described later. Then, the motion vector predictor candidate calculation unit 114 updates the number of predictable candidates according to the determination result.
- N is an index value for representing each prediction block candidate.
- N takes a value from 0 to 4.
- the adjacent block A in FIG. 3 is allocated to the prediction block candidate [0].
- the adjacent block B in FIG. 3 is allocated to the prediction block candidate [1].
- a co-located block is allocated to the prediction block candidate [2].
- the adjacent block C in FIG. 3 is allocated to the prediction block candidate [3].
- the adjacent block D of FIG. 3 is allocated to prediction block candidate [4].
- step S112 the motion vector predictor candidate calculation unit 114 calculates a motion vector predictor candidate in the prediction direction X from the prediction block candidate [N] using the above formulas 1 and 2, and the motion vector predictor candidate list. Add to In step S113, the motion vector predictor candidate calculation unit 114 searches for the unpredictable candidate and the overlap candidate from the motion vector predictor candidate list and deletes them as shown in FIGS.
- step S114 the motion vector predictor candidate calculation unit 114 adds a new candidate to the motion vector predictor candidate list by the method described in Embodiment 1 or the method described later.
- the motion vector predictor candidate calculation unit 114 recalculates the value of the motion vector predictor index so that a smaller motion vector predictor index is assigned in preference to the original motion vector predictor candidate. Allocation may be performed. That is, the motion vector predictor candidate calculation unit 114 may reassign the motion vector predictor value so that a new motion vector index with a larger value is assigned to the new candidate. Thereby, the code amount of the motion vector predictor index can be reduced.
- step S115 the motion vector predictor candidate calculation unit 114 sets the number of predictable candidates calculated in step S111 as the motion vector predictor candidate list size.
- the number of predictable candidates in the prediction direction 0 is calculated as “4” by the method described later, and “4” is set as the prediction motion vector candidate list size in the prediction direction 0.
- the number of predictable candidates in the prediction direction 1 is calculated as “4”, and “4” is set as the predicted motion vector candidate list size in the prediction direction 1.
- the new candidate in step S114 is newly added to the motion vector predictor candidate when the number of motion vector predictor candidates does not reach the number of predictable candidates by the method described in the first embodiment or the method described later.
- the new candidate may be a predicted motion vector generated from an adjacent block located above the lower left adjacent block D in FIG.
- the new candidate may be, for example, a predicted motion vector generated from blocks corresponding to adjacent blocks A, B, C, and D of the co-located block.
- the new candidate may be a predicted motion vector calculated from, for example, the motion picture statistics of the entire reference picture screen or a certain region.
- the motion vector predictor candidate calculation unit 114 adds a new motion vector predictor as a new candidate, thereby improving the coding efficiency. It can be improved.
- FIG. 32 is a flowchart showing detailed processing of step S111 of FIG. Specifically, FIG. 32 illustrates a method of determining whether or not the prediction block candidate [N] is a predictable candidate and updating the number of predictable candidates. Hereinafter, FIG. 32 will be described.
- step S121 the motion vector predictor candidate calculation unit 114 determines that the prediction block candidate [N] is outside the slice or picture boundary including (1) a block encoded by intra prediction, or (2) a block to be encoded. It is determined whether the block is located or (3) a block that has not been encoded yet. If the determination result in step S121 is true (Yes in S121), the motion vector predictor candidate calculation unit 114 sets the prediction block candidate [N] as a non-predictable candidate in step S122. On the other hand, if the determination result in step S121 is false (No in S121), in step S123, the motion vector predictor candidate calculation unit 114 sets the prediction block candidate [N] as a predictable candidate.
- step S124 the motion vector predictor candidate calculation unit 114 determines whether the prediction block candidate [N] is a predictable candidate or a co-located block candidate. If the determination result in step S124 is true (Yes in S124), in step S125, the motion vector predictor candidate calculation unit 114 adds 1 to the number of predictable candidates and updates the number of motion vector predictor candidates. . On the other hand, if the determination result in step S124 is false (No in S124), the motion vector predictor candidate calculation unit 114 does not update the number of predictable candidates.
- the motion vector predictor candidate calculation unit 114 sets the number of predictable candidates regardless of whether the co-located block is a predictable candidate or a non-predictable candidate. Add one. Thereby, even when the information of the co-located block is lost due to packet loss or the like, there is no mismatch in the number of predictable candidates between the moving picture coding apparatus and the moving picture decoding apparatus. This number of predictable candidates is set to the predicted motion vector candidate list size in step S115 of FIG. Further, in step S104 of FIG. 28, the motion vector predictor candidate list size is used for variable length coding of the motion vector predictor index. As a result, even when reference picture information including a co-located block or the like is lost, the video encoding apparatus 100a can generate a bitstream that can normally decode the predicted motion vector index.
- FIG. 33 is a flowchart showing detailed processing of step S114 of FIG. Specifically, FIG. 33 shows a method for adding a new candidate. Hereinafter, FIG. 33 will be described.
- step S131 the motion vector predictor candidate calculation unit 114 determines whether or not the number of motion vector predictor candidates is smaller than the number of predictable candidates. That is, the motion vector predictor candidate calculation unit 114 determines whether or not the number of motion vector predictor candidates has reached the number of predictable candidates. If the determination result in step S131 is true (Yes in S131), the motion vector predictor candidate calculation unit 114 includes a new candidate that can be added to the motion vector predictor candidate list as a motion vector predictor candidate in step S132. Determine whether or not. If the determination result in step S132 is true (Yes in S132), the motion vector predictor candidate calculation unit 114 assigns the value of the motion vector predictor index to the new candidate in step S133, and the new motion vector candidate list is new. Add candidates.
- step S134 the motion vector predictor candidate calculation unit 114 adds 1 to the number of motion vector predictor candidates.
- the determination result in step S131 or step S132 is false (No in S131 or S132)
- the new candidate addition process is terminated. That is, when the number of motion vector predictor candidates reaches the number of predictable candidates, or when there is no new candidate, the new candidate addition process is terminated.
- step S103 in FIG. 28 is the same as the process shown in FIG.
- the predicted motion vector candidate list size used when encoding or decoding the predicted motion vector index is referred to including a co-located block or the like. It can be calculated by a method that does not depend on picture information. As a result, the moving picture coding apparatus 100a can improve error tolerance. More specifically, the moving picture coding apparatus 100a according to the present embodiment can always predict a predictable candidate if the predicted block candidate is a co-located block, regardless of whether the co-located block is a predictable candidate. Add 1 to the number. Then, the video encoding device 100a determines a bit string to be assigned to the predicted motion vector index using the number of predictable candidates calculated in this way.
- the moving picture coding apparatus 100a can generate a bitstream that can normally decode the predicted motion vector index even when reference picture information including a co-located block is lost.
- the moving image coding apparatus 100a uses a new candidate having a new motion vector predictor as a motion vector predictor candidate. By adding, encoding efficiency can be improved.
- the moving picture coding apparatus 100a always adds 1 if the predicted block candidate is a co-located block, regardless of whether the co-located block is a predictable candidate.
- the bit string assigned to the motion vector predictor index is determined using the calculated number of predictable candidates, the present invention is not limited to this.
- the moving image coding apparatus 100a uses the number of predictable candidates calculated by always adding 1 to the prediction block candidates other than the co-located block in step S124 in FIG.
- a bit string to be assigned to the motion vector predictor index may be determined. That is, the video encoding device 100a may assign a bit string to a motion vector predictor index using a motion vector predictor candidate list size that is fixed to the maximum number N of motion vector predictor candidates. That is, the video encoding apparatus 100a regards all prediction block candidates as predictable candidates, fixes the motion vector predictor candidate list size to the maximum number N of motion vector predictor candidates, and codes the motion vector predictor index. It does not matter.
- the moving picture coding apparatus 100a may always set the predicted motion vector candidate list size to 5 and encode the predicted motion vector index. For example, when the maximum value N of the number of motion vector predictor candidates is 4 (adjacent block A, adjoining block B, adjoining block C, adjoining block D), the moving picture encoding device 100a always uses the motion vector predictor candidate.
- the list size may be set to 4, and the motion vector predictor index may be encoded.
- the video encoding device 100a may determine the motion vector predictor candidate list size according to the maximum number of motion vector predictor candidates.
- the variable length decoding unit of the video decoding device generates a bitstream that can decode the predicted motion vector index in the bitstream without referring to the information of the adjacent block or the co-located block.
- the processing amount of the variable length decoding unit can be reduced.
- the maximum value N of the number of motion vector predictor candidates may be embedded in an SPS (Sequence Parameter Set), a PPS (Picture Parameter Set), or a slice header.
- SPS Sequence Parameter Set
- PPS Picture Parameter Set
- the maximum value N of the number of motion vector predictor candidates can be switched according to the encoding target picture, and the processing amount and encoding efficiency can be improved.
- the maximum number of motion vector predictor candidates is 4 (adjacent block A, adjacent block B, adjacent block). C, adjacent block D).
- the maximum number of motion vector predictor candidates is set to 5 (adjacent block A, adjacent block B, co-located block, adjacent block C, adjacent block D). Set. Then, the maximum value may be embedded in SPS (Sequence Parameter Set), PPS (Picture Parameter Set), or a slice header.
- SPS Sequence Parameter Set
- PPS Picture Parameter Set
- an example using a prediction motion vector designation mode in which a motion vector predictor candidate is generated from an adjacent block of an encoding target block and a motion vector of the encoding target block is encoded has been shown. It is not necessarily limited to this. For example, by selecting a predicted motion vector from predicted motion vector candidates created as shown in FIGS. 29B and 30B, and directly generating a predicted image using the selected predicted motion vector as a motion vector, The difference motion vector may not be added to the bitstream (direct mode, skip mode, etc.).
- the predetermined number of adjacent block candidate candidates which are adjacent blocks that can be used for calculation of the predicted motion vector, among the at least one adjacent block.
- the candidate number is calculated by performing an update step for updating the candidate number for each adjacent block.
- the update step includes: (i) a block that is encoded by intra prediction, (ii) a block that is located outside a boundary of a slice or picture including the encoding target block, and (iii) ) If the determination result in the first determination step (S121) for determining whether the block is not yet encoded is true and the determination result in the first determination step is true, the prediction motion vector is calculated.
- FIG. 34 is a block diagram showing a configuration of the moving picture decoding apparatus 300a according to the fourth embodiment.
- the moving picture decoding apparatus 300a includes a variable length decoding unit 301, an inverse quantization unit 302, an inverse orthogonal transform unit 303, an addition unit 304, a block memory 305, a frame memory 306, and an intra prediction unit 307. , An inter prediction unit 308, an inter prediction control unit 309, a switch 310, a motion vector predictor candidate calculation unit 311, and a colPic memory 312.
- variable length decoding unit 301 performs variable length decoding processing on the input bitstream to generate picture type information, a prediction direction flag, a quantization coefficient, and a difference motion vector. In addition, the variable length decoding unit 301 performs a variable length decoding process of the motion vector predictor index using the number of predictable candidates described later.
- the inverse quantization unit 302 performs an inverse quantization process on the quantized coefficient obtained by the variable length decoding process.
- the inverse orthogonal transform unit 303 generates prediction error data by transforming the orthogonal transform coefficient obtained by the inverse quantization process from the frequency domain to the image domain.
- the block memory 305 stores decoded image data generated by adding the prediction error data and the prediction image data in units of blocks.
- the frame memory 306 stores decoded image data in units of frames.
- the intra prediction unit 307 generates predicted image data of the decoding target block by performing intra prediction using the decoded image data in units of blocks stored in the block memory 305.
- the inter prediction unit 308 generates predicted image data of a decoding target block by performing inter prediction using the decoded image data in units of frames stored in the frame memory 306.
- the switch 310 When the decoding target block is subjected to intra prediction decoding, the switch 310 outputs the intra prediction image data generated by the intra prediction unit 307 to the adding unit 304 as prediction image data of the decoding target block. On the other hand, when the decoding target block is subjected to inter prediction decoding, the switch 310 outputs the inter prediction image data generated by the inter prediction unit 308 to the adding unit 304 as prediction image data of the decoding target block.
- the predicted motion vector candidate calculation unit 311 uses the colPic information such as the motion vector of the adjacent block of the decoding target block and the motion vector of the co-located block stored in the colPic memory 312 to specify the predicted motion vector.
- the mode predicted motion vector candidates are derived by the method described later.
- the predicted motion vector candidate calculation unit 311 assigns a value of the predicted motion vector index to each derived predicted motion vector candidate. Then, the predicted motion vector candidate calculation unit 311 sends the predicted motion vector candidate and the predicted motion vector index to the inter prediction control unit 309.
- the inter prediction control unit 309 selects a prediction motion vector used for inter prediction based on the decoded prediction motion vector index from the prediction motion vector candidates. Then, the inter prediction control unit 309 calculates a motion vector of the decoding target block from the prediction motion vector and the difference motion vector. Then, the inter prediction control unit 309 causes the inter prediction unit 308 to generate an inter prediction image using the calculated motion vector. Also, the inter prediction control unit 309 transfers colPic information including the motion vector of the decoding target block to the colPic memory 312.
- the adding unit 304 generates decoded image data by adding the predicted image data and the prediction error data.
- FIG. 35 is a flowchart showing the processing operation of the moving picture decoding apparatus 300a according to the fourth embodiment.
- step S301 the variable length decoding unit 301 decodes the prediction direction flag and the reference picture index. Then, the value of the prediction direction X is determined according to the decoded prediction direction flag, and the following processing from step S302 to step S305 is performed.
- step S302 the motion vector predictor candidate calculation unit 311 calculates the number of predictable candidates by the method described in Embodiment 1 or 2, or the method described later. Then, the motion vector predictor candidate calculation unit 311 sets the calculated number of predictable candidates as the motion vector predictor candidate list size.
- step S303 the variable length decoding unit 301 performs variable length decoding on the motion vector predictor index in the bitstream using the calculated motion vector predictor candidate list size.
- step S304 the motion vector predictor candidate calculation unit 311 generates a motion vector predictor candidate from a block adjacent to the decoding target block and the co-located block by a method described later.
- step S305 the inter prediction control unit 309 adds the decoded differential motion vector to the predicted motion vector candidate indicated by the decoded predicted motion vector index, and calculates a motion vector. Then, the inter prediction control unit 309 causes the inter prediction unit 308 to generate an inter prediction image using the calculated motion vector.
- the motion vector predictor index may be estimated as 0 without being decoded.
- FIG. 36 is a flowchart showing detailed processing of step S302 of FIG. Specifically, FIG. 36 illustrates a method for determining whether the prediction block candidate [N] is predictable and calculating the number of predictable candidates. Hereinafter, FIG. 36 will be described.
- step S311 the motion vector predictor candidate calculation unit 311 determines that the predicted block candidate [N] is (1) a block decoded by intra prediction, or (2) outside a slice or picture boundary including a decoding target block. It is determined whether the block is located or (3) a block that has not been decoded yet. If the determination result in step S311 is true (Yes in S311), the motion vector predictor candidate calculation unit 311 sets the prediction block candidate [N] as an unpredictable candidate in step S312. On the other hand, if the determination result in step S311 is false (No in S311), the motion vector predictor candidate calculation unit 311 sets the prediction block candidate [N] as a predictable candidate in step S313.
- step S314 the motion vector predictor candidate calculation unit 311 determines whether the prediction block candidate [N] is a predictable candidate or a co-located block candidate. If the determination result in step S314 is true (Yes in S314), the motion vector predictor candidate calculation unit 311 adds 1 to the number of predictable candidates and updates the value in step S315. On the other hand, if step S314 is false (No in S314), the motion vector predictor candidate calculation unit 311 does not update the number of predictable candidates.
- the motion vector predictor candidate calculation unit 311 determines the number of predictable candidates regardless of whether the co-located block is a predictable candidate or a non-predictable candidate. Add one. Thereby, even when the information of the co-located block is lost due to packet loss or the like, there is no mismatch in the number of predictable candidates between the moving picture coding apparatus and the moving picture decoding apparatus.
- the number of predictable candidates is set to the predicted motion vector candidate list size in step S302 of FIG.
- the motion vector predictor candidate list size is used for variable length decoding of the motion vector predictor index. As a result, even when reference picture information including a co-located block or the like is lost, the moving picture decoding apparatus 300a can normally decode the predicted motion vector index.
- FIG. 37 is a flowchart showing detailed processing of step S304 of FIG. Specifically, FIG. 37 shows a method for calculating a motion vector predictor candidate. Hereinafter, FIG. 37 will be described.
- step S321 the motion vector predictor candidate calculation unit 311 calculates a motion vector predictor candidate in the prediction direction X from the prediction block candidate [N] using the above formulas 1 and 2, and the motion vector predictor candidate list. Add to In step S322, as shown in FIGS. 29 and 30, the motion vector predictor candidate calculation unit 311 searches the motion vector predictor candidate list for unpredictable candidates and duplicate candidates and deletes them. In step S323, the motion vector predictor candidate calculation unit 311 adds a new candidate to the motion vector predictor candidate list in the same manner as in FIG.
- FIG. 38 is a diagram illustrating an example of syntax for attaching a motion vector predictor index to a bitstream.
- inter_pred_flag represents a prediction direction flag
- mvp_idx represents a prediction motion vector index.
- NumMVPCand represents the predicted motion vector candidate list size, and in this embodiment, the number of predictable candidates calculated in the processing flow of FIG. 36 is set.
- the predicted motion vector candidate list size used when encoding or decoding the predicted motion vector index is referred to including a co-located block or the like. It is calculated by a method that does not depend on picture information. Thereby, the moving picture decoding apparatus 300a can appropriately decode the bit stream with improved error tolerance.
- the moving picture decoding apparatus 300a can always predict a predictable candidate if the predicted block candidate is a co-located block regardless of whether the co-located block is a predictable candidate. Add 1 to the number. Then, the video decoding device 300a determines a bit string to be assigned to the motion vector predictor index using the number of predictable candidates calculated in this way. Accordingly, the moving picture decoding apparatus 300a can normally decode the predicted motion vector index even when the reference picture information including the co-located block is lost. In addition, when the number of motion vector predictor candidates does not reach the number of predictable candidates, the moving picture decoding apparatus 300a according to the present embodiment uses a new candidate having a new motion vector predictor as a motion vector predictor candidate. By adding, it becomes possible to appropriately decode a bit stream with improved encoding efficiency.
- the moving picture decoding apparatus 300a always adds 1 if the predicted block candidate is a co-located block, regardless of whether the co-located block is a predictable candidate.
- the bit string assigned to the motion vector predictor index is determined using the calculated number of predictable candidates, the present invention is not limited to this.
- the moving picture decoding apparatus 300a uses the number of predictable candidates calculated by always adding 1 to the prediction block candidates other than the co-located block in step S314 of FIG. A bit string to be assigned to the motion vector predictor index may be determined.
- the moving picture decoding apparatus 300a may assign a bit string to a motion vector predictor index using a motion vector predictor candidate list size fixed to the maximum number N of motion vector predictor candidates. That is, the video decoding device 300a regards all prediction block candidates as predictable candidates, fixes the prediction motion vector candidate list size to the maximum value N of the number of prediction motion vector candidates, and decodes the prediction motion vector index. It does not matter.
- the moving picture decoding apparatus 300a may always set the predicted motion vector candidate list size to 5 and decode the predicted motion vector index.
- the variable length decoding unit 301 of the video decoding device 300a can decode the predicted motion vector index in the bitstream without referring to the information of the adjacent block or the co-located block. .
- the processing of steps S314 and S315 in FIG. 36 can be omitted, and the processing amount of the variable length decoding unit 301 can be reduced.
- FIG. 39 is a diagram illustrating an example of syntax when the motion vector predictor candidate list size is fixed to the maximum number of motion vector predictor candidates. As shown in FIG. 39, when the predicted motion vector candidate list size is fixed to the maximum number of predicted motion vector candidates, NumMVPCand can be deleted from the syntax.
- the maximum value N of the number of motion vector predictor candidates may be used as a value embedded in an SPS (Sequence Parameter Set), PPS (Picture Parameter Set), or a slice header. Accordingly, by switching the maximum value N of the number of motion vector predictor candidates according to the encoding target picture, it is possible to correctly decode a bitstream with improved processing amount and encoding efficiency. For example, in the case of a picture that does not refer to a co-located block (B picture or P picture that refers to an I picture), the maximum number of motion vector predictor candidates is 4 (adjacent block A, adjacent block B, adjacent block) C, adjacent block D).
- the maximum number of motion vector predictor candidates is 5 (adjacent block A, adjacent block B, co-located block, adjacent block C, adjacent block D). Is set.
- the maximum value is SPS (Sequence Parameter Set), PPS (Picture Parameter Set), or a bit stream embedded in a slice header or the like
- the maximum value N of the number of motion vector predictor candidates is set to SPS. (Sequence Parameter Set), PPS (Picture Parameter Set), or a slice header or the like may be decoded, and the predicted motion vector index may be decoded using the value.
- the predetermined number of adjacent block candidates that are adjacent blocks that can be used for calculation of the predicted motion vector among the at least one adjacent block is determined as the predetermined number.
- the number of candidates is calculated by performing an updating step for updating the candidate number for each adjacent block.
- the update step includes: (i) a block encoded by intra prediction, (ii) a block located outside the boundary of a slice or picture including the decoding target block, and (iii) ) If the determination result in the first determination step (S311) for determining whether the block is not yet decoded is true and the determination result in the first determination step is true, the prediction motion vector is calculated.
- the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
- the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
- the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
- image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
- Other configurations in the system can be appropriately changed according to circumstances.
- FIG. 40 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
- the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
- the content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
- PDA Personal Digital Assistant
- each device may be directly connected to the telephone network ex104 without going through the base stations ex106 to ex110 which are fixed wireless stations.
- the devices may be directly connected to each other via short-range wireless or the like.
- the camera ex113 is a device that can shoot moving images such as a digital video camera
- the camera ex116 is a device that can shoot still images and movies such as a digital camera.
- the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) method, a CDMA (Code Division Multiple Access) method, a W-CDMA (Wideband-Code Division MultipleL), or a W-CDMA (Wideband-Code Division MultipleT method). It may be a system, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
- the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
- live distribution content that is shot by the user using the camera ex113 (for example, music live video) is encoded as described in the above embodiments (that is, the image encoding of the present invention).
- Function as a device and transmit to the streaming server ex103.
- the streaming server ex103 streams the content data transmitted to the requested client.
- the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, a game machine ex115, and the like that can decode the encoded data.
- Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
- the encoded processing of the captured data may be performed by the camera ex113, the streaming server ex103 that performs the data transmission processing, or may be performed in a shared manner.
- the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in a shared manner.
- still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
- the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
- encoding / decoding processes are generally performed by the computer ex111 and the LSI ex500 included in each device.
- the LSI ex500 may be configured as a single chip or a plurality of chips.
- moving image encoding / decoding software is incorporated into some recording media (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding / decoding processing is performed using the software. May be.
- moving image data acquired by the camera may be transmitted.
- the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
- the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
- the encoded data can be received and reproduced by the client.
- the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and even a user who does not have special rights or facilities can realize personal broadcasting.
- the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
- the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
- This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
- the broadcasting satellite ex202 transmits a radio wave for broadcasting, and the home antenna ex204 capable of receiving the satellite broadcast receives the radio wave.
- the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
- a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system by the recording medium ex215 on which the multiplexed data is recorded.
- a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
- FIG. 42 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
- the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
- the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / separating unit ex303.
- the television ex300 decodes each of the audio data and the video data, or encodes the respective information.
- the audio signal processing unit ex304 and the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention).
- the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
- the television ex300 includes a control unit ex310 that controls each unit in an integrated manner, and a power supply circuit unit ex311 that supplies power to each unit.
- the interface unit ex317 includes a bridge ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording such as a hard disk.
- a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
- the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
- Each part of the television ex300 is connected to each other via a synchronous bus.
- the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in the above embodiments.
- the decoded audio signal and video signal are output from the output unit ex309 to the outside.
- these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization.
- the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or writes it to a recording medium will be described.
- the television ex300 receives a user operation from the remote controller ex220 or the like, and encodes an audio signal with the audio signal processing unit ex304 based on the control of the control unit ex310, and converts the video signal with the video signal processing unit ex305. Encoding is performed using the encoding method described in (1).
- the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320 and ex321 so that the audio signal and the video signal are synchronized.
- a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
- the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
- the television ex300 has been described as a configuration that can perform the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
- the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218.
- the reader / recorder ex218 may be shared with each other.
- FIG. 43 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to the optical disk.
- the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
- the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disc to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information.
- the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
- the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary. To play back information.
- the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
- the disk motor ex405 rotates the recording medium ex215.
- the servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
- the system control unit ex407 controls the entire information reproduction / recording unit ex400.
- the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, as well as the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
- the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
- the optical head ex401 has been described as irradiating a laser spot, but it may be configured to perform higher-density recording using near-field light.
- FIG. 44 shows a schematic diagram of a recording medium ex215 that is an optical disk.
- Guide grooves grooves
- address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
- This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
- the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
- the area used for recording the user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner circumference or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
- the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
- an optical disk such as a single-layer DVD or BD has been described as an example.
- the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
- an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
- the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
- the configuration of the car navigation ex211 may include a configuration including a GPS receiving unit in the configuration illustrated in FIG. 42, and the same may be applied to the computer ex111, the mobile phone ex114, and the like.
- FIG. 45A is a diagram showing the mobile phone ex114 using the video decoding method and the video encoding method described in the above embodiment.
- the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of taking video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
- the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio,
- a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio
- an audio input unit ex356 such as a microphone for inputting audio
- the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
- a slot portion ex364 is provided.
- the cellular phone ex114 has a power supply circuit ex361, an operation input control unit ex362, and a video signal processing unit ex355 for a main control unit ex360 that comprehensively controls each part of the main body including the display unit ex358 and the operation key unit ex366.
- a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
- the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
- the mobile phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. This is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
- the mobile phone ex114 amplifies the received data received through the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing in the modulation / demodulation unit ex352, and performs voice signal processing unit After converting to an analog audio signal at ex354, this is output from the audio output unit ex357.
- the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
- the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
- almost the reverse process is performed on the received data and output to the display unit ex358.
- the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as an image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
- the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and sends the encoded audio data to the multiplexing / demultiplexing unit ex353. To do.
- the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
- the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted through the antenna ex350.
- the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
- the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
- the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
- the audio signal processing unit ex354 decodes the audio signal, and the audio output unit ex357 outputs the audio.
- the terminal such as the mobile phone ex114 is referred to as a transmitting terminal having only an encoder and a receiving terminal having only a decoder.
- a transmitting terminal having only an encoder
- a receiving terminal having only a decoder.
- multiplexed data in which music data or the like is multiplexed with video data is received and transmitted.
- data in which character data or the like related to video is multiplexed is also described. It may be video data itself instead of multiplexed data.
- the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
- multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
- identification information indicating which standard the video data conforms to.
- FIG. 46 is a diagram showing a structure of multiplexed data.
- the multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
- the video stream indicates the main video and sub-video of the movie
- the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
- the presentation graphics stream indicates the subtitles of the movie.
- the main video indicates a normal video displayed on the screen
- the sub-video is a video displayed on a small screen in the main video.
- the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
- the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
- the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
- Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to the video stream used for the sub-picture, and 0x1A00 to 0x1A1F are assigned to the audio stream used for the sub-audio mixed with the main audio.
- FIG. 47 is a diagram schematically showing how multiplexed data is multiplexed.
- a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
- the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
- the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
- FIG. 48 shows in more detail how the video stream is stored in the PES packet sequence.
- the first row in FIG. 48 shows a video frame sequence of the video stream.
- the second level shows a PES packet sequence.
- a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
- Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
- PTS Presentation Time-Stamp
- DTS Decoding Time-Stamp
- FIG. 49 shows the format of TS packets that are finally written in the multiplexed data.
- the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
- the PES packet is divided and stored in the TS payload.
- a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
- TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
- ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
- Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 49, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
- TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
- PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
- the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
- the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
- the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
- FIG. 50 is a diagram for explaining the data structure of the PMT in detail.
- a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
- a plurality of descriptors related to multiplexed data are arranged.
- the copy control information and the like are described as descriptors.
- a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
- the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
- the multiplexed data is recorded together with the multiplexed data information file.
- the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
- the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time.
- the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
- the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
- the playback start time is the PTS of the first video frame of the multiplexed data
- the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
- attribute information for each stream included in the multiplexed data is registered for each PID.
- the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
- the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
- the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
- the stream type included in the PMT is used.
- video stream attribute information included in the multiplexed data information is used.
- the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
- FIG. 53 shows the steps of the moving picture decoding method according to the present embodiment.
- step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
- step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
- step exS102 each of the above embodiments.
- Decoding is performed by the moving picture decoding method shown in the form.
- the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
- FIG. 54 shows a configuration of an LSI ex500 that is made into one chip.
- the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
- the power supply circuit unit ex505 starts up to an operable state by supplying power to each unit when the power supply is in an on state.
- the LSI ex500 uses the AV I / O ex509 to perform the microphone ex117 and the camera ex113 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
- the AV signal is input from the above.
- the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
- the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
- the encoding process of the video signal is the encoding process described in the above embodiments.
- the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
- the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
- the memory ex511 has been described as an external configuration of the LSI ex500.
- a configuration included in the LSI ex500 may be used.
- the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
- the LSI ex500 may be made into one chip or a plurality of chips.
- control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
- the signal processing unit ex507 may further include a CPU.
- the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
- the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
- LSI LSI
- IC system LSI
- super LSI ultra LSI depending on the degree of integration
- the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- FIG. 55 shows a configuration ex800 in the present embodiment.
- the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
- the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
- the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
- the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
- the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
- the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
- the identification information described in the sixth embodiment may be used.
- the identification information is not limited to that described in Embodiment 6, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to this look-up table.
- FIG. 56 shows steps for executing the method of the present embodiment.
- the signal processing unit ex507 acquires identification information from the multiplexed data.
- the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
- the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
- step exS203 the CPU ex502 drives a signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
- the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency.
- the drive frequency is set to be low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
- the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
- the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
- the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
- the voltage applied to the LSI ex500 or the apparatus including the LSI ex500 is set high.
- the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc.
- the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, the driving of the CPU ex502 is stopped.
- the CPU ex502 is temporarily stopped because there is enough processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is enough processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
- a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
- the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
- the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
- a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
- the processing unit is partly shared.
- An example of this configuration is shown as ex900 in FIG. 58A.
- the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
- the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
- Configuration is conceivable.
- a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used.
- the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
- ex1000 in FIG. 58B shows another example in which processing is partially shared.
- a dedicated decoding processing unit ex1001 corresponding to processing content specific to the present invention
- a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
- a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
- the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
- the configuration of the present embodiment can be implemented by LSI ex500.
- the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
- the moving picture coding method and the moving picture decoding method according to the present invention can be applied to any multimedia data, and can improve error tolerance of moving picture coding and decoding. It is useful as a moving image encoding method and a moving image decoding method in storage, transmission, communication, etc. using a DVD device and a personal computer.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
動画像符号化方法は、少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップ(S111a)と、値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップ(S114b,S114c)と、第1の予測動きベクトル候補、第2の予測動きベクトル候補または第3の予測動きベクトル候補の中から、符号化対象ブロックの動きベクトルの符号化に用いる予測動きベクトルを決定する予測動きベクトル決定ステップ(S103)と、予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化ステップ(S104)とを含む。
Description
本発明は、動画像符号化方法および動画像復号化方法などに関する。
動画像符号化処理では、一般に、動画像が有する空間方向および時間方向の冗長性を利用して情報量の圧縮が行われる。ここで一般に、空間方向の冗長性を利用する方法としては、周波数領域への変換が用いられ、時間方向の冗長性を利用する方法としては、ピクチャ間予測(以降、インター予測と呼ぶ)符号化処理が用いられる。インター予測符号化処理では、あるピクチャを符号化する際に、符号化対象ピクチャに対して表示時間順で前方または後方にある符号化済みのピクチャを、参照ピクチャとして用いる。そして、その参照ピクチャに対する符号化対象ピクチャの動き検出により、動きベクトルを導出し、動きベクトルに基づいて動き補償を行って得られた予測画像データと符号化対象ピクチャの画像データとの差分を取ることにより、時間方向の冗長性を取り除く。ここで、動き検出では、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックを参照ブロックとする。そして、符号化対象ブロックと、参照ブロックとを用いて、動きベクトルを検出する。H.264と呼ばれる動画像符号化方式が既に標準化されている(非特許文献1参照)。
ITU-T Recommendation H.264「Advanced video coding for generic audiovisual services」、2010年3月
しかし、近年、高精細画像(4K×2K)による放送、コンテンツ配信が検討されており、既に標準化されている動画像符号化方式よりも、更に符号化効率を向上させる必要がある。
そこで、本発明は、符号化効率を向上させる動画像符号化方法および動画像復号化方法を提供する。
本発明の一態様に係る動画像符号化方法は、それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化方法であって、前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップと、値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップと、前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定ステップと、前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化ステップとを含む。
なお、この包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本発明の一態様の動画像符号化方法および動画像復号化方法によれば、符号化効率を向上させることが可能となる。
(本発明の基礎となった知見)
既に標準化されている、H.264と呼ばれる動画像符号化方式では、情報量の圧縮のために、Iピクチャ、Pピクチャ、Bピクチャという3種類のピクチャタイプを用いている。Iピクチャは、インター予測符号化処理を行わない、すなわち、ピクチャ内予測(以降、イントラ予測と呼ぶ)符号化処理を行うピクチャである。Pピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの1つのピクチャを参照してインター予測符号化を行うピクチャである。Bピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照してインター予測符号化を行うピクチャである。
既に標準化されている、H.264と呼ばれる動画像符号化方式では、情報量の圧縮のために、Iピクチャ、Pピクチャ、Bピクチャという3種類のピクチャタイプを用いている。Iピクチャは、インター予測符号化処理を行わない、すなわち、ピクチャ内予測(以降、イントラ予測と呼ぶ)符号化処理を行うピクチャである。Pピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの1つのピクチャを参照してインター予測符号化を行うピクチャである。Bピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照してインター予測符号化を行うピクチャである。
インター予測符号化においては、参照ピクチャを特定するための参照ピクチャリストを生成する。参照ピクチャリストは、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当てたリストである。例えば、Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照ピクチャリスト(L0、L1)を保持する。
図1は、Bピクチャにおける参照ピクチャリストの一例を説明するための図である。図1における参照ピクチャリスト0(L0)は、双方向予測における予測方向0の参照ピクチャリストの例であり、参照ピクチャインデックス0の値0に表示順2の参照ピクチャ0、参照ピクチャインデックス0の値1に表示順1の参照ピクチャ1、参照ピクチャインデックス0の値2に表示順0の参照ピクチャ2を割り当てている。つまり、符号化対象ピクチャに対して、表示順で時間的に近い順に参照ピクチャインデックスを割り当てている。一方、参照ピクチャリスト1(L1)は、双方向予測における予測方向1の参照ピクチャリストの例であり、参照ピクチャインデックス1の値0に表示順1の参照ピクチャ1、参照ピクチャインデックス1の値1に表示順2の参照ピクチャ0、参照ピクチャインデックス2の値2に表示順0の参照ピクチャ2を割り当てている。このように、各参照ピクチャに対して、予測方向毎に異なる参照ピクチャインデックスを割り当てることや(図1の参照ピクチャ0、1)、同じ参照ピクチャインデックスを割り当てることが可能である(図1の参照ピクチャ2)。
また、H.264と呼ばれる動画像符号化方式では、Bピクチャにおける各符号化対象ブロックのインター予測の符号化モードとして、予測画像データと符号化対象ブロックとの画像データの差分値と、予測画像データ生成に用いた動きベクトルとを符号化する動きベクトル検出モードがある。動きベクトル検出モードは、予測方向として、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照して予測画像を生成する双方向予測と、前方または後方にある既に符号化済みの1つのピクチャを参照して予測画像を生成する片方向予測を選択することができる。
また、H.264と呼ばれる動画像符号化方式では、Bピクチャの符号化において、動きベクトルを導出する際に、時間予測動きベクトルモードと呼ぶ符号化モードを選択することができる。
図2は、時間予測動きベクトルモードにおけるインター予測符号化方法を説明するための図である。図2は、時間予測動きベクトルモードにおける動きベクトルを示す説明図であり、ピクチャB2のブロックaを時間予測動きベクトルモードで符号化する場合を示している。この場合、ピクチャB2の後方にある参照ピクチャであるピクチャP3中の、ブロックaと同じ位置にあるブロックb(以下、co-locatedブロック)を符号化した際に用いた動きベクトルvbを利用する。動きベクトルvbは、ブロックbが符号化された際に用いられた動きベクトルであり、ピクチャP1を参照している。ブロックaは、動きベクトルvbと平行な動きベクトルを用いて、前方向参照ピクチャであるピクチャP1と、後方参照ピクチャであるピクチャP3とから参照ブロックを取得し、2方向予測を行って符号化される。すなわち、ブロックaを符号化する際に用いられる動きベクトルは、ピクチャP1に対しては動きベクトルva1、ピクチャP3に対しては動きベクトルva2となる。
また、BピクチャやPピクチャにおける各符号化対象ブロックの動きベクトルを符号化する方法として、予測動きベクトル指定モードが検討されている。予測動きベクトル指定モードでは、符号化対象ブロックの各隣接ブロックから予測動きベクトル候補を生成し、予測動きベクトルを選択して、符号化対象ブロックの動きベクトルの符号化を行う。この際に、選択した予測動きベクトルのインデックス等をビットストリームに付随させることによって、復号化時にも同一の予測動きベクトルを選択できる。
図3は、予測動きベクトル指定モードにおいて用いられる隣接ブロックの動きベクトルの一例を示す図である。図3において、符号化対象ブロックの左隣接の符号化済みブロックは隣接ブロックAであり、符号化対象ブロックの上隣接の符号化済みブロックは隣接ブロックBであり、符号化対象ブロックの右上隣接の符号化済みブロックは隣接ブロックCであり、符号化対象ブロックの左下隣接の符号化済みブロックは隣接ブロックDである。
また、図3において、符号化対象ブロックは、動き検出等の結果、予測方向0の参照ピクチャインデックスRefL0の示す参照ピクチャに対し、予測方向0の動きベクトルMvL0を持ち、予測方向1の参照ピクチャインデックスRefL1の参照ピクチャに対し、予測方向1の動きベクトルMvL1を持つ、双方向予測で符号化されたブロックである。ここで、MvL0とは、参照ピクチャリスト0(L0)により特定した参照ピクチャを参照する動きベクトルであり、MvL1とは、参照ピクチャリスト1(L1)により特定した参照ピクチャを参照する動きベクトルである。また、隣接ブロックAは予測方向0の片方向予測で符号化されたブロックであり、予測方向0の参照ピクチャインデックスRefL0_Aの示す参照ピクチャに対し、予測方向0の動きベクトルMvL0_Aを持つ。また、隣接ブロックBは予測方向1の片方向予測で符号化されたブロックであり、予測方向1の参照ピクチャインデックスRefL1_Bの示す参照ピクチャに対し、予測方向1の動きベクトルMvL1_Bを持つ。また、隣接ブロックCはイントラ予測で符号化されたブロックである。また、隣接ブロックDは予測方向0の片方向予測で符号化されたブロックであり、予測方向0の参照ピクチャインデックスRefL0_Dの示す参照ピクチャに対し、予測方向0の動きベクトルMvL0_Dを持つ。
図3のような場合では、符号化対象ブロックの予測動きベクトルとして、例えば、隣接ブロックA、B、C、Dの動きベクトル、および、co-locatedブロックを用いて求めた時間予測動きベクトルモードによる動きベクトルから生成した予測動きベクトル候補の中から、符号化対象ブロックの動きベクトルを最も効率よく符号化できる予測動きベクトルを選択する。そして、選択した予測動きベクトルを表す予測動きベクトルインデックスをビットストリームに付随させる。例えば、符号化対象ブロックの予測方向0の動きベクトルMvL0を符号化する際に、隣接ブロックAの予測方向0の動きベクトルMvL0_Aから生成した予測動きベクトル候補を、予測動きベクトルとして選択した場合、図4に示すように、隣接ブロックAから生成した予測動きベクトル候補を用いたことを表す予測動きベクトルインデックスの値0のみをビットストリームに付随させることで、符号化対象ブロックの予測方向0の動きベクトルMvL0の情報量を削減できる。
ここで、図4は、予測方向0の予測動きベクトル候補リストの一例を示す図である。また、図4に示すように、予測動きベクトル指定モードでは、予測動きベクトルの生成が不可能である候補(以下、予測不可能候補と記載する)や、他の予測動きベクトル候補と値が一致するような候補(以下、重複候補と記載する)を、予測動きベクトル候補リストから削除し、予測動きベクトル候補数を削減することで、予測動きベクトルインデックスに割り当てる符号量を削減する。
なお、予測動きベクトルの生成が不可能であるということは、隣接ブロックがイントラ予測である場合や、スライスやピクチャ境界外である場合や、まだ符号化されていない等を表している。図4の例では、隣接ブロックCがイントラ予測のため、予測動きベクトルインデックス3の予測候補は、予測不可能候補であり、予測動きベクトル候補リストから削除される。また、隣接ブロックDから生成した予測方向0の予測動きベクトルは、隣接ブロックAから生成した予測方向0の予測動きベクトルと値が一致しているため、予測動きベクトルインデックス4の予測候補は、予測動きベクトル候補リストから削除される。最終的に、予測方向0の予測動きベクトル候補数は3となり、予測方向0の予測動きベクトル候補リストのリストサイズは3に設定される。
また、図5は、予測方向1の予測動きベクトル候補リストの一例を示す図である。図5に示す例では、予測不可能候補および重複候補の削除によって、最終的に予測方向1の予測動きベクトル候補数は2となり、予測方向1の予測動きベクトル候補リストのリストサイズは2に設定される。
予測動きベクトルインデックスには、予測動きベクトル候補リストサイズの大きさに応じて、図6に示すように、ビット列が割り当てられる。これによって、その予測動きベクトルインデックスは可変長符号化される。また、予測動きベクトル候補リストサイズが1の場合は、予測動きベクトルインデックスをビットストリームに付随させず、復号化側で値0と推定させる。このように、予測動きベクトル指定モードでは、予測動きベクトルインデックスに割り当てるビット列を、予測動きベクトル候補リストサイズの大きさによって変化させることにより、符号量を削減している。
図7は、予測動きベクトル指定モードを用いる場合の符号化処理フローの一例を示すフローチャートである。ステップS1001では、隣接ブロックおよびco-locatedブロック(以下、予測ブロック候補と記載する)から、予測方向Xの予測動きベクトル候補を算出する。ここで、Xは0または1の値をとり、それぞれ予測方向0または予測方向1を表す。ここで、予測方向Xの予測動きベクトル候補sMvLXは、予測ブロック候補の動きベクトルMvLX_Nと参照ピクチャインデックスRefLX_N、および、符号化対象ブロックの参照ピクチャインデックスRefLXを用いて、以下の式で算出される。
(式1)
sMvLX=
MvLX_N×(POC(RefLX)-curPOC)/(POC(RefLX_N)-curPOC)
(式1)
sMvLX=
MvLX_N×(POC(RefLX)-curPOC)/(POC(RefLX_N)-curPOC)
ここで、POC(RefLX)は、参照ピクチャインデックスRefLXが示す参照ピクチャの表示順、POC(RefLX_N)は、参照ピクチャインデックスRefLX_Nが示す参照ピクチャの表示順、curPOCは、符号化対象ピクチャの表示順を示す。なお、予測ブロック候補が予測方向Xの動きベクトルMvLX_Nを持たない場合は、予測方向(1-X)の動きベクトルMvL(1-X)_Nと参照ピクチャインデックスRefL(1-X)_Nを用いて、式2により予測動きベクトルsMvLXを算出する。
(式2)
sMvLX=
MvL(1-X)_N×(POC(RefLX)-curPOC)/(POC(RefL(1-X)_N)-curPOC)
(式2)
sMvLX=
MvL(1-X)_N×(POC(RefLX)-curPOC)/(POC(RefL(1-X)_N)-curPOC)
図8A、図8Bに式1、式2による予測動きベクトルの算出例を示す。なお、式1、式2に示すように、POC(RefLX)とPOC(RefLX_N)の値が同じ場合、つまり、同一のピクチャを参照する場合は、スケーリングを省略できる。
ステップS1002では、予測方向Xの予測動きベクトル候補から重複候補および予測不可能候補を削除し、ステップS1003では、削除処理後の予測動きベクトル候補数を、予測動きベクトル候補リストサイズに設定する。ステップS1004では、符号化対象ブロックの予測方向0の動きベクトル符号化に用いる予測動きベクトルインデックスを決定し、ステップS1005において、決定した予測動きベクトルインデックスを、予測動きベクトル候補リストサイズによって決められたビット列を用いて可変長符号化を行う。
図9は、予測動きベクトル指定モードを用いる場合の復号化処理フローの一例を示すフローチャートである。
ステップS2001では、隣接ブロックおよびco-locatedブロック(予測ブロック候補)から、予測方向Xの予測動きベクトル候補を算出する。ステップS2002では、予測動きベクトル候補から重複候補および予測不可能候補を削除し、ステップS2003では、削除処理後の予測動きベクトル候補数を、予測動きベクトル候補リストサイズに設定する。ステップS2004では、ビットストリームから復号化対象ブロックの復号化に用いる予測動きベクトルインデックスを、予測動きベクトル候補リストサイズを用いて復号化し、ステップS2005において、復号した予測動きベクトルインデックの示す予測動きベクトル候補に、差分動きベクトルを加算して動きベクトルを算出し、算出した動きベクトルを用いて、予測画像を生成し、復号化処理を行う。
図10は、予測動きベクトルインデックスをビットストリームに付随させる際のシンタックスを表す図である。図10において、inter_pred_flagはインター予測の予測方向フラグ、mvp_idxは予測動きベクトルインデックスを表す。NumMVPCandは予測動きベクトル候補リストサイズを表し、予測動きベクトル候補から、予測不可能候補および重複候補を削除した後の予測動きベクトル候補数が設定されている。
しかしながら、従来の予測動きベクトル指定モードは、符号化対象ブロックの動きベクトルを符号化する際の予測動きベクトルを、符号化対象ブロックの隣接ブロック等から算出するため、例えば、隣接ブロックが動物体領域であり、符号化対象ブロックが静止領域の場合、予測動きベクトルが動物体領域の影響を受けるため、比較的値の小さい符号化対象ブロックの動きベクトルを効率的に符号化するための予測動きベクトルが予測動きベクトル候補に存在せず、符号化効率が低下する場合がある。
また、従来の予測動きベクトル指定モードでは、ブロックが当該ブロックに時間的に一致するピクチャを参照して符号化されることが考慮されていない。例えば、MVC(Multiview Video Coding:多視点映像符号化)に係る画像符号化装置は、ベースビューのピクチャを参照して、ノンベースビューのピクチャを符号化する場合がある。この時、参照関係を有する2つのピクチャ(ベースビューのピクチャ、および、ノンベースビューのピクチャ)は、時間的に一致する。この際に、ベースビューのピクチャを参照した動きベクトルを符号化するための予測動きベクトルが、隣接ブロック等から算出した予測動きベクトル候補には存在しない場合があり、符号化効率が低下する場合がある。
そこで、本発明の一態様は、予測動きベクトル候補リストに、静止領域用の予測動きベクトルを追加することによって、符号化効率を向上する画像符号化方法を提供する。また、異なるビューに属するピクチャを参照する場合には、そのビューに対応した視差ベクトルを予測動きベクトル候補に追加することによって、符号化効率を向上する画像符号化方法を提供する。
つまり、本発明の一態様に係る動画像符号化方法は、それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化方法であって、前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップと、値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップと、前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定ステップと、前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化ステップとを含む。
これにより、第1の予測動きベクトル候補だけでなく、値0の動きベクトルを持つ第2の予測動きベクトル候補、または視差ベクトルを持つ第3の予測動きベクトル候補も含む候補の中から、予測動きベクトルが決定されるため、符号化効率を向上することができる。
また、前記第2の予測動きベクトル算出ステップでは、前記符号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記符号化対象ピクチャとが互いに異なるビューに属する場合には、前記第3の予測動きベクトル候補を算出してもよい。
これにより、視差ベクトルを持つ第3の予測動きベクトル候補を予測動きベクトルとして決定することができるため、符号化効率を向上することができる。
また、前記第2の予測動きベクトル算出ステップでは、前記第1の予測動きベクトル算出ステップで算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出してもよい。
これにより、不要な場合にまで第2の予測動きベクトル候補または第3の予測動きベクトル候補を算出してしまうことを防ぐことができ、処理負担を抑えることができる。
また、前記動画像符号化方法は、さらに、前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップを含み、前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出し、前記更新ステップは、隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記符号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ符号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップと、前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップと、前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップと、前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップとを含んでもよい。
これにより、所定の値を適切に設定して、処理負担を抑えることができる。
また、本発明の一態様に係る動画像復号化方法は、それぞれ復号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記復号化対象ブロックの動きベクトルを復号化するための予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化方法であって、前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップと、値0の動きベクトルを持つ第2の予測動きベクトル候補または、復号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップと、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を特定するためのインデックスをビットストリームから取得する取得ステップと、前記インデックスによって特定される、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を用いて、前記復号化対象ブロックを復号する復号ステップとを含む。
これにより、第1の予測動きベクトル候補だけでなく、値0の動きベクトルを持つ第2の予測動きベクトル候補、または視差ベクトルを持つ第3の予測動きベクトル候補も含む候補の中から、予測動きベクトルが決定されるため、符号化効率の向上を図ったビットストリームを適切に復号することができる。
また、前記第2の予測動きベクトル算出ステップでは、前記復号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記復号化対象ピクチャとが互いに異なるビューに属する場合には、前記第3の予測動きベクトル候補を算出してもよい。
これにより、視差ベクトルを持つ第3の予測動きベクトル候補を予測動きベクトルとして用いて復号化対象ブロックを復号することができるため、符号化効率の向上を図ったビットストリームを適切に復号することができる。
また、前記第2の予測動きベクトル算出ステップでは、前記第1の予測動きベクトル算出ステップで算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出してもよい。
これにより、不要な場合にまで第2の予測動きベクトル候補または第3の予測動きベクトル候補を算出してしまうことを防ぐことができ、処理負担を抑えることができる。
また、前記動画像復号化方法は、さらに、前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップを含み、前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出し、前記更新ステップは、隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記復号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ復号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップと、前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップと、前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップと、前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップとを含んでもよい。
これにより、所定の値を適切に設定して、処理負担を抑えることができる。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
図11は、実施の形態1に係る動画像符号化方法を用いた動画像符号化装置の構成の一例を示すブロック図である。
図11は、実施の形態1に係る動画像符号化方法を用いた動画像符号化装置の構成の一例を示すブロック図である。
動画像符号化装置100は、図11に示すように、減算部101、直交変換部102、量子化部103、逆量子化部104、逆直交変換部105、加算部106、ブロックメモリ107、フレームメモリ108、イントラ予測部109、インター予測部110、インター予測制御部111、視差ベクトル算出部117、ピクチャタイプ決定部112、スイッチ113、予測動きベクトル候補算出部114、colPicメモリ115、および可変長符号化部116を備えている。
減算部101は、ブロックごとに、入力画像列に含まれる入力画像データから予測画像データを減算することにより予測誤差データを生成する。直交変換部102は、生成された予測誤差データに対し、画像領域から周波数領域への変換を行う。量子化部103は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。
逆量子化部104は、量子化部103によって量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部105は、逆量子化処理された予測誤差データに対し、周波数領域から画像領域への変換を行う。
加算部106は、符号化対象ブロックごとに、予測画像データと、逆直交変換部105によって逆量子化処理された予測誤差データとを加算することにより、再構成画像データを生成する。ブロックメモリ107には、再構成画像データがブロック単位で保存される。フレームメモリ108には、再構成画像データがフレーム単位で保存される。
ピクチャタイプ決定部112は、Iピクチャ、Bピクチャ、Pピクチャのいずれのピクチャタイプで入力画像データを符号化するかを決定し、ピクチャタイプ情報を生成する。イントラ予測部109は、ブロックメモリ107に保存されているブロック単位の再構成画像データを用いてイントラ予測を行うことにより、符号化対象ブロックのイントラ予測画像データを生成する。インター予測部110は、フレームメモリ108に保存されているフレーム単位の再構成画像データと、動き検出等により導出した動きベクトルとを用いてインター予測を行うことにより、符号化対象ブロックのインター予測画像データを生成する。
スイッチ113は、符号化対象ブロックがイントラ予測符号化される場合に、イントラ予測部109によって生成されたイントラ予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。一方、スイッチ113は、符号化対象ブロックがインター予測符号化される場合に、インター予測部110によって生成されたインター予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。
予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ115に格納されているco-locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補を導出し、後述する方法で、予測動きベクトル候補数を算出する。また、予測動きベクトル候補算出部114は、導出した予測動きベクトル候補に対して、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部114は、予測動きベクトル候補と、予測動きベクトルインデックスとを、インター予測制御部111に送る。また、予測動きベクトル候補算出部114は、算出した予測動きベクトル候補数を可変長符号化部116に送信する。
インター予測制御部111は、動き検出により導出された動きベクトルを用いて生成したインター予測画像を用いて、インター予測符号化を行うようインター予測部110を制御する。また、インター予測制御部111は、インター予測符号化に用いた動きベクトルの符号化に最適な予測動きベクトル候補を後述する方法で選択する。そして、インター予測制御部111は、選択した予測動きベクトル候補に対応する予測動きベクトルインデックスと、予測の誤差情報(差分動きベクトル)とを、可変長符号化部116に送る。さらに、インター予測制御部111は、符号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ115に転送する。
視差ベクトル算出部117は、インター予測符号化に用いた動きベクトルを用いて、後述する方法で、各ビューに対する視差ベクトルを算出する。
可変長符号化部116は、量子化処理された予測誤差データ、予測方向フラグ、ピクチャタイプ情報および差分動きベクトルに対し、可変長符号化処理を行うことで、ビットストリームを生成する。また、可変長符号化部116は、予測動きベクトル候補数を予測動きベクトル候補リストサイズに設定し、動きベクトル符号化に用いた予測動きベクトルインデックスに、予測動きベクトル候補リストサイズに応じたビット列を割り当てて可変長符号化を行う。
なお、本実施の形態では、予測動きベクトル候補算出部114が第1の予測動きベクトル算出部として構成され、予測動きベクトル候補算出部114と視差ベクトル算出部117からなる構成要素群が第2の予測動きベクトル算出部として構成されている。さらに、インター予測制御部111が予測動きベクトル決定部として構成され、可変長符号化部116がインデックス符号化部として構成されている。
図12は、実施の形態1に係る動画像符号化装置100の処理動作を示すフローチャートである。
ステップS101では、インター予測制御部111は、動き検出により、符号化対象ブロックの予測方向、参照ピクチャインデックスおよび、動きベクトルを決定する。ここで動き検出では、例えば、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックが参照ブロックとして決定される。そして、符号化対象ブロック位置と、参照ブロック位置とから、動きベクトルを求める方法などを用いて、動きベクトルが求められる。また、インター予測制御部111は、予測方向0と予測方向1との参照ピクチャに対し、それぞれ動き検出を行い、予測方向0、または、予測方向1、または、双方向予測を選択するかどうかを、例えば、R-D最適化モデルの以下の式等で算出する。
(式3) Cost=D+λ×R
(式3) Cost=D+λ×R
式3において、Dは符号化歪を表し、ある動きベクトルで生成した予測画像を用いて符号化対象ブロックを符号化および復号化して得られた画素値と、符号化対象ブロックの元の画素値との差分絶対値和などを用いる。また、Rは発生符号量を表し、予測画像生成に用いた動きベクトルを符号化することに必要な符号量などを用いる。またλはラグランジュの未定乗数である。
ステップS102では、予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックおよびco-locatedブロックから予測動きベクトル候補を生成し、また、後述する方法で、予測動きベクトル候補リストサイズを算出する。例えば、図3のような場合では、予測動きベクトル候補算出部114は、符号化対象ブロックの予測動きベクトル候補として、例えば、隣接ブロックA、B、CおよびDの持つ動きベクトルを選択する。さらに、予測動きベクトル候補算出部114は、co-locatedブロックの動きベクトルから時間予測モードによって算出した動きベクトル等を予測動きベクトル候補として算出する。
予測動きベクトル候補算出部114は、図13の(a)および図14の(a)のように予測方向0および予測方向1の予測動きベクトル候補に対して予測動きベクトルインデックスを割り当てる。そして、予測動きベクトル候補算出部114は、後述する方法で、予測不可能候補および重複候補の削除、およびzero候補、または、視差ベクトル候補の追加を行うことにより、図13の(b)および図14の(b)のような予測動きベクトル候補リストおよび、予測動きベクトル候補リストサイズを算出する。なお、zero候補とは、値0の動きベクトルである。
予測動きベクトルインデックスの値が小さいほど、その予測動きベクトルインデックスに対して短い符号が割り振られる。即ち、予測動きベクトルインデックスの値が小さい場合に、予測動きベクトルインデックスに必要な情報量が少なくなる。一方、予測動きベクトルインデックスの値が大きくなると、予測動きベクトルインデックスに必要な情報量が大きくなる。従って、より精度の高い予測動きベクトルとなる可能性の高い予測動きベクトル候補に対して、値の小さい予測動きベクトルインデックスが割り当てられると、符号化効率が高くなる。
そこで、予測動きベクトル候補算出部114は、例えば、予測動きベクトルとして選ばれた回数を予測動きベクトル候補毎に計測し、その回数が多い予測動きベクトル候補に対し、値の小さい予測動きベクトルインデックスを割り当ててもよい。具体的には、隣接ブロックにおいて選択された予測動きベクトルを特定しておき、対象ブロックの符号化の際に、特定した予測動きベクトル候補に対する予測動きベクトルインデックスの値を小さくすることが考えられる。
なお、隣接ブロックが、動きベクトル等の情報を保持しない場合(イントラ予測で符号化されたブロックである場合や、ピクチャやスライスの境界外などに位置する場合、まだ符号化されていないブロックである場合など)には、予測動きベクトル候補として利用できない。
本実施の形態では、予測動きベクトル候補として利用できないことを予測不可能候補と呼ぶ。また、予測動きベクトル候補として利用できることを予測可能候補と呼ぶ。また、複数の予測動きベクトル候補において、他のいずれかの予測動きベクトル候補と値が一致している予測動きベクトル候補を重複候補と呼ぶ。
図3の場合では、隣接ブロックCは、イントラ予測で符号化されたブロックであるため、予測不可能候補とする。また、隣接ブロックDから生成される予測方向0の予測動きベクトルsMvL0_Dは、隣接ブロックAから生成される予測方向0の予測動きベクトルMvL0_Aと値が一致しており、重複候補とする。
ステップS103では、インター予測制御部111は、予測方向Xの動きベクトル符号化に用いる予測動きベクトルインデックスの値を、後述する方法で決定する。ステップS104では、可変長符号化部116は、予測方向Xの動きベクトル符号化に用いる予測動きベクトル候補の予測動きベクトルインデックスに、図6に示すような予測動きベクトル候補リストサイズに応じたビット列を割り当て、可変長符号化を行う。S105では、視差ベクトル算出部117は、インター予測符号化に用いた動きベクトルを用いて、後述する方法で、各ビューに対する視差ベクトルを更新する。
なお、本実施の形態では、図13の(a)および図14の(a)のように、隣接ブロックAに対応する予測動きベクトルインデックスの値として「0」が割り当てられ、隣接ブロックBに対応する予測動きベクトルインデックスの値として「1」が割り当てられ、co-locatedブロックに対応する予測動きベクトルインデックスの値として「2」が割り当てられ、隣接ブロックCに対応する予測動きベクトルインデックスの値として「3」が割り当てられ、隣接ブロックDに対応する予測動きベクトルインデックスの値として「4」が割り当てられるが、必ずしも、予測動きベクトルインデックスの割り当て方は、この例に限らない。例えば、可変長符号化部116は、後述する方法を用いてzero候補、または、視差ベクトル候補が追加された場合などには、元々の予測動きベクトル候補には小さい値を割り当て、zero候補、または、視差ベクトル候補には大きい値を割り当てるように、元々の予測動きベクトル候補に優先して小さな値の予測動きベクトルインデックスを割り当てても構わない。
また、必ずしも、予測動きベクトル候補は、隣接ブロックA、B、C、Dの位置に限定されない。例えば、左下隣接ブロックDの上に位置する隣接ブロック等を予測動きベクトル候補として用いても構わない。また、必ずしもすべての隣接ブロックを使用することに限定されず、例えば、隣接ブロックA、Bのみを予測動きベクトル候補として用いてもよいし、または、隣接ブロックDが予測不可能候補ならば、隣接ブロックAを用いるなど、隣接ブロックを順にスキャンするようにしても構わない。
また、本実施の形態では、図12のステップS104において、可変長符号化部116は、予測動きベクトルインデックスをビットストリームに付加したが、予測動きベクトル候補リストサイズが1の場合は、予測動きベクトルインデックスを付加しなくても構わない。これにより、予測動きベクトルインデックスの情報量を削減できる。
図15は、図12のステップS102の詳細な処理を示すフローチャートである。具体的には、図15は、予測動きベクトル候補、および、予測動きベクトル候補リストサイズを算出する方法を表す。以下、図15について説明する。
ステップS111aでは、予測動きベクトル候補算出部114は、予測ブロック候補[N]が予測可能候補かどうかを後述する方法で判定する。ここで、Nは各予測ブロック候補を表すためのインデックス値であり、本実施の形態では0から4までの値をとる。具体的には、予測ブロック候補[0]には図3の隣接ブロックA、予測ブロック候補[1]には図3の隣接ブロックB、予測ブロック候補[2]にはco-locatedブロック、予測ブロック候補[3]には図3の隣接ブロックC、予測ブロック候補[4]には図3の隣接ブロックDが割り振られる。
ステップS112では、予測動きベクトル候補算出部114は、予測ブロック候補[N]から、予測方向Xの予測動きベクトル候補を、上記の式1、式2を用いて算出して、予測動きベクトル候補リストに追加する。ステップS113では、予測動きベクトル候補算出部114は、図13の(a)および(b)と、図14の(a)および(b)とに示すように、予測動きベクトル候補リストから予測不可能候補および重複候補を探索し、削除する。ステップS114aでは、予測動きベクトル候補算出部114は、図12のステップS101で算出した動きベクトルの参照する参照ピクチャと、符号化対象ピクチャとが同一ビュー内に属するかどうかを判定する。ここで、真ならば(ステップS114aでYes)、ステップS144bにおいて、予測動きベクトル候補算出部114は、後述する方法で、予測動きベクトル候補リストにzero候補を追加する。一方、偽ならば(ステップS114aでNo)、ステップS114cにおいて、予測動きベクトル候補算出部114は、後述する方法で、予測動きベクトル候補リストに、参照ピクチャの属するビューに対する視差ベクトル候補を追加する。ここで、ステップS114bおよびステップS114cにおいて、zero候補、または、視差ベクトル候補を追加する際には、予測動きベクトル候補算出部114は、例えば、元々ある予測動きベクトル候補に小さい予測動きベクトルインデックスが割りあたるように再割当を行い、zero候補、または、視差ベクトル候補には値の大きい予測動きベクトルインデックスを割り当てる。このように、予測動きベクトル候補算出部114は、元々ある予測動きベクトル候補を優先するようにしても構わない。これにより予測動きベクトルインデックスの符号量を削減できる。
ステップS115では、予測動きベクトル候補算出部114は、ステップS114bまたはステップS114cで算出したzero候補、または、視差ベクトル候補を追加した後の予測動きベクトル候補数を予測動きベクトル候補リストサイズに設定する。図13の(a)および(b)と、図14の(a)および(b)との例では、後述する方法により、予測方向0の予測動きベクトル候補数は「4」となり、予測方向0の予測動きベクトル候補リストサイズは「4」に設定される。また、予測方向1の予測動きベクトル候補数は「3」となり、予測方向1の予測動きベクトル候補リストサイズは「3」に設定される。
このように、予測動きベクトル候補数が、最大予測動きベクトル候補数に達していない場合には、参照ピクチャと符号化対象ピクチャが同一ビュー内に属するかどうかに応じて、zero候補、または、視差ベクトル候補を追加することによって、符号化効率を向上できる。
図16は、本実施の形態に係る参照関係の一例を示す図である。図16には、ベースビューとノンベースビュー1とノンベースビュー2の3つのビューが示されている。3つのビューは、それぞれ、複数のピクチャで構成される。例えば、3つのビューは、視点の異なる3つの映像である。本実施の形態に係る動画像符号化装置100は、多視点映像を符号化するMVCの機能を有していてもよい。
MVCの機能を有する動画像符号化装置100は、例えば、ノンベースビュー2を符号化する際に、ベースビューやノンベースビュー1のピクチャのように、異なる視点に属するピクチャを参照して、ノンベースビュー2のピクチャを符号化することができる。図16では、各ピクチャはP0、P1、・・・P8の順に符号化される。例えば、ノンベースビュー2に属するピクチャP5を符号化する際には、参照ピクチャとして、P5と同一ビューに属するP2だけではなく、ベースビューに属するP3、および、ノンベースビュー1に属するP4を参照することが可能である。ピクチャP5を符号化した際に、例えばベースビューに対する視差ベクトルを算出する方法として、ピクチャP5内の各符号化対象ブロックが、ベースビューを参照した場合の動きベクトルの加算平均を求めるなどが考えられる。同様に、ノンベースビュー1に対する視差ベクトルを算出する方法として、ピクチャP5内の各符号化対象ブロックが、ノンベースビュー1を参照した場合の動きベクトルの加算平均を求めるなどが考えられる。このように算出した各ビューに対する視差ベクトルを、ピクチャP5と同一ビューに属する次のピクチャP8の符号化時に、予測動きベクトル候補リストに追加する。視差ベクトル算出部117は、上述のような方法によって各ビューに対する視差ベクトルを算出し、予測動きベクトル候補算出部114は、その算出された視差ベクトルを予測動きベクトル候補リストに追加する。
具体的には、ピクチャP8の符号化対象ブロックを符号化する際に、動き検出によって得られた動きベクトルが、同一ビューに属するP5を参照する場合には、予測動きベクトル候補算出部114は、予測動きベクトル候補リストにzero候補を追加する。一方、動き検出によって得られた動きベクトルが、異なるビューを参照する場合には、予測動きベクトル候補算出部114は、予測動きベクトル候補リストに、対応するビューの視差ベクトル候補を追加する。例えば、符号化対象ブロックの動きベクトルがピクチャP7を参照する場合には、予測動きベクトル候補算出部114は、ノンベースビュー1に対する視差ベクトルを予測動きベクトル候補リストに追加する。
このように、符号化対象ピクチャの参照ピクチャが同一ビュー内に属する場合には、予測動きベクトル候補算出部114は、予測動きベクトル候補としてzero候補を追加し、符号化対象ピクチャの参照ピクチャが異なるビューに属する場合には、予測動きベクトル候補算出部114は、視差ベクトル算出部117によって算出された、そのビューに対応する視差ベクトル候補を、予測動きベクトル候補リストに追加する。これによって、符号化効率を向上できる。例えば、動きの少ない風景等を多視点カメラ等で撮影したような映像の場合に、同一カメラで撮影したピクチャを参照して符号化する場合は、動きが少ないため、動きベクトルが(0、0)になりやすく、予測動きベクトル候補リストにzero候補を追加することで符号化効率を向上できる。また、異なるカメラで撮影した映像を参照して符号化する場合は、撮影位置の違いによって発生する視差を考慮するために、視差ベクトルを予測動きベクトル候補リストに追加することによって、符号化効率を向上することができる。
図17は、図15のステップS111aの詳細な処理を示すフローチャートである。具体的には、図17は、予測ブロック候補[N]が予測可能候補であるかどうかを判定する方法を表す。以下、図17について説明する。ステップS121では、予測動きベクトル候補算出部114は、予測ブロック候補[N]がイントラ予測で符号化されたブロック、または、スライスまたはピクチャ境界外に位置するブロック、または、まだ符号化されていないブロックであるかどうかを判定する。ここで、その判定の結果が真ならば(S121のYes)、ステップS122において、予測動きベクトル候補算出部114は予測ブロック候補[N]を予測不可能候補に設定する。一方、ステップS121の判定結果が偽ならば(S121のNo)、ステップS123において、予測動きベクトル候補算出部114は、予測ブロック候補[N]を予測可能候補に設定する。
図18は、図15のステップS114bの詳細な処理を示すフローチャートである。以下、図18について説明する。
ステップS131aでは、予測動きベクトル候補算出部114は、予測動きベクトル候補数が最大予測動きベクトル候補数に達していないかどうかを判定する。その判定結果が真ならば(S131aのYes)、ステップS132aにおいて、予測動きベクトル候補算出部114は、値0の動きベクトルを持つzero候補が重複候補でないかどうかを判定する。そして、ステップS131aおよびS132aにおける判定結果が真ならば(S132aのYes)、ステップS133aにおいて、予測動きベクトル候補算出部114は、zero候補に予測動きベクトルインデックスを割り当てる。さらに、予測動きベクトル候補算出部114は、zero候補および予測動きベクトルインデックスを予測動きベクトル候補リストに追加し、ステップS134において、予測動きベクトル候補数に1を加算する。
一方、ステップS131aにおいて、予測動きベクトル候補数が最大予測動きベクトル候補数に達していると判定された場合(S131aのNo)、または、ステップS132aにおいて、zero候補が重複候補となると判定された場合(S132aのNo)は、予測動きベクトル候補算出部114は、zero候補追加処理を終了する。なお、本実施の形態では、ステップS132aにおいて、値0の動きベクトルを持つzero候補が重複候補でないかどうかを判定し、zero候補が重複候補であれば、zero候補を予測動きベクトル候補リストに追加しないとしたが、必ずしもこれに限らない。例えば、ステップS132aの処理を省略し、ステップS131aでの判定結果が真ならば、常にzero候補を予測動きベクトル候補リストに追加するようにしても構わない。これにより、重複候補確認のための処理量を削減できる。
図19は、図15のステップS114cの詳細な処理を示すフローチャートである。以下、図19について説明する。
ステップS131bでは、予測動きベクトル候補算出部114は、予測動きベクトル候補数が最大予測動きベクトル候補数に達していないかどうかを判定する。その判定結果が真ならば(S131bのYes)、ステップS132bにおいて、予測動きベクトル候補算出部114は、参照ピクチャの属するビューに対する視差ベクトル候補が重複候補でないかどうかを判定する。そして、ステップS131bおよびS132bにおける判定結果が真ならば(S132bのYes)、ステップS133bにおいて、予測動きベクトル候補算出部114は、視差ベクトル候補に予測動きベクトルインデックスを割り当てる。さらに、予測動きベクトル候補算出部114は、視差ベクトル候補および予測動きベクトルインデックスを予測動きベクトル候補リストに追加し、ステップS134において、予測動きベクトル候補数に1を加算する。
一方、ステップS131bにおいて、予測動きベクトル候補数が最大予測動きベクトル候補数に達していると判定された場合(ステップS131bのNo)、または、ステップ132bにおいて、視差ベクトル候補が重複候補となると判定された場合(ステップS132bのNo)は、予測動きベクトル候補算出部114は、視差ベクトル候補追加処理を終了する。なお、本実施の形態では、ステップS132bにおいて、参照ピクチャの属するビューに対する視差ベクトル候補が重複候補でないかどうかを判定し、視差ベクトル候補が重複候補であれば、視差ベクトル候補を予測動きベクトル候補リストに追加しないとしたが、必ずしもこれに限らない。例えば、ステップS132bの処理を省略し、ステップS131bでの判定結果が真ならば、常に視差ベクトル候補を予測動きベクトル候補リストに追加するようにしても構わない。これにより、重複候補確認のための処理量を削減できる。
図20は、図12のステップS103の詳細な処理を示すフローチャートである。以下、図20について説明する。
ステップS141では、インター予測制御部111は、初期化として、予測動きベクトル候補インデックスmvp_idxに0を設定し、最小差分動きベクトルに値の最大値等を設定する。ステップS142では、インター予測制御部111は、予測動きベクトル候補インデックスmvp_idxの値が予測動きベクトル候補数よりも小さいか否かを判定する。すなわち、インター予測制御部111は、すべての予測動きベクトル候補の差分動きベクトルを算出したかどうかを判定する。
ここで、まだ予測動きベクトル候補が残っていれば(S142のYes)、ステップS143において、インター予測制御部111は、動き検出で求められた動きベクトル(動き検出結果ベクトル)から予測動きベクトル候補を差し引くことによって、差分動きベクトルを算出する。ステップS144では、インター予測制御部111は、ステップS143で求めた差分動きベクトルが最小差分動きベクトルより値が小さいかどうかを判定する。
ここで、ステップS144の判定結果が真であれば(S144のYes)、ステップS145において、インター予測制御部111は、最小差分動きベクトルおよび予測動きベクトルインデックスの値を更新する。一方、ステップS144の判定結果が偽ならば(S144のNo)、インター予測制御部111は、最小差分動きベクトルおよび予測動きベクトルインデックスの値を更新しない。
ステップS146では、インター予測制御部111は、予測動きベクトル候補インデックスを+1で更新し、ステップS142に戻って次の予測動きベクトル候補が存在するかどうかを判定する。
一方、ステップS142において、すべての予測動きベクトル候補に対し、差分動きベクトルを算出したと判断すれば(S142のNo)、ステップS147において、インター予測制御部111は、最終的に設定されている最小差分動きベクトルおよび予測動きベクトルインデックスを確定する。
図21は、図12のステップS105の詳細な処理を示すフローチャートである。以下、図21について説明する。
ステップS151では、視差ベクトル算出部117は、図12のステップS101で算出した動きベクトルの参照する参照ピクチャが符号化対象ピクチャ(符号化対象ブロック)と異なるビューに属するかどうかを判定する。その判定結果が真ならば(S151のYes)、ステップS152において、視差ベクトル算出部117は、動きベクトルの参照するピクチャの属するビューの視差ベクトルを更新する。例えば、対応するビューの視差ベクトルに、図12のステップS101で算出した動きベクトルを加算平均することが考えられる。一方、ステップS151の判定結果が偽ならば(S151のNo)、視差ベクトル算出部117は、視差ベクトルの更新を行わない。
図22および図23は、図16に示すような構造のピクチャを符号化する際の、各ビューに対する視差ベクトルの一例を示す図である。ノンベースビュー2を符号化する際には、ベースビュー、および、ノンベースビュー1を参照するため、図22に示すように、各ビューに対するノンベースビュー2の視差ベクトルを、視差ベクトル算出部117が管理して記憶している。ノンベースビュー1を符号化する際には、ベースビューを参照するため、図23に示すように、ベースビューに対応するノンベースビュー1の視差ベクトルを、視差ベクトル算出部117が管理して記憶している。
なお、本実施の形態では、(1)動き検出によって算出した動きベクトルを用いて、各ビューに対する視差ベクトルを算出する例を示したが、必ずしもこれに限らず、例えば、(2)多視点カメラの撮影位置等を含むカメラパラメータが既知である場合には、その撮影位置から視差ベクトルを算出するようにしても構わないし、また、(3)各ピクチャのデプス情報が既知であれば、デプス情報から視差ベクトルを算出するようにしても構わない。また、(1)、(2)および(3)の組合せによって、視差ベクトルを算出するようにしても構わない。これにより、より高精度な視差ベクトルを算出することができ、符号化効率を向上することができる。
このように、本実施の形態に係る動画像符号化装置100によれば、予測動きベクトル候補リストに、静止領域用の予測動きベクトルを追加することによって、符号化効率を向上することが可能になる。また、異なるビューに属するピクチャを参照する場合には、そのビューに対応した視差ベクトルを予測動きベクトル候補リストに追加することによって、符号化効率を向上することが可能になる。より具体的には、予測動きベクトル候補数が、最大予測動きベクトル候補数に達していない場合には、参照ピクチャと符号化対象ピクチャが同一ビュー内に属するかどうかに応じて、値0の動きベクトルを持つzero候補、または、各ビューに対する視差ベクトル候補を追加することによって、符号化効率を向上できる。
なお、本実施の形態では、同一ビュー参照時に、静止領域用の動きベクトルとして、値0の動きベクトルを持つzero候補を予測動きベクトル候補に追加する例を示したが、必ずしもこれには限らない。例えば、ビデオ撮影時の微小なカメラぶれ等を考慮するために、動きベクトル(0、1)など、値0の動きベクトル(0、0)よりもやや大きい、または、やや小さい値を予測動きベクトル候補に追加するようにしても構わない。また、シーケンス、ピクチャ、または、スライスのヘッダ等に、オフセットパラメータ(OffsetX、OffsetY)等を付加し、動きベクトル(OffsetX、OffsetY)を予測動きベクトル候補に追加するようにしても構わない。
なお、本実施の形態では、符号化対象ブロックの隣接ブロックから予測動きベクトル候補を生成し、符号化対象ブロックの動きベクトルの符号化を行う予測動きベクトル指定モードを用いた例を示したが、必ずしもこれに限らない。例えば、図13の(b)および図14の(b)のように作成した予測動きベクトル候補から予測動きベクトルを選択し、選択した予測動きベクトルを動きベクトルとして直接予測画像を生成することで、差分動きベクトルをビットストリームに付加しないようにしても構わない(ダイレクトモード、スキップモード、マージモードなど)。
なお、本実施の形態では、視差ベクトル算出部117が算出した各ビューに対する視差ベクトルを、ヘッダに付加しないようにしたが、必ずしもこれに限らない。例えば、SPS(シーケンスパラメータセット)、PPS(ピクチャパラメータセット)、または、スライスヘッダ等のヘッダ情報に視差ベクトルを付加するようにしても構わない。これにより、動画像復号化装置は、視差ベクトル算出部117を備える必要がなく、ヘッダに付加された、各ビューに対する視差ベクトルを復号することによって、視差ベクトルを得ることが可能になり、動画像復号化装置の処理を削減することができる。例えば、図16に示すような構造のピクチャを符号化する場合に、ピクチャP8のスライスヘッダ等に、ピクチャP5の符号化後に得られた、図22のようなノンベースビュー2の各ビューに対する視差ベクトルを付加して、ピクチャP8を符号化することが考えられる。
なお、本実施の形態では、図21のステップS151において、動きベクトルの参照するピクチャが同一ビューに属する場合は、その動きベクトルを用いて視差ベクトルを算出しないようにしたが、必ずしもこれに限らない。例えば、参照ピクチャが同一ビューに属する場合でも、加算平均等によって、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を算出しておき、図15のステップS114bにおいて、zero候補の代わりに、同一ビューに属する各参照ピクチャの動きベクトルの平均値を追加するようにしても構わない。これにより、一定の方向にパン、チルトするような映像を符号化するような場合に、同一ビューを参照する場合の符号化効率を向上することが可能となる。
また、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を、例えば、SPS(シーケンスパラメータセット)、PPS(ピクチャパラメータセット)、または、スライスヘッダ等のヘッダ情報に付加するようにしても構わない。これにより、動画像復号化装置は、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を算出する必要がなく、ヘッダに付加された、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を復号することによって、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を得ることが可能になり、動画像復号化装置の処理を削減することができる。
このように、本実施の形態における動画像符号化方法は、それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化方法である。そして、この動画像符号化方法は、前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップ(S111a)と、値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップ(S114b,S114c)と、前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定ステップ(S103)と、前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化ステップ(S104)と、を含む。
また、前記第2の予測動きベクトル算出ステップ(S114b,S114c)では、前記符号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記符号化対象ピクチャとが互いに異なるビューに属する場合(S114aのNo)には、前記第3の予測動きベクトル候補を算出する。
また、前記第2の予測動きベクトル算出ステップ(S114b,S114c)では、前記第1の予測動きベクトル算出ステップ(S111a)で算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出する。
なお、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、本実施の形態の画像符号化装置などを実現するソフトウェアは、上述の動画像符号化方法に含まれる各処理をコンピュータに実行させるプログラムである。
(実施の形態2)
図24は、実施の形態2に係る動画像復号化方法を用いた動画像復号化装置の構成の一例を示すブロック図である。
図24は、実施の形態2に係る動画像復号化方法を用いた動画像復号化装置の構成の一例を示すブロック図である。
動画像復号化装置300は、図24に示すように、可変長復号化部301、逆量子化部302、逆直交変換部303、加算部304、ブロックメモリ305、フレームメモリ306、イントラ予測部307、インター予測部308、インター予測制御部309、スイッチ310、視差ベクトル算出部313、予測動きベクトル候補算出部311、およびcolPicメモリ312を備えている。
可変長復号化部301は、入力されたビットストリームに対し、可変長復号化処理を行い、ピクチャタイプ情報、予測方向フラグ、量子化係数、および差分動きベクトルを生成する。また、可変長復号化部301は、予測動きベクトル候補算出部311から取得した予測動きベクトル候補数を用いて、予測動きベクトルインデックスの可変長復号化処理を行う。
逆量子化部302は、可変長復号化処理によって得られた量子化係数に対し、逆量子化処理を行う。逆直交変換部303は、逆量子化処理によって得られた直交変換係数を、周波数領域から画像領域へ変換することにより、予測誤差データを生成する。ブロックメモリ305には、予測誤差データと、予測画像データとが加算されて生成された復号化画像データが、ブロック単位で保存される。フレームメモリ306には、復号化画像データがフレーム単位で保存される。
イントラ予測部307は、ブロックメモリ305に保存されているブロック単位の復号化画像データを用いてイントラ予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測部308は、フレームメモリ306に保存されているフレーム単位の復号化画像データを用いてインター予測することにより、復号化対象ブロックの予測画像データを生成する。
スイッチ310は、復号対象ブロックがイントラ予測復号される場合に、イントラ予測部307によって生成されたイントラ予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。一方、スイッチ310は、復号対象ブロックがインター予測復号される場合に、インター予測部308によって生成されたインター予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。
予測動きベクトル候補算出部311は、復号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ312に格納されているco-locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補および予測動きベクトル候補数を後述する方法で導出する。また、予測動きベクトル候補算出部311は、導出した各予測動きベクトル候補に対し、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部311は、予測動きベクトル候補と予測動きベクトルインデックスとを、インター予測制御部309に送る。また、予測動きベクトル候補算出部311は、予測動きベクトル候補数を可変長復号化部301に送る。
インター予測制御部309は、予測動きベクトル候補から、復号化された予測動きベクトルインデックスに基づいて、インター予測に用いる予測動きベクトルを選択する。そして、インター予測制御部309は、予測動きベクトルおよび差分動きベクトルから復号化対象ブロックの動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。また、インター予測制御部309は、復号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ312に転送する。
視差ベクトル算出部313は、インター予測に用いた動きベクトルを用いて、後述する方法で各ビューに対する視差ベクトルを算出する。
最後に、加算部304は、予測画像データと予測誤差データとを加算することにより、復号画像データを生成する。
なお、本実施の形態では、予測動きベクトル候補算出部311が第1の予測動きベクトル算出部として構成され、予測動きベクトル候補算出部311および視差ベクトル算出部313からなる構成要素群が第2の予測動きベクトル算出部として構成されている。さらに、可変長復号化部301が取得部として構成され、少なくともインター予測部308を含む構成要素群が復号部として構成されている。
図25は、実施の形態2に係る動画像復号化装置300の処理動作を示すフローチャートである。
ステップS301では、可変長復号化部301は、予測方向フラグおよび参照ピクチャインデックスを復号する。そして、復号された予測方向フラグに応じて予測方向Xの値が決定され、以下のステップS302aからステップS306の処理が行われる。ステップS302aでは、予測動きベクトル候補算出部311は、図12のステップS102と同様の方法で、復号化対象ブロックの隣接ブロックおよびco-locatedブロックから予測動きベクトル候補を決定する。また、予測動きベクトル候補算出部311は、zero候補または視差ベクトル候補を追加して、予測動きベクトル候補リストサイズを算出する。
ステップS303では、可変長復号化部301は、算出された予測動きベクトル候補リストサイズを用いて、ビットストリーム中の予測動きベクトルインデックスを可変長復号化する。ステップS305では、インター予測制御部309は、復号された予測動きベクトルインデックスの示す予測動きベクトル候補に、復号された差分動きベクトルを加算し、動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。なお、ステップS302aで算出された予測動きベクトル候補リストサイズが「1」の場合は、予測動きベクトルインデックスは復号されずに、0と推定されても構わない。ステップS306では、視差ベクトル算出部313は、インター予測に用いた動きベクトルを用いて、図12のステップS105と同様の方法で、各ビューに対する視差ベクトルを更新する。
このように、本実施の形態に係る動画像復号化装置300によれば、予測動きベクトル候補リストに、静止領域用の予測動きベクトルを追加することによって、符号化効率を向上したビットストリームを適切に復号することが可能になる。また、異なるビューに属するピクチャを参照する場合には、そのビューに対応した視差ベクトルを予測動きベクトル候補リストに追加することによって、符号化効率を向上したビットストリームを適切に復号することが可能になる。より具体的には、予測動きベクトル候補数が、最大予測動きベクトル候補数に達していない場合には、参照ピクチャと符号化対象ピクチャが同一ビュー内に属するかどうかに応じて、値0の動きベクトルを持つzero候補、または、各ビューに対する視差ベクトル候補を追加することによって、符号化効率を向上したビットストリームを適切に復号することが可能になる。
なお、本実施の形態では、視差ベクトル算出部313が各ビューに対する視差ベクトルを算出する例を示したが、必ずしもこれに限らない。例えば、SPS(シーケンスパラメータセット)、PPS(ピクチャパラメータセット)、または、スライスヘッダ等のヘッダ情報に付加された視差ベクトルを復号して、各ビューに対する視差ベクトルを得るようにしても構わない。これにより、動画像復号化装置300は、視差ベクトル算出部313を備える必要がなく、ヘッダに付加された各ビューに対する視差ベクトルを復号することによって、視差ベクトルを得ることが可能になり、動画像復号化装置300の処理を削減することができる。例えば、図16に示すような構造のピクチャを復号化する場合に、ピクチャP8のスライスヘッダ等に付加された、図22のようなノンベースビュー2の各ビューに対する視差ベクトルを復号して、ピクチャP8を復号化することが考えられる。
図26は、スライスヘッダに視差ベクトルを付加する場合のシンタックスの一例を示す図である。なお、視差ベクトルは、水平成分、垂直成分ともに付加するようにしても構わないし、水平成分のみを付加し、垂直成分は0とみなすようにしても構わない。
なお、本実施の形態では、図21のステップS151において、動きベクトルの参照するピクチャが同一ビューに属する場合は、その動きベクトルを用いて視差ベクトルを算出しないようにしたが、必ずしもこれに限らない。例えば、参照ピクチャが同一ビューに属する場合でも、加算平均等によって、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を算出しておき、図15のステップS114bにおいて、zero候補の代わりに、同一ビューに属する各参照ピクチャの動きベクトルの平均値を追加するようにしても構わない。これにより、一定の方向にパン、チルトするような映像を符号化するような場合に、同一ビューを参照する場合の符号化効率を向上したビットストリームを適切に復号化することが可能となる。
また、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値をビットストリームから得るようにしても構わない。例えば、SPS(シーケンスパラメータセット)、PPS(ピクチャパラメータセット)、または、スライスヘッダ等のヘッダ情報に付加された、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を復号することによって、その平均値を得る。これにより、動画像復号化装置300は、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を算出する必要がなく、ヘッダに付加された、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を復号することによって、同一ビューに属する各参照ピクチャに対する動きベクトルの平均値を得ることが可能になり、動画像復号化装置300の処理を削減することができる。
このように、本実施の形態における動画像復号化方法は、それぞれ復号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記復号化対象ブロックの動きベクトルを復号化するための予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化方法である。そして、この動画像復号化方法は、前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップ(S111a)と、値0の動きベクトルを持つ第2の予測動きベクトル候補または、復号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップ(S114b,S114c)と、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を特定するためのインデックスをビットストリームから取得する取得ステップ(S103)と、前記インデックスによって特定される、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を用いて、前記復号化対象ブロックを復号する復号ステップ(S305)と、を含む。
また、前記第2の予測動きベクトル算出ステップ(S114b,S114c)では、前記復号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記復号化対象ピクチャとが互いに異なるビューに属する場合(S114aのNo)には、前記第3の予測動きベクトル候補を算出する。
また、前記第2の予測動きベクトル算出ステップ(S114b,S114c)では、前記第1の予測動きベクトル算出ステップ(S111a)で算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出する。
なお、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、本実施の形態の画像復号化装置などを実現するソフトウェアは、上述の動画像復号化方法に含まれる各処理をコンピュータに実行させるプログラムである。
(実施の形態3)
本実施の形態では、実施の形態1で用いている予測動きベクトル候補リストサイズの導出方法について詳細に説明する。
本実施の形態では、実施の形態1で用いている予測動きベクトル候補リストサイズの導出方法について詳細に説明する。
従来の予測動きベクトル指定モードは、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co-locatedブロック等を含む参照ピクチャ情報を用いて予測不可能候補や重複候補を削除し、削除後の予測動きベクトル候補数を予測動きベクトル候補リストサイズに設定する。このため、動画像符号化装置と動画像復号化装置とで予測動きベクトル候補数に不一致が発生した場合等に、予測動きベクトルインデックスに割り当てるビット列に動画像符号化装置と動画像復号化装置で不一致が生じ、ビットストリームを正しく復号化できないという課題がある。
例えば、伝送路等で発生したパケットロス等により、co-locatedブロックとして参照していた参照ピクチャの情報をロスした場合、co-locatedブロックの動きベクトルや参照ピクチャインデックスが不明となるため、co-locatedブロックから生成する予測動きベクトル候補の情報が不明となる。すると、復号化時に予測動きベクトル候補から予測不可能候補や重複候補を正しく削除することができなくなり、予測動きベクトル候補リストサイズを正しく求めることができず、予測動きベクトルインデックスを正常に復号化できなくなる。
これに対し、本実施の形態で説明する予測動きベクトル候補リストサイズの導出方法は、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co-locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出するため、エラー耐性を向上することが可能である。
図27は、実施の形態3に係る動画像符号化装置100aの構成を示すブロック図である。
動画像符号化装置100は、図27に示すように、減算部101、直交変換部102、量子化部103、逆量子化部104、逆直交変換部105、加算部106、ブロックメモリ107、フレームメモリ108、イントラ予測部109、インター予測部110、インター予測制御部111、ピクチャタイプ決定部112、スイッチ113、予測動きベクトル候補算出部114、colPicメモリ115、および可変長符号化部116を備えている。
減算部101は、ブロックごとに、入力画像列に含まれる入力画像データから予測画像データを減算することにより予測誤差データを生成する。直交変換部102は、生成された予測誤差データに対し、画像領域から周波数領域への変換を行う。量子化部103は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。
逆量子化部104は、量子化部103によって量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部105は、逆量子化処理された予測誤差データに対し、周波数領域から画像領域への変換を行う。
加算部106は、符号化対象ブロックごとに、予測画像データと、逆直交変換部105によって逆量子化処理された予測誤差データとを加算することにより、再構成画像データを生成する。ブロックメモリ107には、再構成画像データがブロック単位で保存される。フレームメモリ108には、再構成画像データがフレーム単位で保存される。
ピクチャタイプ決定部112は、Iピクチャ、Bピクチャ、およびPピクチャのいずれのピクチャタイプで入力画像データを符号化するかを決定し、ピクチャタイプ情報を生成する。イントラ予測部109は、ブロックメモリ107に保存されているブロック単位の再構成画像データを用いてイントラ予測を行うことにより、符号化対象ブロックのイントラ予測画像データを生成する。インター予測部110は、フレームメモリ108に保存されているフレーム単位の再構成画像データと、動き検出等により導出した動きベクトルとを用いてインター予測を行うことにより、符号化対象ブロックのインター予測画像データを生成する。
スイッチ113は、符号化対象ブロックがイントラ予測符号化される場合に、イントラ予測部109によって生成されたイントラ予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。一方、スイッチ113は、符号化対象ブロックがインター予測符号化される場合に、インター予測部110によって生成されたインター予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。
予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ115に格納されているco-locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補を導出する。そして、予測動きベクトル候補算出部114は、後述する方法で、予測可能候補数を算出する。また、予測動きベクトル候補算出部114は、導出した予測動きベクトル候補に対して、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部114は、予測動きベクトル候補と、予測動きベクトルインデックスとを、インター予測制御部111に送る。また、予測動きベクトル候補算出部114は、算出した予測可能候補数を可変長符号化部116に送信する。
インター予測制御部111は、動き検出により導出された動きベクトルを用いて生成したインター予測画像を用いて、インター予測符号化を行うようインター予測部110を制御する。また、インター予測制御部111は、インター予測符号化に用いた動きベクトルの符号化に最適な予測動きベクトル候補を後述する方法で選択する。そして、インター予測制御部111は、選択した予測動きベクトル候補に対応する予測動きベクトルインデックスと、予測の誤差情報(差分動きベクトル)とを、可変長符号化部116に送る。さらに、インター予測制御部111は、符号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ115に転送する。
可変長符号化部116は、量子化処理された予測誤差データ、予測方向フラグ、ピクチャタイプ情報、および差分動きベクトルに対し、可変長符号化処理を行うことで、ビットストリームを生成する。また、可変長符号化部116は、予測可能候補数を予測動きベクトル候補リストサイズに設定する。そして、可変長符号化部116は、動きベクトル符号化に用いた予測動きベクトルインデックスに、予測動きベクトル候補リストサイズに応じたビット列を割り当てて可変長符号化を行う。
図28は、実施の形態3に係る動画像符号化装置100aの処理動作を示すフローチャートである。
ステップS101では、インター予測制御部111は、動き検出により、符号化対象ブロックの予測方向、参照ピクチャインデックスおよび、動きベクトルを決定する。ここで、動き検出では、例えば、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックが参照ブロックとして決定される。そして、符号化対象ブロック位置と、参照ブロック位置とから、動きベクトルを求める方法などを用いて、動きベクトルが求められる。また、インター予測制御部111は、予測方向0と予測方向1との参照ピクチャに対し、それぞれ動き検出を行い、予測方向0、または、予測方向1、または、双方向予測を選択するかどうかを、例えば、R-D最適化モデルの上記(式3)等で算出する。
ステップS102では、予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックおよびco-locatedブロックから予測動きベクトル候補を導出する。また、予測動きベクトル候補算出部114は、後述する方法で、予測動きベクトル候補リストサイズを算出する。例えば、図3のような場合では、予測動きベクトル候補算出部114は、符号化対象ブロックの予測動きベクトル候補として、例えば、隣接ブロックA、B、C、およびDの持つ動きベクトルを選択する。さらに、予測動きベクトル候補算出部114は、co-locatedブロックの動きベクトルから時間予測モードによって算出した動きベクトル等を予測動きベクトル候補として算出する。
予測動きベクトル候補算出部114は、図29の(a)および図30の(a)のように予測方向0および予測方向1の予測動きベクトル候補に対して予測動きベクトルインデックスを割り当てる。そして、予測動きベクトル候補算出部114は、後述する方法で、予測不可能候補および重複候補の削除、および新規候補追加を行うことにより、図29の(b)および図30の(b)のような予測動きベクトル候補リストおよび、予測動きベクトル候補リストサイズを算出する。
予測動きベクトルインデックスは、値が小さいほど短い符号が割り振られる。即ち、予測動きベクトルインデックスの値が小さい場合に予測動きベクトルインデックスに必要な情報量が少なくなる。一方、予測動きベクトルインデックスの値が大きくなると、予測動きベクトルインデックスに必要な情報量が大きくなる。従って、より精度が高い予測動きベクトルとなる可能性の高い予測動きベクトル候補に対して、値の小さい予測動きベクトルインデックスが割り当てられると、符号化効率が高くなる。
そこで、予測動きベクトル候補算出部114は、例えば、予測動きベクトルとして選ばれた回数を予測動きベクトル候補毎に計測し、その回数が多い予測動きベクトル候補に対し、値の小さい予測動きベクトルインデックスを割り当ててもよい。具体的には、隣接ブロックにおいて選択された予測動きベクトルを特定しておき、対象ブロックの符号化の際に、特定した予測動きベクトル候補に対する予測動きベクトルインデックスの値を小さくすることが考えられる。
なお、隣接ブロックが、動きベクトル等の情報を有しない場合(イントラ予測で符号化されたブロックである場合、ピクチャやスライスの境界外などに位置するブロックである場合、まだ符号化されていないブロックである場合など)には、予測動きベクトル候補として利用できない。
本実施の形態では、予測動きベクトル候補として利用できないことを予測不可能候補と呼ぶ。また、予測動きベクトル候補として利用できることを予測可能候補と呼ぶ。また、複数の予測動きベクトル候補において、他のいずれかの予測動きベクトルと値が一致している候補を重複候補と呼ぶ。
図3の場合では、隣接ブロックCは、イントラ予測で符号化されたブロックであるため、予測不可能候補とする。また、隣接ブロックDから生成される予測方向0の予測動きベクトルsMvL0_Dは、隣接ブロックAから生成される予測方向0の予測動きベクトルMvL0_Aと値が一致しており、重複候補とする。
ステップS103では、インター予測制御部111は、予測方向Xの動きベクトル符号化に用いる予測動きベクトルインデックスの値を、後述する方法で決定する。ステップS104では、可変長符号化部116は、予測方向Xの動きベクトル符号化に用いる予測動きベクトル候補の予測動きベクトルインデックスに図6に示すような予測動きベクトル候補リストサイズに応じたビット列を割り当て、可変長符号化を行う。
本実施の形態では、図29の(a)および図30の(a)のように、隣接ブロックAに対する予測動きベクトルインデックスの値として「0」が割り当てられる。また、隣接ブロックBに対応する予測動きベクトルインデックスの値として「1」が割り当てられる。また、co-locatedブロックに対応する予測動きベクトルインデックスの値として「2」が割り当てられる。また、隣接ブロックCに対応する予測動きベクトルインデックスの値として「3」が割り当てられる。また、隣接ブロックDに対応する予測動きベクトルインデックスの値として「4」が割り当てられる。
なお、必ずしも、予測動きベクトルインデックスの値の割り当て方は、この例に限らない。例えば、可変長符号化部116は、実施の形態1に記載する方法、または、後述する方法を用いて新規候補が追加された場合などには、元々の予測動きベクトル候補には小さい値を割り当て、新規候補には大きい値を割り当ててもよい。つまり、可変長符号化部116は、元々の予測動きベクトル候補に対して優先して小さな値の予測動きベクトルインデックスを割り当てても構わない。
また、必ずしも、予測動きベクトル候補は、隣接ブロックA、B、C、Dの位置に限定されない。例えば、左下隣接ブロックDの上に位置する隣接ブロック等が予測動きベクトル候補として用いられても構わない。また、必ずしもすべての隣接ブロックが予測動きベクトル候補として使用される必要はない。例えば、隣接ブロックA、Bのみが予測動きベクトル候補として用いられても良い。または、隣接ブロックDが予測不可能候補ならば、隣接ブロックAを用いるなど、隣接ブロックを順にスキャンするようにしても構わない。
また、本実施の形態では、図28のステップS104において、可変長符号化部116は、予測動きベクトルインデックスをビットストリームに付加したが、必ずしも予測動きベクトルインデックスをビットストリームに付加する必要はない。例えば、可変長符号化部116は、予測動きベクトル候補リストサイズが1の場合は、予測動きベクトルインデックスをビットストリームに付加しなくても構わない。これにより、予測動きベクトルインデックスの情報量を削減できる。
図31は、図28のステップS102の詳細な処理を示すフローチャートである。具体的には、図31は、予測動きベクトル候補、および、予測動きベクトル候補リストサイズを算出する方法を表す。以下、図31について説明する。
ステップS111では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が予測可能候補であるかどうかを後述する方法で判定する。そして、予測動きベクトル候補算出部114は、判定結果に従って、予測可能候補数を更新する。ここで、Nは各予測ブロック候補を表すためのインデックス値である。本実施の形態では、Nは0から4までの値をとる。具体的には、予測ブロック候補[0]には、図3の隣接ブロックAが割り振られる。また、予測ブロック候補[1]には図3の隣接ブロックBが割り振られる。また、予測ブロック候補[2]にはco-locatedブロックが割り振られる。また、予測ブロック候補[3]には図3の隣接ブロックCが割り振られる。また、予測ブロック候補[4]には図3の隣接ブロックDが割り振られる。
ステップS112では、予測動きベクトル候補算出部114は、予測ブロック候補[N]から、予測方向Xの予測動きベクトル候補を、上記の式1、式2を用いて算出して、予測動きベクトル候補リストに追加する。ステップS113では、予測動きベクトル候補算出部114は、図29および図30に示すように、予測動きベクトル候補リストから予測不可能候補および重複候補を探索し、削除する。
ステップS114では、予測動きベクトル候補算出部114は、実施の形態1に記載する方法、または、後述する方法で、予測動きベクトル候補リストに新規候補を追加する。ここで、新規候補を追加する際には、予測動きベクトル候補算出部114は、元々ある予測動きベクトル候補に優先して小さい予測動きベクトルインデックスが割り当たるように、予測動きベクトルインデックスの値の再割り当てを行ってもよい。つまり、予測動きベクトル候補算出部114は、新規候補には値が大きい予測動きベクトルインデックスが割り当てられるように、予測動きベクトルインデックスの値の再割り当てを行っても構わない。これにより予測動きベクトルインデックスの符号量を削減できる。
ステップS115では、予測動きベクトル候補算出部114は、ステップS111で算出された予測可能候補数を予測動きベクトル候補リストサイズに設定する。図29および図30の例では、後述する方法により、予測方向0の予測可能候補数は「4」と算出され、予測方向0の予測動きベクトル候補リストサイズには「4」が設定される。また、予測方向1の予測可能候補数は「4」と算出され、予測方向1の予測動きベクトル候補リストサイズには「4」が設定される。
なお、ステップS114における新規候補とは、実施の形態1に記載する方法、または、後述する方法で、予測動きベクトル候補数が予測可能候補数に達していない場合に、予測動きベクトル候補に新たに追加される候補である。例えば、新規候補は、図3における左下隣接ブロックDの上に位置する隣接ブロックから生成される予測動きベクトルであってもよい。また、新規候補は、例えば、co-locatedブロックの隣接ブロックA、B、C、Dに対応するブロックから生成される予測動きベクトルであってもよい。また、新規候補は、例えば、参照ピクチャの画面全体または一定の領域の動きベクトルの統計等から算出した予測動きベクトルであってもよい。このように、予測動きベクトル候補数が、予測可能候補数に達していない場合には、予測動きベクトル候補算出部114は、新たな予測動きベクトルを新規候補として追加することによって、符号化効率を向上できる。
図32は、図31のステップS111の詳細な処理を示すフローチャートである。具体的には、図32は、予測ブロック候補[N]が予測可能候補であるかどうかを判定し、予測可能候補数を更新する方法を表す。以下、図32について説明する。
ステップS121では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が、(1)イントラ予測で符号化されたブロック、または、(2)符号化対象ブロックを含むスライスまたはピクチャ境界外に位置するブロック、または、(3)まだ符号化されていないブロックであるかどうかを判定する。ここで、ステップS121の判定結果が真ならば(S121のYes)、ステップS122において、予測動きベクトル候補算出部114は、予測ブロック候補[N]を予測不可能候補に設定する。一方、ステップS121の判定結果が偽ならば(S121のNo)、ステップS123において、予測動きベクトル候補算出部114は、予測ブロック候補[N]を予測可能候補に設定する。
ステップS124では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が予測可能候補、または、co-locatedブロック候補であるかどうかを判定する。ここで、ステップS124の判定結果が真ならば(S124のYes)、ステップS125において、予測動きベクトル候補算出部114は、予測可能候補数に1を加算して、予測動きベクトル候補数を更新する。一方、ステップS124の判定結果が偽ならば(S124のNo)、予測動きベクトル候補算出部114は、予測可能候補数を更新しない。
このように、予測ブロック候補がco-locatedブロックの場合は、予測動きベクトル候補算出部114は、co-locatedブロックが予測可能候補か予測不可能候補かどうかに関らず、予測可能候補数に1を加算する。これにより、パケットロス等でco-locatedブロックの情報がロスされた場合でも、動画像符号化装置と動画像復号化装置とで予測可能候補数に不一致が発生しない。この予測可能候補数は、図31のステップS115において、予測動きベクトル候補リストサイズに設定される。さらに、図28のステップS104において、予測動きベクトル候補リストサイズは、予測動きベクトルインデックスの可変長符号化に用いられる。これによって、co-locatedブロック等を含む参照ピクチャ情報をロスした場合でも、動画像符号化装置100aは、予測動きベクトルインデックスを正常に復号化できるビットストリームを生成することが可能になる。
図33は、図31のステップS114の詳細な処理を示すフローチャートである。具体的には、図33は、新規候補を追加する方法を表す。以下、図33について説明する。
ステップS131では、予測動きベクトル候補算出部114は、予測動きベクトル候補数が予測可能候補数より小さいか否かを判定する。つまり、予測動きベクトル候補算出部114は、予測動きベクトル候補数が予測可能候補数に達していないかどうかを判定する。ここで、ステップS131の判定結果が真ならば(S131のYes)、ステップS132において、予測動きベクトル候補算出部114は、予測動きベクトル候補として予測動きベクトル候補リストに追加可能な新規候補が存在するかどうかを判定する。ここで、ステップS132の判定結果が真ならば(S132のYes)、ステップS133において、予測動きベクトル候補算出部114は、新規候補に予測動きベクトルインデックスの値を割り当て、予測動きベクトル候補リストに新規候補を追加する。さらに、ステップS134において、予測動きベクトル候補算出部114は、予測動きベクトル候補数に1を加算する。一方、ステップS131またはステップS132の判定結果が偽ならば(S131またはS132のNo)、新規候補追加処理を終了する。つまり、予測動きベクトル候補数が予測可能候補数に達している場合、または、新規候補が存在しない場合は、新規候補追加処理を終了する。
なお、図28のステップS103は、図20に示す処理と同一である。
このように、本実施の形態に係る動画像符号化装置100aによれば、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co-locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出することができる。これによって、動画像符号化装置100aはエラー耐性を向上することが可能になる。より具体的には、本実施の形態に係る動画像符号化装置100aは、co-locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco-locatedブロックであれば常に予測可能候補数に1を加算する。そして、動画像符号化装置100aは、このようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定する。これにより、動画像符号化装置100aは、co-locatedブロックを含む参照ピクチャ情報をロスした場合でも、予測動きベクトルインデックスを正常に復号化できるビットストリームを生成することが可能になる。また、本実施の形態に係る動画像符号化装置100aは、予測動きベクトル候補数が、予測可能候補数に達していない場合には、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加することによって、符号化効率を向上できる。
なお、本実施の形態では、動画像符号化装置100aは、co-locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco-locatedブロックであれば常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定したが、これに限られるものではない。例えば、動画像符号化装置100aは、図32のステップS124において、co-locatedブロック以外の予測ブロック候補に対しても、必ず常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定してもよい。すなわち、動画像符号化装置100aは、予測動きベクトル候補数の最大値Nに固定された予測動きベクトル候補リストサイズを用いて、予測動きベクトルインデックスにビット列を割り当てても構わない。つまり、動画像符号化装置100aは、全ての予測ブロック候補を予測可能候補とみなし、予測動きベクトル候補リストサイズを、予測動きベクトル候補数の最大値Nに固定して、予測動きベクトルインデックスを符号化しても構わない。
例えば、本実施の形態では、予測動きベクトル候補数の最大値Nは5であるため(隣接ブロックA、隣接ブロックB、co-locatedブロック、隣接ブロックC、隣接ブロックD)、動画像符号化装置100aは、常に予測動きベクトル候補リストサイズに5を設定して、予測動きベクトルインデックスを符号化するようにしても構わない。また、例えば、予測動きベクトル候補数の最大値Nが4(隣接ブロックA、隣接ブロックB、隣接ブロックC、隣接ブロックD)の場合には、動画像符号化装置100aは、常に予測動きベクトル候補リストサイズに4を設定して、予測動きベクトルインデックスを符号化しても構わない。
このように、動画像符号化装置100aは、予測動きベクトル候補数の最大値に応じて、予測動きベクトル候補リストサイズを決定しても構わない。これにより、動画像復号化装置の可変長復号化部が、ビットストリーム中の予測動きベクトルインデックスを、隣接ブロックまたはco-locatedブロックの情報を参照せずに復号化することができるビットストリームを生成することが可能となり、可変長復号化部の処理量を削減することができる。
また、予測動きベクトル候補数の最大値Nを、SPS(Sequence Parameter Set)、PPS(Picture Parameter Set)、または、スライスヘッダ等に埋め込むようにしても構わない。これにより、符号化対象ピクチャに応じて、予測動きベクトル候補数の最大値Nを切り替えることができ、処理量および符号化効率を向上できる。例えば、co-locatedブロックを参照しないようなピクチャ(Iピクチャを参照するBピクチャやPピクチャ)の場合には、予測動きベクトル候補数の最大値を4(隣接ブロックA、隣接ブロックB、隣接ブロックC、隣接ブロックD)に設定する。一方、co-locatedブロックを参照するようなピクチャの場合には、予測動きベクトル候補数の最大値を5(隣接ブロックA、隣接ブロックB、co-locatedブロック、隣接ブロックC、隣接ブロックD)に設定する。そして、その最大値をSPS(Sequence Parameter Set)、PPS(Picture Parameter Set)、または、スライスヘッダ等に埋め込むことなどが考えられる。
なお、本実施の形態では、符号化対象ブロックの隣接ブロックから予測動きベクトル候補を生成し、符号化対象ブロックの動きベクトルの符号化を行う予測動きベクトル指定モードを用いた例を示したが、必ずしもこれに限らない。例えば、図29の(b)および図30の(b)のように作成した予測動きベクトル候補から予測動きベクトルを選択し、選択した予測動きベクトルを動きベクトルとして直接予測画像を生成することで、差分動きベクトルをビットストリームに付加しないようにしても構わない(ダイレクトモード、スキップモードなど)。
このように本実施の形態における動画像符号化方法は、前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップ(S111)を含み、前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出する。ここで、前記更新ステップは、隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記符号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ符号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップ(S121)と、前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップ(S122,S123)と、前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップ(S124)と、前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップ(S125)とを含む。
(実施の形態4)
本実施の形態では、実施の形態2で用いている予測動きベクトル候補リストサイズの導出方法について詳細に説明する。
本実施の形態では、実施の形態2で用いている予測動きベクトル候補リストサイズの導出方法について詳細に説明する。
図34は、実施の形態4に係る動画像復号化装置300aの構成を示すブロック図である。
動画像復号化装置300aは、図34に示すように、可変長復号化部301、逆量子化部302、逆直交変換部303、加算部304、ブロックメモリ305、フレームメモリ306、イントラ予測部307、インター予測部308、インター予測制御部309、スイッチ310、予測動きベクトル候補算出部311、およびcolPicメモリ312を備えている。
可変長復号化部301は、入力されたビットストリームに対し、可変長復号化処理を行い、ピクチャタイプ情報、予測方向フラグ、量子化係数、および差分動きベクトルを生成する。また、可変長復号化部301は、後述する予測可能候補数を用いて、予測動きベクトルインデックスの可変長復号化処理を行う。
逆量子化部302は、可変長復号化処理によって得られた量子化係数に対し、逆量子化処理を行う。逆直交変換部303は、逆量子化処理によって得られた直交変換係数を、周波数領域から画像領域へ変換することにより、予測誤差データを生成する。ブロックメモリ305には、予測誤差データと、予測画像データとが加算されて生成された復号化画像データが、ブロック単位で保存される。フレームメモリ306には、復号化画像データが、フレーム単位で保存される。
イントラ予測部307は、ブロックメモリ305に保存されているブロック単位の復号化画像データを用いてイントラ予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測部308は、フレームメモリ306に保存されているフレーム単位の復号化画像データを用いてインター予測することにより、復号化対象ブロックの予測画像データを生成する。
スイッチ310は、復号対象ブロックがイントラ予測復号される場合に、イントラ予測部307によって生成されたイントラ予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。一方、スイッチ310は、復号対象ブロックがインター予測復号される場合に、インター予測部308によって生成されたインター予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。
予測動きベクトル候補算出部311は、復号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ312に格納されているco-locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補を後述する方法で導出する。また、予測動きベクトル候補算出部311は、導出した各予測動きベクトル候補に対し、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部311は、予測動きベクトル候補と、予測動きベクトルインデックスとを、インター予測制御部309に送る。
インター予測制御部309は、予測動きベクトル候補から、復号化された予測動きベクトルインデックスに基づいて、インター予測に用いる予測動きベクトルを選択する。そして、インター予測制御部309は、予測動きベクトルおよび差分動きベクトルから復号化対象ブロックの動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。また、インター予測制御部309は、復号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ312に転送する。
最後に、加算部304は、予測画像データと予測誤差データとを加算することにより、復号画像データを生成する。
図35は、実施の形態4に係る動画像復号化装置300aの処理動作を示すフローチャートである。
ステップS301では、可変長復号化部301は、予測方向フラグおよび参照ピクチャインデックスを復号する。そして、復号された予測方向フラグに応じて予測方向Xの値が決定され、以下のステップS302からステップS305の処理が行われる。
ステップS302では、予測動きベクトル候補算出部311は、実施の形態1または2に記載する方法、または、後述する方法で、予測可能候補数を算出する。そして、予測動きベクトル候補算出部311は、算出された予測可能候補数を予測動きベクトル候補リストサイズに設定する。
ステップS303では、可変長復号化部301は、算出された予測動きベクトル候補リストサイズを用いて、ビットストリーム中の予測動きベクトルインデックスを可変長復号化する。ステップS304では、予測動きベクトル候補算出部311は、後述する方法で、復号化対象ブロックの隣接ブロックおよびco-locatedブロックから予測動きベクトル候補を生成する。ステップS305では、インター予測制御部309は、復号された予測動きベクトルインデックスの示す予測動きベクトル候補に、復号された差分動きベクトルを加算し、動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。
なお、ステップS302で算出された予測動きベクトル候補リストサイズが「1」の場合は、予測動きベクトルインデックスは復号されずに、0と推定されても構わない。
図36は、図35のステップS302の詳細な処理を示すフローチャートである。具体的には、図36は、予測ブロック候補[N]が予測可能であるかどうかを判定し、予測可能候補数を算出する方法を表す。以下、図36について説明する。
ステップS311では、予測動きベクトル候補算出部311は、予測ブロック候補[N]が、(1)イントラ予測で復号化されたブロック、または、(2)復号化対象ブロックを含むスライスまたはピクチャ境界外に位置するブロック、または、(3)まだ復号化されていないブロックであるかどうかを判定する。ここで、ステップS311の判定結果が真ならば(S311のYes)、ステップS312において、予測動きベクトル候補算出部311は、予測ブロック候補[N]を予測不可能候補に設定する。一方、ステップS311の判定結果が偽ならば(S311のNo)、ステップS313において、予測動きベクトル候補算出部311は、予測ブロック候補[N]を予測可能候補に設定する。
ステップS314では、予測動きベクトル候補算出部311は、予測ブロック候補[N]が予測可能候補、または、co-locatedブロック候補であるかどうかを判定する。ここで、ステップS314の判定結果が真ならば(S314のYes)、ステップS315において、予測動きベクトル候補算出部311は、予測可能候補数に1を加算して値を更新する。一方、ステップS314が偽ならば(S314のNo)、予測動きベクトル候補算出部311は、予測可能候補数を更新しない。
このように、予測ブロック候補がco-locatedブロックの場合は、予測動きベクトル候補算出部311は、co-locatedブロックが予測可能候補か予測不可能候補かどうかに関らず、予測可能候補数に1を加算する。これにより、パケットロス等でco-locatedブロックの情報がロスされた場合でも、動画像符号化装置と動画像復号化装置とで予測可能候補数に不一致が発生しない。この予測可能候補数は、図35のステップS302において、予測動きベクトル候補リストサイズに設定される。さらに、図35のステップS303において、予測動きベクトル候補リストサイズは、予測動きベクトルインデックスの可変長復号化に用いられる。これによって、co-locatedブロック等を含む参照ピクチャ情報をロスした場合でも、動画像復号化装置300aは、予測動きベクトルインデックスを正常に復号化することが可能になる。
図37は、図35のステップS304の詳細な処理を示すフローチャートである。具体的には、図37は、予測動きベクトル候補を算出する方法を表す。以下、図37について説明する。
ステップS321では、予測動きベクトル候補算出部311は、予測ブロック候補[N]から、予測方向Xの予測動きベクトル候補を、上記の式1、式2を用いて算出して、予測動きベクトル候補リストに追加する。ステップS322では、予測動きベクトル候補算出部311は、図29および図30に示すように、予測動きベクトル候補リストから予測不可能候補および重複候補を探索し、削除する。ステップS323では、予測動きベクトル候補算出部311は、図33と同様の方法で、予測動きベクトル候補リストに新規候補を追加する。
図38は、予測動きベクトルインデックスをビットストリームに付随させる際のシンタックスの一例を表す図である。図38において、inter_pred_flagは予測方向フラグ、mvp_idxは予測動きベクトルインデックスを表す。NumMVPCandは予測動きベクトル候補リストサイズを表し、本実施の形態では図36の処理フローで算出された予測可能候補数が設定される。
このように、本実施の形態に係る動画像復号化装置300aによれば、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co-locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出する。これによって、動画像復号化装置300aは、エラー耐性を向上したビットストリームを適切に復号することが可能になる。
より具体的には、本実施の形態に係る動画像復号化装置300aは、co-locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco-locatedブロックであれば常に予測可能候補数に1を加算する。そして、動画像復号化装置300aは、このようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定する。これにより、動画像復号化装置300aは、co-locatedブロックを含む参照ピクチャ情報をロスした場合でも、予測動きベクトルインデックスを正常に復号化することが可能になる。また、本実施の形態に係る動画像復号化装置300aは、予測動きベクトル候補数が、予測可能候補数に達していない場合には、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加することによって、符号化効率を向上したビットストリームを適切に復号することが可能になる。
なお、本実施の形態に係る動画像復号化装置300aは、co-locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco-locatedブロックであれば常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定したが、これに限られるものではない。例えば、動画像復号化装置300aは、図36のステップS314において、co-locatedブロック以外の予測ブロック候補に対しても、必ず常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定してもよい。
すなわち、動画像復号化装置300aは、予測動きベクトル候補数の最大値Nに固定された予測動きベクトル候補リストサイズを用いて、予測動きベクトルインデックスにビット列を割り当てても構わない。つまり、動画像復号化装置300aは、全ての予測ブロック候補を予測可能候補とみなし、予測動きベクトル候補リストサイズを、予測動きベクトル候補数の最大値Nに固定して、予測動きベクトルインデックスを復号化しても構わない。
例えば、本実施の形態では、予測動きベクトル候補数の最大値Nは5であるため(隣接ブロックA、隣接ブロックB、co-locatedブロック、隣接ブロックC、隣接ブロックD)、動画像復号化装置300aは、常に予測動きベクトル候補リストサイズに5を設定して、予測動きベクトルインデックスを復号化するようにしても構わない。これにより、動画像復号化装置300aの可変長復号化部301は、ビットストリーム中の予測動きベクトルインデックスを、隣接ブロックまたはco-locatedブロックの情報を参照せずに復号化することが可能になる。その結果、例えば、図36のステップS314およびS315の処理などを省略することができ、可変長復号化部301の処理量を削減できる。
図39は、予測動きベクトル候補リストサイズを予測動きベクトル候補数の最大値に固定した場合のシンタックスの一例を示す図である。図39のように、予測動きベクトル候補リストサイズを予測動きベクトル候補数の最大値に固定する場合は、NumMVPCandをシンタックスから削除できる。
また、予測動きベクトル候補数の最大値Nを、SPS(Sequence Parameter Set)、PPS(Picture Parameter Set)、または、スライスヘッダ等に埋め込まれた値として用いるようにしても構わない。これにより、符号化対象ピクチャに応じて、予測動きベクトル候補数の最大値Nを切り替えることで、処理量および符号化効率を向上したビットストリームを正しく復号することができる。例えば、co-locatedブロックを参照しないようなピクチャ(Iピクチャを参照するBピクチャやPピクチャ)の場合には、予測動きベクトル候補数の最大値が4(隣接ブロックA、隣接ブロックB、隣接ブロックC、隣接ブロックD)に設定される。一方、co-locatedブロックを参照するようなピクチャの場合には、予測動きベクトル候補数の最大値が5(隣接ブロックA、隣接ブロックB、co-locatedブロック、隣接ブロックC、隣接ブロックD)に設定される。そして、その最大値がSPS(Sequence Parameter Set)、PPS(Picture Parameter Set)、または、スライスヘッダ等に埋め込まれたビットストリームを復号化する場合には、予測動きベクトル候補数の最大値NをSPS(Sequence Parameter Set)、PPS(Picture Parameter Set)、または、スライスヘッダ等から復号し、その値を用いて予測動きベクトルインデックスを復号化するようにしても構わない。
このように、本実施の形態における動画像復号化方法は、前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップ(S302)を含み、前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出する。ここで、前記更新ステップは、隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記復号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ復号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップ(S311)と、前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップ(S312,S313)と、前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップ(S314)と、前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップ(S315)とを含む。
以上、一つまたは複数の態様に係る動画像符号化装置および動画像復号化装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
(実施の形態5)
上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
図40は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
しかし、コンテンツ供給システムex100は図40のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。
なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
なお、コンテンツ供給システムex100の例に限らず、図41に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。
また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
図42は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図43に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
図44に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図42に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
図45Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
さらに、携帯電話ex114の構成例について、図45Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
(実施の形態6)
上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。
図46は、多重化データの構成を示す図である。図46に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。
多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
図47は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
図48は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図48における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図48の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
図49は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図49下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
図50はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
多重化データ情報ファイルは、図51に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
多重化データ情報は図51に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
ストリーム属性情報は図52に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
また、本実施の形態における動画像復号化方法のステップを図53に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
(実施の形態7)
上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図54に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図54に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
(実施の形態8)
上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図55は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
より具体的には、駆動周波数切替え部ex803は、図54のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図54の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態6で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態6で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図57のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
図56は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
(実施の形態9)
テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図58Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
また、処理を一部共有化する他の例を図58Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
本発明に係る動画像符号化方法および動画像復号化方法は、あらゆるマルチメディアデータに適用することができ、動画像符号化および復号化のエラー耐性を向上させることが可能であり、例えば携帯電話、DVD装置、およびパーソナルコンピュータ等を用いた蓄積、伝送、通信等における動画像符号化方法および動画像復号化方法として有用である。
100、100a 動画像符号化装置
101 減算部
102 直交変換部
103 量子化部
104、302 逆量子化部
105、303 逆直交変換部
106、304 加算部
107、305 ブロックメモリ
108、306 フレームメモリ
109、307 イントラ予測部
110、308 インター予測部
111、309 インター予測制御部
112 ピクチャタイプ決定部
113、310 スイッチ
114、311 予測動きベクトル候補算出部
115、312 colPicメモリ
116 可変長符号化部
117、313 視差ベクトル算出部
300、300a 動画像復号化装置
301 可変長復号化部
101 減算部
102 直交変換部
103 量子化部
104、302 逆量子化部
105、303 逆直交変換部
106、304 加算部
107、305 ブロックメモリ
108、306 フレームメモリ
109、307 イントラ予測部
110、308 インター予測部
111、309 インター予測制御部
112 ピクチャタイプ決定部
113、310 スイッチ
114、311 予測動きベクトル候補算出部
115、312 colPicメモリ
116 可変長符号化部
117、313 視差ベクトル算出部
300、300a 動画像復号化装置
301 可変長復号化部
Claims (11)
- それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化方法であって、
前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップと、
値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップと、
前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定ステップと、
前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化ステップと、
を含む動画像符号化方法。 - 前記第2の予測動きベクトル算出ステップでは、前記符号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記符号化対象ピクチャとが互いに異なるビューに属する場合には、前記第3の予測動きベクトル候補を算出する、
請求項1記載の動画像符号化方法。 - 前記第2の予測動きベクトル算出ステップでは、前記第1の予測動きベクトル算出ステップで算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出する、
請求項2記載の動画像符号化方法。 - 前記動画像符号化方法は、さらに、
前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップを含み、
前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出し、
前記更新ステップは、
隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記符号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ符号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップと、
前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップと、
前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップと、
前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップとを含む、
請求項3に記載の動画像符号化方法。 - それぞれ復号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記復号化対象ブロックの動きベクトルを復号化するための予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化方法であって、
前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出ステップと、
値0の動きベクトルを持つ第2の予測動きベクトル候補または、復号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出ステップと、
前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を特定するためのインデックスをビットストリームから取得する取得ステップと、
前記インデックスによって特定される、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を用いて、前記復号化対象ブロックを復号する復号ステップと、
を含む動画像復号化方法。 - 前記第2の予測動きベクトル算出ステップでは、前記復号化対象ブロックの前記動きベクトルの参照する参照ピクチャと、前記復号化対象ピクチャとが互いに異なるビューに属する場合には、前記第3の予測動きベクトル候補を算出する、
請求項5記載の動画像復号化方法。 - 前記第2の予測動きベクトル算出ステップでは、前記第1の予測動きベクトル算出ステップで算出される前記第1の予測動きベクトル候補の数が所定の値より小さい場合に、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を算出する、
請求項6記載の動画像復号化方法。 - 前記動画像復号化方法は、さらに、
前記少なくとも1つの隣接ブロックのうち前記予測動きベクトルの算出に用いることが可能な隣接ブロックである隣接ブロック候補の候補数を前記所定の値として算出する候補数算出ステップを含み、
前記候補数算出ステップでは、前記候補数を更新する更新ステップを隣接ブロックごとに行うことによって前記候補数を算出し、
前記更新ステップは、
隣接ブロックが、(i)イントラ予測で符号化されているブロック、(ii)前記復号化対象ブロックを含むスライスもしくはピクチャの境界外に位置するブロック、および、(iii)まだ復号化されていないブロック、のいずれかであるかどうかを判定する第1の判定ステップと、
前記第1の判定ステップにおける判定結果が真ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができないと決定し、前記判定結果が偽ならば、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定する決定ステップと、
前記決定ステップにおいて、前記予測動きベクトルの算出に前記隣接ブロックを用いることができると決定されたか否か、または、前記隣接ブロックが時間的に隣接する隣接ブロックであるか否かを判定する第2の判定ステップと、
前記第2の判定ステップにおける判定結果が真ならば、前記候補数に1を加算する加算ステップとを含む、
請求項7に記載の動画像復号化方法。 - それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化装置であって、
前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出部と、
値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出部と、
前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定部と、
前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化部と、
を備える動画像符号化装置。 - それぞれ復号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記復号化対象ブロックの動きベクトルを復号化するための予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化装置であって、
前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出部と、
値0の動きベクトルを持つ第2の予測動きベクトル候補または、復号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出部と、
前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を特定するためのインデックスをビットストリームから取得する取得部と、
前記インデックスによって特定される、前記第1の予測動きベクトル候補、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補を用いて、前記復号化対象ブロックを復号する復号部と、
を備える動画像復号化装置。 - それぞれ符号化対象ブロックと空間的または時間的に隣接するブロックである少なくとも1つの隣接ブロックから、前記符号化対象ブロックの動きベクトルを符号化するための予測動きベクトルを算出して、前記符号化対象ブロックを符号化する動画像符号化装置と、請求項10記載の動画像復号化装置とを備え、
前記動画像符号化装置は、
前記少なくとも1つの隣接ブロックから第1の予測動きベクトル候補を算出する第1の予測動きベクトル算出部と、
値0の動きベクトルを持つ第2の予測動きベクトル候補または、符号化対象ピクチャと異なるビューに属する参照ピクチャに対する視差ベクトルを持つ第3の予測動きベクトル候補を算出する第2の予測動きベクトル算出部と、
前記第1の予測動きベクトル候補と、前記第2の予測動きベクトル候補または前記第3の予測動きベクトル候補との中から、前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを決定する予測動きベクトル決定部と、
前記予測動きベクトルを特定するためのインデックスをビットストリームに付随させるインデックス符号化部とを備える
動画像符号化復号化装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261587238P | 2012-01-17 | 2012-01-17 | |
US61/587,238 | 2012-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013108613A1 true WO2013108613A1 (ja) | 2013-07-25 |
Family
ID=48799045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000126 WO2013108613A1 (ja) | 2012-01-17 | 2013-01-15 | 動画像符号化方法、動画像復号化方法、動画像符号化装置、動画像復号化装置および動画像符号化復号化装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013108613A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013085235A (ja) * | 2011-09-28 | 2013-05-09 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2013236366A (ja) * | 2012-04-12 | 2013-11-21 | Jvc Kenwood Corp | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
JP2013236367A (ja) * | 2012-04-12 | 2013-11-21 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
WO2014010525A1 (ja) * | 2012-07-10 | 2014-01-16 | シャープ株式会社 | 予測ベクトル生成装置、および画像復号装置 |
WO2015056700A1 (ja) * | 2013-10-17 | 2015-04-23 | 日本電信電話株式会社 | 映像符号化装置及び方法、及び、映像復号装置及び方法 |
US9866864B2 (en) | 2011-09-28 | 2018-01-09 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9872037B2 (en) | 2012-04-12 | 2018-01-16 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053746A1 (fr) * | 2006-10-30 | 2008-05-08 | Nippon Telegraph And Telephone Corporation | Procédé de génération d'informations de référence prédictives, procédé de codage et de décodage d'image dynamiques, leur dispositif, leur programme et support de stockage contenant le programme |
JP2009510892A (ja) * | 2005-09-29 | 2009-03-12 | サムスン エレクトロニクス カンパニー リミテッド | カメラパラメータを利用して視差ベクトルを予測する方法、その方法を利用して多視点映像を符号化及び復号化する装置、及びそれを行うためのプログラムが記録された記録媒体 |
JP2009522986A (ja) * | 2006-01-09 | 2009-06-11 | トムソン ライセンシング | マルチビュービデオ符号化の方法および装置 |
-
2013
- 2013-01-15 WO PCT/JP2013/000126 patent/WO2013108613A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510892A (ja) * | 2005-09-29 | 2009-03-12 | サムスン エレクトロニクス カンパニー リミテッド | カメラパラメータを利用して視差ベクトルを予測する方法、その方法を利用して多視点映像を符号化及び復号化する装置、及びそれを行うためのプログラムが記録された記録媒体 |
JP2009522986A (ja) * | 2006-01-09 | 2009-06-11 | トムソン ライセンシング | マルチビュービデオ符号化の方法および装置 |
WO2008053746A1 (fr) * | 2006-10-30 | 2008-05-08 | Nippon Telegraph And Telephone Corporation | Procédé de génération d'informations de référence prédictives, procédé de codage et de décodage d'image dynamiques, leur dispositif, leur programme et support de stockage contenant le programme |
Non-Patent Citations (1)
Title |
---|
BENJAMIN BROSS ET AL.: "WD4: Working Draft 4 of High-Efficiency Video Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 JCTVC-F803_D6, ITU-T, 14 July 2011 (2011-07-14), pages 71 - 73,112- 117 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9866865B2 (en) | 2011-09-28 | 2018-01-09 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9866864B2 (en) | 2011-09-28 | 2018-01-09 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9924194B2 (en) | 2011-09-28 | 2018-03-20 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
JP2013085235A (ja) * | 2011-09-28 | 2013-05-09 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2014135736A (ja) * | 2011-09-28 | 2014-07-24 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2014135735A (ja) * | 2011-09-28 | 2014-07-24 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2014135734A (ja) * | 2011-09-28 | 2014-07-24 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2014135733A (ja) * | 2011-09-28 | 2014-07-24 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
US11831898B2 (en) | 2012-04-12 | 2023-11-28 | Jvckenwood Corporation | Moving picture coding device, moving picture coding method, moving picture coding program, moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9918103B2 (en) | 2012-04-12 | 2018-03-13 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
JP2014220845A (ja) * | 2012-04-12 | 2014-11-20 | 株式会社Jvcケンウッド | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP2014220847A (ja) * | 2012-04-12 | 2014-11-20 | 株式会社Jvcケンウッド | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP6020762B1 (ja) * | 2012-04-12 | 2016-11-02 | 株式会社Jvcケンウッド | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
JP6020761B1 (ja) * | 2012-04-12 | 2016-11-02 | 株式会社Jvcケンウッド | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
JP2013236367A (ja) * | 2012-04-12 | 2013-11-21 | Jvc Kenwood Corp | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP6020760B1 (ja) * | 2012-04-12 | 2016-11-02 | 株式会社Jvcケンウッド | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
JP2013236366A (ja) * | 2012-04-12 | 2013-11-21 | Jvc Kenwood Corp | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
JP2017005724A (ja) * | 2012-04-12 | 2017-01-05 | 株式会社Jvcケンウッド | 受信装置、受信方法及び受信プログラム |
JP2017028720A (ja) * | 2012-04-12 | 2017-02-02 | 株式会社Jvcケンウッド | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
US11206421B2 (en) | 2012-04-12 | 2021-12-21 | Jvckenwood Corporation | Moving picture coding device, moving picture coding method, moving picture coding program, moving picture decoding device, moving picture decoding method, and moving picture decoding program |
JP2014220844A (ja) * | 2012-04-12 | 2014-11-20 | 株式会社Jvcケンウッド | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
US10791336B2 (en) | 2012-04-12 | 2020-09-29 | Jvckenwood Corporation | Moving picture coding device, moving picture coding method, moving picture coding program, moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9872037B2 (en) | 2012-04-12 | 2018-01-16 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US9872038B2 (en) | 2012-04-12 | 2018-01-16 | JVC Kenwood Corporation | Moving picture coding device, moving picture coding method, and moving picture coding program |
JP2014220846A (ja) * | 2012-04-12 | 2014-11-20 | 株式会社Jvcケンウッド | 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム |
JP6020763B1 (ja) * | 2012-04-12 | 2016-11-02 | 株式会社Jvcケンウッド | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム |
US10230975B2 (en) | 2012-04-12 | 2019-03-12 | JVC Kenwood Corporation | Moving picture decoding device, moving picture decoding method, and moving picture decoding program |
US10523962B2 (en) | 2012-04-12 | 2019-12-31 | JVC Kenwood Corporation | Moving picture coding device, moving picture coding method, moving picture coding program, moving picture decoding device, moving picture decoding method, and moving picture decoding program |
WO2014010525A1 (ja) * | 2012-07-10 | 2014-01-16 | シャープ株式会社 | 予測ベクトル生成装置、および画像復号装置 |
JPWO2015056700A1 (ja) * | 2013-10-17 | 2017-03-09 | 日本電信電話株式会社 | 映像符号化装置及び方法、及び、映像復号装置及び方法 |
WO2015056700A1 (ja) * | 2013-10-17 | 2015-04-23 | 日本電信電話株式会社 | 映像符号化装置及び方法、及び、映像復号装置及び方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7507407B2 (ja) | 動画像符号化方法及び動画像符号化装置 | |
JP6384691B2 (ja) | 動画像符号化方法および動画像符号化装置 | |
JP6340707B2 (ja) | 画像符号化方法および画像符号化装置 | |
JP6094983B2 (ja) | 画像処理装置 | |
JP6403125B2 (ja) | 復号方法および復号装置 | |
JP6308495B2 (ja) | 画像復号方法、および、画像復号装置 | |
JP6422011B2 (ja) | 動画像符号化方法、動画像復号化方法、動画像符号化装置および動画像復号化装置 | |
WO2012164908A1 (ja) | 動画像符号化方法、動画像符号化装置、動画像復号化方法、動画像復号化装置、および動画像符号化復号化装置 | |
JPWO2013111596A1 (ja) | 動画像符号化方法および動画像符号化装置 | |
WO2013108613A1 (ja) | 動画像符号化方法、動画像復号化方法、動画像符号化装置、動画像復号化装置および動画像符号化復号化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13738154 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13738154 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |