Nothing Special   »   [go: up one dir, main page]

WO2013104272A1 - 一种传输和接收上行信息的方法、系统和设备 - Google Patents

一种传输和接收上行信息的方法、系统和设备 Download PDF

Info

Publication number
WO2013104272A1
WO2013104272A1 PCT/CN2013/070040 CN2013070040W WO2013104272A1 WO 2013104272 A1 WO2013104272 A1 WO 2013104272A1 CN 2013070040 W CN2013070040 W CN 2013070040W WO 2013104272 A1 WO2013104272 A1 WO 2013104272A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
fdma symbols
current
carrier
Prior art date
Application number
PCT/CN2013/070040
Other languages
English (en)
French (fr)
Inventor
高雪娟
林亚男
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013104272A1 publication Critical patent/WO2013104272A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system and device for transmitting and receiving uplink information. Background technique
  • LTE-A Release 10 Long Term Evolution-Advanced (LTE-A) Release 10 (Release-10, Rel-10) uplink only supports Intra-band Carrier Aggregation (CA), which is considered to be wireless for each carrier.
  • CA Intra-band Carrier Aggregation
  • each carrier adjusts the uplink transmission time based on the Time Advance (TA) obtained by the Random Access (RA) process on the Primary Component Carrier (PCC). That is, the uplink transmission time of multiple carriers is aligned, so the uplink transmission time on different carriers is aligned, and the uplink channel/signal in the current uplink subframe on different carriers and the previous and/or next adjacent uplink are not present. Upstream channel/signal collision in the frame.
  • TA Time Advance
  • RA Random Access
  • PCC Primary Component Carrier
  • LTE-ARel-11 CAs with different inter-band uplinks and CA deployment schemes of macro base station (Macro e B) and remote radio head (RRH) can be supported. Since the propagation characteristics of the wireless signals in different frequency bands are different, and the propagation paths of the macro base station and the RRH are different, the time when the signals transmitted by different carriers arrive at the base station is different, that is, the transmission delay is different. Therefore, in Rel-11, different carriers may use different TAs (ie, Multi-TA) for uplink transmission time adjustment, and uplink TAs of multiple carriers may not be the same. To this end, the TA group concept is introduced. The carriers with the same or similar transmission delay are grouped into one group, which is called a TA group.
  • a TA group The carriers with the same or similar transmission delay are grouped into one group, which is called a TA group.
  • the carriers belonging to the same TA group use the same uplink TA through the TA group.
  • the group of carriers includes a PCC
  • the PRACH is sent on the PCC to obtain a TA corresponding to the group of carriers, when the group of carriers is supplemented
  • the component carrier the SCO
  • 3GPP TS 36.300 specifies that for an inter-band non-contiguous carrier aggregation scenario, the downlink transmission delay difference between different downlink carriers does not exceed 30 microseconds without using a unidirectional repeater (microsecond).
  • the downlink carrier transmission time error of the base station side is up to 1.3 us. Therefore, the downlink reception time difference of each downlink carrier of the user equipment (User Equipment, UE) does not exceed 31.3 us.
  • the uplink TA of each carrier is about twice the downlink transmission delay of the carrier, the uplink TA difference of different carriers is not More than 61.3us.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • CP Cyclic Prefix
  • the carriers belonging to the same TA group have the same uplink TA, and the uplink transmission times of multiple carriers are aligned. Therefore, the uplink channel/signal on different carriers in the current uplink subframe does not overlap with the previous and/or the next adjacent uplink. Upstream channel/signal collision in the frame.
  • the carriers belonging to different TA groups have different uplink TAs, and the uplink transmission times of multiple carriers are not aligned. Therefore, the uplink channel/signal on different carriers in the current uplink subframe and the previous and/or next adjacent uplink subframes.
  • the uplink channel/signal in the partial SC-FDMA symbol collision considering that the difference of the uplink TA of different carriers does not exceed 1 SC-FDMA symbol, that is, the uplink channel/signal on different carriers in the current uplink subframe will be the same as the previous one.
  • the uplink channel/signal in the adjacent uplink subframe collides with the first SC-FDMA symbol, and/or the uplink channel/signal on the different carriers in the current uplink subframe and the uplink channel in the next adjacent uplink subframe
  • the /signal collides in the last SC-FDMA symbol, as shown in Figure 1A.
  • the Physical Uplink Control CHannel (PUCCH) and the Physical Uplink Shared CHannel (PUSCH) in the current uplink subframe may also be related to the sounding reference signal (SRS).
  • SRS sounding reference signal
  • the transmission is not in the last SC-FDMA collision.
  • the shortened PUCCH format (truncated PUCCH format) and the PUSCH based on the last SC-FDMA symbol transmission SRS rate matching cannot avoid the SRS and the PUCCH and PUSCH in the same uplink. Collision in the frame.
  • the PUCCH and PUSCH in the current uplink subframe may also collide with the SRS transmission in the current uplink subframe at the same time in the last two SC-FDMAs, or The PUCCH and PUSCH in the uplink subframe may also collide with the SRS transmission in the previous adjacent uplink subframe in the first SC-FDMA, as shown in FIG. 1B. Since excessive discarding of SRS will affect uplink scheduling, in multi-TA, SRS and PUCCH/PUSCH belonging to different TA groups should be supported for simultaneous transmission.
  • Rel-11 needs to support the PRACH transmission on the SCC, and it has been determined that the PRACH is not supported on multiple carriers in one uplink subframe at the same time, and the uplink of the PCC is out of synchronization, the UE is out of synchronization (requires the PC to pass the RA).
  • the uplink data transmission can exist. That is, the PUSCH on the PCC and the PUSCH/SRS on the SCC are not transmitted at the same time.
  • the collision situation of the uplink channel/signal in the same uplink subframe is shown in Table 1. .
  • the fifth last SC of the PRACH collides with the first SC-FDMA symbol of the PUCCH on carrier 1 in subframe i+i, the last 4 SC-FDMA symbols of PRACH and the PUCCH and carrier 2 on carrier 1 in subframe i+1
  • the partial SC-FDMA symbols of the PUSCH collide at the same time.
  • Table 1 Possible collision scenarios of different uplink channels/signals in the same uplink subframe Under Rel-11 multi-TA, when uplink channels/signals supporting PRACH, PUCCH, PUSCH, SRS, etc. are simultaneously transmitted in the same uplink subframe,
  • the power control method in the subframe of Rel-10 is no longer applicable, so that in Rel-11, the uplink transmission times of carriers belonging to different TA groups are not aligned, and the uplink channel on different carriers in the current uplink subframe/ The signal will collide with the partial SC-FDMA symbol with the upstream channel/signal in the previous and/or next adjacent uplink subframe.
  • the uplink transmission time misalignment of carriers belonging to different TA groups causes the uplink channel/signal to collide in part of the SC-FDMA symbol.
  • a method, a system, and a device for transmitting and receiving uplink information provided by the embodiments of the present invention are used to solve the problem that the carriers belonging to different TA groups are not aligned due to uplink transmission time in the Rel-11 existing in the prior art.
  • a user equipment having multiple uplink timing advance TAs determining that the uplink carrier reserves K single-carrier frequency division multiple access in the current uplink subframe, and does not transmit uplink information, where K is a non-negative integer;
  • the user equipment maps the uplink information to be transmitted to the uplink carrier, and transmits the SC-FDMA symbol for transmitting uplink information except the K SC-FDMA symbols in the current uplink subframe.
  • the network side device determines that the uplink carrier reserves K SC-FDMA symbols in the current uplink subframe, and does not transmit uplink information, where K is a non-negative integer;
  • the network side device receives the uplink information transmitted by the user equipment with multiple uplink TAs in the current uplink subframe by using the SC-FDMA symbol other than the SC-FDMA symbol that does not transmit the uplink information.
  • a user equipment for transmitting uplink information which is provided by the embodiment of the present invention, includes:
  • a first determining module configured to: when there are multiple uplink TAs, determine that the uplink carrier reserves K in the current uplink subframe
  • the SC-FDMA symbol does not transmit uplink information, where K is a non-negative integer
  • a network side device for receiving uplink information which is provided by the embodiment of the present invention, includes:
  • a second determining module configured to determine that the uplink carrier reserves K SC-FDMA symbols in the current uplink subframe, and does not transmit uplink information, where K is a non-negative integer;
  • a receiving module configured to receive uplink information sent by the user equipment that has multiple uplink TAs by using an SC-FDMA symbol other than the SC-FDMA symbol that does not transmit uplink information in the current uplink subframe by using the uplink carrier.
  • the uplink carrier reserves K uplink symbols in the current uplink subframe, does not transmit uplink information, and maps the uplink information to be transmitted to the uplink carrier in the current uplink subframe. Transmitting on an SC-FDMA symbol for transmitting uplink information other than the K SC-FDMA symbols, where K is a non-negative integer;
  • the network side device is configured to determine that the uplink carrier reserves K uplink symbols in the current uplink subframe, does not transmit uplink information, and uses the uplink carrier to save the uplink information in the current uplink subframe except for the SC-FDMA symbol that does not transmit the uplink information.
  • the SC-FDMA symbol receives the uplink information transmitted by the user equipment having multiple uplink TAs.
  • the uplink carrier reserves K uplink symbols in the current uplink subframe, the uplink information is not transmitted, thereby avoiding the Rel-11, the carriers belonging to different TA groups are in the adjacent subframes caused by the uplink transmission time misalignment.
  • the upstream channel/signal collides in a portion of the SC-FDMA symbol.
  • 1A is a schematic diagram of simultaneous transmission under the first Multi-TA in the background art
  • 1B is a schematic diagram of simultaneous transmission under a second Multi-TA in the background art
  • 1C is a schematic diagram of simultaneous transmission under the second Multi-TA in the background art
  • FIG. 2 is a schematic structural diagram of a system for transmitting uplink information according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for transmitting uplink information according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for receiving uplink information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a first transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a second transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a third transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a fourth transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a fifth transmission according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a sixth transmission according to an embodiment of the present invention.
  • 13A is a schematic diagram of a seventh transmission according to an embodiment of the present invention
  • 13B is a schematic diagram of an eighth transmission according to an embodiment of the present invention
  • FIG. 13C is a schematic diagram of a ninth transmission according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention has a plurality of user equipments of the uplink TA, and determines that the uplink carrier reserves K uplink symbols in the current uplink subframe, does not transmit uplink information, and maps the uplink information to be transmitted to the uplink carrier in the current uplink.
  • the transmission is performed on SC-FDMA symbols for transmitting uplink information except for K SC-FDMA symbols.
  • the uplink subframe is reserved for the K-FDMA symbols in the current uplink subframe, and the uplink information is not transmitted, thereby avoiding adjacent subframes in the Rel-11, the carriers belonging to different TA groups are not aligned due to the uplink transmission time.
  • the upstream channel/signal in the collision occurs in the partial SC-FDMA symbol.
  • the system for transmitting uplink information in the embodiment of the present invention includes: a user equipment 10 and a network side device 20.
  • the user equipment 10 with multiple uplink TAs is configured to determine that the uplink carrier reserves K uplink symbols in the current uplink subframe, does not transmit uplink information, and maps the uplink information to be transmitted to the uplink carrier in the current uplink subframe.
  • the transmission is performed on SC-FDMA symbols other than K SC-FDMA symbols for transmitting uplink information, where K is a non-negative integer.
  • SC-FDMA symbols for transmitting uplink information except for the K SC-FDMA symbols are: in the SC-FDMA symbol included in the uplink channel in one uplink subframe, except for the reserved K SC-FDMA symbols, SC-FDMA symbols for transmitting Reference Signals (RS), and SC-FDMA symbols reserved for SRS transmission when there is an SRS transmission or when the current subframe is a system SRS subframe SC-FDMA symbol.
  • RS Reference Signals
  • the network side device 20 is configured to determine that the uplink carrier reserves K uplink symbols in the current uplink subframe, and does not transmit uplink information, and the uplink carrier does not transmit the uplink information in the current uplink subframe except the SC-FDMA symbol.
  • the other SC-FDMA symbols receive the uplink information transmitted by the user equipment 10 having a plurality of uplink TAs.
  • the uplink information of the embodiment of the present invention includes but is not limited to at least one of the following information:
  • CSI includes channel quality indicator (CQI), pre-coding matrix indicator (PMI), rank indicator ( Rank) Indication, RI), Precoding Type Indicator (PTI) and other information.
  • CQI channel quality indicator
  • PMI pre-coding matrix indicator
  • Rank rank indicator
  • PTI Precoding Type Indicator
  • the uplink information transmitted on the PUCCH refers to: one or more combinations of ACK/NACK, periodic CSI, and SR; the uplink information transmitted on the PUSCH refers to: uplink data or uplink data and ACK/NACK, periodic/non- One or more combinations of periodic CSIs; SRS is an uplink signal that occupies only one SC-FDMA symbol transmission in one uplink subframe.
  • the network side device 20 directly configures K SC-FDMA symbols for the user equipment by using high-level signaling or physical downlink control channel (PDCCH) signaling;
  • PDCCH physical downlink control channel
  • the user equipment 10 directly determines K SC-FDMA symbols according to the configuration of the high layer signaling or the PDCCH signaling.
  • the high layer signaling is Radio Resource Control (RRC) signaling or Medium Access Control (MAC) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the second mode, the user equipment 10 and the network side device 20 pre-arrange K K-FDMA symbols;
  • the user equipment 10 and the network side device 20 determine K SC-FDMA symbols according to the prior agreement with the other party, respectively.
  • the network side device 20 notifies the K SC-FDMA symbols to the user equipment in advance through the high layer signaling or the PDCCH signaling, and further configures whether the user equipment 10 reserves K in the current uplink subframe by using a specific bit field in the PDCCH signaling. SC-FDMA symbols.
  • the PDCCH is a PDCCH in a downlink subframe corresponding to ACK/NACK feedback in the current uplink subframe (including but not limited to a PDCCH carrying a DL grant (downlink scheduling grant) and/or indicating a downlink semi-persistent scheduling (Semi-Persistent) Scheduling, SPS) PDCCH of resource release, and/or PDCCH corresponding to PUSCH in the current uplink subframe.
  • the user equipment 10 determines, according to a specific bit field in the PDCCH signaling, whether there is a reserved in the current uplink subframe.
  • the SC-FDMA symbol when it is determined to exist, further determines that the K SC-FDMA symbols pre-configured by the high layer signaling or the PDCCH signaling are the reserved K SC-FDMA symbols, and when the determination does not exist, determine the current uplink subframe. There is no reserved SC-FDMA symbol, wherein the PDCCH is defined as the above network side.
  • the original 1 bit is reused or a new 1 bit is added as the indication information of whether there is a reserved SC-FDMA symbol.
  • different uplink carriers correspond in the same uplink subframe.
  • the Ks are the same or different; the same uplink carrier is the same or different in the corresponding uplink subframes.
  • the two SC-FDMA symbols are the first SC-FDMA symbols in the current uplink subframe;
  • SC one SC-FDMA symbol is the last K SC-FDMA symbols in the current uplink subframe.
  • K SC-FDMA symbols are the first K1 SC-FDMA symbols and the last K2 in the current uplink subframe
  • the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe; or the SRS is transmitted in the first SC-FDMA symbol in the current uplink subframe, and the K SC-FDMA symbols are The last K SC-FDMA symbols in the current uplink subframe; specifically, if the SRS is transmitted in the last SC-FDMA symbol in the current uplink subframe, the K SC-FDMA symbols are in the current uplink subframe.
  • the first K SC-FDMA symbols; if the SRS is transmitted in the first SC-FDMA symbol in the current uplink subframe, the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe.
  • the SRS is the last SC-FDMA symbol transmission in the current uplink subframe; if the K SC-FDMA symbols are the current uplink subframes The last K SC-FDMA symbols in the frame, then the first SC-FDMA symbol transmission of the SRS in the current uplink subframe.
  • the user equipment 10 determines that only the uplink carrier except the uplink carrier with the smallest uplink TA is in one uplink subframe. Reserving K SC-FDMA symbols, correspondingly, the network side device 20 determines to reserve K SC-FDMA symbols in one uplink subframe only for uplink carriers other than the uplink carrier with the smallest uplink TA; or the user equipment 10 Determining that the uplink carrier with the smallest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe, and correspondingly, the network side device 20 determines that the uplink carrier with the smallest uplink TA does not need to be reserved in one uplink subframe. SC-FDMA symbol.
  • the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is smaller than the other uplink carriers of the uplink carrier, the previous one of the current uplink subframes
  • the uplink information is not transmitted on the last K SC-FDMA symbols in the adjacent uplink subframe, and the user equipment 10 determines that the first K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe; correspondingly, the network side
  • the device 20 determines that the first K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • the user equipment 10 determines that only the uplink carrier except the uplink carrier with the largest uplink TA is in one uplink subframe. Reserving K SC-FDMA symbols, correspondingly, the network side device 20 determines to reserve K SC-FDMA symbols in one uplink subframe only for uplink carriers other than the uplink carrier having the largest uplink TA; or the user equipment 10 Determining that the uplink carrier with the largest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe; correspondingly, the network side device 20 determines that the uplink carrier with the largest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe.
  • the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is greater than the other uplink carriers of the uplink carrier, the latter one of the current uplink subframes.
  • the uplink information is not transmitted on the first K SC-FDMA symbols in the adjacent uplink subframe, and the user equipment 10 determines that the K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe; correspondingly, the network side
  • the device 20 determines that the K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • is generally the difference between the uplink transmission timing advances of different TA groups (if there are more than three TA groups, two or two differences are needed. For one carrier, if there are 2 differences, the maximum value is determined.
  • the user equipment 10 performs time-domain orthogonal spreading by using SC-FDMA symbols for transmitting uplink information in addition to the reserved SC-FDMA symbols in one uplink subframe.
  • the transmission format transmits uplink information.
  • the network side device 20 performs time domain positive based on other SC-FDMA symbols for transmitting uplink information except for the reserved K SC-FDMA symbols in one uplink subframe.
  • the transport format of the interleaved spread spectrum receives the uplink information; or, for PUSCH transmission, the user equipment 10 uses other SCs for transmitting uplink information except for the reserved K SC-FDMA symbols in one uplink subframe.
  • the FDMA symbol performs rate matching to transmit uplink information; correspondingly, the network side device 20 uses the SC-FDMA symbol for transmitting uplink information except for the reserved K SC-FDMA symbols in one uplink subframe. Rate matching receives uplink information.
  • the user equipment 10 transmits the uplink information in the PUCCH using the shortened PUCCH format (for example, shortened) PUCCH format l/la/lb/3, of course, if the shortened format is also defined for format 2/2a/2b, the newly defined shortened PUCCH format 2/2a/2b is not excluded; correspondingly, the network side device 20 is at PUCCH.
  • the shortened PUCCH format for example, shortened
  • the shortened format is also defined for format 2/2a/2b
  • the newly defined shortened PUCCH format 2/2a/2b is not excluded; correspondingly, the network side device 20 is at PUCCH.
  • the uplink information is received by using the shortened PUCCH format; or, for the PUSCH transmission, the user equipment 10 performs rate matching transmission uplink information on the PUSCH based on the last SC-FDMA symbol reserved for transmission (ie, reuses Rel-8/9/10)
  • the transmission mode of the PUSCH transmitted in the system SRS subframe, the last SC-FDMA symbol reservation on the PUSCH is used for transmitting the SRS, and the remaining SC-FDMA symbols (except the pilot symbols) can be used for transmitting uplink data and/or uplink control.
  • the network side device 20 reserves the SRS based on the last SC-FDMA symbol reservation on the PUSCH. Receives uplink information.
  • the user equipment 10 determines that no uplink information is transmitted in the current uplink subframe on the uplink carrier except the uplink carrier where the PRACH is located.
  • the network side device 20 determines that no uplink information is transmitted in the current uplink subframe on the uplink carrier except the uplink carrier where the PRACH is located; or the user equipment 10 only has the last uplink carrier except the uplink carrier where the PRACH is located.
  • An SC-FDMA ie, the last SC-FDMA symbol capable of transmitting upstream information, The SRS is transmitted in the same symbol.
  • the network side device 20 receives the SRS only in the last SC-FDMA symbol of the uplink carrier except the uplink carrier where the PRACH is located.
  • the FDMA symbol overlaps with a persistently transmitted PRACH.
  • the PRACH does not necessarily start transmission in the current uplink subframe, and may start transmission in the previous one or more uplink subframes of the current uplink subframe, and continues for multiple uplink subframes. You can use one of the following processing methods:
  • Mode A The user equipment 10 determines that no uplink information is transmitted in the current uplink subframe on the uplink carrier except the uplink carrier where the PRACH is located.
  • the network side device 20 determines that the uplink carrier is other than the uplink carrier where the PRACH is located. No uplink information is received in the current uplink subframe;
  • Mode C The user equipment 10 performs power control on the uplink channel/signal in the current uplink subframe based on the transmit power of the PRACH, and transmits the uplink channel/signal in the current uplink subframe according to the power controllized transmit power, correspondingly, the network
  • the side device 20 determines to receive uplink information on all uplink carriers in the current uplink subframe.
  • the uplink channel/signal that may overlap with the PRACH includes at least one or more of PUCCH, PUSCH, and SRS.
  • the foregoing manners A and B correspond to the case where the PRACH and other uplink channels/signals are not simultaneously transmitted.
  • the uplink channel/signal without any reserved SC-FDMA symbols still overlaps with the PRACH on all or part of the SC-FDMA symbols, and the network side device 20 can be restricted by scheduling, or pre-configured or agreed to K for these carriers.
  • the user equipment 10 can normally transmit the uplink channel/signal in the current uplink subframe, for example, transmit the SRS in the last SC-FDMA symbol (ie, configure the current uplink subframe as an SRS subframe).
  • the network side device 10 can receive the uplink channel/signal on the corresponding carrier.
  • the above manner C corresponds to the case where the PRACH and other uplink channels/signals are simultaneously transmitted.
  • the user equipment 10 performs power control on the uplink channel/signal in the current uplink subframe based on the transmit power of the PRACH, that is, if the total transmit power of the UE in the current uplink subframe exceeds the preset maximum transmit power, in the current uplink subframe.
  • the transmit power of the PRACH is required, regardless of whether the PRACH is transmitted in the current uplink subframe (that is, the PRACH is also transmitted in the previous one or more uplink subframes, but due to If the value of the uplink channel/signal on the uplink carrier other than the uplink carrier of the PRACH is overlapped, If the channel priority of the PRACH is the highest, when the power channel is upgraded for the uplink channel/signal in the current uplink subframe, the remaining available transmit power after the PRACH transmit power is subtracted based on the preset maximum transmit power (linear region) : P emax -P P R ACH ), that is, in order of channel/signal priority from low to high, first to low priority The upstream channel/signal is scaled down until the total transmit power of the UE does not exceed the remaining available transmit power.
  • the user equipment 10 determines that the uplink carrier other than the uplink carrier having the largest uplink TA is further reserved after the uplink channel in the current uplink subframe, and the two SC-FDMA symbols are not
  • the uplink information is further transmitted (that is, further reserved on the basis of the reserved K SC-FDMA symbols); correspondingly, the network side device 20 determines the uplink of the uplink carrier in the current uplink subframe except the uplink carrier having the largest uplink TA.
  • the two SC-FDMA symbols do not transmit uplink information (ie, further reserved based on the reserved K SC-FDMA symbols).
  • the uplink channel includes at least one of PUCCH,
  • the uplink carrier other than the uplink carrier with the largest uplink transmission timing advance in the current uplink subframe may be further configured or agreed.
  • the last 2 SC-FDMA symbols of the uplink channel are vacant and do not transmit any uplink channel bearer information (such as UCI and uplink data).
  • the SRS can be transmitted in the last SC-FDMA symbol to avoid SRS and other carriers with different TAs. Upstream channel collision on.
  • the first SC-FDMA symbol in the current uplink subframe ie, the first one capable of transmitting uplink information
  • SC-FDMA symbol the same as the first SC-FDMA symbol transmission in which the SRS transmission is present or the current uplink subframe is an SRS transmission subframe and the SRS is in one uplink subframe, and the user equipment 10 determines the uplink except the minimum uplink TA.
  • the uplink carrier other than the carrier further reserves the first two SC-FDMA symbols in the uplink channel in the current uplink subframe, and does not transmit the uplink information (that is, further reserved on the basis of the reserved K SC-FDMA symbols); correspondingly,
  • the network side device 20 determines that the uplink carrier other than the uplink carrier with the smallest uplink TA further reserves the uplink information in the first two SC-FDMA symbols in the uplink channel in the current uplink subframe (that is, reserves K SC-FDMA). Further reservation based on the symbol).
  • the uplink channel includes at least one of PUCCH, PUSCH, and PRACH.
  • SRS can be transmitted in the first SC-FDMA symbol to avoid collision of SRS with uplink channels on other carriers with different TAs.
  • the user equipment 10 transmits only the SRSs of the uplink carriers having the same uplink TA in the same uplink subframe.
  • the network side device 20 only receives the uplink carriers with the same uplink TA in the same uplink subframe.
  • SRS SRS. That is, the network side device 20 may be configured in one uplink subframe, and only the carrier with the same TA transmits the SRS, and the SRSs of the carriers with different TAs are transmitted in different uplink subframes to avoid multiple carriers caused by multiple TAs.
  • the upper SRS is not aligned in one uplink subframe, resulting in more complicated power control.
  • the user equipment 10 maps the uplink information to be transmitted to the uplink carrier on the SC-FDMA symbol except the K SC-FDMA symbols on the uplink channel in the current uplink subframe, and further includes the user equipment 10
  • the actual transmit power of each upstream channel/signal is determined as follows, and each upstream channel/signal is transmitted according to the power:
  • the user equipment determines the sum of the target transmit power of the uplink channel transmitted in the current uplink subframe (ie, the transmit power of the uplink channel on each carrier calculated based on the correlation power control parameter of each carrier and the uplink channel on the carrier) Whether the preset maximum transmission power is exceeded;
  • the target transmission power of the uplink channel having the same uplink channel/signal priority transmitted in the current uplink subframe is gradually reduced in proportion according to the order of the uplink channel/signal priority from low to high (ie, First, the transmit power of the uplink channel with the lowest priority is reduced.
  • the power is reduced to 0, the total transmit power of the UE exceeds the preset maximum transmit power, and the transmit power of the lower priority uplink channel is further reduced, and so on.
  • the sum of the transmit powers of the uplink channels transmitted in the current uplink subframe does not exceed the preset maximum transmit power, and the transmit power after the power reduction is used as the actual transmit power of the uplink channel; Performing a high-priority uplink channel with reduced power, and using its target transmit power as its actual transmit power;
  • the target transmit power of each upstream channel is taken as its actual transmit power.
  • SRS transmission there may be one or more):
  • the user equipment 10 determines whether the sum of the target transmit powers of the uplink channels transmitted in the current uplink subframe exceeds a preset maximum transmit power
  • the target transmission power of the uplink channel having the same uplink channel/signal priority transmitted in the current uplink subframe is gradually reduced in proportion according to the order of the uplink channel/signal priority from low to high, to After the power reduction is satisfied, the sum of the transmit powers of the uplink channels transmitted in the current uplink subframe does not exceed the preset maximum transmit power. Rate, and the power of the reduced power is taken as the actual transmit power of the uplink channel; for the high priority uplink channel without power reduction, the target transmit power is taken as its actual transmit power;
  • the target transmit power of each uplink channel is taken as its actual transmit power
  • the user equipment 10 determines the target transmit power of the SRS in the current uplink subframe and the actual transmit of the uplink channel on the uplink carrier except the uplink carrier where the SRS is located, that is, the uplink channel that overlaps with the SRS in the current uplink subframe. Whether the sum of the power (that is, the transmit power determined after the power control process for the uplink channel described above) exceeds a preset maximum transmit power;
  • the target transmit power of the SRS transmitted in the current uplink subframe is subjected to equal power reduction (where the periodic SRS and the aperiodic SRS can be further distinguished, and the priority of the aperiodic SRS is higher than the periodic SRS, that is, the priority guarantee is non-
  • the transmit power of the periodic SRS is not reduced.
  • the sum of the transmit powers of the SRSs transmitted in the current uplink subframe does not exceed the preset maximum transmit power minus the uplink carrier except the uplink carrier where the SRS is located.
  • the actual transmit power of the uplink channel, and the transmit power after the power reduction is taken as the actual transmit power of the SRS; when not exceeded, the target transmit power of each SRS is taken as its actual transmit power;
  • the uplink channel/signal priority may be at least one of the following definitions:
  • PUCCH>PUSCH carrying UCI>PUSCH SRS not carrying UCI;
  • the uplink channel/signal priority may be at least one of the following definitions:
  • PUCCH>PRACH> PUSCH carrying UCI> PUSCH SRS not carrying UCI.
  • the SRS includes an aperiodic SRS (Aperiodic-SRS) and a periodic SRS (Responsive SRS), and the aperiodic SRS priority may be higher than or equal to the periodic SRS; the aperiodic SRS priority may also be higher than or equal to the PUSCH not carrying the UCI. ;
  • the preset maximum transmit power may be the maximum transmit power allowed by the user equipment 10, and/or the maximum transmit power allowed in each frequency band; if the uplink channel/signal in the current uplink subframe overlaps with the PRACH, If the priority of the PRACH is high (the priority of the transmit power is not required to be reduced), then all uplink channels/signals in the current uplink subframe or uplink channels/signals overlapping with the PRACH in the current uplink subframe are present according to the foregoing.
  • the SRS and the method in the absence of SRS transmission perform power control, and the preset maximum transmit power used may also be the maximum transmit power allowed by the user equipment 10 or the maximum transmit power allowed by the frequency band minus the transmit power of the PRACH.
  • the Rel-10 power control method is reused in the current uplink subframe as much as possible to determine the transmit power of each uplink channel/signal, the standardization complexity is ensured, and the user equipment is guaranteed to work normally.
  • the SRS is in the uplink carrier of the last SC-FDMA symbol transmission, and the K vacant SC-FDMA symbols are the first K symbols in the current uplink subframe, and at the same time, in order to avoid introducing new due to SC-FDMA symbol vacancy
  • the carrier with the smallest TA should be selected as the uplink primary component carrier.
  • the SRS is in the uplink carrier of the first SC-FDMA symbol transmission, and the K vacant SC-FDMA symbols are the last K symbols in the current uplink subframe, and at the same time, in order to avoid preserving excessive SC-FDMA symbols. Affecting PUCCH transmission, and avoiding introducing a new PUCCH format definition in a non-SRS subframe, the carrier with the largest TA should be selected as the uplink primary component carrier.
  • the foregoing uplink channel/signal includes but is not limited to the uplink channel PUCCH, PUSCH, PRACH, and the uplink signal SRS, etc.; wherein the meaning of the above “uplink channel/signal” means: only the uplink channel exists, or only the uplink signal exists, or the uplink channel and The upstream signals are present at the same time.
  • the uplink information includes uplink control information and uplink data; the uplink control information includes ACK/NACK, periodic/aperiodic CSI, and SR; and the CSI includes CQI information, PMI information, RI information, and PTI information.
  • the above method is applicable to both intra-band and inter-band CA; and is applicable to both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) systems.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), a relay node (RN) device, or other network side devices.
  • a station such as a macro base station, a home base station, etc.
  • RN relay node
  • the user equipment in the system for transmitting uplink information in the embodiment of the present invention includes: a first determining module 300 and a transmitting module 310.
  • the first determining module 300 is configured to: when there are multiple uplinks, determine that the uplink carrier reserves, in the current uplink subframe, that the SC-FDMA symbols do not transmit uplink information, where K is a non-negative integer;
  • the transmitting module 310 is configured to map the uplink information to be transmitted to the uplink carrier, and transmit the SC-FDMA symbol for transmitting uplink information except the K SC-FDMA symbols in the current uplink subframe.
  • the first determining module 300 determines K SC-FDMA symbols according to the configuration of the high layer signaling or the PDCCH signaling; or determines K SC-FDMA symbols according to a pre-arrangement with the network side device; or according to the PDCCH letter
  • the specific bit field in the command determines whether there is a reserved SC-FDMA symbol in the current uplink subframe, and when it is determined to exist, determines that the K-SC-FDMA symbols pre-configured by the high-layer signaling or the PDCCH signaling are K SC-FDMA symbols.
  • the PDCCH is corresponding to The PDCCH in the downlink subframe in which the ACK/NACK feedback is performed in the current uplink subframe, and/or the PDCCH corresponding to the PUSCH in the current uplink subframe.
  • the higher layer signaling is RRC signaling or MAC signaling.
  • the corresponding uplinks of the different uplink carriers are the same or different in the same uplink subframe; the K corresponding to the different uplink carriers in the different uplink subframes are the same or different.
  • the K SC-FDMA symbols determined by the first determining module 300 are the first K SC-FDMA symbols in the current uplink subframe; or the K SC-FDMA symbols determined by the first determining module 300 are the current uplink subframe.
  • the first determining module 300 determines the last SC-FDMA symbol transmission of the SRS in the current uplink subframe, and the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe; or
  • the first determining module 300 determines the first SC-FDMA symbol transmission of the SRS in the current uplink subframe, and the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe.
  • the first determining module 300 determines that only the uplink carrier except the uplink carrier with the smallest uplink TA is in one uplink. K SC-FDMA symbols are reserved in the frame, or it is determined that the uplink carrier with the smallest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe.
  • the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is smaller than the uplink carrier, the other uplink carriers are in the previous phase of the current uplink subframe.
  • the uplink information is not transmitted on the last K SC-FDMA symbols in the adjacent uplink subframe, and the first determining module 300 determines that the first K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • the first determining module 300 determines that only the uplink carrier except the uplink carrier with the largest uplink TA is in one uplink.
  • the K SC-FDMA symbols are reserved in the frame, or it is determined that the uplink carrier with the largest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe.
  • the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is greater than the uplink carrier, the other uplink carriers are in the next phase of the current uplink subframe.
  • the uplink information is not transmitted on the first K SC-FDMA symbols in the adjacent uplink subframe, and the first determining module 300 determines that the K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • the transmission module 310 performs a time-domain orthogonal spreading transmission format for the PUCCH transmission by using SC-FDMA symbols for transmitting uplink information in addition to K SC-FDMA symbols in one uplink subframe. Transmitting uplink information; or, for PUSCH transmission, performing rate matching transmission uplink information based on SC-FDMA symbols for transmitting uplink information except for K SC-FDMA symbols in one uplink subframe.
  • the transmission module 310 is for! >1;. . 11 transmission, using shortened PUCCH format to transmit uplink information; or, for PUSCH transmission, based on the last SC-FDMA symbol reservation for SRS transmission for rate matching transmission uplink information.
  • the first determining module 300 determines that the uplink carrier is other than the uplink carrier where the PRACH is located.
  • No uplink information is transmitted in the current uplink subframe; or for an uplink carrier other than the uplink carrier where the PRACH is located, if the uplink channel is reserved for K SC-FDMA symbols on the uplink carrier in the current uplink subframe/ The signal still overlaps with the PRACH on all or part of the SC-FDMA symbol, determining that the uplink carrier does not transmit any uplink information in the current uplink subframe; or powering the uplink channel/signal in the current uplink subframe based on the transmit power of the PRACH. Controlling, and transmitting the uplink channel/signal in the current uplink subframe according to the power consumption after the power control;
  • the uplink channel/signal includes at least one or more of PUCCH, PUSCH, and SRS.
  • the first determination is performed.
  • the module 300 determines that the uplink carrier other than the uplink carrier having the largest uplink TA does not transmit uplink information after the uplink channel in the current uplink subframe is further reserved.
  • a determining module 300 determines that the uplink carrier other than the uplink carrier with the smallest uplink TA further reserves the uplink information in the first two SC-FDMA symbols in the uplink channel in the current uplink subframe;
  • the uplink channel includes at least one of PUCCH, PUSCH, and PRACH.
  • the transmission module 310 transmits only the uplink carrier with the same uplink TA in the same uplink subframe.
  • the network side device in the system for transmitting uplink information in the embodiment of the present invention includes: a second determining module
  • the second determining module 400 is configured to determine that the uplink carrier reserves K SC-FDMA symbols in the current uplink subframe, and does not transmit uplink information, where K is a non-negative integer;
  • the receiving module 410 is configured to receive, by using an uplink carrier, uplink information sent by the user equipment that has multiple uplink TAs in other SC-FDMA symbols except the SC-FDMA symbol that does not transmit uplink information in the current uplink subframe.
  • the second determining module 400 configures K SC-FDMA symbols for the user equipment by using high layer signaling or PDCCH signaling; or notifying K SC-FDMA symbols by means of a pre-agreed with the user equipment; or by using a high-level letter Let the PDCCH signaling notify the user equipment in advance of the K SC-FDMA symbols, and pass the PDCCH.
  • the specific bit field in the signaling configures whether the user equipment reserves K SC-FDMA symbols in the current uplink subframe, where the PDCCH is a PDCCH in a downlink subframe corresponding to ACK/NACK feedback in the current uplink subframe, and / or PDCCH corresponding to the PUSCH in the current uplink subframe.
  • the higher layer signaling is RRC signaling or MAC signaling.
  • the corresponding uplinks of the different uplink carriers are the same or different in the same uplink subframe; the K corresponding to the different uplink carriers in the different uplink subframes are the same or different.
  • the K SC-FDMA symbols determined by the second determining module 400 are the first K SC-FDMA symbols in the current uplink subframe; or the K SC-FDMA symbols determined by the second determining module 400 are the current uplink subframe.
  • the second determining module 400 determines the last SC-FDMA symbol transmission of the SRS in the current uplink subframe, and the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe; or The second determining module 400 determines the first SC-FDMA symbol transmission of the SRS in the current uplink subframe, and the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe.
  • the second determining module 400 determines that only the uplink carrier except the uplink carrier with the smallest uplink TA is in one uplink.
  • K SC-FDMA symbols are reserved in the frame, or it is determined that the uplink carrier with the smallest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe.
  • the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is smaller than the uplink carrier, the other uplink carriers are in the previous phase of the current uplink subframe.
  • the uplink information is not transmitted on the last K SC-FDMA symbols in the adjacent uplink subframe, and the second determining module 400 determines that the first K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • the second determining module 400 determines that only the uplink carrier other than the uplink carrier having the largest uplink TA is in one uplink.
  • the K SC-FDMA symbols are reserved in the frame, or it is determined that the uplink carrier with the largest uplink TA does not need to reserve SC-FDMA symbols in one uplink subframe.
  • the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe, for one uplink carrier, if the uplink TA is greater than the uplink carrier, the other uplink carriers are in the next phase of the current uplink subframe.
  • the uplink information is not transmitted on the first K SC-FDMA symbols in the adjacent uplink subframe, and the second determining module 400 determines that the K SC-FDMA symbols are not reserved for the uplink carrier in the current uplink subframe.
  • the receiving module 410 performs time-domain orthogonal despreading transmission on the PUCCH transmission by using SC-FDMA symbols for transmitting uplink information in addition to K SC-FDMA symbols in one uplink subframe.
  • the format receives uplink information; or, for PUSCH transmission, is based on the division of K SC-FDMA symbols in one uplink subframe.
  • Other SC-FDMA symbols for transmitting uplink information perform de-rate matching to receive uplink information.
  • the receiving module 410 receives the uplink information by using the shortened PUCCH format for the PUCCH transmission; or, for the PUSCH Transmission, based on the last SC-FDMA symbol reservation for transmitting SRS for de-rate matching reception uplink information.
  • the second determining module 400 determines the uplink carrier except the PRACH.
  • the uplink carrier does not transmit any uplink information in the current uplink subframe; or the uplink carrier other than the uplink carrier where the PRACH is located, if K SC-FDMA symbols are reserved on the uplink carrier in the current uplink subframe
  • the uplink channel/signal still overlaps with the PRACH on all or part of the SC-FDMA symbol, and determines that the uplink carrier does not receive any uplink data in the current uplink subframe; or determines that each uplink carrier in the current uplink subframe receives the uplink.
  • the uplink channel/signal includes at least one or more of PUCCH, PUSCH, and SRS.
  • the second determination The module 400 determines that the uplink carrier other than the uplink carrier having the largest uplink TA does not transmit uplink information after the uplink channel in the current uplink subframe is further reserved; or, if the current uplink subframe is in the first
  • the SC-FDMA symbol has an SRS transmission or the current uplink subframe is an SRS transmission subframe and the SRS is transmitted in the first SC-FDMA symbol in one uplink subframe
  • the second determining module 400 determines the uplink carrier except the smallest uplink TA.
  • the uplink carrier other than the uplink channel in the current uplink subframe further reserves the first two SC-FDMA symbols without transmitting uplink information;
  • the uplink channel includes at least one of PUCCH, PUSCH, and PRACH.
  • the receiving module 410 receives only the SRS of the uplink carrier with the same uplink TA in the same uplink subframe.
  • the method for transmitting uplink information and receiving uplink information is also provided in the embodiment of the present invention.
  • the methods for solving the problem are similar to the user equipment and the network side device in the system for transmitting uplink information, respectively.
  • the implementation can be seen in the implementation of the system, and the repetition will not be repeated.
  • the method for transmitting uplink information in the embodiment of the present invention includes the following steps:
  • Step 501 A user equipment with multiple uplink TAs, determining that the uplink carrier reserves K single-carrier frequency division multiple access in the current uplink subframe.
  • the SC-FDMA symbol does not transmit uplink information, where K is a non-negative integer;
  • Step 502 The user equipment maps the uplink information to be transmitted to the uplink carrier, and performs transmission on the SC-FDMA symbol for transmitting uplink information except the K SC-FDMA symbols in the current uplink subframe.
  • the symbol is: in the SC-FDMA symbol included in the uplink channel in an uplink subframe, except for the reserved K SC-FDMA symbols, the SC-FDMA symbol used to transmit the pilot RS, and when there is SRS transmission or current
  • the SC-FDMA symbol other than the SC-FDMA symbol reserved for SRS transmission when the subframe is a system SRS subframe.
  • the user equipment directly determines K SC-FDMA symbols according to the configuration of the high layer signaling or the PDCCH signaling; or the user equipment determines K SC-FDMA symbols according to a pre-arrangement with the network side device; or The user equipment determines whether there is a reserved SC-FDMA symbol in the current uplink subframe according to the specific bit field in the PDCCH signaling, and further determines the K SC-FDMA symbols pre-configured by the high layer signaling or the PDCCH signaling when the presence is determined.
  • the SC-FDMA symbol with no reservation in the current uplink subframe is determined, where the PDCCH is a positive acknowledgement ACK/negative acknowledgement NACK in the current uplink subframe.
  • the high layer signaling is radio resource control RRC signaling or medium access control MAC signaling.
  • each TA group corresponds to one reserved SC-FDMA symbol set, and each carrier belonging to the TA group is in each uplink subframe.
  • the reserved SC-FDMA symbols in the set are some or all of the SC-FDMA symbols in the set, which are selected by signaling or by an agreed manner.
  • different uplink carriers are the same or different in the corresponding uplink subframes
  • the same uplink carrier is the same or different in K corresponding to different uplink subframes.
  • the SRS is transmitted in the last SC-FDMA symbol in the current uplink subframe, and the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe; or the SRS is in the current uplink subframe.
  • the first SC-FDMA symbol is transmitted, and the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe.
  • the user equipment determines K SC-FDMA symbols, and further includes:
  • the user equipment determines to reserve K SC-FDMA symbols in only one uplink subframe for the uplink carrier except the uplink carrier with the smallest uplink TA, or the user equipment determines that the uplink carrier with the smallest uplink TA is in one uplink subframe. There is no need to reserve SC-FDMA symbols.
  • the user equipment determines K SC-FDMA symbols, and further includes:
  • the uplink information is not transmitted on the last K SC-FDMA symbols in the previous adjacent uplink subframe of the current uplink subframe, and the user equipment determines that the uplink information is currently available.
  • the first K SC-FDMA symbols are not reserved for the uplink carrier in the uplink subframe.
  • the user equipment determines K SC-FDMA symbols, and further includes:
  • the user equipment determines that only K SC-FDMA symbols are reserved in one uplink subframe for the uplink carrier except the uplink carrier with the largest uplink TA, or the user equipment determines that the uplink carrier with the largest uplink TA is in one uplink subframe. There is no need to reserve SC-FDMA symbols.
  • the user equipment determines K SC-FDMA symbols, and further includes:
  • the uplink information is not transmitted on the first K SC-FDMA symbols in the next adjacent uplink subframe of the current uplink subframe, and the user equipment determines the current uplink subframe.
  • the K SC-FDMA symbols are not reserved for the uplink carrier in the frame.
  • the user equipment maps the uplink information to be transmitted to the uplink carrier, and transmits the uplink information on the SC-FDMA symbol for transmitting uplink information except the K SC-FDMA symbols in the current uplink subframe.
  • the method includes: for PUCCH transmission, the user equipment uses the SC-FDMA symbol for transmitting uplink information except for the K SC-FDMA symbols in one uplink subframe to perform uplink time-spreading transmission format to transmit uplink information. Or,
  • the user equipment For PUSCH transmission, the user equipment performs rate matching transmission uplink information based on other SC-FDMA symbols for transmitting uplink information except for K SC-FDMA symbols in one uplink subframe.
  • the user equipment maps the uplink information to be transmitted to the uplink carrier in the current uplink.
  • the transmission is performed on the SC-FDMA symbol for transmitting uplink information except for the K SC-FDMA symbols in the frame, and further includes: For PUCCH transmission.
  • the user equipment transmits the uplink information by using the shortened PUCCH format; or, for the PUSCH transmission, the user equipment performs rate matching transmission uplink information based on the last SC-FDMA symbol reserved for transmitting the SRS.
  • the user equipment determines an uplink other than the uplink carrier where the PRACH is located. No uplink information is transmitted on the carrier in the current uplink subframe; or
  • the PR/FDMA symbol remains on all or part of the SC-FDMA symbol.
  • the user equipment determines that the uplink carrier does not transmit any uplink information in the current uplink subframe; or the user equipment performs power control on the uplink channel/signal in the current uplink subframe based on the PRACH transmit power, and transmits according to the power control. Power transmission of the uplink channel/signal in the current uplink subframe;
  • the uplink channel/signal includes at least one or more of PUCCH, PUSCH, and SRS.
  • the user equipment determines The uplink carrier other than the uplink carrier with the largest uplink TA does not transmit uplink information after the uplink channel in the current uplink subframe is further reserved; or
  • the user equipment determines that in addition to having The uplink carrier other than the uplink carrier of the minimum uplink TA further reserves the uplink information of the first two SC-FDMA symbols in the uplink channel in the current uplink subframe;
  • the uplink channel includes at least one of PUCCH, PUSCH, and PRACH.
  • the user equipment only has SRS transmission of the uplink carrier with the same uplink TA in the same uplink subframe.
  • the method for receiving uplink information in the embodiment of the present invention includes the following steps:
  • Step 601 The network side device determines that the uplink carrier reserves K SC-FDMA symbols in the current uplink subframe, and does not transmit uplink information, where K is a non-negative integer;
  • Step 602 The network side device receives, by using the uplink carrier, uplink information sent by the user equipment that has multiple uplink TAs in the current uplink subframe except for the SC-FDMA symbol that does not transmit the uplink information.
  • the network side device configures K SC-FDMA symbols for the user equipment by using high layer signaling or PDCCH signaling; or the network side device notifies K SC-FDMA symbols by means agreed in advance with the user equipment; or the network side The device notifies the K SC-FDMA symbols to the user equipment in advance through the high layer signaling or the PDCCH signaling, and configures whether the user equipment reserves K SC-FDMA symbols in the current uplink subframe by using a specific bit field in the PDCCH signaling.
  • the PDCCH is a PDCCH in a downlink subframe corresponding to positive acknowledgement ACK/negative acknowledgement NACK feedback in the current uplink subframe, and/or a PDCCH corresponding to the PUSCH in the current uplink subframe.
  • the higher layer signaling is RRC signaling or MAC signaling.
  • the corresponding uplinks of the different uplink carriers are the same or different in the same uplink subframe; the K corresponding to the different uplink carriers in the different uplink subframes are the same or different.
  • the SRS is transmitted in the last SC-FDMA symbol in the current uplink subframe, and the K SC-FDMA symbols are the first K SC-FDMA symbols in the current uplink subframe; or the SRS is in the current uplink subframe.
  • the first SC-FDMA symbol is transmitted, and the K SC-FDMA symbols are the last K SC-FDMA symbols in the current uplink subframe.
  • the network side device determines K SC-FDMA symbols, and further includes: The network side device determines that only K SC-FDMA symbols are reserved in one uplink subframe for the uplink carrier except the uplink carrier with the smallest uplink TA, or the network side device determines that the uplink carrier with the smallest uplink TA is in one uplink subframe. There is no need to reserve SC-FDMA symbols in the frame.
  • the network side device determines K SC-FDMA symbols, and further includes:
  • the uplink information is not transmitted on the last K SC-FDMA symbols in the previous adjacent uplink subframe of the current uplink subframe, and the network side device determines the current uplink.
  • the first K SC-FDMA symbols are not reserved for the uplink carrier in the subframe.
  • the network side device determines K SC-FDMA symbols, and further includes:
  • the network side device determines that only K SC-FDMA symbols are reserved in one uplink subframe for the uplink carrier except the uplink carrier with the largest uplink TA, or the network side device determines that the uplink carrier with the largest uplink TA is in one uplink subframe. There is no need to reserve SC-FDMA symbols in the frame.
  • the network side device determines K SC-FDMA symbols, and further includes:
  • the uplink information is not transmitted on the first K SC-FDMA symbols in the next adjacent uplink subframe of the current uplink subframe, and the network side device determines the current uplink.
  • the K-SC-FDMA symbols are not reserved for the uplink carrier in the subframe.
  • the network side device receives, by the uplink carrier, another SC-FDMA symbol other than the SC-FDMA symbol that does not transmit the uplink information in the current uplink subframe, and receives the user equipment transmission and transmission with multiple uplink TAs.
  • Uplink information including:
  • the network side device receives uplink information by using a SC-FDMA symbol for transmitting uplink information in an uplink subframe to perform time domain orthogonal despreading in a transmission format based on other SC-FDMA symbols for transmitting uplink information.
  • the network side device For PUSCH transmission, the network side device performs de-rate matching to receive uplink information based on SC-FDMA symbols for transmitting uplink information except for K SC-FDMA symbols in one uplink subframe.
  • the network side device uses the uplink carrier to transmit the SC information of the uplink information in the current uplink subframe.
  • the SC-FDMA symbol other than the FDMA symbol receives the uplink information transmitted by the user equipment with multiple uplink TAs, and further includes:
  • the network side device receives the uplink information by using the shortened PUCCH format; or for the PUSCH transmission, the network side device reserves the uplink information for the SRS transmission based on the last SC-FDMA symbol reservation for the SRS transmission.
  • the method further includes:
  • the network side device determines that no uplink information is received in the current uplink subframe on the uplink carrier except the uplink carrier where the PRACH is located; or
  • the PR/FDMA symbol remains on all or part of the SC-FDMA symbol.
  • the network side device determines that the uplink carrier does not receive any uplink data in the current uplink subframe; or the network side device determines that each uplink carrier in the current uplink subframe receives the uplink information;
  • the uplink channel/signal includes at least one or more of PUCCH, PUSCH, and SRS.
  • the method further includes: if there is an SRS transmission in the last SC-FDMA symbol in the current uplink subframe or the current uplink subframe is an SRS transmission subframe and the last SC-FDMA symbol of the SRS in one uplink subframe
  • the network side device determines that the uplink carrier other than the uplink carrier having the largest uplink TA does not transmit the uplink information after the uplink channel in the current uplink subframe is further reserved; or
  • the network side device determines The uplink carrier other than the uplink carrier with the smallest uplink TA further reserves the uplink information in the first 2 SC-FDMA symbols in the uplink channel in the current uplink subframe;
  • the uplink channel includes at least one of PUCCH, PUSCH, and PRACH.
  • the network side device only receives the SRS of the uplink carrier with the same uplink TA in the same uplink subframe.
  • a process may be synthesized to form another method for transmitting uplink information, that is, step 501 to step 502 are performed first, and then step 602 is performed. There is no necessary connection between step 602 and step 501 and step 502, and only need to be guaranteed before step 602.
  • Scenario 1 The UE aggregates 3 carriers for uplink transmission, and belongs to different TA groups.
  • the TAs of carriers 1 and 2 are smaller than carrier 3, and the difference is about 0.5 SC-FDMA symbols.
  • carrier 1 and carrier 2 are in the current uplink subframe.
  • the last SC-FDMA symbol will partially overlap with the first SC-FDMA symbol of carrier 3 in the next adjacent uplink subframe, at this time:
  • the UE receives the high layer signaling or the PDCCH signaling sent by the base station, or the UE and the base station pre-agree to determine the carrier.
  • the last SC-FDMA symbol of all uplink subframes on 1 and 2 is vacant and does not transmit any uplink information; the carrier TA has the largest TA, and the last SC-FDMA symbol of the uplink channel/signal on it does not match the other carriers.
  • the first SC-FDMA symbol in the next adjacent uplink subframe overlaps, so there is no need to vacate the uplink channel/signal on carrier 3.
  • subframe i the UE's PUCCH on carrier 1 is transmitted using shortened PUCCH format; the PUSCH on carrier 2 is rate matched for transmission based on the last SC-FDMA symbol vacancy;
  • subframe i-1 the PUCCH of the UE on carrier 1 is transmitted using the shortened PUCCH format; the PUSCH on carrier 2 is rate matched transmission based on the last SC-FDMA symbol vacancy; in subframe i, there is no need to vacate the SC- The FDMA symbol, ⁇ transmits each upstream channel in a conventional manner.
  • the UE calculates the target transmit power of the uplink channel on each carrier according to the power control parameter and the power control formula on each carrier, and determines whether the sum of the UE transmit powers in the current subframe i exceeds the maximum transmit power, if not, Then, each uplink channel is transmitted according to the target transmit power; if it exceeds, the PUCCH transmit power is preferentially guaranteed not to be reduced according to the channel priority, and the equal-proportion power is reduced for the PUSCH on the carrier 2 and the carrier 3 to satisfy, after the power is reduced,
  • the sum of the PUSCH transmit powers on carriers 2, 3 does not exceed the maximum transmit power minus the transmit power of the PUCCH on carrier 1: the PUCCH is transmitted with the target transmit power, and the PUSCH is transmitted according to the transmit power after the power is reduced.
  • Method 1 it is determined that the PUCCH on Carrier 1 in each uplink subframe is received by shortened PUCCH format, and the PUSCH on Carrier 2 is subjected to de-rate matching reception based on the last SC-FDMA symbol vacancy;
  • Method 2 in subframe i-1, the receiving method is the same as method 1, and in subframe i, it is received according to a conventional method.
  • Scenario 2 The UE aggregates 4 carriers for uplink transmission, and the TA group is different.
  • the TA pre-carrier 1 of carrier 2 has about 0.5 SC-FDMA symbols
  • the TA pre-carrier 1 of carrier 3 and carrier 4 has about 0.8 SC-FDMA symbols.
  • the first SC-FDMA symbol of the carrier 3, 4 in the uplink subframe i overlaps with the last SC-FDMA symbol of the carrier 1, 2 in the adjacent uplink subframe i-1
  • the carrier 2 is
  • the first SC-FDMA symbol in the uplink subframe i overlaps with the last SC-FDMA symbol of the carrier 1 in the adjacent uplink subframe i+1
  • the SRS is transmitted in the last SC-FDMA symbol, at this time:
  • the UE receives the high layer signaling or PDCCH signaling sent by the base station, or the UE and the base station pre-arrange, and determines that the first SC-FDMA symbol of the current or all uplink subframes on the carriers 2, 3, 4 is vacant and does not transmit any uplink information, As shown in FIG. 9; since the TA of carrier 1 is the smallest, the first SC-FDMA symbol of the uplink channel/signal on the carrier will not be the last SC-FDMA symbol in the previous adjacent uplink subframe on the other carriers. Simultaneous transmission, so there is no need to vacate any SC-FDMA symbols for the upstream channel/signal on carrier 1 to ensure its transmission efficiency;
  • the UE has both SRS and PUCCH transmissions on the carrier 1, and when the configuration supports SRS and ACK/NACK transmission simultaneously, the PUCCH is transmitted by using the shortened PUCCH format, otherwise the SRS is discarded, and the normal PUCCH format is used for transmission;
  • Carrier 2 only has a PUSCH transmission, and the first SC-FDMA symbol is vacant, then the rate matching transmission is performed on the PUSCH based on the first SC-FDMA symbol vacancy;
  • the UE has both SRS and PUSCH transmissions on the carrier 3, and the first one If the SC-FDMA symbol is vacant, the first SC-FDMA symbol is vacant and the last SC-FDMA symbol reserved for the SRS to perform rate matching transmission on the PUSCH;
  • the UE has only SRS transmission on the carrier 4, and the first SC- If the FDMA symbol is vacant, the UE transmits the SRS on the last SC-FDMA symbol of the carrier;
  • the UE calculates the target transmit power of the uplink channel on each carrier according to the power control parameters and the power control formula on each carrier, and performs power reduction according to the following steps:
  • Step 1 Determine whether the sum of the target transmit powers of the PUCCH on the carrier 1 and the PUSCH on the carriers 2 and 3 in the current subframe i exceeds the maximum transmit power. If it exceeds, according to the channel priority, the PUCCH transmit power is preferentially guaranteed not to decrease. Equalizing the power of the PUSCH on the carrier 2 and the carrier 3 to meet, after the power is reduced, the sum of the transmit powers of the PUSCHs on the carriers 2 and 3 in the current subframe i does not exceed the maximum transmit power minus the carrier 1 The transmit power of the PUCCH is obtained as the actual transmit power of the PUSCH on the carriers 2 and 3; otherwise, the target transmit power of the PUSCH on the carriers 2 and 3 is taken as the actual transmit power;
  • Step 2 Determine the target transmit power of the PUCCH on the carrier 1 in the current subframe i, the actual transmit power of the PUSCH on the carrier 2 (ie, the power obtained in step 1), and the sum of the target transmit powers of the SRSs on the carriers 3 and 4.
  • the maximum transmit power is exceeded, if it exceeds, the SRS on the carriers 3, 4 is equally proportionally reduced, so as to satisfy the power reduction, the sum of the transmit powers of the SRSs on the carriers 3, 4 does not exceed the maximum transmit power minus the carrier 1 PUCCH, the actual transmit power of the PUSCH on carrier 2, and record the transmit power P3, P4 after the SRS power reduction on carriers 3, 4; if not, record the target transmit power of the SRS on carriers 3, 4 as P3 , P4;
  • Step 3 Determine whether the sum of the target transmit power of the SRS on the carrier 1 in the current subframe i, the actual transmit power of the PUSCH on the carrier 2 (ie, the power obtained in step 1), and the target transmit power of the SRS on the carriers 3 and 4 exceeds Maximum transmit power, if exceeded, equalizes the power of the SRS on carriers 1, 3, and 4 to meet the power reduction.
  • the sum of the transmit powers of the SRSs on carriers 1, 3, and 4 does not exceed the maximum transmit power minus the carrier.
  • Step 4 Determine the smaller of ⁇ 3 and P3' as the actual transmit power of SRS on carrier 3; determine the smaller of ⁇ 4 and P4' as the actual transmit power of SRS on carrier 4;
  • the specific vacancy situation is the same as mode 1; in addition, it is considered that the SRS of the uplink carriers 3 and 4 having the largest ⁇ overlaps with the last two SC-FDMA symbols of the carrier channel 1 and the carrier 2 upstream channel, in order to avoid the simultaneous SRS at 2
  • the SC-FDMA symbols are transmitted simultaneously with the uplink channel on other carriers, and may additionally configure or stipulate that the last two SC-FDMA symbols in the current subframe on Carrier 1 and Carrier 2 do not transmit any uplink channel bearer information (such as UCI). And uplink data), but the SRS can be transmitted in the last SC-FDMA symbol; as shown in FIG. 10;
  • the UE has both SRS and PUCCH transmissions on the carrier 1, and the PUCCH needs to vacate the last two SC-FDMA symbol transmissions.
  • a new PUCCH format needs to be defined, and a new time domain spreading length is used to avoid Data is mapped to the last 2 SC-FDMA symbols, SRS is transmitted in the last SC-FDMA symbol;
  • UE has only PUSCH transmission on carrier 2, and the first SC-FDMA symbol is vacant, and the last 2 SC-FDMA symbols are vacant, then Performing rate matching transmission on the PUSCH based on the first and last 2 SC-FDMA symbols vacant;
  • the UE has both SRS and PUSCH transmissions on the carrier 3, and only the first SC-FDMA symbol is vacant, based on the first SC-
  • the FDMA symbol is vacant and the last SC-FDMA symbol is reserved for the SRS to perform rate matching transmission on the PUSCH;
  • the UE has only SRS transmission on the carrier 4, and only the first SC-FDMA symbol is vacant, then the last
  • the UE calculates the target transmit power of the uplink channel on each carrier according to the power control parameters and the power control formula on each carrier, and performs power reduction according to the following steps:
  • Step 1 Determine whether the sum of the target transmit powers of the PUCCH on the carrier 1 and the PUSCH on the carriers 2 and 3 in the current subframe i exceeds the maximum transmit power. If it exceeds, according to the channel priority, the PUCCH transmit power is preferentially guaranteed not to decrease. Equalizing the power of the PUSCH on the carrier 2 and the carrier 3 to meet, after the power is reduced, the sum of the transmit powers of the PUSCHs on the carriers 2 and 3 in the current subframe i does not exceed the maximum transmit power minus the carrier 1 The transmit power of the PUCCH is obtained as the actual transmit power of the PUSCH on the carriers 2 and 3; otherwise, the target transmit power of the PUSCH on the carriers 2 and 3 is taken as the actual transmit power;
  • Step 2 Determine whether the sum of the target transmit power of the SRS on the carrier 1 in the current subframe i and the target transmit power of the SRS on the carriers 3, 4 exceeds the maximum transmit power, if exceeded, on the carriers 1, 3, and 4.
  • the SRS performs a proportional power reduction to meet the power reduction, and the sum of the transmit powers of the SRSs on the carriers 1, 3, and 4 does not exceed the maximum transmit power, and obtains the actual transmit power of the SRSs on the carriers 1, 3, and 4; , determining that the target transmit power of the SRS on carriers 1, 3, and 4 is the actual transmit power;
  • Base station side Consistent with the understanding of the UE, for mode 1: in the current subframe i: if SRS and ACK/NACK are supported for simultaneous transmission, the PUCCH and SRS are received on the carrier 1 using the shortened PUCCH format, otherwise the PUCCH is received in the normal PUCCH format; Performing a de-rate matching receiving PUSCH on carrier 2 based on the first SC-FDMA symbol vacancy; performing de-rate matching receiving PUSCH and SRS on carrier 3 based on the first SC-FDMA symbol vacancy and the last SC-FDMA symbol transmission SRS; The SRS is received on the last SC-FDMA symbol on carrier 4.
  • the uplink carrier whose TA is smaller than the carrier in the previous adjacent uplink subframe of the current uplink subframe does not exist on the last SC-FDMA symbol.
  • the UE aggregates 4 carriers for uplink transmission, and the TA group is different, and the TA of the carrier 2 leads the carrier 1
  • TA pre-carrier 1 of carrier 3, 4 is about 0.8 SC-FDMA symbol, then the first SC-FDMA symbol of carrier 3, 4 in uplink subframe i will be with carrier 1, 2
  • the last SC-FDMA symbol in the adjacent uplink subframe i-1 partially overlaps, and the first SC-FDMA symbol of the carrier 2 in the uplink subframe i is adjacent to the carrier 1 in the uplink subframe i+1.
  • the last SC-FDMA symbol in the overlap partially overlaps, the SRS is transmitted in the last SC-FDMA symbol, and there is only one TA SRS transmission in one uplink subframe, at this time:
  • the UE receives the high layer signaling or PDCCH signaling sent by the base station, or the UE and the base station pre-arrange, and determines that the first SC-FDMA symbol of the current or all uplink subframes on the carriers 2, 3, 4 is vacant and does not transmit any uplink information, As shown in FIG. 11; since the TA of carrier 1 is the smallest, the first SC-FDMA symbol of the uplink channel/signal on the carrier will not be the last SC-FDMA symbol in the previous adjacent uplink subframe on the other carriers. Simultaneous transmission, so there is no need to vacate any SC-FDMA symbols for the upstream channel/signal on carrier 1 to ensure its transmission efficiency;
  • the UE has only PUCCH transmission on carrier 1, and transmits in normal PUCCH format; only PUSCH transmission exists in carrier 2, and the first SC-FDMA symbol is vacant, based on the first SC-FDMA
  • the symbol vacant performs rate matching transmission on the PUSCH; the SRS and PUSCH transmissions exist simultaneously on the carrier 3, and the first SC-FDMA symbol is vacant, based on the first SC-FDMA symbol vacancy and the last SC-FDMA symbol reservation
  • the SRS performs rate matching transmission on the PUSCH, and transmits SRS in the last SC-FDMA symbol; only SRS transmission exists in the carrier 4, and the first SC-FDMA symbol is vacant, then the UE is in the last SC-FDMA symbol of the carrier. Transmitting SRS;
  • the UE calculates the target transmit power of the uplink channel on each carrier according to the power control parameters and the power control formula on each carrier, and performs power reduction according to the following steps:
  • Step 1 Determine whether the sum of the target transmit powers of the PUCCH on the carrier 1 and the PUSCH on the carriers 2 and 3 in the current subframe i exceeds the maximum transmit power. If it exceeds, according to the channel priority, the PUCCH transmit power is preferentially guaranteed not to decrease. Equalizing the power of the PUSCH on the carrier 2 and the carrier 3 to meet, after the power is reduced, the sum of the transmit powers of the PUSCHs on the carriers 2 and 3 in the current subframe i does not exceed the maximum transmit power minus the carrier 1 The transmit power of the PUCCH is obtained as the actual transmit power of the PUSCH on the carriers 2 and 3; otherwise, the target transmit power of the PUSCH on the carriers 2 and 3 is taken as the actual transmit power;
  • Step 2 Determine whether the sum of the target transmit power of the SRS on the carriers 3 and 4 in the current subframe i and the actual transmit power of the PUCCH on the carrier 1 and the actual transmit power of the PUSCH on the carrier 2 exceed the maximum transmit power.
  • the SRS on carriers 3, 4 performs equal power reduction to meet the power reduction.
  • the sum of the transmit powers of the SRSs on carriers 3, 4 does not exceed the maximum transmit power minus the actual transmit power of PUCCH on carrier 1 and the PUSCH on carrier 2.
  • the actual transmit power is obtained, and the actual transmit power of the SRS on the carriers 3, 4 is obtained; if not, the target transmit power of the SRS on the carriers 3, 4 is determined to be the actual transmit power;
  • the base station receives the PUCCH on the carrier 1 using the normal PUCCH format; on the carrier 2, the demodulation matching receives the PUSCH based on the first SC-FDMA symbol vacancy; on the carrier 3 Demodulating the received PUSCH and SRS based on the first SC-FDMA symbol vacancy and the last SC-FDMA symbol transmission SRS; receiving the SRS on the last SC-FDMA symbol determined on carrier 4.
  • the uplink carrier with the TA smaller than the carrier in the previous adjacent uplink subframe of the current uplink subframe does not exist on the last SC-FDMA symbol.
  • Data transmission ie, where possible, there is no uplink channel/signal transmission on the uplink carrier where the TA is smaller than the carrier in the previous adjacent uplink subframe, or the PUCCH is shortened format and the last SC-FDMA symbol has no SRS transmission, or the PUSCH is based on
  • Scenario 4 The UE aggregates 4 carriers for uplink transmission, and the TA group is different.
  • the TAs 3 and 4 of the carriers 1 and 2 are about 0.5 SC-FDMA symbols, and the carriers 3 and 4 are the last one of the uplink subframes i.
  • the SC-FDMA symbol will partially overlap with the first SC-FDMA symbol of the carrier 1, 2 in the adjacent uplink subframe i+1, and the SRS is The first SC-FDMA symbol is transmitted, and only one TA of the SRS is transmitted in one uplink subframe.
  • UE side UE side:
  • the UE receives the high layer signaling or PDCCH signaling sent by the base station or the UE and the base station pre-arrange, and determines that the last SC-FDMA symbol of the current or all uplink subframes on the carriers 3, 4 is vacant and does not transmit any uplink information, as shown in FIG. 12 As shown, since the TA of the carriers 1, 2 is the largest, the last SC-FDMA symbol of the uplink channel/signal on the carrier will not be the same as the first SC-FDMA symbol in the next adjacent uplink subframe on the other carriers. Transmission, so there is no need to vacate any SC-FDMA symbols for the upstream channel/signal on carriers 1, 2 to ensure its transmission efficiency;
  • the UE has both PUCCH and SRS transmissions on the carrier 1.
  • a new shortened PUCCH format needs to be defined to support the SRS in the first SC-FDMA symbol transmission.
  • the single implementation manner is to exchange the time domain orthogonal spreading sequence used by the two slots of the shortened PUCCH format in Rel-10, that is, the first time slot uses a time domain orthogonal spreading sequence of length 4,
  • the second SC-FDMA symbol begins to map, and the second time slot uses a time domain orthogonal spreading sequence of length 5.
  • the SRS is transmitted in the first SC-FDMA symbol, otherwise, the SRS is discarded, and the normal PUCCH format is transmitted.
  • the first SC-FDMA symbol reservation is used to transmit the SRS for rate matching transmission of the PUSCH, and the SRS is transmitted in the first SC-FDMA symbol;
  • the last SC-FDMA symbol is vacant, then the rate matching transmission is performed on the PUSCH based on the last SC-FDMA symbol vacancy; the UE according to the power control parameter and the power control formula on each carrier Operators upstream channel obtained on the target transmit power of each carrier, and reducing the power according to the following steps:
  • Step 1 Determine whether the sum of the target transmit powers of the PUCCH on the carrier 1 and the PUSCH on the carriers 2 and 3 in the current subframe i exceeds the maximum transmit power. If it exceeds, according to the channel priority, the PUCCH transmit power is preferentially guaranteed not to decrease. Equalizing the power of the PUSCH on the carrier 2 and the carrier 3 to meet, after the power is reduced, the sum of the transmit powers of the PUSCHs on the carriers 2 and 3 in the current subframe i does not exceed the maximum transmit power minus the carrier 1 The transmit power of the PUCCH is obtained as the actual transmit power of the PUSCH on the carriers 2 and 3; otherwise, the target transmit power of the PUSCH on the carriers 2 and 3 is taken as the actual transmit power;
  • Step 2 Determine whether the sum of the target transmit power of the SRS on the carriers 1 and 2 in the current subframe i and the actual transmit power of the PUSCH on the carrier 3 exceeds the maximum transmit power, and if so, the SRS on the carriers 1, 2, etc.
  • the proportional power is reduced, so as to satisfy the power reduction, the sum of the transmit powers of the SRSs on the carriers 1, 2 does not exceed the maximum transmit power minus the actual transmit power of the PUSCH on the carrier 3, and the actual transmit power of the SRS on the carriers 1, 2 is obtained; Not exceeding, determining that the target transmit power of the SRS on carriers 1, 2 is the actual transmit power;
  • the base station receives the PUCCH and SRS on the carrier 1 with the newly defined shortened PUCCH format; the carrier 2 performs the de-rate matching reception PUSCH based on the first SC-FDMA symbol transmission SRS. SRS; de-rate matching on carrier 3 based on the last SC-FDMA symbol vacancy Receive PUSCH.
  • the uplink carrier with the TA greater than the carrier in the next adjacent uplink subframe of the current uplink subframe is on the first SC-FDMA symbol.
  • Scenario 5 The UE aggregates three carriers for uplink transmission, and the TA group is different.
  • the carrier 2 of the carrier 2 has about 0.5 SC-FDMA symbols, and the carrier 3 transmits the PRACH in the uplink subframe i-1.
  • the format2 preamble sequence) continues for 2 subframes, so carriers 1 and 2 have some or all of the SC-FDMA symbols overlapping with the PRACH in subframe il, subframe i, and subframe i+1.
  • Mode A Since carriers 1 and 2 have some or all of the SC-FDMA symbols overlapping with the PRACH in subframe i-1, subframe i, and subframe i+1, the UE determines that in the subframes of carriers 1 and 2 The uplink information is not transmitted, and the PRACH is transmitted only on the carrier where the PRACH is located, as shown in FIG. 13A; if there are PUCCHs and/or PUSCHs transmitted in these subframes (for example, the base station misroutes the PUSCH, or configures/triggers the SRS/CSI transmission, Or, if the PDSCH is scheduled to perform ACK/NACK feedback, the UE considers that it is a scheduling error and does not transmit these channels.
  • Mode B Since carrier 1 and carrier 2 are in subframe i+1, only the first part of the SC-FDMA symbol overlaps with the PRACH, and the UE may be SC-FDMA that does not overlap with the PRACH in subframes i+1 on carriers 1 and 2.
  • the uplink channel/signal is transmitted on the symbol.
  • the last SC-FDMA symbol in the subframe i+1 of the carrier 2 transmits the SRS (ie, the base station configures the subframe as an SRS subframe).
  • Mode C Supporting the simultaneous transmission of the PRACH and other uplink channels/signals, the UE receiving the high layer signaling or PDCCH signaling sent by the base station or the UE and the base station pre-arranging to determine that the first SC-FDMA symbol in the one subframe of the carrier 2 is vacant Do not transmit any uplink information to avoid simultaneous transmission of the uplink channel/signal in the previous uplink subframe on carrier 1 and the uplink channel/signal in the current uplink subframe on carrier 2; since the TA of carrier 1 is smaller than carrier 2, The first SC-FDMA symbol of the uplink channel/signal on is not transmitted simultaneously with the last SC-FDMA symbol in the previous adjacent uplink subframe on Carrier 2, so the upstream channel on Carrier 1 is not required/ The signal is vacant with any SC-FDMA symbol to ensure its transmission efficiency, as shown in Figure 13C;
  • the specific transmission mode is as follows: the PUCCH and the PUSCH in the Rel-8/910 can be reused on the carrier 1, and the SRS transmission mode is: in the non-SRS subframe, the normal PUCCH format or the PUSCH is used to perform rate matching based on all symbol transmission data; In the subframe, when ACK/NACK and SRS are supported for simultaneous transmission, the shorted PUCCH format is used, and the SRS can be transmitted in the last SC-FDMA symbol, otherwise, the SRS is discarded, the normal PUCCH format is transmitted, or the PUSCH is based on the last SC. - FDMA symbol reservation for rate matching of SRS, SRS can be transmitted in the last SC-FDMA symbol.
  • the PUSCH performs rate matching based on the first SC-FDMA vacancy; in the SRS subframe, the PUSCH is based on the first SC-FDMA vacancy and the last one
  • the SC-FDMA symbol is reserved for rate matching of the SRS, and the SRS can be transmitted in the last SC-FDMA; in addition, the UE needs to calculate the uplink channel on each carrier according to the power control parameter and the power control formula on each carrier.
  • the sum of the target transmit powers of the PUSCHs on carriers 1 and 2 in subframe i exceeds the maximum transmit power minus the transmit power of the PRACH, and if so, the equal power of the PUSCHs on carriers 1 and 2 according to the channel priority After the power is reduced, the sum of the transmit powers of the PUSCHs on carriers 1 and 2 in subframe i does not exceed the maximum transmit power minus the transmit power of the PRACH, and the actual transmit power of the PUSCH on carriers 1 and 2 is obtained; otherwise , using the target transmit power of the PUSCH on carriers 1 and 2 as the actual transmit power;
  • the power of the PUSCH on 2 is reduced to meet the power reduction, and the sum of the transmit power of the PUCCH on carrier 1 and the PUSCH on the second subframe i+1 does not exceed the maximum transmit power minus the transmit power of the PRACH, if When the PUSCH power is reduced to 0, the total transmit power of the UE still exceeds the maximum transmit power, and the transmit power of the PUCCH is further reduced, thereby obtaining the actual transmit power of the PUCCH on the carrier 1 and the PUSCH on the carrier 2; otherwise, the PUCCH on the carrier 1 And the target transmit power of the PUSCH on carrier 2 is taken as the actual transmit power.
  • Mode B Since carrier 1 and carrier 2 are in subframe i+1, only the first part of SC-FDMA symbols overlap with PRACH, and the base station may not overlap with PRACH in subframes i+1 on carriers 1 and 2 The uplink channel/signal is received on the symbol. As shown in FIG. 13B, the last SC-FDMA symbol in the subframe i+1 of the carrier 2 receives the SRS (better, the base station should preferentially configure the subframe as an SRS subframe).
  • Mode C Supporting simultaneous transmission of PRACH and other uplink channels/signals, high-level signaling or PDCCH signaling sent by the base station to the UE or pre-agreed with the UE, the first SC-FDMA symbol in one subframe of the carrier 2 is vacant and not transmitted.
  • the first SC-FDMA symbol of the upstream channel/signal is not transmitted simultaneously with the last SC-FDMA symbol in the previous adjacent uplink subframe on Carrier 2, so there is no need to vacate the upstream channel/signal on Carrier 1.
  • the specific receiving manner is as follows:
  • the base station receives the uplink information in the subframes i and i+1 of the carriers 1 and 2.
  • the carrier 1 can reuse the PUCCH, PUSCH, and SRS transmission modes in the Rel-8/910: in the non-SRS subframe. ⁇ Use normal PUCCH format or PUSCH to perform rate-matching based on all symbol transmission data;
  • SRS subframes when ACK/NACK and SRS are supported for simultaneous transmission, use shortened PUCCH format to receive in the last SC-FDMA symbol.
  • SRS otherwise, does not receive SRS, uses normal PUCCH format transmission, or PUSCH performs de-rate matching based on the last SC-FDMA symbol reservation for SRS, and can receive SRS in the last SC-FDMA symbol.
  • the PUSCH performs de-rate matching based on the first SC-FDMA vacancy; in the SRS subframe, the PUSCH is based on the first SC-FDMA vacancy and the last SC-FDMA symbol reservation The SRS performs rate-matching and can receive the SRS in the last SC-FDMA.
  • the uplink carrier with the TA smaller than the carrier in the next adjacent uplink subframe of the current uplink subframe does not exist on the last SC-FDMA symbol.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions are provided for implementing one or more processes and/or block diagrams in the flowchart The steps of the function specified in the box or in multiple boxes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及无线通信技术领域,特别涉及一种传输和接收上行信息的方法、系统和设备,用以解决不同定时提前量分组(TAgroup)中的载波由于上行发送时间不对齐而导致相邻子帧中的上行信道/信号在部分单载波频分多址接入(SC-FDMA)符号发生碰撞的问题。本发明实施例提供的方法包括:具有多个上行TA的用户设备确定上行载波在当前上行子帧中预留K个SC-FDMA符号不传输上行信息,其中K是非负整数(501),用户设备将待传输的上行信息映射到上行载波在当前上行子帧中除K个SC-FDMA符号之外的其他用于传输上行信息的SC-FDMA符号上进行传输(502)。采用本发明实施例能够避免不同TAgroup中的载波由于上行发送时间不对齐而导致相邻子帧中的上行信道/信号在部分SC-FDMA符号发生碰撞的问题。

Description

一种传输和接收上行信息的方法、 系统和设备 本申请要求在 2012年 1月 13日提交中国专利局、 申请号为 201210011116.6、 发明名称 为"一种传输和接收上行信息的方法、 系统和设备"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种传输和接收上行信息的方法、 系统和设 备。 背景技术
长期演进增强 ( Long Term Evolution- Advanced , LTE-A )版本 10 ( Release-10, Rel-10 ) 上行仅支持频带内 (Intra-band ) 的载波聚合(Carrier Aggregation, CA ), 认为各个载波的 无线信号传播特性近似, 因此各载波都基于主成员载波( Primary Component Carrier, PCC ) 上的随机接入(Random Access, RA )过程获得的上行定时提前量( Time Advance, TA ) 进行上行发送时间的调整, 即多个载波的上行发送时间对齐, 因此不同载波上的上行发送 时间对齐, 不会出现不同载波上的当前上行子帧中的上行信道 /信号与前一个和 /或后一个 相邻上行子帧中的上行信道 /信号碰撞。
在 LTE-ARel-11中, 可以支持上行不同频带(inter-band )的 CA, 以及宏基站(Macro e B )和远程无线头 (Remote Radio Head, RRH ) 混合的 CA部署方案。 由于不同频带的 无线信号传播特性不同, 并且宏基站和 RRH所经过的传播路径不同, 会导致不同载波发 送的信号到达基站的时间出现差异, 即传输时延不同。 因此, 在 Rel-11中, 不同载波可能 使用不同的 TA (即 Multi-TA )进行上行发送时间调整, 多个载波的上行 TA不一定相同。 为此, 引入了 TA组(group )概念, 将具有相同或相似传输时延的载波分为一组, 称为一 个 TA group , 属于同一个 TA group的载波使用相同的上行 TA, 通过该 TA group中的一个 载波上的随机接入 RA过程来获得该组载波对应的 TA值,当该组载波包含 PCC时,在 PCC 上发送 PRACH 以获得该组载波对应的 TA, 当该组载波都为辅成员载波 (Secondary Component Carrier, SCO 时, 需要支持在 SCC上的物理随机接入信道( Physical Random Access CHannel , PRACH )传输以获得该组载波对应的 TA。
此外, 3GPP TS 36.300中规定, 对于 inter-band非连续载波聚合场景, 在不使用单向 转发器 (repeater ) 的前提下, 不同下行载波之间的下行传输时延差异不超过 30 微秒 ( microsecond, 筒称 us ), 考虑到基站侧的下行载波发送时间误差最多 1.3us, 因此用户设 备(User Equipment, UE )每个下行载波的下行接收时间差不超过 31.3us。 考虑到每个 在载波的上行 TA约为该载波的下行传输时延的 2倍, 因此, 不同载波的上行 TA差异不 超过 61.3us。考虑到一个不包括循环前缀( Cyclic Prefix, CP )在内的单载波频分多址( Single Carrier-Frequency Division Multiple Access, SC-FDMA )符号长度约为 66.67us, 因此不同 载波的上行 TA的差异不超过 1个 SC-FDMA符号。
属于同一个 TA group的载波具有相同的上行 TA, 多个载波的上行发送时间对齐, 因 此当前上行子帧中不同载波上的上行信道 /信号不会与前一个和 /或后一个相邻上行子帧中 的上行信道 /信号碰撞。 属于不同 TA group的载波具有不同的上行 TA, 多个载波的上行发 送时间不对齐, 因此当前上行子帧中不同载波上的上行信道 /信号会与前一个和 /或后一个 相邻上行子帧中的上行信道 /信号在部分 SC-FDMA符号碰撞, 考虑到不同载波的上行 TA 的差异不超过 1个 SC-FDMA符号, 即当前上行子帧中不同载波上的上行信道 /信号会与前 一个相邻上行子帧中的上行信道 /信号在第一个 SC-FDMA符号碰撞, 和 /或当前上行子帧 中不同载波上的上行信道 /信号会与后一个相邻上行子帧中的上行信道 /信号在最后一个 SC-FDMA符号碰撞, 如图 1A所示。
此外, 由于 TA不同, 当前上行子帧中的物理上行控制信道( Physical Uplink Control CHannel, PUCCH )和物理上行共享信道( Physical Uplink Shared CHannel, PUSCH )也可 能与探测用参考信号 ( Sounding Reference Signal, SRS )传输不在最后一个 SC-FDMA碰 撞, 此时 shortened PUCCH format (截短的 PUCCH格式)和基于最后一个 SC-FDMA符 号传输 SRS进行速率匹配的 PUSCH也不能避免 SRS与 PUCCH和 PUSCH在同一个上行 子帧中碰撞。 考虑到不同载波的上行 TA的差异不超过 1个 SC-FDMA符号, 当前上行子 帧中的 PUCCH和 PUSCH也可能与当前上行子帧中的 SRS传输在后两个 SC-FDMA同时 碰撞, 或者当前上行子帧中的 PUCCH和 PUSCH也可能与前一个相邻上行子帧中的 SRS 传输在第一个 SC-FDMA碰撞, 如图 1B所示。 由于过多的丢弃 SRS将影响上行调度, 因 此, 在 multi-TA下, 应支持属于不同 TA group的 SRS与 PUCCH/PUSCH同时传输。
Rel-11中需要支持 SCC上的 PRACH传输, 且目前已经确定不支持在一个上行子帧中 的多个载波上同时传输 PRACH, 且 PCC上行失步, 则 UE上行失步 (需对 PCC通过 RA 过程建立上行同步之后, 才能存在上行数据传输), 即不会出现 PCC上的 PRACH与 SCC 上的 PUSCH/SRS等同时传输, 上行信道 /信号在同一个上行子帧中碰撞情况如表 1所示。 特别的, 当 PRACH与其他上行信道 /信号在一个上行子帧中同时传输时, 由于 PRACH传 输假设没有上行 TA, PRACH的后多个 SC-FDMA符号都可能与后一个相邻上行子帧中的 其他上行信道碰撞, 且由于多个 TA不同, PRACH中的不同 SC-FDMA符号与后一个上行 子帧中的上行信道 /信号的碰撞情况不同, 如图 1C所示, PRACH的倒数第 5个 SC-FDMA 符号与子帧 i+i 中载波 1上的 PUCCH的第一个 SC-FDMA符号碰撞, PRACH的后 4个 SC-FDMA符号与子帧 i+1中载波 1上的 PUCCH和载波 2上的 PUSCH的部分 SC-FDMA 符号同时碰撞。
Figure imgf000004_0001
表 1 不同上行信道 /信号在同一个上行子帧可能的碰撞情况 在 Rel-11 multi-TA下, 当支持 PRACH、 PUCCH, PUSCH, SRS等上行信道 /信号在 同一个上行子帧中同时传输时, Rel-10中以子帧为单位的功率控制方法不再适用, 使得在 Rel- 11中, 属于不同 TA group的载波的上行发送时间不对齐, 当前上行子帧中不同载波上 的上行信道 /信号会与前一个和 /或后一个相邻上行子帧中的上行信道 /信号在部分 SC-FDMA符号碰撞。
综上所述, 目前 Rel- 11中,属于不同 TA group的载波的上行发送时间不对齐会引起上 行信道 /信号在部分 SC-FDMA符号发生碰撞。 发明内容
本发明实施例提供的一种传输和接收上行信息的方法、 系统和设备, 用以解决现有技 术中存在的 Rel-11中,属于不同 TAgroup的载波由于上行发送时间不对齐引起相邻子帧中 的上行信道 /信号在部分 SC-FDMA符号发生碰撞的问题。
本发明实施例提供的一种传输上行信息的方法, 包括:
具有多个上行定时提前量 TA的用户设备 ,确定上行载波在当前上行子帧中预留 K个 单载波频分多址 SC-FDMA符号不传输上行信息, 其中 K是非负整数;
所述用户设备将待传输的上行信息映射到上行载波在当前上行子帧中除所述 K 个 SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输。
本发明实施例提供的一种接收上行信息的方法, 包括:
网络侧设备确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输上行信 息, 其中 K是非负整数;
所述网络侧设备通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号 之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
本发明实施例提供的一种传输上行信息的用户设备, 包括:
第一确定模块, 用于具有多个上行 TA时, 确定上行载波在当前上行子帧中预留 K个
SC-FDMA符号不传输上行信息, 其中 K是非负整数;
传输模块, 用于将待传输的上行信息映射到上行载波在当前上行子帧除所述 K 个 SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输。 本发明实施例提供的一种接收上行信息的网络侧设备, 包括:
第二确定模块,用于确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输 上行信息, 其中 K是非负整数;
接收模块, 用于通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号 之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
本发明实施例提供的一种传输上行信息的系统, 包括:
用户设备, 用于具有多个上行 TA 时, 确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息, 并将待传输的上行信息映射到上行载波在当前上行子帧 中除所述 K个 SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输, 其 中 K是非负整数;
网络侧设备,用于确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输上 行信息, 并通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
由于确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息,从而 避免了 Rel-11中,属于不同 TAgroup的载波由于上行发送时间不对齐引起的相邻子帧中的 上行信道 /信号在部分 SC-FDMA符号发生碰撞。 附图说明
图 1 A为背景技术中第一种 Multi-TA下同时传输示意图;
图 1B为背景技术中第二种 Multi-TA下同时传输示意图;
图 1C为背景技术中第二种 Multi-TA下同时传输示意图;
图 2为本发明实施例传输上行信息的系统结构示意图;
图 3为本发明实施例用户设备的结构示意图;
图 4为本发明实施例网络侧设备的结构示意图;
图 5为本发明实施例传输上行信息的方法流程示意图;
图 6为本发明实施例接收上行信息的方法流程示意图;
图 7为本发明实施例第一种传输示意图;
图 8为本发明实施例第二种传输示意图;
图 9为本发明实施例第三种传输示意图;
图 10为本发明实施例第四种传输示意图;
图 11为本发明实施例第五种传输示意图;
图 12为本发明实施例第六种传输示意图;
图 13 A为本发明实施例第七种传输示意图; 图 13B为本发明实施例第八种传输示意图;
图 13C 为本发明实施例第九种传输示意图。 具体实施方式
本发明实施例具有多个上行 TA的用户设备 , 确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息, 并将待传输的上行信息映射到上行载波在当前上行子 帧中除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输。 由于确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息,从而避免 了 Rel-11中,属于不同 TA group的载波由于上行发送时间不对齐而引起的相邻子帧中的上 行信道 /信号在部分 SC-FDMA符号发生碰撞。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后分别从网 络侧与用户设备侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当网络 侧与用户设备侧分开实施时, 也解决了分别在网络侧、 用户设备侧所存在的问题, 只是二 者结合使用时, 会获得更好的技术效果。
如图 2所示, 本发明实施例传输上行信息的系统包括: 用户设备 10和网络侧设备 20。 具有多个上行 TA 的用户设备 10, 用于确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息, 并将待传输的上行信息映射到上行载波在当前上行子帧 中除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输, 其 中 K是非负整数。
需要说明的, 上述除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA 符号为: 一个上行子帧中的上行信道所包含的 SC-FDMA符号中, 除了预留的 K 个 SC-FDMA符号、 用于传输导频 (Reference Signal, RS ) 的 SC-FDMA符号、 以及当存在 SRS 传输或者当前子帧为系统 SRS 子帧时预留给 SRS 传输的 SC-FDMA符号之外的 SC-FDMA符号。
网络侧设备 20, 用于确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传 输上行信息, 通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号之外的 其他 SC-FDMA符号接收具有多个上行 TA的用户设备 10传输发送的上行信息。
较佳地, 本发明实施例的上行信息包括但不限于下列信息中的至少一种:
肯定确认( ACKnowledgment, ACK ) /否定确认( Non-ACKnowledgment, NACK )、 信道状态信息( Channel State Information, CSI )、调度请求( Scheduling Request, SR )、 SRS、 上行数据( UpLink data )、以及前导( preamble )序列,其中 CSI又包括信道盾量指示( Channel Quality Indicator, CQI )、预编码矩阵指示( Pre-coding Matrix Indicator, PMI )、秩指示( Rank Indication, RI )、预编码类型指示( Precoding Type Indicator, PTI )等信息。其中,在 PUCCH 上传输的上行信息指: ACK/NACK、 周期 CSI以及 SR中的一种或多种组合; 在 PUSCH 上传输的上行信息指: 上行数据或者上行数据与 ACK/NACK、 周期 /非周期 CSI中的一种 或多种组合; SRS为上行信号, 仅占用一个上行子帧中的一个 SC-FDMA符号传输。
在实施中,用户设备 10和网络侧设备 20确定 K 个 SC-FDMA符号的方式有多种, 下 面列举几种:
方式一、 网络侧:
网络侧设备 20 通过高层信令或者物理下行控制信道 (Physical Downlink Control CHannel , PDCCH )信令为用户设备直接配置 K个 SC-FDMA符号;
用户设备侧:
用户设备 10根据高层信令或 PDCCH信令的配置, 直接确定 K个 SC-FDMA符号。 较佳地, 高层信令是无线资源控制 (Radio Resource Control, RRC )信令或媒体接入 控制 ( Medium Access Control, MAC )信令。
方式二、 用户设备 10与网络侧设备 20预先约定 K个 SC-FDMA符号;
然后,用户设备 10与网络侧设备 20分别根据与对方的预先约定,确定 K个 SC-FDMA 符号。
方式三、 网络侧:
网络侧设备 20通过高层信令或者 PDCCH信令预先将 K个 SC-FDMA符号通知给用 户设备,并进一步通过 PDCCH信令中的特定比特域配置用户设备 10在当前上行子帧中是 否预留 K个 SC-FDMA符号。 其中, PDCCH为对应在当前上行子帧中进行 ACK/NACK 反馈的下行子帧中的 PDCCH (包括但不限于承载 DL grant (下行调度许可)的 PDCCH和 /或指示下行半持续调度( Semi-Persistent Scheduling, SPS )资源释放的 PDCCH ), 和 /或为 对应当前上行子帧中的 PUSCH的 PDCCH。
用户设备侧:
用户设备 10根据 PDCCH信令中的特定比特域判断当前上行子帧中是否存在预留的
SC-FDMA符号, 当判断存在时, 进一步确定高层信令或者 PDCCH信令预先配置的 K个 SC-FDMA符号为预留的 K个 SC-FDMA符号, 当判断不存在时, 确定当前上行子帧中无 预留的 SC-FDMA符号, 其中 PDCCH的定义同上述网络侧。
比如在 PDCCH信令中, 重用原有 1 比特或者新增加 1 比特作为是否存在预留的 SC-FDMA符号的指示信息。
需要说明的是,本发明实施例并不局限于上述三种方式,其他能够确定 K个 SC-FDMA 符号的方式同样适用本发明实施例。
较佳地, 对于用户设备 10以及网络侧设备 20, 不同上行载波在同一上行子帧中对应 的 K相同或不同; 同一上行载波在不同上行子帧对应的 Κ相同或不同。
在实施中, 对于用户设备 10以及网络侧设备 20, Κ个 SC-FDMA符号为当前上行子 帧中的前 Κ个 SC-FDMA符号; 或
Κ个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或
K 个 SC-FDMA符号为当前上行子帧中的前 K1 个 SC-FDMA符号以及后 K2 个
SC-FDMA符号, 其中 K1+K2=K。
较佳地, 对于用户设备 10以及网络侧设备 20, 如果当前上行子帧中同时存在 SRS和 Κ个预留的 SC-FDMA, 则: SRS在当前上行子帧中的最后一个 SC-FDMA符号传输, 且 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或者, SRS在当前上行 子帧中的第一个 SC-FDMA符号传输,且 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 具体而言, 即: 若 SRS在当前上行子帧中的最后一个 SC-FDMA符号传 输, 则 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 若 SRS在当前 上行子帧中的第一个 SC-FDMA符号传输, 则 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。 或
若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 则 SRS在当前 上行子帧中的最后一个 SC-FDMA符号传输; 若 K个 SC-FDMA符号为当前上行子帧中的 后 K个 SC-FDMA符号, 则 SRS在当前上行子帧中的第一个 SC-FDMA符号传输。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 用户设 备 10确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中预留 K 个 SC-FDMA符号, 相应的, 网络侧设备 20确定仅对除具有最小上行 TA的上行载波以外 的上行载波在一个上行子帧中预留 K个 SC-FDMA符号; 或者用户设备 10确定对具有最 小上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号, 相应的, 网络侧设备 20确定对具有最小上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA小于该上行载波的其他上行载波在当前上行子帧的前一个相邻 上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 用户设备 10确定在当前上行 子帧中对该上行载波不预留前 K个 SC-FDMA符号; 相应的, 网络侧设备 20确定在当前 上行子帧中对该上行载波不预留前 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 用户设 备 10确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧中预留 K 个 SC-FDMA符号, 相应的, 网络侧设备 20确定仅对除具有最大上行 TA的上行载波以外 的上行载波在一个上行子帧中预留 K个 SC-FDMA符号; 或者用户设备 10确定对具有最 大上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号; 相应的, 网络侧设备 20确定对具有最大上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA大于该上行载波的其他上行载波在当前上行子帧的后一个相邻 上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 用户设备 10确定在当前上行 子帧中对该上行载波不预留后 K个 SC-FDMA符号; 相应的, 网络侧设备 20确定在当前 上行子帧中对该上行载波不预留后 K个 SC-FDMA符号。
在实施中, 对于常规 CP, 0≤Κ<14; 对于扩展 CP, 0≤K≤12。 在确定 Κ值时, Κ一般 为不同 TA group的上行发送时间提前量之差(如果有三个以上的 TA group,需要两两做差, 对于一个载波, 如果有 2个差, 取最大的值确定 K ), 以整数个 SC-FDMA符号为单位计算 表示, 不足 1个 SC-FDMA符号的向上取整; 也可以根据需要选择。 较佳地, K=l或 2。
较佳地, 对于 PUCCH传输, 用户设备 10 釆用基于一个上行子帧中除预留的 Κ个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交扩频的传输 格式传输上行信息; 相应的, 网络侧设备 20 釆用基于一个上行子帧中除预留的 K 个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交解扩频的传 输格式接收上行信息; 或者, 对于 PUSCH传输, 用户设备 10釆用基于一个上行子帧中除 预留的 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号进行速率匹配 传输上行信息;相应的, 网络侧设备 20釆用基于一个上行子帧中除预留的 K个 SC-FDMA 符号之外的其他用于传输上行信息的 SC-FDMA符号进行解速率匹配接收上行信息。
较佳地, 若 Κ=1 , 且 Κ个 SC-FDMA符号为当前上行子帧中的最后一个 SC-FDMA符 号, 对于 PUCCH传输, 用户设备 10在 PUCCH釆用 shortened PUCCH format传输上行信 息 (例如 shortened PUCCH format l/la/lb/3 , 当然如果对 format 2/2a/2b也定义了 shortened format, 也不排除新定义的 shortened PUCCH format 2/2a/2b ); 相应的, 网络侧设备 20在 PUCCH釆用 shortened PUCCH format接收上行信息; 或者, 对于 PUSCH传输, 用户设备 10在 PUSCH基于最后一个 SC-FDMA符号预留用于传输 SRS进行速率匹配传输上行信息 (即重用 Rel-8/9/lO中在系统 SRS子帧中传输的 PUSCH的传输方式, PUSCH上的最后一 个 SC-FDMA符号预留用于传输 SRS , 其余 SC-FDMA符号 (除了导频符号)可用于传输 上行数据和 /或上行控制信息( Uplink Control Information, UCI ) ); 相应的, 网络侧设备 20 在 PUSCH基于最后一个 SC-FDMA符号预留用于传输 SRS进行解速率匹配接收上行信息。
较佳地, 若当前上行子帧的前一个上行子帧中在一个上行载波上存在 PRACH, 用户 设备 10确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧中不传输任何 上行信息,相应的, 网络侧设备 20确定除了 PRACH所在的上行载波以外的上行载波上在 当前上行子帧中不传输任何上行信息;或者用户设备 10仅在除了 PRACH所在的上行载波 以外的上行载波的最后一个 SC-FDMA (即能够传输上行信息的最后一个 SC-FDMA符号, 下同)符号中传输 SRS, 相应的, 网络侧设备 20仅在除了 PRACH所在的上行载波以外的 上行载波的最后一个 SC-FDMA符号中接收 SRS。
较佳地, 若当前上行子帧中的全部或者部分 SC-FDMA符号与在至少一个上行子帧中 持续传输的 PRACH 存在重叠 (即当前上行子帧中的上行信道 /信号的部分或者全部 SC-FDMA符号与一个持续传输的 PRACH重叠,该 PRACH不一定在当前上行子帧开始传 输, 可能在当前上行子帧的前一个或多个上行子帧开始传输, 并持续多个上行子帧), 此 时可釆用如下处理方式中的一种:
方式 A:用户设备 10确定除了 PRACH所在的上行载波以外的上行载波上在当前上行 子帧中不传输任何上行信息,相应的, 网络侧设备 20确定除了 PRACH所在的上行载波以 外的上行载波上在当前上行子帧中不接收任何上行信息;
方式 B: 对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中 该上行载波上预留了 K 个 SC-FDMA符号 (包括 K=0 的情况, 此时没有任何预留的 SC-FDMA符号)后的上行信道 /信号在全部或者部分 SC-FDMA符号上仍旧与 PRACH重 叠, 用户设备 10确定该上行载波在当前上行子帧中不传输任何上行信息, 相应的, 网络 侧设备 20确定该上行载波在当前上行子帧中不接收任何上行信息;
方式 C: 用户设备 10基于 PRACH的发射功率对当前上行子帧中的上行信道 /信号进 行功率控制,并按照功率控制后的发射功率传输当前上行子帧中的上行信道 /信号,相应的, 网络侧设备 20确定在当前上行子帧中的所有上行载波上接收上行信息。
需要说明的是, 上述可能与 PRACH存在重叠的上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
需要说明的是, 上述方式 A和 B对应于不支持 PRACH与其他上行信道 /信号同时传 输的情况, 对于方式 B , 如果当前上行子帧的前一个上行子帧中在一个上行载波上存在 PRACH (除了 format 4以外的 format ), 对于除了 PRACH所在的上行载波以外的上行载 波, 如果在当前上行子帧中该上行载波上预留了 K个 SC-FDMA符号 (包括 K=0的情况, 此时没有任何预留的 SC-FDMA符号)后的上行信道 /信号在全部或者部分 SC-FDMA符号 上仍旧与 PRACH重叠, 网络侧设备 20可以通过调度限制, 或者对这些载波预先配置或约 定 K为最大值的方式,避免这些载波上的上行信道 /信号与 PRACH重叠传输。对于在除了 上述 PRACH所在的上行载波以外的上行载波, 如果其上的上行信道 /信号在预留了 K个 SC-FDMA符号(包括 K=0的情况, 此时没有任何预留的 SC-FDMA符号)后, 与 PRACH 不重叠, 则用户设备 10可在当前上行子帧中正常传输这些上行信道 /信号, 例如在最后一 个 SC-FDMA符号中传输 SRS (即将当前上行子帧配置为 SRS子帧); 相应的, 网络侧设 备 10可在相应载波上接收上行信道 /信号。
需要说明的是,上述方式 C对应于支持 PRACH与其他上行信道 /信号同时传输的情况, 用户设备 10基于 PRACH的发射功率对当前上行子帧中的上行信道 /信号进行功率控制, 即如果 UE在当前上行子帧中的总发射功率超过预设的最大发射功率, 对当前上行子帧中 的上行信道 /信号进行功率降低( power scaling )时,需要 PRACH的发射功率,不论该 PRACH 是否是在当前上行子帧发送的 (即也包括 PRACH在前一个或多个上行子帧发送, 但由于 TA=0 而拖尾到当前上行子帧中, 或者由于 PRACH需持续多个上行子帧传输, 从而与除 PRACH所在上行载波以外的其他上行载波上的上行信道 /信号存在重叠),具体包括: 如果 PRACH 的信道优先级最高, 则对当前上行子帧中的上行信道 /信号进行功率降低 ( power scaling )时,基于预设的最大发射功率减去 PRACH发射功率之后的剩余可用发射功率(线 性域: Pemax-PPRACH )进行, 即按照信道 /信号优先级从低到高的顺序, 首先对低优先级的上 行信道 /信号进行等比例功率降低,直到满足 UE总发射功率不超过上述剩余可用发射功率。
较佳地,若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或者当前上行子 帧为 SRS传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号 (即能够传输上 行信息的最后一个 SC-FDMA符号, 下同)传输, 用户设备 10确定除了具有最大上行 TA 的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留后 2个 SC-FDMA符 号不传输上行信息 (即在预留 K个 SC-FDMA符号的基础上进一步预留); 相应的, 网络 侧设备 20确定除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行 信道进一步预留后 2个 SC-FDMA符号不传输上行信息(即在预留 K个 SC-FDMA符号的 基础上进一步预留)。 其中, 上述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种 或多种。
需要说明的是, 如果当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输, 则还 可进一步配置或者约定当前上行子帧中的除了具有最大上行发送时间提前量的上行载波 以外的上行载波上的上行信道的后 2个 SC-FDMA符号空置不传输任何上行信道承载的信 息 (如 UCI和上行数据 ), SRS可在最后一个 SC-FDMA符号传输, 以避免 SRS与具有不 同 TA的其他载波上的上行信道碰撞。
较佳地, 若当前上行子帧中在第一个 SC-FDMA符号 (即能够传输上行信息的第一个
SC-FDMA符号, 下同)存在 SRS传输或者当前上行子帧为 SRS传输子帧且 SRS在一个 上行子帧中的第一个 SC-FDMA符号传输,用户设备 10确定除了具有最小上行 TA的上行 载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA符号不传 输上行信息 (即在预留 K个 SC-FDMA符号的基础上进一步预留); 相应的, 网络侧设备 20确定除了具有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进 一步预留前 2个 SC-FDMA符号不传输上行信息(即在预留 K个 SC-FDMA符号的基础上 进一步预留)。其中,上述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
需要说明的是, 如果当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输, 则还可 进一步配置或者约定当前上行子帧中的除了具有最大上行发送时间提前量的上行载波以 外的上行载波上的上行信道的前 2个 SC-FDMA符号空置不传输任何上行信道承载的信息 (如 UCI和上行数据 ), SRS可在第一个 SC-FDMA符号传输,以避免 SRS与具有不同 TA 的其他载波上的上行信道碰撞。
较佳地,用户设备 10在同一个上行子帧中仅传输具有相同上行 TA的上行载波的 SRS; 相应的, 网络侧设备 20在同一个上行子帧中仅接收具有相同上行 TA的上行载波的 SRS。 即, 网络侧设备 20可以配置在一个上行子帧中, 仅存在具有相同 TA的载波发送 SRS , 具 有不同 TA的载波的 SRS在不同的上行子帧发送, 以避免由于多 TA造成的多个载波上的 SRS在一个上行子帧中不对齐, 导致功率控制较为复杂。
其中, 用户设备 10将待传输的上行信息映射到上行载波在当前上行子帧中的上行信 道上除 K个 SC-FDMA符号之外的其他 SC-FDMA符号上进行传输,还包括, 用户设备 10 按照下述方法确定每个上行信道 /信号的实际发射功率, 并按照该功率发送各上行信道 /信 号:
如果当前上行子帧中不存在 SRS传输:
用户设备判断当前上行子帧中传输的上行信道的目标发射功率(即基于每个载波和该 载波上的上行信道的相关功率控制参数计算得到的每个载波上的上行信道的发射功率)之 和是否超过预设的最大发射功率;
当判断超过时, 按照上行信道 /信号优先级从低到高的顺序, 逐步对当前上行子帧中传 输的具有相同上行信道 /信号优先级的上行信道的目标发射功率进行等比例功率降低(即先 降低优先级最低的上行信道的发射功率, 当功率降低为 0时, UE的总发射功率还是超过 预设的最大发射功率, 则进一步降低优先级次低的上行信道的发射功率, 以此类推), 以 满足功率降低后 , 当前上行子帧中传输的上行信道的发射功率之和不超过预设的最大发射 功率, 并将功率降低后的发射功率作为该上行信道的实际发射功率; 对没有进行功率降低 的高优先级上行信道, 将其目标发射功率作为其实际发射功率;
当不超过时, 将每个上行信道的目标发射功率作为其实际发射功率。
如果当前上行子帧中存在 SRS 传输, 且具有不同上行发送时间提前量的上行载波的 SRS在不同的上行子帧发送(即一个上行子帧中仅存在具有相同上行发送时间提前量的上 行载波上的 SRS传输, 可能有一个或多个):
用户设备 10判断当前上行子帧中传输的上行信道的目标发射功率之和是否超过预设 的最大发射功率;
当判断超过时, 按照上行信道 /信号优先级从低到高的顺序, 逐步对当前上行子帧中传 输的具有相同上行信道 /信号优先级的上行信道的目标发射功率进行等比例功率降低,以满 足功率降低后 , 当前上行子帧中传输的上行信道的发射功率之和不超过预设的最大发射功 率, 并将功率降低后的发射功率作为该上行信道的实际发射功率; 对没有进行功率降低的 高优先级上行信道, 将其目标发射功率作为其实际发射功率;
当不超过时, 将每个上行信道的目标发射功率作为其实际发射功率;
进一步, 用户设备 10判断当前上行子帧中 SRS的目标发射功率以及除了 SRS所在上 行载波之外的上行载波上的上行信道(即当前上行子帧中与 SRS 存在重叠传输的上行信 道) 的实际发射功率 (即经过了上述对上行信道的功率控制过程之后确定的发射功率)之 和是否超过预设的最大发射功率;
当判断超过时, 对当前上行子帧中传输的 SRS 的目标发射功率进行等比例功率降低 (其中可进一步区分周期 SRS和非周期 SRS , 非周期 SRS的优先级高于周期 SRS, 即优 先保证非周期 SRS的发射功率不降低), 以满足功率降低后, 当前上行子帧中传输的 SRS 的发射功率之和不超过预设的最大发射功率减去除了 SRS 所在上行载波之外的上行载波 上的上行信道的实际发射功率, 并将功率降低后的发射功率作为 SRS的实际发射功率; 当不超过时, 将每个 SRS的目标发射功率作为其实际发射功率;
较佳地, 上行信道 /信号优先级可以是下列定义中的至少一种:
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS;
如果存在 PRACH, 则上行信道 /信号优先级可以是下列定义中的至少一种:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
其中, SRS包括非周期 SRS ( Aperiodic-SRS )和周期 SRS ( Periodic-SRS ),非周期 SRS 优先级可以高于或等于周期 SRS; 非周期 SRS 优先级还可以高于或等于不承载 UCI 的 PUSCH;
较佳地, 预设的最大发射功率可以为用户设备 10允许的最大发射功率, 和 /或, 每个 频带允许的最大发射功率; 如果当前上行子帧中的上行信道 /信号与 PRACH存在重叠, 且 PRACH的优先级高(需要优先保证发射功率不降低 ), 则对于当前上行子帧中的所有上行 信道 /信号或者当前上行子帧中的与 PRACH存在重叠的上行信道 /信号, 在按照上述存在 SRS和不存在 SRS传输时的方法进行功率控制时,使用的预设的最大发射功率还可以为用 户设备 10允许的最大发射功率或频带允许的最大发射功率减去 PRACH的发射功率。
当存在 SRS传输, 具有不同上行发送时间提前量的上行载波的 SRS在相同的上行子 帧发送时, 不同 SRS发送时间不对齐, 且与其他载波上的上行信道 /信号的碰撞情况不同, 需要对不同的同时传输情况(即不同碰撞符号)分别进行功率降低, 对于同一个 SRS参与 了多次功率降低的, 取多次功率降低计算中的最小的发射功率作为该 SRS 的实际发射功 率;
上述功率降低方法中, 不排除其他功率降低方法, 如对所有上行信道 /信号等比例降低 功率 (即不区分信道优先级), 或者根据频带所对应的功率降低比例系数进行功率降低等 方法。
由于在当前上行子帧中尽可能重用了 Rel-10 功率控制方法确定每个上行信道 /信号的 发射功率, 从而筒化标准化复杂度, 保证用户设备正常工作。
较佳地, SRS在最后一个 SC-FDMA符号传输的上行载波, 其 K个空置的 SC-FDMA 符号为当前上行子帧中的前 K个符号, 同时, 为了避免由于 SC-FDMA符号空置引入新的 PUCCH format定义, 应选取具有最小 TA的载波作为上行主成员载波。 或者, SRS在第一 个 SC-FDMA符号传输的上行载波, 其 K个空置的 SC-FDMA符号为当前上行子帧中的后 K个符号, 同时, 为了避免预留过多 SC-FDMA符号而影响 PUCCH传输, 并且避免在非 SRS子帧引入新的 PUCCH format定义, 应选取具有最大 TA的载波作为上行主成员载波。
上述上行信道 /信号包括但不限于上行信道 PUCCH、 PUSCH、 PRACH, 以及上行信号 SRS等; 其中上述 "上行信道 /信号" 的含义指: 仅存在上行信道, 或者仅存在上行信号, 或者上行信道和上行信号同时存在。
上述上行信息包括上行控制信息、 上行数据; 上行控制信息包括 ACK/NACK、 周期 / 非周期 CSI、 SR; CSI又包括 CQI信息、 PMI信息、 RI信息、 PTI信息。
较佳地, 上述方法同时适用于 intra-band 和 inter-band CA; 同时适用于频分双工 ( Frequency division duplex, FDD )和时分双工 ( Time division duplex, TDD ) 系统。
其中, 本发明实施例的网络侧设备可以^ &站(比如宏基站, 家庭基站等), 也可以 是中继 ( Relay Node, RN )设备, 还可以是其它网络侧设备。
如图 3所示,本发明实施例传输上行信息的系统中的用户设备包括:第一确定模块 300 和传输模块 310。
第一确定模块 300,用于具有多个上行 ΤΑ时,确定上行载波在当前上行子帧中预留 Κ 个 SC-FDMA符号不传输上行信息, 其中 K是非负整数;
传输模块 310 , 用于将待传输的上行信息映射到上行载波在当前上行子帧除 K 个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输。
较佳地,第一确定模块 300根据高层信令或 PDCCH信令的配置,确定 K个 SC-FDMA 符号; 或根据与网络侧设备的预先约定, 确定 K个 SC-FDMA符号; 或根据 PDCCH信令 中的特定比特域判断当前上行子帧中是否存在预留的 SC-FDMA符号, 当判断存在时, 确 定高层信令或者 PDCCH信令预先配置的 K个 SC-FDMA符号为 K个 SC-FDMA符号, 当 判断不存在时, 确定当前上行子帧中无预留的 SC-FDMA符号, 其中, PDCCH为对应在 当前上行子帧中进行 ACK/NACK反馈的下行子帧中的 PDCCH, 和 /或为对应当前上行子 帧中的 PUSCH的 PDCCH。
较佳地, 高层信令是 RRC信令或 MAC信令。
较佳地, 不同上行载波在同一上行子帧中对应的 K相同或不同; 同一上行载波在不同 上行子帧对应的 K相同或不同。
较佳地, 第一确定模块 300确定的 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或第一确定模块 300确定的 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或第一确定模块 300确定的 K个 SC-FDMA符号为当前上行子帧中 的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K。
较佳地,第一确定模块 300确定 SRS在当前上行子帧中的最后一个 SC-FDMA符号传 输, 且 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
第一确定模块 300确定 SRS在当前上行子帧中的第一个 SC-FDMA符号传输,且 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 第一确 定模块 300确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中预 留 K个 SC-FDMA符号, 或者确定对具有最小上行 TA的上行载波在一个上行子帧中不需 预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA小于上行载波的其他上行载波在当前上行子帧的前一个相邻上 行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 第一确定模块 300确定在当前上 行子帧中对上行载波不预留前 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 第一确 定模块 300确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧中预 留 K个 SC-FDMA符号, 或者确定对具有最大上行 TA的上行载波在一个上行子帧中不需 预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA大于上行载波的其他上行载波在当前上行子帧的后一个相邻上 行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 第一确定模块 300确定在当前上 行子帧中对上行载波不预留后 K个 SC-FDMA符号。
较佳地,传输模块 310对于 PUCCH传输,釆用基于一个上行子帧中除 K个 SC-FDMA 符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交扩频的传输格式传输上 行信息; 或者, 对于 PUSCH传输, 釆用基于一个上行子帧中除 K个 SC-FDMA符号之外 的其他用于传输上行信息的 SC-FDMA符号进行速率匹配传输上行信息。 较佳地, 若 K=l , 且 Κ个 SC-FDMA符号为当前上行子帧中的最后一个 SC-FDMA符 号, 传输模块 310对于!>1;。。11传输, 釆用 shortened PUCCH format传输上行信息; 或者, 对于 PUSCH传输, 基于最后一个 SC-FDMA符号预留用于 SRS传输进行速率匹配传输上 行信息。
较佳地, 若当前上行子帧中的全部或者部分 SC-FDMA符号与在至少一个上行子帧中 连续传输的 PRACH存在重叠, 第一确定模块 300确定除了 PRACH所在的上行载波以外 的上行载波上在当前上行子帧中不传输任何上行信息; 或对于除了 PRACH所在的上行载 波以外的上行载波,如果在当前上行子帧中该上行载波上预留了 K个 SC-FDMA符号后的 上行信道 /信号在全部或者部分 SC-FDMA符号上仍旧与 PRACH重叠, 确定该上行载波在 当前上行子帧中不传输任何上行信息; 或基于 PRACH的发射功率对当前上行子帧中的上 行信道 /信号进行功率控制,并按照功率控制后的发射功率传输当前上行子帧中的上行信道 /信号;
其中, 上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
较佳地,若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或者当前上行子 帧为 SRS传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输, 第一确定 模块 300确定除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行 信道进一步预留后 2个 SC-FDMA符号不传输上行信息。
较佳地,若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或者当前上行子帧 为 SRS传输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输, 第一确定模块 300确定除了具有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道 进一步预留前 2个 SC-FDMA符号不传输上行信息;
其中, 上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
较佳地, 传输模块 310在同一个上行子帧中仅传输具有相同上行 TA 的上行载波的
SRS。
如图 4所示, 本发明实施例传输上行信息的系统中的网络侧设备包括: 第二确定模块
400和接收模块 410。
第二确定模块 400, 用于确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不 传输上行信息, 其中 K是非负整数;
接收模块 410, 用于通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA 符号之外的其他 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
较佳地, 第二确定模块 400 通过高层信令或者 PDCCH信令为用户设备配置 K 个 SC-FDMA符号; 或通过与用户设备预先约定的方式, 通知 K 个 SC-FDMA符号; 或通过 高层信令或者 PDCCH信令预先将 K个 SC-FDMA符号通知给用户设备, 并通过 PDCCH 信令中的特定比特域配置用户设备在当前上行子帧中是否预留 K个 SC-FDMA符号,其中 PDCCH为对应在当前上行子帧中进行 ACK/NACK反馈的下行子帧中的 PDCCH,和 /或为 对应当前上行子帧中的 PUSCH的 PDCCH。
较佳地, 高层信令是 RRC信令或 MAC信令。
较佳地, 不同上行载波在同一上行子帧中对应的 K相同或不同; 同一上行载波在不同 上行子帧对应的 K相同或不同。
较佳地, 第二确定模块 400确定的 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或第二确定模块 400确定的 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或第二确定模块 400确定的 K个 SC-FDMA符号为当前上行子帧中 的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K。
较佳地,第二确定模块 400确定 SRS在当前上行子帧中的最后一个 SC-FDMA符号传 输, 且 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或第二确定模块 400确定 SRS在当前上行子帧中的第一个 SC-FDMA符号传输, 且 K个 SC-FDMA符号为 当前上行子帧中的后 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 第二确 定模块 400确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中预 留 K个 SC-FDMA符号, 或者确定对具有最小上行 TA的上行载波在一个上行子帧中不需 预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA小于上行载波的其他上行载波在当前上行子帧的前一个相邻上 行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 第二确定模块 400确定在当前上 行子帧中对上行载波不预留前 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 第二确 定模块 400确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧中预 留 K个 SC-FDMA符号, 或者确定对具有最大上行 TA的上行载波在一个上行子帧中不需 预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号,针对一 个上行载波, 如果上行 TA大于上行载波的其他上行载波在当前上行子帧的后一个相邻上 行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 第二确定模块 400确定在当前上 行子帧中对上行载波不预留后 K个 SC-FDMA符号。
较佳地,接收模块 410对于 PUCCH传输,釆用基于一个上行子帧中除 K个 SC-FDMA 符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交解扩频的传输格式接收 上行信息; 或者, 对于 PUSCH传输, 釆用基于一个上行子帧中除 K个 SC-FDMA符号之 外的其他用于传输上行信息的 SC-FDMA符号进行解速率匹配接收上行信息。 较佳地, 若 Κ=1 , 且 Κ个 SC-FDMA符号为当前上行子帧中的最后一个 SC-FDMA符 号, 接收模块 410对于 PUCCH传输, 釆用 shortened PUCCH format接收上行信息; 或者, 对于 PUSCH传输, 基于最后一个 SC-FDMA符号预留用于传输 SRS进行解速率匹配接收 上行信息。
较佳地,若当前上行子帧中的上行信道 /信号在全部或者部分 SC-FDMA符号与在至少 一个上行子帧中持续传输的 PRACH存在重叠, 第二确定模块 400确定除了 PRACH所在 的上行载波以外的上行载波上在当前上行子帧中不传输任何上行信息;或对于除了 PRACH 所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载波上预留了 K 个 SC-FDMA符号后的上行信道 /信号在全部或者部分 SC-FDMA符号上仍旧与 PRACH重叠, 确定该上行载波在当前上行子帧中不接收任何上行数据; 或确定在当前上行子帧中的各上 行载波接收上行信息;
其中, 上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
较佳地,若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或者当前上行子 帧为 SRS传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输, 第二确定 模块 400确定除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行 信道进一步预留后 2个 SC-FDMA符号不传输上行信息; 或者, 若当前上行子帧中在第一 个 SC-FDMA符号存在 SRS传输或者当前上行子帧为 SRS传输子帧且 SRS在一个上行子 帧中的第一个 SC-FDMA符号传输, 第二确定模块 400确定除了具有最小上行 TA的上行 载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA符号不传 输上行信息;
其中, 上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
较佳地, 接收模块 410在同一个上行子帧中仅接收具有相同上行 TA 的上行载波的 SRS。
基于同一发明构思, 本发明实施例中还提供了传输上行信息和接收上行信息的方法, 由于这些方法解决问题的原理分别与传输上行信息的系统中的用户设备和网络侧设备相 似, 因此这些设备的实施可以参见系统的实施, 重复之处不再赘述。
如图 5所示, 本发明实施例传输上行信息的方法包括下列步骤:
步骤 501、 具有多个上行 TA的用户设备 , 确定上行载波在当前上行子帧中预留 K个 单载波频分多址 SC-FDMA符号不传输上行信息, 其中 K是非负整数;
步骤 502、 用户设备将待传输的上行信息映射到上行载波在当前上行子帧中除 K 个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输。
需要说明的, 上述除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA 符号为: 一个上行子帧中的上行信道所包含的 SC-FDMA符号中, 除了预留的 K 个 SC-FDMA符号、 用于传输导频 RS的 SC-FDMA符号、 以及当存在 SRS传输或者当前子 帧为系统 SRS子帧时预留给 SRS传输的 SC-FDMA符号之外的 SC-FDMA符号。
较佳地, 步骤 501中用户设备根据高层信令或者 PDCCH信令的配置, 直接确定 K个 SC-FDMA符号; 或用户设备根据与网络侧设备的预先约定, 确定 K个 SC-FDMA符号; 或用户设备根据 PDCCH 信令中的特定比特域判断当前上行子帧中是否存在预留的 SC-FDMA符号, 当判断存在时, 进一步确定高层信令或者 PDCCH信令预先配置的 K个 SC-FDMA符号为预留的 K个 SC-FDMA符号, 当判断不存在时, 确定当前上行子帧中无 预留的 SC-FDMA符号,其中 PDCCH为对应在当前上行子帧中进行肯定确认 ACK/否定确 认 NACK反馈的下行子帧中的 PDCCH,和 /或为对应当前上行子帧中的物理上行链路共享 信道 PUSCH的 PDCCH。
较佳地, 高层信令是无线资源控制 RRC信令或媒体接入控制 MAC信令。
较佳地, 高层信令或者 PDCCH信令配置, 或用户设备与网络侧设备约定, 每个 TA group对应一个预留 SC-FDMA符号集合, 属于该 TA group的每个载波在每个上行子帧中 的预留 SC-FDMA符号为该集合中的部分或者全部 SC-FDMA符号, 通过信令通知或者依 约定方式选择。
较佳地, 不同上行载波在同一上行子帧中对应的 K相同或不同;
同一上行载波在不同上行子帧对应的 K相同或不同。
较佳地, K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或 K个 SC-FDMA符号为当 前上行子帧中的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K。
较佳地, SRS在当前上行子帧中的最后一个 SC-FDMA符号传输, 且 K个 SC-FDMA 符号为当前上行子帧中的前 K个 SC-FDMA符号; 或 SRS 在当前上行子帧中的第一个 SC-FDMA符号传输,且 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 步骤
501中, 用户设备确定 K 个 SC-FDMA符号, 进一步包括:
用户设备确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中 预留 K个 SC-FDMA符号, 或者用户设备确定对具有最小上行 TA的上行载波在一个上行 子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 步骤
501中, 用户设备确定 K 个 SC-FDMA符号, 进一步包括:
针对一个上行载波, 如果上行 TA小于上行载波的其他上行载波在当前上行子帧的前 一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 用户设备确定在当前 上行子帧中对上行载波不预留前 K个 SC-FDMA符号。
较佳地, 若 Κ个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 步骤 501中, 用户设备确定 K 个 SC-FDMA符号, 进一步包括:
用户设备确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧中 预留 K个 SC-FDMA符号, 或者用户设备确定对具有最大上行 TA的上行载波在一个上行 子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 步骤 501中, 用户设备确定 K 个 SC-FDMA符号, 进一步包括:
针对一个上行载波, 如果上行 TA大于上行载波的其他上行载波在当前上行子帧的后 一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 用户设备确定在当前 上行子帧中对上行载波不预留后 K个 SC-FDMA符号。
较佳地, 步骤 502中, 用户设备将待传输的上行信息映射到上行载波在当前上行子帧 中除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输包括: 对于 PUCCH传输, 用户设备釆用基于一个上行子帧中除 K个 SC-FDMA符号之外的 其他用于传输上行信息的 SC-FDMA符号进行时域正交扩频的传输格式传输上行信息; 或 者,
对于 PUSCH传输, 用户设备釆用基于一个上行子帧中除 K个 SC-FDMA符号之外的 其他用于传输上行信息的 SC-FDMA符号进行速率匹配传输上行信息。
较佳地, 步骤 502中, 若 K=l , 且 Κ个 SC-FDMA符号为当前上行子帧中的最后一个 SC-FDMA符号, 用户设备将待传输的上行信息映射到上行载波在当前上行子帧中除 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输, 进一步包括: 对于 PUCCH传输。 用户设备釆用 shortened PUCCH format传输上行信息; 或者, 对于在 PUSCH传输, 用户设备基于最后一个 SC-FDMA符号预留用于传输 SRS进行 速率匹配传输上行信息。
较佳地, 若当前上行子帧中的全部或者部分 SC-FDMA符号与在至少一个上行子帧中 持续传输的物理随机接入信道 PRACH存在重叠, 用户设备确定除了 PRACH所在的上行 载波以外的上行载波上在当前上行子帧中不传输任何上行信息; 或
对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了 K个 SC-FDMA符号后的上行信道 /信号在全部或者部分 SC-FDMA符号上仍旧 与 PRACH重叠, 用户设备确定该上行载波在当前上行子帧中不传输任何上行信息; 或 用户设备基于 PRACH的发射功率对当前上行子帧中的上行信道 /信号进行功率控制, 并按照功率控制后的发射功率传输当前上行子帧中的上行信道 /信号;
其中, 上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。 较佳地,若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或者当前上行子 帧为 SRS传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输, 用户设备 确定除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一 步预留后 2个 SC-FDMA符号不传输上行信息; 或者,
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或者当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输,用户设备确定除了具有 最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA符号不传输上行信息;
其中, 上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
较佳地, 用户设备在同一个上行子帧中仅存在具有相同上行 TA的上行载波的 SRS传 输。
如图 6所示, 本发明实施例接收上行信息的方法包括下列步骤:
步骤 601、 网络侧设备确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传 输上行信息, 其中 K是非负整数;
步骤 602、网络侧设备通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA 符号之外的其他 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
较佳地, 网络侧设备通过高层信令或 PDCCH信令为用户设备配置 K个 SC-FDMA符 号; 或网络侧设备通过与用户设备预先约定的方式, 通知 K 个 SC-FDMA符号; 或网络侧 设备通过高层信令或者 PDCCH信令预先将 K个 SC-FDMA符号通知给用户设备, 并通过 PDCCH信令中的特定比特域配置用户设备在当前上行子帧中是否预留 K个 SC-FDMA符 号, 其中 PDCCH为对应在当前上行子帧中进行肯定确认 ACK/否定确认 NACK反馈的下 行子帧中的 PDCCH, 和 /或为对应当前上行子帧中的 PUSCH的 PDCCH。
较佳地, 高层信令是 RRC信令或 MAC信令。
较佳地, 不同上行载波在同一上行子帧中对应的 K相同或不同; 同一上行载波在不同 上行子帧对应的 K相同或不同。
较佳地, K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或 K个 SC-FDMA符号为当 前上行子帧中的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K。
较佳地, SRS在当前上行子帧中的最后一个 SC-FDMA符号传输, 且 K个 SC-FDMA 符号为当前上行子帧中的前 K个 SC-FDMA符号; 或 SRS 在当前上行子帧中的第一个 SC-FDMA符号传输,且 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 步骤 601中, 网络侧设备确定 K个 SC-FDMA符号, 进一步包括: 网络侧设备确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧 中预留 K个 SC-FDMA符号, 或者网络侧设备确定对具有最小上行 TA的上行载波在一个 上行子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号, 步骤 601中, 网络侧设备确定 K个 SC-FDMA符号, 进一步包括:
针对一个上行载波, 如果上行 TA小于上行载波的其他上行载波在当前上行子帧的前 一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 网络侧设备确定在当 前上行子帧中对上行载波不预留前 K个 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 步骤 601中, 网络侧设备确定 K个 SC-FDMA符号, 进一步包括:
网络侧设备确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧 中预留 K个 SC-FDMA符号, 或者网络侧设备确定对具有最大上行 TA的上行载波在一个 上行子帧中不需预留 SC-FDMA符号。
较佳地, 若 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号, 步骤 601中, 网络侧设备确定 K个 SC-FDMA符号, 进一步包括:
针对一个上行载波, 如果上行 TA大于上行载波的其他上行载波在当前上行子帧的后 一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 网络侧设备确定在当 前上行子帧中对上行载波不预留后 K个 SC-FDMA符号。
较佳地, 步骤 602中, 网络侧设备通过上行载波在当前上行子帧中除不传输上行信息 的 SC-FDMA符号之外的其他 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送 的上行信息, 包括:
对于 PUCCH传输, 网络侧设备釆用基于一个上行子帧中除 K个 SC-FDMA符号之外 的其他用于传输上行信息的 SC-FDMA符号进行时域正交解扩频的传输格式接收上行信 息; 或者,
对于 PUSCH传输, 网络侧设备釆用基于一个上行子帧中除 K个 SC-FDMA符号之外 的其他用于传输上行信息的 SC-FDMA符号进行解速率匹配接收上行信息。
较佳地, 若 Κ=1 , 且 Κ个 SC-FDMA符号为当前上行子帧中的最后一个 SC-FDMA符 号, 网络侧设备通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号之外 的其他 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息, 进一步包 括:
对于 PUCCH传输, 网络侧设备釆用 shortened PUCCH format接收上行信息; 或者 对于 PUSCH传输, 网络侧设备基于最后一个 SC-FDMA符号预留用于 SRS传输进行 解速率匹配接收上行信息。 较佳地,若当前上行子帧中的上行信道 /信号在全部或者部分 SC-FDMA符号与在至少 一个上行子帧中持续传输的 PRACH存在重叠, 该方法还包括:
网络侧设备确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧中不 接收任何上行信息; 或
对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了 K个 SC-FDMA符号后的上行信道 /信号在全部或者部分 SC-FDMA符号上仍旧 与 PRACH重叠, 网络侧设备确定该上行载波在当前上行子帧中不接收任何上行数据; 或 网络侧设备确定在当前上行子帧中的各上行载波接收上行信息;
其中, 上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
较佳地, 该方法还包括: 若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输 或者当前上行子帧为 SRS传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号 传输, 网络侧设备确定除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧 中的上行信道进一步预留后 2个 SC-FDMA符号不传输上行信息; 或者,
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或者当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输, 网络侧设备确定除了具 有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2 个 SC-FDMA符号不传输上行信息;
其中, 上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
较佳地, 网络侧设备在同一个上行子帧中仅接收具有相同上行 TA的上行载波的 SRS。 其中, 图 5和图 6可以合成一个流程, 形成另一个传输上行信息的方法, 即先执行步 骤 501〜步骤 502 , 再执行步骤 602。 其中, 步骤 602与步骤 501和步骤 502之间没有必然 的联系, 只需要保证在步骤 602之前即可。
下面再列举几个场景对本发明的方案进行说明。
场景一: UE聚合了 3个载波进行上行传输, 所属不同 TA group , 载波 1和 2的 TA小 于载波 3 ,相差约 0.5个 SC-FDMA符号,则载波 1和载波 2在当前上行子帧中的最后一个 SC-FDMA符号会与载波 3在后一个相邻上行子帧中的第一个 SC-FDMA符号部分重叠, 此时:
UE侧:
方法 1 :
UE接收基站发送的高层信令或者 PDCCH信令或者 UE与基站预先约定,确定在载波
1和 2上的所有上行子帧的最后一个 SC-FDMA符号空置不传输任何上行信息; 载波 3的 TA最大, 其上的上行信道 /信号的最后一个 SC-FDMA符号不会与其他载波上的后一个相 邻上行子帧中的第一个 SC-FDMA符号重叠, 因此不需要对载波 3上的上行信道 /信号空置 任何 SC-FDMA符号, 以保证其传输效率; 如图 7所示, 不论当前子帧中是否存在重叠, 都需要对载波 1和载波 2空置当前子帧中的最后一个 SC-FDMA符号;
子帧 i中, UE在载波 1上的 PUCCH釆用 shortened PUCCH format传输; 在载波 2上 的 PUSCH基于最后一个 SC-FDMA符号空置进行速率匹配传输;
方法 2:
根据具体的传输情况确定每个子帧中空置符号, 如图 8所示, 对子帧 i-1 , 其后一个相 邻子帧 i中的载波 3上有上行信道传输,则需对子帧 i-1中载波 1和 2上的上行信道的最后 一个 SC-FDMA符号空置;对子帧 i,其后一个相邻子帧 i+1中的载波 3上无上行信道传输, 则不需要对子帧 i中载波 1和 2上的上行信道的最后一个 SC-FDMA符号空置, 以提高传 输效率;
子帧 i-1中, UE在载波 1上的 PUCCH釆用 shortened PUCCH format传输; 在载波 2 上的 PUSCH基于最后一个 SC-FDMA符号空置进行速率匹配传输; 子帧 i中, 不需空置 SC-FDMA符号, 釆用常规方式传输各上行信道。
确定发射功率:
UE根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上的上行信道 的目标发射功率, 并判断当前子帧 i中 UE发射功率之和是否超过最大发射功率, 如果不 超过, 则按照目标发射功率发送每个上行信道; 如果超过, 则根据信道优先级, 优先保证 PUCCH发射功率不降低, 对载波 2和载波 3上的 PUSCH进行等比例功率降低, 以满足, 功率降低后, 载波 2、 3上的 PUSCH发射功率之和不超过最大发射功率减去载波 1上的 PUCCH的发射功率; PUCCH以目标发射功率进行发送, PUSCH按照功率降低后的发射 功率进行发送。
基站侧:
与 UE端的理解一致, 对于方法 1 , 确定每个上行子帧中载波 1 上的 PUCCH釆用 shortened PUCCH format接收,在载波 2上的 PUSCH基于最后一个 SC-FDMA符号空置进 行解速率匹配接收; 对于方法 2, 在子帧 i-1中, 接收方法同方法 1 , 在子帧 i中, 按照常 规方法接收。
场景二: UE聚合了 4个载波进行上行传输, 所属 TA group不同, 载波 2的 TA超前 载波 1约 0.5个 SC-FDMA符号, 载波 3和载波 4的 TA超前载波 1约 0.8个 SC-FDMA符 号, 则载波 3、 4在上行子帧 i中的第一个 SC-FDMA符号会与载波 1、 2在相邻的上行子 帧 i-1中的最后一个 SC-FDMA符号部分重叠, 载波 2在上行子帧 i中的第一个 SC-FDMA 符号与载波 1在相邻的上行子帧 i+1中的最后一个 SC-FDMA符号部分重叠, SRS在最后 一个 SC-FDMA符号发送, 此时:
UE侧: 方式 1 :
UE接收基站发送的高层信令或者 PDCCH信令或者 UE与基站预先约定,确定在载波 2、 3、 4上的当前或者所有上行子帧的第一个 SC-FDMA符号空置不传输任何上行信息, 如图 9所示; 由于载波 1的 TA最小, 其上的上行信道 /信号的第一个 SC-FDMA符号不会 与其他载波上的前一个相邻上行子帧中的最后一个 SC-FDMA符号同时传输, 因此不需要 对载波 1上的上行信道 /信号空置任何 SC-FDMA符号, 以保证其传输效率;
当前子帧 i 中: UE在载波 1 同时存在 SRS和 PUCCH传输, 当配置支持 SRS 与 ACK/NACK同时传输时, 釆用 shortened PUCCH format传输 PUCCH, 否则丢弃 SRS , 釆 用 normal PUCCH format传输; UE在载波 2仅存在 PUSCH传输, 且第一个 SC-FDMA符 号空置, 则基于第一个 SC-FDMA符号空置对该 PUSCH进行速率匹配传输; UE在载波 3 同时存在 SRS和 PUSCH传输, 且第一个 SC-FDMA符号空置, 则基于第一个 SC-FDMA 符号空置以及最后一个 SC-FDMA符号预留给 SRS对该 PUSCH进行速率匹配传输; UE 在载波 4仅存在 SRS传输, 且第一个 SC-FDMA符号空置, 则 UE在该载波的最后一个 SC-FDMA符号传输 SRS;
UE根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上的上行信道 的目标发射功率, 并按照下述步骤进行功率降低:
步骤 1: 判断当前子帧 i中载波 1上的 PUCCH、 载波 2和 3上的 PUSCH的目标发射 功率之和是否超过最大发射功率, 如果超过, 根据信道优先级, 优先保证 PUCCH发射功 率不降低, 对载波 2和载波 3上的 PUSCH进行等比例功率降低, 以满足, 功率降低后, 当前子帧 i中载波 2和 3上的 PUSCH的发射功率之和不超过最大发射功率减去载波 1上 的 PUCCH的发射功率, 得到载波 2、 3上 PUSCH的实际发射功率; 否则, 将载波 2、 3 上 PUSCH的目标发射功率作为实际发射功率;
步骤 2: 判断当前子帧 i中载波 1上的 PUCCH的目标发射功率、 载波 2上的 PUSCH 的实际发射功率 (即步骤 1得到的功率) 以及载波 3、 4上的 SRS的目标发射功率之和是 否超过最大发射功率, 如果超过, 对载波 3、 4上的 SRS进行等比例功率降低, 以满足功 率降低后载波 3、4上的 SRS的发射功率之和不超过最大发射功率减去载波 1上的 PUCCH、 载波 2上的 PUSCH的实际发射功率, 并记录载波 3、 4上的 SRS功率降低后的发射功率 P3、 P4; 如果不超过, 将载波 3、 4上 SRS的目标发射功率记录为 P3、 P4;
步骤 3 : 判断当前子帧 i中载波 1上 SRS的目标发射功率、 载波 2上 PUSCH的实际 发射功率 (即步骤 1得到的功率) 以及载波 3、 4上的 SRS的目标发射功率之和是否超过 最大发射功率, 如果超过, 对载波 1、 3、 4上的 SRS进行等比例功率降低, 以满足功率降 低后载波 1、 3、 4上的 SRS的发射功率之和不超过最大发射功率减去载波 2上的 PUSCH 的实际发射功率, 得到功率降低后载波 1上 SRS的实际发射功率, 并记录载波 3、 4上的 SRS功率降低后的发射功率 P3'、 Ρ4'; 如果不超过, 确定载波 1上 SRS的目标发射功率为 实际发射功率, 并将载波 3、 4上 SRS的目标发射功率记录为 Ρ3'、 Ρ4';
步骤 4: 确定 Ρ3和 P3'中较小值作为载波 3上 SRS的实际发射功率; 确定 Ρ4和 P4' 中较小值作为载波 4上 SRS的实际发射功率;
方式 2:
具体空置情况同方式 1 ; 此外, 考虑到具有最大 ΤΑ的上行载波 3和 4的 SRS与载波 1和载波 2的上行信道的最后 2个 SC-FDMA符号都存在部分重叠, 为了避免同时 SRS在 2个 SC-FDMA符号与其他载波上的上行信道同时传输,可额外配置或约定载波 1和载波 2 上的当前子帧中的最后 2个 SC-FDMA符号不传输任何上行信道承载的信息(如 UCI和上 行数据), 但可在最后一个 SC-FDMA符号传输 SRS; 如图 10所示;
当前子帧 i中, UE在载波 1同时存在 SRS和 PUCCH传输, PUCCH需空置最后 2个 SC-FDMA符号传输, 此时需要定义新的 PUCCH format, 釆用新的时域扩频长度, 避免将 数据映射到后 2个 SC-FDMA符号, SRS在最后一个 SC-FDMA符号传输; UE在载波 2 仅存在 PUSCH传输, 且第一个 SC-FDMA符号空置, 后 2个 SC-FDMA符号空置, 则基 于第一个和后 2个 SC-FDMA符号空置对该 PUSCH进行速率匹配传输; UE在载波 3同时 存在 SRS和 PUSCH传输, 且仅第一个 SC-FDMA符号空置, 则基于第一个 SC-FDMA符 号空置以及最后一个 SC-FDMA符号预留给 SRS对该 PUSCH进行速率匹配传输; UE在 载波 4 仅存在 SRS 传输, 且仅第一个 SC-FDMA符号空置, 则在该载波的最后一个 SC-FDMA符号传输 SRS;
UE根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上的上行信道 的目标发射功率, 并按照下述步骤进行功率降低:
步骤 1: 判断当前子帧 i中载波 1上的 PUCCH、 载波 2和 3上的 PUSCH的目标发射 功率之和是否超过最大发射功率, 如果超过, 根据信道优先级, 优先保证 PUCCH发射功 率不降低, 对载波 2和载波 3上的 PUSCH进行等比例功率降低, 以满足, 功率降低后, 当前子帧 i中载波 2和 3上的 PUSCH的发射功率之和不超过最大发射功率减去载波 1上 的 PUCCH的发射功率, 得到载波 2、 3上 PUSCH的实际发射功率; 否则, 将载波 2、 3 上 PUSCH的目标发射功率作为实际发射功率;
步骤 2: 判断当前子帧 i中载波 1上的 SRS的目标发射功率、 以及载波 3、 4上的 SRS 的目标发射功率之和是否超过最大发射功率, 如果超过, 对载波 1、 3、 4上的 SRS进行等 比例功率降低, 以满足功率降低后载波 1、 3、 4上的 SRS的发射功率之和不超过最大发射 功率, 得到载波 1、 3、 4上 SRS的实际发射功率; 如果不超过, 确定载波 1、 3、 4上 SRS 的目标发射功率为实际发射功率;
基站侧: 与 UE端的理解一致, 对于方式 1 : 当前子帧 i中: 如果支持 SRS与 ACK/NACK同时 传输, 在载波 1上釆用 shortened PUCCH format接收 PUCCH和 SRS , 否则釆用 normal PUCCH format接收 PUCCH; 在载波 2上基于第一个 SC-FDMA符号空置进行解速率匹配 接收 PUSCH;在载波 3上基于第一个 SC-FDMA符号空置以及最后一个 SC-FDMA符号传 输 SRS进行解速率匹配接收 PUSCH和 SRS; 在载波 4上的最后一个 SC-FDMA符号上接 收 SRS。
对于方式 2: 当前子帧 i中: 如果支持 SRS与 ACK/NACK同时传输, 在载波 1上釆 用后 2个 SC-FDMA符号空置的新 PUCCH format接收 PUCCH和 SRS , 否则, 釆用后 2 个 SC-FDMA符号空置的新 PUCCH format接收 PUCCH;在载波 2上基于第一个和后 2个 SC-FDMA符号空置进行解速率匹配接收 PUSCH; 在载波 3基于第一个 SC-FDMA符号空 置以及最后一个 SC-FDMA符号传输 SRS进行解速率匹配接收 PUSCH和 SRS; 在载波 4 上的最后一个 SC-FDMA符号上接收 SRS。
需要说明的是, 上述过程中, 较佳地, 当对一个上行载波, 可以判断当前上行子帧的 前一个相邻上行子帧中 TA小于该载波的上行载波在最后一个 SC-FDMA符号上没有数据 传输(即可能的情况为前一个相邻上行子帧中 TA小于该载波的上行载波上没有上行信道 / 信号传输,或者 PUCCH为 shortened format且最后一个 SC-FDMA符号无 SRS传输,或者 PUSCH基于最后一个 SC-FDMA符号速率匹配且最后一个 SC-FDMA符号无 SRS传输) 时, 当前上行子帧中可不空置前 K个 SC-FDMA符号, 即 K=0。
场景三:
UE聚合了 4个载波进行上行传输, 所属 TA group不同, 载波 2的 TA超前载波 1约
0.5个 SC-FDMA符号, 载波 3、 4的 TA超前载波 1约 0.8个 SC-FDMA符号, 则载波 3、 4在上行子帧 i中的第一个 SC-FDMA符号会与载波 1、 2在相邻的上行子帧 i-1中的最后 一个 SC-FDMA符号部分重叠,载波 2在上行子帧 i中的第一个 SC-FDMA符号会与载波 1 在相邻的上行子帧 i+1中的最后一个 SC-FDMA符号部分重叠, SRS在最后一个 SC-FDMA 符号发送, 且一个上行子帧中仅存在一种 TA的 SRS发送, 此时:
UE侧:
UE接收基站发送的高层信令或者 PDCCH信令或者 UE与基站预先约定,确定在载波 2、 3、 4上的当前或者所有上行子帧的第一个 SC-FDMA符号空置不传输任何上行信息, 如图 11所示; 由于载波 1的 TA最小,其上的上行信道 /信号的第一个 SC-FDMA符号不会 与其他载波上的前一个相邻上行子帧中的最后一个 SC-FDMA符号同时传输, 因此不需要 对载波 1上的上行信道 /信号空置任何 SC-FDMA符号, 以保证其传输效率;
当前子帧 i中: UE在载波 1仅存在 PUCCH传输, 釆用 normal PUCCH format传输; 在载波 2仅存在 PUSCH传输, 且第一个 SC-FDMA符号空置, 则基于第一个 SC-FDMA 符号空置对该 PUSCH进行速率匹配传输; 在载波 3同时存在 SRS和 PUSCH传输, 且第 一个 SC-FDMA符号空置, 则基于第一个 SC-FDMA符号空置以及最后一个 SC-FDMA符 号预留给 SRS对该 PUSCH进行速率匹配传输, 并在最后一个 SC-FDMA符号传输 SRS; 在载波 4仅存在 SRS传输, 且第一个 SC-FDMA符号空置, 则 UE在该载波的最后一个 SC-FDMA符号传输 SRS;
UE根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上的上行信道 的目标发射功率, 并按照下述步骤进行功率降低:
步骤 1: 判断当前子帧 i中载波 1上的 PUCCH、 载波 2和 3上的 PUSCH的目标发射 功率之和是否超过最大发射功率, 如果超过, 根据信道优先级, 优先保证 PUCCH发射功 率不降低, 对载波 2和载波 3上的 PUSCH进行等比例功率降低, 以满足, 功率降低后, 当前子帧 i中载波 2和 3上的 PUSCH的发射功率之和不超过最大发射功率减去载波 1上 的 PUCCH的发射功率, 得到载波 2、 3上 PUSCH的实际发射功率; 否则, 将载波 2、 3 上 PUSCH的目标发射功率作为实际发射功率;
步骤 2: 判断当前子帧 i中载波 3、 4上的 SRS的目标发射功率以及载波 1上 PUCCH 的实际发射功率、 载波 2上 PUSCH的实际发射功率之和是否超过最大发射功率, 如果超 过, 对载波 3、 4上的 SRS进行等比例功率降低, 以满足功率降低后载波 3、 4上的 SRS 的发射功率之和不超过最大发射功率减去载波 1 上 PUCCH的实际发射功率和载波 2上 PUSCH的实际发射功率, 得到载波 3、 4上 SRS的实际发射功率; 如果不超过, 确定载波 3、 4上 SRS的目标发射功率为实际发射功率;
基站侧:
与 UE侧的理解一致, 当前子帧 i中,基站在载波 1上釆用 normal PUCCH format接收 PUCCH; 在载波 2上基于第一个 SC-FDMA符号空置进行解速率匹配接收 PUSCH; 在载 波 3上基于第一个 SC-FDMA符号空置以及最后一个 SC-FDMA符号传输 SRS进行解速率 匹配接收 PUSCH和 SRS; 在载波 4上判断的最后一个 SC-FDMA符号上接收 SRS。
需要说明的是, 上述过程中, 较优的, 当对一个上行载波, 可以判断当前上行子帧的 前一个相邻上行子帧中 TA小于该载波的上行载波在最后一个 SC-FDMA符号上没有数据 传输(即可能的情况为前一个相邻上行子帧中 TA小于该载波的上行载波上没有上行信道 / 信号传输,或者 PUCCH为 shortened format且最后一个 SC-FDMA符号无 SRS传输,或者 PUSCH基于最后一个 SC-FDMA符号速率匹配且最后一个 SC-FDMA符号无 SRS传输) 时, 当前上行子帧中可不空置前 K个 SC-FDMA符号, 即 K=0。
场景四、 UE聚合了 4个载波进行上行传输, 所属 TAgroup不同, 载波 1、 2的 TA超 前载波 3、 4约 0.5个 SC-FDMA符号, 则载波 3、 4在上行子帧 i中的最后一个 SC-FDMA 符号会与载波 1、 2在相邻的上行子帧 i+1中的第一个 SC-FDMA符号部分重叠, SRS在 第一个 SC-FDMA符号发送, 且一个上行子帧中仅存在一种 TA的 SRS发送, 此时: UE侧:
UE接收基站发送的高层信令或者 PDCCH信令或者 UE与基站预先约定,确定在载波 3、 4上的当前或者所有上行子帧的最后一个 SC-FDMA符号空置不传输任何上行信息, 如 图 12所示; 由于载波 1、 2的 TA最大, 其上的上行信道 /信号的最后一个 SC-FDMA符号 不会与其他载波上的后一个相邻上行子帧中的第一个 SC-FDMA符号同时传输, 因此不需 要对载波 1、 2上的上行信道 /信号空置任何 SC-FDMA符号, 以保证其传输效率;
当前子帧 i中: UE在载波 1同时存在 PUCCH和 SRS传输,当支持 SRS与 ACK/NACK 同时传输时, 需定义新的 shortened PUCCH format以支持 SRS在第一个 SC-FDMA符号传 输, 较为筒单的实现方式即为将 Rel-10中 shortened PUCCH format的 2个时隙使用的时域 正交扩频序列交换,即第一个时隙使用长度为 4的时域正交扩频序列,从第二个 SC-FDMA 符号开始映射, 第二个时隙使用长度为 5的时域正交扩频序列, SRS在第一个 SC-FDMA 符号传输, 否则, 丢弃 SRS, 釆用 normal PUCCH format传输; 在载波 2同时存在 PUSCH 和 SRS传输,则基于第一个 SC-FDMA符号预留用来传输 SRS对该 PUSCH进行速率匹配 传输, 并在第一个 SC-FDMA符号传输 SRS; 在载波 3仅存在 PUSCH传输, 且最后一个 SC-FDMA符号空置,则基于最后一个 SC-FDMA符号空置对该 PUSCH进行速率匹配传输; UE根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上的上行信道 的目标发射功率, 并按照下述步骤进行功率降低:
步骤 1: 判断当前子帧 i中载波 1上的 PUCCH、 载波 2和 3上的 PUSCH的目标发射 功率之和是否超过最大发射功率, 如果超过, 根据信道优先级, 优先保证 PUCCH发射功 率不降低, 对载波 2和载波 3上的 PUSCH进行等比例功率降低, 以满足, 功率降低后, 当前子帧 i中载波 2和 3上的 PUSCH的发射功率之和不超过最大发射功率减去载波 1上 的 PUCCH的发射功率, 得到载波 2、 3上 PUSCH的实际发射功率; 否则, 将载波 2、 3 上 PUSCH的目标发射功率作为实际发射功率;
步骤 2: 判断当前子帧 i中载波 1、 2上的 SRS的目标发射功率以及载波 3上 PUSCH 的实际发射功率之和是否超过最大发射功率, 如果超过, 对载波 1、 2上的 SRS进行等比 例功率降低, 以满足功率降低后载波 1、 2上的 SRS的发射功率之和不超过最大发射功率 减去载波 3上 PUSCH的实际发射功率, 得到载波 1、 2上 SRS的实际发射功率; 如果不 超过, 确定载波 1、 2上 SRS的目标发射功率为实际发射功率;
基站侧:
与 UE端的理解一致, 当前子帧 i中,基站在载波 1上釆用新定义的 shortened PUCCH format接收 PUCCH和 SRS; 在载波 2基于第一个 SC-FDMA符号传输 SRS进行解速率匹 配接收 PUSCH和 SRS; 在载波 3上基于最后一个 SC-FDMA符号空置进行解速率匹配接 收 PUSCH。
需要说明的是, 上述过程中, 较优的, 当对一个上行载波, 可以判断当前上行子帧的 后一个相邻上行子帧中 TA大于该载波的上行载波在第一个 SC-FDMA符号上没有数据传 输(即可能的情况为后一个相邻上行子帧中 TA大于该载波的上行载波上没有上行信道 /信 号传输) 时, 当前上行子帧中可不空置后 K个 SC-FDMA符号, 即 K=0。
场景五、 UE聚合了 3个载波进行上行传输, 所属 TA group不同, 载波 2、 的 TA超前 载波 1约 0.5个 SC-FDMA符号, 载波 3上在上行子帧 i-1中发送了 PRACH (承载 format2 preamble序列), 持续 2个子帧, 因此载波 1和 2在子帧 i-l、 子帧 i和子帧 i+1中都存在部 分或者全部 SC-FDMA符号与 PRACH重叠, 此时:
UE侧:
方式 A:由于载波 1和 2在子帧 i-1、子帧 i和子帧 i+1中都存在部分或者全部 SC-FDMA 符号与 PRACH重叠,UE确定在载波 1和 2的这些子帧中都不传输上行信息,仅在 PRACH 所在的载波上传输 PRACH, 如图 13A; 如果存在在这些子帧传输的 PUCCH和 /或 PUSCH (例如基站错误调度了 PUSCH, 或者配置 /触发了 SRS/CSI传输, 或者调度了 PDSCH需 要进行 ACK/NACK反馈), 则 UE认为是调度错误, 不传输这些信道。
方式 B: 由于载波 1和载波 2在子帧 i+1 中, 仅前一部分 SC-FDMA符号与 PRACH 重叠, UE可在载波 1和 2上子帧 i+1中不与 PRACH重叠的 SC-FDMA符号上发送上行信 道 /信号, 如图 13B, 在载波 2的子帧 i+1中的最后一个 SC-FDMA符号传输 SRS (即基站 配置该子帧为 SRS子帧)。
方式 C: 支持 PRACH与其他上行信道 /信号同时传输, UE接收基站发送的高层信令 或者 PDCCH信令或者 UE与基站预先约定,确定载波 2上一个子帧中的第一个 SC-FDMA 符号空置不传输任何上行信息,以避免载波 1上的前一个上行子帧中的上行信道 /信号与载 波 2上当前上行子帧中的上行信道 /信号同时传输; 由于载波 1的 TA小于载波 2, 其上的 上行信道 /信号的第一个 SC-FDMA符号不会与载波 2上的前一个相邻上行子帧中的最后一 个 SC-FDMA符号同时传输, 因此不需要对载波 1上的上行信道 /信号空置任何 SC-FDMA 符号, 以保证其传输效率, 如图 13C所示;
具体传输方式如下:载波 1上可重用 Rel-8/910中的 PUCCH、 PUSCH, SRS传输方式: 在非 SRS子帧中, 釆用 normal PUCCH format或 PUSCH基于所有符号传输数据进行速率 匹配; 在 SRS子帧中, 当支持 ACK/NACK与 SRS同时传输时, 釆用 shortened PUCCH format, SRS可在最后一个 SC-FDMA符号传输,否则,丢弃 SRS,釆用 normal PUCCH format 传输, 或 PUSCH基于最后一个 SC-FDMA符号预留给 SRS进行速率匹配, SRS可在最后 一个 SC-FDMA符号传输。 载波 2上, 在非 SRS子帧中, PUSCH基于第一个 SC-FDMA 空置进行速率匹配; 在 SRS 子帧中, PUSCH基于第一个 SC-FDMA 空置以及最后一个 SC-FDMA符号预留给 SRS进行速率匹配, SRS可在最后一个 SC-FDMA传输; 此外, UE还需根据每个载波上的功率控制参数和功率控制公式计算得到每个载波上 的上行信道的目标发射功率, 并按照下述步骤进行功率降低:
对于子帧 i:
判断子帧 i中载波 1和 2上的 PUSCH的目标发射功率之和是否超过最大发射功率减 去 PRACH的发射功率, 如果超过, 根据信道优先级, 对载波 1和 2上的 PUSCH进行等 比例功率降低, 以满足, 功率降低后, 子帧 i中载波 1和 2上的 PUSCH的发射功率之和 不超过最大发射功率减去 PRACH的发射功率, 得到载波 1和 2上 PUSCH的实际发射功 率; 否则, 将载波 1和 2上 PUSCH的目标发射功率作为实际发射功率;
对子帧 i+1 :
判断子帧 i+1中载波 1上的 PUCCH和载波 2上的 PUSCH的目标发射功率之和是否超 过最大发射功率减去 PRACH的发射功率, 如果超过, 根据信道优先级, 优先保证 PUCCH 发射功率不降低, 对 2上的 PUSCH进行功率降低, 以满足功率降低后, 子帧 i+ 1中载波 1 上的 PUCCH和 2上的 PUSCH的发射功率之和不超过最大发射功率减去 PRACH的发射功 率, 如果 PUSCH功率降低为 0时, UE总发射功率还是超过最大发射功率, 则进一步降低 PUCCH的发射功率, 从而得到载波 1上的 PUCCH和载波 2上 PUSCH的实际发射功率; 否则, 将载波 1上的 PUCCH和载波 2上 PUSCH的目标发射功率作为实际发射功率。
基站侧:
方式 A: 由于子帧 i-l、 子帧 i和子帧 i+1 中都存在部分或者全部 SC-FDMA符号与 PRACH重叠,基站通过调度或者预先配置 UE预留的 SC-FDMA符号为一个子帧中的最大 SC-FDMA符号数, 或者与 UE预先约定不支持其他上行信道 /信号与 PRACH同时传输, 则判断这些子帧中都不存在上行信息传输, 不接收任何上行信息, 仅在 PRACH所在的载 波上接收 PRACH;
方式 B: 由于载波 1和载波 2在子帧 i+1 中, 仅前一部分 SC-FDMA符号与 PRACH 重叠, 基站可在载波 1和 2上子帧 i+1中不与 PRACH重叠的 SC-FDMA符号上接收上行 信道 /信号, 如图 13B, 在载波 2的子帧 i+1中的最后一个 SC-FDMA符号接收 SRS (较优 的, 基站应优先配置该子帧为 SRS子帧)。
方式 C: 支持 PRACH与其他上行信道 /信号同时传输, 基站向 UE发送的高层信令或 者 PDCCH信令或者与 UE预先约定, 载波 2上一个子帧中的第一个 SC-FDMA符号空置 不传输任何上行信息,以避免载波 1上的前一个上行子帧中的上行信道 /信号与载波 2上当 前上行子帧中的上行信道 /信号同时传输; 由于载波 1的 TA小于载波 2, 其上的上行信道 / 信号的第一个 SC-FDMA符号不会与载波 2 上的前一个相邻上行子帧中的最后一个 SC-FDMA符号同时传输, 因此不需要对载波 1上的上行信道 /信号空置任何 SC-FDMA符 号, 以保证其传输效率, 如图 13C所示;
具体接收方式如下: 基站在载波 1和 2的子帧 i和 i+1中接收上行信息, 载波 1上可 重用 Rel-8/910中的 PUCCH、PUSCH、 SRS传输方式:在非 SRS子帧中,釆用 normal PUCCH format 或 PUSCH基于所有符号传输数据进行解速率匹配; 在 SRS 子帧中, 当支持 ACK/NACK与 SRS同时传输时, 釆用 shortened PUCCH format, 可在最后一个 SC-FDMA 符号接收 SRS, 否则, 不接收 SRS, 釆用 normal PUCCH format传输, 或 PUSCH基于最 后一个 SC-FDMA符号预留给 SRS进行解速率匹配, 可在最后一个 SC-FDMA符号接收 SRS。 载波 2上, 在非 SRS子帧中, PUSCH基于第一个 SC-FDMA空置进行解速率匹配; 在 SRS子帧中, PUSCH基于第一个 SC-FDMA空置以及最后一个 SC-FDMA符号预留给 SRS进行解速率匹配, 可在最后一个 SC-FDMA接收 SRS。
需要说明的是, 上述过程中, 较优的, 当对一个上行载波, 可以判断当前上行子帧的 后一个相邻上行子帧中 TA小于该载波的上行载波在最后一个 SC-FDMA符号上没有数据 传输时, 当前上行子帧中可不空置前 K个 SC-FDMA符号, 即 K=0, 即子帧 i中, 对于载 波 2, 可不空置第一个 SC-FDMA符号。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种传输上行信息的方法, 其特征在于, 该方法包括:
具有多个上行定时提前量 TA的用户设备 ,确定上行载波在当前上行子帧中预留 K个 单载波频分多址 SC-FDMA符号不传输上行信息, 其中 K是非负整数;
所述用户设备将待传输的上行信息映射到上行载波在当前上行子帧中除所述 K 个
SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输。
2、 如权利要求 1所述的方法, 其特征在于, 所述用户设备确定所述 K 个 SC-FDMA 符号, 包括:
所述用户设备根据高层信令或物理下行控制信道 PDCCH信令的配置, 确定所述 K个 SC-FDMA符号; 或
所述用户设备根据与网络侧设备的预先约定, 确定所述 K个 SC-FDMA符号; 或 所述用户设备根据 PDCCH信令中的特定比特域判断当前上行子帧中是否存在预留的 SC-FDMA符号, 当判断存在时,确定高层信令或 PDCCH信令预先配置的 K个 SC-FDMA 符号为所述 K 个 SC-FDMA符号, 当判断不存在时, 确定当前上行子帧中无预留的 SC-FDMA符号, 其中, 所述 PDCCH为对应在当前上行子帧中进行肯定确认 ACK/否定确 认 NACK反馈的下行子帧中的 PDCCH,和 /或为对应当前上行子帧中的物理上行共享信道 PUSCH的 PDCCH;
其中, 所述高层信令是无线资源控制 RRC信令或媒体接入控制 MAC信令。
3、 如权利要求 1所述的方法, 其特征在于, 所述 K个 SC-FDMA符号为当前上行子 帧中的前 K个 SC-FDMA符号; 或
所述 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或
所述 K个 SC-FDMA符号为当前上行子帧中的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K; 或,
探测用参考信号 SRS在当前上行子帧中的最后一个 SC-FDMA符号传输,且所述 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
SRS在当前上行子帧中的第一个 SC-FDMA符号传输, 且所述 K个 SC-FDMA符号为 当前上行子帧中的后 K个 SC-FDMA符号。
4、 如权利要求 3所述的方法, 其特征在于, 若所述 K个 SC-FDMA符号为当前上行 子帧中的前 K个 SC-FDMA符号, 所述用户设备确定所述 K 个 SC-FDMA符号, 进一步 包括:
所述用户设备确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子 帧中预留所述 K个 SC-FDMA符号, 或所述用户设备确定对具有最小上行 TA的上行载波 在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA小于所述上行载波的其他上行载波在当前上行子帧 的前一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 所述用户设备确 定在当前上行子帧中对所述上行载波不预留前 K个 SC-FDMA符号。
5、 如权利要求 3所述的方法, 其特征在于, 若 K个 SC-FDMA符号为当前上行子帧 中的后 K个 SC-FDMA符号, 所述用户设备确定所述 K个 SC-FDMA符号, 进一步包括: 所述用户设备确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子 帧中预留所述 K个 SC-FDMA符号, 或所述用户设备确定对具有最大上行 TA的上行载波 在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA大于所述上行载波的其他上行载波在当前上行子帧 的后一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 所述用户设备确 定在当前上行子帧中对所述上行载波不预留后 K个 SC-FDMA符号。
6、 如权利要求 1 ~ 5任一所述的方法, 其特征在于, 所述用户设备将待传输的上行信 息映射到上行载波在当前上行子帧中除所述 K个 SC-FDMA符号之外的其他用于传输上行 信息的 SC-FDMA符号上进行传输, 包括:
对于物理上行控制信道 PUCCH传输, 所述用户设备釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交扩频的 传输格式传输所述上行信息; 或
对于物理上行共享信道 PUSCH传输, 所述用户设备釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号进行速率匹配传输所 述上行信息。
7、 如权利要求 6所述的方法, 其特征在于, 若 K=l , 且所述 Κ个 SC-FDMA符号为 当前上行子帧中的最后一个 SC-FDMA符号, 所述用户设备将待传输的上行信息映射到上 行载波在当前上行子帧中除所述 K 个 SC-FDMA符号之外的其他用于传输上行信息的 SC-FDMA符号上进行传输, 进一步包括:
对于 PUCCH传输, 所述用户设备釆用截短的 PUCCH格式 shortened PUCCH format 传输所述上行信息; 或
对于在 PUSCH传输, 所述用户设备基于最后一个 SC-FDMA符号预留用于传输 SRS 进行速率匹配传输所述上行信息。
8、 如权利要求 1 ~ 5任一所述的方法, 其特征在于, 若当前上行子帧中的全部或部分
SC-FDMA符号与在至少一个上行子帧中持续传输的物理随机接入信道 PRACH存在重叠, 该方法还包括:
所述用户设备确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧中 不传输任何上行信息; 或
对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了所述 K个 SC-FDMA符号后的上行信道 /信号在全部或部分 SC-FDMA符号上仍 旧与 PRACH重叠,所述用户设备确定该上行载波在当前上行子帧中不传输任何上行信息; 或
所述用户设备基于 PRACH的发射功率对当前上行子帧中的上行信道 /信号进行功率控 制, 并按照功率控制后的发射功率传输当前上行子帧中的上行信道 /信号;
其中, 所述上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
9、 如权利要求 1 ~ 5任一所述的方法, 其特征在于, 该方法还包括:
若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输,所述用户设备确定除 了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留 后 2个 SC-FDMA符号不传输上行信息; 或
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS传 输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输,所述用户设备确定除了具 有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2 个 SC-FDMA符号不传输上行信息;
其中, 所述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
10、 如权利要求 1 ~ 5任一所述的方法, 其特征在于, 该方法还包括:
所述用户设备在同一个上行子帧中仅存在具有相同上行 TA的上行载波的 SRS传输。
11、 一种接收上行信息的方法, 其特征在于, 该方法包括:
网络侧设备确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输上行信 息, 其中 K是非负整数;
所述网络侧设备通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号 之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
12、 如权利要求 11所述的方法, 其特征在于, 所述网络侧设备确定 K个 SC-FDMA 符号之后, 进一步包括:
所述网络侧设备通过高层信令或 PDCCH 信令为所述用户设备配置所述 K 个 SC-FDMA符号; 或
所述网络侧设备通过与所述用户设备预先约定的方式, 通知所述 K个 SC-FDMA符 号; 或
所述网络侧设备通过高层信令或 PDCCH信令预先将所述 K个 SC-FDMA符号通知给 所述用户设备, 并通过 PDCCH信令中的特定比特域配置所述用户设备在当前上行子帧中 是否预留所述 K个 SC-FDMA符号, 其中所述 PDCCH为对应在当前上行子帧中进行肯定 确认 ACK/否定确认 NACK反馈的下行子帧中的 PDCCH, 和 /或为对应当前上行子帧中的 PUSCH的 PDCCH;
其中, 所述高层信令是 RRC信令或 MAC信令。
13、 如权利要求 11所述的方法, 其特征在于, 所述 K个 SC-FDMA符号为当前上行 子帧中的前 K个 SC-FDMA符号; 或
所述 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号; 或
所述 K个 SC-FDMA符号为当前上行子帧中的前 K1个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K; 或,
SRS在当前上行子帧中的最后一个 SC-FDMA符号传输, 且所述 K个 SC-FDMA符号 为当前上行子帧中的前 K个 SC-FDMA符号; 或
SRS在当前上行子帧中的第一个 SC-FDMA符号传输, 且所述 K个 SC-FDMA符号为 当前上行子帧中的后 K个 SC-FDMA符号。
14、 如权利要求 13所述的方法, 其特征在于, 若所述 K个 SC-FDMA符号为当前上 行子帧中的前 K个 SC-FDMA符号, 所述网络侧设备确定 K 个 SC-FDMA符号, 进一步 包括:
所述网络侧设备确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行 子帧中预留所述 K个 SC-FDMA符号, 或所述网络侧设备确定对具有最小上行 TA的上行 载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或 ,
针对一个上行载波, 如果上行 TA小于所述上行载波的其他上行载波在当前上行子帧 的前一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息, 所述网络侧设备 确定在当前上行子帧中对所述上行载波不预留前 K个 SC-FDMA符号。
15、 如权利要求 13所述的方法, 其特征在于, 若 K个 SC-FDMA符号为当前上行子 帧中的后 K个 SC-FDMA符号, 所述网络侧设备确定 K个 SC-FDMA符号, 进一步包括: 所述网络侧设备确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行 子帧中预留所述 K个 SC-FDMA符号, 或所述网络侧设备确定对具有最大上行 TA的上行 载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或 ,
针对一个上行载波, 如果上行 TA大于所述上行载波的其他上行载波在当前上行子帧 的后一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息, 所述网络侧设备 确定在当前上行子帧中对所述上行载波不预留后 K个 SC-FDMA符号。
16、如权利要求 11 ~ 15任一所述的方法, 其特征在于, 所述网络侧设备通过上行载波 在当前上行子帧中除不传输上行信息的 SC-FDMA符号之外的其他 SC-FDMA符号接收具 有多个上行 TA的用户设备传输发送的上行信息, 包括: 对于 PUCCH传输, 所述网络侧设备釆用基于一个上行子帧中除所述 K个 SC-FDMA 符号之外的其他用于传输上行信息的 SC-FDMA符号进行时域正交解扩频的传输格式接收 上行信息; 或
对于 PUSCH传输, 所述网络侧设备釆用基于一个上行子帧中除所述 K个 SC-FDMA 符号之外的其他用于传输上行信息的 SC-FDMA符号进行解速率匹配接收上行信息。
17、 如权利要求 16所述的方法, 其特征在于, 若 K=l , 且所述 Κ个 SC-FDMA符号 为当前上行子帧中的最后一个 SC-FDMA符号, 所述网络侧设备通过上行载波在当前上行 子帧中除不传输上行信息的 SC-FDMA符号之外的其他 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息, 进一步包括:
对于 PUCCH传输, 所述网络侧设备釆用 shortened PUCCH format接收上行信息; 或 对于 PUSCH传输, 所述网络侧设备基于最后一个 SC-FDMA符号预留用于 SRS传输 进行解速率匹配接收上行信息。
18、如权利要求 11 ~ 15任一所述的方法, 其特征在于, 若当前上行子帧中的上行信道 /信号在全部或部分 SC-FDMA符号与在至少一个上行子帧中持续传输的 PRACH存在重 叠, 该方法还包括:
所述网络侧设备确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧 中不接收任何上行信息; 或
对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了所述 K个 SC-FDMA符号后的上行信道 /信号在全部或部分 SC-FDMA符号上仍 旧与 PRACH重叠, 所述网络侧设备确定该上行载波在当前上行子帧中不接收任何上行数 据; 或
所述网络侧设备确定在当前上行子帧中的各上行载波接收上行信息;
其中, 所述上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
19、 如权利要求 11 ~ 15任一所述的方法, 其特征在于, 该方法还包括:
若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输,所述网络侧设备确定 除了具有最大上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预 留后 2个 SC-FDMA符号不传输上行信息; 或
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS传 输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输,所述网络侧设备确定除了 具有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA符号不传输上行信息;
其中, 所述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
20、 如权利要求 11 ~ 15任一所述的方法, 其特征在于, 该方法还包括: 所述网络侧设备在同一个上行子帧中仅接收具有相同上行 TA的上行载波的 SRS。
21、 一种传输上行信息的用户设备, 其特征在于, 该用户设备包括:
第一确定模块, 用于具有多个上行 TA时, 确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输上行信息, 其中 K是非负整数;
传输模块, 用于将待传输的上行信息映射到上行载波在当前上行子帧中除所述 K个 SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输。
22、 如权利要求 21所述的用户设备, 其特征在于, 所述第一确定模块具体用于: 根据高层信令或 PDCCH信令的配置, 确定所述 K个 SC-FDMA符号; 或
根据与网络侧设备的预先约定, 确定所述 K个 SC-FDMA符号; 或
根据 PDCCH信令中的特定比特域判断当前上行子帧中是否存在预留的 SC-FDMA符 号, 当判断存在时, 确定高层信令或 PDCCH信令预先配置的 K个 SC-FDMA符号为所述 K个 SC-FDMA符号, 当判断不存在时, 确定当前上行子帧中无预留的 SC-FDMA符号, 其中, 所述 PDCCH 为对应在当前上行子帧中进行 ACK/NACK 反馈的下行子帧中的 PDCCH, 和 /或为对应当前上行子帧中的 PUSCH的 PDCCH;
其中, 所述高层信令是 RRC信令或 MAC信令。
23、 如权利要求 21所述的用户设备, 其特征在于, 所述第一确定模块确定所述 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
所述第一确定模块确定所述 K 个 SC-FDMA 符号为当前上行子帧中的后 K 个 SC-FDMA符号; 或
所述第一确定模块确定所述 K 个 SC-FDMA符号为当前上行子帧中的前 K1 个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K; 或
所述第一确定模块确定 SRS在当前上行子帧中的最后一个 SC-FDMA符号传输,且所 述 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
所述第一确定模块确定 SRS在当前上行子帧中的第一个 SC-FDMA符号传输,且所述
K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。
24、 如权利要求 23所述的用户设备, 其特征在于, 若所述 K个 SC-FDMA符号为当 前上行子帧中的前 K个 SC-FDMA符号, 所述第一确定模块进一步用于:
确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中预留所述 K个 SC-FDMA符号, 或确定对具有最小上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA小于所述上行载波的其他上行载波在当前上行子帧 的前一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息,确定在当前上行 子帧中对所述上行载波不预留前 K个 SC-FDMA符号。
25、 如权利要求 23所述的用户设备, 其特征在于, 若 Κ个 SC-FDMA符号为当前上 行子帧中的后 Κ个 SC-FDMA符号, 所述第一确定模块进一步用于:
确定仅对除具有最大上行 ΤΑ的上行载波以外的上行载波在一个上行子帧中预留所述 Κ个 SC-FDMA符号, 或确定对具有最大上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA大于所述上行载波的其他上行载波在当前上行子帧 的后一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息,确定在当前上行 子帧中对所述上行载波不预留后 K个 SC-FDMA符号。
26、 如权利要求 21 - 25任一所述的用户设备, 其特征在于, 所述传输模块具体用于: 对于 PUCCH传输, 釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他 用于传输上行信息的 SC-FDMA符号进行时域正交扩频的传输格式传输所述上行信息; 或 对于 PUSCH传输, 釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他 用于传输上行信息的 SC-FDMA符号进行速率匹配传输所述上行信息。
27、 如权利要求 26所述的用户设备, 其特征在于, 若 K=l , 且所述 Κ个 SC-FDMA 符号为当前上行子帧中的最后一个 SC-FDMA符号, 所述传输模块进一步用于:
对于 PUCCH传输, 釆用 shortened PUCCH format传输所述上行信息; 或
对于 PUSCH传输, 基于最后一个 SC-FDMA符号预留用于 SRS传输进行速率匹配传 输所述上行信息。
28、 如权利要求 21 - 25 任一所述的用户设备, 其特征在于, 若当前上行子帧中的全 部或部分 SC-FDMA符号与在至少一个上行子帧中连续传输的 PRACH存在重叠, 所述第 一确定模块进一步用于:
确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧中不传输任何上 行信息; 或
对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了所述 K个 SC-FDMA符号后的上行信道 /信号在全部或部分 SC-FDMA符号上仍 旧与 PRACH重叠, 确定该上行载波在当前上行子帧中不传输任何上行信息; 或
基于 PRACH的发射功率对当前上行子帧中的上行信道 /信号进行功率控制, 并按照功 率控制后的发射功率传输当前上行子帧中的上行信道 /信号;
其中, 所述上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
29、 如权利要求 21 - 25 任一所述的用户设备, 其特征在于, 所述第一确定模块进一 步用于:
若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输,确定除了具有最大上 行 TA 的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留后 2 个 SC-FDMA符号不传输上行信息 ;
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS传 输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输, 确定除了具有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA 符号不传输上行信息;
其中, 所述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
30、 如权利要求 21 - 25 任一所述的用户设备, 其特征在于, 所述传输模块进一步用 于:
在同一个上行子帧中仅传输具有相同上行 TA的上行载波的 SRS。
31、 一种接收上行信息的网络侧设备, 其特征在于, 该网络侧设备包括:
第二确定模块,用于确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输 上行信息, 其中 K是非负整数;
接收模块, 用于通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号 之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
32、 如权利要求 31所述的网络侧设备, 其特征在于, 所述第二确定模块进一步用于: 通过高层信令或 PDCCH信令为所述用户设备配置所述 K个 SC-FDMA符号; 或 通过与所述用户设备预先约定的方式, 通知所述 K个 SC-FDMA符号; 或
通过高层信令或 PDCCH信令预先将 K个 SC-FDMA符号通知给所述用户设备, 并通 过 PDCCH信令中的特定比特域配置所述用户设备在当前上行子帧中是否预留所述 K个 SC-FDMA符号,其中所述 PDCCH为对应在当前上行子帧中进行 ACK/NACK反馈的下行 子帧中的 PDCCH, 和 /或为对应当前上行子帧中的 PUSCH的 PDCCH;
其中, 所述高层信令是 RRC信令或 MAC信令。
33、 如权利要求 31 所述的网络侧设备, 其特征在于, 所述第二确定模块确定所述 K 个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
所述第二确定模块确定所述 K 个 SC-FDMA 符号为当前上行子帧中的后 K 个 SC-FDMA符号; 或
所述第二确定模块确定所述 K 个 SC-FDMA符号为当前上行子帧中的前 K1 个 SC-FDMA符号以及后 K2个 SC-FDMA符号, 其中 K1+K2=K; 或
所述第二确定模块确定 SRS在当前上行子帧中的最后一个 SC-FDMA符号传输,且所 述 K个 SC-FDMA符号为当前上行子帧中的前 K个 SC-FDMA符号; 或
所述第二确定模块确定 SRS在当前上行子帧中的第一个 SC-FDMA符号传输,且所述 K个 SC-FDMA符号为当前上行子帧中的后 K个 SC-FDMA符号。
34、 如权利要求 33所述的网络侧设备, 其特征在于, 若所述 K个 SC-FDMA符号为 当前上行子帧中的前 K个 SC-FDMA符号, 所述第二确定模块具体用于:
确定仅对除具有最小上行 TA的上行载波以外的上行载波在一个上行子帧中预留所述 K个 SC-FDMA符号, 或确定对具有最小上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA小于所述上行载波的其他上行载波在当前上行子帧 的前一个相邻上行子帧中的后 K个 SC-FDMA符号上没有传输上行信息,确定在当前上行 子帧中对所述上行载波不预留前 K个 SC-FDMA符号。
35、 如权利要求 33所述的网络侧设备, 其特征在于, 若 K个 SC-FDMA符号为当前 上行子帧中的后 K个 SC-FDMA符号, 所述第二确定模块具体用于:
确定仅对除具有最大上行 TA的上行载波以外的上行载波在一个上行子帧中预留所述 K个 SC-FDMA符号, 或确定对具有最大上行 TA的上行载波在一个上行子帧中不需预留 SC-FDMA符号; 和 /或,
针对一个上行载波, 如果上行 TA大于所述上行载波的其他上行载波在当前上行子帧 的后一个相邻上行子帧中的前 K个 SC-FDMA符号上没有传输上行信息,确定在当前上行 子帧中对所述上行载波不预留后 K个 SC-FDMA符号。
36、 如权利要求 31 ~ 35 任一所述的网络侧设备, 其特征在于, 所述接收模块具体用 于:
对于 PUCCH传输, 釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他 用于传输上行信息的 SC-FDMA符号进行时域正交解扩频的传输格式接收上行信息; 或 对于 PUSCH传输, 釆用基于一个上行子帧中除所述 K个 SC-FDMA符号之外的其他 用于传输上行信息的 SC-FDMA符号进行解速率匹配接收上行信息。
37、 如权利要求 36所述的网络侧设备, 其特征在于, 若 Κ=1 , 且所述 Κ个 SC-FDMA 符号为当前上行子帧中的最后一个 SC-FDMA符号, 所述接收模块进一步用于:
对于 PUCCH传输, 釆用 shortened PUCCH format接收上行信息; 或
对于 PUSCH传输, 基于最后一个 SC-FDMA符号预留用于传输 SRS进行解速率匹配 接收上行信息。
38、 如权利要求 31 - 35 任一所述的网络侧设备, 其特征在于, 若当前上行子帧中的 上行信道 /信号在全部或部分 SC-FDMA符号与在至少一个上行子帧中持续传输的 PRACH 存在重叠, 所述第二确定模块进一步用于:
确定除了 PRACH所在的上行载波以外的上行载波上在当前上行子帧中不传输任何上 行信息; 或 对于除了 PRACH所在的上行载波以外的上行载波, 如果在当前上行子帧中该上行载 波上预留了所述 K个 SC-FDMA符号后的上行信道 /信号在全部或部分 SC-FDMA符号上仍 旧与 PRACH重叠, 确定该上行载波在当前上行子帧中不接收任何上行数据; 或
确定在当前上行子帧中的各上行载波接收上行信息;
其中, 所述上行信道 /信号至少包括 PUCCH、 PUSCH和 SRS中的一种或多种。
39、 如权利要求 31 - 35 任一所述的网络侧设备, 其特征在于, 所述第二确定模块进 一步用于:
若当前上行子帧中在最后一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS 传输子帧且 SRS在一个上行子帧中的最后一个 SC-FDMA符号传输,确定除了具有最大上 行 TA 的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留后 2 个 SC-FDMA符号不传输上行信息; 或
若当前上行子帧中在第一个 SC-FDMA符号存在 SRS传输或当前上行子帧为 SRS传 输子帧且 SRS在一个上行子帧中的第一个 SC-FDMA符号传输, 确定除了具有最小上行 TA的上行载波以外的上行载波在当前上行子帧中的上行信道进一步预留前 2个 SC-FDMA 符号不传输上行信息;
其中, 所述上行信道至少包括 PUCCH、 PUSCH和 PRACH中的一种或多种。
40、 如权利要求 31 - 35 任一所述的网络侧设备, 其特征在于, 所述接收模块进一步 用于:
在同一个上行子帧中仅接收具有相同上行 TA的上行载波的 SRS。
41、 一种传输上行信息的系统, 其特征在于, 该系统包括:
用户设备, 用于具有多个上行 TA 时, 确定上行载波在当前上行子帧中预留 K 个 SC-FDMA符号不传输上行信息, 并将待传输的上行信息映射到上行载波在当前上行子帧 中除所述 K个 SC-FDMA符号之外的用于传输上行信息的 SC-FDMA符号上进行传输, 其 中 K是非负整数;
网络侧设备,用于确定上行载波在当前上行子帧中预留 K个 SC-FDMA符号不传输上 行信息, 并通过上行载波在当前上行子帧中除不传输上行信息的 SC-FDMA符号之外的 SC-FDMA符号接收具有多个上行 TA的用户设备传输发送的上行信息。
PCT/CN2013/070040 2012-01-13 2013-01-05 一种传输和接收上行信息的方法、系统和设备 WO2013104272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210011116.6 2012-01-13
CN201210011116.6A CN102572967B (zh) 2012-01-13 2012-01-13 一种传输和接收上行信息的方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2013104272A1 true WO2013104272A1 (zh) 2013-07-18

Family

ID=46417151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070040 WO2013104272A1 (zh) 2012-01-13 2013-01-05 一种传输和接收上行信息的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN102572967B (zh)
WO (1) WO2013104272A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167594B (zh) * 2011-12-19 2015-05-27 华为技术有限公司 一种上行发射功率控制方法及用户设备
CN102572967B (zh) * 2012-01-13 2014-07-30 电信科学技术研究院 一种传输和接收上行信息的方法、系统和设备
WO2013107224A1 (zh) * 2012-01-20 2013-07-25 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
US9167597B2 (en) * 2012-07-13 2015-10-20 Samsung Electronics Co., Ltd. Methods and apparatus for transmission of uplink sounding reference signals in a communication system with large number of antennas
KR101407094B1 (ko) 2012-10-31 2014-06-16 엘지전자 주식회사 상향링크 신호 전송 방법 및 장치
JP2014093628A (ja) * 2012-11-02 2014-05-19 Ntt Docomo Inc ユーザ端末、無線通信システム及び無線通信方法
CN104348570B (zh) 2013-07-23 2019-01-04 电信科学技术研究院 一种上行控制信息传输方法和装置
CN111614453B (zh) 2013-07-30 2023-07-25 北京三星通信技术研究有限公司 配置上行传输定时的方法和设备
RU2635348C1 (ru) 2013-12-04 2017-11-13 Телефонактиеболагет Лм Эрикссон (Пабл) Сокращение подфрейма нисходящего канала передачи в системах дуплексной передачи с разделением ао времени (TDD)
PT3557784T (pt) 2013-12-04 2020-11-24 Ericsson Telefon Ab L M Encurtamento de subtramas de ligação ascendente em sistemas de duplexagem por divisão de tempo (tdd)
EP3133875B1 (en) * 2014-05-08 2020-04-22 Huawei Technologies Co., Ltd. Power distribution method and device
US9716573B2 (en) * 2014-06-13 2017-07-25 Futurewei Technologies, Inc. Aggregated touchless wireless fronthaul
US10027413B2 (en) 2015-06-18 2018-07-17 Futurewei Technologies, Inc. Cascaded waveform modulation with an embedded control signal for high-performance mobile fronthaul
AU2016405921B2 (en) 2016-05-13 2019-06-13 Huawei Technologies Co., Ltd. Uplink information sending method and apparatus, base station, and user equipment
CN110809285B (zh) * 2018-08-06 2023-02-28 黎光洁 一种基于信道条件的数据传输方法和数据传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888648A (zh) * 2009-05-11 2010-11-17 大唐移动通信设备有限公司 上行同步控制方法及装置
US20110085491A1 (en) * 2009-10-09 2011-04-14 Tobias Tynderfeldt Extended Cell Range
CN102158327A (zh) * 2010-02-11 2011-08-17 华为技术有限公司 中继链路物理上行控制信道信息生成方法及装置
CN102264140A (zh) * 2010-05-27 2011-11-30 普天信息技术研究院有限公司 抑制协作小区间srs与s-rach干扰的方法及基站
CN102572967A (zh) * 2012-01-13 2012-07-11 电信科学技术研究院 一种传输和接收上行信息的方法、系统和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888648A (zh) * 2009-05-11 2010-11-17 大唐移动通信设备有限公司 上行同步控制方法及装置
US20110085491A1 (en) * 2009-10-09 2011-04-14 Tobias Tynderfeldt Extended Cell Range
CN102158327A (zh) * 2010-02-11 2011-08-17 华为技术有限公司 中继链路物理上行控制信道信息生成方法及装置
CN102264140A (zh) * 2010-05-27 2011-11-30 普天信息技术研究院有限公司 抑制协作小区间srs与s-rach干扰的方法及基站
CN102572967A (zh) * 2012-01-13 2012-07-11 电信科学技术研究院 一种传输和接收上行信息的方法、系统和设备

Also Published As

Publication number Publication date
CN102572967B (zh) 2014-07-30
CN102572967A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2013104272A1 (zh) 一种传输和接收上行信息的方法、系统和设备
JP6970725B2 (ja) 電力制御実行方法及びユーザ装置
US10609709B2 (en) Method and apparatus of uplink scheduling and HARQ timing
JP6750133B2 (ja) 無線通信システムにおいて上りリンク信号を送信する方法及びそのための装置
US20210028879A1 (en) Transmissions in Scheduled Time Intervals by a Wireless Device
US10361809B2 (en) Transmission process in a wireless device and wireless network
JP6316871B2 (ja) 信号送受信方法及びそのための装置
JP6625981B2 (ja) 無線通信システムにおける上向きリンク電力を制御する方法及び装置
EP2918035B1 (en) Uplink transmission with carrier aggregation via multiple nodes
KR101712895B1 (ko) 다운링크 제어 정보 전송 방법 및 장치
CN107172700B (zh) 无线通信系统中终端及其发送上行链路信息的方法
KR102163635B1 (ko) Tdd-fdd ca를 고려한 tpc 명령 타이밍 제어 방법 및 그 장치
WO2015108068A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2020501417A (ja) 無線通信システムにおいて上りリンク信号を送信するための方法及びそのための装置
JP6425891B2 (ja) ユーザ端末および無線通信方法
JP2017516362A (ja) 送信制御実行方法及びユーザ装置
US11206617B2 (en) Method and apparatus for uplink repetition on basis of semi-persistent scheduling
WO2013139245A1 (zh) 上行功率控制方法、设备及系统
JP2016515334A (ja) 無線通信システムにおけるアップリンク電力制御方法及びこのための装置
JP2020520155A (ja) 無線通信システムにおいてパワーヘッドルームの報告方法及びそのための装置
WO2012176602A1 (ja) 移動通信システム、基地局装置、移動局装置、通信方法および集積回路
CN110611951B (zh) 支持跨载波调度中的harq过程的ue和基站
WO2013113272A1 (zh) 一种发送和接收反馈信息的方法、系统及装置
US11229025B2 (en) Uplink allocation on unlicensed spectrum
JP2020520168A (ja) 無線通信システムにおいて送信電力制御のための方法及びそのための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13735831

Country of ref document: EP

Kind code of ref document: A1