Nothing Special   »   [go: up one dir, main page]

WO2013191704A1 - Novel cabergoline derivatives - Google Patents

Novel cabergoline derivatives Download PDF

Info

Publication number
WO2013191704A1
WO2013191704A1 PCT/US2012/043687 US2012043687W WO2013191704A1 WO 2013191704 A1 WO2013191704 A1 WO 2013191704A1 US 2012043687 W US2012043687 W US 2012043687W WO 2013191704 A1 WO2013191704 A1 WO 2013191704A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
substituted
compound
hydrogen
fluorine atoms
Prior art date
Application number
PCT/US2012/043687
Other languages
French (fr)
Inventor
Jian Zhang
Thomas A. Armer
Original Assignee
Map Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015518385A priority Critical patent/JP2015525239A/en
Priority to RU2014153672A priority patent/RU2014153672A/en
Priority to PCT/US2012/043687 priority patent/WO2013191704A1/en
Priority to CA2876321A priority patent/CA2876321A1/en
Priority to EP12879191.0A priority patent/EP2863747A4/en
Priority to BR112014031945A priority patent/BR112014031945A2/en
Application filed by Map Pharmaceuticals, Inc. filed Critical Map Pharmaceuticals, Inc.
Priority to CN201280075321.7A priority patent/CN104822264A/en
Priority to SG11201408567PA priority patent/SG11201408567PA/en
Priority to AU2012382929A priority patent/AU2012382929A1/en
Publication of WO2013191704A1 publication Critical patent/WO2013191704A1/en
Priority to IL236310A priority patent/IL236310A0/en
Priority to HK15109927.2A priority patent/HK1208997A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D457/00Heterocyclic compounds containing indolo [4, 3-f, g] quinoline ring systems, e.g. derivatives of ergoline, of the formula:, e.g. lysergic acid
    • C07D457/04Heterocyclic compounds containing indolo [4, 3-f, g] quinoline ring systems, e.g. derivatives of ergoline, of the formula:, e.g. lysergic acid with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 8
    • C07D457/06Lysergic acid amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D457/00Heterocyclic compounds containing indolo [4, 3-f, g] quinoline ring systems, e.g. derivatives of ergoline, of the formula:, e.g. lysergic acid
    • C07D457/04Heterocyclic compounds containing indolo [4, 3-f, g] quinoline ring systems, e.g. derivatives of ergoline, of the formula:, e.g. lysergic acid with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 8

Definitions

  • novel cabergoline analogs and compositions thereof are provided herein.
  • methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine and Parkinson's disease using the compounds and compositions disclosed herein.
  • methods of agonizing dopaminergic D 2 receptors and/or antagonizing or inhibiting activity of receptors such as the 5- HT 2 serotonin receptors using the compounds and compositions disclosed herein.
  • methods of agonizing receptors such as, for example, the 5-HT 1D and/or the 5-HTi B receptor, without agonizing (or very weakly agonizing) the 5-HT 2B receptor using the compounds and compositions disclosed herein.
  • Parkinson's disease but was subsequently withdrawn from the U.S. market because of undesirable agonization of the 5-HT 2B receptor which leads to cardiac and non-cardiac fibrosis.
  • an ideal anti-Parkinson's agent will be a selective agonist for dopaminergic D 2 receptor.
  • Weak to modest agonist activity on the 5-HT1 B and/or 5-HT1D receptors may also be desirable.
  • 5-HT2 receptor antagonism may also be desirable for the treatment of Parkinson's disease symptoms and/or for the reduction of undesirable side-effects, such as cardiac or non-cardiac fibrosis and psychiatric side-effects (Newman-Trancredi, J Pharmacology and Experimental Therapies (2002) 303(2):815-822).
  • anti-Parkinson's agents may have a relatively short half-life ⁇ i.e., 1 -5 hours) or a longer half-life ⁇ i.e., 20 hours or longer).
  • cabergoline analogs which retain activity against central nervous disorders, such as, for example, Parkinson's disease and lack agonist activity, or very weak agonist activity, against the 5-HT 2 receptors, including 5-HT 2 B and the 5-HT 2 c receptors.
  • cabergoline derivatives which address these needs.
  • cabergoline derivatives described herein include compounds of Formula (I) or (II):
  • Ri is hydrogen, (C]-C 4 ) alkyl, substituted (C
  • P2 is alkyl, substituted alkyl, acyl, substituted acyi, halo, heteroalkyl, substituted heteroalkyl, -N0 2 , -N 3 , -OH, -S(0) K R 10 o, -OR, 0 i, ⁇ NR !02 Rio3,
  • R 5 is hydrogen, (C1-C4) alkyi, (Q-C4) substituted alkyi, (CL-C 4 ) alkyi substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyl;
  • R 7 is hydrogen, (C[-C 4 ) alkyl, (Ci-C 4 ) substituted alkyl, (C1-C4) alkyi substituted with one or more fluorine atoms, arylalkyl or substituted arylalkyl;
  • R S and R 9 are independently hydrogen, (C1-C4) alkyl, substituted (Ci-C 4 ) alkyl, (C[-C 4 ) alkyl substituted with one or more fluorine atoms, heteroalkyl, substituted heteroalkyl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl or R 8 and R 9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring
  • R11 is hydrogen, (C1-C3) alkyl or (C1-C3) alkyl substituted with one or more fluorine atoms;
  • R100-R107 are independently hydrogen, alkyl, substituted alkyl, acyl, substituted acyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted hete oarylalkyl;
  • k 0, I or 2;
  • compositions which include the compounds provided herein and a vehicle.
  • Methods of treating, preventing, or ameliorating symptoms of medical disorders such as, for example, central nervous system disorders, migraine and Parkinson's disease are also provided herein.
  • therapeutically effective amounts of the compounds or compositions thereof are administered to a subject.
  • antagonizing receptors such as, for example, the 5-HT 2A and 5-HT2B with the compounds and compositions described herein are also provided herein.
  • Methods of agonizing dopaminergic D 2 receptors using the compounds and compositions disclosed herein are also provided.
  • therapeutically effective amounts of the compounds or compositions are administered.
  • methods for selectively agonizing dopaminergic D 2 receptors are provided.
  • methods of antagonizing or inhibiting (or not agonizing) activity of the 5-HT 2 receptors are also provided.
  • methods and compounds for both selectively agonizing dopaminergic D 2 receptors and antagonizing (or not agonizing/very weak agonist activity) 5-HT 2 receptors at the same time are provided. Such methods and compounds may be desirable as agents for treating one or more symptoms of Parkinson's disease.
  • Alkyl by itself or as part of another substitiient, refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aikane, alkene or alkyne.
  • Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-l-y], propan-2-yl, cyclopropan-l-yl, prop-l-en-l -yl, prop-l -en-2-yl, prop-2-en-l-yl (aliyl), cycloprop-l-en-l -yi; cycloprop-2-en-l -yl, prop-l-yn-l-yl, prop-2-yn-l -yl, etc.; butyls such as butan-l-yl, butan-2-yI, 2-methyl-propan-l-yl,
  • alkyl is specifically intended to include groups having any degree or level of saturation, i.e., groups having exclusively single carbon-carbon bonds, groups having one or more double carbon-carbon bonds, groups having one or more triple carbon-carbon bonds and groups having mixtures of single, double and triple carbon- carbon bonds. Where a specific level of saturation is intended, the expressions "alkanyi,” “alkenyl,” and “alkynyl” are used.
  • an alkyl group comprises from 1 to 20 carbon atoms (CrC 2 o alkyl). In other embodiments, an alkyl group comprises from 1 to 10 carbon atoms (Cj-Cio alkyl). In still other embodiments, an alkyl group comprises from 1 to 6 carbon atoms (C C 6 alkyl).
  • alkanyi by itself or as part of another substituent, refers to a saturated branched, straight-chain or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
  • Typical alkanyi groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-l-yl, propan-2-yl (isopropyl), cyclopropan-l-yl, etc.; butanyls such as biitati-I-yJ, butati-2-yl ( ⁇ c-butyl), 2-methyl-propan-l -yl (isobutyl),
  • Alkenyl by itself or as part of another substituent, refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
  • the group may be in either the cis or tram conformation about the double bond(s).
  • Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-l-en-l-yl, prop-l -en-2-yl, prop-2-en-l -yl (allyl), prop-2-en-2-yl, cycloprop-l-en-l-yi; cycIoprop-2-en- 1 -yl; butenyls such as but-l-en-l-yl, but-l-en-2-yl, 2-methyl-prop-l-en-l -yl, but-2-en-l-yl , but-2-en- 1 -yl, but-2-en-2-yl, buta-l ,3-dien-l-yl,
  • Alkynyl by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
  • Typical alkynyl groups include, but are not limited to, ethynyl; piopynyls such as prop-l-yn-l-y], prop-2-yn-l-yl, etc.; butynyls such as but-l-yn-l -yl, but-l-yn-3-yi, but-3-yn-l-yI, etc. ; and the like.
  • “Acyl” by itself or as part of another substituent refers to a radical -C(0)R* 00 , where R 400 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl,
  • heteroarylalk l or substituted heteroarylalkyl as defined herein.
  • Representative examples include, but are not limited to formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl and the like.
  • Aryl by itself or as part of another substituent, refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system, as defined herein.
  • Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, tw-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene,
  • an aryl group comprises from 6 to 20 carbon atoms (C6-C 2 o aryl). In other embodiments, an aryl group comprises from 6 to 15 carbon atoms (C6-C[ 5 aryl). In still other embodiments, an aryl group comprises from 6 to 15 carbon atoms (C6-C 10 aryl).
  • Arylalkyl by itself or as part of another substituent, refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl group as, as defined herein.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-l -yl, 2-phenylethen-l-yl, naphthylmethyl, 2-naphthylethan-l -yl, 2-naphthylethen-l-yl, naphthobenzyl, 2-naphthopheny!ethan-l-yl and the like.
  • an arylalkyl group is (C 6 -C3o) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is ( -Qo) alkyl and the aryl moiety is (C6-C 2 o) aryl.
  • an arylalkyl group is (C 6 -C 2 o) arylalkyl, e.g., the alkanyl, alkenyl or alkyny] moiety of the arylalkyl group is (Q-Cg) alkyl and the aryl moiety is (C 6 -Ci 2 ) aryl.
  • an arylalkyi group is (C 6 -Ci 5 ) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1 -C5) alky] and the aryl moiety is (C 6 -C
  • Compounds refers to compounds encompassed by structural formulae disclosed herein and includes any specific compounds within these formulae whose structure is disclosed herein. Compounds may be identified either by their chemical structure and/or chemical name. When the chemical structure and chemical name conflict, the chemical structure is determinative of the identity of the compound.
  • the compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers or diastereomers.
  • the chemical structures depicted herein encompass all possible enantiomers and stereoisomers of the illustrated compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure or diastereomerically pure) and enantiomeric and stereoisomeric mixtures.
  • Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan.
  • the compounds may also exist in several tautomeric forms including the enol form, the keto form and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated compounds.
  • the compounds described also include isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature. Examples of isotopes that may be incorporated into the compounds described herein include, but are not limited to, 2 H, 3 H, 13 C, 1 C, 15 N, ,8 0, 17 0, 35 S, etc.
  • Heteroalkyl refers to alkyl, alkanyl, alkenyl and alkynyl groups, respectively, in which one or more of the carbon atoms (and optionally any associated hydrogen atoms), are each, independently of one another, replaced with the same or different heteroatoms or heteroatomic groups.
  • Typical heteroatoms or heteroatomic groups which can replace the carbon atoms include, but are not limited to, -0-, -S-, -N-, -Si-, -NH-, -S(O)-, -S(0) 2 -,
  • cycloheteroalkyl substituted cyclohetero alkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • Heteroaryl by itself or as part of another substituent, refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring systems, as defined herein.
  • Typical heteroaryl groups include, but are not limited to, groups derived from acridine, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole,
  • the heteroaryl group comprises from 5 to 20 ring atoms (5-20 membered heteroaryl). In other embodiments, the heteroaryl group comprises from 5 to 10 ring atoms (5-10 membered heteroaryl).
  • Exemplary heteroaryl groups include those derived from furan, thiophene, pyrrole, benzothiophene, benzofuran, benzimldazole, indole, pyridine, pyrazole, quinoline, imidazole, oxazole, isoxazole and pyrazine.
  • Heteroarylalkyl by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylakenyl and/or heteroarylalkynyl is used.
  • the heteroarylalkyl group is a 6-21 membered heteroarylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the heteroarylalkyl is (Ci-C 6 ) alkyl and the heteroaryl moiety is a 5-15-membered heteroaryl.
  • the heteroarylalkyl is a 6-13 membered heteroarylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety is (C 1 -C3) alkyl and the heteroaryl moiety is a 5-10 membered heteroaryl.
  • Hydrates refers to incorporation of water into to the crystal lattice of a compound described herein, in stochiometric proportions, resulting in the formation of an adduct.
  • Methods of making hydrates include, but are not limited to, storage in an atmosphere containing water vapor, dosage forms that include water, or routine pharmaceutical processing steps such as, for example, crystallization (i.e., from water or mixed aqueous solvents), lyophilization, wet granulation, aqueous film coating, or spray drying. Hydrates may also be formed, under certain circumstances, from crystalline solvates upon exposure to water vapor, or upon suspension of the anhydrous material in water. Hydrates may also crystallize in more than one form resulting in hydrate polymorphism, See e.g., (Guillory, K., Chapter 5, pp. 202-205 in Polymorphism in
  • Hydrates may be characterized and/or analyzed by methods well known to those of skill in the art such as, for example, single crystal X-Ray diffraction, X-Ray powder diffraction, Polarizing optical microscopy, thermal microscopy, thermogravimetry, differential thermal analysis, differential scanning calorimetry, 1R spectroscopy, Raman spectroscopy and NMR spectroscopy. (Brittaiii, H., Chapter 6, pp.
  • Parent aromatic ring system refers to an unsaturated cyclic or polycyclic ring system having a conjugated ⁇ electron system.
  • parent aromatic ring system fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, ftuorene, indane, indene, phenalene, etc.
  • Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, ay-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene and the like.
  • Preventing refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a patient that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease).
  • preventing refers to reducing symptoms of the disease by taking the compound in a preventative fashion.
  • the application of a therapeutic for preventing or prevention of a disease of disorder is known as 'prophylaxis.'
  • the compounds provided herein provide superior prophylaxis because of lower long term side effects over long time periods.
  • Prodrug refers to a derivative of a drug molecule that requires a transformation within the body to release the active drug. Prodrugs are frequently (though not necessarily) pharmacologically inactive until converted to the parent drug.
  • Promoiety refers to a form of protecting group that when used to mask a functional group within a drug molecule converts the drug into a prodrug.
  • the promoiety will be attached to the drug via bond(s) that are cleaved by enzymatic or non-enzymatic means in vivo.
  • Salt refers to a salt of a compound, which possesses the desired pharmacological activity of the parent compound.
  • Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; oi ⁇ formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1 ,2-ethane-disuIfonic acid,
  • Solidvates refers to incorporation of solvents into to the crystal lattice of ipound described herein, in stochiometric proportions, resulting in the formation of an adduct.
  • Methods of making solvates include, but are not limited to, storage in an atmosphere containing a solvent, dosage forms that include the solvent, or routine pharmaceutical processing steps such as, for example, crystallization (i.e., from solvent or mixed solvents) vapor diffusion, etc..
  • Solvates may also be formed, under certain circumstances, from other crystalline solvates or hydrates upon exposure to the solvent or upon suspension material in solvent. Solvates may crystallize in more than one form resulting in solvate polymorphism. See e.g., (Guiliory, K. ⁇ Chapter 5, pp. 205-208 in Polymorphism in Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc., New York, NY, 1999)). The above methods for preparing solvates are well within the ambit of those of skill in the art, are completely conventional do not require any experimentation beyond what is typical in the art.
  • Solvates may be characterized and/or analyzed by methods well known to those of skill in the art such as, for example, single crystal X-Ray diffraction, X-Ray powder diffraction, Polarizing optical microscopy, thermal microscopy, thermog avimetry, differential thermal analysis, differential scanning calorimetry, IR spectroscopy, Raman spectroscopy and NMR spectroscopy, (Brittain, H., Chapter 6, pp. 205-208 in Polymorphism in Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc. New York, 1999).
  • many commercial companies routine offer services that include preparation and/or characterization of solvates such as, for example,
  • Substituted when used to modify a specified group or radical, means that one or more hydrogen atoms of the specified group or radical are each, independently of one another, replaced with the same or different substituent(s).
  • substituent groups useful for substituting unsaturated carbon atoms in the specified group or radical include, but are not limited to, -R a , halo, -O " , -OR b , -SR b , -S " , -NR C R°, trihalomethy), -CF 3 , -CN, -OCN, -SCN, -NO, -N0 2 , -N 3 , -S(0) 2 R b , -S(0) 2 0 ⁇ -S(0) 2 OR b , -OS(0) 2 R b , -OS(0) 2 0 ⁇ -OS(0) 2 OR , -P(0)(0 " ) 2 , -P(0)(OR b )(0 ), ⁇ P(0)(OR )(OR ), -C(0)R b ; -C(S)R , -C(NR )R b , -C(0)0 _ , -C(0)OR
  • Substituent groups useful for substituting nitrogen atoms in heteroaikyl and cycloheteroalkyl groups include, but are not limited to, -R a , -O " , -OR b , -SR , -S; -NR C R C , trihalomethyl, -CF 3 , -CN, -NO, -N0 2 , -S(0) 2 R b , -S(0) 2 0 ⁇
  • substituent groups from the above lists useful for substituting other specified groups or atoms will be apparent to those of skill in the art.
  • the substituents used to substitute a specified group can be further substituted, typically with one or more of the same or different groups selected from the various groups specified above. In some embodiments, substituents are limited to the groups above.
  • Subject refers to a vertebrate, preferably a mammal. Mammals include, but are not limited to, murines, rodents, simians, humans, farm animals, sport animals and pets.
  • Treating” or “treatment” of any disease or disorder refers, in some embodiments, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof,). Treatment can also refer to the lessening the severity and/or the duration of one or more symptoms of a disease or disorder. Treatment may also be considered to include preemptive or prophylactic administration to ameliorate, arrest or prevent the development of the disease or at least one of the clinical symptoms.
  • Treatment can also refer to the lessening of the severity and/or the duration of one or more symptoms of a disease or disorder.
  • the treatment rendered has lower potential for long term side effects over multiple years.
  • “treating” or “treatment” refers to ameliorating at least one physical parameter, which may not be discernible by the patient.
  • “treating” or “treatment” refers to inhibiting the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter) or both.
  • “treating” or “treatment” refers to delaying the onset of the disease or disorder.
  • “Therapeutically effective amount” means the amount of a compound that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease.
  • the “therapeutically effective amount” will vary depending on the compound, the disease and its severity and the age, weight, adsorption, distribution, metabolism and excretion etc., of the patient to be treated.
  • Vehicle refers to a diluent, excipient or carrier with which a compound is administered to a subject. In some embodiments, the vehicle is
  • R[ is hydrogen, (C R C 4 ) alkyl, substituted (Q -C4) alkyi or (C 1 -C4) alkyl substituted with one or more fluorine atoms;
  • R 2 is alkyl, substituted alkyl, acyl, substituted acyl, halo, heteroalkyl, substituted heteroalkyl, -N0 2 , -N 3 , -OH, -S(0) k Rioo, -OR101, -NR102R103, -CONRIO4RIO 5J -C0 2 Rio6 or -O 2 CR 10 7;
  • R 5 is hydrogen, (C 1 -C4) alkyl, (C 1 -C4) substituted alkyl, (C R C 4 ) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
  • R 7 is hydrogen, (C1-C4) alkyl, (Ci-C 4 ) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
  • R s and R9 are independently hydrogen, (C1-C4) alkyl, substituted (C1-C4) alkyl, (C 1 -C4) alkyl substituted with one or more fluorine atoms, heteroalkyl, substituted heteroalkyl, arylalkyi, substituted arylalkyi, heteroaryl, substituted heteroaryl or R 8 and R 9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring
  • Rn is hydrogen, (C] -C 3 ) alkyl or (C 1 -C3) alkyl substituted with one or more fluorine atoms;
  • Rioo-R-107 ai'e independently hydrogen, aikyl, substituted alkyl, acyl, substituted acyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl;
  • k 0, 1 or 2;
  • n 0, 1, 2 or 3.
  • Rj and R n are not both hydrogen.
  • Rn when Rn is hydrogen, R ⁇ is substituted (C1-C4) alkyl with one or more fluorine atoms.
  • Ri when n is hydrogen, Ri is (C1-C4) aikyi substituted with one or more fluorine atoms.
  • Ri when Ri is (C1-C4) alkyl substituted with one or more fluorine atoms.
  • Rn is (C1-C3) alkyl substituted with one or more fluorine atoms.
  • Rn is -CF 3 .
  • Ri is hydrogen, (C1-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms. In other embodiments, Ri is hydrogen, -CH 3 or -CF 3 ,
  • R is alkyl, acyl, halo, -N0 2 , -OH, -S(0)kRsoo, -ORioi, -NR,o2 io3, -CONR ⁇ Rios, -C0 2 Rm or -O 2 CR, 0 7.
  • R 2 is alkyl, acyl, halo, -N0 , -OH, -S(0)kRioo, -ORioi, -NRi02Ri03, -CONRio 4 R[05) -C0 2 Rio6 or -O 2 CR[07 and n is 1.
  • R 2 is alkyl, halo or -OR101 and n is 1.
  • n is 0.
  • R5 is hydrogen or (Ci-C 3 ) alkyl. In other embodiments, R is hydrogen, methyl or allyl. Tti still other embodiments, R 5 is methyl. In still other embodiments, R5 is allyl.
  • R 7 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms. In other embodiments, R 7 is hydrogen or (C1-C4) alkyl substituted with one dialkyl amino group. In still other embodiments, R& and R9 are independently hydrogen,
  • (C1-C4) alkyl substituted (C1-C4) alkyl, (C1-C 4 ) alkyl substituted with one or more fluorine atoms, or R s and R 9 together with the nitrogen atom to which they are attached form a cycloheteroalkyi or substituted cycloheteroalkyl ring.
  • s and R9 are independently hydrogen or (C1 -C4) alkyl.
  • R g is hydrogen and R9 is (C 1 -C 4 ) alkyl.
  • Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In other embodiments, Rn is -CF3.
  • R100-R122 are independently hydrogen, alkyl, or substituted alkyl, acyl or substituted acyl. In some embodiments, R100-R122 are independently hydrogen or alkyl. In some embodiments, i is hydrogen, (C1-C4) alkyl or (Ci-C ) alkyl substituted with one or more fluorine atoms, R 2 is alkyl, acyl, halo, -N0 2 , -OH, -S(0) k R 10 o, -OR101, -NRi 02 Rio3, -CONR 10 4Rio5, -C0 2 R or -O2CR107 and n is 1, Rs is hydrogen or (CrC 3 ) alkyl, R 7 is hydrogen, (C1-C4) alkyl or (C 1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, R 8 and R 9 are independently hydrogen, (C1-C4) alkyl,
  • R( is hydrogen, (Q-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms
  • n is 0,
  • R5 is hydrogen or (C1-C3) alkyl
  • R 7 is hydrogen, (C1-C4) alkyl, (CpC 4 ) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms
  • Rg and 9 are independently hydrogen, (C1-C4) alkyl, substituted (C1-C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or R 8 and R 9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring and
  • Rn is (Ct-C3) alkyl substituted with one or more fluorine atoms.
  • Ri is hydrogen, (C1-C4) alkyl or (C[-C4) alkyl substituted with one or more fluorine atoms
  • R 2 is alkyl, acyl, halo, -NO2, -OH, -S(0) k Rioo, -ORJOI, -NR102R103, -CONR104R105, -CO2R106 or -O 2 CR 107 and n is 1, fluoro, hydroxy or methoxy
  • R5 is hydrogen or (C1-C3) alkyl
  • R 7 is hydrogen, (C 1 -C4) alkyl, (C 1 -C4) substituted alkyl or (C 1 -C4) alkyl substituted with one or more fluorine atoms
  • Rg and R 9 are independently hydrogen, (Ci ⁇ ) alkyl, substituted (C C4) alkyl, (C 1 -C4) alkyl substituted with one or more fluorine atoms, or R s and R 9 together with the nitrogen
  • i is hydrogen, (C 1 -C4) alkyl or (C 1 -C4) alkyl substituted with one or more fluorine atoms
  • n is 0,
  • R 5 is hydrogen or (Q-C3) alkyl
  • 7 is hydrogen, (Q-C4) alkyl, (C 1 -C4) substituted alkyl or (Q-C4) alkyl substituted with one or more fluorine atoms
  • Rg and R9 are independently hydrogen, (C ! -C 4 ) alkyl, substituted (C1-C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or R s and R 9 together with the nitrogen atom to which they are attached form a
  • Rn is (C1-C3) alkyl substituted with one or more fluorine atoms.
  • R ! is hydrogen, -CH3 or -CF 3
  • R 2 is alkyl, halo or
  • R 5 is hydrogen, methyl or allyl
  • R 7 is hydrogen or ( -C4) alkyl substituted with one dimethyl amino group
  • Rs and R9 are independently hydrogen, (Q-C4) alkyl or (C[-C 4 ) substituted alkyl and Rn is -CF 3
  • Ri is hydrogen, ⁇ CH 3 or -CF3
  • n is 0,
  • R 5 is hydrogen, methyl or allyl
  • R 7 is hydrogen or (Q-C4) alkyl substituted with one dimethyl amino group
  • R 8 and R9 are independently hydrogen, (C 1 -C4) alkyl or (C 1 -C4) substituted alkyl and R 1 1 is -CF 3 .
  • Ri is hydrogen, -CH 3 or -CF 3
  • R 2 is alkyl, halo or -OR 101 and n is 1
  • R 5 is hydrogen, methyl or allyl
  • R 7 is hydrogen or (C1-C4) alkyl substituted with one dimethyl amino group
  • Rg and R9 are independently hydrogen, (C 1 -C4) alkyl or (C1-C4) substituted alkyl and Rn is -CF 3 .
  • is hydrogen, -CH 3 or -CF 3
  • n is 0,
  • R 5 is hydrogen, methyl or allyl
  • R 7 is hydrogen or (C 1 -C4) alkyl substituted with one dimethyl amino group
  • R 8 and R9 are independently hydrogen, (C
  • i is hydrogen, (C 1 -C4) alkyl or (Q-C4) alkyl substituted with one or more fluorine atoms.
  • Rj is hydrogen, -CH 3 or -CF3.
  • R ⁇ is -CH 3 or -CF 3j
  • R 5 is hydrogen or (C C 3 ) alkyl. In other embodiments, R 5 is hydrogen, methyl or allyl. In still other embodiments, 5 is methyl or allyl.
  • R 7 is hydrogen, (Cj-C4) alkyl, (C 1 -C4) substituted alkyl or (C 1 -C4) a!kyl substituted with one or more fluorine atoms. In other embodiments, R 7 is substituted (C 1 -C4) alkyl or (C 1 -C4) alkyl substituted with one dialkyl amino group. In till other embodiments, R 7 is 3-dimethylaminopropyl.
  • R9 is hydrogen, (C 1 -C4) alkyl, substituted (C1-C4) alkyl or ( -C4) alkyl substituted with one or more fluorine atoms. In other embodiments, R9 is (C1-C4) alkyl or (Q-C4) substituted alkyl. In still other embodiments, R9 is (C1-C4) alkyl. In still other embodiments, R9 is ethyl.
  • Rn is hydrogen or (C1-C3) alkyi substituted with one or more fluorine atoms. In other embodiments, Rn is -CF 3 .
  • Ri is hydrogen, (C 1 -C4) alkyl or (Ci-C 4 ) alkyl substituted with one or more fluorine atoms
  • R 5 is hydrogen or (C r C 3 ) alkyl
  • R 7 is hydrogen, (C 1 -C4) alkyl, (Ci-C ) substituted alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms
  • R9 is hydrogen, (Ci-C 4 ) alkyl, substituted (C1-C4) alkyl or (C[-C 4 ) alkyl substituted with one or more fluorine atoms
  • Rn is hydrogen or (C 1 -C3) alkyl substituted with one or more fluorine atoms
  • R ⁇ is hydrogen, -CH3 or -CF 3
  • R 3 is hydrogen, methyl or allyl
  • R 7 is substituted (Ci-C ) alkyl or (Ci-C 4 ) alkyl substituted with one
  • R] is -CH 3 or -CF 3j
  • R 5 is methyl or allyl
  • R 9 is (Ci-C 4 ) alkyl and Rn is -CF 3 .
  • R 5 is hydrogen or (Q-Cs) alkyl
  • Rn is (C1-C3) alkyl substituted with one or more fluorine atoms.
  • Ri is hydrogen, -C3 ⁇ 4 or -CF 3
  • R 5 is hydrogen, methyl or allyl
  • Rn is hydrogen or -CF 3
  • Rj is hydrogen, R 5 is allyl
  • Rn is -CF 3
  • R ⁇ is -CH 3 or -CF3, R; is methyl or allyl
  • Rn is -CF 3
  • Ri is -CH 3 or -CF 3
  • R 5 is methyl or allyl
  • R is -CF3.
  • Exemplary compounds of Formula (I) include the compounds depicted below.
  • Exemplary compounds of Formula (II) include, for example, the 8,9-dihydro analogues of the above depicted compounds of Formula (1).
  • 3 ⁇ 4 is hydrogen, -CH 3 or -CF 3
  • Rn is hydrogen or -CF 3
  • 3 ⁇ 4 is -CH 3 or -CF 3 and Rn is -CF 3 .
  • direct functional ization of 2-unsubstituted analogs of compounds of Formula (1) and (II) e.g., compounds of Formula (VII) and (VIIl)
  • an alkyl halide under basic conditions can be used to provide the compounds of Formula (I) and (II).
  • acids (IX) and (X) which can be prepared by methods well known to those of skill in the art can be used provide compounds of Formulas (I) and (II).
  • compositions and Methods of Administration contain therapeutically effective amounts of one or more of the compounds provided herein that are useful in the prevention, treatment, or amelioration of one or more of the symptoms of diseases or disorders described herein and a vehicle.
  • Vehicles suitable for administration of the compounds provided herein include any such carriers known to those skilled in the art to be suitable for the particular mode of administration.
  • the compounds may be formulated as the sole active ingredient in the composition or may be combined with other active ingredients.
  • the compositions contain one or more compounds provided herein.
  • the compounds are, in some embodiments, formulated into suitable preparations such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as topical administration, transdermal administration and oral inhalation via nebulizers, pressurized metered dose inhalers and dry powder inhalers, In some
  • the compounds described above are formulated into compositions using techniques and procedures well known in the art (see, e.g., Ansel
  • compositions effective concentrations of one or more compounds or derivatives thereof is (are) mixed with a suitable veliicle.
  • the compounds may be derivatized as the corresponding salts, esters, enol ethers or esters, acetals, ketals, orthoesters, hemiacetals, hemiketals, acids, bases, solvates, ion-pairs, hydrates or prodrugs prior to formulation, as described above.
  • compositions are effective for delivery of an amount, upon administration that treats, leads to prevention, or amelioration of one or more of the symptoms of diseases or disorders described herein.
  • the compositions are formulated for single dosage administration.
  • the weight fraction of a compound is dissolved, suspended, dispersed or otherwise mixed in a selected vehicle at an effective concentration such that the treated condition is relieved, prevented, or one or more symptoms are ameliorated.
  • the active compound is included in the vehicle in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated.
  • the therapeutically effective concentration may be predicted empirically by testing the compounds in in vitro and in vivo systems well known to those of skill in the art and then extrapolated therefrom for dosages for humans. Human doses are then typically fine-tuned in clinical trials and titrated to response.
  • concentration of active compound in the composition will depend on absorption, inactivation and excretion rates of the active compound, the physicochemical characteristics of the compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art. For example, the amount that is delivered is sufficient to ameliorate one or more of the symptoms of diseases or disorders as described herein.
  • a therapeutically effective dosage should produce a serum concentration of active ingredient of from about 0.001 ng/ml to about 50-200
  • the compositions in other embodiments, should provide a dosage of from about 0.0001 mg to about 70 mg of compound per kilogram of body weight per day.
  • Dosage unit forms are prepared to provide from about 0.01 mg, 0.1 mg or 1 mg to about 500 mg, 1000 mg or 5000 mg, and in some embodiments from about 10 mg to about 500 mg of the active ingredient or a combination of essential ingredients per dosage unit form.
  • the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data or subsequent clinical testing. It is to be noted that concentrations and dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.
  • solubilizing compounds such as use of liposomes, prodrugs, complexation/chelation, nanoparticles, or emulsions or tertiary templating.
  • co-solvents such as dimethylsulfoxide (DMSO)
  • surfactants or surface modifiers such as TWEEN ®
  • complexing agents such as cyclodextrin or dissolution by enhanced ionization (i.e. dissolving in aqueous sodium bicarbonate).
  • Derivatives of the compounds, such as prodrugs of the compounds may also be used in formulating effective compositions.
  • the resulting mixture may be a solution, suspension, emulsion or the like.
  • the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected vehicle.
  • the effective concentration is sufficient for ameliorating the symptoms of the disease, disorder or condition treated and may be empirically determined.
  • compositions are provided for administration to humans and animals in indication appropriate dosage forms, such as dry powder inhalers (DPIs), pressurized metered dose inhalers (pMDIs), nebulizers, tablets, capsules, pills, sublingual tapes/bioerodible strips, tablets or capsules, powders, granules, lozenges, lotions, salves, suppositories, fast melts, transdermal patches or other transdermal application devices/preparations, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or derivatives thereof.
  • DPIs dry powder inhalers
  • pMDIs pressurized metered dose inhalers
  • nebulizers tablets, capsules, pills, sublingual tapes/bioerodible strips, tablets or capsules
  • powders granules, lozenges
  • lotions, salves, suppositories fast melts, transdermal patches or
  • Unit-dose forms as used herein refer to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of the therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required vehicle. Examples of unit-dose forms include ampoules and syringes and individually packaged tablets or capsules. Unit-dose forms may be administered in fractions or multiples thereof.
  • a multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form. Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons. Hence, multiple dose form is a multiple of unit-doses which are not segregated in packaging.
  • Liquid compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional adjuvants in a vehicle, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension, colloidal dispersion, emulsion or liposomal formulation.
  • a vehicle such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension, colloidal dispersion, emulsion or liposomal formulation.
  • composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrin derivatives, sorbitan inonolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrin derivatives, sorbitan inonolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • compositions containing active ingredient in the range of 0.005% to 100% with the balance made up from vehicle or carrier may be prepared. Methods for preparation of these compositions are known to those skilled in the art.
  • the contemplated compositions may contain 0.001%-100% active ingredient, in one embodiment 0.1-95%, in another embodiment 0.4-10%.
  • the compositions are lactose-free compositions containing excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002).
  • lactose-free compositions contain active ingredients, a binder/filler, and a lubricant in compatible amounts.
  • Particular lactose-free dosage forms contain active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
  • anhydrous compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds.
  • water e.g., 5%
  • water is widely accepted as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T,
  • Anhydrous compositions and dosage forms provided herein can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
  • anhydrous composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are generally packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.
  • Oral dosage forms are either solid, gel or liquid.
  • the solid dosage forms are tablets, capsules, granules, and bulk powders.
  • Types of oral tablets include compressed, chewable lozenges and tablets which may be enteric-coated, sugar-coated or film-coated.
  • Capsules may be hard or soft gelatin capsules, while granules and powders may be provided in non-effervescent or effervescent form with the combination of other ingredients known to those skilled in the art.
  • the formulations are solid dosage forms such as for example, capsules or tablets.
  • the tablets, pills, capsules, troches and the like can contain one or more of the following ingredients, or compounds of a similar nature: a binder; a lubricant; a diluent; a glidant; a disintegrating agent; a coloring agent; a sweetening agent; a flavoring agent; a wetting agent; an enteric coating; a film coating agent and modified release agent.
  • binders include microcrystallme cellulose, methyl paraben, polyalkyleneoxides, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, molasses,
  • Lubricants include talc, starch, magnesium/calcium stearate, lycopodium and stearic acid.
  • Diluents include, for example, lactose, sucrose, trehalose, lysine, leucine, lecithin, starch, kaolin, salt, mannitol and dicalcium phosphate.
  • Glidants include, but are not limited to, colloidal silicon dioxide.
  • Disintegrating agents include crosscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methylcellulose, agar and carboxymethylcellulose.
  • Coloring agents include, for example, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate and advanced coloring or anti-forgery color/opalescent additives known to those skilled in the art.
  • Sweetening agents include sucrose, lactose, mannitol and artificial sweetening agents such as saccharin, and any number of spray dried flavors.
  • Flavoring agents include natural flavors extracted from plants such as fruits and synthetic blends of compounds which produce a pleasant sensation or mask unpleasant taste, such as, but not limited to peppermint and methyl salicylate.
  • Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethyiene glycol monolaurate and polyoxyethylene laural ether.
  • Enteric-coatings include fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates.
  • Film coatings include hydroxyethylcellulose, sodium
  • Modified release agents include polymers such as the Eudragit series and cellulose esters.
  • the compound, or derivative thereof can be provided in a composition that protects it from the acidic environment of the stomach.
  • the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine.
  • the composition may also be formulated in combination with an antacid or other such ingredient.
  • the dosage unit form When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
  • dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents.
  • the compounds can also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the active materials can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as antacids, H 2 blockers, and diuretics.
  • the active ingredient is a compound or derivative thereof as described herein. Higher concentrations, up to about 98% by weight of the active ingredient may be included.
  • tablets and capsules formulations may be coated as known by those of skill in the art in order to modify or sustain dissolution of the active ingredient.
  • they may be coated with a conventional enterically digestible coating, such as phenylsalicylate, waxes and cellulose acetate phthalate.
  • Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non- effervescent granules and effervescent preparations reconstituted from effervescent granules.
  • Aqueous solutions include, for example, elixirs and syrups. Emulsions are either oil-in-water or water-in-oil. Elixirs are clear, sweetened, hydroalcoholic preparations. Vehicles used in elixirs include solvents. Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may contain a preservative.
  • An emulsion is a two-phase system in which one liquid is dispersed in the form of small globules throughout another liquid.
  • Carriers used in emulsions are non-aqueous liquids, emulsifying agents and preservatives.
  • Suspensions use suspending agents and preservatives.
  • Acceptable substances used in non- effervescent granules, to be reconstituted into a liquid oral dosage form include diluents, sweeteners and wetting agents.
  • Acceptable substances used in effervescent granules, to be reconstituted into a liquid oral dosage form include organic acids and a source of carbon dioxide. Coloring and flavoring agents are used in all of the above dosage forms.
  • Solvents include glycerin, sorbitol, ethyl alcohol and syrup.
  • preservatives include glycerin, methyl and propylparaben, benzoic acid, sodium benzoate and alcohol.
  • non-aqueous liquids utilized in emulsions include mineral oil and cottonseed oil.
  • emulsifying agents include gelatin, acacia, tragacanth, bentonite, and surfactants such as polyoxyethylene sorbitan monooleate.
  • Suspending agents include sodium carboxyinethylcellulose, pectin, tragacanth, Veegum and acacia.
  • Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as saccharin.
  • Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethy!ene glycol monolaurate and polyoxyethylene lauryl ether.
  • Organic acids include citric and tartaric acid, Sources of carbon dioxide include sodium bicarbonate and sodium carbonate.
  • Coloring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof.
  • Flavoring agents include natural flavors extracted from plants such fruits, and synthetic blends of compounds which produce a pleasant taste sensation.
  • the solution or suspension in for example, propylene carbonate, vegetable oils or triglycerides, is in some embodiments encapsulated in a gelatin capsule.
  • a gelatin capsule Such solutions, and the preparation and encapsulation thereof, are disclosed in U.S. Patent Nos. 4,328,245; 4,409,239; and 4,410,545.
  • the solution e.g., for example, in a polyethylene glycol, may be diluted with a sufficient quantity of a liquid vehicle, e.g., water, to be easily measured for administration.
  • liquid or semi-solid oral formulations may be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (e.g., propylene carbonate) and other such carriers, and encapsulating these solutions or suspensions in hard or soft gelatin capsule shells.
  • Other useful formulations include those set forth in U.S. Patent Nos. RE28,819 and 4,358,603.
  • such formulations include, but are not limited to, those containing a compound provided herein, a dialkylated mono- or polyalkylene glycol, including, but not limited to, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, polyethylene glycol-350-dimethyl ether, polyethylene glycol-550-dimethyj ether, polyethylene glycol-750-dimethyl ether wherein 350, 550 and 750 refer to the approximate average molecular weight of the polyethylene glycol, and one or more antioxidants, such as butylated
  • BHT hydroxytoluene
  • BHA butylated hydroxyanisole
  • propyl gallate vitamin E, hydroquinone, hydroxycoumarins, ethanolamine, lecithin, cephalin, ascorbic acid, malic acid, sorbitol, phosphoric acid, thiodipropionic acid and its esters, and dithiocarbamates.
  • compositions include, but are not limited to, aqueous alcoholic solutions including a acetal.
  • Alcohols used in these formulations are any water-miscible solvents having one or more hydroxy 1 groups, including, but not limited to, propylene glycol and ethanol.
  • Acetals include, but are not limited to, di(lower alkyl) acetals of lower alkyl aldehydes such as acetaldehyde diethyl acetal.
  • Parenteral administration in some embodiments characterized by injection, either subcutaneously, intramuscularly or intravenously is also contemplated herein.
  • injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
  • the injectables, solutions and emulsions also contain one or more excipients. Suitable excipients are, for example, water, saline, dextrose, glycerol or ethanol.
  • the compositions to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamme oleate and cyclodextrins. Implantation of a slow-release or sustained-release system, such that a constant level of dosage is maintained (see, e.g., U.S. Patent No.
  • a compound provided herein is dispersed in a solid inner matrix, e.g., polymethylmethacrylate, polybutylmethacrylate, plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyieneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsi!oxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and methaciylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, e.g., polyethylene, polypropylene, ethylene/propylene copolymers, ethylene/ethyl acrylate copolymers,
  • ethylene/vinylacetate copolymers silicone rubbers, polydimethyl siloxanes, neoprene rubber, chlorinated polyethylene, polyvinylchloride, vinylchloride copolymers with vinyl acetate, vinylidene chloride, ethylene and propylene, ionomer polyethylene terephthalate, butyl rubber epichlorohydrin rubbers, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate/vinyl alcohol terpolymer, and ethylene/vinyloxyethanol copolymer, that is insoluble in body fluids.
  • the compound diffuses through the outer polymeric membrane in a release rate controlling step.
  • the percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject.
  • Parenteral administration of the compositions includes intravenous, subcutaneous and intramuscular administrations.
  • Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as lyophilized powders, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions.
  • the solutions may be either aqueous or nonaqueous.
  • suitable carriers include physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
  • PBS physiological saline or phosphate buffered saline
  • thickening and solubilizing agents such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
  • Vehicles used in parenteral preparations include aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other substances.
  • aqueous vehicles examples include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection.
  • Nonaqueous parenteral vehicles include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.
  • Antimicrobial agents in bacteriostatic or fungistatic concentrations must be added to parenteral preparations packaged in multiple-dose containers which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride.
  • Isotonic agents include sodium chloride and dextrose. Buffers include phosphate and citrate.
  • Antioxidants include sodium bisulfate.
  • Local anesthetics include procaine hydrochloride.
  • Suspending and dispersing agents include sodium carboxymethylcelluose, hydroxypropyl methylcell lose and polyvinylpyrrolidone.
  • Emulsifying agents include Polysorbate 80 (Tween ® 80).
  • a sequestering or chelating agent of metal ions includes EDTA.
  • Carriers also include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles; and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.
  • the concentration of compound is adjusted so that an injection provides an effective amount to produce the desired pharmacological effect.
  • the exact dose depends on the age, weight, body surface area and condition of the patient or animal as is known in the art. 2 043687
  • the unit-dose parenteral preparations are packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration must be sterile, as is known and practiced in the art.
  • intravenous or intraarterial infusion of a sterile aqueous solution containing an active compound is an effective mode of administration.
  • Injectables are designed for local and systemic administration.
  • a therapeutically effective dosage is formulated to contain a
  • the compound may be suspended in micronized or other suitable form or may be derivatized to produce a more soluble active product or to produce a prodrug.
  • the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle.
  • the effective concentration is sufficient for ameliorating the symptoms of the condition and may be empirically determined.
  • Active ingredients provided herein can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S.
  • Such dosage forms can be used to provide slow or controlled -release of one or more active ingredients using, for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
  • active ingredients for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
  • controlled -re lease formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients provided herein. All controlled-release products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
  • Controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
  • Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, H, temperature, enzymes, water, or other physiological conditions or compounds.
  • the agent may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In some embodiments, a pump may be used (see,
  • a controlled release system can be placed in proximity of the therapeutic target, i.e., thus requiring only a fraction of the systemic dose (see, e.g., Goodson, Medical Applications of Controlled Release, vol. 2, pp. 1 15-138 (1984)).
  • a controlled release device is introduced into a subject in proximity of the site of inappropriate immune activation or a tumor.
  • the active ingredient can be dispersed in a solid inner matrix, e.g., polymethylmethacrylate, polybutylmethacrylate, plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyleneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsiloxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and methacrylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, e.g., polyethylene, polypropylene, ethylene/propylene copolymers, ethylene/ethyl acrylate copolymers, ethylene/vin
  • ethylene/vinyloxyethanol copolymer that is insoluble in body fluids.
  • the active ingredient then diffuses through the outer polymeric membrane in a release rate controlling step.
  • the percentage of active ingredient contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the needs of the subject.
  • the sterile, lyophilized powder is prepared by dissolving a compound provided herein, or a derivative thereof, in a suitable solvent.
  • the solvent may contain an excipient which improves the stability or other pharmacological com onent of the powder or reconstituted solution, prepared from the powder.
  • Excipients that may be used include, but are not limited to, an antioxidant, a buffer and a bulking agent.
  • the excipient is selected from dextrose, sorbitol, fructose, corn syrup, xylitol, glycerin, glucose, sucrose and other suitable agent.
  • the solvent may contain a buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, at about neutral pH.
  • the resulting solution will be apportioned into vials for lyophilization.
  • Each vial will contain a single dosage or multiple dosages of the compound.
  • the lyophilized powder can be stored under appropriate conditions, such as at about 4 °C to room temperature.
  • Reconstitution of this lyophilized powder with water for injection provides a formulation for use in parenteral administration.
  • the lyophilized powder is added to sterile water or other suitable car rier.
  • the precise amount depends upon the selected compound. Such amount can be empirically determined.
  • Topical mixtures are prepared as described for the local and systemic administration.
  • the resulting mixture may be a solution, suspension, emulsions or the like and are formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical administration.
  • the compounds or derivatives thereof may be formulated as aerosols for topical application, such as by inhalation (see, e.g., U.S. Patent Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment of inflammatory diseases, particularly asthma).
  • These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose.
  • the particles of the formulation will, in some embodiments, have mass median geometric diameters of less than 5 microns, in other embodiments less than 10 microns.
  • Oral inhalation formulations of the compounds or derivatives suitable for inhalation include metered dose inhalers, dry powder inhalers and liquid preparations for administration from a nebulizer or metered dose liquid dispensing system.
  • metered dose inhalers dry powder inhalers
  • liquid preparations for administration from a nebulizer or metered dose liquid dispensing system for both metered dose inhalers and dry powder inhalers, a crystalline form of the compounds or derivatives is the preferred physical form of the drug to confer longer product stability.
  • crystalline particles of the compounds or derivatives can be generated using supercritical fluid processing which offers significant advantages in the production of such particles for inhalation delivery by producing respirable particles of the desired size in a single step, ⁇ e.g., International Publication No. WO2005/025506).
  • a controlled particle size for the microcrystals can be selected to ensure that a significant fraction of the compounds or derivatives is deposited in the lung. In some embodiments, these particles have a mass median aerodynamic diameter of about 0.1 to about 10 microns, in other embodiments, about 1 to about 5 microns and still other embodiments, about 1.2 to about 3microns.
  • HFA 134a (1,1, 1,2-tetrafluoroethane) and HFA 227e (1 , 1 , 1,2,3,3,3-heptafluoiOpropane) and provided either alone or as a ratio to match the density of crystal particles of the compounds or derivatives.
  • a ratio is also selected to ensure that the product suspension avoids detrimental sedimentation or cream (which can precipitate irreversible agglomeration) and instead promote a loosely flocculated system, which is easily dispersed when shaken.
  • Loosely fluctuated systems are well regarded to provide optimal stability for pMDI canisters.
  • the formulation contained no ethanol and no
  • TEMPO® MAP Pharmaceuticals, Inc., Mountain View, CA
  • pMDI pressurized metered dose inhalers
  • TEMPO® incorporates four novel features: 1) breath synchronous trigger - can be adjusted for different drugs and target populations to deliver the drug at a specific part of the inspiratory cycle, 2) plume control - an impinging jet to slow down the aerosol plume within the actuator, 3) vortexing chamber - consisting of porous wall, which provides an air cushion to keep the slowed aerosol plume suspended and air inlets on the back wall which drive the slowed aerosol plume into a vortex pattern, maintaining the aerosol in suspension and allowing the particle size to reduce as the HFA propellant evaporates, and 4) dose counter - will determine the doses remaining and prevent more than the intended maximum dose to be administered from any one canister.
  • the compounds may be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application.
  • Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies. Nasal solutions of the active compound alone or in combination with other excipients can also be administered.
  • the preparation may contain a compound dissolved or suspended in a liquid carrier, in particular, an aqueous carrier, for aerosol application.
  • a liquid carrier in particular, an aqueous carrier
  • the carrier may contain solubilizing or suspending agents such as propylene glycol, surfactants, absorption enhancers such as lecithin or cyclodextrin, or preservatives.
  • Solutions particularly those intended for ophthalmic use, may be formulated as 0.01 % - 10% isotonic solutions, pH about 5-7.4, with appropriate salts.
  • transdermal patches including iontophoretic and electrophoretic devices, and rectal administration
  • transdermal patches including iotophoretic and electrophoretic devices
  • rectal administration is also contemplated herein.
  • Transdermal patches including iotophoretic and electrophoretic devices, are well known to those of skill in the art.
  • such patches are disclosed in U.S. Patent Nos. 6,267,983, 6,261,595, 6,256,533, 6, 167,301, 6,024,975, 6,010715, 5,985,317, 5,983,134, 5,948,433 and 5,860,957.
  • dosage forms for rectal administration are rectal suppositories, capsules and tablets for systemic effect.
  • Rectal suppositories are used herein mean solid bodies for insertion into the rectum which melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients.
  • Substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point.
  • bases include cocoa butter (theobroma oil), glycerin-gelatin, carbowax (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases may be used.
  • Agents to raise the melting point of suppositories include spermaceti and wax.
  • Rectal suppositories may be prepared either by the compressed method or by molding.
  • the weight of a rectal suppository in one embodiment, is about 2 to 3 gm. Tablets and capsules for rectal administration are manufactured using the same substance and by the same methods as for formulations for oral administration.
  • the compounds provided herein, or derivatives thereof, may also be formulated to be targeted to a particular tissue, receptor, or other area of the body of the subject to be treated. Many such targeting methods are well known to those of skill in the art. All such targeting methods are contemplated herein for use in the instant compositions. For non-limiting examples of targeting methods, see, e.g., U.S. Patent Nos. 6,316,652, 6,274,552, 6,271,359, 6,253,872,
  • liposomal suspensions including tissue-targeted liposomes, such as tumor-targeted liposomes, may also be suitable as carriers. These may be prepared according to methods known to those skilled in the art. For example, liposome formulations may be prepared as described in U.S. Patent No. 4,522,811. Briefly, liposomes such as multilamellar vesicles (MLV's) may be formed by drying down phosphatidyl choline and phosphatidyl serine (7:3 molar ratio) on the inside of a flask.
  • MLV's multilamellar vesicles
  • a solution of a compound provided herein in phosphate buffered saline lacking divalent cations (PBS) is added and the flask shaken until the lipid film is dispersed.
  • PBS phosphate buffered saline lacking divalent cations
  • the compounds or derivatives may be packaged as articles of manufacture containing packaging material, a compound or derivative thereof provided herein, which is effective for treatment, prevention or amelioration of one or more symptoms of the diseases or disorders, sapra, within the packaging material, and a label that indicates that the compound or composition or derivative thereof, is used for the treatment, prevention or amelioration of one or more symptoms of the diseases or disorders, supra.
  • packaging materials for use in packaging products are well known to those of skill in the art. See, e.g., U.S. Patent Nos. 5,323,907, 5,052,558 and 5,033,252.
  • packaging materials include, but are not limited to, blister packs, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment.
  • a wide array of formulations of the compounds and compositions provided herein are contemplated as are a variety of treatments for any disease or disorder described herein.
  • compositions in other embodiments, should provide a dosage of from about 0,0001 mg to about 70 mg of compound per kilogram of body weight per day.
  • Dosage unit forms are prepared to provide from about 0.01 mg, 0.1 mg or 1 mg to about 500 mg, 1000 mg or 5000 mg, and in some embodiments from about 10 mg to about 500 mg of the active ingredient or a combination of essential ingredients per dosage unit form.
  • the amount of active ingredient in the formulations provided herein, which will be effective in the prevention or treatment of a disorder or one or more symptoms thereof, will vary with the nature and severity of the disease or condition, and the route by which the active ingredient is administered.
  • the frequency and dosage will also vary according to factors specific for each subject depending on the specific therapy (e.g., therapeutic or prophylactic agents) administered, the severity of the disorder, disease, or condition, the route of administration, as well as age, body, weight, response, and the past medical history of the subject.
  • Exemplary doses of a formulation include milligram or microgram amounts of the active compound per kilogram of subject (e.g., from about 1 micrograms per kilogram to about 50 milligrams per kilogram, from about 10 micrograms per kilogram to about 30 milligrams per kilogram, from about 100 micrograms per kilogram to about 10 milligrams per kilogram, or from about 100 microgram per kilogram to about 5 milligrams per kilogram).
  • compositions provided herein are also encompassed by the above described dosage amounts and dose frequency schedules.
  • the dosage administered to the subject may be increased to improve the prophylactic or therapeutic effect of the composition or it may be decreased to reduce one or more side effects that a particular subject is experiencing.
  • administration of the same formulation provided herein may be repeated and the administrations may be separated by at least i day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or 6 months.
  • the 5-HT 2 A and 5-HT 2B activity agonist activity is lower than the 5-HT 2 A and 5-HT 2 B reported for cabergoline.
  • methods for antagonizing receptors including 5-HT 2A and 5-HT 2 B receptors using the compounds and compositions, described herein. In practicing the methods, therapeutically effective amounts of the compounds or compositions, described herein, supra, are administered.
  • an ideal compound for such treatment should have selective agonist activities for the dopaminergic D 2 receptor.
  • the cabergoline- derivative compound hereinafter referred to as Compound 1
  • Compound 1 exhibited weak serotonin 5-HT 2 A and 5 ⁇ HT B receptor agonist activity (as compared to cabergoline). Additionally, Compound 1 is selective for the dopaminergic receptor D 2L , compared to Di and D 4 receptors. Compound 1 also exhibited weak agonist activity on serotonin receptor 5-HTJD. Compound 1 exhibited properties that are more desirable than cabergoline in that 5 ⁇ HT 2 A agonism is associated with hallucination, which is often a side effect of some anti-Parkinson's agents (see for example, Egan et al, Psychoparmaco g (1998) 136:409-414). Agonist activity of the 5-HT 2B receptor has also been shown to be associated with cardiac and non-cardiac fibrosis.
  • the lower 5-HT 2 B agonist activity seen with Compound 1 may translate into minimal or a reduction in the undesired fibrosis side-effects seen with cabergoline usage.
  • cabergoline is responsible for the desirable effects of this molecule.
  • the compound may be advantageous for the compound to have a relatively short half-life.
  • the half-life of the compound is less than 5 hours. In other embodiments, the half-life of the compound is between 1 hour and 5 hours, In still other embodiments, the half-life of the compound is less than 8 hours.
  • the compound may be advantageous for the compound to have a moderate to long half-life.
  • the half-life of the compound is greater than 10 hours. In other embodiments, the half-life of the compound is between 12 and 24 hours.
  • the compounds and compositions disclosed herein may also be used in combination with one or more other active ingredients.
  • the compounds may be administered in combination, or sequentially, with another therapeutic agent.
  • Such other therapeutic agents include, for example, those known for treatment, prevention, or amelioration of one or more symptoms associated with migraine or Parkinson's disease.
  • compounds such as Compound 1 may be administered to a patient with
  • Parkinson's disease as an adjunct therapy in addition to monotherapies, such as L-dihydroxyphenylacelyl acid (L-DOPA).
  • monotherapies such as L-dihydroxyphenylacelyl acid (L-DOPA).
  • compounds such as Compound 1 may be administered as a monotherapy.
  • any suitable combination of the compounds and compositions provided herein with one or more of the above therapeutic agents and optionally one or more further pharmacologically active substances are considered to be within the scope of the present disclosure.
  • the compounds and compositions provided lierein are administered prior to or subsequent to the one or more additional active ingredients.
  • Compound 1 was synthesized as described above and assayed for receptor activity against a panel of dopaminergic and serotoninergic receptors.
  • Recombinant human serotonin receptors 5-HT 2 A > and 5-HT 2 B were expressed in CHO-K1 cells and activity (receptor agonist/antagonist activity) was assayed using an Aequorin assay (coexpression of mitochondrial apoaequorin).
  • Compound 1 was used at a concentration of 0.010 nM to 20,000 nM for agonist activity and 0.005 nM to 10,000 nM for antagonist activity. Results showed that Compound 1 displayed much less activity on 5-HT 2 A and 5-HT 2 B receptors as compared to cabergoline. On 5-HT 2 A receptois, Compound 1 had an EC 50 of 946 nM, compared to the reported EC 5 o of 7.8 nM of cabergoline. On 5-HT 2B receptors, Compound 1 had an EC 5 o of 6049 nM, compared to the reported EC50 of 2.6 nM of cabergoline (Newman-Tancredi, et al, J Pharmacology &
  • Compound 1 also exhibited a lower E max (26%) as compared to reported values for cabergoline (E max of 49%) (Newman-Tancredi et al, J Pharmacology & Experimental Therapeutics (2002) 303(2): 805-814). Compound 1 was also highly selective for D 2 L compared to Dl receptors, with results showing approximately 110-fold selectivity for the D 2 L receptor over the Dt receptor.
  • Compound 1 was an agonist on 5-HTi D receptors with an EC 50 of 263 nM, which shows less affinity than cabergoline (EC 5 0 of 16 nM; Newtnan-Tancredi et ah, J Pharmacology & Experimental Therapeutics (2002) 303(2): 815-822). In addition, Compound 1 had a reduced E max from 68% to 31% compared to cabergoline. Taken together, these data is consistent with the conclusion that Compound 1 would be a desirable anti-Parkinson's disease agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Psychology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Provided herein are novel cabergoline analogs and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine and Parkinson's disease using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing dopaminergic D2 receptors and/or antagonizing or inhibiting activity of receptors such as the 5-HT2 serotonin receptors using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HTID and/or the 5-HTIB receptor, without agonizing (or very weakly agonising) the 5-HT2B receptor using the compounds and compositions disclosed herein.

Description

NOVEL CABERGOLINE DERIVATIVES FIELD
Provided herein are novel cabergoline analogs and compositions thereof. In other embodiments, provided herein are methods of treatment, prevention, or amelioration of a variety of medical disorders such as, for example, migraine and Parkinson's disease using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing dopaminergic D2 receptors and/or antagonizing or inhibiting activity of receptors such as the 5- HT2 serotonin receptors using the compounds and compositions disclosed herein. In still other embodiments, provided herein are methods of agonizing receptors such as, for example, the 5-HT1D and/or the 5-HTiB receptor, without agonizing (or very weakly agonizing) the 5-HT2B receptor using the compounds and compositions disclosed herein.
BACKGROUND Cabergoline, depicted below was approved for the treatment of
Parkinson's disease but was subsequently withdrawn from the U.S. market because of undesirable agonization of the 5-HT2B receptor which leads to cardiac and non-cardiac fibrosis.
Figure imgf000002_0001
Cabergoline
Typically, an ideal anti-Parkinson's agent will be a selective agonist for dopaminergic D2 receptor. In some cases, it may be preferable to have a compound have a higher affinity (and stronger agonist activity) for the dopaminergic D2 receptor over the D[ and D4 receptors. Weak to modest agonist activity on the 5-HT1 B and/or 5-HT1D receptors may also be desirable. Studies have also shown that 5-HT2 receptor antagonism may also be desirable for the treatment of Parkinson's disease symptoms and/or for the reduction of undesirable side-effects, such as cardiac or non-cardiac fibrosis and psychiatric side-effects (Newman-Trancredi, J Pharmacology and Experimental Therapies (2002) 303(2):815-822). Depending on the treatment regimen, anti-Parkinson's agents may have a relatively short half-life {i.e., 1 -5 hours) or a longer half-life {i.e., 20 hours or longer).
Accordingly, what is needed are cabergoline analogs which retain activity against central nervous disorders, such as, for example, Parkinson's disease and lack agonist activity, or very weak agonist activity, against the 5-HT2 receptors, including 5-HT2B and the 5-HT2c receptors.
SUMMARY
Provided herein are cabergoline derivatives which address these needs. In one aspect, cabergoline derivatives described herein include compounds of Formula (I) or (II):
Figure imgf000003_0001
or ion pairs, salts, hydrates, solvates or metabolites thereof, wherein: Ri is hydrogen, (C]-C4) alkyl, substituted (C|-C4) alkyl or (Ci-C4) alkyl substituted with one or more fluorine atoms;
P2 is alkyl, substituted alkyl, acyl, substituted acyi, halo, heteroalkyl, substituted heteroalkyl, -N02, -N3, -OH, -S(0)KR10o, -OR,0i, ~NR!02Rio3,
-CONR,O4RIO5J -CO2R106 or -O2CRF07; R5 is hydrogen, (C1-C4) alkyi, (Q-C4) substituted alkyi, (CL-C4) alkyi substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyl;
R7 is hydrogen, (C[-C4) alkyl, (Ci-C4) substituted alkyl, (C1-C4) alkyi substituted with one or more fluorine atoms, arylalkyl or substituted arylalkyl;
RS and R9 are independently hydrogen, (C1-C4) alkyl, substituted (Ci-C4) alkyl, (C[-C4) alkyl substituted with one or more fluorine atoms, heteroalkyl, substituted heteroalkyl, arylalkyl, substituted arylalkyl, heteroaryl, substituted heteroaryl or R8 and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring
R11 is hydrogen, (C1-C3) alkyl or (C1-C3) alkyl substituted with one or more fluorine atoms;
R100-R107 are independently hydrogen, alkyl, substituted alkyl, acyl, substituted acyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted hete oarylalkyl;
k is 0, I or 2; and
11 is 0, 1, 2 or 3.
Also provided are derivatives, including salts, esters, enol ethers, enol esters, solvates, hydrates and prodrugs of the compounds described herein. Further provided are compositions which include the compounds provided herein and a vehicle.
Methods of treating, preventing, or ameliorating symptoms of medical disorders such as, for example, central nervous system disorders, migraine and Parkinson's disease are also provided herein. In practicing the methods, therapeutically effective amounts of the compounds or compositions thereof are administered to a subject.
Methods of antagonizing receptors such as, for example, the 5-HT2A and 5-HT2B with the compounds and compositions described herein are also provided herein. Methods of agonizing dopaminergic D2 receptors using the compounds and compositions disclosed herein are also provided. In practicing the methods, therapeutically effective amounts of the compounds or compositions are administered.
In some embodiments, methods for selectively agonizing dopaminergic D2 receptors (over other dopaminergic receptors) are provided. In other embodiments, methods of antagonizing or inhibiting (or not agonizing) activity of the 5-HT2 receptors are also provided. In other embodiments methods and compounds for both selectively agonizing dopaminergic D2 receptors and antagonizing (or not agonizing/very weak agonist activity) 5-HT2 receptors at the same time are provided. Such methods and compounds may be desirable as agents for treating one or more symptoms of Parkinson's disease.
DETAILED DESCRIPTION Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. In the event that there is a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
"Alkyl," by itself or as part of another substitiient, refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aikane, alkene or alkyne. Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-l-y], propan-2-yl, cyclopropan-l-yl, prop-l-en-l -yl, prop-l -en-2-yl, prop-2-en-l-yl (aliyl), cycloprop-l-en-l -yi; cycloprop-2-en-l -yl, prop-l-yn-l-yl, prop-2-yn-l -yl, etc.; butyls such as butan-l-yl, butan-2-yI, 2-methyl-propan-l-yl,
2-methyl-propan-2-yl, cyclobutan-l-yl, but-l-en-l-yl, but-I -en-2-yl,
2-methyl-prop-l-en-l -yI, but-2-en-l-yl, but-2-en-2-yl, buta-l,3-dien-l -yl, buta- l,3-dien-2-yl, cyclobut-l-en-l-yl, cyclobut-l-en-3-yl,
cyclobuta-l,3-dien-l-yl, but-l-yn-l -yl, but-l-yn-3-yl, but-3-yn-l-yl, etc. ; and the like. The term "alkyl" is specifically intended to include groups having any degree or level of saturation, i.e., groups having exclusively single carbon-carbon bonds, groups having one or more double carbon-carbon bonds, groups having one or more triple carbon-carbon bonds and groups having mixtures of single, double and triple carbon- carbon bonds. Where a specific level of saturation is intended, the expressions "alkanyi," "alkenyl," and "alkynyl" are used. In some embodiments, an alkyl group comprises from 1 to 20 carbon atoms (CrC2o alkyl). In other embodiments, an alkyl group comprises from 1 to 10 carbon atoms (Cj-Cio alkyl). In still other embodiments, an alkyl group comprises from 1 to 6 carbon atoms (C C6 alkyl).
"Alkanyi," by itself or as part of another substituent, refers to a saturated branched, straight-chain or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane. Typical alkanyi groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-l-yl, propan-2-yl (isopropyl), cyclopropan-l-yl, etc.; butanyls such as biitati-I-yJ, butati-2-yl (^c-butyl), 2-methyl-propan-l -yl (isobutyl),
2-methyl-propan-2-yl (t-butyl), cyciobutan-1 -yl, etc. ; and the like.
"Alkenyl," by itself or as part of another substituent, refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene. The group may be in either the cis or tram conformation about the double bond(s). Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-l-en-l-yl, prop-l -en-2-yl, prop-2-en-l -yl (allyl), prop-2-en-2-yl, cycloprop-l-en-l-yi; cycIoprop-2-en- 1 -yl; butenyls such as but-l-en-l-yl, but-l-en-2-yl, 2-methyl-prop-l-en-l -yl, but-2-en-l-yl , but-2-en- 1 -yl, but-2-en-2-yl, buta-l ,3-dien-l-yl,
buta-l,3-dien-2-yl, cyclobut-l-en- l -yl, cyclobut-l-en-3-yI,
cyclobuta-l^-dien-l -yl, etc.; and the like.
"Alkynyl," by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne. Typical alkynyl groups include, but are not limited to, ethynyl; piopynyls such as prop-l-yn-l-y], prop-2-yn-l-yl, etc.; butynyls such as but-l-yn-l -yl, but-l-yn-3-yi, but-3-yn-l-yI, etc. ; and the like.
"Acyl" by itself or as part of another substituent refers to a radical -C(0)R*00, where R400 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl,
heteroarylalk l or substituted heteroarylalkyl as defined herein. Representative examples include, but are not limited to formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl and the like.
"Aryl," by itself or as part of another substituent, refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system, as defined herein. Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, tw-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pytanthrene, rubicene, triphenylene, tri naphthalene and the like. In some embodiments, an aryl group comprises from 6 to 20 carbon atoms (C6-C2o aryl). In other embodiments, an aryl group comprises from 6 to 15 carbon atoms (C6-C[5 aryl). In still other embodiments, an aryl group comprises from 6 to 15 carbon atoms (C6-C10 aryl).
"Arylalkyl," by itself or as part of another substituent, refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl group as, as defined herein. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-l -yl, 2-phenylethen-l-yl, naphthylmethyl, 2-naphthylethan-l -yl, 2-naphthylethen-l-yl, naphthobenzyl, 2-naphthopheny!ethan-l-yl and the like. Where specific alkyl moieties are intended, the nomenclature arylalkanyl, arylalkenyl and/or arylalkynyl is used. In some embodiments, an arylalkyl group is (C6-C3o) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is ( -Qo) alkyl and the aryl moiety is (C6-C2o) aryl. In other embodiments, an arylalkyl group is (C6-C2o) arylalkyl, e.g., the alkanyl, alkenyl or alkyny] moiety of the arylalkyl group is (Q-Cg) alkyl and the aryl moiety is (C6-Ci2) aryl. In stilt other embodiments, an arylalkyi group is (C6-Ci5) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C1-C5) alky] and the aryl moiety is (C6-C|0) aryl.
"Compounds" refers to compounds encompassed by structural formulae disclosed herein and includes any specific compounds within these formulae whose structure is disclosed herein. Compounds may be identified either by their chemical structure and/or chemical name. When the chemical structure and chemical name conflict, the chemical structure is determinative of the identity of the compound. The compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers or diastereomers. Accordingly, the chemical structures depicted herein encompass all possible enantiomers and stereoisomers of the illustrated compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure or diastereomerically pure) and enantiomeric and stereoisomeric mixtures.
Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan. The compounds may also exist in several tautomeric forms including the enol form, the keto form and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated compounds. The compounds described also include isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature. Examples of isotopes that may be incorporated into the compounds described herein include, but are not limited to, 2H, 3H, 13C, 1 C, 15N, ,80, 170, 35S, etc. In general, it should be understood that all isotopes of any of the elements comprising the compounds described herein may be found in these compounds. Compounds may exist in imsolvated or unhydrated forms as welt as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present invention. Further, it should be understood, when partial structures of the compounds are illustrated, that brackets indicate the point of attachment of the partial structure to the rest of the molecule.
"Heteroalkyl," "Heteroalkanyl," "Heteroalkenyl" and "Heteroalkynyl," by themselves or as part of other substituents, refer to alkyl, alkanyl, alkenyl and alkynyl groups, respectively, in which one or more of the carbon atoms (and optionally any associated hydrogen atoms), are each, independently of one another, replaced with the same or different heteroatoms or heteroatomic groups. Typical heteroatoms or heteroatomic groups which can replace the carbon atoms include, but are not limited to, -0-, -S-, -N-, -Si-, -NH-, -S(O)-, -S(0)2-,
-S(0)NH-, -S(0)2NH- and the like and combinations thereof, The heteroatoms or heteroatomic groups may be placed at any interior position of the alkyl, alkenyl or alkynyl groups, Typical heteroatomic groups which can be included in these groups include, but are not limited to, -0-, -S-, -0-0-, -S-S-, -0-S-, - R501R502-, =N-N=, -N=N-S -N=N-NR503R504, -PR505-, -P(0)2-, -POR506-, -0-P(0)2-, -SO-, -S02-, -SnR507R508- and the like, where R501, R502, R503, Rm, R505, R506, R507 and R508 are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl,
cycloheteroalkyl, substituted cyclohetero alkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
"Heteroaryl," by itself or as part of another substituent, refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring systems, as defined herein. Typical heteroaryl groups include, but are not limited to, groups derived from acridine, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, qiiinazoline, qumoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiopherte, triazole, xanthene, and the like. In some embodiments, the heteroaryl group comprises from 5 to 20 ring atoms (5-20 membered heteroaryl). In other embodiments, the heteroaryl group comprises from 5 to 10 ring atoms (5-10 membered heteroaryl). Exemplary heteroaryl groups include those derived from furan, thiophene, pyrrole, benzothiophene, benzofuran, benzimldazole, indole, pyridine, pyrazole, quinoline, imidazole, oxazole, isoxazole and pyrazine.
"Heteroarylalkyl" by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylakenyl and/or heteroarylalkynyl is used. In some embodiments, the heteroarylalkyl group is a 6-21 membered heteroarylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the heteroarylalkyl is (Ci-C6) alkyl and the heteroaryl moiety is a 5-15-membered heteroaryl. In other embodiments, the heteroarylalkyl is a 6-13 membered heteroarylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety is (C1-C3) alkyl and the heteroaryl moiety is a 5-10 membered heteroaryl.
"Hydrates" refers to incorporation of water into to the crystal lattice of a compound described herein, in stochiometric proportions, resulting in the formation of an adduct. Methods of making hydrates include, but are not limited to, storage in an atmosphere containing water vapor, dosage forms that include water, or routine pharmaceutical processing steps such as, for example, crystallization (i.e., from water or mixed aqueous solvents), lyophilization, wet granulation, aqueous film coating, or spray drying. Hydrates may also be formed, under certain circumstances, from crystalline solvates upon exposure to water vapor, or upon suspension of the anhydrous material in water. Hydrates may also crystallize in more than one form resulting in hydrate polymorphism, See e.g., (Guillory, K., Chapter 5, pp. 202-205 in Polymorphism in
Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc., New York, NY, 1999). The above methods for preparing hydrates are well within the ambit of those of skill in the art, are completely conventional and do not require any experimentation beyond what is typical in the art. Hydrates may be characterized and/or analyzed by methods well known to those of skill in the art such as, for example, single crystal X-Ray diffraction, X-Ray powder diffraction, Polarizing optical microscopy, thermal microscopy, thermogravimetry, differential thermal analysis, differential scanning calorimetry, 1R spectroscopy, Raman spectroscopy and NMR spectroscopy. (Brittaiii, H., Chapter 6, pp. 205-208 in Polymorphism in Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc. New York, 1999). In addition, many commercial companies routine offer services that include preparation and/or characterization of hydrates such as, for example,
HOLODIAG, Pharmaparc II, Voie de .'Innovation, 27 100 Val de Reuil, France (http://www.holodiaR.com).
"Parent Aromatic Ring System" refers to an unsaturated cyclic or polycyclic ring system having a conjugated π electron system. Specifically included within the definition of "parent aromatic ring system" are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, ftuorene, indane, indene, phenalene, etc. Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, ay-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene and the like. "Preventing" or "prevention" refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a patient that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease). In some embodiments, "preventing" or "prevention" refers to reducing symptoms of the disease by taking the compound in a preventative fashion. The application of a therapeutic for preventing or prevention of a disease of disorder is known as 'prophylaxis.' In some embodiments, the compounds provided herein provide superior prophylaxis because of lower long term side effects over long time periods.
"Prodrug" refers to a derivative of a drug molecule that requires a transformation within the body to release the active drug. Prodrugs are frequently (though not necessarily) pharmacologically inactive until converted to the parent drug.
"Promoiety" refers to a form of protecting group that when used to mask a functional group within a drug molecule converts the drug into a prodrug.
Typically, the promoiety will be attached to the drug via bond(s) that are cleaved by enzymatic or non-enzymatic means in vivo.
"Salt" refers to a salt of a compound, which possesses the desired pharmacological activity of the parent compound. Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; oi¬ formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1 ,2-ethane-disuIfonic acid,
2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-l-carboxyIic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolaniine, triethanokmine, N-methylglucatnine and the like. In some embodiments, the salt is pharmaceutically acceptable.
"Solvates" refers to incorporation of solvents into to the crystal lattice of ipound described herein, in stochiometric proportions, resulting in the formation of an adduct. Methods of making solvates include, but are not limited to, storage in an atmosphere containing a solvent, dosage forms that include the solvent, or routine pharmaceutical processing steps such as, for example, crystallization (i.e., from solvent or mixed solvents) vapor diffusion, etc..
Solvates may also be formed, under certain circumstances, from other crystalline solvates or hydrates upon exposure to the solvent or upon suspension material in solvent. Solvates may crystallize in more than one form resulting in solvate polymorphism. See e.g., (Guiliory, K.} Chapter 5, pp. 205-208 in Polymorphism in Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc., New York, NY, 1999)). The above methods for preparing solvates are well within the ambit of those of skill in the art, are completely conventional do not require any experimentation beyond what is typical in the art. Solvates may be characterized and/or analyzed by methods well known to those of skill in the art such as, for example, single crystal X-Ray diffraction, X-Ray powder diffraction, Polarizing optical microscopy, thermal microscopy, thermog avimetry, differential thermal analysis, differential scanning calorimetry, IR spectroscopy, Raman spectroscopy and NMR spectroscopy, (Brittain, H., Chapter 6, pp. 205-208 in Polymorphism in Pharmaceutical Solids, (Brittain, H. ed.), Marcel Dekker, Inc. New York, 1999). In addition, many commercial companies routine offer services that include preparation and/or characterization of solvates such as, for example,
HOLODIAG, Pharmaparc II, Voie de Innovation, 27 100 Val de Reuih France (http://www.holodiag.com).
"Substituted," when used to modify a specified group or radical, means that one or more hydrogen atoms of the specified group or radical are each, independently of one another, replaced with the same or different substituent(s). Substituent groups useful for substituting saturated carbon atoms in the specified group or radical include, but are not limited to -Ra, halo, -O", =0, -ORb, -SRb, -S", =S, -NRCR°, =NR , =N-OR , trihalomethyl, -CF3, -CN, -OCN, -SCN, -NO, ~N02, =N2, -N3, -S(0)2Rb, -S(0)2NR , -S(0)20\ -S(0)2ORb, -OS(0)2R , -OS(0)20-, -OS(0)2OR , -P(0)(0 )2, -P(0)(ORb)(0"), -P(0)(ORb)(ORb), -C(0)R , -C(S)Rb, -C(NRb)Rb, -C(0)0-, -C(0)ORb, -C(S)ORb, -C(0)NR°Rc f -C(NRb)NRcR°, -OC(0)Rb, -OC(S)Rb, -0C(O)O", -OC(0)ORb, -OC(S)ORb, - bC(0)R , -NRbC(S)Rb, -NRbC(0)0_, -NRbC(0)ORb, ~NRbC(S)ORb, -NRbC(0)NRcRc, -NRbC(NRb)R and -NRbC(NRb)NRcRc, where Ra is selected from the group consisting of alkyl, cycloalkyl, heteroaikyl, cycloheteroalkyl, aryl, arylalkyl, heteroaiyl and heteioaiylalkyl; each Rb is independently hydrogen or Ra; and each Rc is independently R or alternatively, the two RQs are taken together with the nitrogen atom to which they are bonded form a 4-, 5-, 6- or 7-membered cycloheteroalkyl which may optionally include from 1 to 4 of the same or different additional heteroatoms selected from the group consisting of O, N and S. As specific examples, -NRCRC is meant to include -NH2, -NH-alkyl,
N-pynolidinyl and N-morphoiiny].
Similarly, substituent groups useful for substituting unsaturated carbon atoms in the specified group or radical include, but are not limited to, -Ra, halo, -O", -ORb, -SRb, -S", -NRCR°, trihalomethy), -CF3, -CN, -OCN, -SCN, -NO, -N02, -N3, -S(0)2Rb, -S(0)20\ -S(0)2ORb, -OS(0)2Rb, -OS(0)20\ -OS(0)2OR , -P(0)(0")2, -P(0)(ORb)(0 ), ~P(0)(OR )(OR ), -C(0)Rb ; -C(S)R , -C(NR )Rb, -C(0)0_, -C(0)ORb, -C(S)ORb, -C(0)NRcRc, -C(NRb)NRcRc, -OC(0)Rb, -OC(S)Rb, -OC(0)0", -OC(0)OR , -OC(S)ORb, -NRbC(0)Rb, -NRbC(S)Rb, -NRbC(0)0", -NRbC(0)ORb, -NRfaC(S)ORb, -NR C(0)NRcR°, -NRbC(NRb)Rb and -NRbC(NR )NRcR°, where Ra, Rb and R° are as previously defined. Substituent groups useful for substituting nitrogen atoms in heteroaikyl and cycloheteroalkyl groups include, but are not limited to, -Ra, -O", -ORb, -SR , -S; -NRCRC, trihalomethyl, -CF3, -CN, -NO, -N02, -S(0)2Rb, -S(0)20\
-S(0)2ORb, -OS(0)2Rb, -OS(0)20", -OS(0)2ORb, -P(0)(0")2, -P(0)(ORb)(0"), -P(0)(ORb)(ORb), -C(0)Rb, -C(S)Rb, -C(NRb)Rb, -C(0)ORb, -C(S)ORb,
-C(0)NRcRc, -C(NRb)NRGRc, -OC(0)Rb, -OC(S)R , -OC(0)ORb, -OC(S)OR , -NRbC(0)Rb, -NRbC(S)Rb, -NRbC(0)ORb, -NRbC(S)ORb, -NRbC(0)NRcRc, -NRbC(NRb)R and -NRbC(NRb)NRcR°, where Ra, Rb and Rc are as previously defined.
Substituent groups from the above lists useful for substituting other specified groups or atoms will be apparent to those of skill in the art. The substituents used to substitute a specified group can be further substituted, typically with one or more of the same or different groups selected from the various groups specified above. In some embodiments, substituents are limited to the groups above.
"Subject," "individual" or "patient" is used interchangeably herein and refers to a vertebrate, preferably a mammal. Mammals include, but are not limited to, murines, rodents, simians, humans, farm animals, sport animals and pets.
"Treating" or "treatment" of any disease or disorder refers, in some embodiments, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof,). Treatment can also refer to the lessening the severity and/or the duration of one or more symptoms of a disease or disorder. Treatment may also be considered to include preemptive or prophylactic administration to ameliorate, arrest or prevent the development of the disease or at least one of the clinical symptoms.
Treatment can also refer to the lessening of the severity and/or the duration of one or more symptoms of a disease or disorder. In a further feature, the treatment rendered has lower potential for long term side effects over multiple years. In other embodiments "treating" or "treatment" refers to ameliorating at least one physical parameter, which may not be discernible by the patient. In yet other embodiments, "treating" or "treatment" refers to inhibiting the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter) or both. In yet other embodiments, "treating" or "treatment" refers to delaying the onset of the disease or disorder. "Therapeutically effective amount" means the amount of a compound that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease. The "therapeutically effective amount" will vary depending on the compound, the disease and its severity and the age, weight, adsorption, distribution, metabolism and excretion etc., of the patient to be treated. "Vehicle" refers to a diluent, excipient or carrier with which a compound is administered to a subject. In some embodiments, the vehicle is
pharmaceutically acceptable.
Compounds
Provided herein are compounds of Formula (I) or (II):
Figure imgf000016_0001
or ion pairs, salts, hydrates, solvates or metabolites thereof, wherein:
R[ is hydrogen, (CRC4) alkyl, substituted (Q -C4) alkyi or (C1-C4) alkyl substituted with one or more fluorine atoms;
R2 is alkyl, substituted alkyl, acyl, substituted acyl, halo, heteroalkyl, substituted heteroalkyl, -N02, -N3, -OH, -S(0)kRioo, -OR101, -NR102R103, -CONRIO4RIO5J -C02Rio6 or -O2CR107;
R5 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl, (CRC4) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
R7 is hydrogen, (C1-C4) alkyl, (Ci-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
Rs and R9 are independently hydrogen, (C1-C4) alkyl, substituted (C1-C4) alkyl, (C1 -C4) alkyl substituted with one or more fluorine atoms, heteroalkyl, substituted heteroalkyl, arylalkyi, substituted arylalkyi, heteroaryl, substituted heteroaryl or R8 and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring
Rn is hydrogen, (C] -C3) alkyl or (C1-C3) alkyl substituted with one or more fluorine atoms; Rioo-R-107 ai'e independently hydrogen, aikyl, substituted alkyl, acyl, substituted acyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl;
k is 0, 1 or 2; and
n is 0, 1, 2 or 3.
In some embodiments, Rj and Rn are not both hydrogen. In other embodiments, when Rn is hydrogen, R\ is substituted (C1-C4) alkyl with one or more fluorine atoms. In still other embodiments, when n is hydrogen, Ri is (C1-C4) aikyi substituted with one or more fluorine atoms. In still other embodiments, when Ri is (C1-C4) alkyl substituted with one or more fluorine atoms. In still other embodiments, Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In still other embodiments, Rn is -CF3.
In some embodiments, Ri is hydrogen, (C1-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms. In other embodiments, Ri is hydrogen, -CH3 or -CF3,
In some embodiments, R is alkyl, acyl, halo, -N02, -OH, -S(0)kRsoo, -ORioi, -NR,o2 io3, -CONR^Rios, -C02Rm or -O2CR,07. In other
embodiments, R2 is alkyl, acyl, halo, -N0 , -OH, -S(0)kRioo, -ORioi, -NRi02Ri03, -CONRio4R[05) -C02Rio6 or -O2CR[07 and n is 1. In still other embodiments, R2 is alkyl, halo or -OR101 and n is 1. In still other embodiments, n is 0.
In some embodiments, R5 is hydrogen or (Ci-C3) alkyl. In other embodiments, R is hydrogen, methyl or allyl. Tti still other embodiments, R5 is methyl. In still other embodiments, R5 is allyl.
In some embodiments, R7 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms. In other embodiments, R7 is hydrogen or (C1-C4) alkyl substituted with one dialkyl amino group. In still other embodiments, R& and R9 are independently hydrogen,
(C1-C4) alkyl, substituted (C1-C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or Rs and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyi or substituted cycloheteroalkyl ring.
In some embodiments, s and R9 are independently hydrogen or (C1 -C4) alkyl. In other embodiments, Rg is hydrogen and R9 is (C1-C4) alkyl. In some embodiments, Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In other embodiments, Rn is -CF3.
In some embodiments, R100-R122 are independently hydrogen, alkyl, or substituted alkyl, acyl or substituted acyl. In some embodiments, R100-R122 are independently hydrogen or alkyl. In some embodiments, i is hydrogen, (C1-C4) alkyl or (Ci-C ) alkyl substituted with one or more fluorine atoms, R2 is alkyl, acyl, halo, -N02, -OH, -S(0)kR10o, -OR101, -NRi02Rio3, -CONR104Rio5, -C02R or -O2CR107 and n is 1, Rs is hydrogen or (CrC3) alkyl, R7 is hydrogen, (C1-C4) alkyl or (C 1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, R8 and R9 are independently hydrogen, (C1-C4) alkyl, substituted (Ci-C4) alkyl,
(C]-C4) alkyl substituted with one or more fluorine atoms, or R8 and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring and Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In other embodiments, R( is hydrogen, (Q-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, n is 0, R5 is hydrogen or (C1-C3) alkyl, R7 is hydrogen, (C1-C4) alkyl, (CpC4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, Rg and 9 are independently hydrogen, (C1-C4) alkyl, substituted (C1-C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or R8 and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring and Rn is (Ct-C3) alkyl substituted with one or more fluorine atoms.
In some embodiments, Ri is hydrogen, (C1-C4) alkyl or (C[-C4) alkyl substituted with one or more fluorine atoms, R2 is alkyl, acyl, halo, -NO2, -OH, -S(0)kRioo, -ORJOI, -NR102R103, -CONR104R105, -CO2R106 or -O2CR107 and n is 1, fluoro, hydroxy or methoxy, R5 is hydrogen or (C1-C3) alkyl, R7 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, Rg and R9 are independently hydrogen, (Ci^) alkyl, substituted (C C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or Rs and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring and Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In other embodiments, i is hydrogen, (C1-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, n is 0, R5 is hydrogen or (Q-C3) alkyl, 7 is hydrogen, (Q-C4) alkyl, (C1-C4) substituted alkyl or (Q-C4) alkyl substituted with one or more fluorine atoms, Rg and R9 are independently hydrogen, (C!-C4) alkyl, substituted (C1-C4) alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, or Rs and R9 together with the nitrogen atom to which they are attached form a
cycloheteroalkyl or substituted cycloheteroalkyl ring and Rn is (C1-C3) alkyl substituted with one or more fluorine atoms. In some embodiments, R! is hydrogen, -CH3 or -CF3, R2 is alkyl, halo or
-OR101 and n is 1, R5 is hydrogen, methyl or allyl, R7 is hydrogen or ( -C4) alkyl substituted with one dimethyl amino group, Rs and R9 are independently hydrogen, (Q-C4) alkyl or (C[-C4) substituted alkyl and Rn is -CF3. In other embodiments, Ri is hydrogen, ~CH3 or -CF3, n is 0, R5 is hydrogen, methyl or allyl, R7 is hydrogen or (Q-C4) alkyl substituted with one dimethyl amino group, R8 and R9 are independently hydrogen, (C1-C4) alkyl or (C1-C4) substituted alkyl and R1 1 is -CF3.
In some embodiments, Ri is hydrogen, -CH3 or -CF3, R2 is alkyl, halo or -OR101 and n is 1, R5 is hydrogen, methyl or allyl, R7 is hydrogen or (C1-C4) alkyl substituted with one dimethyl amino group, Rg and R9 are independently hydrogen, (C1-C4) alkyl or (C1-C4) substituted alkyl and Rn is -CF3. In other embodiments, R| is hydrogen, -CH3 or -CF3, n is 0, R5 is hydrogen, methyl or allyl, R7 is hydrogen or (C1-C4) alkyl substituted with one dimethyl amino group, R8 and R9 are independently hydrogen, (C|-C4) alkyl or (C1-C4) substituted alkyl and Rn is -CF3.
In some embodiments a compound of Formula (III) or (IV):
Figure imgf000020_0001
provided,
In some embodiments, i is hydrogen, (C1-C4) alkyl or (Q-C4) alkyl substituted with one or more fluorine atoms. In other embodiments, Rj is hydrogen, -CH3 or -CF3. In still other embodiments, R\ is -CH3 or -CF3j
In some embodiments, R5 is hydrogen or (C C3) alkyl. In other embodiments, R5 is hydrogen, methyl or allyl. In still other embodiments, 5 is methyl or allyl.
In some embodiments, R7 is hydrogen, (Cj-C4) alkyl, (C1-C4) substituted alkyl or (C1-C4) a!kyl substituted with one or more fluorine atoms. In other embodiments, R7 is substituted (C1-C4) alkyl or (C1-C4) alkyl substituted with one dialkyl amino group. In till other embodiments, R7 is 3-dimethylaminopropyl.
In some embodiments, R9 is hydrogen, (C1-C4) alkyl, substituted (C1-C4) alkyl or ( -C4) alkyl substituted with one or more fluorine atoms. In other embodiments, R9 is (C1-C4) alkyl or (Q-C4) substituted alkyl. In still other embodiments, R9 is (C1-C4) alkyl. In still other embodiments, R9 is ethyl.
In some embodiments, Rn is hydrogen or (C1-C3) alkyi substituted with one or more fluorine atoms. In other embodiments, Rn is -CF3.
In some embodiments, Ri is hydrogen, (C1-C4) alkyl or (Ci-C4) alkyl substituted with one or more fluorine atoms, R5 is hydrogen or (CrC3) alkyl, R7 is hydrogen, (C1-C4) alkyl, (Ci-C ) substituted alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, R9 is hydrogen, (Ci-C4) alkyl, substituted (C1-C4) alkyl or (C[-C4) alkyl substituted with one or more fluorine atoms and Rn is hydrogen or (C1-C3) alkyl substituted with one or more fluorine atoms, In other embodiments, R\ is hydrogen, -CH3 or -CF3, R3 is hydrogen, methyl or allyl, R7 is substituted (Ci-C ) alkyl or (Ci-C4) alkyl substituted with one dialkyl amino group, R is (CrC4) alkyl and Rn is -CF3. In still other embodiments, R] is -CH3 or -CF3j R5 is methyl or allyl, R7 (C1 -C4) alkyl substituted with one dialkyl amino group R9 is (Ci-C4) alkyl and Rn is -CF3.
In some embodiments, compounds of structure (V) and (VI):
Figure imgf000021_0001
substituted with one or more fluorine atoms, R5 is hydrogen or (Q-Cs) alkyl, and Rn is (C1-C3) alkyl substituted with one or more fluorine atoms.
In some embodiments, Ri is hydrogen, -C¾ or -CF3, R5 is hydrogen, methyl or allyl, and Rn is hydrogen or -CF3. In other embodiments, Rj is hydrogen, R5 is allyl, and Rn is -CF3. In still other embodiments, R\ is -CH3 or -CF3, R; is methyl or allyl, and Rn is -CF3. In still other embodiments, Ri is -CH3 or -CF3, R5 is methyl or allyl, and R is -CF3.
Exemplary compounds of Formula (I) include the compounds depicted below.
Figure imgf000022_0001
Figure imgf000023_0001
Exemplary compounds of Formula (II) include, for example, the 8,9-dihydro analogues of the above depicted compounds of Formula (1). In some embodiments, ¾ is hydrogen, -CH3 or -CF3, and Rn is hydrogen or -CF3. In other embodiments, ¾ is -CH3 or -CF3 and Rn is -CF3.
Exemplary methods for the preparation of compounds of Formula (I) and (II) for use in the compositions and methods provided herein are described below and in the Examples but other methods known in the art can be used to prepare t!ie cabei'goline derivatives disclosed herein.
In some embodiments, direct functional ization of 2-unsubstituted analogs of compounds of Formula (1) and (II) (e.g., compounds of Formula (VII) and (VIIl)), for example, with an alkyl halide under basic conditions can be used to provide the compounds of Formula (I) and (II).
Figure imgf000024_0001
(11)
Figure imgf000024_0002
In other embodiments, acids (IX) and (X) which can be prepared by methods well known to those of skill in the art can be used provide compounds of Formulas (I) and (II).
Figure imgf000024_0003
Many methods exist for conversion of compounds (IX) and (X) to compounds of Formulas (I) and (II), respectively. Accordingly, preparation of (I) and (II) from carboxylic acids (IX) and (X) are well within the ambit of the skilled artisan.
Compositions and Methods of Administration The compositions provided herein contain therapeutically effective amounts of one or more of the compounds provided herein that are useful in the prevention, treatment, or amelioration of one or more of the symptoms of diseases or disorders described herein and a vehicle. Vehicles suitable for administration of the compounds provided herein include any such carriers known to those skilled in the art to be suitable for the particular mode of administration.
In addition, the compounds may be formulated as the sole active ingredient in the composition or may be combined with other active ingredients. The compositions contain one or more compounds provided herein. The compounds are, in some embodiments, formulated into suitable preparations such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as topical administration, transdermal administration and oral inhalation via nebulizers, pressurized metered dose inhalers and dry powder inhalers, In some
embodiments, the compounds described above are formulated into compositions using techniques and procedures well known in the art (see, e.g., Ansel
Introduction to Pharmaceutical Dosage Forms, Seventh Edition (1999). In the compositions, effective concentrations of one or more compounds or derivatives thereof is (are) mixed with a suitable veliicle. The compounds may be derivatized as the corresponding salts, esters, enol ethers or esters, acetals, ketals, orthoesters, hemiacetals, hemiketals, acids, bases, solvates, ion-pairs, hydrates or prodrugs prior to formulation, as described above. The
concentrations of the compounds in the compositions are effective for delivery of an amount, upon administration that treats, leads to prevention, or amelioration of one or more of the symptoms of diseases or disorders described herein. In some embodiments, the compositions are formulated for single dosage administration. To formulate a composition, the weight fraction of a compound is dissolved, suspended, dispersed or otherwise mixed in a selected vehicle at an effective concentration such that the treated condition is relieved, prevented, or one or more symptoms are ameliorated.
The active compound is included in the vehicle in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated. The therapeutically effective concentration may be predicted empirically by testing the compounds in in vitro and in vivo systems well known to those of skill in the art and then extrapolated therefrom for dosages for humans. Human doses are then typically fine-tuned in clinical trials and titrated to response. The concentration of active compound in the composition will depend on absorption, inactivation and excretion rates of the active compound, the physicochemical characteristics of the compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art. For example, the amount that is delivered is sufficient to ameliorate one or more of the symptoms of diseases or disorders as described herein.
In some embodiments, a therapeutically effective dosage should produce a serum concentration of active ingredient of from about 0.001 ng/ml to about 50-200
Figure imgf000026_0001
The compositions, in other embodiments, should provide a dosage of from about 0.0001 mg to about 70 mg of compound per kilogram of body weight per day. Dosage unit forms are prepared to provide from about 0.01 mg, 0.1 mg or 1 mg to about 500 mg, 1000 mg or 5000 mg, and in some embodiments from about 10 mg to about 500 mg of the active ingredient or a combination of essential ingredients per dosage unit form.
The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data or subsequent clinical testing. It is to be noted that concentrations and dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.
In instances in which the compounds exhibit insufficient solubility, methods for solubilizing compounds may be used such as use of liposomes, prodrugs, complexation/chelation, nanoparticles, or emulsions or tertiary templating. Such methods are known to those of skill in this art, and include, but are not limited to, using co-solvents, such as dimethylsulfoxide (DMSO), using surfactants or surface modifiers, such as TWEEN®, complexing agents such as cyclodextrin or dissolution by enhanced ionization (i.e. dissolving in aqueous sodium bicarbonate). Derivatives of the compounds, such as prodrugs of the compounds may also be used in formulating effective compositions. Upon mixing or addition of the compound(s), the resulting mixture may be a solution, suspension, emulsion or the like. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected vehicle. The effective concentration is sufficient for ameliorating the symptoms of the disease, disorder or condition treated and may be empirically determined.
The compositions are provided for administration to humans and animals in indication appropriate dosage forms, such as dry powder inhalers (DPIs), pressurized metered dose inhalers (pMDIs), nebulizers, tablets, capsules, pills, sublingual tapes/bioerodible strips, tablets or capsules, powders, granules, lozenges, lotions, salves, suppositories, fast melts, transdermal patches or other transdermal application devices/preparations, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or derivatives thereof. The therapeutically active compounds and derivatives thereof are, in some embodiments, formulated and administered in unit-dosage forms or
multiple-dosage forms. Unit-dose forms as used herein refer to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of the therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required vehicle. Examples of unit-dose forms include ampoules and syringes and individually packaged tablets or capsules. Unit-dose forms may be administered in fractions or multiples thereof. A multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form. Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons. Hence, multiple dose form is a multiple of unit-doses which are not segregated in packaging.
Liquid compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional adjuvants in a vehicle, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension, colloidal dispersion, emulsion or liposomal formulation. If desired, the composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrin derivatives, sorbitan inonolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 15th Edition, 1975 or later editions thereof.
Dosage forms or compositions containing active ingredient in the range of 0.005% to 100% with the balance made up from vehicle or carrier may be prepared. Methods for preparation of these compositions are known to those skilled in the art. The contemplated compositions may contain 0.001%-100% active ingredient, in one embodiment 0.1-95%, in another embodiment 0.4-10%. In certain embodiments, the compositions are lactose-free compositions containing excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002). In general, lactose-free compositions contain active ingredients, a binder/filler, and a lubricant in compatible amounts. Particular lactose-free dosage forms contain active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
Further provided are anhydrous compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds. For example, the addition of water (e.g., 5%) is widely accepted as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T,
Carstensen, Drug Stability: Principles ά Practice, 2d. Ed., Marcel Dekker, NY, NY, 1995, pp. 379-80. In effect, water and heat accelerate the decomposition of some compounds. Thus, the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
Anhydrous compositions and dosage forms provided herein can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
An anhydrous composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are generally packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.
Oral dosage forms are either solid, gel or liquid. The solid dosage forms are tablets, capsules, granules, and bulk powders. Types of oral tablets include compressed, chewable lozenges and tablets which may be enteric-coated, sugar-coated or film-coated. Capsules may be hard or soft gelatin capsules, while granules and powders may be provided in non-effervescent or effervescent form with the combination of other ingredients known to those skilled in the art.
In certain embodiments, the formulations are solid dosage forms such as for example, capsules or tablets. The tablets, pills, capsules, troches and the like can contain one or more of the following ingredients, or compounds of a similar nature: a binder; a lubricant; a diluent; a glidant; a disintegrating agent; a coloring agent; a sweetening agent; a flavoring agent; a wetting agent; an enteric coating; a film coating agent and modified release agent. Examples of binders include microcrystallme cellulose, methyl paraben, polyalkyleneoxides, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, molasses,
polyvinylpyrrolidine, povidone, crospovidones, sucrose and starch and starch derivatives. Lubricants include talc, starch, magnesium/calcium stearate, lycopodium and stearic acid. Diluents include, for example, lactose, sucrose, trehalose, lysine, leucine, lecithin, starch, kaolin, salt, mannitol and dicalcium phosphate. Glidants include, but are not limited to, colloidal silicon dioxide.
Disintegrating agents include crosscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methylcellulose, agar and carboxymethylcellulose. Coloring agents include, for example, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate and advanced coloring or anti-forgery color/opalescent additives known to those skilled in the art.
Sweetening agents include sucrose, lactose, mannitol and artificial sweetening agents such as saccharin, and any number of spray dried flavors. Flavoring agents include natural flavors extracted from plants such as fruits and synthetic blends of compounds which produce a pleasant sensation or mask unpleasant taste, such as, but not limited to peppermint and methyl salicylate. Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethyiene glycol monolaurate and polyoxyethylene laural ether. Enteric-coatings include fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates. Film coatings include hydroxyethylcellulose, sodium
carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate phthalate. Modified release agents include polymers such as the Eudragit series and cellulose esters.
The compound, or derivative thereof, can be provided in a composition that protects it from the acidic environment of the stomach. For example, the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine. The composition may also be formulated in combination with an antacid or other such ingredient.
When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents. The compounds can also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
The active materials can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as antacids, H2 blockers, and diuretics. The active ingredient is a compound or derivative thereof as described herein. Higher concentrations, up to about 98% by weight of the active ingredient may be included.
In all embodiments, tablets and capsules formulations may be coated as known by those of skill in the art in order to modify or sustain dissolution of the active ingredient. Thus, for example, they may be coated with a conventional enterically digestible coating, such as phenylsalicylate, waxes and cellulose acetate phthalate.
Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non- effervescent granules and effervescent preparations reconstituted from effervescent granules. Aqueous solutions include, for example, elixirs and syrups. Emulsions are either oil-in-water or water-in-oil. Elixirs are clear, sweetened, hydroalcoholic preparations. Vehicles used in elixirs include solvents. Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may contain a preservative. An emulsion is a two-phase system in which one liquid is dispersed in the form of small globules throughout another liquid. Carriers used in emulsions are non-aqueous liquids, emulsifying agents and preservatives. Suspensions use suspending agents and preservatives. Acceptable substances used in non- effervescent granules, to be reconstituted into a liquid oral dosage form, include diluents, sweeteners and wetting agents. Acceptable substances used in effervescent granules, to be reconstituted into a liquid oral dosage form, include organic acids and a source of carbon dioxide. Coloring and flavoring agents are used in all of the above dosage forms.
Solvents include glycerin, sorbitol, ethyl alcohol and syrup. Examples of preservatives include glycerin, methyl and propylparaben, benzoic acid, sodium benzoate and alcohol. Examples of non-aqueous liquids utilized in emulsions include mineral oil and cottonseed oil. Examples of emulsifying agents include gelatin, acacia, tragacanth, bentonite, and surfactants such as polyoxyethylene sorbitan monooleate. Suspending agents include sodium carboxyinethylcellulose, pectin, tragacanth, Veegum and acacia. Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as saccharin. Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethy!ene glycol monolaurate and polyoxyethylene lauryl ether. Organic acids include citric and tartaric acid, Sources of carbon dioxide include sodium bicarbonate and sodium carbonate. Coloring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof. Flavoring agents include natural flavors extracted from plants such fruits, and synthetic blends of compounds which produce a pleasant taste sensation.
For a solid dosage form, the solution or suspension, in for example, propylene carbonate, vegetable oils or triglycerides, is in some embodiments encapsulated in a gelatin capsule. Such solutions, and the preparation and encapsulation thereof, are disclosed in U.S. Patent Nos. 4,328,245; 4,409,239; and 4,410,545. For a liquid dosage form, the solution, e.g., for example, in a polyethylene glycol, may be diluted with a sufficient quantity of a liquid vehicle, e.g., water, to be easily measured for administration.
Alternatively, liquid or semi-solid oral formulations may be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (e.g., propylene carbonate) and other such carriers, and encapsulating these solutions or suspensions in hard or soft gelatin capsule shells. Other useful formulations include those set forth in U.S. Patent Nos. RE28,819 and 4,358,603. Briefly, such formulations include, but are not limited to, those containing a compound provided herein, a dialkylated mono- or polyalkylene glycol, including, but not limited to, 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme, polyethylene glycol-350-dimethyl ether, polyethylene glycol-550-dimethyj ether, polyethylene glycol-750-dimethyl ether wherein 350, 550 and 750 refer to the approximate average molecular weight of the polyethylene glycol, and one or more antioxidants, such as butylated
hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, vitamin E, hydroquinone, hydroxycoumarins, ethanolamine, lecithin, cephalin, ascorbic acid, malic acid, sorbitol, phosphoric acid, thiodipropionic acid and its esters, and dithiocarbamates.
Other formulations include, but are not limited to, aqueous alcoholic solutions including a acetal. Alcohols used in these formulations are any water-miscible solvents having one or more hydroxy 1 groups, including, but not limited to, propylene glycol and ethanol. Acetals include, but are not limited to, di(lower alkyl) acetals of lower alkyl aldehydes such as acetaldehyde diethyl acetal. Parenteral administration, in some embodiments characterized by injection, either subcutaneously, intramuscularly or intravenously is also contemplated herein. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. The injectables, solutions and emulsions also contain one or more excipients. Suitable excipients are, for example, water, saline, dextrose, glycerol or ethanol. In addition, if desired, the compositions to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamme oleate and cyclodextrins. Implantation of a slow-release or sustained-release system, such that a constant level of dosage is maintained (see, e.g., U.S. Patent No. 3,710,795) is also contemplated herein. Briefly, a compound provided herein is dispersed in a solid inner matrix, e.g., polymethylmethacrylate, polybutylmethacrylate, plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyieneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsi!oxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and methaciylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, e.g., polyethylene, polypropylene, ethylene/propylene copolymers, ethylene/ethyl acrylate copolymers,
ethylene/vinylacetate copolymers, silicone rubbers, polydimethyl siloxanes, neoprene rubber, chlorinated polyethylene, polyvinylchloride, vinylchloride copolymers with vinyl acetate, vinylidene chloride, ethylene and propylene, ionomer polyethylene terephthalate, butyl rubber epichlorohydrin rubbers, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate/vinyl alcohol terpolymer, and ethylene/vinyloxyethanol copolymer, that is insoluble in body fluids. The compound diffuses through the outer polymeric membrane in a release rate controlling step. The percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject.
Parenteral administration of the compositions includes intravenous, subcutaneous and intramuscular administrations. Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as lyophilized powders, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions. The solutions may be either aqueous or nonaqueous.
If administered intravenously, suitable carriers include physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
Vehicles used in parenteral preparations include aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other substances.
Examples of aqueous vehicles include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection. Nonaqueous parenteral vehicles include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.
Antimicrobial agents in bacteriostatic or fungistatic concentrations must be added to parenteral preparations packaged in multiple-dose containers which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride. Isotonic agents include sodium chloride and dextrose. Buffers include phosphate and citrate. Antioxidants include sodium bisulfate. Local anesthetics include procaine hydrochloride. Suspending and dispersing agents include sodium carboxymethylcelluose, hydroxypropyl methylcell lose and polyvinylpyrrolidone. Emulsifying agents include Polysorbate 80 (Tween® 80). A sequestering or chelating agent of metal ions includes EDTA. Carriers also include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles; and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.
The concentration of compound is adjusted so that an injection provides an effective amount to produce the desired pharmacological effect. The exact dose depends on the age, weight, body surface area and condition of the patient or animal as is known in the art. 2 043687
The unit-dose parenteral preparations are packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration must be sterile, as is known and practiced in the art.
Illustratively, intravenous or intraarterial infusion of a sterile aqueous solution containing an active compound is an effective mode of administration.
Another embodiment is a sterile aqueous or oily solution or suspension
containing an active material injected as necessary to produce the desired
pharmacological effect.
Injectables are designed for local and systemic administration. In some embodiments, a therapeutically effective dosage is formulated to contain a
concentration of at least about 0.01 % w/w up to about 90% w/w or more, in certain embodiments more than 0.1% w/w of the active compound to the treated tissue(s).
The compound may be suspended in micronized or other suitable form or may be derivatized to produce a more soluble active product or to produce a prodrug. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient for ameliorating the symptoms of the condition and may be empirically determined. Active ingredients provided herein can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S.
Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 5,674,533;
5,059,595; 5,591,767; 5, 120,548; 5,073,543; 5,639,476; 5,354,556; 5,639,480;
5,733,566; 5,739, 108; 5,891,474; 5,922,356; 5,972,891 ; 5,980,945; 5,993,855;
6,045,830; 6,087,324; 6, 113,943; 6, 197,350; 6,248,363; 6,264,970; 6,267,981;
6,376,461 ; 6,419,961; 6,589,548; 6,613,358; 6,699,500 and 6,740,634. Such dosage forms can be used to provide slow or controlled -release of one or more active ingredients using, for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable
controlled -re lease formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients provided herein. All controlled-release products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects. Most controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body. Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, H, temperature, enzymes, water, or other physiological conditions or compounds. In certain embodiments, the agent may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In some embodiments, a pump may be used (see,
Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et a!.> Stirgery 88:507 (1980); Saudek ei l., N. Engl. J. Med. 321 :574 (1989)). In other embodiments, polymeric materials can be used. In other embodiments, a controlled release system can be placed in proximity of the therapeutic target, i.e., thus requiring only a fraction of the systemic dose (see, e.g., Goodson, Medical Applications of Controlled Release, vol. 2, pp. 1 15-138 (1984)). In some embodiments, a controlled release device is introduced into a subject in proximity of the site of inappropriate immune activation or a tumor. Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)). The active ingredient can be dispersed in a solid inner matrix, e.g., polymethylmethacrylate, polybutylmethacrylate, plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyleneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsiloxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and methacrylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, e.g., polyethylene, polypropylene, ethylene/propylene copolymers, ethylene/ethyl acrylate copolymers, ethylene/vinylacetate copolymers, silicone rubbers, polydimethyl siloxanes, neoprene rubber, chlorinated polyethylene, polyvinylchloride, vinylchloride copolymers with vinyl acetate, vinylidene chloride, ethylene and propylene, ionomer polyethylene terephthalate, butyl rubber epichlorohydrin rubbers, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate/vinyl alcohol terpolymer, and
ethylene/vinyloxyethanol copolymer, that is insoluble in body fluids. The active ingredient then diffuses through the outer polymeric membrane in a release rate controlling step. The percentage of active ingredient contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the needs of the subject.
Of interest herein are also lyophilized powders, which can be
reconstituted for administration as solutions, emulsions and other mixtures. They may also be reconstituted and formulated as solids or gels.
The sterile, lyophilized powder is prepared by dissolving a compound provided herein, or a derivative thereof, in a suitable solvent. The solvent may contain an excipient which improves the stability or other pharmacological com onent of the powder or reconstituted solution, prepared from the powder. Excipients that may be used include, but are not limited to, an antioxidant, a buffer and a bulking agent. In some embodiments, the excipient is selected from dextrose, sorbitol, fructose, corn syrup, xylitol, glycerin, glucose, sucrose and other suitable agent. The solvent may contain a buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, at about neutral pH. Subsequent sterile filtration of the solution followed by lyophilization under standard conditions known to those of skill in the art provides the desired formulation. In some embodiments, the resulting solution will be apportioned into vials for lyophilization. Each vial will contain a single dosage or multiple dosages of the compound. The lyophilized powder can be stored under appropriate conditions, such as at about 4 °C to room temperature.
Reconstitution of this lyophilized powder with water for injection provides a formulation for use in parenteral administration. For reconstitution, the lyophilized powder is added to sterile water or other suitable car rier. The precise amount depends upon the selected compound. Such amount can be empirically determined.
Topical mixtures are prepared as described for the local and systemic administration. The resulting mixture may be a solution, suspension, emulsions or the like and are formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical administration.
The compounds or derivatives thereof may be formulated as aerosols for topical application, such as by inhalation (see, e.g., U.S. Patent Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment of inflammatory diseases, particularly asthma). These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the formulation will, in some embodiments, have mass median geometric diameters of less than 5 microns, in other embodiments less than 10 microns. Oral inhalation formulations of the compounds or derivatives suitable for inhalation include metered dose inhalers, dry powder inhalers and liquid preparations for administration from a nebulizer or metered dose liquid dispensing system. For both metered dose inhalers and dry powder inhalers, a crystalline form of the compounds or derivatives is the preferred physical form of the drug to confer longer product stability.
In addition to particle size reduction methods known to those skilled in the art, crystalline particles of the compounds or derivatives can be generated using supercritical fluid processing which offers significant advantages in the production of such particles for inhalation delivery by producing respirable particles of the desired size in a single step, {e.g., International Publication No. WO2005/025506). A controlled particle size for the microcrystals can be selected to ensure that a significant fraction of the compounds or derivatives is deposited in the lung. In some embodiments, these particles have a mass median aerodynamic diameter of about 0.1 to about 10 microns, in other embodiments, about 1 to about 5 microns and still other embodiments, about 1.2 to about 3microns.
Inert and non-flammable HFA propellants are selected from HFA 134a (1,1, 1,2-tetrafluoroethane) and HFA 227e (1 , 1 , 1,2,3,3,3-heptafluoiOpropane) and provided either alone or as a ratio to match the density of crystal particles of the compounds or derivatives. A ratio is also selected to ensure that the product suspension avoids detrimental sedimentation or cream (which can precipitate irreversible agglomeration) and instead promote a loosely flocculated system, which is easily dispersed when shaken. Loosely fluctuated systems are well regarded to provide optimal stability for pMDI canisters. As a result of the formulation's properties, the formulation contained no ethanol and no
surfactants/stabilizing agents.
The formulation of the compounds or derivatives can be administered to patients using TEMPO® (MAP Pharmaceuticals, Inc., Mountain View, CA), a novel breath activated metered dose inhaler. TEMPO® overcomes the variability associated with standard pressurized metered dose inhalers (pMDI), and achieves consistent delivery of drug to the lung periphery where it can be systeniically absorbed. To do so, TEMPO® incorporates four novel features: 1) breath synchronous trigger - can be adjusted for different drugs and target populations to deliver the drug at a specific part of the inspiratory cycle, 2) plume control - an impinging jet to slow down the aerosol plume within the actuator, 3) vortexing chamber - consisting of porous wall, which provides an air cushion to keep the slowed aerosol plume suspended and air inlets on the back wall which drive the slowed aerosol plume into a vortex pattern, maintaining the aerosol in suspension and allowing the particle size to reduce as the HFA propellant evaporates, and 4) dose counter - will determine the doses remaining and prevent more than the intended maximum dose to be administered from any one canister.
The compounds may be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application. Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies. Nasal solutions of the active compound alone or in combination with other excipients can also be administered.
For nasal administration, the preparation may contain a compound dissolved or suspended in a liquid carrier, in particular, an aqueous carrier, for aerosol application. The carrier may contain solubilizing or suspending agents such as propylene glycol, surfactants, absorption enhancers such as lecithin or cyclodextrin, or preservatives.
Solutions, particularly those intended for ophthalmic use, may be formulated as 0.01 % - 10% isotonic solutions, pH about 5-7.4, with appropriate salts.
Other routes of administration, such as transdermal patches, including iontophoretic and electrophoretic devices, and rectal administration, are also contemplated herein. Transdermal patches, including iotophoretic and electrophoretic devices, are well known to those of skill in the art. For example, such patches are disclosed in U.S. Patent Nos. 6,267,983, 6,261,595, 6,256,533, 6, 167,301, 6,024,975, 6,010715, 5,985,317, 5,983,134, 5,948,433 and 5,860,957. For example, dosage forms for rectal administration are rectal suppositories, capsules and tablets for systemic effect. Rectal suppositories are used herein mean solid bodies for insertion into the rectum which melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients. Substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point. Examples of bases include cocoa butter (theobroma oil), glycerin-gelatin, carbowax (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases may be used. Agents to raise the melting point of suppositories include spermaceti and wax. Rectal suppositories may be prepared either by the compressed method or by molding. The weight of a rectal suppository, in one embodiment, is about 2 to 3 gm. Tablets and capsules for rectal administration are manufactured using the same substance and by the same methods as for formulations for oral administration.
The compounds provided herein, or derivatives thereof, may also be formulated to be targeted to a particular tissue, receptor, or other area of the body of the subject to be treated. Many such targeting methods are well known to those of skill in the art. All such targeting methods are contemplated herein for use in the instant compositions. For non-limiting examples of targeting methods, see, e.g., U.S. Patent Nos. 6,316,652, 6,274,552, 6,271,359, 6,253,872,
6, 139,865, 6, 131,570, 6,120,7 1 , 6,071,495, 6,060,082, 6,048,736, 6,039,975,
6,004,534, 5,985,307, 5,972,366, 5,900,252, 5,840,674, 5,759,542 and 5,709,874.
In some embodiments, liposomal suspensions, including tissue-targeted liposomes, such as tumor-targeted liposomes, may also be suitable as carriers. These may be prepared according to methods known to those skilled in the art. For example, liposome formulations may be prepared as described in U.S. Patent No. 4,522,811. Briefly, liposomes such as multilamellar vesicles (MLV's) may be formed by drying down phosphatidyl choline and phosphatidyl serine (7:3 molar ratio) on the inside of a flask. A solution of a compound provided herein in phosphate buffered saline lacking divalent cations (PBS) is added and the flask shaken until the lipid film is dispersed. The resulting vesicles are washed to remove unencapsulated compound, pelleted by centrifugation, and then resuspended in PBS.
The compounds or derivatives may be packaged as articles of manufacture containing packaging material, a compound or derivative thereof provided herein, which is effective for treatment, prevention or amelioration of one or more symptoms of the diseases or disorders, sapra, within the packaging material, and a label that indicates that the compound or composition or derivative thereof, is used for the treatment, prevention or amelioration of one or more symptoms of the diseases or disorders, supra.
The articles of manufacture provided herein contain packaging materials. Packaging materials for use in packaging products are well known to those of skill in the art. See, e.g., U.S. Patent Nos. 5,323,907, 5,052,558 and 5,033,252. Examples of packaging materials include, but are not limited to, blister packs, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment. A wide array of formulations of the compounds and compositions provided herein are contemplated as are a variety of treatments for any disease or disorder described herein.
Dosages
In human therapeutics, the physician will determine the dosage regimen that is most appropriate according to a preventive or curative treatment and according to the age, weight, stage of the disease and other factors specific to the subject to be treated. The compositions, in other embodiments, should provide a dosage of from about 0,0001 mg to about 70 mg of compound per kilogram of body weight per day. Dosage unit forms are prepared to provide from about 0.01 mg, 0.1 mg or 1 mg to about 500 mg, 1000 mg or 5000 mg, and in some embodiments from about 10 mg to about 500 mg of the active ingredient or a combination of essential ingredients per dosage unit form. The amount of active ingredient in the formulations provided herein, which will be effective in the prevention or treatment of a disorder or one or more symptoms thereof, will vary with the nature and severity of the disease or condition, and the route by which the active ingredient is administered. The frequency and dosage will also vary according to factors specific for each subject depending on the specific therapy (e.g., therapeutic or prophylactic agents) administered, the severity of the disorder, disease, or condition, the route of administration, as well as age, body, weight, response, and the past medical history of the subject. Exemplary doses of a formulation include milligram or microgram amounts of the active compound per kilogram of subject (e.g., from about 1 micrograms per kilogram to about 50 milligrams per kilogram, from about 10 micrograms per kilogram to about 30 milligrams per kilogram, from about 100 micrograms per kilogram to about 10 milligrams per kilogram, or from about 100 microgram per kilogram to about 5 milligrams per kilogram).
It may be necessary to use dosages of the active ingredient outside the ranges disclosed herein in some cases, as will be apparent to those of ordinary skill in the art. Furthermore, it is noted that the clinician or treating physician will know how and when to interrupt, adjust, or terminate therapy in conjunction with subject response.
Different therapeutically effective amounts may be applicable for different diseases and conditions, as will be readily known by those of ordinary skill in the art. Similarly, amounts sufficient to prevent, manage, treat or ameliorate such disorders, but insufficient to cause, or sufficient to reduce, adverse effects associated with the composition provided herein are also encompassed by the above described dosage amounts and dose frequency schedules. Further, when a subject is administered multiple dosages of a composition provided herein, not all of the dosages need be the same. For example, the dosage administered to the subject may be increased to improve the prophylactic or therapeutic effect of the composition or it may be decreased to reduce one or more side effects that a particular subject is experiencing. In certain embodiments, administration of the same formulation provided herein may be repeated and the administrations may be separated by at least i day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or 6 months. Methods of Use of the Compounds and Compositions
Methods of treating, preventing, or ameliorating one or more symptoms of diseases including, for example, central nervous system disorders, migraine, and Parkinson's disease are also provided herein. In practicing the methods, therapeutically effective amounts of the compounds or compositions, described herein, supra, are administered.
Also provided are methods and compositions for decreased 5-HT2 receptor agonist activity. In some embodiment, the 5-HT2A and 5-HT2B activity agonist activity is lower than the 5-HT2A and 5-HT2B reported for cabergoline. Also provided are methods for antagonizing receptors including 5-HT2A and 5-HT2B receptors using the compounds and compositions, described herein. In practicing the methods, therapeutically effective amounts of the compounds or compositions, described herein, supra, are administered.
In some embodiments, it is desirable to select compounds that are useful for the treatment of one or more symptoms of Parkinson's disease. An ideal compound for such treatment should have selective agonist activities for the dopaminergic D2 receptor. In some cases, it would be preferable for the compound to have a stronger affinity (and agonist activity) for the D2 receptor compared to Dj and D4 receptors. Additionally, in some embodiments, it may be advantageous for a compound to have weak to moderate 5-HTiB and 5-HTID receptor agonist activities. In other embodiments, it may be advantageous for a compound to have 5-HT2 receptors antagonism activities. As an illustrative example (and described in detail in the Examples below), the cabergoline- derivative compound, hereinafter referred to as Compound 1,
Figure imgf000046_0001
exhibited weak serotonin 5-HT2A and 5~HT B receptor agonist activity (as compared to cabergoline). Additionally, Compound 1 is selective for the dopaminergic receptor D2L, compared to Di and D4 receptors. Compound 1 also exhibited weak agonist activity on serotonin receptor 5-HTJD. Compound 1 exhibited properties that are more desirable than cabergoline in that 5~HT2A agonism is associated with hallucination, which is often a side effect of some anti-Parkinson's agents (see for example, Egan et al, Psychoparmaco g (1998) 136:409-414). Agonist activity of the 5-HT2B receptor has also been shown to be associated with cardiac and non-cardiac fibrosis. The lower 5-HT2B agonist activity seen with Compound 1 (compared to cabergoline) may translate into minimal or a reduction in the undesired fibrosis side-effects seen with cabergoline usage. Without being bound to any particular theory, it is hypothesized that the CF3 modification in Compound 1 (compared to
cabergoline) is responsible for the desirable effects of this molecule.
Depending on the dosing or treatment regimen, in some embodiments, it may be advantageous for the compound to have a relatively short half-life. In some embodiments, the half-life of the compound is less than 5 hours. In other embodiments, the half-life of the compound is between 1 hour and 5 hours, In still other embodiments, the half-life of the compound is less than 8 hours.
Alternatively, it may be advantageous for the compound to have a moderate to long half-life. In some embodiments, the half-life of the compound is greater than 10 hours. In other embodiments, the half-life of the compound is between 12 and 24 hours. Combination Therapy
The compounds and compositions disclosed herein may also be used in combination with one or more other active ingredients. In certain embodiments, the compounds may be administered in combination, or sequentially, with another therapeutic agent. Such other therapeutic agents include, for example, those known for treatment, prevention, or amelioration of one or more symptoms associated with migraine or Parkinson's disease. As an illustrative example, compounds such as Compound 1 may be administered to a patient with
Parkinson's disease as an adjunct therapy in addition to monotherapies, such as L-dihydroxyphenylacelyl acid (L-DOPA). Alternatively, compounds such as Compound 1 may be administered as a monotherapy.
It should be understood that any suitable combination of the compounds and compositions provided herein with one or more of the above therapeutic agents and optionally one or more further pharmacologically active substances are considered to be within the scope of the present disclosure. In some embodiments, the compounds and compositions provided lierein are administered prior to or subsequent to the one or more additional active ingredients.
It should also be understood that any suitable combination of the compounds and compositions provided herein may be used with other agents to agonize and or antagonize the receptors mentioned above.
Finally, it should be noted that there are alternative ways of implementing the present invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
All publications and patents cited herein are incorporated by reference in their entirety.
The following examples are provided for illustrative purposes only and are not intended to limit the scope of the invention. EXAMPLES Example 1: Preparation of Compound 1
Compound 1 was synthesized using the following synthesis route:
Figure imgf000048_0001
Cabergoline Compound 1
To a solution of Togni's reagent (63 mg, 0.199 mmol) and copper (1) acetate (2 mg, 0.016 mmol) in anhydrous methanol (3mL) under an argon atmosphere was added cabergoline (75 mg, 0.166 mmol). The reaction mixture was heated at 40° C for 4.5 hours and then allowed to cool to ambient temperature. The cooled mixture was then diluted with excess dichioromethane and washed with saturated aqueous NaHC(¾. The dichioromethane layer was dried over anhydrous Na2S04 and concentrated under reduced pressure to afford the crude product. The crude product was partially purified by flash column chromatography (Si0 , 90: 10 to 85: 15 v/v dichloromethane/methanol). The product was then subjected to further purification by semi-preparative HPLC to afford Compound 1 as a light yellow solid. Ή NMR results for Compound 1 was as follows: Ή NMR (CDC13, 400 MHz) δ 9.45 (br s, 1H), 8.23 (s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.20 (d, J= 8.0 Hz, 1H), 6.95 (d, J= 6.8 Hz, 1H), 5.90-6.00 (m, 1H), 5.26 (dd, /= 17.2, 1.2 Hz, 1H), 5.20 (d, J= 10.0 Hz, 1H), 3.72-3.92 (m, 2H), 3.53-3.60 (m, 2H), 3.27-3.48 (m, 4H), 3.15-3.20 (m, 1H), 2.88-2.97 (m, 1H), 2.68-2.83 (in, 2H), 2.53-2.63 (m, 2H), 2.30-2.42 (m, 2H), 2,24 (s, 6H), 1.82-1.91 (m, 2H), 1.70-1.80 (m, 1H), 1.19 (t, J= 7.2 Hz, 3H); 19F NMR (CDC13, 282 MHz) δ -59.2; APCI MS m/z 520 [M+H]+. Example 2: Receptor agonist/antagonist action of Compound 1
Compound 1 was synthesized as described above and assayed for receptor activity against a panel of dopaminergic and serotoninergic receptors.
Recombinant human serotonin receptors 5-HT2A> and 5-HT2B were expressed in CHO-K1 cells and activity (receptor agonist/antagonist activity) was assayed using an Aequorin assay (coexpression of mitochondrial apoaequorin).
Compound 1 was used at a concentration of 0.010 nM to 20,000 nM for agonist activity and 0.005 nM to 10,000 nM for antagonist activity. Results showed that Compound 1 displayed much less activity on 5-HT2A and 5-HT2B receptors as compared to cabergoline. On 5-HT2A receptois, Compound 1 had an EC50 of 946 nM, compared to the reported EC5o of 7.8 nM of cabergoline. On 5-HT2B receptors, Compound 1 had an EC5o of 6049 nM, compared to the reported EC50 of 2.6 nM of cabergoline (Newman-Tancredi, et al, J Pharmacology &
Experimental Therapeutics (2002) 303(2): 815-822). The results from the receptor assays on human serotonin receptors indicate that Compound 1 may have a decreased or minimized occurrence of the undesired cardiac and non- cardiac fibrosis side-effects that are associated with cabergoline.
Recombinant human dopaminergic receptor Di, D2L, and D4 and serotonin receptor 5-HTiB and 5-HTID activity was assayed using a GTPyS functional assay with Compound 1 at concentrations between 0.01 nM and 10,000 nM. Results showed that Compound 1 exhibited strong agonist activities with the D2L receptor (EC5o of 12.6 nM). Additionally, Compound 1 exhibited an 18-fold D2L to D4 receptor selectivity (when comparing EC50). Compared to reported results for cabergoline, Compound 1 has a lower fold selectivity for D2L than D4, cabergoline has appro imately a 200-fold selectivity for the D2L to D4 receptor selectivity. However, Compound 1 also exhibited a lower Emax (26%) as compared to reported values for cabergoline (Emax of 49%) (Newman-Tancredi et al, J Pharmacology & Experimental Therapeutics (2002) 303(2): 805-814). Compound 1 was also highly selective for D2L compared to Dl receptors, with results showing approximately 110-fold selectivity for the D2L receptor over the Dt receptor. For the serotonin receptors, 5-HT1B and 5-HTID, Compound 1 was not active on 5-HTIB receptors, whereas data have shown that cabergoline is active and has an EC50 of 2238 11M (see for example, Newman-Taticredi et αί, J Pharmacology' & Experimental Therapeutics (2002) 303(2): 815-822.
Compound 1 was an agonist on 5-HTiD receptors with an EC50 of 263 nM, which shows less affinity than cabergoline (EC50 of 16 nM; Newtnan-Tancredi et ah, J Pharmacology & Experimental Therapeutics (2002) 303(2): 815-822). In addition, , Compound 1 had a reduced Emax from 68% to 31% compared to cabergoline. Taken together, these data is consistent with the conclusion that Compound 1 would be a desirable anti-Parkinson's disease agent.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A compound of Formula (1) or Formula (II):
Figure imgf000051_0001
or ion pairs, salts, hydrates, solvates or metabolites thereof, wherein:
Ri is hydrogen, (C1-C4) alkyl, substituted (Ci-C4) alkyl or (Cj-Gj) alkyl substituted with one or more fluorine atoms;
R2 is alkyl, substituted alkyl, acyl, substituted acyl, halo, heteroaikyi, substituted heteroaikyi, ~N02, -N3, -OH, -S(0)kR10o, -ORi0i, -NR! 02Rio3,
-CONR10 Rio5, -CO2RI06 or -O2CR107;
R5 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
R7 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl, (C1-C4) alkyl substituted with one or more fluorine atoms, arylalkyi or substituted arylalkyi;
Rs and R9 are independently hydrogen, (C1-C4) alkyl, substituted (C[-C4) alkyl, (Ci-C4) alkyl substituted with one or more fluorine atoms, heteroaikyi, substituted heteroaikyi, arylalkyi, substituted arylalkyi, heteroaryl, substituted heteroaryl or Rs and R9 together with the nitrogen atom to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring
Rn is hydrogen, (C1-C3) alkyl or (C1-C3) alkyl substituted with one or more fluorine atoms;
Rioo-Ri07 are independently hydrogen, alkyl, substituted alkyl, acyl, substituted acyl, aryl, substituted aryl, arylalkyi, substituted arylalkyi, heteroaikyi, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylaik l or substituted heteroarylalkyl;
k is 0, I or 2; and
n is O, 1, 2 or 3.
2. The com o nd of Claim 1 of Formula (III) or (IV):
Figure imgf000052_0001
(I ll) (IV)
3. The compound of Claim 2, wherein ¾ is hydrogen, ( -C4) alkyl or (Q -C4) alkyl substituted with one or more fluorine atoms,
4. The compound of Claim 2, R| is hydrogen, -CH3 or -CF3.
5. The compound of Claim 2, wherein Rj is -CH3 or -CF3,
6. The compound of Claim 2, wherein R5 is hydrogen or (CrC3) alkyl.
7. The compound of Claim 2, wherein R; is hydrogen, methyl or all l.
8. The compound of Claim 2, wherein R5 is methyl or ally!.
9. The compound of Claim 2, wherein R7 is hydrogen, (C1-C4) alkyl, (C1-C4) substituted alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms.
10. The compound of Claim 2, wherein R7 is substituted ( -C4) alkyl or (C1-C4) alkyl substituted with one dialkyl amino group.
11. The compound of Claim 2, wherein R7 is 3-diinethylaminopropyl.
12. The compound of Claim 2, wherein R is hydrogen, (C1 -C4) alkyl, substituted (C]-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms.
13. The compound of Claim 1, wherein R9 is (C1-C4) alkyl or (C1-C4) substituted alkyl.
14. The compound of Claim 1, wherein R is (Ci^) alkyl.
15. The compound of Claim 1 , wherein R9 is ethyl.
16. The compound of Claim 1, wherein Rn is (C1-C3) alkyl substituted with one or more fluorine atoms.
17. The compound of Claim 1, wherein Rn is ~CF3.
18. The compound of Claim 2, wherein Ri is hydrogen, (C1 -C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, R5 is hydrogen or (CrC3) alkyl, R7 is hydrogen, (C1 -C4) alkyl, (C1-C4) substituted alkyl or (Q-C4) alkyl substituted Λvith one or more fluorine atoms, R9 is hydrogen, (Q-C4) alkyl, substituted (C1-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms and Rn is hydrogen or (Cf-C3) alkyl substituted with one or more fluorine atoms.
19. The compound of Claim 2, wherein R[ is hydrogen, -CH3 or -CF3, R5 is
hydrogen, methyl 01· allyl, R7 is substituted (C1-C4) alkyl or (C1-C4) alkyl substituted with one dialkyl amino group, R9 is (C C4) alkyl and Rn is -CF3.
20. The compound of Claim 2, wherein Ri is -CH3 or -CF3, R5 is methyl or allyl, R7 (C1 -C4) alkyl substituted with one dialkyl amino group R9 is (C1-C4) alkyl and Rn is -CF3.
21. The compound of Claim 2 having the structure:
Figure imgf000053_0001
(V) (VI) wherein Rj is hydrogen, (C1-C4) alkyl or (C1-C4) alkyl substituted with one or more fluorine atoms, 5 is hydrogen or (C]-C3) alkyl, and Rn is hydrogen or (C1-C3) alkyl substituted with one or more fluorine atoms,
22. The compound of Claim 21, wherein Ri is hydrogen, -CH3 or -CF3, R5 is hydrogen, methyl or allyl, and Rn is hydrogen or -CF3.
23. The compound of Claim 21, wherein Ri is hydrogen, R5 is allyl, and Rn is hydrogen.
24. The compound of Claim 21, wherein Rj is -CH3 or -CF3} R5 is methyl or allyl, and Ri i is -CF3.
25. The compound of Claim 21, wherein ] is -C¾ or -CF3, R5 is methyl or ally!, and R| ] is -CF3.
26. A composition comprising the compound of Claim 1 and a vehicle.
27. A method of treating and/or preventing central nervous system disorders in a subject comprising administering to the subject in need thereof a
therapeutically effective amount of the compound of Claim 1.
28. A method of treating and/or preventing migraine in a subject comprising administering to the subject in need thereof a therapeutically effective amount of the compound of Claim 3 .
29. A method of treating and/or preventing Parkinson's disease in a subject
comprising administering to the subject in need thereof a therapeutically effective amount of the compound of Claim 1.
30. A method of treating and/or preventing Parkinson's disease in a subject
comprising administering to the subject in need thereof a therapeutically effective amount of the composition of Claim 1,
PCT/US2012/043687 2012-06-22 2012-06-22 Novel cabergoline derivatives WO2013191704A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2014153672A RU2014153672A (en) 2012-06-22 2012-06-22 NEW CABBERGOLINE DERIVATIVES
PCT/US2012/043687 WO2013191704A1 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
CA2876321A CA2876321A1 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
EP12879191.0A EP2863747A4 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
BR112014031945A BR112014031945A2 (en) 2012-06-22 2012-06-22 cabergoline derivatives
JP2015518385A JP2015525239A (en) 2012-06-22 2012-06-22 New cabergoline derivatives
CN201280075321.7A CN104822264A (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
SG11201408567PA SG11201408567PA (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
AU2012382929A AU2012382929A1 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives
IL236310A IL236310A0 (en) 2012-06-22 2014-12-17 Novel cabergoline derivatives
HK15109927.2A HK1208997A1 (en) 2012-06-22 2015-10-12 Novel cabergoline derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/043687 WO2013191704A1 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives

Publications (1)

Publication Number Publication Date
WO2013191704A1 true WO2013191704A1 (en) 2013-12-27

Family

ID=49769156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/043687 WO2013191704A1 (en) 2012-06-22 2012-06-22 Novel cabergoline derivatives

Country Status (11)

Country Link
EP (1) EP2863747A4 (en)
JP (1) JP2015525239A (en)
CN (1) CN104822264A (en)
AU (1) AU2012382929A1 (en)
BR (1) BR112014031945A2 (en)
CA (1) CA2876321A1 (en)
HK (1) HK1208997A1 (en)
IL (1) IL236310A0 (en)
RU (1) RU2014153672A (en)
SG (1) SG11201408567PA (en)
WO (1) WO2013191704A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502888A (en) * 2015-01-20 2018-02-01 エックスオーシー ファーマシューティカルズ インコーポレイテッドXoc Pharmaceuticals, Inc Ergoline compounds and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866656A (en) * 2017-02-28 2017-06-20 西南交通大学 One class ergoline derivatives and its purposes in prevention and treatment mental illness
EP3530651A1 (en) * 2018-02-21 2019-08-28 Adamed sp. z o.o. Indole and benzimidazole derivatives as dual 5-ht2a and 5-ht6 receptor antagonists

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705510A (en) * 1993-08-18 1998-01-06 Alcon Laboratories, Inc. Use of cabergoline and related ergoline derivatives for controlling intraocular pressure
US7217822B2 (en) * 2005-03-17 2007-05-15 Synthon Ip Inc. Process for making cabergoline
US7666877B2 (en) * 2005-05-31 2010-02-23 Novartis Ag Ergoline derivatives
US8178529B2 (en) * 2009-04-15 2012-05-15 Astrazeneca Ab Imidazole substituted pyrimidines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526892A (en) * 1981-03-03 1985-07-02 Farmitalia Carlo Erba, S.P.A. Dimethylaminoalkyl-3-(ergoline-8'βcarbonyl)-ureas
DK338789A (en) * 1988-07-15 1990-01-16 Schering Ag 2-SUBSTITUTED ERGOLINYLURINE DERIVATIVES AND PROCEDURES FOR THE PRODUCTION THEREOF, THEIR USE AS MEDICINES AND INTERMEDIATES FOR THE PRODUCTION THEREOF
DE3913756A1 (en) * 1989-04-21 1990-10-25 Schering Ag 8 (BETA) SUBSTITUTED ERGOLINE, METHOD FOR THE PRODUCTION AND USE THEREOF
CZ287176B6 (en) * 1997-10-03 2000-10-11 Galena A. S. Process for preparing ergoline derivatives
EP1592424A1 (en) * 2003-02-05 2005-11-09 Pharmacia Italia S.p.A. Cabergoline for the prophylactic treatment of migraine
GB0307377D0 (en) * 2003-03-31 2003-05-07 Merad Pharmaceuticals Ltd Ergoline derivatives
HUP0400517A3 (en) * 2004-03-04 2006-05-29 Richter Gedeon Vegyeszet Process for producing cabergoline
EP2083008A1 (en) * 2007-12-07 2009-07-29 Axxonis Pharma AG Ergoline derivatives as selective radical scavengers for neurons
CA2749317A1 (en) * 2009-01-09 2010-07-15 President And Fellows Of Harvard College Fluorine containing compounds and methods of use thereof
SG10201506202RA (en) * 2011-12-21 2015-09-29 Map Pharmaceuticals Inc Novel neuromodulatory compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705510A (en) * 1993-08-18 1998-01-06 Alcon Laboratories, Inc. Use of cabergoline and related ergoline derivatives for controlling intraocular pressure
US7217822B2 (en) * 2005-03-17 2007-05-15 Synthon Ip Inc. Process for making cabergoline
US7666877B2 (en) * 2005-05-31 2010-02-23 Novartis Ag Ergoline derivatives
US8178529B2 (en) * 2009-04-15 2012-05-15 Astrazeneca Ab Imidazole substituted pyrimidines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2863747A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502888A (en) * 2015-01-20 2018-02-01 エックスオーシー ファーマシューティカルズ インコーポレイテッドXoc Pharmaceuticals, Inc Ergoline compounds and uses thereof

Also Published As

Publication number Publication date
JP2015525239A (en) 2015-09-03
CN104822264A (en) 2015-08-05
AU2012382929A1 (en) 2015-02-05
EP2863747A1 (en) 2015-04-29
BR112014031945A2 (en) 2017-06-27
SG11201408567PA (en) 2015-02-27
EP2863747A4 (en) 2015-12-23
RU2014153672A (en) 2016-08-10
IL236310A0 (en) 2015-02-26
CA2876321A1 (en) 2013-12-27
HK1208997A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
US10308651B2 (en) Ergoline compounds and uses thereof
EP2723735A1 (en) Novel fluoroergoline analogs
WO2011079313A1 (en) Novel ergoline analogs
EP2934143A1 (en) Novel methysergide derivatives
US9012640B2 (en) Cabergoline derivatives
EP2793583A1 (en) Novel neuromodulatory compounds
US8722699B2 (en) Iso-ergoline derivatives
WO2014100359A1 (en) Novel ergoline derivatives and uses thereof
AU2016209490B2 (en) Isoergoline compounds and uses thereof
EP2863747A1 (en) Novel cabergoline derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2876321

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015518385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012879191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012879191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014153672

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012382929

Country of ref document: AU

Date of ref document: 20120622

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031945

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031945

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141219