Nothing Special   »   [go: up one dir, main page]

WO2013187322A1 - Breakdown-predicting mechanical seal system for sealing high-temperature seal fluid - Google Patents

Breakdown-predicting mechanical seal system for sealing high-temperature seal fluid Download PDF

Info

Publication number
WO2013187322A1
WO2013187322A1 PCT/JP2013/065814 JP2013065814W WO2013187322A1 WO 2013187322 A1 WO2013187322 A1 WO 2013187322A1 JP 2013065814 W JP2013065814 W JP 2013065814W WO 2013187322 A1 WO2013187322 A1 WO 2013187322A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing element
temperature
side sealing
inner periphery
mechanical seal
Prior art date
Application number
PCT/JP2013/065814
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀和
柳澤 隆
Original Assignee
イーグル工業株式会社
イーグルブルグマンジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社, イーグルブルグマンジャパン株式会社 filed Critical イーグル工業株式会社
Priority to JP2013553542A priority Critical patent/JP6104820B2/en
Publication of WO2013187322A1 publication Critical patent/WO2013187322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3492Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal

Definitions

  • the present invention relates to a shaft seal device in which a liquid to be sealed used in a hot water pump and a hot oil pump such as a boiler feed water pump and a condensate pump in a thermal power plant is high temperature, and in particular, a mechanical seal system capable of predicting a failure. About.
  • a device that detects a change in characteristics during operation of a mechanical seal for example, a temperature change of a sliding portion in real time
  • a device as shown in FIG. For example, refer to Patent Documents 1, 2, 3, and 4.
  • the temperature detection device for a mechanical seal has a form of an inside type (a type of sealing a fluid that leaks from the outer periphery of the sliding surface toward the inner periphery) as a contact type mechanical seal.
  • a rotary side sealing element 72 provided on the rotary shaft 70 side for driving a pump impeller (not shown) on the inside of the machine via a packing 71 so as to be rotatable integrally with the rotary shaft 70, and a pump
  • a stationary sealing element 75 provided in a non-rotating state and axially movable in a seal cover 74 fixed to the housing 73 of the housing 73 urges the stationary sealing element 75 in the axial direction (not shown). Therefore, the two end surfaces face each other closely.
  • thermocouple 76 is embed
  • this type of inside-type contact mechanical seal when used as a shaft sealing means for hot water pumps and hot oil pumps such as boiler feed pumps and condensate pumps, the liquid to be sealed is high temperature and high pressure.
  • the component may be deformed due to pressure, or the heat generated in the sliding part S or the high temperature liquid to be sealed may cause the component to be thermally deformed or deteriorated, resulting in unstable sealing performance. There is a risk. Therefore, conventionally, as shown in FIG. 4, a part of the liquid to be sealed flowing from the inside of the machine and filling the space 57 on the outer peripheral side of the mechanical seal is formed on the sleeve 51 and integrated with the rotary shaft 50.
  • the partial impeller 58 that rotates at the same time is sent from the seal fluid outlet 59 of the seal cover 54 to the cooler 61 through the flushing pipe 60 and cooled there, and then cooled through the flushing pipe 62 and the seal fluid inlet 63 of the seal cover 54.
  • the mechanical seal is cooled by the circulation of the liquid to be sealed and the circulation of the liquid to be sealed (hereinafter referred to as “Prior Art 2”, for example, see Patent Document 5).
  • the present applicant has arranged a sealing element outside the stuffing box for the purpose of providing a no-flushing and no-cooler mechanical seal in a mechanical seal having a high temperature to be sealed. (Hereinafter referred to as “Prior Art 3”, see Patent Document 6).
  • the temperature of the sliding part of the rotating side sealing element and the stationary side sealing element is the sum of the temperature of the liquid to be sealed, the cooling effect by flushing, and the heat generated by friction of the sliding part. Even if the temperature of the part is detected, the abnormality of the sliding part of the mechanical seal cannot be determined. That is, even when the temperature of the sliding part is high, the temperature of the liquid to be sealed may increase or the cooling effect may decrease due to flushing.
  • the mechanical seal of the prior art 3 only provides a no-flushing and no-cooler mechanical seal, and it is not assumed that a failure is detected by detecting an abnormality of the sliding portion of the sealing element. Therefore, the technical knowledge for judging the abnormality of the sliding part has not been disclosed or suggested.
  • the present invention is a mechanical seal in which a liquid to be sealed used in a hot water pump and a hot oil pump such as a boiler feed water pump or a condensate pump in a thermal power plant is a high temperature, and a rotating side sealing element and a stationary side sealing element It is an object of the present invention to provide a failure prediction type mechanical seal system capable of detecting an abnormality of the sliding surfaces of the rotating side sealing element and the stationary side sealing element without being influenced by the surroundings of the sliding portion.
  • a failure predictive mechanical seal system for sealing a high-temperature sealed fluid is firstly attached to a shaft seal formed between a housing and a rotating shaft, and the housing and the rotating
  • the mechanical seal is an outside type that seals a high temperature sealed fluid that tends to leak from the inner periphery to the outer periphery of the sliding surface of the rotating side sealing element and the stationary side sealing element,
  • the rotating side sealing element and the stationary side sealing element are arranged outside a stuffing box;
  • a cooling jacket is provided between the inner circumference of the housing and the outer circumference of the rotary shaft so as to prevent circulation of the hot sealed fluid to the sliding surface;
  • a temperature detecting means for detecting the temperature of the sliding surface and the temperature of the sealed fluid on the inner periphery of the sliding surface is provided.
  • the mechanical seal that seals the high temperature sealing fluid with no flushing and no cooler is used to rotate without being affected by the surroundings of the sliding part of the rotating side sealing element and the stationary side sealing element. It is possible to provide a failure prediction type mechanical seal system capable of detecting an abnormality of a mechanical seal such as an abnormality of a sliding surface of a side sealing element and a stationary side sealing element and an abnormality of a cooling jacket.
  • the failure prediction type mechanical seal system for sealing a high temperature sealing fluid is secondly characterized in that, in the first feature, the temperature detecting means is mounted in the vicinity of the sliding surface of the stationary side sealing element.
  • a thermocouple, a lead wire led out of the thermocouple from the thermocouple, and a temperature indicator are mounted in the vicinity of the sliding surface of the stationary side sealing element.
  • the failure prediction type mechanical seal system for sealing a high-temperature sealed fluid is thirdly characterized in that, in the first or second feature, the rotary side sealing element and the stationary member arranged on the outside of the machine from the cooling jacket.
  • the stationary side sealing element is disposed inside the machine, and the rotating side sealing element is arranged outside the machine.
  • a large part of the outer peripheral side of the stationary side sealing element faces the atmosphere outside the machine,
  • the clearance ⁇ between the outer periphery of the rotating shaft and the outer periphery of the cooling jacket is set larger than the clearance ⁇ between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket so that the sealed fluid can easily flow. It is characterized by being arranged to rotate in the outside atmosphere.
  • the temperature of the sliding surface of the rotating side sealing element and the stationary side sealing element in the normal state is substantially equal to the temperature of the sealed fluid on the inner periphery of the sliding surface, and is stable.
  • the temperature of the sealed fluid on the inner periphery of the sliding surface can also be detected.
  • the cooling jacket has a cooling water accommodation space communicating with a cooling water supply / drain hole provided in the stuffing box.
  • the outer periphery of the housing is hermetically attached to the inner periphery of the housing via O-rings on both outer circumferences. It is characterized in that it is set larger than the gap ⁇ . According to this feature, the cooling effect by the cooling jacket can be maximized by reducing the gap between the outer periphery of the rotating shaft and the inner circumference of the cooling jacket to a minimum and minimizing the volume of the sealing fluid interposed in the gap. .
  • the present invention has the following excellent effects. (1) In a mechanical seal that is mounted on a shaft seal formed between a housing and a rotating shaft, and includes a rotating side sealing element and a stationary side sealing element that seals between the housing and the rotating shaft,
  • the mechanical seal is an outside type that seals a high-temperature sealed fluid that tends to leak from the inner periphery to the outer periphery of the sliding surface of the rotating side sealing element and the stationary side sealing element
  • the sealing element and the stationary side sealing element are disposed outside the stuffing box, and are disposed between the inner periphery of the housing and the outer periphery of the rotating shaft so as to prevent the hot sealed fluid from circulating to the sliding surface.
  • a cooling jacket is provided, and temperature detecting means for detecting the temperature of the sliding surface and the temperature of the fluid to be sealed on the inner periphery of the sliding surface is provided.
  • the temperature detecting means includes a thermocouple mounted in the vicinity of the sliding surface of the stationary side sealing element, a lead wire led out from the thermocouple to the outside of the machine, and a temperature indicator. The temperature of the sliding surfaces of the side sealing element and the stationary side sealing element and the temperature of the sealed fluid on the inner periphery of the sliding surface can be reliably detected.
  • the stationary side sealing element is arranged on the inner side of the machine, and the rotating side sealing element is arranged on the outer side of the machine.
  • Most of the outer peripheral side of the sealing element faces the outside atmosphere, and a gap ⁇ between the inner periphery and the outer periphery of the rotating shaft is formed between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket so that the sealed fluid can easily flow.
  • the rotation side which is set larger than the gap ⁇ , and is configured to rotate in the atmosphere outside the machine, the rotation side consisting of the rotation side sealing element and the collar, etc.
  • the temperature of the sliding surface is almost equal to the temperature of the sealed fluid on the inner periphery of the sliding surface and is stable, and the temperature of the sealed fluid on the inner periphery of the sliding surface is detected by detecting the temperature of the sliding surface. Can also detect .
  • the cooling jacket has a cooling water accommodation space communicating with the cooling water supply / drain hole provided in the stuffing box in the center, and is attached to the inner circumference of the housing in a sealed manner via O-rings on both outer circumferences.
  • the clearance between the outer periphery of the cooling jacket and the inner periphery of the housing is set to be larger than the clearance between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket, thereby narrowing the clearance between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket to a minimum.
  • FIG. 1 is a front sectional view showing an entire failure prediction type mechanical seal system that seals a high-temperature sealed fluid according to an embodiment of the present invention. It is a principal part enlarged view which expands and shows the principal part of FIG. It is front sectional drawing which shows the prior art 1. FIG. It is front sectional drawing which shows the prior art 2. FIG.
  • a failure prediction type mechanical seal system for sealing a high temperature sealing fluid will be described with reference to FIGS.
  • the mechanical seal 1 includes a housing 2 for a shaft seal in a hot water pump and a hot oil pump such as a boiler feed water pump and a condensate pump of a thermal power plant, and a pump for handling a high temperature liquid exceeding 200 ° C.
  • the mechanical seal 1 is mounted in a cartridge type between the housing 2 and the rotary shaft 3 for sealing between the rotary shafts 3 fitted in the shaft fitting holes 10.
  • the left side is the aircraft inner side
  • the right side is the aircraft outer side (atmosphere side).
  • a rotation shaft 3 is provided through the shaft fitting hole 10 of the housing 2.
  • a seal cover 5 is attached to the side surface 4 on the outside of the machine 2 around the shaft fitting hole 10 by means of fixing means such as bolts 6, and the space inside the seal cover 5 and outside the rotary shaft 3 is mechanically attached.
  • a stationary side sealing element (hereinafter referred to as “seal ring”) 7 and a rotary side sealing element (hereinafter referred to as “mating ring”) 8 constituting the seal 1 are arranged.
  • a stuffing box 9 having an enlarged diameter is formed near the outside of the shaft fitting hole 10 of the housing 2, and a cooling jacket 11 described later is disposed in the stuffing box 9.
  • the mating ring 8 and the seal ring 7 are provided outside the stuffing box 9, that is, outside the machine. For this reason, the capacity
  • the mechanical seal 1 is formed in an outside shape that seals the sealed fluid 12 that is about to leak from the inner periphery to the outer periphery of the sliding surface S between the seal ring 7 and the mating ring 8.
  • the seal cover 5 has an annular shape so as to surround the rotary shaft 3, and an axial hole is formed in the seal cover 5.
  • the inner peripheral surface forming the hole of the seal cover 5 has a fitting surface 5C, a space (hereinafter referred to as “annular groove”) 5G, and an aperture in order from the inner side to the outer side.
  • Surface 5F is formed.
  • the annular groove 5G is formed between the fitting surface 5C and the diaphragm surface 5F so as to have a larger diameter than the outer diameter of the fitting surface 5C. Further, the axial width of the annular groove 5G is made large so that most of the seal ring 7 and the mating ring 8 are present in the inner periphery of the annular groove 5G. Further, the diaphragm surface 5F is formed on the inner periphery of the front surface (near the machine exterior) of the seal cover 5 in order to increase the axial width of the annular groove 5G. Further, a positioning portion 5T is provided on the front surface of the seal cover 5 so as to surround the hole. This positioning portion 5T is formed with a convex end in the axial direction in order to provide a positioning groove 5B on the outer periphery.
  • the moving surface 7D of the seal ring 7 is fitted to the fitting surface 5C of the seal cover 5 so as to be movable in the axial direction.
  • the moving surface 7D of the seal ring 7 is formed with a first seal groove 7B for O-ring that seals between the fitting surface 5C.
  • this 1st seal groove 7B in order to make an adhesion
  • an O-ring 13A is attached to the first seal groove 7B.
  • the material of the O-ring 13A is fluorine rubber, nitrile rubber, H-NBR, EPDM, perfluoroelastomer, or the like.
  • the seal ring 7 forms a sliding seal surface 7A on the end surface opposite to the first seal groove 7B. Further, the outer peripheral side of the seal ring 7 forms a flange 7F. A guide groove 7G is formed in the flange 7F. Further, a fixing pin 14 is press-fitted and attached to a fitting hole provided in a side surface of the annular groove 5G of the seal cover 5. The guide groove 7G is movably fitted to the fixed pin 14, and the seal ring 7 is moved in the axial direction by the fixed pin 14, but is locked in the rotational direction. Further, as shown in FIG. 1, the seal cover 5 facing the flange 7F is provided with a plurality of hole-shaped spring seats 5H arranged in the circumferential direction. Coil springs 15 provided at equal intervals along the peripheral surface are seated on the spring seat 5H and elastically press the seal ring 7.
  • the seal ring 7 has a balance between the projected area A1 in the axial direction of the sliding seal surface 7A of the seal ring 7 and the projected area A2 in the axial direction that receives a sealed fluid pressure acting as a moving force in the axial direction with respect to the seal ring 7.
  • the ratio A2 / A1 is formed in a balanced form in which the ratio is set to 1 or less, and the load on the sliding surface S due to the sealing fluid pressure is reduced.
  • the seal ring 7 is made of SiC by a special conversion method (partially converting the carbon surface to SiC, reinforcing the surface strength, and combining both the wear resistance of SiC and the self-lubricating property of carbon). Yes. It may also be made of diamond-coated SiC.
  • the collar 20 is provided with a fitting peripheral surface 20C and a second seal groove 20B on the inner periphery.
  • the fitting peripheral surface 20C is fitted to the outer peripheral surface 3A of the rotating shaft 3, and the fitting surfaces of both components are sealed by the O-ring 13C fitted to the second seal groove 20B.
  • the tip end portion of the set screw 21 screwed into the collar 20 is fixed to the outer peripheral surface 3 ⁇ / b> A of the rotating shaft 3 to fix the collar 20 to the rotating shaft 3.
  • an outer periphery inside the mating ring 8 in the collar 20 is formed on the coupling surface 20D.
  • a holding surface 20S is provided on the annular stepped surface provided on the outer peripheral side from the coupling surface 20D.
  • the drive pin 22 is press-fitted into the fitting hole provided in the holding surface 20S of the collar 20 and attached.
  • the seal size can be reduced by the thickness of the sleeve, the sliding surface peripheral speed can be reduced, and the sliding surface load can be reduced.
  • a sliding seal surface 8A is formed at one end of the mating ring 8 as shown in FIG.
  • the sliding seal surface 8A is formed so as to be able to slide in close contact with the sliding seal surface 7A of the seal ring 7.
  • a stepped surface 8B for sealing is formed on the inner peripheral surface 8C of the mating ring 8.
  • An O-ring 13B is attached to the stepped surface 8B to seal between the fitting surfaces of the inner peripheral surface 8C of the mating ring 8 and the coupling surface 20D of the collar 20.
  • a pin recess 8G is formed on the joining surface 8E at the end of the mating ring 8 on the outside of the machine.
  • the drive pin 22 screwed into the fitting hole of the collar 20 is inserted into the pin recess 8G, and the parts of the mating ring 8 and the collar 20 are locked to each other so as not to move in the circumferential direction. Then, the rotational force of the collar 20 is transmitted to the mating ring 8 by the drive pin 22.
  • the rotating side including the mating ring 8 and the collar 20 is arranged so as to rotate in the outside atmosphere. For this reason, the rotating side is forcibly air-cooled by the atmosphere. Further, since the portion on the rotating side in contact with the sealed fluid is only the sealing fluid side end surface of the mating ring 8 and the collar 20, the contact area with the high temperature sealed fluid is small, and heat is generated due to rotational friction at high speed rotation.
  • the mating ring 8 is manufactured from a material such as SiC by a special conversion method, or ceramics such as SiC or a cemented carbide by another manufacturing method. It may also be made of diamond-coated SiC. At least one member of the seal ring 7 or mating ring 8 is made of SiC by special conversion method so as to have lubricity and wear resistance, thereby preventing the change of the sliding surface state during long-term operation. Yes.
  • the width of the sliding surface S between the mating ring 8 and the seal ring 7 is set to 1.5 mm or less, and the balance ratio A2 / A1 is set to 0.7 or less. Is good. In the range where the diameter of the rotating shaft 3 exceeds 100 mm and is 200 mm or less, the width of the sliding surface S between the mating ring 8 and the seal ring 7 is 2.0 mm or less, and the balance ratio A2 / A1 is 0.7. The following should be set. For this reason, the hydraulic pressure working area is minimized, and the pressing force due to the fluid pressure is minimized, so the heat generation is designed to be minimized.
  • the gap between the inner periphery of the seal ring 7 and the outer periphery of the rotating shaft 3A is 2.5 mm or more regardless of the diameter of the rotating shaft 3 described above.
  • the clearance between the inner periphery of the seal ring 7 and the outer periphery of the rotary shaft 3A is made large so that the cold sealed fluid cooled by the cooling jacket described later flows, thereby sliding by sliding heat generation. Heat storage near the surface can be prevented and temperature rise can be minimized.
  • the gasket 24 is provided between the seal cover 5 and the housing 2 to seal between the housing 2 and the seal cover 5.
  • the gasket 24 is made of a material such as rubber, resin, or metal coated with rubber.
  • the annular groove 5G of the seal cover 5 is preferably formed in a large dimension in the axial direction so as to cover most of the seal ring 7 and the mating ring 8.
  • the side surface on the machine inner side of the annular groove 5G is formed so as to be close to the first seal groove 7B of the seal ring 7.
  • the side surface of the mating ring 8 of the annular groove 5G reaches the middle of the mating ring 8. Moreover, it is good to form the diameter of the outer peripheral surface of the annular groove 5G large.
  • the seal cover 5 and the collar 20 are assembled at the same time as positioning by fitting the convex portion 27 of the set plate 25 attached to the collar 20 via a bolt 26 into the positioning groove 5 ⁇ / b> B of the seal cover 5. . Then, when the mating ring 8 is positioned, the set screw 21 is screwed onto the rotary shaft 3 and stopped, and the collar 20 is fixed to the rotary shaft 3.
  • the set plate 25 is formed in a cross-sectional shape as shown in FIG. 1, and is mounted on the circumferential surface of the collar 20 in a three-dimensional arrangement. The set plate 25 may be removed after assembly.
  • a ring-shaped cooling jacket 11 is provided between the inner periphery of the housing 2 and the outer periphery of the rotary shaft 3 in the stuffing box 9 formed near the outside of the shaft fitting hole 10 of the housing 2.
  • the cooling jacket 11 has a cooling water accommodation space 30 that communicates with a cooling water supply hole 28 provided immediately below the circumferential position of the stuffing box 9 and a cooling water drain hole 29 provided immediately above the central portion.
  • O-ring grooves 32 and 32 for mounting O-rings 31 and 31 respectively are provided on both outer circumferences. The thickness of the O-ring 31 is set larger than the depth of the O-ring groove 32.
  • a plurality of fins 33 are provided inside the cooling water storage space 30 of the cooling jacket 11 near the outer periphery of the rotating shaft.
  • the cooling jacket 11 is hermetically mounted on the inner periphery of the housing 2 via an O-ring 31, but is mounted with a gap ⁇ between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2.
  • the clearance ⁇ between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2 is set larger than the clearance ⁇ between the outer periphery of the rotary shaft 3 and the inner periphery of the cooling jacket 11.
  • the gap ⁇ between the outer periphery of the rotating shaft 3 and the inner periphery of the cooling jacket 11 is set to 0.1 to 0.2 mm.
  • the cooling jacket 11 is provided in the stuffing box 9, the gap between the outer periphery of the rotary shaft 3 and the inner circumference of the cooling jacket 11 is minimized, and the volume of the high-temperature sealed fluid interposed in the gap is minimized. By doing so, the cooling effect by the cooling jacket 11 can be maximized. Further, the high temperature sealed fluid is prevented from circulating around the sliding surfaces of the seal ring 7 and the mating ring 8, the temperature of the sealed fluid around the sliding surface is kept constant at a low temperature, and the sliding The thermal effect on the moving surface is minimized.
  • the clearance ⁇ between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2 is set to be larger than the clearance ⁇ between the outer periphery of the rotation shaft 3 and the inner periphery of the cooling jacket 11, so that the rotation shaft 3 is swung and rotated by any chance. Even if the outer periphery of the shaft 3A contacts the inner periphery of the cooling jacket 11, the shock is absorbed by the buffering action by the elasticity of the O-ring, so that the contact surface pressure can be reduced, and galling due to contact sliding and wear of both can be prevented. Over the period, the initial gap can be maintained and the cooling effect of the cooling jacket 11 can be increased.
  • temperature detecting means for detecting the temperature of the sliding surfaces of the seal ring 7 and the mating ring 8 and the temperature of the sealed fluid on the inner periphery of the sliding surfaces will be described.
  • the temperature detecting means 40 includes a thermocouple 41 mounted in the vicinity of the sliding surface 7A of the seal ring 7, a lead wire 42 led out from the thermocouple 41 to the outside of the machine, and a temperature indicator 43.
  • the thermocouple 41 may be embedded in the vicinity of the sliding surface 7A in the seal ring 7, or may be fixed by welding or the like in the vicinity of the sliding surface 7A on the surface of the seal ring 7. Good.
  • the lead wire 42 led out from the thermocouple 41 to the outside of the machine can be easily wired by leading out to the outside of the machine via the annular groove 5G of the seal cover 5.
  • the seal ring 7 and the mating ring 8 arranged outside the cooling jacket 11 the seal ring 7 is arranged inside the machine, and the mating ring 8 is arranged outside the machine.
  • the portion faces the machine exterior atmosphere, that is, the annular groove 5G, and the clearance ⁇ between the inner periphery and the outer periphery of the rotary shaft 3 is such that the low-temperature sealed fluid cooled by the cooling jacket 11 flows easily.
  • 3 is set to be larger than the gap ⁇ between the outer periphery of the cooling jacket 11 and the inner periphery of the cooling jacket 11, and the rotating side including the mating ring 8 and the collar 20 is arranged so as to rotate in the outside atmosphere.
  • the temperature of the sliding surface S is substantially equal to the temperature of the sealed fluid on the inner periphery of the sliding surface S and is stable. Therefore, detecting the temperature of the sliding surface S is the same as detecting the temperature of the sealed fluid on the inner periphery of the sliding surface S.
  • thermocouple 41 is shown as the temperature sensor, but the present invention is not limited to this, and for example, a thermistor, a platinum resistance thermometer, or a radiation thermometer may be used.
  • thermocouple 41 is embedded in the vicinity of the sliding surface 7A in the seal ring 7 or fixed by welding or the like in the vicinity of the sliding surface 7A on the surface of the seal ring 7.
  • the present invention is not limited to this.
  • a hole may be provided in the seal ring 7 and the thermocouple 41 may be inserted into the hole.
  • a lead-out hole may be provided in the seal cover 5 and lead out to the outside of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

Provided is a breakdown-predicting mechanical seal system that can detect abnormalities in sliding surfaces of a rotation-side sealing element and a static-side sealing element without influence from the area surrounding the sliding sections of the rotation-side sealing element and the static-side sealing element. The mechanical seal is an outside type, in which is sealed a high-temperature sealed fluid that may leak in the direction of the outer periphery from the inner periphery of the sliding surfaces of the rotation-side sealing element and the static-side sealing element, and is characterized in that the rotation-side sealing element and the static-side sealing element are disposed on the outside of a stuffing box, a cooling jacket is provided between the inner periphery of a housing and the outer periphery of a rotating shaft so as to prevent circulation of the high-temperature sealed fluid to the sliding surfaces, and a temperature detection means is provided for detecting the temperature of the sliding surfaces and the temperature of the sealed fluid at the inner periphery of the sliding surfaces.

Description

高温密封流体をシールする故障予知型メカニカルシールシステムFailure predictive mechanical seal system for sealing high temperature sealed fluid
 本発明は、例えば火力発電所のボイラー給水ポンプやコンデンセートポンプなどの熱水ポンプおよび熱油ポンプ等に使用される密封対象液が高温である軸封装置に関し、特に、故障予知可能なメカニカルシールシステムに関する。  The present invention relates to a shaft seal device in which a liquid to be sealed used in a hot water pump and a hot oil pump such as a boiler feed water pump and a condensate pump in a thermal power plant is high temperature, and in particular, a mechanical seal system capable of predicting a failure. About.
 メカニカルシールの運転時における特性の変化、例えば、摺動部の温度変化をリアルタイムで検出する装置としては、従来、例えば図3に示されるようなものが知られている(以下、「従来技術1」という。例えば、特許文献1、2、3及び4参照。)。  As a device that detects a change in characteristics during operation of a mechanical seal, for example, a temperature change of a sliding portion in real time, a device as shown in FIG. For example, refer to Patent Documents 1, 2, 3, and 4.)
 図3に示される従来技術1によるメカニカルシールの温度検出装置は、接触式のメカニカルシールとしてインサイド形(摺動面の外周から内周方向向かって漏れようとする流体をシールする形式)の形態を備えており、機内側のポンプインペラ(図示省略)を駆動させる回転軸70側にパッキン71を介してこの回転軸70と一体的に回転可能な状態に設けられた回転側密封要素72と、ポンプのハウジング73に固定されたシールカバー74に非回転状態かつ軸方向移動可能な状態で設けられた静止側密封要素75が、この静止側密封要素75を軸方向に付勢するスプリング(図示省略)によって、互いの対向端面同士で密接摺動するようになっている。すなわち、この接触式メカニカルシールは、回転側密封要素72と静止側密封要素75の互いの摺動部Sにおいて、機内側(ポンプ内)の高温・高圧の液体が回転軸70の外周から機外側へ流出するのを防止するものである。そして、摺動部Sの温度変化をリアルタイムで検出するため、静止側密封要素75の摺動部Sの近傍に熱電対76が埋設され、摺動部Sの温度変化を検出するようになっている。  The temperature detection device for a mechanical seal according to the prior art 1 shown in FIG. 3 has a form of an inside type (a type of sealing a fluid that leaks from the outer periphery of the sliding surface toward the inner periphery) as a contact type mechanical seal. A rotary side sealing element 72 provided on the rotary shaft 70 side for driving a pump impeller (not shown) on the inside of the machine via a packing 71 so as to be rotatable integrally with the rotary shaft 70, and a pump A stationary sealing element 75 provided in a non-rotating state and axially movable in a seal cover 74 fixed to the housing 73 of the housing 73 urges the stationary sealing element 75 in the axial direction (not shown). Therefore, the two end surfaces face each other closely. That is, in this contact-type mechanical seal, high-temperature and high-pressure liquid inside the machine (inside the pump) passes from the outer periphery of the rotary shaft 70 to the outside of the machine at the sliding part S of the rotary side sealing element 72 and the stationary side sealing element 75. It is intended to prevent leakage to And in order to detect the temperature change of the sliding part S in real time, the thermocouple 76 is embed | buried near the sliding part S of the stationary side sealing element 75, and the temperature change of the sliding part S is detected now. Yes.
 ところが、この種のインサイド形の接触式メカニカルシールは、ボイラー給水ポンプやコンデンセートポンプなどの熱水ポンプおよび熱油ポンプ等の軸封手段として使用された場合、密封対象液が高温・高圧であるため、圧力による構成部品の変形を来したり、また、摺動部Sにおいて発生する熱や、高温の密封対象液によって、構成部品が熱変形や材質の劣化を来し、密封性能が不安定になるおそれがある。そこで従来は、図4に示すように、機内側から流入してメカニカルシールの外周側の空間57に充満している密封対象液の一部が、スリーブ51に形成されて回転軸50と一体的に回転するパーシャルインペラ58によって、シールカバー54のシール流体出口59からフラッシング配管60を介してクーラー61に送られ、ここで冷却されてから、フラッシング配管62及びシールカバー54のシール流体入口63を介して前記空間57へ還流され、このような密封対象液の循環によって、メカニカルシールが冷却されるように構成される(以下、「従来技術2」という。たとえば、特許文献5参照。)。  However, this type of inside-type contact mechanical seal, when used as a shaft sealing means for hot water pumps and hot oil pumps such as boiler feed pumps and condensate pumps, the liquid to be sealed is high temperature and high pressure. The component may be deformed due to pressure, or the heat generated in the sliding part S or the high temperature liquid to be sealed may cause the component to be thermally deformed or deteriorated, resulting in unstable sealing performance. There is a risk. Therefore, conventionally, as shown in FIG. 4, a part of the liquid to be sealed flowing from the inside of the machine and filling the space 57 on the outer peripheral side of the mechanical seal is formed on the sleeve 51 and integrated with the rotary shaft 50. The partial impeller 58 that rotates at the same time is sent from the seal fluid outlet 59 of the seal cover 54 to the cooler 61 through the flushing pipe 60 and cooled there, and then cooled through the flushing pipe 62 and the seal fluid inlet 63 of the seal cover 54. Thus, the mechanical seal is cooled by the circulation of the liquid to be sealed and the circulation of the liquid to be sealed (hereinafter referred to as “Prior Art 2”, for example, see Patent Document 5).
 一方、本出願人は、密封対象液が高温であるメカニカルシールにおいて、ノーフラッシングかつノークーラーのメカニカルシールを提供することを目的として、密封要素をスタフィングボックスの外に配置し、スタフィングボックス内に冷却手段を設ける構造のものを提案している(以下、「従来技術3」という。特許文献6参照。)。  On the other hand, the present applicant has arranged a sealing element outside the stuffing box for the purpose of providing a no-flushing and no-cooler mechanical seal in a mechanical seal having a high temperature to be sealed. (Hereinafter referred to as “Prior Art 3”, see Patent Document 6).
 しかしながら、図4に示す従来技術2の密封対象液が高温・高圧であるメカニカルシールに、図3に示す従来技術1の温度検出装置を装着した場合、以下の問題点があった。 
(1)回転側密封要素と静止側密封要素の摺動部の温度は、密封対象液の温度、フラッシングによる冷却効果、及び摺動部の摩擦による発熱の総合されたものであり、単に摺動部の温度を検出しても、メカニカルシールの摺動部の異常を判断することができない。すなわち、摺動部の温度が高い場合であっても、密封対象液の温度上昇あるいはフラッシングによる冷却効果の低下による場合があり、逆に、摺動部の温度が低い場合であっても、密封対象液の温度低下あるいはフラッシングによる冷却効果の増大による場合があり、摺動部の異常と一概に断定できない。 
(2)密封対象液の温度変化及びフラッシングによる冷却効果の変動の影響を少なくするため、回転側密封要素及び静止側密封要素と回転軸外周面との間の隙間に温度検出装置を挿入することも考えられるが、回転側密封要素及び静止側密封要素の作動性を阻害せず温度検出装置を装着することは難しく、仮に、温度検出装置が装着できたとしても、回転軸の回転風損発熱の影響を受けるため、摺動部の発熱による温度変化を検出することは難しい。 
However, when the temperature detection device of the prior art 1 shown in FIG. 3 is attached to a mechanical seal in which the liquid to be sealed of the prior art 2 shown in FIG. 4 is high temperature and high pressure, there are the following problems.
(1) The temperature of the sliding part of the rotating side sealing element and the stationary side sealing element is the sum of the temperature of the liquid to be sealed, the cooling effect by flushing, and the heat generated by friction of the sliding part. Even if the temperature of the part is detected, the abnormality of the sliding part of the mechanical seal cannot be determined. That is, even when the temperature of the sliding part is high, the temperature of the liquid to be sealed may increase or the cooling effect may decrease due to flushing. It may be due to a decrease in the temperature of the target liquid or an increase in the cooling effect due to flushing, and it cannot be generally determined that the sliding portion is abnormal.
(2) In order to reduce the influence of the temperature change of the liquid to be sealed and the fluctuation of the cooling effect due to flushing, a temperature detection device is inserted in the gap between the rotating side sealing element and stationary side sealing element and the outer peripheral surface of the rotating shaft. However, it is difficult to install the temperature detection device without impeding the operability of the rotary side sealing element and the stationary side sealing element, and even if the temperature detection device can be installed, the rotating windage heat generated on the rotary shaft Therefore, it is difficult to detect a temperature change due to heat generation of the sliding part.
 また、従来技術3のメカニカルシールは、ノーフラッシングかつノークーラーのメカニカルシールを提供するにとどまり、密封要素の摺動部の異常を検出して故障を予知することなどは全く想定されておらず、そのため、摺動部の異常を判断するための技術知見については開示も示唆もされていないものであった。  In addition, the mechanical seal of the prior art 3 only provides a no-flushing and no-cooler mechanical seal, and it is not assumed that a failure is detected by detecting an abnormality of the sliding portion of the sealing element. Therefore, the technical knowledge for judging the abnormality of the sliding part has not been disclosed or suggested.
特開平2-199374号公報JP-A-2-199374 実公平1-29326号公報No. 1-29326 実開昭61-46288号公報Japanese Utility Model Publication No. 61-46288 特開昭60-39504号公報JP 60-39504 A 特開2002-98237号公報JP 2002-98237 A 国際公開第2011/036917号International Publication No. 2011/036917
 本発明は、例えば火力発電所のボイラー給水ポンプやコンデンセートポンプなどの熱水ポンプおよび熱油ポンプ等に使用される密封対象液が高温であるメカニカルシールにおいて、回転側密封要素と静止側密封要素の摺動部の周囲の影響を受けることなく回転側密封要素と静止側密封要素の摺動面の異常を検出することができる故障予知型メカニカルシールシステムを提供することを目的とするものである。  The present invention is a mechanical seal in which a liquid to be sealed used in a hot water pump and a hot oil pump such as a boiler feed water pump or a condensate pump in a thermal power plant is a high temperature, and a rotating side sealing element and a stationary side sealing element It is an object of the present invention to provide a failure prediction type mechanical seal system capable of detecting an abnormality of the sliding surfaces of the rotating side sealing element and the stationary side sealing element without being influenced by the surroundings of the sliding portion.
 上記目的を達成するため本発明の高温密封流体をシールする故障予知型メカニカルシールシステムは、第1に、ハウジングと回転軸との間に形成した軸封部に装着されて、前記ハウジングと前記回転軸との間をシールする回転側密封要素および静止側密封要素を備えたメカニカルシールにおいて、 
 前記メカニカルシールは前記回転側密封要素と前記静止側密封要素との摺動面の内周から外周方向へ向かって漏れようとする高温の被密封流体をシールするアウトサイド形であって、 
 前記回転側密封要素および前記静止側密封要素はスタフィングボックスの外に配置され、 
 前記高温の被密封流体の前記摺動面への循環を防止するように前記ハウジング内周と前記回転軸外周との間に冷却ジャケットが設けられ、 
 前記摺動面の温度及び前記摺動面の内周の被密封流体の温度を検出する温度検出手段が設けられることを特徴としている。 
 この特徴によれば、ノーフラッシングかつノークーラーでもって高温密封流体をシールするメカニカルシールの特性を利用して、回転側密封要素と静止側密封要素の摺動部の周囲の影響を受けることなく回転側密封要素と静止側密封要素の摺動面の異常及び冷却ジャケットの異常などメカニカルシールの異常を検出することができる故障予知型メカニカルシールシステムを提供することができる。 
In order to achieve the above object, a failure predictive mechanical seal system for sealing a high-temperature sealed fluid according to the present invention is firstly attached to a shaft seal formed between a housing and a rotating shaft, and the housing and the rotating In a mechanical seal having a rotating side sealing element and a stationary side sealing element that seals between the shafts,
The mechanical seal is an outside type that seals a high temperature sealed fluid that tends to leak from the inner periphery to the outer periphery of the sliding surface of the rotating side sealing element and the stationary side sealing element,
The rotating side sealing element and the stationary side sealing element are arranged outside a stuffing box;
A cooling jacket is provided between the inner circumference of the housing and the outer circumference of the rotary shaft so as to prevent circulation of the hot sealed fluid to the sliding surface;
A temperature detecting means for detecting the temperature of the sliding surface and the temperature of the sealed fluid on the inner periphery of the sliding surface is provided.
According to this feature, the mechanical seal that seals the high temperature sealing fluid with no flushing and no cooler is used to rotate without being affected by the surroundings of the sliding part of the rotating side sealing element and the stationary side sealing element. It is possible to provide a failure prediction type mechanical seal system capable of detecting an abnormality of a mechanical seal such as an abnormality of a sliding surface of a side sealing element and a stationary side sealing element and an abnormality of a cooling jacket.
 また、本発明の高温密封流体をシールする故障予知型メカニカルシールシステムは、第2に、第1の特徴において、前記温度検出手段は、前記静止側密封要素の前記摺動面の近傍に装着された熱電対、該熱電対から機外側に導出されたリード線及び温度指示計を備えることを特徴としている。 
 この特徴によれば、回転側密封要素と静止側密封要素の摺動面の温度及び摺動面の内周の被密封流体の温度を確実に検出することができる。 
The failure prediction type mechanical seal system for sealing a high temperature sealing fluid according to the present invention is secondly characterized in that, in the first feature, the temperature detecting means is mounted in the vicinity of the sliding surface of the stationary side sealing element. A thermocouple, a lead wire led out of the thermocouple from the thermocouple, and a temperature indicator.
According to this feature, the temperature of the sliding surfaces of the rotating side sealing element and the stationary side sealing element and the temperature of the sealed fluid on the inner periphery of the sliding surface can be reliably detected.
 また、本発明の高温密封流体をシールする故障予知型メカニカルシールシステムは、第3に、第1または第2の特徴において、前記冷却ジャケットより機外側に配置された前記回転側密封要素及び前記静止側密封要素において機内側に前記静止側密封要素が、機外側に前記回転側密封要素が配置され、前記静止側密封要素の外周側の大部分が機外側雰囲気に面すると共に、その内周と回転軸外周との隙間γは被密封流体が流動し易いように前記回転軸外周と前記冷却ジャケット内周との隙間βより大きく設定され、前記回転側密封要素及びカラー等からなる回転側は機外側雰囲気中で回転するように配置されていることを特徴としている。 
 この特徴によれば、通常状態における回転側密封要素と静止側密封要素との摺動面の温度は摺動面の内周の被密封流体の温度とほぼ等しく、安定してものとなり、摺動面の温度を検出することにより摺動面の内周の被密封流体の温度も検出することができる。 
The failure prediction type mechanical seal system for sealing a high-temperature sealed fluid according to the present invention is thirdly characterized in that, in the first or second feature, the rotary side sealing element and the stationary member arranged on the outside of the machine from the cooling jacket. In the side sealing element, the stationary side sealing element is disposed inside the machine, and the rotating side sealing element is arranged outside the machine. A large part of the outer peripheral side of the stationary side sealing element faces the atmosphere outside the machine, The clearance γ between the outer periphery of the rotating shaft and the outer periphery of the cooling jacket is set larger than the clearance β between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket so that the sealed fluid can easily flow. It is characterized by being arranged to rotate in the outside atmosphere.
According to this feature, the temperature of the sliding surface of the rotating side sealing element and the stationary side sealing element in the normal state is substantially equal to the temperature of the sealed fluid on the inner periphery of the sliding surface, and is stable. By detecting the temperature of the surface, the temperature of the sealed fluid on the inner periphery of the sliding surface can also be detected.
 また、本発明のメカニカルシールは、第4に、第1ないし第3のいずれかの特徴において、前記冷却ジャケットは、前記スタフィングボックスに設けられた冷却水給排水孔と連通する冷却水収容空間を中央部に有し、両側外周にそれぞれOリングを介して前記ハウジング内周に密封的に装着され、前記冷却ジャケット外周と前記ハウジング内周との隙間αを前記回転軸外周と前記冷却ジャケット内周との隙間βより大きく設定することを特徴としている。 
 この特徴によれば、回転軸外周と冷却ジャケット内周との隙間を極小に絞り、この隙間に介在するシール流体の体積を極小にすることで、冷却ジャケットによる冷却効果を最大化することができる。また、万一、回転軸が振れて回転軸外周が冷却ジャケット内周に接触しても、Oリングの弾性による緩衝作用で衝撃を吸収するので、接触面圧を小さくでき、接触摺動によるかじりや両者の摩耗を防止でき、長期間にわたり、初期の隙間を保持し、冷却ジャケットの冷却効果を大きくすることができる。 
According to a fourth aspect of the mechanical seal of the present invention, in any one of the first to third features, the cooling jacket has a cooling water accommodation space communicating with a cooling water supply / drain hole provided in the stuffing box. The outer periphery of the housing is hermetically attached to the inner periphery of the housing via O-rings on both outer circumferences. It is characterized in that it is set larger than the gap β.
According to this feature, the cooling effect by the cooling jacket can be maximized by reducing the gap between the outer periphery of the rotating shaft and the inner circumference of the cooling jacket to a minimum and minimizing the volume of the sealing fluid interposed in the gap. . Even if the rotating shaft swings and the outer periphery of the rotating shaft comes into contact with the inner periphery of the cooling jacket, the shock is absorbed by the cushioning action of the O-ring, so that the contact surface pressure can be reduced and galling caused by contact sliding. In addition, it is possible to prevent wear of the two and to maintain the initial gap over a long period of time and to increase the cooling effect of the cooling jacket.
 本発明は、以下のような優れた効果を奏する。 
(1)ハウジングと回転軸との間に形成した軸封部に装着されて、前記ハウジングと前記回転軸との間をシールする回転側密封要素および静止側密封要素を備えたメカニカルシールにおいて、前記メカニカルシールは前記回転側密封要素と前記静止側密封要素との摺動面の内周から外周方向へ向かって漏れようとする高温の被密封流体をシールするアウトサイド形であって、前記回転側密封要素および前記静止側密封要素はスタフィングボックスの外に配置され、前記高温の被密封流体の前記摺動面への循環を防止するように前記ハウジング内周と前記回転軸外周との間に冷却ジャケットが設けられ、前記摺動面の温度及び前記摺動面の内周の被密封流体の温度を検出する温度検出手段が設けられることにより、ノーフラッシングかつノークーラーでもって高温密封流体をシールするメカニカルシールの特性を利用して、回転側密封要素と静止側密封要素の摺動部の周囲の影響を受けることなく回転側密封要素と静止側密封要素の摺動面の異常及び冷却ジャケットの異常などメカニカルシールの異常を検出することができる故障予知型メカニカルシールシステムを提供することができる。 
The present invention has the following excellent effects.
(1) In a mechanical seal that is mounted on a shaft seal formed between a housing and a rotating shaft, and includes a rotating side sealing element and a stationary side sealing element that seals between the housing and the rotating shaft, The mechanical seal is an outside type that seals a high-temperature sealed fluid that tends to leak from the inner periphery to the outer periphery of the sliding surface of the rotating side sealing element and the stationary side sealing element, The sealing element and the stationary side sealing element are disposed outside the stuffing box, and are disposed between the inner periphery of the housing and the outer periphery of the rotating shaft so as to prevent the hot sealed fluid from circulating to the sliding surface. A cooling jacket is provided, and temperature detecting means for detecting the temperature of the sliding surface and the temperature of the fluid to be sealed on the inner periphery of the sliding surface is provided. By utilizing the characteristics of the mechanical seal that seals the high temperature sealing fluid with the seal, the sliding of the rotating side sealing element and the stationary side sealing element is not affected by the surroundings of the sliding part of the rotating side sealing element and the stationary side sealing element. It is possible to provide a failure prediction type mechanical seal system capable of detecting a mechanical seal abnormality such as a moving surface abnormality and a cooling jacket abnormality.
(2)前記温度検出手段は、前記静止側密封要素の前記摺動面の近傍に装着された熱電対、該熱電対から機外側に導出されたリード線及び温度指示計を備えることにより、回転側密封要素と静止側密封要素の摺動面の温度及び摺動面の内周の被密封流体の温度を確実に検出することができる。  (2) The temperature detecting means includes a thermocouple mounted in the vicinity of the sliding surface of the stationary side sealing element, a lead wire led out from the thermocouple to the outside of the machine, and a temperature indicator. The temperature of the sliding surfaces of the side sealing element and the stationary side sealing element and the temperature of the sealed fluid on the inner periphery of the sliding surface can be reliably detected.
(3)前記冷却ジャケットより機外側に配置された前記回転側密封要素及び前記静止側密封要素において機内側に前記静止側密封要素が、機外側に前記回転側密封要素が配置され、前記静止側密封要素の外周側の大部分が機外側雰囲気に面すると共に、その内周と回転軸外周との隙間γは被密封流体が流動し易いように前記回転軸外周と前記冷却ジャケット内周との隙間βより大きく設定され、前記回転側密封要素及びカラー等からなる回転側は機外側雰囲気中で回転するように配置されていることにより、通常状態における回転側密封要素と静止側密封要素との摺動面の温度は摺動面の内周の被密封流体の温度とほぼ等しく、安定してものとなり、摺動面の温度を検出することにより摺動面の内周の被密封流体の温度も検出することができる。  (3) In the rotating side sealing element and the stationary side sealing element arranged on the outer side of the cooling jacket, the stationary side sealing element is arranged on the inner side of the machine, and the rotating side sealing element is arranged on the outer side of the machine. Most of the outer peripheral side of the sealing element faces the outside atmosphere, and a gap γ between the inner periphery and the outer periphery of the rotating shaft is formed between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket so that the sealed fluid can easily flow. The rotation side, which is set larger than the gap β, and is configured to rotate in the atmosphere outside the machine, the rotation side consisting of the rotation side sealing element and the collar, etc. The temperature of the sliding surface is almost equal to the temperature of the sealed fluid on the inner periphery of the sliding surface and is stable, and the temperature of the sealed fluid on the inner periphery of the sliding surface is detected by detecting the temperature of the sliding surface. Can also detect .
(4)該冷却ジャケットは、スタフィングボックスに設けられた冷却水給排水孔と連通する冷却水収容空間を中央部に有し、両側外周にそれぞれOリングを介してハウジング内周に密封的に装着されており、冷却ジャケット外周とハウジング内周との隙間を回転軸外周と冷却ジャケット内周との隙間より大きく設定することにより、回転軸外周と冷却ジャケット内周との隙間を極小に絞り、この隙間に介在するシール流体の体積を極小にすることで、冷却ジャケットによる冷却効果を最大化することができる。また、万一、回転軸が振れて回転軸外周が冷却ジャケット内周に接触しても、Oリングの弾性による緩衝作用で衝撃を吸収するので、接触面圧を小さくでき、接触摺動によるかじりや両者の摩耗を防止でき、長期間にわたり、初期の隙間を保持し、冷却ジャケットの冷却効果を大きくすることができる。  (4) The cooling jacket has a cooling water accommodation space communicating with the cooling water supply / drain hole provided in the stuffing box in the center, and is attached to the inner circumference of the housing in a sealed manner via O-rings on both outer circumferences. The clearance between the outer periphery of the cooling jacket and the inner periphery of the housing is set to be larger than the clearance between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket, thereby narrowing the clearance between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket to a minimum. By minimizing the volume of the sealing fluid interposed in the gap, the cooling effect by the cooling jacket can be maximized. Even if the rotating shaft swings and the outer periphery of the rotating shaft comes into contact with the inner periphery of the cooling jacket, the shock is absorbed by the cushioning action of the O-ring, so that the contact surface pressure can be reduced and galling caused by contact sliding. In addition, it is possible to prevent wear of the two and to maintain the initial gap over a long period of time and to increase the cooling effect of the cooling jacket.
本発明の実施の形態に係る高温密封流体をシールする故障予知型メカニカルシールシステムの全体を示す正面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view showing an entire failure prediction type mechanical seal system that seals a high-temperature sealed fluid according to an embodiment of the present invention. 図1の要部を拡大して示す要部拡大図である。It is a principal part enlarged view which expands and shows the principal part of FIG. 従来技術1を示す正面断面図である。It is front sectional drawing which shows the prior art 1. FIG. 従来技術2を示す正面断面図である。It is front sectional drawing which shows the prior art 2. FIG.
 本発明に係る高温密封流体をシールする故障予知型メカニカルシールシステムを実施するための形態を図面を参照しながら詳細に説明するが、本発明はこれに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment for carrying out a failure prediction type mechanical seal system for sealing a high-temperature sealed fluid according to the present invention will be described in detail with reference to the drawings, but the present invention is not construed as being limited thereto. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the invention.
 本発明の実施の形態に係る高温密封流体をシールする故障予知型メカニカルシールシステムを図1及び図2を参照しながら説明する。  A failure prediction type mechanical seal system for sealing a high temperature sealing fluid according to an embodiment of the present invention will be described with reference to FIGS.
 メカニカルシール1は、火力発電所のボイラー給水ポンプやコンデンセートポンプなどの熱水ポンプおよび熱油ポンプ等の200℃を越えるような高温液を扱うポンプ等における軸封部のハウジング2と該ハウジング2の軸嵌装孔10に嵌装される回転軸3の間をシールするためのものであり、メカニカルシール1はハウジング2と回転軸3間にカートリッジ型に装着される。 
 図1において、左側が機内側、右側が機外側(大気側)である。 
The mechanical seal 1 includes a housing 2 for a shaft seal in a hot water pump and a hot oil pump such as a boiler feed water pump and a condensate pump of a thermal power plant, and a pump for handling a high temperature liquid exceeding 200 ° C. The mechanical seal 1 is mounted in a cartridge type between the housing 2 and the rotary shaft 3 for sealing between the rotary shafts 3 fitted in the shaft fitting holes 10.
In FIG. 1, the left side is the aircraft inner side, and the right side is the aircraft outer side (atmosphere side).
 ハウジング2の軸嵌装孔10には回転軸3が貫通して設けられている。ハウジング2の軸嵌装孔10の周りの機外側の側面4にはシールカバー5がボルト6等の固定手段により装着されており、該シールカバー5の内側と回転軸3の外側の空間にメカニカルシール1を構成する静止側密封要素(以下、「シールリング」という。)7および回転側密封要素(以下、「メイティングリング」という。)8が配置されるようになっている。 
 また、ハウジング2の軸嵌装孔10の機外側寄りには拡径された形状のスタフイングボックス9が形成されており、該スタフイングボックス9内に後記する冷却ジャケット11が配置される。このように、メイティングリング8およびシールリング7はスタフィングボックス9の外、すなわち、機外側に位置して設けられる。このため、冷却ジャケット11の容量を十分に大きくすることができ、また、メイティングリング8とシールリング7との摺動面が大気側に位置するすることになり、摺動発熱がこもることがない。 
A rotation shaft 3 is provided through the shaft fitting hole 10 of the housing 2. A seal cover 5 is attached to the side surface 4 on the outside of the machine 2 around the shaft fitting hole 10 by means of fixing means such as bolts 6, and the space inside the seal cover 5 and outside the rotary shaft 3 is mechanically attached. A stationary side sealing element (hereinafter referred to as “seal ring”) 7 and a rotary side sealing element (hereinafter referred to as “mating ring”) 8 constituting the seal 1 are arranged.
Further, a stuffing box 9 having an enlarged diameter is formed near the outside of the shaft fitting hole 10 of the housing 2, and a cooling jacket 11 described later is disposed in the stuffing box 9. Thus, the mating ring 8 and the seal ring 7 are provided outside the stuffing box 9, that is, outside the machine. For this reason, the capacity | capacitance of the cooling jacket 11 can be enlarged enough, and the sliding surface of the mating ring 8 and the seal ring 7 will be located in the atmosphere side, and sliding heat_generation | fever may accumulate. Absent.
 メカニカルシール1は、シールリング7とメイティングリング8との摺動面Sの内周から外周方向へ向かって漏れようとする被密封流体12をシールするところのアウトサイド形に形成される。 
 シールカバー5は回転軸3を包囲するように環状をしており、その内部には軸方向の孔が形成される。このシールカバー5の孔を形成する内周面は、図2に示すように、機内側から機外側に向かって順に嵌合面5Cと空間部(以下、「環状溝」という。)5Gと絞り面5Fとを形成する。このうち、環状溝5Gは嵌合面5Cと絞り面5Fとの間で嵌合面5Cの外径より大径に形成する。また、環状溝5Gの内周にシールリング7とメイティングリング8の大部分が内在するように環状溝5Gの軸方向の幅寸法を大きく形成する。さらに、絞り面5Fは、環状溝5Gの軸方向の幅を大きくするために、シールカバー5の前面(機外側寄り)の内周に形成される。 
 また、シールカバー5の前面には、孔を囲んで位置決め部5Tを設ける。この位置決め部5Tは外周に位置決め溝5Bを設けるために軸方向端部を凸に形成する。 
The mechanical seal 1 is formed in an outside shape that seals the sealed fluid 12 that is about to leak from the inner periphery to the outer periphery of the sliding surface S between the seal ring 7 and the mating ring 8.
The seal cover 5 has an annular shape so as to surround the rotary shaft 3, and an axial hole is formed in the seal cover 5. As shown in FIG. 2, the inner peripheral surface forming the hole of the seal cover 5 has a fitting surface 5C, a space (hereinafter referred to as “annular groove”) 5G, and an aperture in order from the inner side to the outer side. Surface 5F is formed. Among these, the annular groove 5G is formed between the fitting surface 5C and the diaphragm surface 5F so as to have a larger diameter than the outer diameter of the fitting surface 5C. Further, the axial width of the annular groove 5G is made large so that most of the seal ring 7 and the mating ring 8 are present in the inner periphery of the annular groove 5G. Further, the diaphragm surface 5F is formed on the inner periphery of the front surface (near the machine exterior) of the seal cover 5 in order to increase the axial width of the annular groove 5G.
Further, a positioning portion 5T is provided on the front surface of the seal cover 5 so as to surround the hole. This positioning portion 5T is formed with a convex end in the axial direction in order to provide a positioning groove 5B on the outer periphery.
 シールカバー5の嵌合面5Cには、シールリング7の移動面7Dが軸方向へ移動自在に嵌合する。シールリング7の移動面7Dには、嵌合面5Cとの間をシールするOリング用の第1シール溝7Bを形成する。この第1シール溝7Bは、たとえば、付着物を洗浄しやすくするために機内側が嵌合面5Cに対し間隔を大きく形成している。そして、この第1シール溝7Bには、Oリング13Aを取り付ける。このOリング13Aの材質は、フッ素ゴム、ニトリルゴム、H-NBR、EPDM、パーフロロエラストマなどである。  The moving surface 7D of the seal ring 7 is fitted to the fitting surface 5C of the seal cover 5 so as to be movable in the axial direction. The moving surface 7D of the seal ring 7 is formed with a first seal groove 7B for O-ring that seals between the fitting surface 5C. As for this 1st seal groove 7B, in order to make an adhesion | attachment easy to wash | clean, for example, the machine inside has formed the space | interval large with respect to 5 C of fitting surfaces. Then, an O-ring 13A is attached to the first seal groove 7B. The material of the O-ring 13A is fluorine rubber, nitrile rubber, H-NBR, EPDM, perfluoroelastomer, or the like.
 さらに、シールリング7は、第1シール溝7Bと反対側の端面に摺動シール面7Aを形成する。また、シールリング7の外周側はフランジ7Fを形成する。そして、このフランジ7Fには案内溝7Gを形成する。また、シールカバー5の環状溝5Gの側面に設けた嵌着穴に固定ピン14を圧入して取り付けている。この固定ピン14に対して案内溝7Gを移動自在に嵌合し、この固定ピン14によりシールリング7は軸方向へは移動するが、回転方向へは係止されている。また、このフランジ7Fと対向するシールカバー5には、図1に示すように、周方向へ複数個配置した穴状のばね座5Hを設ける。そして、周面に沿って等配に設けたコイルスプリング15がばね座5Hに着座してシールリング7を弾発的に押圧している。  Furthermore, the seal ring 7 forms a sliding seal surface 7A on the end surface opposite to the first seal groove 7B. Further, the outer peripheral side of the seal ring 7 forms a flange 7F. A guide groove 7G is formed in the flange 7F. Further, a fixing pin 14 is press-fitted and attached to a fitting hole provided in a side surface of the annular groove 5G of the seal cover 5. The guide groove 7G is movably fitted to the fixed pin 14, and the seal ring 7 is moved in the axial direction by the fixed pin 14, but is locked in the rotational direction. Further, as shown in FIG. 1, the seal cover 5 facing the flange 7F is provided with a plurality of hole-shaped spring seats 5H arranged in the circumferential direction. Coil springs 15 provided at equal intervals along the peripheral surface are seated on the spring seat 5H and elastically press the seal ring 7.
 シールリング7は、シールリング7の摺動シール面7Aの軸方向の投影面積A1とシールリング7に対して軸方向の移動力として働く被密封流体圧力を受ける軸方向の投影面積A2とのバランス比A2/A1が1以下に設定されたバランス形に形成され、シール流体圧による摺動面Sへの負荷を低減させる形式となっている。 
 シールリング7は、特殊転換法(カーボン表面を部分的にSiC化し、表面強度を補強し、SiCの耐摩耗性とカーボンの自己潤滑性の両方を兼ね備えるようにすること)によるSiCから製作されている。また、ダイヤモンドコーティングしたSiCにより製作されてもよい。 
The seal ring 7 has a balance between the projected area A1 in the axial direction of the sliding seal surface 7A of the seal ring 7 and the projected area A2 in the axial direction that receives a sealed fluid pressure acting as a moving force in the axial direction with respect to the seal ring 7. The ratio A2 / A1 is formed in a balanced form in which the ratio is set to 1 or less, and the load on the sliding surface S due to the sealing fluid pressure is reduced.
The seal ring 7 is made of SiC by a special conversion method (partially converting the carbon surface to SiC, reinforcing the surface strength, and combining both the wear resistance of SiC and the self-lubricating property of carbon). Yes. It may also be made of diamond-coated SiC.
 一方、カラー20は、内周に嵌着周面20Cと第2シール溝20Bを設けている。この嵌着周面20Cが回転軸3の外周面3Aと嵌着すると共に、第2シール溝20Bに装着されたOリング13Cにより両部品の嵌着面間をシールする。また、カラー20に螺合したセットスクリュー21の先端部を回転軸3の外周面3Aに止めてカラー20を回転軸3に固定する。そして、カラー20におけるメイティングリング8の内側にある外周を結合面20Dに形成する。また、結合面20Dより外周側に設けた環状の段付面には保持面20Sを設ける。さらに、カラー20の保持面20Sに設けた嵌着穴にドライブピン22を圧入して取り付ける。このように、軸外周にスリーブを設ける必要がないので、スリーブの肉厚分だけシールサイズを小さくすることができ、摺動面周速が小さなり、摺動面負荷を小さくできる。   On the other hand, the collar 20 is provided with a fitting peripheral surface 20C and a second seal groove 20B on the inner periphery. The fitting peripheral surface 20C is fitted to the outer peripheral surface 3A of the rotating shaft 3, and the fitting surfaces of both components are sealed by the O-ring 13C fitted to the second seal groove 20B. Further, the tip end portion of the set screw 21 screwed into the collar 20 is fixed to the outer peripheral surface 3 </ b> A of the rotating shaft 3 to fix the collar 20 to the rotating shaft 3. Then, an outer periphery inside the mating ring 8 in the collar 20 is formed on the coupling surface 20D. A holding surface 20S is provided on the annular stepped surface provided on the outer peripheral side from the coupling surface 20D. Furthermore, the drive pin 22 is press-fitted into the fitting hole provided in the holding surface 20S of the collar 20 and attached. Thus, since it is not necessary to provide a sleeve on the outer periphery of the shaft, the seal size can be reduced by the thickness of the sleeve, the sliding surface peripheral speed can be reduced, and the sliding surface load can be reduced.
 また、メイティングリング8の一端には、図2に示すように、摺動シール面8Aを形成する。この摺動シール面8Aは、シールリング7の摺動シール面7Aと密接しながら摺動できるように形成する。さらに、メイティングリング8の内周面8Cにシール用の段付面8Bを形成する。この段付面8BにOリング13Bを取り付けてメイティングリング8の内周面8Cとカラー20の結合面20Dとの嵌着面間をシールする。また、メイティングリング8の機外側の端の接合面8Eには、ピン用凹部8Gを形成する。このピン用凹部8Gにカラー20の嵌着穴にねじ込まれたドライブピン22を挿入し、メイティングリング8とカラー20の両部品が周方向に対して移動しないように互いに係止させる。そして、ドライブピン22によりカラー20の回転力をメイティングリング8に伝達する。このように、メイティングリング8およびカラー20等からなる回転側は機外側雰囲気中で回転するように配置されている。このため、回転側が大気により強制空冷される。さらに、被密封流体と接する回転側の部分は、メイティングリング8とカラー20のシール流体側端面のみであるので、高温の被密封流体との接触面積が少なく、高速回転における回転摩擦による発熱が少ない。 
 また、メイティングリング8は、特殊転換法によるSiC、または他の製法によるSiCや超硬合金などのセラミックスなどの材質から製作される。また、ダイヤモンドコーティングしたSiCにより製作されてもよい。 
 シールリング7あるいはメイティングリング8の少なくとも一方の部材を特殊転換法によるSiCとして潤滑性と耐摩耗性を持たせておくことにより、長期間の運転での摺動面状態の変化を防止している。 
Further, a sliding seal surface 8A is formed at one end of the mating ring 8 as shown in FIG. The sliding seal surface 8A is formed so as to be able to slide in close contact with the sliding seal surface 7A of the seal ring 7. Further, a stepped surface 8B for sealing is formed on the inner peripheral surface 8C of the mating ring 8. An O-ring 13B is attached to the stepped surface 8B to seal between the fitting surfaces of the inner peripheral surface 8C of the mating ring 8 and the coupling surface 20D of the collar 20. Further, a pin recess 8G is formed on the joining surface 8E at the end of the mating ring 8 on the outside of the machine. The drive pin 22 screwed into the fitting hole of the collar 20 is inserted into the pin recess 8G, and the parts of the mating ring 8 and the collar 20 are locked to each other so as not to move in the circumferential direction. Then, the rotational force of the collar 20 is transmitted to the mating ring 8 by the drive pin 22. As described above, the rotating side including the mating ring 8 and the collar 20 is arranged so as to rotate in the outside atmosphere. For this reason, the rotating side is forcibly air-cooled by the atmosphere. Further, since the portion on the rotating side in contact with the sealed fluid is only the sealing fluid side end surface of the mating ring 8 and the collar 20, the contact area with the high temperature sealed fluid is small, and heat is generated due to rotational friction at high speed rotation. Few.
The mating ring 8 is manufactured from a material such as SiC by a special conversion method, or ceramics such as SiC or a cemented carbide by another manufacturing method. It may also be made of diamond-coated SiC.
At least one member of the seal ring 7 or mating ring 8 is made of SiC by special conversion method so as to have lubricity and wear resistance, thereby preventing the change of the sliding surface state during long-term operation. Yes.
 回転軸3の直径が100mm以下の範囲においては、メイティングリング8とシールリング7との摺動面Sの幅を1.5mm以下とし、バランス比A2/A1を0.7以下に設定するのがよい。 
 また、回転軸3の直径が100mmを越え200mm以下の範囲においては、メイティングリング8とシールリング7との摺動面Sの幅を2.0mm以下とし、バランス比A2/A1を0.7以下に設定するのがよい。このため、液圧作用面積が最小限に抑えられ、流体圧力による押付力が最小限となるので発熱も最小限に抑えられた低発熱設計となっている。 
 さらに、回転軸3の直径が上記の何れの場合でも、シールリング7の内周と回転軸外周3Aとの隙間を2.5mm以上とするのが望ましい。このように、シールリング7の内周と回転軸外周3Aとの隙間を大きくとり、後記する冷却ジャケットで冷却された冷温の被密封流体が流動するようにすることで、摺動発熱による摺動面近傍の蓄熱を防止し、温度上昇を最小限に抑えることができる。 
In the range where the diameter of the rotary shaft 3 is 100 mm or less, the width of the sliding surface S between the mating ring 8 and the seal ring 7 is set to 1.5 mm or less, and the balance ratio A2 / A1 is set to 0.7 or less. Is good.
In the range where the diameter of the rotating shaft 3 exceeds 100 mm and is 200 mm or less, the width of the sliding surface S between the mating ring 8 and the seal ring 7 is 2.0 mm or less, and the balance ratio A2 / A1 is 0.7. The following should be set. For this reason, the hydraulic pressure working area is minimized, and the pressing force due to the fluid pressure is minimized, so the heat generation is designed to be minimized.
Furthermore, it is desirable that the gap between the inner periphery of the seal ring 7 and the outer periphery of the rotating shaft 3A is 2.5 mm or more regardless of the diameter of the rotating shaft 3 described above. As described above, the clearance between the inner periphery of the seal ring 7 and the outer periphery of the rotary shaft 3A is made large so that the cold sealed fluid cooled by the cooling jacket described later flows, thereby sliding by sliding heat generation. Heat storage near the surface can be prevented and temperature rise can be minimized.
 シールカバー5には、ハウジング2との間にガスケット24を設け、ハウジング2とシールカバー5の間をシールしている。このガスケット24は、ゴム、樹脂又はゴムをコーティングした金属などの材質から製作されている。  The gasket 24 is provided between the seal cover 5 and the housing 2 to seal between the housing 2 and the seal cover 5. The gasket 24 is made of a material such as rubber, resin, or metal coated with rubber.
 さらに、シールカバー5の環状溝5Gは、シールリング7とメイティングリング8の大部分を覆うように軸方向に大きな寸法に形成すると良い。この環状溝5Gの機内側の側面は、シールリング7の第1シール溝7Bの近くまで近接するように形成している。さらに、環状溝5Gのメイティングリング8の側面は、メイティングリング8の中間まで達している。また、環状溝5Gの外周面の径も大きく形成すると良い。  Furthermore, the annular groove 5G of the seal cover 5 is preferably formed in a large dimension in the axial direction so as to cover most of the seal ring 7 and the mating ring 8. The side surface on the machine inner side of the annular groove 5G is formed so as to be close to the first seal groove 7B of the seal ring 7. Furthermore, the side surface of the mating ring 8 of the annular groove 5G reaches the middle of the mating ring 8. Moreover, it is good to form the diameter of the outer peripheral surface of the annular groove 5G large.
 図1に示すように、シールカバー5とカラー20は、カラー20にボルト26を介して取り付けられたセットプレート25の凸部27をシールカバー5の位置決め溝5Bに嵌め込んで位置決めと同時に組み立てられる。そして、メイティングリング8が位置決めされたらセットスクリュー21を回転軸3へ螺合して止め、カラー20を回転軸3に固定する。
 なお、セットプレート25は、図1に示すような断面形状に形成されており、カラー20の周面に3等配に配置されて取付けられる。このセットプレート25は組立後に取り外すと良い。 
As shown in FIG. 1, the seal cover 5 and the collar 20 are assembled at the same time as positioning by fitting the convex portion 27 of the set plate 25 attached to the collar 20 via a bolt 26 into the positioning groove 5 </ b> B of the seal cover 5. . Then, when the mating ring 8 is positioned, the set screw 21 is screwed onto the rotary shaft 3 and stopped, and the collar 20 is fixed to the rotary shaft 3.
The set plate 25 is formed in a cross-sectional shape as shown in FIG. 1, and is mounted on the circumferential surface of the collar 20 in a three-dimensional arrangement. The set plate 25 may be removed after assembly.
 他方、ハウジング2の軸嵌装孔10の機外側寄りに形成されたスタフィングボックス9内には、ハウジング2内周と回転軸3外周との間にリング状の冷却ジャケット11が設けられている。該冷却ジャケット11は、スタフィングボックス9の円周方向位置の真下に設けられた冷却水給水孔28および真上に設けられた冷却水排水孔29と連通する冷却水収容空間30を中央部に有し、両側外周にそれぞれOリング31、31を装着するOリング溝32、32が設けられている。Oリング31の厚みはOリング溝32の深さよりも大きく設定されている。また、冷却ジャケット11の冷却水収容空間30の回転軸外周側寄りの内部に複数のフィン33が設けられている。  On the other hand, a ring-shaped cooling jacket 11 is provided between the inner periphery of the housing 2 and the outer periphery of the rotary shaft 3 in the stuffing box 9 formed near the outside of the shaft fitting hole 10 of the housing 2. . The cooling jacket 11 has a cooling water accommodation space 30 that communicates with a cooling water supply hole 28 provided immediately below the circumferential position of the stuffing box 9 and a cooling water drain hole 29 provided immediately above the central portion. And O- ring grooves 32 and 32 for mounting O- rings 31 and 31 respectively are provided on both outer circumferences. The thickness of the O-ring 31 is set larger than the depth of the O-ring groove 32. A plurality of fins 33 are provided inside the cooling water storage space 30 of the cooling jacket 11 near the outer periphery of the rotating shaft.
 冷却ジャケット11は、ハウジング2内周にOリング31を介して密封的に装着されるが、冷却ジャケット11外周とハウジング2内周との間に隙間αを有するようにして装着される。冷却ジャケット11外周とハウジング2内周との間に隙間αは、回転軸3外周と冷却ジャケット11内周との隙間βより大きく設定される。回転軸3外周と冷却ジャケット11内周との隙間βは0.1~0.2mmに設定されている。  The cooling jacket 11 is hermetically mounted on the inner periphery of the housing 2 via an O-ring 31, but is mounted with a gap α between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2. The clearance α between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2 is set larger than the clearance β between the outer periphery of the rotary shaft 3 and the inner periphery of the cooling jacket 11. The gap β between the outer periphery of the rotating shaft 3 and the inner periphery of the cooling jacket 11 is set to 0.1 to 0.2 mm.
 上記のように、スタフィングボックス9内に冷却ジャケット11を設け、回転軸3外周と冷却ジャケット11内周との隙間を極小に絞り、この隙間に介在する高温の被密封流体の体積を極小にすることで、冷却ジャケット11による冷却効果を最大化することができる。また、シールリング7とメイティングリング8の摺動面の側に高温の被密封流体が循環するのが防止され、摺動面の周囲の被密封流体の温度が低温で一定したものされ、摺動面に対する熱的影響を最小にしている。さらに、冷却ジャケット11外周とハウジング2内周との間に隙間αは、回転軸3外周と冷却ジャケット11内周との隙間βより大きく設定することにより、万一、回転軸3が振れて回転軸外周3Aが冷却ジャケット11内周に接触しても、Oリングの弾性による緩衝作用で衝撃を吸収するので、接触面圧を小さくでき、接触摺動によるかじりや両者の摩耗を防止でき、長期間にわたり、初期の隙間を保持し、冷却ジャケット11の冷却効果を大きくすることができる。  As described above, the cooling jacket 11 is provided in the stuffing box 9, the gap between the outer periphery of the rotary shaft 3 and the inner circumference of the cooling jacket 11 is minimized, and the volume of the high-temperature sealed fluid interposed in the gap is minimized. By doing so, the cooling effect by the cooling jacket 11 can be maximized. Further, the high temperature sealed fluid is prevented from circulating around the sliding surfaces of the seal ring 7 and the mating ring 8, the temperature of the sealed fluid around the sliding surface is kept constant at a low temperature, and the sliding The thermal effect on the moving surface is minimized. Furthermore, the clearance α between the outer periphery of the cooling jacket 11 and the inner periphery of the housing 2 is set to be larger than the clearance β between the outer periphery of the rotation shaft 3 and the inner periphery of the cooling jacket 11, so that the rotation shaft 3 is swung and rotated by any chance. Even if the outer periphery of the shaft 3A contacts the inner periphery of the cooling jacket 11, the shock is absorbed by the buffering action by the elasticity of the O-ring, so that the contact surface pressure can be reduced, and galling due to contact sliding and wear of both can be prevented. Over the period, the initial gap can be maintained and the cooling effect of the cooling jacket 11 can be increased.
 次に、シールリング7とメイティングリング8の摺動面の温度及び摺動面の内周の被密封流体の温度を検出する温度検出手段について説明する。  Next, temperature detecting means for detecting the temperature of the sliding surfaces of the seal ring 7 and the mating ring 8 and the temperature of the sealed fluid on the inner periphery of the sliding surfaces will be described.
 温度検出手段40は、シールリング7の摺動面7Aの近傍に装着された熱電対41、該熱電対41から機外側に導出されたリード線42及び温度指示計43を備えている。熱電対41は、図2に示すように、シールリング7内の摺動面7Aの近傍に埋設されるか、あるいは、シールリング7表面の摺動面7Aの近傍に溶着などで固定されてもよい。熱電対41から機外側に導出されたリード線42は、シールカバー5の環状溝5Gを経由して機外側に導出することで配線を容易にすることができる。  The temperature detecting means 40 includes a thermocouple 41 mounted in the vicinity of the sliding surface 7A of the seal ring 7, a lead wire 42 led out from the thermocouple 41 to the outside of the machine, and a temperature indicator 43. As shown in FIG. 2, the thermocouple 41 may be embedded in the vicinity of the sliding surface 7A in the seal ring 7, or may be fixed by welding or the like in the vicinity of the sliding surface 7A on the surface of the seal ring 7. Good. The lead wire 42 led out from the thermocouple 41 to the outside of the machine can be easily wired by leading out to the outside of the machine via the annular groove 5G of the seal cover 5.
 ところで、冷却ジャケット11より機外側に配置されたシールリング7及びメイティングリング8において機内側にシールリング7が、また、機外側にメイティングリング8が配置され、シールリング7の外周側の大部分が機外側雰囲気、すなわち、環状溝5Gに面すると共に、その内周と回転軸3の外周との隙間γは冷却ジャケット11により冷却された低温の被密封流体が流動し易いように回転軸3の外周と冷却ジャケット11の内周との隙間βより大きく設定され、メイティングリング8及びカラー20等からなる回転側は機外側雰囲気中で回転するように配置されているため、通常状態における摺動面Sの温度は摺動面Sの内周の被密封流体の温度とほぼ等しく、安定している。したがって、摺動面Sの温度を検出することは摺動面Sの内周の被密封流体の温度を検出していることと同じである。  By the way, in the seal ring 7 and the mating ring 8 arranged outside the cooling jacket 11, the seal ring 7 is arranged inside the machine, and the mating ring 8 is arranged outside the machine. The portion faces the machine exterior atmosphere, that is, the annular groove 5G, and the clearance γ between the inner periphery and the outer periphery of the rotary shaft 3 is such that the low-temperature sealed fluid cooled by the cooling jacket 11 flows easily. 3 is set to be larger than the gap β between the outer periphery of the cooling jacket 11 and the inner periphery of the cooling jacket 11, and the rotating side including the mating ring 8 and the collar 20 is arranged so as to rotate in the outside atmosphere. The temperature of the sliding surface S is substantially equal to the temperature of the sealed fluid on the inner periphery of the sliding surface S and is stable. Therefore, detecting the temperature of the sliding surface S is the same as detecting the temperature of the sealed fluid on the inner periphery of the sliding surface S.
 摺動面Sの温度及び摺動面Sの内周の被密封流体の温度が安定していれば、スタフィングボックス9の奥側からの高温流体が摺動面Sに流入していないことを意味しており、メカニカルシールの密封性が良好であることを示すものである。 
 逆に、メカニカルシールの密封性が低下すれば、メカニカルシールからの漏出分の高温流体が摺動面Sに流入し、摺動面Sの温度、すなわち、検出温度が上昇する。 
 更に、検出温度が安定して高い場合は、冷却ジャケット11の異常が考えられる。 
 更に、検出温度が少しずつ上昇していく場合は、メカニカルシールの寿命が考えられる。 
 このように、シールリング7とメイティングリング8の摺動面の温度及び摺動面の内周の被密封流体の温度をモニターすればメカニカルシールの異常を知ることが可能である。 
If the temperature of the sliding surface S and the temperature of the sealed fluid on the inner periphery of the sliding surface S are stable, it is confirmed that the high temperature fluid from the back side of the stuffing box 9 does not flow into the sliding surface S. This means that the sealing performance of the mechanical seal is good.
On the contrary, if the sealing performance of the mechanical seal is lowered, the high-temperature fluid leaked from the mechanical seal flows into the sliding surface S, and the temperature of the sliding surface S, that is, the detection temperature rises.
Furthermore, when the detected temperature is stable and high, an abnormality of the cooling jacket 11 is considered.
Furthermore, when the detected temperature rises little by little, the life of the mechanical seal can be considered.
Thus, by monitoring the temperature of the sliding surfaces of the seal ring 7 and the mating ring 8 and the temperature of the sealed fluid on the inner periphery of the sliding surface, it is possible to know the abnormality of the mechanical seal.
 以上、本発明の実施の形態を図面を参照しながら説明してきたが、具体的な構成は実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。  The embodiments of the present invention have been described above with reference to the drawings. However, the specific configuration is not limited to the embodiments, and even if there are changes or additions without departing from the gist of the present invention. It is included in the present invention.
 例えば、前記実施の形態では、温度センサとして熱伝対41を示したが、これに限定されることなく、例えば、サーミスタ、白金測温抵抗体、または、放射温度計でもよい。  For example, in the above-described embodiment, the thermocouple 41 is shown as the temperature sensor, but the present invention is not limited to this, and for example, a thermistor, a platinum resistance thermometer, or a radiation thermometer may be used.
 また、例えば、前記実施の形態では、熱電対41は、シールリング7内の摺動面7Aの近傍に埋設されるか、あるいは、シールリング7表面の摺動面7Aの近傍に溶着などで固定される例について説明したが、これに限らず、例えば、シールリング7に孔を設け、該孔に熱電対41を嵌入してもよい。  Further, for example, in the above-described embodiment, the thermocouple 41 is embedded in the vicinity of the sliding surface 7A in the seal ring 7 or fixed by welding or the like in the vicinity of the sliding surface 7A on the surface of the seal ring 7. However, the present invention is not limited to this. For example, a hole may be provided in the seal ring 7 and the thermocouple 41 may be inserted into the hole.
 また、例えば、前記実施の形態では、熱電対41から機外側に導出されるリード線42について、シールカバー5の環状溝5Gを経由して機外側に導出される例を説明したが、これに限らず、例えば、シールカバー5に導出用の孔を設けて機外に導出するようにしてもよい。  Further, for example, in the above-described embodiment, the example in which the lead wire 42 led out from the thermocouple 41 to the outside of the machine is led out to the outside of the machine via the annular groove 5G of the seal cover 5 has been described. For example, a lead-out hole may be provided in the seal cover 5 and lead out to the outside of the machine.
  1  メカニカルシール 
  2  ハウジング 
  3  回転軸 
  4  ハウジングの機外側の側面 
  5  シールカバー 
  6  ボルト 
  7  静止側密封要素(シールリング) 
  8  回転側密封要素(メイティングリング) 
  9  スタフィングボックス 
 10  軸嵌装孔 
 11  冷却ジャケット 
 12  被密封流体 
 13  Oリング 
 14  固定ピン 
 15  コイルスプリング 
 20  カラー 
 21  セットスクリュー 
 22  ドライブピン 
 24  ガスケット 
 25  セットプレート 
 26  ボルト 
 27  凸部 
 28  冷却水給水孔 
 29  冷却水排水孔 
 30  冷却水収容空間 
 31  Oリング 
 32  Oリング溝 
 33  フィン 
 40  温度検出手段 
 41  熱電対 
 42  リード線 
 43  温度指示計 
1 Mechanical seal
2 Housing
3 Rotating shaft
4 Outside side of housing
5 Seal cover
6 bolts
7 Static side sealing element (seal ring)
8 Rotating side sealing element (Mating ring)
9 Staffing box
10 Shaft fitting hole
11 Cooling jacket
12 Sealed fluid
13 O-ring
14 Fixing pin
15 Coil spring
20 colors
21 set screw
22 Drive pin
24 Gasket
25 set plates
26 volts
27 Convex
28 Cooling water supply hole
29 Cooling water drain hole
30 Cooling water storage space
31 O-ring
32 O-ring groove
33 fins
40 Temperature detection means
41 Thermocouple
42 Lead wire
43 Temperature indicator

Claims (4)

  1.  ハウジングと回転軸との間に形成した軸封部に装着されて、前記ハウジングと前記回転軸との間をシールする回転側密封要素および静止側密封要素を備えたメカニカルシールにおいて、 
     前記メカニカルシールは前記回転側密封要素と前記静止側密封要素との摺動面の内周から外周方向へ向かって漏れようとする高温の被密封流体をシールするアウトサイド形であって、 
     前記回転側密封要素および前記静止側密封要素はスタフィングボックスの外に配置され、 
     前記高温の被密封流体の前記摺動面への循環を防止するように前記ハウジング内周と前記回転軸外周との間に冷却ジャケットが設けられ、 
     前記摺動面の温度及び前記摺動面の内周の被密封流体の温度を検出する温度検出手段が設けられることを特徴とする高温密封流体をシールする故障予知型メカニカルシールシステム。 
    In a mechanical seal that is attached to a shaft seal formed between a housing and a rotating shaft, and includes a rotating side sealing element and a stationary side sealing element that seals between the housing and the rotating shaft.
    The mechanical seal is an outside type that seals a high temperature sealed fluid that tends to leak from the inner periphery to the outer periphery of the sliding surface of the rotating side sealing element and the stationary side sealing element,
    The rotating side sealing element and the stationary side sealing element are arranged outside a stuffing box;
    A cooling jacket is provided between the inner circumference of the housing and the outer circumference of the rotary shaft so as to prevent circulation of the hot sealed fluid to the sliding surface;
    A failure prediction type mechanical seal system for sealing a high temperature sealing fluid, characterized in that temperature detection means for detecting the temperature of the sliding surface and the temperature of the sealed fluid on the inner periphery of the sliding surface is provided.
  2.  前記温度検出手段は、前記静止側密封要素の前記摺動面の近傍に装着された熱電対、該熱電対から機外側に導出されたリード線及び温度指示計を備えることを特徴とする請求項1に記載の高温密封流体をシールする故障予知型メカニカルシールシステム。  The temperature detecting means includes a thermocouple mounted in the vicinity of the sliding surface of the stationary side sealing element, a lead wire led out from the thermocouple to the outside of the machine, and a temperature indicator. A failure prediction type mechanical seal system for sealing a high temperature sealing fluid according to claim 1.
  3.  前記冷却ジャケットより機外側に配置された前記回転側密封要素及び前記静止側密封要素において機内側に前記静止側密封要素が、機外側に前記回転側密封要素が配置され、前記静止側密封要素の外周側の大部分が機外側雰囲気に面すると共に、その内周と回転軸外周との隙間γは被密封流体が流動し易いように前記回転軸外周と前記冷却ジャケット内周との隙間βより大きく設定され、前記回転側密封要素及びカラー等からなる回転側は機外側雰囲気中で回転するように配置されていることを特徴とする請求項1または2に記載の高温密封流体をシールする故障予知型メカニカルシールシステム。  In the rotating side sealing element and the stationary side sealing element arranged on the outer side of the cooling jacket, the stationary side sealing element is arranged on the inner side of the machine, and the rotating side sealing element is arranged on the outer side of the machine. Most of the outer peripheral side faces the outside atmosphere, and the clearance γ between the inner periphery and the outer periphery of the rotating shaft is larger than the clearance β between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket so that the fluid to be sealed flows easily. The failure to seal the high temperature sealing fluid according to claim 1 or 2, characterized in that it is set to be large and the rotating side composed of the rotating side sealing element and the collar is arranged to rotate in the outside atmosphere. Predictive mechanical seal system.
  4.  前記冷却ジャケットは、前記スタフィングボックスに設けられた冷却水給排水孔と連通する冷却水収容空間を中央部に有し、両側外周にそれぞれOリングを介して前記ハウジング内周に密封的に装着され、前記冷却ジャケット外周と前記ハウジング内周との隙間αを前記回転軸外周と前記冷却ジャケット内周との隙間βより大きく設定することを特徴とする請求項1ないし3のいずれか1項に記載の高温密封流体をシールする故障予知型メカニカルシールシステム。  The cooling jacket has a cooling water accommodation space communicating with a cooling water supply / drainage hole provided in the stuffing box at the center, and is hermetically attached to the inner periphery of the housing on both outer circumferences via O-rings. The clearance α between the outer periphery of the cooling jacket and the inner periphery of the housing is set to be larger than the clearance β between the outer periphery of the rotating shaft and the inner periphery of the cooling jacket. Failure-predictive mechanical seal system that seals high-temperature sealed fluid.
PCT/JP2013/065814 2012-06-13 2013-06-07 Breakdown-predicting mechanical seal system for sealing high-temperature seal fluid WO2013187322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553542A JP6104820B2 (en) 2012-06-13 2013-06-07 Failure predictive mechanical seal system for sealing high temperature sealed fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133462 2012-06-13
JP2012-133462 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187322A1 true WO2013187322A1 (en) 2013-12-19

Family

ID=49758145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065814 WO2013187322A1 (en) 2012-06-13 2013-06-07 Breakdown-predicting mechanical seal system for sealing high-temperature seal fluid

Country Status (2)

Country Link
JP (1) JP6104820B2 (en)
WO (1) WO2013187322A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104455444A (en) * 2014-11-27 2015-03-25 山东明天机械有限公司 Mechanical seal used for vapor compressor
CN105422502A (en) * 2015-12-18 2016-03-23 李良荣 Intelligent sanitary pump
JP2016166643A (en) * 2015-03-09 2016-09-15 日本ピラー工業株式会社 End surface contact-type mechanical seal
JP2016166646A (en) * 2015-03-09 2016-09-15 日本ピラー工業株式会社 Mechanical seal for slurry liquid
JP2018063009A (en) * 2016-10-13 2018-04-19 イーグル工業株式会社 mechanical seal
CN111473114A (en) * 2016-02-23 2020-07-31 约翰起重机英国有限公司 System and method for predictive diagnostics of a mechanical system
US11231396B2 (en) 2018-10-08 2022-01-25 John Crane Uk Limited Mechanical seal with sensor
WO2024190098A1 (en) * 2023-03-16 2024-09-19 株式会社Pillar Mechanical seal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108679226A (en) * 2018-06-01 2018-10-19 芜湖市中天密封件有限公司 A kind of high temperature sludge dryer sealing element that structural strength is high

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842455U (en) * 1981-09-14 1983-03-22 日本ピラー工業株式会社 Mechanical seal load adjustment device
US5199720A (en) * 1990-05-25 1993-04-06 John Crane, Inc. Split mechanical face seal
JP2010216491A (en) * 2009-03-13 2010-09-30 Eagle Ind Co Ltd Dead end seal for high temperature use
WO2011036917A1 (en) * 2009-09-24 2011-03-31 イーグル工業株式会社 Mechanical seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842455U (en) * 1981-09-14 1983-03-22 日本ピラー工業株式会社 Mechanical seal load adjustment device
US5199720A (en) * 1990-05-25 1993-04-06 John Crane, Inc. Split mechanical face seal
JP2010216491A (en) * 2009-03-13 2010-09-30 Eagle Ind Co Ltd Dead end seal for high temperature use
WO2011036917A1 (en) * 2009-09-24 2011-03-31 イーグル工業株式会社 Mechanical seal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104455444A (en) * 2014-11-27 2015-03-25 山东明天机械有限公司 Mechanical seal used for vapor compressor
JP2016166643A (en) * 2015-03-09 2016-09-15 日本ピラー工業株式会社 End surface contact-type mechanical seal
JP2016166646A (en) * 2015-03-09 2016-09-15 日本ピラー工業株式会社 Mechanical seal for slurry liquid
CN105422502A (en) * 2015-12-18 2016-03-23 李良荣 Intelligent sanitary pump
US11060999B2 (en) 2016-02-23 2021-07-13 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
CN111473114A (en) * 2016-02-23 2020-07-31 约翰起重机英国有限公司 System and method for predictive diagnostics of a mechanical system
US11125726B2 (en) 2016-02-23 2021-09-21 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
CN111473114B (en) * 2016-02-23 2022-06-17 约翰起重机英国有限公司 System and method for predictive diagnostics of a mechanical system
US11719670B2 (en) 2016-02-23 2023-08-08 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
JP2018063009A (en) * 2016-10-13 2018-04-19 イーグル工業株式会社 mechanical seal
US11231396B2 (en) 2018-10-08 2022-01-25 John Crane Uk Limited Mechanical seal with sensor
US11280761B2 (en) 2018-10-08 2022-03-22 John Crane Uk Limited Mechanical seal with sensor
US11815491B2 (en) 2018-10-08 2023-11-14 John Crane Uk Limited Mechanical seal with sensor
WO2024190098A1 (en) * 2023-03-16 2024-09-19 株式会社Pillar Mechanical seal

Also Published As

Publication number Publication date
JPWO2013187322A1 (en) 2016-02-04
JP6104820B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6104820B2 (en) Failure predictive mechanical seal system for sealing high temperature sealed fluid
JP5557752B2 (en) mechanical seal
US8011667B2 (en) Upset resistant mechanical seal
CN102128692B (en) End-face-sealed friction surface temperature measuring method
US20090174149A1 (en) Mechanical seal device
KR20130126475A (en) Sealing for rotating axle of ship propeller
JP5259463B2 (en) High temperature dead end seal
US20110139132A1 (en) Exhaust gas recirculation valve thrust collar
WO2016059883A1 (en) Sealing device
US20150295466A1 (en) Method for sealing electric motors for the application of lubrication by mist
CN108692029B (en) Mechanical sealing element
JP5124784B2 (en) Mechanical seal device
US3351396A (en) Shaft seal for a thermal machine
US2963306A (en) Mechanical seal assembly
JP6612092B2 (en) mechanical seal
CN201955162U (en) Measuring system for temperature of friction surface with end face sealed
JP6817119B2 (en) Emergency seal and sealing structure
US10180187B2 (en) High moisture environment seal assembly
US20210131907A1 (en) Sensing leak in a multi-seal sealing assembly with sensors
JP6713901B2 (en) mechanical seal
JP6685876B2 (en) mechanical seal
JP5916571B2 (en) mechanical seal
RU2598966C1 (en) End gas dynamic seal of turbomachine rotor support
CN217583174U (en) Double-end-face leakage-proof mechanical seal assembly
JP6868531B2 (en) Mechanical seal with cooling jacket

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553542

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804047

Country of ref document: EP

Kind code of ref document: A1