Nothing Special   »   [go: up one dir, main page]

WO2013187133A1 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
WO2013187133A1
WO2013187133A1 PCT/JP2013/062000 JP2013062000W WO2013187133A1 WO 2013187133 A1 WO2013187133 A1 WO 2013187133A1 JP 2013062000 W JP2013062000 W JP 2013062000W WO 2013187133 A1 WO2013187133 A1 WO 2013187133A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
data
filter processing
color
color space
Prior art date
Application number
PCT/JP2013/062000
Other languages
English (en)
French (fr)
Inventor
長谷川 亮
田中 誠二
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380031160.6A priority Critical patent/CN104380727B/zh
Priority to JP2014521003A priority patent/JP5697802B2/ja
Publication of WO2013187133A1 publication Critical patent/WO2013187133A1/ja
Priority to US14/566,862 priority patent/US9177367B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters

Definitions

  • the present invention relates to an image processing apparatus and an image processing method, and more particularly to a technique for reducing noise while preserving image edges.
  • digital image data acquired via an imaging device may contain noise components, and various methods for removing the noise components have been proposed. .
  • Patent Document 1 discloses an image processing apparatus that performs noise reduction processing on RGB color images.
  • the distance in the RGB color space between the target pixel and its surrounding pixels is calculated, the weighting coefficient for each peripheral pixel is calculated according to the distance in the color space, and an image of the peripheral pixels including the target pixel
  • the pixel value of the target pixel is calculated by performing weighted average processing on the data.
  • Patent Document 2 discloses an image quality improving apparatus that removes noise from an image.
  • the covariance data between the color channels in the image data is calculated, and k between the covariance data and the original image that is not deteriorated by noise by the covariance data between the color channels of a predetermined noise.
  • a filter that minimizes the mean square error in the dimensional color space is derived, and noise reduction processing is performed by the derived filter.
  • Patent Document 3 discloses an image processing apparatus that performs noise removal using a reference value recorded in a reference value buffer.
  • the output pixel value is determined by a weight calculation for the input pixel value.
  • Patent Document 1 discloses an image processing method in which a distance in a color space is calculated after low-pass filter processing is performed.
  • a low-pass filter is effective for noise reduction effect.
  • edge preservation may be deteriorated.
  • problems such as color blur (blur) and color loss may occur at the color boundary portion of the image.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for reducing image noise while preventing problems such as color bleeding.
  • One embodiment of the present invention is an image processing apparatus that processes image data including a collection of pixel data of a plurality of pixels.
  • a target pixel of the plurality of pixels and the target pixel The real space weighting coefficient for each peripheral pixel is calculated based on the distance in the real space with the peripheral pixels arranged around the pixel, and the pixel data of the target pixel and the pixel data of the peripheral pixel are calculated using the real space weighting coefficient.
  • the real space filter processing unit Based on the distance in the color space between the real space filter processing unit that calculates the pixel data of the target pixel by weighted averaging and the target pixel of the plurality of pixels and the peripheral pixels arranged around the target pixel.
  • calculating the real space weighting coefficient and the weighted average of the pixel data performed by the real space filter processing unit are based on edge-preserving filter processing, and the color space filter processing unit Of the pixel data used, at least the pixel data of the target pixel relates to an image processing apparatus that is pixel data calculated by a real space filter processing unit.
  • the real space filter processing based on the edge preserving filter processing is performed in the previous stage, and the color space filter processing is performed in the subsequent stage. Therefore, image noise can be reduced by color space filter processing in a state where edges (color boundary portions) are well preserved by preventing edge blurring and other problems such as color bleeding.
  • the “real space” here means a space based on the pixel arrangement relationship on the image data, and the “distance on the real space” reflects an actual distance between a plurality of pixels of the image data. It is an index and directly or indirectly indicates the distance between the pixel to be processed (target pixel) and other peripheral pixels (peripheral pixels). Therefore, the actual distance between pixels on the image can be directly referred to as a “distance in real space”, and the actual distance between pixels can be determined by using another index (parameter) that represents the actual distance between pixels.
  • An indirect expression of distance can be called “distance in real space”. For example, the distance in the real space can be expressed in units of pixels, and the peripheral pixels adjacent to the target pixel can be expressed as having a distance in the real space “equivalent to one pixel” with respect to the target pixel.
  • the “color space” here is a color space described in a cubic manner, and color spaces based on “R / G / B” and “Y / Cb / Cr” are representative color spaces. Can be mentioned.
  • the “distance in the color space” is an index that reflects the degree of separation based on the color between multiple pixels of the image data, and is the pixel to be processed (target pixel) and other peripheral pixels (peripheral The degree of approximation with respect to the color of the pixel) is shown directly or indirectly. Therefore, the distance in the color space can be directly referred to as the “distance in the color space”, and the degree of approximation / separation of colors between pixels using other indices (parameters) representing the distance in the color space.
  • An indirect representation of the degree can also be referred to as a “distance in color space”.
  • the elements defining the color space R / G / B elements in the RGB color space, Y / Cb / Cr elements in the YCbCr color space
  • the absolute difference between the pixel data of the pixel of interest and the pixel data of the surrounding pixels May be calculated and the square root of the sum may be expressed as “distance in color space”.
  • the weighting for each element defining the color space may be expressed as “distance on the color space”.
  • the absolute difference between the pixel data of the pixel of interest and the pixel data of the surrounding pixels is added as it is between the elements that define the color space without being squared, and expressed as “distance on the color space”. Also good.
  • the absolute value of the difference between the pixel data of the target pixel and the pixel data of the surrounding pixels is obtained for each element that defines the color space, and the absolute value of the difference is determined for each element that defines the color space without squaring the absolute value of the difference. May be expressed as “distance in the color space”.
  • a value (weighted value) obtained by multiplying a distance in these color spaces by a predetermined coefficient may be expressed as “distance in color space”.
  • edge preserving filter processing means filtering processing that favorably holds the edge (color boundary portion) of the image.
  • the process of calculating the average value of the image data (color difference data in this example) within the range of the set is as follows: This is included in “edge-preserving filter processing”.
  • the “edge-preserving filter processing” may include other processing that can satisfactorily hold the edge (color boundary portion) of the image.
  • the image data includes color-related image data
  • the real space filter processing unit calculates a real space weighting coefficient and calculates a weighted average of the pixel data for the color-related image data based on edge preserving type filter processing. Do.
  • RGB image data can be used as the “color-related image data”.
  • the image data includes image data relating to luminance and image data relating to color difference
  • the real space filter processing unit applies at least a real space weighting coefficient to image data relating to color difference among image data relating to luminance and image data relating to color difference. Calculation and weighted average of pixel data are performed based on edge preserving filter processing.
  • the image data relating to the color difference is subjected to the edge-preserving real space filter processing, it is possible to reduce image noise in a state where the edges are favorably retained by preventing color bleeding and the like.
  • Cr / Cb image data can be used as the “image data relating to color difference”.
  • the pixel data of the target pixel is pixel data calculated by the real space filter processing unit.
  • the pixel data of the peripheral pixels is pixel data constituting image data before being input to the real space filter processing unit.
  • the color space filter processing unit based on the pixel data of the target pixel that has undergone the real space filter process and the pixel data of the peripheral pixel that has not been subjected to the real space filter process, the color space filter processing unit Find the distance in the color space. Also in this case, image noise can be reduced by color space filter processing in a state where edges (color boundary portions) are well preserved while preventing problems such as color bleeding.
  • the pixel data of the target pixel is the pixel data calculated by the real space filter processing unit, and the pixel data of the surrounding pixels Is pixel data constituting image data before being input to the real space filter processing unit.
  • the color space filter processing unit based on the pixel data of the pixel of interest that has undergone real space filter processing and the pixel data of peripheral pixels that have not undergone real space filter processing, performs weighting with a color space weighting coefficient. Perform the average operation. Also in this case, image noise can be reduced by color space filter processing in a state where edges (color boundary portions) are well preserved while preventing problems such as color bleeding.
  • the color space filter processing unit uses the pixel data calculated by the real space filter processing unit to obtain a distance in the color space between the pixel of interest and the surrounding pixels and performs a weighted average using a color space weighting coefficient.
  • the edge is very effectively Storage and noise reduction can be performed.
  • the peripheral pixels that are the target of the pixel data used in each of the real space filter processing unit and the color space filter processing unit are the target of the pixel data used in each of the real space filter processing unit and the color space filter processing unit.
  • the target pixel and other peripheral pixels are the target of the pixel data used in each of the real space filter processing unit and the color space filter processing unit.
  • the real space filter processing and the color space filter processing are performed based on the pixel data of the pixel of interest and the peripheral pixels adjacent to each other.
  • the real space filter processing and the color space filter processing can be performed easily and effectively.
  • the peripheral pixel that is the target of the pixel data used in the color space filter processing unit is not adjacent to any of the target pixel and other peripheral pixels that are the target of the pixel data used in the color space filter processing unit.
  • the color space filter process is performed based on the pixel data of the target pixel and the peripheral pixels that are spaced apart from each other.
  • pixel data of pixels that are spaced apart By using pixel data of pixels that are spaced apart, pixel data of a relatively wide range of pixels can be utilized.
  • the color space is based on RGB.
  • color space filter processing can be performed based on the distance in the RGB color space.
  • the color space is based on luminance and color difference.
  • the color space filter process can be performed based on the distance in the luminance / color difference (Y / Cb / Cr, etc.) color space.
  • the real space filter processing unit receives image data relating to luminance and image data relating to color difference, and calculates a real space weighting coefficient and performs weighted averaging on each of the image data relating to luminance and the image data relating to color difference.
  • the color space filter processing unit receives the luminance-related image data and the color-difference image data, and uses the luminance-related image data to calculate the color space weighting coefficient and the weighted average for the color-difference image data.
  • the image processing apparatus calculates image data relating to luminance based on the pixel data calculated in the real space filter processing unit and image data relating to color difference based on the pixel data calculated in the color space filter processing unit. Is output.
  • image data relating to luminance and color difference is input to the real space filter processing unit
  • image data relating to luminance data subjected to image processing in the real space filter processing unit is output from the image processing apparatus
  • Image data relating to the color difference subjected to image processing in the filter processing unit and the color space filter processing unit is output from the image processing apparatus.
  • Another aspect of the present invention is an image processing method for processing image data composed of a set of pixel data of a plurality of pixels.
  • a target pixel of the plurality of pixels and the target pixel The real space weighting coefficient for each peripheral pixel is calculated based on the distance in the real space with the peripheral pixels arranged around the pixel, and the pixel data of the target pixel and the pixel data of the peripheral pixel are calculated using the real space weighting coefficient. Based on the distance in the color space between the target pixel of the plurality of pixels and the peripheral pixels arranged around the target pixel.
  • a color space weighting coefficient for each peripheral pixel is calculated, and the pixel data of the target pixel is calculated by weighted averaging the pixel data of the target pixel and the pixel data of the peripheral pixel using the color space weighting coefficient.
  • a color space filter processing step for calculating data, and the calculation of the real space weighting coefficient and the weighted average of the pixel data performed in the real space filter processing step are based on edge preserving type filter processing, and the color space
  • the pixel data of at least the target pixel among the pixel data used in the filter processing step relates to an image processing method that is pixel data calculated in the real space filter processing step.
  • the calculation of the real space weighting coefficient and the weighted average of the pixel data include the “edge preserving type filter process”, so that the boundary portion (edge portion) of the image is well preserved.
  • real space filter processing can be performed.
  • the color space filtering process is performed based on the image data stored in a state where the image boundary portion is in a good state, so that image noise can be effectively reduced while preventing problems such as color bleeding.
  • the real space filter used in the real space filter processing is exemplified, and a separation type real space filter in which a horizontal one-dimensional seven-tap filter and a vertical one-dimensional seven-tap filter are combined is shown. This is an example of a real space filter used in real space filter processing, and shows a matrix type (two-dimensional) real space filter composed of 7 ⁇ 7 tap filters in the horizontal and vertical directions.
  • the present invention relates to a technique for reducing image noise while preventing color bleeding at a color boundary portion, and can be applied to all devices capable of processing to reduce and remove noise from image data. Therefore, the present invention can also be realized by an imaging device such as a camera, a computer to which the imaging device is connected, or software installed in the computer (a program for causing a computer to execute the following processing steps (procedures)). .
  • This software (program or the like) may be recorded on a non-transitory computer-readable medium such as a ROM.
  • FIG. 1 is a functional block diagram showing an example in which the present invention is applied to an imaging device (digital camera), and particularly shows a block related to noise reduction processing (noise reduction processing).
  • the imaging device 10 includes an imaging unit 11, an image processing unit (image processing apparatus) 22, a control unit 14, a memory 15, a display unit (liquid crystal display or the like) 16, an operation unit 17, and a signal input / output I / F that are connected to each other. (Interface) 18 is provided.
  • the imaging unit 11 is a part that acquires imaging data (image data) by imaging a subject, and includes a lens 12, an imaging element (CCD, CMOS, etc.) 13, and the like.
  • the imaging element 13 has a configuration in which a plurality of light receiving elements are two-dimensionally arranged in units of pixels.
  • the image processing unit 22 performs image processing for improving image quality and image data compression processing on the image data captured and acquired by the imaging unit 11.
  • a noise reduction processing unit 25 that reduces and eliminates image noise included in the image data is provided in the image processing unit 22.
  • the noise reduction processing unit 25 includes a real space filter processing unit 26 that performs real space filter processing on image data and a color space filter processing unit 27 that performs color space filter processing.
  • real space filter processing is performed as pre-filter processing prior to color space filter processing, and color space filter processing is performed after this real space filter processing. Done.
  • color difference noise is simply reduced only by the real space filter, there is a concern that color blur (blurring) or color loss may occur at the color boundary.
  • the color difference noise is reduced by simply performing the filtering process in the color space, if the color blur or color loss is to be suppressed, the degree of noise reduction in the liver kidney is weakened.
  • the target pixel contains a strong noise component
  • the distance between the target pixel and the surrounding pixels in the color space is large, so even if filtering is performed on the color space, the noise component is not sufficiently reduced and remains as image noise. There is a possibility that.
  • a strong noise component is removed by first performing real space filtering in the previous stage.
  • the memory 15 shown in FIG. 1 is a data storage area for storing image data, programs used for various processes, and data, and can also be used as a buffer area used for operations during various processes.
  • the display unit 16 and the operation unit 17 constitute a user interface.
  • the display unit 16 presents various displays to the user, and the user can send various operation instruction signals via the operation unit 17. Therefore, the user transmits an operation instruction signal to the control unit 14 via the operation unit 17 while confirming information displayed on the display unit 16, and the imaging unit 11, the image processing unit 22, the memory 15, the display unit 16, the signal Various processes in the input / output I / F 18 can be controlled.
  • the signal input / output I / F 18 constitutes a data input / output interface between the imaging device 10 and external devices. Therefore, image data (RAW data, image data after image processing, etc.) captured and acquired by the imaging unit 11 can be output to external devices via the signal input / output I / F 18.
  • the control unit 14 is a part that comprehensively controls various devices constituting the imaging device 10, and is configured by a CPU (Central Processing Unit) and other peripheral circuits. Therefore, the imaging process of the imaging unit 11, the image process of the image processing unit 22, the writing process / reading process to the memory 15, the display process in the display unit 16, the processing of the operation signal from the operation unit 17, and the signal input / output I / F 18 Various processes such as input / output processes are controlled by the control unit 14 in an integrated manner.
  • a CPU Central Processing Unit
  • FIG. 2 is a functional block diagram showing an example of digital processing in the image processing unit 22.
  • the imaging data (RAW data) imaged and generated by the imaging unit 11 includes, for example, 14-bit R (red), G (green), and B (blue) color data, and the linear preprocessing unit 31 of the image processing unit 22. Are added in the order of R, G, and B.
  • the R, G, and B RAW data are preprocessed by the linear preprocessing unit 31 for linear data such as offset adjustment, 16-bit conversion, and shading correction.
  • the R, G, B data output from the linear preprocessing unit 31 is output to the white balance (WB) correction unit 32.
  • the WB correction unit 32 performs white balance correction by multiplying R, G, and B data by gain values Rg, Gg, and Bg for white balance correction.
  • the gain values Rg, Gg, and Bg for white balance correction are obtained by analyzing RAW data and specifying, for example, a light source type (sunlight, fluorescent light, tungsten light bulb, etc.) and corresponding to the light source type in advance.
  • the gain values Rg, Gg, and Bg are set to the stored gain values Rg, Gg, and Bg, or the gain values Rg, Gg, and Bg corresponding to the light source type and the color temperature that are manually selected on the menu screen that performs white balance correction.
  • the R, G, B data output from the WB correction unit 32 is added to the exposure correction unit 33.
  • the exposure correction unit 33 corrects the exposure to an under exposure (desensitization process) with respect to the normal exposure (exposure when no exposure correction is performed) according to an instruction input of a manual exposure correction value (for example, ⁇ 3 EV to +3 EV). Alternatively, over correction (sensitization processing) is performed.
  • the R, G, B data output from the exposure correction unit 33 is output to the gamma ( ⁇ ) correction unit 34, where the linear data is converted into gradation data in a color space such as sRGB, AdobeRBG, and scRGB.
  • the R, G, and B data subjected to gamma correction are output to the demosaic processing unit (synchronization processing unit) 35.
  • the demosaic processing unit 35 performs a process of converting R, G, and B data into a simultaneous expression by interpolating a spatial shift of R, G, and B data associated with the arrangement of the color filters in the image sensor. ) R, G, B data output to the RGB / YC converter 36.
  • the RGB / YC conversion unit 36 converts the R, G, and B data into luminance data (luminance signal) Y and color difference data (color difference signals) Cr and Cb, and outputs the luminance data Y to the contour correction unit 37. Cr and Cb are output to the color tone correction unit 38.
  • the contour correcting unit 37 performs processing for emphasizing the contour portion (the portion where the luminance change is large) of the luminance data Y.
  • the color tone correction unit 38 performs a matrix calculation of the input color difference data Cr and Cb and a color correction matrix coefficient of 2 rows ⁇ 2 columns, and performs color correction that realizes good color reproducibility. The color correction matrix coefficient is appropriately changed according to a color correction instruction input from the user.
  • the compressed image processing unit 39 is an image processing unit that compresses image data based on compression parameters.
  • the compressed image processing unit 39 of this example performs compression processing based on the brightness data Y whose contour has been corrected and the color difference data Cr and Cb whose color has been corrected, and generates compressed image data such as a JPEG format.
  • the compressed image data subjected to various image processing and image compression processing in the image processing unit 22 is output-controlled by the control unit 14 and stored in the memory 15, a reduced image is displayed on the display unit 16, and signal input / output Or output to the outside via the I / F 18.
  • the unit 39 is configured by the image processing circuit 24 of FIG.
  • noise reduction processing by the noise reduction processing unit 25 is performed at an appropriate timing.
  • the timing at which the noise reduction process is performed is not particularly limited, it is preferable that the noise reduction process is performed on data that has been subjected to various processes before the demosaic process, and after the demosaic process (the demosaic processing unit 35).
  • Arbitrary timing before the image compression process (compressed image processing unit 39) for example, “between demosaicing process and RGB / YC conversion process”, “between RGB / YC conversion process and contour correction process / tone correction process”) , “Between contour correction processing / color correction processing and image compression processing”, etc.
  • noise reduction processing is preferably performed before these processes.
  • FIG. 3 is a block diagram showing the flow of noise reduction processing.
  • the noise reduction process of the present example includes a real space filter process (S10: real space filter process step in FIG. 3) by the preceding real space filter processing unit 26 and a color space filter process (S20 by the subsequent color space filter processing unit 27). : Color space filter processing step).
  • the real space filter processing is based on the “distance in real space” between the target pixel of the plurality of pixels and the peripheral pixels arranged around the target pixel in the input image data.
  • a real space weighting coefficient for each peripheral pixel is calculated, and the pixel data of the target pixel is calculated by weighted averaging the pixel data of the target pixel and the pixel data of the peripheral pixel using the real space weighting coefficient.
  • the color space filter processing is based on the “distance on the color space” between the target pixel of the plurality of pixels and the peripheral pixels arranged around the target pixel.
  • This is a process of calculating a spatial weighting coefficient, and calculating image data of the target pixel by performing weighted averaging of the pixel data of the target pixel and the pixel data of the peripheral pixels using the color space weighting coefficient.
  • the image data input to the noise reduction processing unit 25 is subjected to the real space filtering process based on the distance in the real space, and then the color space filtering process based on the distance in the color space.
  • the noise reduction processing unit 25 outputs the noise in a reduced state.
  • the image data before being input to the noise reduction processing unit 25 and the image data after being output from the noise reduction processing unit 25 are stored and saved in the memory 15.
  • the “distance in real space” here is an index reflecting the actual distance on the image between a plurality of pixels of image data, and the pixel to be processed (target pixel) and other peripheral pixels (peripheral pixels) ) Directly or indirectly. Therefore, the actual distance between the pixels can be directly referred to as “the distance in the real space”, and the actual distance between the pixels can be calculated using another index (parameter) that represents the actual distance between the pixels.
  • An indirect representation can also be called a “distance in real space”.
  • FIG. 4 is a schematic diagram showing an arrangement example of a plurality of pixels.
  • the image data is constituted by a set of pixel data of a plurality of pixels, and this image data (each pixel data) is subjected to image processing in the real space filter processing unit 26.
  • the target pixel 50A and the “peripheral pixel 50B” in FIG. 4 are equivalent to “3 pixels”, and the distance in the real space between the target pixel 50A and the “peripheral pixel 50C” in FIG. 4 is equivalent to “5 pixels”.
  • the distance between the “peripheral pixel 50D” and the target pixel 50A in FIG. 4 corresponds to “(3 2 +3 2 ) 1/2 pixel”.
  • the peripheral pixel 50D is arranged at a position shifted by three pixels in the horizontal direction and the vertical direction with respect to the target pixel, other peripheral pixels whose distance in the real space to the target pixel is equivalent to “three pixels” ( For example, a weighting process similar to that for the pixel 50B) may be performed on the peripheral pixel 50D. In this way, the exact “distance in real space” is not necessarily used, and the real space weighting coefficient may be determined by indirectly using “distance in real space”.
  • image data luminance data Y
  • RGB / YC conversion processing see RGB / YC conversion unit 36 in FIG. 2
  • color difference data Cr, Cb color difference data
  • the real space filter processing unit 26 calculates pixel data by calculating a real space weighting coefficient and performing a weighted average on each of the input luminance data and color difference data.
  • the calculation of the real space weighting coefficient and the weighted average of the pixel data performed by the real space filter processing unit 26 of this example include edge preserving type filter processing, and in particular based on edge preserving type filter processing for image data relating to color difference.
  • the real space weighting coefficient is calculated and the weighted average of the pixel data is performed.
  • FIG. 5A and FIG. 5B exemplify real space filters used in real space filter processing.
  • FIG. 5A shows a separation type real space filter in which a horizontal one-dimensional 7-tap filter and a vertical one-dimensional seven-tap filter are combined
  • FIG. 5B shows a matrix type (two-dimensional) composed of 7 ⁇ 7 tap filters in the horizontal and vertical directions. The real space filter of is shown.
  • the real space filter shown in FIG. 5B constitutes an edge-preserving filter. That is, when the real space filter shown in FIG. 5B is used, if the absolute difference between the pixel data of the target pixel (own pixel) and the surrounding pixels is within a predetermined threshold, image data (this example) Then, an average value of color difference data) is calculated. Accordingly, peripheral pixels having a difference absolute value with respect to the pixel data of the target pixel “pixel data within a predetermined threshold” are used pixels in the real space filter processing of the pixel data of the target pixel. Peripheral pixels having a difference absolute value with respect to the pixel data “pixel data exceeding a predetermined threshold” are excluded from the use target pixels in the real space filter processing of the pixel data of the target pixel.
  • edge-preserving filters When using edge-preserving filters, compared to using simple real space filters, even if the pixel data of the pixel of interest and / or surrounding pixels contains highly impulsive noise, color bleeding at the color boundary Noise can be reduced satisfactorily while effectively suppressing occurrence of color loss.
  • edge-preserving real-space filters by combining real-space filter processing using edge-preserving real-space filters with subsequent color-space filter processing, it is possible to synergistically reduce color noise that occurs frequently during high-sensitivity shooting, and it is included in images. Edges (color boundary portions) can be well preserved.
  • a separation type real space filter shown in FIG. 5A is used for luminance data
  • a matrix type real space filter shown in FIG. 5B is used for color difference data.
  • the weighting coefficient (real space weighting coefficient: real space filter coefficient) shown in FIG. 5A is applied to the target pixel and peripheral pixels to be processed.
  • An average operation is performed. That is, with respect to the horizontal direction, the weighting coefficient for the target pixel is set to “4”, the weighting coefficient for the neighboring pixels adjacent to the position shifted by one pixel with respect to the target pixel is set to “3”, and The weighting coefficient for the peripheral pixel at a position shifted by two pixels in the horizontal direction is set to “2”, and the weighting coefficient for the peripheral pixel at a position shifted by two pixels in the horizontal direction with respect to the target pixel is set to “1”.
  • the A value obtained by dividing the product of the weighting coefficient and the luminance data (pixel value) of the corresponding pixel by the sum of the weighting coefficients is assigned as the luminance data (pixel value) of the target pixel.
  • the weighting coefficient and the weighted average are calculated for the target pixel and the surrounding pixels, and assigned as luminance data (pixel value) of the target pixel.
  • the real space filtering process for luminance data has a high effect of clarifying an edge (boundary part).
  • the configuration of the arithmetic processing circuit can be made relatively simple, while the horizontal and vertical directions including the target pixel (two-dimensional) are substantially included. ) Will be subjected to real space filtering.
  • the weighted average by the weighting coefficient (color space weighting coefficient: filter coefficient) shown in FIG. An operation is performed.
  • a value obtained by dividing the product of the data (pixel value) by the sum of the weighting coefficients is assigned as the color difference data (pixel value) of the pixel of interest.
  • the real space filter shown in FIG. 5B is configured as the above-described edge-preserving filter, and if the difference absolute value between the target pixel (own pixel) and the surrounding pixels is within a predetermined threshold, The average value of the image data (color difference data in this example) is calculated within the set range.
  • the real space filter processing unit 26 applies the real space filter processing using the filters shown in FIGS. 5A and 5B described above to luminance data and color difference data of all pixels while sequentially switching the target pixel. Thereby, the image data (luminance data and color difference data) subjected to the real space filter processing is calculated.
  • the image data (luminance data and color difference data) output from the real space filter processing unit 26 may be sent to the subsequent color space filter processing unit 27 and may also be stored in the memory 15.
  • the filter coefficients of the real space filters shown in FIGS. 5A and 5B are merely examples, and other filter coefficients may be used depending on other image processing or image data shooting conditions (ISO sensitivity, white balance correction value, etc.). It may be appropriately assigned to each of the target pixel and the peripheral pixels.
  • the real space filter shown in FIGS. 5A and 5B uses a pixel value of 7 ⁇ 7 pixels including the target pixel, a pixel value having a larger or smaller number of pixels may be used. .
  • edge-preserving real space filter is applied only to the color difference data.
  • the calculation of the real space weighting coefficient and the weighted average are performed at least for the color difference data. What is necessary is just to perform based on a filter process. Therefore, an edge-preserving real space filter as shown in FIG. 5B may be applied to the luminance data.
  • a color space based on luminance (Y) and color difference (Cb / Cr) is used, and the processing target image data input to the color space filter processing unit 27 includes luminance data and color difference data.
  • the color space filter processing unit 27 receives the luminance data and the color difference data, and calculates the pixel data by calculating the color space weighting coefficient and the weighted average for the color difference data using the luminance data.
  • the color space filter processing unit 27 uses the pixel data (luminance data, color difference data) calculated by the real space filter processing unit 26 as “pixels used for obtaining the distance in the color space between the target pixel and the surrounding pixels. Data ”and“ pixel data used for weighted averaging by color space weighting coefficients ”.
  • the pixel data (luminance data, color difference data) calculated by the real space filter processing unit 26 may be directly transmitted from the real space filter processing unit 26 to the color space filter processing unit 27, or image data after the real space filter processing. May be read from the stored memory 15 by the color space filter processing unit 27 or the control unit 14 and input to the color space filter processing unit 27.
  • 6A to 6D are conceptual diagrams illustrating an example of noise reduction processing based on the distance in the color space.
  • 6A to 6D an arbitrary processing range from a color image of Y (luminance) and Cb / Cr (color difference) (in FIG. 6A, a 5 ⁇ 5 pixel range including the central pixel of interest and surrounding pixels around it). A case is shown in which image data (pixel data) is extracted.
  • FIG. 6B shows an example of all the pixels (5 ⁇ 5 pixels) in the extracted processing range plotted on the Y / Cb / Cr color space.
  • the extracted processing range is a flat image (the brightness, hue, and saturation of each pixel are the same)
  • the data plotted on the color space varies in a form similar to a normal distribution. Assuming this variation as noise, reducing the variation reduces the noise. Since the noise has a variation similar to the normal distribution in the color space, the data density is highest at the center of the variation, and the data density decreases as the distance from the variation center increases.
  • the center pixel of the extracted processing range is set as the target pixel (target pixel), and the distance in the color space between the target pixel and all the pixels (including the target pixel) in the processing range is calculated ( (See FIG. 6C).
  • a weighting coefficient (color space weighting coefficient: color space filter coefficient) corresponding to the distance in the color space is obtained for each of all the pixels (5 ⁇ 5 pixels), and the obtained weighting coefficient is obtained. Is used to calculate the image data of the pixel of interest by performing weighted averaging of the image data (pixel data) of all the pixels (5 ⁇ 5 pixels).
  • the image data plotted on the color space is divided into a plurality of pixel groups (a plurality of catalogs).
  • the pixel of interest belongs to a certain pixel group
  • the pixels constituting the pixel group are close to the pixel of interest and the weighting coefficient is large, and the pixels constituting the other pixel group are far from the pixel of interest.
  • the weighting factor is reduced.
  • the weighted average image data (pixel data) of the pixel of interest is not smoothed, and the edges are held well.
  • each pixel data is distributed with a large variation in the color space.
  • FIGS. 6A to 6D the pixel of interest appears as described above. This shows that noise reduction can be performed while suppressing variations in the whole by moving closer to the direction of high frequency.
  • FIG. 7 is a diagram showing the relationship between the real space filter processing and the color space filter processing
  • FIG. 8 is a diagram showing the flow of calculating the color space filter coefficient.
  • the input image data (luminance data Y, color difference data Cb, Cr) is subjected to real space filter processing in the real space filter processing unit 26 (S10 in FIG. 7), and is output to the color space filter processing unit 27.
  • the color space filter processing unit 27 performs color space filter processing (S20). Specifically, the color space filter coefficient is calculated from the image data (luminance data Y, color difference data Cb, Cr) input to the color space filter processing unit 27 (S21). The weighted average processing of the filter coefficients in the color space is performed (S22).
  • the step (S21) of calculating the color space filter coefficient is a step (S211 in FIG. 8) of calculating the distance in the color space for each of the luminance data and the color difference data, and the color space relating to the luminance data and the color difference data.
  • a step of calculating a weighted sum of the distances (S212), and a step of obtaining a weight (color space filter coefficient) according to the weighted sum of the distances in the color space regarding the luminance data and the color difference data (S213).
  • Y / Cb / Cr image data of a predetermined processing area centered on the target pixel (a processing area of 5 ⁇ 5 pixels in FIGS. 6A to 6D) is used, and the target pixel, its surrounding pixels,
  • the distances d y , d cb and d cr on the Y / Cb / Cr color space are calculated by the above equations (1) to (3).
  • an absolute value (difference absolute value: distance in the color space) of the difference between the pixel data of the target pixel (own pixel) and the pixel data of the surrounding pixels is obtained.
  • the distance d y in a color space related to Y are multiplied by the coefficient a for the absolute value of the difference of the Y image data (luminance data) is determined, with respect to the absolute value of the difference between the Cb image data (color difference data) Is multiplied by a coefficient B to obtain a distance d cb in Cb relating to the color space, and the absolute value of the difference between the Cr image data (color difference data) is multiplied by a coefficient C to obtain a distance d in the color space relating to Cr. cr is determined.
  • the distance calculation circuit calculates a weighted sum of distances in the color space related to the luminance data and the color difference data according to the above equation (4) (S212). That, Y / Cb / Cr distance d y in the calculated Y / Cb / Cr color space for each of the image data, d cb, the sum of d cr is determined, and the coefficient X is multiplied by the sum, peripheral A distance Dc in the Y / Cb / Cr color space with respect to the target pixel of the pixel is obtained.
  • the coefficients A, B, C, and X used in the above equations (1) to (4) are values that determine the weight of each pixel data, and are individually determined based on a specific device, photographing environment, and the like. It can be a set design value. For example, in the color space filter processing, when the influence of Y (luminance) is emphasized, the value of the coefficient A in the expression (1) is relatively large, and when the influence of Cb (color difference) is emphasized, the expression The value of the coefficient B in (2) becomes relatively large, and when the influence of Cr (color difference) is emphasized, the value of the coefficient C in Expression (3) becomes relatively large.
  • a step (S213) of obtaining a weight (color space filter filter coefficient) corresponding to the weighted sum Dc of the distance in the color space regarding the luminance data and the color difference data is performed in the weight coefficient calculation circuit of the color space filter processing unit 27. Is called.
  • FIG. 9 is an example of a graph showing the relationship between the distance in the color space and the weighting coefficient.
  • the X axis shows the distance in the color space (evaluation value: the calculation result Dc according to formula (4)), and the Y axis shows The filter coefficient (weight of an object pixel) for color space filters is shown.
  • the weighting coefficient calculation circuit is configured so that the weighting coefficient (color space filter filter coefficient) of the peripheral pixel that is close to the target pixel in the color space is large, and the peripheral pixel that is far away.
  • the weighting coefficient is derived so that the weighting coefficient becomes smaller.
  • the distances d y , d cb , d cr , Dc on the color space calculated by the above formulas (1) to (4) are all regarded as “0”.
  • the largest weighting coefficient is assigned to the own pixel. Note that the weighting coefficient assigned to the own pixel may be set to “0”, and the pixel value of the own pixel may be determined from the pixel data of peripheral pixels other than the own pixel.
  • the weighting coefficient calculation circuit stores a function of “distance in color space (evaluation value) ⁇ weighting coefficient (filter coefficient)” as shown in the graph of FIG. 9, and substitutes the distance in color space into this function.
  • the weighting coefficient may be calculated, or a lookup table (LUT) storing the input / output relationship shown in the graph of FIG. 9 is provided, and the weighting coefficient corresponding to the distance in the color space is read from this LUT. May be.
  • a series of these processes is performed for each of the target pixel of interest and all of the peripheral pixels (5 ⁇ 5 pixels in FIGS. 6A to 6D), and for the color space filter for the target pixel and each of the peripheral pixels.
  • a filter coefficient is calculated.
  • the weighted average processing circuit of the color space filter processing unit 27 performs weighted average processing based on the filter coefficient in the color space for the color difference (Cb, Cr) data using the calculated color space filter filter coefficient ( S22). That is, the weighted average processing circuit performs weighted averaging of the image data (color difference pixel value) of each pixel using the weighting coefficients of the target pixel and the surrounding pixels calculated by the weighting coefficient calculation circuit, and the pixel after the noise removal processing of the target pixel Calculate the value.
  • the weighted average processing circuit calculates the following formula: I do.
  • the distance calculation circuit, the weighting coefficient calculation circuit, and the weighted average processing circuit included in the color space filter processing unit 27 move all the pixels of the color image (image data) while moving the position (x, y) of the pixel of interest on the image. Process. As a result, the color space filter processing unit 27 calculates image data relating to the color difference (Cb, Cr).
  • image data (luminance data / color difference data) input to the noise reduction processing unit 25 undergoes real space filter processing and color space filter processing, and luminance data and color after processing in the real space filter processing unit 26 are processed.
  • the color difference data after processing in the spatial filter processing unit 27 is output from the noise reduction processing unit 25.
  • the Y / Cb / Cr image data subjected to noise reduction processing in the noise reduction processing unit 25 is compressed into predetermined compressed image data (for example, JPEG format) (see the compressed image processing unit 39 in FIG. 2). Recording on a recording medium is performed.
  • predetermined compressed image data for example, JPEG format
  • the real space filtering process including the “edge-preserving filtering process” is performed prior to the color space filtering process. Then, color space filtering processing is performed at a later stage using the image data (pixel data) subjected to the edge preserving type real space filtering processing.
  • edge-preserving real space filtering and “color space filtering”, it is possible to increase the noise reduction effect while maintaining good edge preservation.
  • the pixels used in the color space filter processing unit 27 are described.
  • the pixel data of the target pixel may be pixel data calculated by the real space filter processing unit.
  • pixel data of the pixel of interest is input to the real space filter processing unit 26.
  • the “pixel data of surrounding pixels” may be pixel data constituting image data before being input to the real space filter processing unit 26.
  • pixel data of the target pixel is a pixel calculated from the image data input by the real space filter processing unit 26.
  • pixel data of surrounding pixels may be pixel data constituting image data before being input to the real space filter processing unit 26.
  • the pixel data constituting the image data before being input to the real space filter processing unit 26 is stored in the memory 15 and can be acquired by being appropriately read from the memory 15 by the control unit 14 or the color space filter processing unit 27. It is.
  • the peripheral pixels that are the target of the pixel data used in each of the real space filter processing unit 26 and the color space filter processing unit 27 are adjacent to each other (7 ⁇ 7 pixels, 5 ⁇ 5 pixels). Pixel), the real space filter processing unit 26, and the color space filter processing unit 27 are adjacent to at least one of the target pixel and other peripheral pixels that are the target of the pixel data used.
  • the peripheral pixels are not necessarily adjacent to each other, and peripheral pixels arranged in a discrete manner may be used.
  • FIG. 10 is a diagram illustrating another arrangement example of the pixel of interest and the peripheral pixels in the color space filter processing unit 27.
  • each peripheral pixel 50E that is the target of the pixel data used in the color space filter processing unit 27 is the target pixel 50A that is the target of the pixel data used in the color space filter processing unit 27 and any of the other peripheral pixels 50E. Not adjacent.
  • the color space filter processing can be performed based on a wide range of image data while suppressing the calculation amount of the color space filter processing. Since color components (including color difference components) in image data generally tend to be low frequency components, color space filter processing of image data relating to color components is performed based on a wide range of image data as shown in FIG. Thus, a further excellent noise reduction effect can be expected.
  • the color space is based on luminance / color difference (Y / Cb / Cr) data.
  • the color space may be defined by other color elements.
  • the color space based on RGB is May be used.
  • each of the RGB image data is input to the real space filter processing unit 26 and the color space filter processing unit 27, and the real space filter processing and the color space filter processing are performed on each of the RGB image data.
  • the color space filter processing unit 27 preferably performs the color space filter processing based on the sum of the distances in the color space for all the RGB colors.
  • the noise reduction processing may be performed either before or after the demosaic processing (see the demosaic processing unit 35 in FIG. 2).
  • the noise reduction process after the demosaic process can simplify the processing process.
  • image data related to luminance may be further used in addition to image data related to RGB color.
  • the real space filter processing unit 26 calculates the real space weighting coefficient and the weighted average of the pixel data for at least the color-related image data among the image data related to the luminance Y and the image data related to the color. Based on processing.
  • the color space filter processing unit 27 obtains a distance in the color space from the pixel data of the target pixel and the surrounding pixels using the image data regarding the RGB color and the image data regarding the luminance Y calculated by the real space filter processing unit 26.
  • a weighted average process based on this distance can be performed.
  • the color space filter processing is performed using luminance data, thereby effectively suppressing variation in data among RGB and reducing noise. be able to.
  • the peripheral pixel range is not limited to this range, and image data is captured. Any one of a plurality of processing ranges having different sizes may be selected based on the acquired shooting mode, shooting conditions, and the like. For example, when shooting with high sensitivity, the gain of the image signal is increased and noise increases, so the processing range selection circuit selects a large processing range as the processing range including the target pixel and surrounding pixels during high sensitivity shooting. It is preferable to do so.
  • the processing range selection circuit uses a processing range selection circuit as a processing range including the target pixel and surrounding pixels in order to reduce the amount of image processing. It is preferable to select a small processing range.
  • the color space filter processing unit 27 can perform both “color space filter processing of RGB data based on RGB color space” and “color space filter processing of luminance data / color difference data based on YCbCr color space”. . That is, RGB data space filter processing based on the RGB color space is performed before RGB / YC conversion processing (see the RGB / YC conversion unit 36 in FIG. 2), and “YCbCr color space after RGB / YC conversion processing”. The luminance data / color difference data color space filtering process based on the above "may be performed. In this way, noise having different characteristics can be effectively reduced by performing noise reduction processing in different color spaces.
  • the color space filter processing unit 27 may set a different weighting coefficient for each color channel. For example, since color noise becomes conspicuous during high-sensitivity shooting, the color space filter processing unit 27 may make the weighting coefficient for the color difference data Cb and Cr during high-sensitivity shooting larger than that during normal shooting. On the other hand, when edge enhancement processing is performed on luminance data, noise in the luminance data increases. Therefore, during normal shooting, the weighting coefficient for luminance data may be larger than the weighting coefficient for color difference data.
  • weighting coefficients may be calculated so that weighting coefficients for peripheral pixels having a medium distance are emphasized with emphasis on peripheral pixels having a medium distance in the color space.
  • Uniformly distributed noise can be reduced by increasing the weighting of the pixel values of neighboring pixels (including the target pixel) whose distance in the color space is a short distance.
  • the noise reduction effect can be reduced.
  • the color space filter processing unit 27 may include a non-linear conversion circuit that performs non-linear conversion.
  • the non-linear conversion circuit causes relatively weak noise to remain in the image data, while relatively strong noise is applied to the image data. Can be removed from. That is, in the non-linear conversion circuit, the image data before the color space filter processing (original image data) and the image data after the color space filter processing (processed image data) are subtracted to generate noise. A difference value (subtraction value) representing the component is calculated. Of the difference value, a portion representing weak noise having a relatively small value is not output, and only a portion representing strong noise having a relatively large value is output from the nonlinear conversion circuit.
  • the output value from the nonlinear conversion circuit may be applied to the original image data in the subtraction circuit so that only a strong noise component is subtracted from the original image data. In this way, by leaving relatively weak noise components in the image data, image details can be left, and relatively strong noise components that are visually noticeable are removed from the image data.
  • the digital camera has been described, but the configuration of the photographing apparatus is not limited to this.
  • an imaging apparatus imaging apparatus
  • a built-in or external PC camera or a portable terminal apparatus having an imaging function can be used.
  • the present invention can also be applied to a program that causes a computer to execute the above-described processing steps.
  • image data RAW data, compressed image data, etc.
  • a computer to which the present invention is applied including a computer in which a program for executing each processing step is installed
  • the computer described above Noise reduction processing or the like is performed.
  • Examples of portable terminal devices including the image processing device of the present invention include mobile phones, smartphones, PDAs (Personal Digital Assistants), and portable game machines.
  • FIG. 11 shows the appearance of a smartphone 101 that is an embodiment of the imaging apparatus of the present invention.
  • a smartphone 101 illustrated in FIG. 11 includes a flat housing 102, and a display input in which a display panel 121 as a display unit and an operation panel 122 as an input unit are integrated on one surface of the housing 102. Part 120 is provided.
  • the housing 102 includes a speaker 131, a microphone 132, an operation unit 140, and a camera unit 141. Note that the configuration of the housing 102 is not limited to this, and, for example, a configuration in which the display unit and the input unit are independent, or a configuration having a folding structure or a slide mechanism may be employed.
  • FIG. 12 is a block diagram showing a configuration of the smartphone 101 shown in FIG.
  • the main components of the smartphone include a wireless communication unit 110, a display input unit 120, a call unit 130, an operation unit 140, a camera unit 141, a storage unit 150, and an external input / output unit. 160, a GPS (Global Positioning System) receiving unit 170, a motion sensor unit 180, a power supply unit 190, and a main control unit 100.
  • a wireless communication function for performing mobile wireless communication via the base station apparatus BS and the mobile communication network NW is provided.
  • the radio communication unit 110 performs radio communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 100. Using such wireless communication, transmission / reception of various file data such as audio data and image data, e-mail data, and reception of Web data, streaming data, and the like are performed.
  • the display input unit 120 displays images (still images and moving images), character information, and the like visually under the control of the main control unit 100, visually transmits information to the user, and detects user operations on the displayed information.
  • This is a so-called touch panel, and includes a display panel 121 and an operation panel 122.
  • the display panel 121 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • the operation panel 122 is a device that is placed so that an image displayed on the display surface of the display panel 121 is visible and detects one or more coordinates operated by a user's finger or stylus. When the device is operated with a user's finger or stylus, a detection signal generated due to the operation is output to the main control unit 100. Next, the main control unit 100 detects an operation position (coordinates) on the display panel 121 based on the received detection signal.
  • the display panel 121 and the operation panel 122 of the smartphone 101 illustrated as an embodiment of the imaging apparatus of the present invention integrally constitute the display input unit 120.
  • the arrangement 122 covers the display panel 121 completely.
  • the operation panel 122 may also have a function of detecting a user operation for an area outside the display panel 121.
  • the operation panel 122 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 121 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 121. May be included).
  • the operation panel 122 may include two sensitive regions of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 102 and the like.
  • examples of the position detection method employed in the operation panel 122 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method. You can also
  • the call unit 130 includes a speaker 131 and a microphone 132, converts user's voice input through the microphone 132 into voice data that can be processed by the main control unit 100, and outputs the voice data to the main control unit 100, or a wireless communication unit. 110 or the audio data received by the external input / output unit 160 is decoded and output from the speaker 131.
  • the speaker 131 can be mounted on the same surface as the surface on which the display input unit 120 is provided, and the microphone 132 can be mounted on the side surface of the housing 102.
  • the operation unit 140 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 140 is mounted on the side surface of the housing 102 of the smartphone 101 and is turned on when pressed with a finger or the like, and is turned off when the finger is released with a restoring force such as a spring. It is a push button type switch.
  • the storage unit 150 includes a control program and control data of the main control unit 100, application software, address data that associates the name and telephone number of a communication partner, transmitted and received e-mail data, Web data downloaded by Web browsing, The downloaded content data is stored, and streaming data and the like are temporarily stored.
  • the storage unit 150 includes an internal storage unit 151 with a built-in smartphone and an external storage unit 152 having a removable external memory slot.
  • each of the internal storage unit 151 and the external storage unit 152 constituting the storage unit 150 includes a flash memory type, a hard disk type, a multimedia card micro type, a multimedia card micro type, This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • a card type memory for example, MicroSD (registered trademark) memory
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the external input / output unit 160 serves as an interface with all external devices connected to the smartphone 101, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network.
  • external devices for example, universal serial bus (USB), IEEE 1394, etc.
  • a network for example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark, etc.) for direct or indirect connection.
  • a wired / wireless headset As an external device connected to the smartphone 101, for example, a wired / wireless headset, wired / wireless external charger, wired / wireless data port, memory card (Memory card) or SIM (Subscriber) connected via a card socket, for example.
  • Identity Module Card / UIM User Identity Module Card
  • external audio / video equipment connected via audio / video I / O (Input / Output) terminal
  • external audio / video equipment connected wirelessly yes / no
  • the external input / output unit may transmit data received from such an external device to each component inside the smartphone 101 or may transmit data inside the smartphone 101 to the external device. .
  • the GPS receiving unit 170 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 100, executes positioning calculation processing based on the received plurality of GPS signals, and calculates the latitude and longitude of the smartphone 101. , Detect the position consisting of altitude.
  • the GPS receiving unit 170 can acquire position information from the wireless communication unit 110 or the external input / output unit 160 (for example, a wireless LAN), the GPS receiving unit 170 can also detect the position using the position information.
  • the motion sensor unit 180 includes, for example, a triaxial acceleration sensor and detects the physical movement of the smartphone 101 in accordance with an instruction from the main control unit 100. By detecting the physical movement of the smartphone 101, the moving direction and acceleration of the smartphone 101 are detected. The detection result is output to the main control unit 100.
  • the power supply unit 190 supplies power stored in a battery (not shown) to each unit of the smartphone 101 in accordance with an instruction from the main control unit 100.
  • the main control unit 100 includes a microprocessor, operates according to a control program and control data stored in the storage unit 150, and controls each unit of the smartphone 101 in an integrated manner.
  • the main control unit 100 includes a mobile communication control function for controlling each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 110.
  • the application processing function is realized by the main control unit 100 operating according to the application software stored in the storage unit 150.
  • Application processing functions include, for example, an infrared communication function that controls the external input / output unit 160 to perform data communication with the opposite device, an e-mail function that transmits and receives e-mails, and a web browsing function that browses web pages. .
  • the main control unit 100 also has an image processing function such as displaying video on the display input unit 120 based on image data (still image or moving image data) such as received data or downloaded streaming data.
  • the image processing function is a function in which the main control unit 100 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 120.
  • the main control unit 100 executes display control for the display panel 121 and operation detection control for detecting a user operation through the operation unit 140 and the operation panel 122.
  • the main control unit 100 By executing display control, the main control unit 100 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail.
  • a software key such as a scroll bar, or a window for creating an e-mail.
  • the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 121.
  • the main control unit 100 detects a user operation through the operation unit 140, or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 122. Or a display image scroll request through a scroll bar.
  • the main control unit 100 causes the operation position with respect to the operation panel 122 to overlap with the display panel 121 (a display area) or an outer edge part (a non-display area) that does not overlap with the other display panel 121.
  • a touch panel control function for controlling the sensitive area of the operation panel 122 and the display position of the software key.
  • the main control unit 100 can also detect a gesture operation on the operation panel 122 and execute a preset function according to the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the camera unit 141 is a digital camera that performs electronic photography using an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) and a CCD (Charge-Coupled Device). Further, the camera unit 141 converts the image data obtained by imaging into compressed image data such as JPEG (Joint Photographic Coding Experts Group) under the control of the main control unit 100, and records the data in the storage unit 150 or enters it. The data can be output through the output unit 160 or the wireless communication unit 110. As shown in FIG. 11, in the smartphone 101, the camera unit 141 is mounted on the same surface as the display input unit 120, but the mounting position of the camera unit 141 is not limited to this, and is mounted on the back surface of the display input unit 120. Alternatively, a plurality of camera units 141 may be mounted. When a plurality of camera units 141 are installed, the camera unit 141 used for shooting can be switched to shoot alone, or a plurality of camera units 141 can be used for shooting simultaneously.
  • the camera unit 141 can be used for various functions of the smartphone 101.
  • an image acquired by the camera unit 141 can be displayed on the display panel 121, and the image of the camera unit 141 can be used as one of operation inputs of the operation panel 122.
  • the GPS receiving unit 170 detects the position
  • the position can also be detected with reference to an image from the camera unit 141.
  • the optical axis direction of the camera unit 141 of the smartphone 101 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment.
  • the image from the camera unit 141 can also be used in the application software.
  • the position information acquired by the GPS receiver 170 on the image data of the still image or the moving image the voice information acquired by the microphone 132 (the voice text may be converted by the main control unit or the like to become text information), Posture information and the like acquired by the motion sensor unit 180 can be added and recorded in the storage unit 150 or output through the input / output unit 160 and the wireless communication unit 110.
  • SYMBOLS 10 ... Imaging device, 11 ... Imaging part, 12 ... Lens, 13 ... Imaging element, 14 ... Control part, 15 ... Memory, 16 ... Display part, 17 ... Operation part, 18 ... Signal input / output I / F, 22 ... Image Processing unit 24 ... Image processing circuit 25 ... Noise reduction processing unit 26 ... Real space filter processing unit 27 ... Color space filter processing unit 31 ... Linear preprocessing unit 32 ... WB correction unit 33 ... Exposure correction unit , 34 ... ⁇ correction unit, 35 ... demosaic processing unit, 36 ... RGB / YC conversion unit, 37 ... contour correction unit, 38 ... color tone correction unit, 39 ... compressed image processing unit, 100 ...
  • main control unit 101 ... smartphone, DESCRIPTION OF SYMBOLS 102 ... Case, 110 ... Wireless communication part, 120 ... Display input part, 121 ... Display panel, 122 ... Operation panel, 130 ... Call part, 131 ... Speaker, 132 ... Microphone, 140 ... Operation part, 141 Camera unit, 150 ... storage unit, 151 ... internal storage unit, 152 ... external storage, 160 ... external input and output unit, 170 ... GPS receiver, 180 ... motion sensor unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

 色境界部(エッジ)における色滲み等の不具合を防ぎつつ、画像ノイズを低減する技術を提供する。実空間フィルタ処理ステップS10と色空間フィルタ処理ステップS20とを含む画像処理方法において、実空間フィルタ処理ステップS10では実空間上での距離に基づくフィルタ処理が行われ、色空間フィルタ処理ステップS20では実空間上での距離に基づくフィルタ処理が行われる。実空間フィルタ処理ステップS10は、エッジ保存型のフィルタ処理に基づいており、色空間フィルタ処理ステップS20において用いられる注目画素の画素データは、実空間フィルタ処理ステップS10において算出された画素データである。

Description

画像処理装置及び画像処理方法
 本発明は画像処理装置及び画像処理方法に係り、特に、画像のエッジを保存しつつノイズを低減させる技術に関する。
 カメラ等の撮像デバイスの分野において、撮像素子(CCD、CMOS等)を介して取得されるデジタル画像データにはノイズ成分が含まれることがあり、このノイズ成分を取り除く様々な手法が提案されている。
 例えば特許文献1は、RGBのカラー画像に対してノイズ低減処理を施す画像処理装置を開示する。この画像処理装置では、注目画素とその周辺画素とのRGB色空間上の距離が算出され、色空間上の距離に応じて各周辺画素に対する重み付け係数が算出され、注目画素を含む周辺画素の画像データを加重平均処理して注目画素の画素値が算出される。
 また特許文献2は、画像からノイズを除去する画質改善装置を開示する。この画像改善装置では、画像データにおける色チャネル間の共分散データを計算し、この共分散データと、所定ノイズの色チャネル間の共分散データとにより、ノイズにより劣化していない原画像とのk次元色空間における平均二乗誤差が最小となるフィルタが導出され、この導出されたフィルタによってノイズ低減処理が行われる。
 また特許文献3には、基準値バッファに記録された基準値を利用してノイズ除去を行う画像処理装置が開示されている。この画像処理装置では、入力画素値に対する重み演算により出力画素値が決定される。
特開2007-288439号公報 特開2002-222416号公報 特開平10-112803号公報
 上述のように、ノイズの低減・除去に関する様々な手法が提案されているが、各手法によるノイズの低減効果にはバラツキがあり、ノイズレベルが比較的大きい(高い)場合等には、必ずしも良好なノイズ低減効果が得られるとは限らない。
 例えば特許文献1には、ローパスフィルタ処理が行われた後に色空間上の距離が算出される画像処理方法が開示されているが、単純にローパスフィルタを施すだけでは、ノイズ低減効果に関しては有効であるものの、エッジの保存性が悪くなる場合がある。特にノイズレベルが大きい場合には、画像の色境界部分において色滲み(ぼけ)や色抜け等の不具合が発生してしまうことがある。
 また特許文献2の画像改善装置においても、レベルの大きなノイズが画像データに含まれる場合、画像信号成分とノイズ成分との分離性能が悪くなる。この結果、特許文献2の画像改善装置を用いる場合には、強いノイズが残り、また色境界部分において色滲みが発生する懸念がある。
 また特許文献3の画像処理装置では、入力画素値及び基準値のみに基づいて重みの平均化が行われるため、奏されるノイズ低減の効果がそもそも低い。
 したがって、レベルの大きなノイズ成分が画像データに含まれる場合であっても、色境界部分における色滲み等を防いで画像本来のエッジ(境界部)鮮鋭度を保持しつつ、画像ノイズを効果的に除去する新たな技術の提案が望まれている。
 本発明は上述の事情に鑑みてなされたものであり、色滲み等の不具合を防ぎながら画像ノイズを低減する技術を提供することを目的とする。
 本発明の一態様は、複数の画素の画素データの集合から構成される画像データを処理する画像処理装置であって、入力される画像データにおいて、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との実空間上での距離に基づき各周辺画素に対する実空間重み付け係数を算出し、この実空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画素データを算出する実空間フィルタ処理部と、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との色空間上での距離に基づき各周辺画素に対する色空間重み付け係数を算出し、この色空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画素データを算出する色空間フィルタ処理部と、を備え、実空間フィルタ処理部が行う実空間重み付け係数の算出及び画素データの加重平均は、エッジ保存型のフィルタ処理に基づいており、色空間フィルタ処理部において用いられる画素データのうち少なくとも注目画素の画素データは、実空間フィルタ処理部によって算出された画素データである画像処理装置に関する。
 本態様によれば、前段でエッジ保存型のフィルタ処理に基づく実空間フィルタ処理が行われ、後段で色空間フィルタ処理が行われる。したがって、エッジ保存型のフィルタ処理により色滲み等の不具合を防いでエッジ(色境界部分)が良好に保存された状態で、色空間フィルタ処理によって画像ノイズを低減することができる。
 なお、ここでいう「実空間」とは、画像データ上の画素配置関係に基づく空間を意味し、「実空間上での距離」とは、画像データの複数画素間の実際の距離を反映する指標であって、処理対象の画素(注目画素)と他の周辺の画素(周辺画素)との距離を直接的又は間接的に示す。したがって、画像上における画素間の実距離を直接的に「実空間上の距離」と言うこともできるし、画素間の実際の距離を表す他の指標(パラメータ)を用いて画素間の実際の距離を間接的に表したものを「実空間上の距離」と言うこともできる。例えば画素単位で実空間上の距離を表すことができ、注目画素に隣接する周辺画素は注目画素に対して「1画素相当」の実空間上の距離を有すると表現することができる。
 また、ここでいう「色空間」とは、立方的に記述される色の空間であり、代表的な色空間として「R/G/B」や「Y/Cb/Cr」に基づく色空間が挙げられる。また「色空間上での距離」とは、画像データの複数画素間の色を基準とした分離度を反映する指標であって、処理対象の画素(注目画素)と他の周辺の画素(周辺画素)との色に関する近似度を直接的又は間接的に示す。したがって、色空間上における距離を直接的に「色空間上の距離」と言うこともできるし、色空間上の距離を表す他の指標(パラメータ)を用いて画素間の色の近似度・分離度を間接的に表したものを「色空間上の距離」と言うこともできる。例えば、色空間を定める要素(RGB色空間におけるR/G/B各要素、YCbCr色空間におけるY/Cb/Cr各要素)に関し、注目画素の画素データと周辺画素の画素データとの差分絶対値の2乗の総和を求め、この総和の平方根を「色空間上の距離」と表現してもよい。また、色空間を定める要素毎に重み付けしたものを「色空間上の距離」と表現してもよい。また、注目画素の画素データと周辺画素の画素データとの差分絶対値を、2乗することなく、色空間を定める要素間でそのまま足し合わせたものを「色空間上の距離」と表現してもよい。また、色空間を定める要素毎に注目画素の画素データと周辺画素の画素データとの差分絶対値を求めて、その差分絶対値を2乗することなく、色空間を定める要素毎に差分絶対値の重み付けをし、色空間を定める要素間で重み付けした差分絶対値を足し合わせたものを「色空間上の距離」と表現してもよい。さらに、これらの色空間上の距離に所定の係数を掛けて得られる値(重み付けした値)を「色空間上の距離」と表現してもよい。
 また、ここでいう「エッジ保存型のフィルタ処理」とは、画像のエッジ(色境界部分)を良好に保持するフィルタリング処理を意味する。例えば、注目画素と周辺画素との画素データの差分絶対値が所定の閾値以内にあれば、その集合の範囲で画像データ(本例では色差データ)の平均値が算出される処理が、ここでいう「エッジ保存型のフィルタ処理」に含まれる。また、画像のエッジ(色境界部分)を良好に保持可能な他の処理が「エッジ保存型のフィルタ処理」に含まれうる。
 望ましくは、画像データは、色に関する画像データを含み、実空間フィルタ処理部は、色に関する画像データに対し、実空間重み付け係数の算出及び画素データの加重平均をエッジ保存型のフィルタ処理に基づいて行う。
 本態様によれば、色に関する画像データにエッジ保存型の実空間フィルタ処理が施されるため、色滲み等を防いでエッジを良好に保持した状態で画像ノイズを低減することができる。なお、ここでいう「色に関する画像データ」として、例えばRGBの画像データを用いることができる。
 望ましくは、画像データは、輝度に関する画像データ及び色差に関する画像データを含み、実空間フィルタ処理部は、輝度に関する画像データ及び色差に関する画像データのうち少なくとも色差に関する画像データに対し、実空間重み付け係数の算出及び画素データの加重平均をエッジ保存型のフィルタ処理に基づいて行う。
 本態様によれば、少なくとも色差に関する画像データにエッジ保存型の実空間フィルタ処理が施されるため、色滲み等を防いでエッジを良好に保持した状態で画像ノイズを低減することができる。なお、ここでいう「色差に関する画像データ」として、例えばCr/Cbの画像データを用いることができる。
 望ましくは、色空間フィルタ処理部が注目画素と周辺画素との色空間上での距離を求めるために用いる画素データのうち、注目画素の画素データは、実空間フィルタ処理部が算出した画素データであり、周辺画素の画素データは、実空間フィルタ処理部に入力される前の画像データを構成する画素データである。
 本態様によれば、実空間フィルタ処理を受けた注目画素の画素データと、実空間フィルタ処理を受けていない周辺画素の画素データとに基づいて、色空間フィルタ処理部は注目画素と周辺画素との色空間上での距離を求める。この場合にも、色滲み等の不具合を防いでエッジ(色境界部分)が良好に保存された状態で、色空間フィルタ処理によって画像ノイズを低減することができる。
 望ましくは、色空間フィルタ処理部が色空間重み付け係数による加重平均のために用いる画素データのうち、注目画素の画素データは、実空間フィルタ処理部が算出した画素データであり、周辺画素の画素データは、実空間フィルタ処理部に入力される前の画像データを構成する画素データである。
 本態様によれば、実空間フィルタ処理を受けた注目画素の画素データと、実空間フィルタ処理を受けていない周辺画素の画素データとに基づいて、色空間フィルタ処理部は色空間重み付け係数による加重平均演算を行う。この場合にも、色滲み等の不具合を防いでエッジ(色境界部分)が良好に保存された状態で、色空間フィルタ処理によって画像ノイズを低減することができる。
 望ましくは、色空間フィルタ処理部は、実空間フィルタ処理部が算出した画素データを用いて、注目画素と周辺画素との色空間上での距離を求めて色空間重み付け係数による加重平均を行う。
 本態様によれば、実空間フィルタ処理を受けた注目画素の画素データ及び周辺画素の画素データに基づいて、色空間フィルタ処理部における色空間フィルタ処理が行われるため、非常に効果的に、エッジ保存及びノイズ低減を行うことができる。
 望ましくは、実空間フィルタ処理部及び色空間フィルタ処理部の各々において用いられる画素データの対象となる周辺画素は、実空間フィルタ処理部及び色空間フィルタ処理部の各々において用いられる画素データの対象となる注目画素及び他の周辺画素のうち少なくともいずれかに隣接する。
 本態様によれば、相互に隣接する注目画素及び周辺画素の画素データに基づいて、実空間フィルタ処理及び色空間フィルタ処理が行われる。隣接画素の画素データを用いることによって、簡単且つ効果的に、実空間フィルタ処理及び色空間フィルタ処理を行うことが可能である。
 望ましくは、色空間フィルタ処理部において用いられる画素データの対象となる周辺画素は、色空間フィルタ処理部において用いられる画素データの対象となる注目画素及び他の周辺画素のいずれとも隣接しない。
 本態様によれば、相互に離間配置された注目画素及び周辺画素の画素データに基づいて、色空間フィルタ処理が行われる。離間配置された画素の画素データを用いることによって、比較的広範囲の画素の画素データを活用することができる。
 望ましくは、色空間は、RGBに基づく。
 本態様によれば、RGB色空間上での距離に基づいて色空間フィルタ処理を行うことができる。
 望ましくは、色空間は、輝度及び色差に基づく。
 本態様によれば、輝度/色差(Y/Cb/Cr等)色空間上での距離に基づいて色空間フィルタ処理を行うことができる。
 望ましくは、実空間フィルタ処理部は、輝度に関する画像データ及び色差に関する画像データが入力され、輝度に関する画像データ及び色差に関する画像データの各々に対し、実空間重み付け係数の算出及び加重平均を行って画素データを算出し、色空間フィルタ処理部は、輝度に関する画像データ及び色差に関する画像データが入力され、この輝度に関する画像データを用いて、色差に関する画像データに対し、色空間重み付け係数の算出及び加重平均を行って画素データを算出し、画像処理装置は、実空間フィルタ処理部において算出された画素データに基づく輝度に関する画像データと、色空間フィルタ処理部において算出された画素データに基づく色差に関する画像データとを出力する。
 本態様によれば、輝度及び色差に関する画像データが実空間フィルタ処理部に入力されると、実空間フィルタ処理部において画像処理された輝度データに関する画像データが画像処理装置から出力され、また実空間フィルタ処理部及び色空間フィルタ処理部において画像処理された色差に関する画像データが画像処理装置から出力される。これにより、色滲み等を防いで画像エッジが良好に保存された状態で画像ノイズが低減された画像データを得ることができる。
 本発明の別の態様は、複数の画素の画素データの集合から構成される画像データを処理する画像処理方法であって、入力される画像データにおいて、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との実空間上での距離に基づき各周辺画素に対する実空間重み付け係数を算出し、この実空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画素データを算出する実空間フィルタ処理ステップと、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との色空間上での距離に基づき各周辺画素に対する色空間重み付け係数を算出し、この色空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画素データを算出する色空間フィルタ処理ステップと、を備え、実空間フィルタ処理ステップで行われる実空間重み付け係数の算出及び画素データの加重平均は、エッジ保存型のフィルタ処理に基づいており、色空間フィルタ処理ステップにおいて用いられる画素データのうち少なくとも注目画素の画素データは、実空間フィルタ処理ステップにおいて算出された画素データである画像処理方法に関する。
 本発明によれば、実空間フィルタ処理において、実空間重み付け係数の算出及び画素データの加重平均が「エッジ保存型のフィルタ処理」を含むため、画像の境界部(エッジ部)を良好に保存しながら実空間フィルタ処理を行うことができる。これにより、画像境界部が良好な状態で保存された画像データを元にして色空間フィルタ処理が行われるため、色滲み等の不具合を防ぎながら画像ノイズを効果的に低減することができる。
本発明を撮像デバイス(デジタルカメラ)に適用した一例を示す機能ブロック図である。 画像処理部におけるデジタル処理の一例を示す機能ブロック図である。 ノイズリダクション処理の流れを示すブロック図である。 複数の画素の配置例を示す模式図である。 実空間フィルタ処理において用いられる実空間フィルタを例示するものであって、水平1次元7タップフィルタと垂直1次元7タップフィルタとが組み合わされた分離型の実空間フィルタを示す。 実空間フィルタ処理において用いられる実空間フィルタを例示するものであって、水平垂直方向の7×7タップフィルタから成る行列型(2次元)の実空間フィルタを示す。 色空間上での距離に基づくノイズ低減処理の一例を示す概念図である。 色空間上での距離に基づくノイズ低減処理の一例を示す概念図である。 色空間上での距離に基づくノイズ低減処理の一例を示す概念図である。 色空間上での距離に基づくノイズ低減処理の一例を示す概念図である。 実空間フィルタ処理及び色空間フィルタ処理の関係を示す図である。 色空間フィルタ用フィルタ係数の算出の流れを示す図である。 色空間上の距離と重み付け係数との関係を示すグラフの一例である。 色空間フィルタ処理部における注目画素及び周辺画素の他の配置例について示す図である。 スマートフォンの外観図である。 スマートフォンの構成を示すブロック図である。
 以下、添付図面を参照して本発明の実施形態について説明する。なお、下記の構成は例示に過ぎず、各構成は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。
 本発明は、色境界部における色滲み等を防ぎつつ画像ノイズを低減する技術に関し、画像データからノイズを低減・除去する処理が可能な機器類全般に適用可能である。したがって、例えばカメラ等の撮像デバイス、撮像デバイスが接続されるコンピュータ、或いはコンピュータにインストールされるソフトウェア(以下の処理工程(手順)をコンピュータに実行させるためのプログラム)によっても本発明は実現可能である。このソフトウェア(プログラム等)はROMなどのコンピュータ読み取り可能な非一時的記録媒体(non-transitory computer-readable medium)に記録されてもよい。
 図1は、本発明を撮像デバイス(デジタルカメラ)に適用した一例を示す機能ブロック図であって、特にノイズリダクション処理(ノイズ低減処理)に関わるブロックを示す図である。
 撮像デバイス10は、相互に接続された撮像部11、画像処理部(画像処理装置)22、制御部14、メモリ15、表示部(液晶ディスプレー等)16、操作部17及び信号入出力I/F(インターフェース)18を備える。
 撮像部11は、被写体の撮像によって撮像データ(画像データ)を取得する部位であり、レンズ12及び撮像素子(CCD、CMOS等)13等を含んで構成される。撮像素子13は、複数の受光素子が画素単位で2次元配置された構成を有する。
 画像処理部22は、撮像部11において撮像取得された画像データに対して画質向上のための画像処理や画像データの圧縮処理を行う。本例では特に、WB(ホワイトバランス)調整処理等の各種処理を行う画像処理回路24に加え、画像データに含まれる画像ノイズを低減・除去するノイズリダクション処理部25が画像処理部22に設けられる。ノイズリダクション処理部25は、画像データに実空間フィルタ処理を行う実空間フィルタ処理部26と色空間フィルタ処理を行う色空間フィルタ処理部27とを有する。
 画像処理部22における画像処理の詳細については後述するが、本例では、まず色空間フィルタ処理の前段のプリフィルタ処理として実空間フィルタ処理が行われ、この実空間フィルタ処理後に色空間フィルタ処理が行われる。単純に実空間フィルタでのみ色差ノイズの低減を行おうとする場合、色の境界で色滲み(ぼけ)や色抜けが生じる懸念がある。一方、単純に色空間上でフィルタ処理して色差ノイズの低減を図る場合に、色滲みや色抜けを抑えようとすると、肝腎のノイズ低減の度合いが弱まってしまう。例えば、対象画素が強いノイズ成分を含む場合、対象画素と周辺画素との色空間上の距離が大きいため、色空間上でフィルタ処理してもノイズ成分が十分に低減されず、画像ノイズとして残存してしまう可能性がある。
 そこで、以下の実施形態では、まず前段において実空間フィルタ処理を行うことで、強度の強いノイズ成分が除去される。これにより、後段の色空間フィルタ処理によるノイズ低減効果を増大させることができ、また実空間フィルタ処理のみでは得られない色滲みや色抜けの抑制といった効果を得ることもできる。
 実空間フィルタ処理及び色空間フィルタ処理を含む画像処理方法の詳細については後述する(図3等参照)。
 図1に示されるメモリ15は、画像データや各種処理に使用するプログラムやデータを保存するデータ保存領域であり、また各種処理時の演算等のために用いられるバッファ領域としても活用されうる。
 表示部16及び操作部17は、ユーザーインタフェースを構成する。表示部16は、各種の表示をユーザーに提示し、ユーザーは、操作部17を介して各種の操作指示信号を送ることができる。したがって、ユーザーは、表示部16に示される情報を確認しながら操作部17を介して制御部14に操作指示信号を送信し、撮像部11、画像処理部22、メモリ15、表示部16、信号入出力I/F18等における各種処理をコントロールすることができる。
 信号入出力I/F18は、撮像デバイス10と外部機器類との間のデータ入出力インターフェースを構成する。したがって、撮像部11によって撮像取得された画像データ(RAWデータ、画像処理後の画像データ、等)は、信号入出力I/F18を介して外部機器類に出力可能である。
 制御部14は、撮像デバイス10を構成する各種機器類を統括的に制御する部位であり、CPU(中央処理装置)や他の周辺回路によって構成される。したがって、撮像部11の撮像処理、画像処理部22の画像処理、メモリ15に対する書き込み処理・読み出し処理、表示部16における表示処理、操作部17からの操作信号の処理、信号入出力I/F18を介した入出力処理、等の各種処理は、制御部14によって統括的に制御される。
 次に、画像処理部22における具体的な画像処理例について説明する。
 図2は、画像処理部22におけるデジタル処理の一例を示す機能ブロック図である。
 撮像部11で撮像生成された撮像データ(RAWデータ)は、例えば14ビットのR(赤)、G(緑)、B(青)の色データを含み、画像処理部22のリニア前処理部31にR、G、Bの点順次で加えられる。R、G、BのRAWデータは、リニア前処理部31にてオフセット調整、16ビット化、シェーディング補正といったリニアデータに対する前処理が行われる。
 リニア前処理部31から出力されたR、G、Bデータは、ホワイトバランス(WB)補正部32に出力される。WB補正部32は、R、G、Bデータ毎にホワイトバランス補正用のゲイン値Rg、Gg、Bgを掛けることにより、ホワイトバランス補正を行う。ここで、ホワイトバランス補正用のゲイン値Rg、Gg、Bgは、RAWデータを解析して、例えば光源種(太陽光、蛍光灯、タングステン電球等)を特定し、その光源種に対応して予め記憶されているゲイン値Rg、Gg、Bgに設定され、あるいはホワイトバランス補正を行うメニュー画面上で手動選択された光源種や色温度に対応するゲイン値Rg、Gg、Bgに設定される。
 WB補正部32から出力されたR、G、Bデータは、露出補正部33に加えられる。露出補正部33は、手動による露出補正値(例えば、-3EV~+3EV)の指示入力に応じて通常露出(露出補正をしない場合の露出)に対して露出をアンダーに補正(減感処理)、あるいはオーバーに補正(増感処理)する。
 露出補正部33から出力されたR、G、Bデータは、ガンマ(γ)補正部34に出力され、ここで、リニアデータを、sRGB、AdobeRBG、scRGBといった色空間の階調データに変換する。ガンマ補正されたR、G、Bデータは、デモザイク処理部(同時化処理部)35に出力される。
 デモザイク処理部35は、撮像素子におけるカラーフィルタの配列に伴うR、G、Bデータの空間的なズレを補間してR、G、Bデータを同時式に変換する処理を行い、デモザイク(同時化)したR、G、BデータをRGB/YC変換部36に出力する。
 RGB/YC変換部36は、R、G、Bデータを輝度データ(輝度信号)Y、色差データ(色差信号)Cr、Cbに変換し、輝度データYを輪郭補正部37に出力し、色差データCr、Cbを色調補正部38に出力する。輪郭補正部37は、輝度データYの輪郭部(輝度変化の大きい部分)を強調する処理を行う。色調補正部38は、入力する色差データCr、Cbと、2行×2列の色補正マトリクス係数とのマトリクス演算を行い、良好な色再現性を実現させる色補正を行う。色補正マトリクス係数は、ユーザーからの色補正の指示入力に応じて適宜変更される。
 圧縮画像処理部39は、画像データを圧縮パラメータに基づいて圧縮する画像処理部である。本例の圧縮画像処理部39は、輪郭補正された輝度データY及び色調補正された色差データCr、Cbに基づいて圧縮処理を行い、JPEGフォーマット等の圧縮画像データを生成する。
 画像処理部22において各種画像処理及び画像圧縮処理が行われた圧縮画像データは、制御部14によって出力制御され、メモリ15に記憶されたり、表示部16に縮小画像が表示されたり、信号入出力I/F18を介して外部に出力されたりする。
 なお、これらのリニア前処理部31、WB補正部32、露出補正部33、γ補正部34、デモザイク処理部35、RGB/YC変換部36、輪郭補正部37、色調補正部38、圧縮画像処理部39は、図1の画像処理回路24によって構成される。
 本例では、上述の各種画像処理に加え、ノイズリダクション処理部25によるノイズリダクション処理が適切なタイミングで行われる。ノイズリダクション処理が行われるタイミングは、特に限定されないが、デモザイク処理前の各種処理が施されたデータに対してノイズリダクション処理が行われることが好ましく、デモザイク処理(デモザイク処理部35)後であって画像圧縮処理(圧縮画像処理部39)前の任意のタイミング(例えば、「デモザイク処理とRGB/YC変換処理との間」、「RGB/YC変換処理と輪郭補正処理/色調補正処理との間」、「輪郭補正処理/色調補正処理と画像圧縮処理との間」等)で、ノイズリダクション処理を行うことが可能である。特に、輝度データに基づく輪郭補正処理(輪郭補正部37)や色差データに基づく色調補正(色調補正部38)等が行われる場合には、これらの処理によってノイズが強調される可能性があるため、これらの処理前にノイズリダクション処理が行われることが好ましい。
 <ノイズリダクション処理>
 次に、ノイズリダクション処理について説明する。
 図3は、ノイズリダクション処理の流れを示すブロック図である。本例のノイズリダクション処理は、前段の実空間フィルタ処理部26による実空間フィルタ処理(図3のS10:実空間フィルタ処理ステップ)と、後段の色空間フィルタ処理部27による色空間フィルタ処理(S20:色空間フィルタ処理ステップ)とを含む。
 実空間フィルタ処理は、入力される画像データにおいて、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との「実空間上での距離」に基づいて、注目画素及び各周辺画素に対する実空間重み付け係数を算出し、この実空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画素データを算出する処理である。
 一方、色空間フィルタ処理は、複数の画素のうちの注目画素とこの注目画素の周辺に配置される周辺画素との「色空間上での距離」に基づいて、注目画素及び各周辺画素に対する色空間重み付け係数を算出し、この色空間重み付け係数を用いて注目画素の画素データ及び周辺画素の画素データを加重平均して注目画素の画像データを算出する処理である。
 したがって、ノイズリダクション処理部25に入力される画像データは、実空間上での距離に基づく実空間フィルタ処理を受けた後に、色空間上での距離に基づく色空間フィルタ処理を受けることで、画像ノイズの低減された状態でノイズリダクション処理部25から出力される。
 なお、ノイズリダクション処理部25に入力される前の画像データ及びノイズリダクション処理部25から出力された後の画像データは、メモリ15に記憶保存される。
 <実空間フィルタ処理>
 次に、実空間フィルタ処理の詳細について説明する。
 ここでいう「実空間上の距離」とは、画像データの複数画素間の画像上における実際の距離を反映する指標であり、処理対象の画素(注目画素)と他の周辺の画素(周辺画素)との距離を直接的又は間接的に示す。したがって、画素間の実際の距離を直接的に「実空間上の距離」と言うこともできるし、画素間の実際の距離を表す他の指標(パラメータ)を用いて画素間の実際の距離を間接的に表したものを「実空間上の距離」と言うこともできる。
 図4は、複数の画素の配置例を示す模式図である。画像データは複数の画素の画素データの集合によって構成され、この画像データ(各画素データ)が実空間フィルタ処理部26において画像処理される。
 実空間フィルタ処理部26において処理の基準となる「実空間上の距離」に関し、例えば図4において注目画素を「50A」で表した場合、注目画素50Aと図4の「周辺画素50B」との実空間上の距離は「3画素」相当となり、注目画素50Aと図4の「周辺画素50C」との実空間上の距離は「5画素」相当になる。
 また、例えば図4の「周辺画素50D」と注目画素50Aとの距離は厳密には「(3+31/2画素」に相当する。ただし、周辺画素50Dは注目画素に対して水平方向及び垂直方向に3画素ずれた位置に配置されることから、注目画素に対する実空間上の距離が「3画素」相当である他の周辺画素(例えば画素50B)と同様の重み付け処理をこの周辺画素50Dに対して行うようにしてもよい。このように、厳密な「実空間上での距離」が必ずしも用いられる必要はなく、「実空間上での距離」を間接的に用いて実空間重み付け係数が決められてもよい。
 次に、実空間フィルタ処理の具体例について、処理対象の画像データが、RGB/YC変換処理(図2のRGB/YC変換部36参照)により得られる輝度に関する画像データ(輝度データY)と色差に関する画像データ(色差データCr、Cb)とを含む場合について説明する。
 実空間フィルタ処理部26は、入力される輝度データ及び色差データの各々に対して、実空間重み付け係数の算出及び加重平均を行って画素データを算出する。
 本例の実空間フィルタ処理部26が行う実空間重み付け係数の算出及び画素データの加重平均は、エッジ保存型のフィルタ処理を含み、特に色差に関する画像データに対し、エッジ保存型のフィルタ処理に基づいて実空間重み付け係数の算出及び画素データの加重平均を行う。
 図5A及び図5Bは、実空間フィルタ処理において用いられる実空間フィルタを例示するものである。図5Aは水平1次元7タップフィルタと垂直1次元7タップフィルタとが組み合わされた分離型の実空間フィルタを示し、図5Bは水平垂直方向の7×7タップフィルタから成る行列型(2次元)の実空間フィルタを示す。
 これら実空間フィルタのうち、図5Bに示す実空間フィルタはエッジ保存型のフィルタを構成する。すなわち、図5Bに示す実空間フィルタを用いた場合、注目画素(自画素)と周辺画素との画素データの差分絶対値が所定の閾値以内にあれば、その集合の範囲で画像データ(本例では色差データ)の平均値が算出される。したがって、注目画素の画素データとの差分絶対値が「所定の閾値以内にある画素データ」を有する周辺画素は、注目画素の画素データの実空間フィルタ処理における使用対象画素となるが、注目画素の画素データとの差分絶対値が「所定の閾値を超える画素データ」を有する周辺画素は、注目画素の画素データの実空間フィルタ処理における使用対象画素から外される。
 エッジ保存型のフィルタを用いると、単純な実空間フィルタを用いる場合と比べ、注目画素及び/又は周辺画素の画素データがインパルス性の強いノイズを含む場合であっても、色境界での色滲みや色抜けの発生を効果的に抑えつつ、ノイズを良好に低減することができる。特に、エッジ保存型の実空間フィルタによる実空間フィルタ処理を後段の色空間フィルタ処理と組み合わせることで、高感度撮影時に多く発生する色ノイズを相乗的に低減することができ、また画像に含まれるエッジ(色境界部分)を良好に保存することもできる。
 本例では、輝度データに対しては図5Aに示す分離型の実空間フィルタが用いられ、色差データに対しては図5Bに示す行列型の実空間フィルタが用いられる。
 例えば図5Aに示す分離型の実空間フィルタを輝度データに適用する場合、処理対象の注目画素と周辺画素とに対して図5Aに示す重み付け係数(実空間重み付け係数:実空間フィルタ係数)による加重平均演算が行われる。すなわち水平方向に関して、注目画素に対する重み付け係数が「4」に設定され、注目画素に対して1画素分ずれた位置に隣接する周辺画素に対する重み付け係数が「3」に設定され、注目画素に対して水平方向に2画素分ずれた位置の周辺画素に対する重み付け係数が「2」に設定され、注目画素に対して水平方向に2画素分ずれた位置の周辺画素に対する重み付け係数が「1」に設定される。これらの重み付け係数と対応の画素の輝度データ(画素値)との積を、重み付け係数の総和で割った値が注目画素の輝度データ(画素値)として割り当てられる。同様に、垂直方向に関しても注目画素と周辺画素に対する重み付け係数の算出及び加重平均の算出が行われ、注目画素の輝度データ(画素値)として割り当てられる。輝度データに対する実空間フィルタ処理は、エッジ(境界部)を明確にする効果が高い。
 水平1次元フィルタ及び垂直1次元フィルタの両フィルタによる演算を組み合わせることで、演算処理回路の構成を比較的シンプルにすることができる一方で、実質的には注目画素を含む水平垂直方向(2次元)に関して実空間フィルタ処理が行われることになる。
 一方、図5Bに示す行列型の実空間フィルタを色差データに適用する場合、処理対象の注目画素と周辺画素とに対して図5Bに示す重み付け係数(色空間重み付け係数:フィルタ係数)による加重平均演算が行われる。図5Bに示す例では、注目画素を含むM×M画素(本例ではM=7)のすべてに対して重み付け係数が「1」に設定されており、これらの重み付け係数と対応の画素の色差データ(画素値)との積を、重み付け係数の総和で割った値が注目画素の色差データ(画素値)として割り当てられる。
 特に本例では、上述のエッジ保存型のフィルタとして図5Bに示す実空間フィルタが構成されており、注目画素(自画素)と周辺画素との差分絶対値が所定の閾値以内にあれば、その集合の範囲で画像データ(本例では色差データ)の平均値が算出される。
 実空間フィルタ処理部26は、上述の図5A及び図5Bに示されるフィルタを用いた実空間フィルタ処理を、注目画素を順次切り替えながら、全画素の輝度データ及び色差データに適用する。これにより、実空間フィルタ処理が施された画像データ(輝度データ及び色差データ)が算出される。実空間フィルタ処理部26から出力される画像データ(輝度データ及び色差データ)は、後段の色空間フィルタ処理部27に送られ、またメモリ15にも保存されてもよい。
 なお、上述の実空間フィルタ処理は例示に過ぎず、実空間上の距離に基づく他の処理が実空間フィルタ処理部26において行われてもよい。例えば図5A及び図5Bに示す実空間フィルタのフィルタ係数は一例に過ぎず、他の画像処理や画像データの撮影条件(ISO感度、ホワイトバランス補正値等)等に応じて、他のフィルタ係数が注目画素及び周辺画素の各々に適宜割り当てられてもよい。また、図5A及び図5Bに示す実空間フィルタは注目画素を含む7×7画素の画素値を使用しているが、より多くの若しくはより少ない画素数の画素値を使用するようにしてもよい。
 また、上述の例では色差データに対してのみエッジ保存型の実空間フィルタが適用される例について説明したが、少なくとも色差データに対して、実空間重み付け係数の算出及び加重平均をエッジ保存型のフィルタ処理に基づいて行えばよい。したがって、輝度データに対しても、図5Bに示すようなエッジ保存型の実空間フィルタが適用されてもよい。
 <色空間フィルタ処理>
 次に、色空間フィルタ処理の具体例について説明する。
 本例では、輝度(Y)及び色差(Cb/Cr)に基づく色空間が用いられ、色空間フィルタ処理部27に入力される処理対象の画像データは輝度データと色差データとを含む。色空間フィルタ処理部27は、輝度データ及び色差データが入力され、輝度データを用いて、色差データに対し、色空間重み付け係数の算出及び加重平均を行って画素データを算出する。
 すなわち、色空間フィルタ処理部27は、実空間フィルタ処理部26が算出した画素データ(輝度データ、色差データ)を、「注目画素と周辺画素との色空間上での距離を求めるために用いる画素データ」及び「色空間重み付け係数による加重平均のために用いる画素データ」として用いる。実空間フィルタ処理部26が算出した画素データ(輝度データ、色差データ)は、実空間フィルタ処理部26から色空間フィルタ処理部27に直接送信されてもよいし、実空間フィルタ処理後の画像データが保存されたメモリ15から色空間フィルタ処理部27や制御部14によって読み出されて色空間フィルタ処理部27に入力されてもよい。
 まず図6Aから図6Dを参照して、色空間フィルタ処理の概念について説明する。
 図6Aから図6Dは、色空間上での距離に基づくノイズ低減処理の一例を示す概念図である。図6Aから図6Dでは、Y(輝度)、Cb/Cr(色差)のカラー画像から任意の処理範囲(図6Aでは、中央の注目画素及びその周りの周辺画素を含む5×5画素の範囲)の画像データ(画素データ)が取り出されたケースが示されている。
 図6Bは、この取り出された処理範囲の全画素(5×5画素)を、Y/Cb/Cr色空間上にプロットしたものの一例を示す。
 仮に、取り出された処理範囲が平坦な画像(各画素の明るさ、色相、彩度がそれぞれ同一)であるとすると、色空間上にプロットされるデータは、正規分布に似た形にばらつく。このバラツキをノイズと想定すると、バラツキを小さくすることがノイズを低減させることになる。ノイズが色空間上で正規分布に似たバラツキを持つことから、バラツキの中心において最もデータの密度が高くなり、バラツキの中心から離れるほどデータの密度が低くなる。
 これを踏まえ、取り出された処理範囲の中心画素を注目画素(対象画素)とし、注目画素と、処理範囲内の全ての画素(注目画素も含む)との色空間上の距離が計算される(図6C参照)。
 そして、色空間上の距離が注目画素に近い周辺画素ほど有用であると考え、その周辺画素の画素データに対する重み付けを大きくする。このようにして、全ての画素(5×5画素)の各々に対して色空間上での距離に応じた重み付け係数(色空間重み付け係数:色空間フィルタ係数)が求められ、求められた重み付け係数を用いて全画素(5×5画素)の画像データ(画素データ)を加重平均することで、注目画素の画像データを算出する。
 これにより、注目画素の画像データを色空間上において密度の高い方に近づけることができる。このような色空間フィルタ処理を全ての画素に対して同様に適用することで、色空間上における画像全体のバラツキを小さくして、ノイズを低減することができる(図6D)。
 なお、上記処理範囲がエッジ上にある場合、色空間上にプロットされる画像データは、複数の画素群(複数のカタマリ)に分かれる。注目画素が、ある画素群に属する場合には、その画素群を構成する画素は注目画素と距離が近いため重み付け係数が大きくなり、その他の画素群を構成する画素は注目画素から距離が遠いため重み付け係数が小さくされる。その結果、加重平均された注目画素の画像データ(画素データ)は平滑されず、エッジが良好に保持される。
 例えば高感度撮影時などは画像ノイズが多く発生するため、色空間上でのばらつきが大きい状態で各画素データは分布されるが、図6Aから図6Dは、上述のようにして注目画素を出現頻度の高い方向に近づけることで、全体のばらつきを抑えてノイズ低減を行うことできることを表している。
 次に、色空間フィルタ処理の具体的な処理例について説明する。
 図7は、実空間フィルタ処理と色空間フィルタ処理の関係を示す図であり、図8は色空間フィルタ用フィルタ係数の算出の流れを示す図である。
 入力画像データ(輝度データY、色差データCb、Cr)は、実空間フィルタ処理部26において実空間フィルタ処理を受け(図7のS10)、色空間フィルタ処理部27に出力される。
 色空間フィルタ処理部27では、色空間フィルタ処理が行われる(S20)。具体的には、色空間フィルタ処理部27に入力された画像データ(輝度データY、色差データCb、Cr)から色空間フィルタ用フィルタ係数が算出され(S21)、この色空間フィルタ用フィルタ係数が用いられて色空間上におけるフィルタ係数の加重平均処理が行われる(S22)。
 色空間フィルタ用フィルタ係数の算出するステップ(S21)は、輝度データ及び色差データの各々について色空間上における距離が算出される工程(図8のS211)と、輝度データ及び色差データに関する色空間上の距離の加重和が算出される工程(S212)と、輝度データ及び色差データに関する色空間上の距離の加重和に応じた重み付け(色空間フィルタ用フィルタ係数)が求められる工程(S213)とを含む。
 これらのS211~S233の一例について、以下の式(1)~(4)を参照して説明する。
<式(1)>
=|自画素のYデータ画素値-周辺画素のYデータ画素値|×係数A
<式(2)>
cb=|自画素のCbデータ画素値-周辺画素のCbデータ画素値|×係数B
<式(3)>
cr=|自画素のCrデータ画素値-周辺画素のCrデータ画素値|×係数C
<式(4)>
Dc=係数X×(d+dcb+dcr
 輝度データ及び色差データの各々に関して色空間上における距離を算出する工程(S211)は、色空間フィルタ処理部27の距離算出回路によって行われる。具体的には、注目画素を中心とする所定の処理領域(図6Aから図6Dでは5×5画素の処理領域)のY/Cb/Crの画像データが使用され、注目画素とその周辺画素とのY/Cb/Cr色空間上の距離d、dcb、dcrが、上記式(1)~式(3)によって算出される。
 すなわち、Y/Cb/Crの画像データの各々に関して、注目画素(自画素)の画素データと周辺画素の画素データとの差の絶対値(差分絶対値:色空間上の距離)が求められ、Y画像データ(輝度データ)の差の絶対値に対しては係数Aが掛けられてYに関する色空間上の距離dが求められ、Cb画像データ(色差データ)の差の絶対値に対しては係数Bが掛けられてCbに関する色空間上の距離dcbが求められ、Cr画像データ(色差データ)の差の絶対値に対しては係数Cが掛けられてCrに関する色空間上の距離dcrが求められる。
 そして、距離算出回路は、上記式(4)によって、輝度データ及び色差データに関する色空間上の距離の加重和を算出する(S212)。すなわち、Y/Cb/Crの画像データの各々に関して算出したY/Cb/Cr色空間上の距離d、dcb、dcrの和が求められ、この和に係数Xが掛け合わされて、周辺画素の注目画素に対するY/Cb/Cr色空間上の距離Dcが求められる。
 なお、上式(1)~式(4)において用いられる係数A、B、C及びXは、各画素データの重みを決める値であり、具体的な装置や撮影環境等に基づいて個別的に定められる設計値としうる。例えば、色空間フィルタ処理において、Y(輝度)の影響を重視する場合には式(1)における係数Aの値が相対的に大きくなり、またCb(色差)の影響を重視する場合には式(2)における係数Bの値が相対的に大きくなり、またCr(色差)の影響を重視する場合には式(3)における係数Cの値が相対的に大きくなる。また、色空間フィルタ処理における、これらの画像データ(輝度データ/色差データ)全体の影響を重視する場合には、式(4)における係数Xの値が相対的に大きくなる。一方、各画素データの重みの影響を低減させる場合には、これらの係数A、B、C及びXのうちの対応する係数が相対的に小さくなる。
 そして、輝度データ及び色差データに関する色空間上の距離の加重和Dcに応じた重み付け(色空間フィルタ用フィルタ係数)を求める工程(S213)が、色空間フィルタ処理部27の重み付け係数算出回路において行われる。
 図9は、色空間上の距離と重み付け係数との関係を示すグラフの一例であり、X軸は色空間上の距離(評価値:式(4)による算出結果Dc)を示し、Y軸は色空間フィルタ用のフィルタ係数(対象画素の重み)を示す。
 図9に示されるように、重み付け係数算出回路は、注目画素との色空間上の距離が近い周辺画素の重み付け係数(色空間フィルタ用フィルタ係数)は大きくなるように、また距離が遠い周辺画素の重み付け係数は小さくなるように、重み付け係数を導出する。なお、自画素の重み付け係数を求める場合、上式(1)~式(4)によって算出される色空間上の距離d、dcb、dcr、Dcはいずれも「0」とみなされ、自画素に最も大きな重み付け係数が割り当てられる。なお、自画素に割り当てる重み付け係数を「0」として、自画素以外の周辺画素の画素データから自画素の画素値が決められるようにしてもよい。
 重み付け係数算出回路は、図9のグラフに示すような「色空間上の距離(評価値)-重み付け係数(フィルタ係数)」の関数を記憶し、この関数に色空間上の距離を代入して重み付け係数を算出するようにしてもよいし、図9のグラフに示す入出力関係を記憶したルックアップテーブル(LUT)を備え、このLUTから色空間上の距離に対応する重み付け係数を読み出すようにしてもよい。
 これらの一連のプロセスが、対象とする注目画素及び周辺画素の全画素(図6Aから図6Dでは5×5画素)の各々に対して行われ、注目画素及び各周辺画素に対する色空間フィルタ用のフィルタ係数が算出される。
 色空間フィルタ処理部27の加重平均処理回路は、算出された色空間フィルタ用フィルタ係数を用いて、色差(Cb、Cr)データに対し、色空間上におけるフィルタ係数に基づく加重平均処理を行う(S22)。すなわち、加重平均処理回路は、重み付け係数算出回路によって算出した注目画素及び周辺画素の重み付け係数を用いて各画素の画像データ(色差画素値)を加重平均し、注目画素のノイズ除去処理後の画素値を算出する。注目画素の画像上の位置を(x、y)として、図6Aから図6Dに示すように5×5画素を色空間フィルタ処理の対象画素とする場合、加重平均処理回路は、次式の演算を行う。
 <式(5)>
Figure JPOXMLDOC01-appb-M000001
 色空間フィルタ処理部27が有する上記距離算出回路、重み付け係数算出回路及び加重平均処理回路は、注目画素の画像上の位置(x、y)を移動させながら、カラー画像(画像データ)の全画素にわたって処理を行う。これにより、色空間フィルタ処理部27において色差(Cb、Cr)に関する画像データが算出される。
 上述のように、ノイズリダクション処理部25に入力される画像データ(輝度データ/色差データ)は実空間フィルタ処理及び色空間フィルタ処理を経て、実空間フィルタ処理部26における処理後の輝度データ及び色空間フィルタ処理部27における処理後の色差データがノイズリダクション処理部25から出力される。
 ノイズリダクション処理部25においてノイズの低減処理が行われたY/Cb/Crの画像データは、所定の圧縮画像データ(例えば、JPEG形式)に圧縮され(図2の圧縮画像処理部39参照)、記録媒体への記録等が行われる。
 以上説明したように本実施形態によれば、色空間フィルタ処理に先立って「エッジ保存型のフィルタリング処理」を含む実空間フィルタ処理が行われる。そして、そのエッジ保存型の実空間フィルタリング処理された画像データ(画素データ)を使って後段で色空間フィルタリング処理が行われる。「エッジ保存型の実空間フィルタ処理」及び「色空間フィルタ処理」を組み合わせることで、エッジの保存性を良好に維持しつつ、ノイズ低減の効果を増大することができる。
 <変形例>
 以上、本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、他の形態に対しても適宜応用可能である。
 例えば、上述の実施形態では、色空間フィルタ処理部27において用いられる画素データとして実空間フィルタ処理部によって算出された画素データが用いられる例について説明したが、色空間フィルタ処理部27において用いられる画素データのうち、少なくとも注目画素の画素データが、実空間フィルタ処理部によって算出された画素データであればよい。
 したがって、色空間フィルタ処理部27が注目画素と周辺画素との色空間上での距離を求めるために用いる画素データのうち、「注目画素の画素データ」は、実空間フィルタ処理部26が入力される画像データから算出した画素データであるが、「周辺画素の画素データ」は、実空間フィルタ処理部26に入力される前の画像データを構成する画素データであってもよい。
 また、色空間フィルタ処理部27が色空間重み付け係数による加重平均のために用いる画素データのうち、「注目画素の画素データ」は、実空間フィルタ処理部26が入力される画像データから算出した画素データであるが、「周辺画素の画素データ」は、実空間フィルタ処理部26に入力される前の画像データを構成する画素データであってもよい。
 このように、周辺画素の画素データとして、実空間フィルタ処理部26に入力される前の画像データを構成する画素データを使用することで、画像本来のディテールを維持するのに効果があるという側面がある。なお、実空間フィルタ処理部26に入力される前の画像データを構成する画素データは、メモリ15に保存され、制御部14や色空間フィルタ処理部27によってメモリ15から適宜読み出されることで取得可能である。
 また上述の実施形態では、実空間フィルタ処理部26及び色空間フィルタ処理部27の各々において用いられる画素データの対象となる周辺画素は、相互に隣接しており(7×7画素、5×5画素)、実空間フィルタ処理部26及び色空間フィルタ処理部27の各々において用いられる画素データの対象となる注目画素及び他の周辺画素のうち少なくともいずれかに隣接する。しかしながら、周辺画素は必ずしも相互に隣接する必要はなく、離散配置された周辺画素が用いられてもよい。
 図10は、色空間フィルタ処理部27における注目画素及び周辺画素の他の配置例について示す図である。図10では、中央の注目画素50Aと周辺画素50Eとが、7×7(=49)画素によって構成されており、水平方向及び垂直方向に並置される注目画素と周辺画素は5画素相当離間して配置される。したがって、色空間フィルタ処理部27において用いられる画素データの対象となる各周辺画素50Eは、色空間フィルタ処理部27において用いられる画素データの対象となる注目画素50A及び他の周辺画素50Eのいずれとも隣接しない。
 離散配置された周辺画素を用いることによって、色空間フィルタ処理の演算量を抑えつつ、広範囲の画像データに基づいて色空間フィルタ処理を行うことができる。画像データにおける色成分(色差成分を含む)は、一般に低周波成分となる傾向があるため、図10に示すような広範囲にわたる画像データに基づいて色成分に関する画像データの色空間フィルタ処理を行うことで、より一層優れたノイズ低減効果を期待することができる。
 また上述の実施形態では、色空間が輝度/色差(Y/Cb/Cr)データに基づく場合について説明したが、色空間は他の色要素によって定められてもよく、例えばRGBに基づく色空間が用いられてもよい。この場合、実空間フィルタ処理部26及び色空間フィルタ処理部27には、RGBの各々の画像データが入力され、RGBの各々の画像データに対して実空間フィルタ処理及び色空間フィルタ処理が施されることが好ましい。またこの場合、色空間フィルタ処理部27は、RGBの全ての色に関する色空間上の距離の総和に基づいて色空間フィルタ処理を行うことが好ましい。このようにRGBデータの画像処理を行う場合にも、RGB間でのデータのばらつきを抑えることができ、色ノイズ及び輝度ノイズを効果的に低減することができる。
 RGBの画像データが実空間フィルタ処理部26及び色空間フィルタ処理部27に入力される場合、ノイズリダクション処理はデモザイク処理(図2のデモザイク処理部35参照)の前後いずれで行われてもよいが、デモザイク処理後にノイズリダクション処理を行うほうが処理プロセスを単純化することができる。
 なお、実空間フィルタ処理部26及び色空間フィルタ処理部27における処理対象がRGBの画像データの場合、RGBの色に関する画像データに加えて、輝度に関する画像データが更に用いられてもよい。この場合、実空間フィルタ処理部26は、輝度Yに関する画像データ及び色に関する画像データのうち少なくとも色に関する画像データに対して、実空間重み付け係数の算出及び画素データの加重平均をエッジ保存型のフィルタ処理に基づいて行う。また色空間フィルタ処理部27は、実空間フィルタ処理部26が算出したRGBの色に関する画像データ及び輝度Yに関する画像データを用いて、注目画素及び周辺画素の画素データから色空間上の距離を求めて、この距離に基づく加重平均処理を行うことができる。このように色差データの代わりにRGBデータの画像処理を行う場合にも、輝度データを用いて色空間フィルタ処理を行うことで、RGB間でのデータのばらつきを効果的に抑えてノイズを低減することができる。
 また、上述の実施形態では周辺画素の範囲が5×5画素又は7×7画素に設定される例について説明したが、周辺画素の範囲はこの範囲に限定されるものではなく、画像データを撮像取得する撮影モードや撮影条件等に基づいて、大きさの異なる複数の処理範囲のうちのいずれかの処理範囲が選択されるようにしてもよい。例えば高感度で撮影する場合には、画像信号のゲインがアップされてノイズが大きくなるため、処理範囲選択回路によって、高感度撮影時には注目画素及び周辺画素を含む処理範囲として大きな処理範囲が選択されるようにすることが好ましい。このように処理範囲を大きくすることで、広範囲の周辺画素の情報に基づいて注目画素のノイズ低減処理が行われるため、大きなノイズ低減効果を期待することができる。一方、連写モード等のように処理スピードを速くする場合や低消費電力モードの場合には、画像処理量を減少させるために、処理範囲選択回路によって、注目画素及び周辺画素を含む処理範囲として小さな処理範囲が選択されるようにすることが好ましい。
 また、上述の実施形態では単一の色空間(YCbCr色空間又はRGB色空間)に基づく色空間フィルタ処理が行われる例について説明したが、複数タイプの色空間フィルタ処理が組み合わされてもよい。例えば、色空間フィルタ処理部27は、「RGB色空間に基づくRGBデータの色空間フィルタ処理」及び「YCbCr色空間に基づく輝度データ/色差データの色空間フィルタ処理」の両処理を行うことができる。すなわち、RGB/YC変換処理(図2のRGB/YC変換部36参照)の前にRGB色空間に基づくRGBデータの色空間フィルタ処理」が行われ、RGB/YC変換処理の後に「YCbCr色空間に基づく輝度データ/色差データの色空間フィルタ処理」が行われてもよい。このように、異なる色空間のノイズ低減処理を行うことで、特性の異なるノイズを効果的に低減することができる。
 また、色空間フィルタ処理部27は、色チャンネル毎に異なる重み付け係数を設定するようにしてもよい。例えば高感度撮影時には色ノイズが顕著になるため、色空間フィルタ処理部27は、高感度撮影時の色差データCb、Crに対する重み付け係数が通常撮影時よりも大きくなるようにしてもよい。一方、輝度データに対してエッジ強調処理が行われると、輝度データのノイズが大きくなるため、通常撮影時には、輝度データに対する重み付け係数が、色差データに対する重み付け係数よりも大きくなるようにしてもよい。
 また、色空間フィルタ処理において、色空間上の距離が中距離にある周辺画素を重視し、中距離の周辺画素に対する重み付け係数が大きくなるように重み付け係数が算出されてもよい。一様に分布したノイズは、色空間上の距離が近距離の周辺画素(注目画素を含む)の画素値の重み付けを大きくすることで低減できるが、インパルス性の強いノイズは、自分自身(注目画素)の画素値の影響を受けやすいため、同様の処理ではノイズの低減効果が小さくなりうる。色空間上の距離が中距離の周辺画素に対する重み付け係数を大きくすることで、注目画素の画素データがインパルス性の強いノイズ成分を含む場合であってもその影響を受け難くすることができ、ノイズ低減効果を大きくすることができる。
 また、色空間フィルタ処理部27は、非線形変換を行う非線形変換回路を含んでいてもよく、この非線形変換回路によって、比較的弱いノイズを画像データに残存させる一方で、比較的強いノイズを画像データから取り除くことができる。すなわち、非線形変換回路において、色空間フィルタ処理が施される前の画像データ(元画像データ)と色空間フィルタ処理が施された後の画像データ(処理後画像データ)とが減算されて、ノイズ成分を表す差分値(減算値)が算出される。この差分値のうち、値が比較的小さな弱いノイズを表す部分は出力されず、値が比較的大きな強いノイズを表す部分のみが非線形変換回路から出力される。この非線形変換回路からの出力値を減算回路において元画像データに適用して、強いノイズ成分のみが元画像データから減算するようにしてもよい。このように、比較的弱いノイズ成分を画像データに残存させることで画像のディテールを残すことができ、また視覚上目立つ比較的強いノイズ成分が画像データから取り除かれることになる。
 また、上記実施形態ではデジタルカメラについて説明したが、撮影装置の構成はこれに限定されない。本発明を適用可能な他の撮影装置(撮像装置)としては、例えば、内蔵型又は外付け型のPC用カメラ、或いは、撮影機能を有する携帯端末装置とすることができる。また、上述の各処理ステップをコンピュータに実行させるプログラムに対しても、本発明を適用することが可能である。本発明が適用されるコンピュータ(各処理ステップを実行させるプログラムがインストールされたコンピュータを含む)に撮像デバイスから画像データ(RAWデータ、圧縮画像データ等)が送信されてくると、このコンピュータにおいて上述のノイズリダクション処理等が行われる。
 本発明の画像処理装置を備える携帯端末装置の例として、携帯電話機やスマートフォン、PDA(Personal Digital Assistants)、携帯型ゲーム機が挙げられる。
 <スマートフォンの構成>
 図11は、本発明の撮像装置の一実施形態であるスマートフォン101の外観を示すものである。図11に示すスマートフォン101は、平板状の筐体102を有し、筐体102の一方の面に表示部としての表示パネル121と、入力部としての操作パネル122とが一体となった表示入力部120を備えている。また、係る筐体102は、スピーカ131と、マイクロホン132、操作部140と、カメラ部141とを備えている。なお、筐体102の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造やスライド機構を有する構成を採用することもできる。
 図12は、図11に示すスマートフォン101の構成を示すブロック図である。図12に示すように、スマートフォンの主たる構成要素として、無線通信部110と、表示入力部120と、通話部130と、操作部140と、カメラ部141と、記憶部150と、外部入出力部160と、GPS(Global Positioning System)受信部170と、モーションセンサ部180と、電源部190と、主制御部100とを備える。また、スマートフォン101の主たる機能として、基地局装置BSと移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。
 無線通信部110は、主制御部100の指示に従って、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。係る無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。
 表示入力部120は、主制御部100の制御により、画像(静止画像及び動画像)や文字情報などを表示して視覚的にユーザに情報を伝達し、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル121と、操作パネル122とを備える。
 表示パネル121は、LCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)などを表示デバイスとして用いたものである。操作パネル122は、表示パネル121の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。係るデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部100に出力する。次いで、主制御部100は、受信した検出信号に基づいて、表示パネル121上の操作位置(座標)を検出する。
 図11に示すように、本発明の撮像装置の一実施形態として例示しているスマートフォン101の表示パネル121と操作パネル122とは一体となって表示入力部120を構成しているが、操作パネル122が表示パネル121を完全に覆うような配置となっている。係る配置を採用した場合、操作パネル122は、表示パネル121外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル122は、表示パネル121に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル121に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。
 なお、表示領域の大きさと表示パネル121の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル122が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体102の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル122で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。
 通話部130は、スピーカ131やマイクロホン132を備え、マイクロホン132を通じて入力されたユーザーの音声を主制御部100にて処理可能な音声データに変換して主制御部100に出力したり、無線通信部110あるいは外部入出力部160により受信された音声データを復号してスピーカ131から出力するものである。また、図11に示すように、例えば、スピーカ131を表示入力部120が設けられた面と同じ面に搭載し、マイクロホン132を筐体102の側面に搭載することができる。
 操作部140は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図11に示すように、操作部140は、スマートフォン101の筐体102の側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。
 記憶部150は、主制御部100の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータなどを一時的に記憶するものである。また、記憶部150は、スマートフォン内蔵の内部記憶部151と着脱自在な外部メモリスロットを有する外部記憶部152により構成される。なお、記憶部150を構成するそれぞれの内部記憶部151と外部記憶部152は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)などの格納媒体を用いて実現される。
 外部入出力部160は、スマートフォン101に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394など)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)など)により直接的又は間接的に接続するためのものである。
 スマートフォン101に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)やSIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホンなどがある。外部入出力部は、このような外部機器から伝送を受けたデータをスマートフォン101の内部の各構成要素に伝達することや、スマートフォン101の内部のデータが外部機器に伝送されるようにしてもよい。
 GPS受信部170は、主制御部100の指示に従って、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、スマートフォン101の緯度、経度、高度からなる位置を検出する。GPS受信部170は、無線通信部110や外部入出力部160(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。
 モーションセンサ部180は、例えば、3軸の加速度センサなどを備え、主制御部100の指示に従って、スマートフォン101の物理的な動きを検出する。スマートフォン101の物理的な動きを検出することにより、スマートフォン101の動く方向や加速度が検出される。係る検出結果は、主制御部100に出力されるものである。
 電源部190は、主制御部100の指示に従って、スマートフォン101の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。
 主制御部100は、マイクロプロセッサを備え、記憶部150が記憶する制御プログラムや制御データに従って動作し、スマートフォン101の各部を統括して制御するものである。また、主制御部100は、無線通信部110を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。
 アプリケーション処理機能は、記憶部150が記憶するアプリケーションソフトウェアに従って主制御部100が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部160を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。
 また、主制御部100は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画像や動画像のデータ)に基づいて、映像を表示入力部120に表示する等の画像処理機能を備える。画像処理機能とは、主制御部100が、上記画像データを復号し、係る復号結果に画像処理を施して、画像を表示入力部120に表示する機能のことをいう。
 更に、主制御部100は、表示パネル121に対する表示制御と、操作部140、操作パネル122を通じたユーザ操作を検出する操作検出制御を実行する。
 表示制御の実行により、主制御部100は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトウェアキーを表示したり、あるいは電子メールを作成するためのウィンドウを表示する。なお、スクロールバーとは、表示パネル121の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。
 また、操作検出制御の実行により、主制御部100は、操作部140を通じたユーザ操作を検出したり、操作パネル122を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。
 更に、操作検出制御の実行により主制御部100は、操作パネル122に対する操作位置が、表示パネル121に重なる重畳部分(表示領域)か、それ以外の表示パネル121に重ならない外縁部分(非表示領域)かを判定し、操作パネル122の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。
 また、主制御部100は、操作パネル122に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。
 カメラ部141は、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge-Coupled Device)などの撮像素子を用いて電子撮影するデジタルカメラである。また、カメラ部141は、主制御部100の制御により、撮像によって得た画像データを例えばJPEG(Joint Photographic coding Experts Group)などの圧縮した画像データに変換し、記憶部150に記録したり、入出力部160や無線通信部110を通じて出力することができる。図11に示すようにスマートフォン101において、カメラ部141は表示入力部120と同じ面に搭載されているが、カメラ部141の搭載位置はこれに限らず、表示入力部120の背面に搭載されてもよいし、あるいは、複数のカメラ部141が搭載されてもよい。なお、複数のカメラ部141が搭載されている場合には、撮影に供するカメラ部141を切り替えて単独にて撮影したり、あるいは、複数のカメラ部141を同時に使用して撮影することもできる。
 また、カメラ部141はスマートフォン101の各種機能に利用することができる。例えば、表示パネル121にカメラ部141で取得した画像を表示することや、操作パネル122の操作入力のひとつとして、カメラ部141の画像を利用することができる。また、GPS受信部170が位置を検出する際に、カメラ部141からの画像を参照して位置を検出することもできる。更には、カメラ部141からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用して、スマートフォン101のカメラ部141の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部141からの画像をアプリケーションソフトウェア内で利用することもできる。
 その他、静止画又は動画の画像データにGPS受信部170により取得した位置情報、マイクロホン132により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)、モーションセンサ部180により取得した姿勢情報等などを付加して記憶部150に記録したり、入出力部160や無線通信部110を通じて出力することもできる。
10…撮像デバイス、11…撮像部、12…レンズ、13…撮像素子、14…制御部、15…メモリ、16…表示部、17…操作部、18…信号入出力I/F、22…画像処理部、24…画像処理回路、25…ノイズリダクション処理部、26…実空間フィルタ処理部、27…色空間フィルタ処理部、31…リニア前処理部、32…WB補正部、33…露出補正部、34…γ補正部、35…デモザイク処理部、36…RGB/YC変換部、37…輪郭補正部、38…色調補正部、39…圧縮画像処理部、100…主制御部、101…スマートフォン、102…筐体、110…無線通信部、120…表示入力部、121…表示パネル、122…操作パネル、130…通話部、131…スピーカ、132…マイクロホン、140…操作部、141…カメラ部、150…記憶部、151…内部記憶部、152…外部記憶部、160…外部入出力部、170…GPS受信部、180…モーションセンサ部

Claims (12)

  1.  複数の画素の画素データの集合から構成される画像データを処理する画像処理装置であって、
     入力される画像データにおいて、前記複数の画素のうちの注目画素と当該注目画素の周辺に配置される周辺画素との実空間上での距離に基づき各周辺画素に対する実空間重み付け係数を算出し、当該実空間重み付け係数を用いて前記注目画素の画素データ及び前記周辺画素の画素データを加重平均して前記注目画素の画素データを算出する実空間フィルタ処理部と、
     前記複数の画素のうちの注目画素と当該注目画素の周辺に配置される周辺画素との色空間上での距離に基づき各周辺画素に対する色空間重み付け係数を算出し、当該色空間重み付け係数を用いて前記注目画素の画素データ及び前記周辺画素の画素データを加重平均して前記注目画素の画素データを算出する色空間フィルタ処理部と、を備え、
     前記実空間フィルタ処理部が行う前記実空間重み付け係数の算出及び画素データの前記加重平均は、エッジ保存型のフィルタ処理に基づいており、
     前記色空間フィルタ処理部において用いられる前記画素データのうち少なくとも前記注目画素の画素データは、前記実空間フィルタ処理部によって算出された前記画素データである画像処理装置。
  2.  前記画像データは、色に関する画像データを含み、
     前記実空間フィルタ処理部は、前記色に関する画像データに対し、前記実空間重み付け係数の算出及び画素データの前記加重平均をエッジ保存型のフィルタ処理に基づいて行う請求項1に記載の画像処理装置。
  3.  前記画像データは、輝度に関する画像データ及び色差に関する画像データを含み、
     前記実空間フィルタ処理部は、前記輝度に関する画像データ及び前記色差に関する画像データのうち少なくとも前記色差に関する画像データに対し、前記実空間重み付け係数の算出及び画素データの前記加重平均をエッジ保存型のフィルタ処理に基づいて行う請求項1に記載の画像処理装置。
  4.  前記色空間フィルタ処理部が前記注目画素と前記周辺画素との色空間上での距離を求めるために用いる前記画素データのうち、前記注目画素の画素データは、前記実空間フィルタ処理部が算出した前記画素データであり、前記周辺画素の画素データは、前記実空間フィルタ処理部に入力される前の画像データを構成する画素データである請求項1から3のいずれか1項に記載の画像処理装置。
  5.  前記色空間フィルタ処理部が前記色空間重み付け係数による前記加重平均のために用いる画素データのうち、前記注目画素の画素データは、前記実空間フィルタ処理部が算出した前記画素データであり、前記周辺画素の画素データは、前記実空間フィルタ処理部に入力される前の画像データを構成する画素データである請求項1から4のいずれか1項に記載の画像処理装置。
  6.  前記色空間フィルタ処理部は、前記実空間フィルタ処理部が算出した前記画素データを用いて、前記注目画素と前記周辺画素との前記色空間上での距離を求めて前記色空間重み付け係数による前記加重平均を行う請求項1から3のいずれか1項に記載の画像処理装置。
  7.  前記実空間フィルタ処理部及び前記色空間フィルタ処理部の各々において用いられる前記画素データの対象となる前記周辺画素は、前記実空間フィルタ処理部及び前記色空間フィルタ処理部の各々において用いられる前記画素データの対象となる前記注目画素及び他の周辺画素のうち少なくともいずれかに隣接する請求項1から6のいずれか1項に記載の画像処理装置。
  8.  前記色空間フィルタ処理部において用いられる前記画素データの対象となる前記周辺画素は、前記色空間フィルタ処理部において用いられる前記画素データの対象となる前記注目画素及び他の周辺画素のいずれとも隣接しない請求項1から6のいずれか1項に記載の画像処理装置。
  9.  前記色空間は、RGBに基づく請求項1から8のいずれか1項に記載の画像処理装置。
  10.  前記色空間は、輝度及び色差に基づく請求項1から8のいずれか1項に記載の画像処理装置。
  11.  前記実空間フィルタ処理部は、輝度に関する画像データ及び色差に関する画像データが入力され、前記輝度に関する画像データ及び前記色差に関する画像データの各々に対し、前記実空間重み付け係数の算出及び前記加重平均を行って画素データを算出し、
     前記色空間フィルタ処理部は、前記輝度に関する画像データ及び前記色差に関する画像データが入力され、当該輝度に関する画像データを用いて、前記色差に関する画像データに対し、前記色空間重み付け係数の算出及び前記加重平均を行って画素データを算出し、
     前記実空間フィルタ処理部において算出された前記画素データに基づく輝度に関する画像データと、前記色空間フィルタ処理部において算出された画素データに基づく色差に関する画像データとを出力する請求項10に記載の画像処理装置。
  12.  複数の画素の画素データの集合から構成される画像データを処理する画像処理方法であって、
     入力される画像データにおいて、前記複数の画素のうちの注目画素と当該注目画素の周辺に配置される周辺画素との実空間上での距離に基づき各周辺画素に対する実空間重み付け係数を算出し、当該実空間重み付け係数を用いて前記注目画素の画素データ及び前記周辺画素の画素データを加重平均して前記注目画素の画素データを算出する実空間フィルタ処理ステップと、
     前記複数の画素のうちの注目画素と当該注目画素の周辺に配置される周辺画素との色空間上での距離に基づき各周辺画素に対する色空間重み付け係数を算出し、当該色空間重み付け係数を用いて前記注目画素の画素データ及び前記周辺画素の画素データを加重平均して前記注目画素の画素データを算出する色空間フィルタ処理ステップと、を備え、
     前記実空間フィルタ処理ステップで行われる前記実空間重み付け係数の算出及び画素データの前記加重平均は、エッジ保存型のフィルタ処理に基づいており、
     前記色空間フィルタ処理ステップにおいて用いられる前記画素データのうち少なくとも前記注目画素の画素データは、前記実空間フィルタ処理ステップにおいて算出された前記画素データである画像処理方法。
PCT/JP2013/062000 2012-06-12 2013-04-24 画像処理装置及び画像処理方法 WO2013187133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031160.6A CN104380727B (zh) 2012-06-12 2013-04-24 图像处理装置和图像处理方法
JP2014521003A JP5697802B2 (ja) 2012-06-12 2013-04-24 画像処理装置及び画像処理方法
US14/566,862 US9177367B2 (en) 2012-06-12 2014-12-11 Image processing apparatus and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132898 2012-06-12
JP2012-132898 2012-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/566,862 Continuation US9177367B2 (en) 2012-06-12 2014-12-11 Image processing apparatus and image processing method

Publications (1)

Publication Number Publication Date
WO2013187133A1 true WO2013187133A1 (ja) 2013-12-19

Family

ID=49757968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062000 WO2013187133A1 (ja) 2012-06-12 2013-04-24 画像処理装置及び画像処理方法

Country Status (4)

Country Link
US (1) US9177367B2 (ja)
JP (1) JP5697802B2 (ja)
CN (1) CN104380727B (ja)
WO (1) WO2013187133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036821A (ja) * 2017-08-14 2019-03-07 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152645A (ja) * 2014-02-10 2015-08-24 シナプティクス・ディスプレイ・デバイス合同会社 画像処理装置、画像処理方法、表示パネルドライバ及び表示装置
CN105427261A (zh) * 2015-11-27 2016-03-23 努比亚技术有限公司 一种去除图像彩色噪声的方法、装置及移动终端
US10140728B1 (en) * 2016-08-11 2018-11-27 Citrix Systems, Inc. Encoder with image filtering and associated methods
WO2018078714A1 (ja) * 2016-10-25 2018-05-03 富士機械製造株式会社 画像処理用部品形状データ作成システム及び画像処理用部品形状データ作成方法
CN107613221B (zh) * 2017-10-19 2020-09-01 浪潮金融信息技术有限公司 图像处理方法及装置、计算机可读存储介质、终端
US20190220956A1 (en) * 2018-01-12 2019-07-18 Megvii Technology Llc Image processing method, image processing device and nonvolatile storage medium
CN109144641B (zh) * 2018-08-14 2021-11-02 四川虹美智能科技有限公司 一种通过冰箱显示屏展示图像的方法及装置
KR102592605B1 (ko) * 2018-12-06 2023-10-24 삼성전자주식회사 이미지 신호 처리기, 이미지 신호 처리기의 동작 방법, 및 이미지 신호 처리기를 포함하는 전자 장치
US11893482B2 (en) * 2019-11-14 2024-02-06 Microsoft Technology Licensing, Llc Image restoration for through-display imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060661A (ja) * 2004-08-23 2006-03-02 Fuji Photo Film Co Ltd ノイズ低減装置および方法ならびにノイズ低減プログラム
JP2007288439A (ja) * 2006-04-14 2007-11-01 Fujifilm Corp 画像処理装置及び方法
JP2009153013A (ja) * 2007-12-21 2009-07-09 Sony Corp 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777672B2 (ja) 1996-10-08 2006-05-24 松下電器産業株式会社 画像処理方法および画像処理装置
US6876468B1 (en) * 2000-09-19 2005-04-05 Kabushiki Kaisha Toshiba Image processing apparatus that performs black coloring, gamma correction and tone processing
JP2002222416A (ja) 2001-01-26 2002-08-09 Mitsubishi Electric Corp 画質改善装置
JP4042563B2 (ja) * 2002-12-27 2008-02-06 セイコーエプソン株式会社 画像ノイズの低減
CN100456800C (zh) * 2003-09-11 2009-01-28 松下电器产业株式会社 视觉处理装置、视觉处理方法以及半导体装置
WO2006068025A1 (ja) * 2004-12-20 2006-06-29 Nikon Corporation 画像処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060661A (ja) * 2004-08-23 2006-03-02 Fuji Photo Film Co Ltd ノイズ低減装置および方法ならびにノイズ低減プログラム
JP2007288439A (ja) * 2006-04-14 2007-11-01 Fujifilm Corp 画像処理装置及び方法
JP2009153013A (ja) * 2007-12-21 2009-07-09 Sony Corp 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036821A (ja) * 2017-08-14 2019-03-07 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Also Published As

Publication number Publication date
CN104380727B (zh) 2015-11-25
JP5697802B2 (ja) 2015-04-08
JPWO2013187133A1 (ja) 2016-02-04
CN104380727A (zh) 2015-02-25
US20150093027A1 (en) 2015-04-02
US9177367B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
JP5697802B2 (ja) 画像処理装置及び画像処理方法
US9892492B2 (en) Image processing device, imaging apparatus, parameter generating method, image processing method, and non-transitory computer readable recording medium storing a program
US9898807B2 (en) Image processing device, imaging device, image processing method, and program
US20170004603A1 (en) Image processing device, imaging device, image processing method, and image processing program
JP5779724B2 (ja) 画像処理装置、撮像装置、コンピュータ及びプログラム
US9866750B2 (en) Image processing device, imaging device, image processing method, and image processing program
WO2014125659A1 (ja) 画像処理装置、撮像装置、フィルタ生成装置、画像復元方法及びプログラム
US9826150B2 (en) Signal processing device, imaging apparatus, parameter generating method, signal processing method, and program
JP5851650B2 (ja) 復元フィルタ生成装置及び方法、画像処理装置、撮像装置、復元フィルタ生成プログラム並びに記録媒体
US9892495B2 (en) Image processing device, imaging device, image processing method, and image processing program
JP5870231B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
US9633418B2 (en) Image processing device, imaging apparatus, image processing method, and program
US20060104507A1 (en) Correction of image color levels
JP5768193B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804502

Country of ref document: EP

Kind code of ref document: A1