Nothing Special   »   [go: up one dir, main page]

WO2013182793A1 - Use of a very low concentration of carbon nanofillers for the mechanical reinforcement of composite materials filled with a conventional filler - Google Patents

Use of a very low concentration of carbon nanofillers for the mechanical reinforcement of composite materials filled with a conventional filler Download PDF

Info

Publication number
WO2013182793A1
WO2013182793A1 PCT/FR2013/051245 FR2013051245W WO2013182793A1 WO 2013182793 A1 WO2013182793 A1 WO 2013182793A1 FR 2013051245 W FR2013051245 W FR 2013051245W WO 2013182793 A1 WO2013182793 A1 WO 2013182793A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymers
poly
carbon
homo
polymer
Prior art date
Application number
PCT/FR2013/051245
Other languages
French (fr)
Inventor
Alexander Korzhenko
Patrick Delprat
Catherine Bluteau
Andriy TYMOSHENKO
Anatoliy GORYACHKIN
Dmitry Zakharov
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2013182793A1 publication Critical patent/WO2013182793A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres

Definitions

  • the present invention relates to the use of very low levels of carbon nanofillers, in particular carbon nanotubes, to enhance the thermomechanical properties of a composite material based on a polymer matrix loaded with a conventional filler.
  • Carbon nanotubes are known and possess particular crystalline structures, of tubular form, hollow and closed, obtained from carbon.
  • CNTs generally consist of one or more graphite sheets arranged concentrically about a longitudinal axis.
  • One-sided nanotubes Single Wall Nanotubes or SWNTs
  • Multi Wall Nanotubes or MWNTs are thus distinguished.
  • CNTs are commercially available or can be prepared by known methods. There are several methods for synthesizing CNTs, including electrical discharge, laser ablation and CVD (Chemical Vapor Deposition).
  • This CVD process consists precisely in injecting a source of carbon at relatively high temperature over a catalyst which may consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina , silica or magnesia.
  • a catalyst which may consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina , silica or magnesia.
  • Carbon sources can include methane, ethane, ethylene, acetylene, ethanol, methanol, or even a mixture of carbon monoxide and hydrogen.
  • CNTs have both excellent stiffness (measured by the Young's modulus), comparable to that of steel, while being extremely lightweight.
  • they have excellent electrical and thermal conductivity properties that allow to consider using them as additives to confer these properties to various materials, including macromolecular, such as thermoplastic polymers, elastomers and other thermosetting polymers .
  • CNTs are difficult to handle and disperse, because of their small size, their powderiness and possibly, when they are obtained by the CVD technique, their entangled structure, all the more important that the we are trying to increase their mass productivity in order to improve production and reduce the residual ash content.
  • the existence of strong Van der Waals interactions between the nanotubes also affects their dispersibility and the stability of the composite materials obtained.
  • CNTs significantly affects the characteristics of the composites they form with the polymer matrices into which they are introduced. In particular, the appearance of nanofissures forming at the level of aggregates of nanotubes, which lead to embrittlement of the composite, is observed. Moreover, since CNTs are poorly dispersed, it is necessary to increase their rate to achieve the desired properties.
  • CNTs are used mainly for their electrical properties today at a relatively high rate, generally greater than 0.5% by weight.
  • thermosetting elastomeric compositions and carbon nanotubes are used as masterbatches for reinforcing polymer matrices. Even if these compositions may further contain fillers, the strengthening of the thermomechanical properties, that is to say the maintenance of the high temperature mechanical properties of the polymer matrix in which the masterbatch is introduced, is not at all suggested.
  • the polymer matrices are additive conventional load generally to levels ranging from a few% to more than 10% by weight in order to improve the impact properties, tensile properties and thermal properties of composite materials and materials. objects produced from these polymer matrices.
  • thermomechanical properties at least equivalent to those obtained with conventional fillers alone, and this for levels significantly lower, of the order of 10 times lower than the usual levels in conventional loads.
  • the subject of the invention is the use of carbon nanofillers to enhance the thermomechanical properties of a composite material comprising a charged polymeric composition, characterized in that the content of carbon nanofillers is between 1 ppm and less than 1% by weight relative to the composite material.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene or a mixture of these in all proportions.
  • Polymeric composition charged means that the polymeric composition comprises a conventional filler as mechanical reinforcement, which may be inorganic or organic, of natural or synthetic origin, chosen from reinforcing agents generally used in the field of plastics.
  • the polymeric composition comprises a polymer matrix containing at least one polymer selected from a thermoplastic polymer or an elastomeric resin base, or a mixture thereof in all proportions. Due to the presence of carbon nanofillers, the composite material retains its mechanical properties at high temperature and can thus be converted at high temperature into various composite products without undergoing thermal degradation. It has also been found that carbon nanofillers confer resistance to abrasion to the composite material.
  • the invention also extends to the use of a composite material comprising a polymeric composition loaded with a conventional filler as mechanical reinforcement, and thermomechanically reinforced using 1 ppm to less than 1 % by weight of carbon nanofillers for the manufacture of various composite products such as yarns, films, tubes, fibers, nonwovens such as fabrics or felts, usable for fiber optic conduits, cable sheathing, gas or waste water or industrial pipelines, extruded or molded coatings, articles manufactured by injection, extrusion, compression or molding, in the automotive sector (parts under the hood, external or internal parts, sealing, etc.) ) or in the field of agriculture, particularly for the protection of agricultural land (greenhouses and soils).
  • various composite products such as yarns, films, tubes, fibers, nonwovens such as fabrics or felts, usable for fiber optic conduits, cable sheathing, gas or waste water or industrial pipelines, extruded or molded coatings, articles manufactured by injection, extrusion, compression or molding, in the automotive sector (parts under
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene or a mixture of these in all proportions.
  • the carbon nanotubes may be single-walled, double-walled or multi-walled.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Corn. (2003), 1442.
  • Multilayered nanotubes can be prepared as described in WO 03/02456.
  • Multi-walled carbon nanotubes obtained according to a chemical vapor deposition (or CVD) process, by catalytic decomposition of a carbon source (preferably of plant origin), as described in particular, are preferred according to the invention. in the application EP 1 980 530 of the Applicant.
  • the nanotubes usually have an average diameter ranging from 0.1 to 100 nm, preferably from 0.4 to 50 nm and better still from 1 to 30 nm, indeed from 10 to 15 nm, and advantageously a length of 0.1. at 10 ⁇ .
  • Their length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • Their specific surface area is, for example, between 100 and 300 m 2 / g, advantageously between 200 and 300 m 2 / g, and their apparent density may in particular, be between 0.05 and 0.5 g / cm 3 and more preferably between 0.1 and 0.2 g / cm 3.
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets. These nanotubes may or may not be processed.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes can be purified and / or treated (for example oxidized) and / or functionalized before being used in the process according to the invention.
  • the purification of the nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities, such as iron, from their preparation process.
  • the weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C, for example for a period of 5 to 10 hours. This operation can advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 ° C.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCI and preferably from 1 to 10% by weight of NaOCI, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • the functionalization of the nanotubes can be carried out by grafting reactive units such as vinyl monomers on the surface of the nanotubes.
  • the material constituting the nanotubes is used as a radical polymerization initiator after having been subjected to a heat treatment at more than 900 ° C., in an anhydrous and oxygen-free medium, which is intended to eliminate the oxygenated groups from its surface. It is thus possible to polymerize methyl methacrylate or hydroxyethyl methacrylate on the surface of carbon nanotubes in order to facilitate in particular their dispersion in the PVDF.
  • crude nanotubes that is to say nanotubes which are neither oxidized nor purified nor functionalized and have undergone no other chemical and / or thermal treatment.
  • purified nanotubes may be used, in particular by high temperature heat treatment. It is furthermore preferred that the carbon nanotubes are not ground.
  • Carbon nanofibers like carbon nanotubes, are nanofilaments produced by chemical vapor deposition (or CVD) from a carbon source which is decomposed on a catalyst comprising a transition metal (Fe, Ni, Co, Cu), in the presence of hydrogen, at temperatures of 500 to 1200 ° C.
  • CVD chemical vapor deposition
  • these two carbonaceous charges are differentiated by their structure (I. MARTIN-GULLON et al., Carbon 44 (2006) 1572-1580).
  • the carbon nanotubes consist of one or more sheets of graphene wound concentrically around the axis of the fiber to form a cylinder having a diameter of 10 to 100 nm.
  • carbon nanofibers are composed of more or less organized graphitic zones (or turbostratic stacks) whose planes are inclined at variable angles with respect to the axis of the fiber. These stacks can take the form of platelets, fish bones or stacked cups to form structures generally ranging in diameter from 100 nm to 500 nm or more.
  • carbon nanofibers having a diameter of 100 to 200 nm, for example about 150 nm (VGCF® from SHOWA DENKO), and advantageously a length of 100 to 200 ⁇ .
  • the term “graphene” designates a sheet of plane graphite, isolated and individualized, but also, by extension, an assembly comprising between a sheet and a few tens of sheets and having a flat structure or more or less wavy. Each graphene sheet is formed of carbon atoms bonded to each other by sp 2 type DC bonds and forming a two-dimensional hexagonal lattice.
  • the graphene used in the invention is in the form of solid particles of nanometric size having a thickness of less than 15 nm and at least one lateral dimension substantially perpendicular to said thickness of between 0.1 ⁇ and 500. ⁇ , and comprising from 1 to 50 sheets, said sheets being capable of being detached from each other in the form of independent sheets for example during treatment with ultrasound.
  • the carbon nanofillers comprise carbon nanotubes, preferably multi-walled carbon nanotubes obtained by a chemical vapor deposition process, alone or mixed with graphene.
  • the carbon nanofillers are used at a content of between 1 ppm and 0.5% by weight, more particularly between 10 ppm and 0.3% by weight relative to the composite material.
  • the polymeric composition comprises a polymer matrix comprising at least one polymer which may be a thermoplastic polymer or an elastomeric resin base, or a mixture thereof in all proportions.
  • the polymeric composition contains a thermoplastic polymer.
  • thermoplastic polymer is meant, in the sense of the present invention, a polymer that melts when heated and can be put and shaped in the molten state.
  • thermoplastic polymer may especially be chosen from: homo- and copolymers of olefins such as polyethylene, polypropylene, polybutadiene, polybutylene and acrylonitrile-butadiene-styrene copolymers; acrylic homo- and copolymers and alkyl poly (meth) acrylates such as poly (methyl methacrylate); homo- and copolyamides; polycarbonates; polyesters including poly (ethylene terephthalate) and poly (butylene terephthalate); polyethers such as poly (phenylene ether), poly (oxymethylene) and poly (oxyethylene) or poly (ethylene glycol); polystyrene; copolymers of styrene and maleic anhydride; polyvinyl chloride; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene; natural or synthetic rubbers; thermoplastic polyurethanes; polyaryl ether keto
  • the polymer is chosen from olefin homo- and copolymers, in particular ethylene or propylene homo- and copolymers, and amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
  • olefin homo- and copolymers in particular ethylene or propylene homo- and copolymers
  • amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
  • the polymeric composition contains an elastomeric resin base.
  • elastomeric resin base is meant, in the present description, an organic or silicone polymer, which forms, after vulcanization, an elastomer capable of withstanding large deformations in a quasi-reversible manner, that is to say susceptible to be uniaxially deformed, preferably at least twice its original length at room temperature (23 ° C), for five minutes, and then recover, once the stress is relaxed, its initial dimension, with a remanent deformation less than 10% of its original size.
  • elastomers are generally composed of polymer chains interconnected to form a three-dimensional network.
  • thermoplastic elastomers are sometimes distinguished in which the polymer chains are connected to each other by physical bonds, such as hydrogen or dipole-dipole bonds, thermosetting elastomers, in which these chains are connected by covalent bonds, which constitute points of chemical crosslinking.
  • crosslinking points are formed by methods of vulcanization using a vulcanizing agent which may for example be chosen, according to the nature of the elastomer, from sulfur-based vulcanization agents, in the presence of metal salts of dithiocarbamates; zinc oxides combined with stearic acid; bifunctional phenol-formaldehyde resins optionally halogenated in the presence of tin chloride or zinc oxide; peroxides; amines; hydrosilanes in the presence of platinum; etc.
  • a vulcanizing agent which may for example be chosen, according to the nature of the elastomer, from sulfur-based vulcanization agents, in the presence of metal salts of dithiocarbamates; zinc oxides combined with stearic acid; bifunctional phenol-formaldehyde resins optionally halogenated in the presence of tin chloride or zinc oxide; peroxides; amines; hydrosilanes in the presence of platinum; etc.
  • the present invention relates more particularly to elastomeric resin bases containing or consisting of thermosetting elastomers optionally mixed with non-reactive elastomers, that is to say non-vulcanizable (such as hydrogenated rubbers).
  • the elastomeric resin bases that can be used according to the invention can in particular comprise, or even consist of, one or more polymers chosen from: fluorocarbon or fluorosilicone elastomers; homo- and copolymers of butadiene, optionally functionalized with unsaturated monomers such as maleic anhydride, (meth) acrylic acid, acrylonitrile (NBR) and / or styrene (SBR, SBS, SEBS); neoprene (or polychloroprene); polyisobutylene (PIB); polyisopropylene (PIP); polyisoprene; copolymers of isoprene with styrene, butadiene, acrylonitrile and / or methyl methacrylate; copolymers based on propylene and / or ethylene and in particular terpolymers based on ethylene, propylene and dienes (EPDM), as well as copolymers of these olef
  • the elastomeric resins EPDM, SBR, SBS, SEBS, NBR, NR, PIB, PIP, PU or the C-4, C-5, C-6, C-8 and C-plastomers are preferably used according to the invention. 9, C-12, or mixtures thereof in all proportions.
  • the polymeric composition comprises at least one thermoplastic polymer.
  • the polymeric composition comprises at least one conventional filler used as a mechanical reinforcing agent.
  • conventional loads generally used, mention may be made of:
  • carbonic fillers such as carbon black, carbon fibers, graphite
  • mineral fillers without form factor, such as Ca carbonate, andalusite, barium ferrites, sulphates and carbonates, silica, cryolite, nepheline, olivine, sillimanite, sillitin, and metal oxides, Dolomite, hollow and solid glass spheres silicates, silicon carbide, quartz, boron nitride, Al and Mg hydroxides;
  • lamellar mineral fillers such as talc, mica, clays, kaolin, silica, MoS 2 , metal lamellae (Al, Cu in particular);
  • micro-fibrils and nano-mineral fibrils such as glass fibers, basalt, metal fibers, goethite, metal oxides, ceramics, aramid, natural rock fibers such as Halloysite MacroFil HT (Macro-M), Dragonite, aluminum silicate;
  • Magnesium Oxysulfate whiskers for example Hyperform HP803 (from Milliken), MOS-HIGE (from UBE Materials), potassium titanate fibers TISMO (from Otsuka Chemical Co.), boron fibers, fibers from metal oxides;
  • natural and synthetic organic fibers silk, wool, plants: bamboo, coconut fiber, cotton, linen, hemp, jute, kapok, kenaf, fibers derived from cellulose: acetate, hydrocellulose, Lyocell, rayon, modal rayon.
  • conventional filler synthetic mineral fibers or carbonic fillers such as carbon fibers.
  • the conventional filler is generally present at a content ranging from 0.1% to 10%, preferably from 0.5% to 6% by weight relative to the polymer matrix.
  • the mass ratio between the carbonaceous nanofillers and the conventional filler is generally between 1% and 10%, preferably between 2% and 6%.
  • Other constituents are generally between 1% and 10%, preferably between 2% and 6%.
  • the composite material comprising a polymer composition charged with a conventional filler may comprise other additives, in particular chosen from nonpolymeric additives or polymeric additives.
  • non-polymeric additives optionally included in the composite material according to the invention comprise, in particular, non-polymeric plasticizers, surfactants such as sodium dodecylbenzene sulphonate, inorganic fillers such as silica, titanium dioxide, talc or calcium carbonate, UV filters, especially those based on titanium dioxide, flame retardants, polymer solvents, thermal or light stabilizers, especially based on phenol or phosphite, and mixtures thereof.
  • non-polymeric plasticizers surfactants such as sodium dodecylbenzene sulphonate
  • inorganic fillers such as silica, titanium dioxide, talc or calcium carbonate
  • UV filters especially those based on titanium dioxide, flame retardants, polymer solvents, thermal or light stabilizers, especially based on phenol or phosphite, and mixtures thereof.
  • dispersant or plasticizer polymers in particular dispersant polymers that improve the dispersion of the nanofillers in the polymer matrix.
  • the chemical nature of the dispersant is a function of the chemical nature of the polymer matrix to be reinforced by carbon nanofillers.
  • dispersants oligomers of cyclic butyl terephthalate (in particular CYCLICS CBT® 100 resin), natural waxes, synthetic waxes, polyolefin waxes, fatty acids and their derivatives, esters / amides, acids saponified fatty acids, zinc stearate, sorbitanic acid esters, glycerol ester, organic acid derivatives, organic organosilanes such as amino silane, (STRUKTOL® SCA 1100) chloropropyl silane ( STRUKTOL® SCA 930), epoxy silane (STRUKTOL® SCA 960), methacryloxy silane (STRUKTOL® SCA 974), vinyl silanes, STRUKTOL® SCA 971 and SCA 972), graft polymers (Polymer-G-MAH, Polymer
  • Silsesquioxane oligomers branched additives and polymers marketed under the names Boltorn H20, H30, H40, H20, H30, H40, S 1200, D 2800, P / S80 1200, DEO750 8500, H 1500, H / S80 1700 , HV 2680, P 1000, PS 1925, PS 2550, H31 1, H2004, P500, P1000, W3000, U3000, and others, DSM Hybrane), BYK-C 8000 by BYK Company, etc.
  • thermomechanically charged and thermomechanically reinforced polymeric composition by carbonaceous nanofillers A process for preparing a composite material comprising a thermomechanically charged and thermomechanically reinforced polymeric composition by carbonaceous nanofillers according to the present invention will now be described in more detail.
  • This method comprises at least the following steps:
  • This method comprises a first step a) of dilution of a masterbatch concentrated in carbon nanofillers in a polymer matrix in order to obtain a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
  • masterbatch concentrated in carbon nanofillers is meant a masterbatch containing from 5% to 50% by weight of carbon nanofillers, in particular carbon nanotubes, dispersed in a polymer matrix based on a thermoplastic polymer, a base of elastomeric resin and / or a dispersant polymer.
  • CM Graphistrength ® CM of the applicant company, available commercially, including CM 12-30 degrees; CM 13-30; CM 1 -20; CM2-20; CM 3-20; CM 6-20; CM 7-20.
  • the dilution step can be carried out by kneading in a compounding device and leads directly to a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
  • the dilution step is carried out in two successive stages, in order to refine the dispersion, the first leading to a pre-composite comprising from 2.5 to 10% by weight, preferably from 2.5 to 5% by weight. % by weight of carbon nanofillers, the second leading to a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
  • compounding device in the present description, an apparatus conventionally used in the plastics industry.
  • the polymeric composition and the masterbatch are mixed using a high-shear device, for example a co-rotating or counter-rotating twin-screw extruder or a co-kneader.
  • co-kneaders examples include the BUSS® MDK 46 co-kneaders and those of the BUSS® MKS or MX series marketed by the company BUSS AG, all of which consist of a screw shaft provided with fins, disposed in a heating sleeve optionally consisting of several parts and whose inner wall is provided with kneading teeth adapted to cooperate with the fins to produce a shear of the kneaded material.
  • the shaft is rotated and provided with oscillation movement in the axial direction by a motor.
  • These co-kneaders may be equipped with a pellet manufacturing system, adapted for example to their outlet orifice, which may consist of an extrusion screw or a pump.
  • the co-kneaders that can be used according to the invention preferably have an L / D screw ratio ranging from 7 to 22, for example from 10 to 20, while the co-rotating extruders advantageously have an L / D ratio ranging from 15 to 56, for example from 20 to 50.
  • step a) of the process according to the invention the introduction into the compounding device of the masterbatch concentrate and the polymer matrix can be done in different ways, or simultaneously in two separate introduction members, either successively in the same feed zone of the mixer.
  • the polymeric matrix may be of the same nature as the polymeric matrix constituting the concentrated masterbatch.
  • the concentrated masterbatch comprises a dispersant and the polymeric matrix may be different from the polymeric matrix constituting the concentrated masterbatch.
  • the pre-composite may be optionally converted into an agglomerated solid physical form, for example in the form of granules, or of ground powder, or in the form of rushes, tape or film (step b).
  • the pre-composite is introduced into a polymer matrix containing at least one polymer selected from a thermoplastic polymer and an elastomeric resin base, or mixtures thereof, as described above.
  • Step c) can be carried out using any conventional device, in particular using internal mixers, or roll mixers or mills (bi- or tri-cylindrical) with the exception of ball mills.
  • the amount of pre-composite introduced into the polymer matrix depends on the rate of carbon nanofillers that it is desired to add to this matrix in order to obtain the desired mechanical properties for the composite material obtained.
  • This polymer matrix comprises at least one polymer, which may be identical to, or different from, that or those used in the manufacture of the masterbatch, or in the preparation of the pre-composite, as well as possibly various additives, for example, lubricants, pigments, stabilizers, fillers or reinforcements, anti-static agents, fungicides, flame retardants, solvents, blowing agents, rheology modifiers and mixtures thereof.
  • additives for example, lubricants, pigments, stabilizers, fillers or reinforcements, anti-static agents, fungicides, flame retardants, solvents, blowing agents, rheology modifiers and mixtures thereof.
  • the composite material obtained can be shaped by any suitable technique, in particular by injection, extrusion, compression or molding, followed by a vulcanization or crosslinking treatment in the case where the polymeric matrix comprises an elastomeric resin base.
  • the introduction of pre-composite in the polymer matrix according to step c) can be carried out dry, directly in the forming tool of the composite material, such as an injection device.
  • the thermomechanical reinforcement of the composite material obtained according to the invention can be controlled by determining the characteristics such as than those mentioned in Table 1 which illustrates an exemplary embodiment of the invention.
  • Arkema grade GRAPHISTRENGTH® CM 12-30 containing 30% of NTC (MWNT) perfectly dispersed in a resin, was used to introduce CNTs into a polypropylene matrix PPC 5660 alone or in a polypropylene matrix. additive of Hyperform 803 from Milliken. These samples were prepared from a pre-composite comprising 1% of NTC previously obtained by dilution of the concentrated masterbatch with concentrated PPC 5660.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to the use of very low concentrations of carbon nanofillers selected from among carbon nanotubes, carbon nanofibres, graphene or a mixture of same in any proportions, in order to reinforce the thermomechanical properties of a composite material based on a polymer matrix filled with a conventional filler.

Description

UTILISATION DE NANOCHARGES CARBONEES A TRES FAIBLE TAUX POUR LE RENFORT MECANIQUE DE MATERIAUX COMPOSITES CHARGES A L'AIDE D'UNE CHARGE CONVENTIONNELLE Domaine de l'invention  USE OF CARBON NANOCHARGES AT VERY LOW RATES FOR THE MECHANICAL REINFORCEMENT OF COMPOSITE MATERIALS CHARGED WITH A CONVENTIONAL LOAD Field of the invention
La présente invention concerne l'utilisation de très faibles taux de nanocharges carbonées, en particulier de nanotubes de carbone, pour renforcer les propriétés thermomécaniques d'un matériau composite à base d'une matrice polymère chargée à l'aide d'une charge conventionnelle.  The present invention relates to the use of very low levels of carbon nanofillers, in particular carbon nanotubes, to enhance the thermomechanical properties of a composite material based on a polymer matrix loaded with a conventional filler.
Etat de la technique State of the art
Les nanotubes de carbone (ou NTC) sont connus et possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, obtenues à partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphite agencés de façon concentrique autour d'un axe longitudinal. On distingue ainsi les nanotubes mono-parois (Single Wall Nanotubes ou SWNT) et les nanotubes multi-parois (Multi Wall Nanotubes ou MWNT). Les NTC sont disponibles dans le commerce ou peuvent être préparés par des méthodes connues. Il existe plusieurs procédés de synthèse de NTC, notamment la décharge électrique, l'ablation laser et le dépôt chimique en phase vapeur ou CVD (Chemical Vapour Déposition). Ce procédé CVD consiste précisément à injecter une source de carbone à relativement haute température sur un catalyseur qui peut être constitué d'un métal tel que le fer, le cobalt, le nickel ou le molybdène, supporté sur un solide inorganique tel que l'alumine, la silice ou la magnésie. Les sources de carbone peuvent comprendre le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, voire un mélange de monoxyde de carbone et d'hydrogène.  Carbon nanotubes (or CNTs) are known and possess particular crystalline structures, of tubular form, hollow and closed, obtained from carbon. CNTs generally consist of one or more graphite sheets arranged concentrically about a longitudinal axis. One-sided nanotubes (Single Wall Nanotubes or SWNTs) and multiwall nanotubes (Multi Wall Nanotubes or MWNTs) are thus distinguished. CNTs are commercially available or can be prepared by known methods. There are several methods for synthesizing CNTs, including electrical discharge, laser ablation and CVD (Chemical Vapor Deposition). This CVD process consists precisely in injecting a source of carbon at relatively high temperature over a catalyst which may consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina , silica or magnesia. Carbon sources can include methane, ethane, ethylene, acetylene, ethanol, methanol, or even a mixture of carbon monoxide and hydrogen.
D'un point de vue mécanique, les NTC présentent à la fois une excellente rigidité (mesurée par le module d'Young), comparable à celle de l'acier, tout en étant extrêmement légers. En outre, ils présentent d'excellentes propriétés de conductivité électrique et thermique qui permettent d'envisager de les utiliser comme additifs pour conférer ces propriétés à divers matériaux, notamment macromoléculaires, tels que des polymères thermoplastiques, des élastomères ainsi que d'autres polymères thermodurcissables. From a mechanical point of view, CNTs have both excellent stiffness (measured by the Young's modulus), comparable to that of steel, while being extremely lightweight. In addition, they have excellent electrical and thermal conductivity properties that allow to consider using them as additives to confer these properties to various materials, including macromolecular, such as thermoplastic polymers, elastomers and other thermosetting polymers .
Toutefois, les NTC s'avèrent difficiles à manipuler et à disperser, en raison de leur faible taille, de leur pulvérulence et éventuellement, lorsqu'ils sont obtenus par la technique de CVD, de leur structure enchevêtrée, d'autant plus importante que l'on cherche à augmenter leur productivité massique aux fins d'améliorer la production et de réduire le taux de cendres résiduelles. L'existence de fortes interactions de Van der Waals entre les nanotubes nuit également à leur dispersibilité et à la stabilité des matériaux composites obtenus. However, CNTs are difficult to handle and disperse, because of their small size, their powderiness and possibly, when they are obtained by the CVD technique, their entangled structure, all the more important that the we are trying to increase their mass productivity in order to improve production and reduce the residual ash content. The existence of strong Van der Waals interactions between the nanotubes also affects their dispersibility and the stability of the composite materials obtained.
La mauvaise dispersibilité des NTC affecte de manière importante les caractéristiques des composites qu'ils forment avec les matrices polymères dans lesquelles ils sont introduits. On observe en particulier l'apparition de nanofissures, se formant au niveau d'agrégats de nanotubes, qui conduisent à une fragilisation du composite. Par ailleurs, dans la mesure où les NTC sont mal dispersés, il est nécessaire d'augmenter leur taux pour atteindre les propriétés désirées. The poor dispersibility of CNTs significantly affects the characteristics of the composites they form with the polymer matrices into which they are introduced. In particular, the appearance of nanofissures forming at the level of aggregates of nanotubes, which lead to embrittlement of the composite, is observed. Moreover, since CNTs are poorly dispersed, it is necessary to increase their rate to achieve the desired properties.
A cet effet, les NTC sont utilisés principalement pour leurs propriétés électriques aujourd'hui à un taux relativement élevé, généralement supérieur à 0,5% en poids.  For this purpose, CNTs are used mainly for their electrical properties today at a relatively high rate, generally greater than 0.5% by weight.
Etant donné les difficultés techniques pour incorporer des NTC dans des matrices polymériques, leurs effets n'ont pas été complètement explorés.  Given the technical difficulties of incorporating CNTs into polymeric matrices, their effects have not been fully explored.
Pour remédier à la mauvaise dispersibilité des NTC, susceptible d'affecter de manière importante les caractéristiques des matrices polymériques dans lesquelles ils sont introduits, il a été proposé différentes solutions dans l'état de la technique. Parmi celles-ci, on peut citer la sonication, qui n'a toutefois qu'un effet temporaire, ou l'ultrasonication qui a pour effet de couper en partie les nanotubes et de créer des fonctions oxygénées pouvant affecter certaines de leurs propriétés ; Ou encore on peut citer des techniques de greffage ou de fonctionnai isation des NTC qui, présentent cependant l'inconvénient d'être le plus souvent mises en œuvre dans des conditions agressives susceptibles d'endommager, voire détruire les nanotubes. To remedy the poor dispersibility of CNTs, which may significantly affect the characteristics of the polymer matrices into which they are introduced, various solutions have been proposed in the state of the art. Among these are sonication, which has only a temporary effect, or ultrasonication which has the effect of cutting in part the nanotubes and to create oxygenated functions that can affect some of their properties; Or there may be mentioned techniques for grafting or operating the CNTs, which, however, have the disadvantage of being most often implemented in aggressive conditions likely to damage or destroy the nanotubes.
Plus récemment, les derniers développements ont porté sur la préparation de mélanges-maîtres comportant des nanotubes de carbone à des taux élevés, dispersés efficacement et de façon homogène à l'échelle industrielle, dans une matrice polymérique, à base de polymère thermoplastique, d'un élastomère ou d'une résine thermodurcissable. On peut citer par exemple les documents au nom de la Société Déposante qui décrivent de tels procédés de préparation, EP 1 995 274 ; WO 2010/046606 ; WO 2010/1091 18 ; WO 2010/1091 19.  More recently, the latest developments have focused on the preparation of masterbatches comprising carbon nanotubes at high levels, dispersed efficiently and homogeneously on an industrial scale, in a polymer matrix, based on thermoplastic polymer, an elastomer or a thermosetting resin. For example, the documents on behalf of the Applicant Company which describe such preparation methods, EP 1 995 274; WO 2010/046606; WO 2010/1091 18; WO 2010/1091 19.
Ces mélanges-maîtres fortement dosés en nanotubes de carbone peuvent ensuite être aisément manipulés puis dilués dans des matrices polymères pour former des matériaux composites à faible taux de NTC parfaitement homogènes, destinés à la fabrication de pièces composites.  These high-dose masterbatches made of carbon nanotubes can then be easily handled and then diluted in polymer matrices to form composite materials with a low level of perfectly homogeneous CNTs, intended for the manufacture of composite parts.
Selon le document EP 2 236 556, des matériaux à base de compositions élastomériques thermodurcissables et de nanotubes de carbone sont utilisés comme mélanges-maîtres pour renforcer des matrices polymères. Même si ces compositions peuvent contenir en outre des charges, le renforcement des propriétés thermomécaniques, c'est-à-dire le maintien des propriétés mécaniques à haute température, de la matrice polymère dans laquelle est introduit le mélange-maître, n'est nullement suggéré.  According to EP 2 236 556, materials based on thermosetting elastomeric compositions and carbon nanotubes are used as masterbatches for reinforcing polymer matrices. Even if these compositions may further contain fillers, the strengthening of the thermomechanical properties, that is to say the maintenance of the high temperature mechanical properties of the polymer matrix in which the masterbatch is introduced, is not at all suggested.
De façon surprenante, il a maintenant été découvert que l'incorporation de nanocharges carbonées telles que des nanotubes de carbone dans une matrice polymère, à un taux extrêmement faible, inférieur à 0,5% en poids, permettait d'en améliorer les propriétés thermomécaniques, et de réduire le taux de charge conventionnelle généralement introduite comme agent de renfort mécanique. En effet, le renfort mécanique de matrices polymères est généralement obtenu en ajoutant des additifs appropriés, telles que des charges conventionnelles, notamment minérales, par exemple des microfibres, du talc ou des particules de nanotitane. Surprisingly, it has now been discovered that the incorporation of carbon nanofillers such as carbon nanotubes into a polymer matrix, at an extremely low level, of less than 0.5% by weight, makes it possible to improve the thermomechanical properties thereof. and to reduce the conventional charge rate generally introduced as a mechanical reinforcing agent. Indeed, the mechanical reinforcement of polymer matrices is generally obtained by adding appropriate additives, such as conventional fillers, in particular mineral fillers, for example microfibres, talc or nanotitanium particles.
A cet effet, les matrices polymères sont additivées de charge conventionnelle généralement à des teneurs pouvant aller de quelques % à plus de 10% en poids afin d'améliorer les propriétés de choc, les propriétés de traction et les propriétés thermiques des matériaux composites et des objets produits à partir de ces matrices polymères.  For this purpose, the polymer matrices are additive conventional load generally to levels ranging from a few% to more than 10% by weight in order to improve the impact properties, tensile properties and thermal properties of composite materials and materials. objects produced from these polymer matrices.
Selon l'invention, le remplacement d'au moins une partie de ces charges conventionnelles par des nanocharges carbonées, telles que des nanotubes de carbone, confère des propriétés thermomécaniques au moins équivalentes à celles obtenues avec les charges conventionnelles seules, et cela pour des teneurs nettement plus faibles, de l'ordre de 10 fois plus faibles que les teneurs habituelles en charges conventionnelles. Résumé de l'invention  According to the invention, the replacement of at least a portion of these conventional charges by carbon nanofillers, such as carbon nanotubes, gives thermomechanical properties at least equivalent to those obtained with conventional fillers alone, and this for levels significantly lower, of the order of 10 times lower than the usual levels in conventional loads. Summary of the invention
De façon plus précise, l'invention a pour objet l'utilisation de nanocharges carbonées pour renforcer les propriétés thermomécaniques d'un matériau composite comprenant une composition polymérique chargée, caractérisée en ce que la teneur en nanocharges carbonées est comprise entre 1 ppm et moins de 1 % en poids par rapport au matériau composite.  More specifically, the subject of the invention is the use of carbon nanofillers to enhance the thermomechanical properties of a composite material comprising a charged polymeric composition, characterized in that the content of carbon nanofillers is between 1 ppm and less than 1% by weight relative to the composite material.
Selon l'invention, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène ou un mélange de ceux-ci en toutes proportions.  According to the invention, the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene or a mixture of these in all proportions.
« Composition polymérique chargée », signifie que la composition polymérique comprend une charge conventionnelle comme renfort mécanique, qui peut être minérale ou organique, d'origine naturelle ou synthétique, choisie parmi les agents de renfort généralement utilisés dans le domaine des matières plastiques.  "Polymeric composition charged" means that the polymeric composition comprises a conventional filler as mechanical reinforcement, which may be inorganic or organic, of natural or synthetic origin, chosen from reinforcing agents generally used in the field of plastics.
Selon l'invention, la composition polymérique comprend une matrice polymère renfermant au moins un polymère choisi parmi un polymère thermoplastique ou une base de résine élastomérique, ou un mélange de ceux- ci en toutes proportions. Du fait de la présence des nanocharges carbonées, le matériau composite conserve ses propriétés mécaniques à température élevée et peut ainsi être transformé à haute température en divers produits composites sans subir de dégradation thermique. Il a par ailleurs été constaté que les nanocharges carbonées confèrent une résistance à l'abrasion au matériau composite. According to the invention, the polymeric composition comprises a polymer matrix containing at least one polymer selected from a thermoplastic polymer or an elastomeric resin base, or a mixture thereof in all proportions. Due to the presence of carbon nanofillers, the composite material retains its mechanical properties at high temperature and can thus be converted at high temperature into various composite products without undergoing thermal degradation. It has also been found that carbon nanofillers confer resistance to abrasion to the composite material.
Ainsi, l'invention s'étend également à l'utilisation d'un matériau composite comprenant une composition polymérique chargée à l'aide d'une charge conventionnelle comme renfort mécanique, et renforcé thermomécaniquement à l'aide de 1 ppm à moins de 1 % en poids de nanocharges carbonées pour la fabrication de divers produits composites tels que des fils, des films, des tubes, des fibres, des non tissés comme des tissus ou des feutres, utilisables pour les conduits de fibres optiques, le gainage de câbles, les conduites de gaz ou d'eaux de rejets ou industrielles, les revêtements extrudés ou moulés, les articles fabriqués par injection, extrusion, compression ou moulage, dans le secteur automobile (pièces sous le capot, pièces externes ou internes, étanchéité, etc.) ou dans le domaine de l'agriculture, notamment pour la protection des terres d'agriculture (serres et sols). Thus, the invention also extends to the use of a composite material comprising a polymeric composition loaded with a conventional filler as mechanical reinforcement, and thermomechanically reinforced using 1 ppm to less than 1 % by weight of carbon nanofillers for the manufacture of various composite products such as yarns, films, tubes, fibers, nonwovens such as fabrics or felts, usable for fiber optic conduits, cable sheathing, gas or waste water or industrial pipelines, extruded or molded coatings, articles manufactured by injection, extrusion, compression or molding, in the automotive sector (parts under the hood, external or internal parts, sealing, etc.) ) or in the field of agriculture, particularly for the protection of agricultural land (greenhouses and soils).
Description détaillée detailed description
Les nanocharges carbonées  Carbon nanofillers
Selon l'invention, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène ou un mélange de ceux-ci en toutes proportions.  According to the invention, the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene or a mixture of these in all proportions.
Les nanotubes de carbone peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Corn. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456. On préfère selon l'invention des nanotubes de carbone multi-parois obtenus suivant un procédé de dépôt chimique en phase vapeur (ou CVD), par décomposition catalytique d'une source de carbone (de préférence d'origine végétale), tel que décrit notamment dans la demande EP 1 980 530 de la Demanderesse. The carbon nanotubes may be single-walled, double-walled or multi-walled. The double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Corn. (2003), 1442. Multilayered nanotubes can be prepared as described in WO 03/02456. Multi-walled carbon nanotubes obtained according to a chemical vapor deposition (or CVD) process, by catalytic decomposition of a carbon source (preferably of plant origin), as described in particular, are preferred according to the invention. in the application EP 1 980 530 of the Applicant.
Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 100 nm, de préférence de 0,4 à 50 nm et, mieux, de 1 à 30 nm, voire de 10 à 15 nm, et avantageusement une longueur de 0,1 à 10 μιτι. Leur rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2/g, avantageusement entre 200 et 300 m2/g, et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets (ou parois) et plus préférentiellement de 7 à 10 feuillets. Ces nanotubes peuvent ou non être traités. The nanotubes usually have an average diameter ranging from 0.1 to 100 nm, preferably from 0.4 to 50 nm and better still from 1 to 30 nm, indeed from 10 to 15 nm, and advantageously a length of 0.1. at 10 μιτι. Their length / diameter ratio is preferably greater than 10 and most often greater than 100. Their specific surface area is, for example, between 100 and 300 m 2 / g, advantageously between 200 and 300 m 2 / g, and their apparent density may in particular, be between 0.05 and 0.5 g / cm 3 and more preferably between 0.1 and 0.2 g / cm 3. The multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets. These nanotubes may or may not be processed.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100. An example of crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
Ces nanotubes peuvent être purifiés et/ou traités (par exemple oxydés) et/ou fonctionnalisés, avant leur mise en œuvre dans le procédé selon l'invention. These nanotubes can be purified and / or treated (for example oxidized) and / or functionalized before being used in the process according to the invention.
La purification des nanotubes peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, comme par exemple le fer, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 120°C, par exemple pendant une durée de 5 à 1 0 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés. Les nanotubes peuvent en variante être purifiés par traitement thermique à haute température, typiquement supérieur à 1000°C. L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d'hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCI et de préférence de 1 à 10% en poids de NaOCI, par exemple dans un rapport pondéral des nanotubes à l'hypochlorite de sodium allant de 1 :0,1 à 1 :1 . L'oxydation est avantageusement réalisée à une température inférieure à 60°C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés. La fonctionnalisation des nanotubes peut être réalisée par greffage de motifs réactifs tels que des monomères vinyliques à la surface des nanotubes. Le matériau constitutif des nanotubes est utilisé comme initiateur de polymérisation radicalaire après avoir été soumis à un traitement thermique à plus de 900°C, en milieu anhydre et dépourvu d'oxygène, qui est destiné à éliminer les groupes oxygénés de sa surface. Il est ainsi possible de polymériser du méthacrylate de méthyle ou du méthacrylate d'hydroxyéthyle à la surface de nanotubes de carbone en vue de faciliter notamment leur dispersion dans le PVDF. On peut utiliser dans la présente invention des nanotubes bruts, c'est-à- dire des nanotubes qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique et/ou thermique. En variante, on peut utiliser des nanotubes purifiés, notamment par traitement thermique à haute température. On préfère par ailleurs que les nanotubes de carbone ne soient pas broyés. Les nanofibres de carbone sont, comme les nanotubes de carbone, des nanofilaments produits par dépôt chimique en phase vapeur (ou CVD) à partir d'une source carbonée qui est décomposée sur un catalyseur comportant un métal de transition (Fe, Ni, Co, Cu), en présence d'hydrogène, à des températures de 500 à 1200°C. Toutefois, ces deux charges carbonées se différencient par leur structure (I. MARTIN-GULLON et al., Carbon 44 (2006) 1572-1580). En effet, les nanotubes de carbone sont constitués d'un ou plusieurs feuillets de graphène enroulés manière concentrique autour de l'axe de la fibre pour former un cylindre ayant un diamètre de 10 à 100 nm. Au contraire, les nanofibres de carbone se composent de zones graphitiques plus ou moins organisées (ou empilements turbostratiques) dont les plans sont inclinés à des angles variables par rapport à l'axe de la fibre. Ces empilements peuvent prendre la forme de plaquettes, d'arêtes de poisson ou de coupelles empilées pour former des structures ayant un diamètre allant généralement de 100 nm à 500 nm voire plus. The purification of the nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities, such as iron, from their preparation process. The weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3. The purification operation may also be carried out at a temperature ranging from 90 to 120 ° C, for example for a period of 5 to 10 hours. This operation can advantageously be followed by rinsing steps with water and drying the purified nanotubes. The nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 ° C. The oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCI and preferably from 1 to 10% by weight of NaOCI, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1. The oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes. The functionalization of the nanotubes can be carried out by grafting reactive units such as vinyl monomers on the surface of the nanotubes. The material constituting the nanotubes is used as a radical polymerization initiator after having been subjected to a heat treatment at more than 900 ° C., in an anhydrous and oxygen-free medium, which is intended to eliminate the oxygenated groups from its surface. It is thus possible to polymerize methyl methacrylate or hydroxyethyl methacrylate on the surface of carbon nanotubes in order to facilitate in particular their dispersion in the PVDF. In the present invention, it is possible to use crude nanotubes, that is to say nanotubes which are neither oxidized nor purified nor functionalized and have undergone no other chemical and / or thermal treatment. Alternatively, purified nanotubes may be used, in particular by high temperature heat treatment. It is furthermore preferred that the carbon nanotubes are not ground. Carbon nanofibers, like carbon nanotubes, are nanofilaments produced by chemical vapor deposition (or CVD) from a carbon source which is decomposed on a catalyst comprising a transition metal (Fe, Ni, Co, Cu), in the presence of hydrogen, at temperatures of 500 to 1200 ° C. However, these two carbonaceous charges are differentiated by their structure (I. MARTIN-GULLON et al., Carbon 44 (2006) 1572-1580). Indeed, the carbon nanotubes consist of one or more sheets of graphene wound concentrically around the axis of the fiber to form a cylinder having a diameter of 10 to 100 nm. On the contrary, carbon nanofibers are composed of more or less organized graphitic zones (or turbostratic stacks) whose planes are inclined at variable angles with respect to the axis of the fiber. These stacks can take the form of platelets, fish bones or stacked cups to form structures generally ranging in diameter from 100 nm to 500 nm or more.
On préfère utiliser des nanofibres de carbone ayant un diamètre de 100 à 200 nm, par exemple d'environ 150 nm (VGCF® de SHOWA DENKO), et avantageusement une longueur de 100 à 200 μιτι. Le terme « graphène » désigne un feuillet de graphite plan, isolé et individualisé, mais aussi, par extension, un assemblage comprenant entre un feuillet et quelques dizaines de feuillets et présentant une structure plane ou plus ou moins ondulée. Chaque feuillet de graphène est formé d'atomes de carbone liés les uns aux autres par des liaisons C-C de type sp2 et formant un réseau hexagonal bidimensionnel. It is preferred to use carbon nanofibers having a diameter of 100 to 200 nm, for example about 150 nm (VGCF® from SHOWA DENKO), and advantageously a length of 100 to 200 μιτι. The term "graphene" designates a sheet of plane graphite, isolated and individualized, but also, by extension, an assembly comprising between a sheet and a few tens of sheets and having a flat structure or more or less wavy. Each graphene sheet is formed of carbon atoms bonded to each other by sp 2 type DC bonds and forming a two-dimensional hexagonal lattice.
D'une manière générale, le graphène utilisé dans l'invention se présente sous la forme de particules solides de taille nanométrique présentant une épaisseur inférieure à 15 nm et au moins une dimension latérale sensiblement perpendiculaire à ladite épaisseur comprise entre 0,1 μιτι et 500 μιτι, et comprenant de 1 à 50 feuillets, lesdits feuillets étant susceptibles d'être désolidarisés les uns des autres sous la forme de feuillets indépendants par exemple lors d'un traitement par des ultrasons. Selon une forme d'exécution préférée de l'invention, les nanocharges carbonées comprennent des nanotubes de carbone, de préférence des nanotubes de carbone multi-parois obtenus suivant un procédé de dépôt chimique en phase vapeur, seuls ou en mélange avec du graphène. In general, the graphene used in the invention is in the form of solid particles of nanometric size having a thickness of less than 15 nm and at least one lateral dimension substantially perpendicular to said thickness of between 0.1 μιτι and 500. μιτι, and comprising from 1 to 50 sheets, said sheets being capable of being detached from each other in the form of independent sheets for example during treatment with ultrasound. According to a preferred embodiment of the invention, the carbon nanofillers comprise carbon nanotubes, preferably multi-walled carbon nanotubes obtained by a chemical vapor deposition process, alone or mixed with graphene.
Selon une forme d'exécution préférée de l'invention, les nanocharges carbonées sont utilisées à une teneur comprise entre 1 ppm et 0,5% en poids, plus particulièrement entre 10 ppm et 0,3% en poids par rapport au matériau composite.  According to a preferred embodiment of the invention, the carbon nanofillers are used at a content of between 1 ppm and 0.5% by weight, more particularly between 10 ppm and 0.3% by weight relative to the composite material.
La composition polymérique The polymeric composition
Selon l'invention, la composition polymérique comprend une matrice polymère renfermant au moins un polymère qui peut être un polymère thermoplastique ou une base de résine élastomérique, ou un mélange de ceux- ci en toutes proportions.  According to the invention, the polymeric composition comprises a polymer matrix comprising at least one polymer which may be a thermoplastic polymer or an elastomeric resin base, or a mixture thereof in all proportions.
Selon une première forme d'exécution de l'invention, la composition polymérique renferme un polymère thermoplastique. Par « polymère thermoplastique », on entend, au sens de la présente invention, un polymère qui fond lorsqu'on le chauffe et qui peut être mis et remis en forme à l'état fondu. According to a first embodiment of the invention, the polymeric composition contains a thermoplastic polymer. By "thermoplastic polymer" is meant, in the sense of the present invention, a polymer that melts when heated and can be put and shaped in the molten state.
Ce polymère thermoplastique peut notamment être choisi parmi : les homo- et copolymères d'oléfines tels que le polyéthylène, le polypropylène, le polybutadiène, le polybutylène et les copolymères acrylonitrile-butadiène- styrène ; les homo- et copolymères acryliques et les poly(méth)acrylates d'alkyles tels que le poly(méthacrylate de méthyle) ; les homo- et copolyamides ; les polycarbonates ; les polyesters dont le poly(téréphtalate d'éthylène) et le poly(téréphtalate de butylène) ; les polyéthers tels que le poly(phénylène éther), le poly(oxyméthylène) et le poly(oxyéthylène) ou poly(éthylène glycol); le polystyrène ; les copolymères de styrène et d'anhydride maléique ; le poly(chlorure de vinyle) ; les polymères fluorés tels que le poly(fluorure de vinylidène), le polytétrafluoréthylène et le polychlorotrifluoroéthylène ; les caoutchoucs naturels ou synthétiques ; les polyuréthanes thermoplastiques ; les polyaryl éther cétones (PAEK) telles que la polyétheréthercétone (PEEK) et la polyéther cétone cétone (PEKK) ; le polyétherimide ; la polysulfone ; le poly(sulfure de phénylène) ; l'acétate de cellulose ; le poly(acétate de vinyle) ; et leurs mélanges. This thermoplastic polymer may especially be chosen from: homo- and copolymers of olefins such as polyethylene, polypropylene, polybutadiene, polybutylene and acrylonitrile-butadiene-styrene copolymers; acrylic homo- and copolymers and alkyl poly (meth) acrylates such as poly (methyl methacrylate); homo- and copolyamides; polycarbonates; polyesters including poly (ethylene terephthalate) and poly (butylene terephthalate); polyethers such as poly (phenylene ether), poly (oxymethylene) and poly (oxyethylene) or poly (ethylene glycol); polystyrene; copolymers of styrene and maleic anhydride; polyvinyl chloride; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene; natural or synthetic rubbers; thermoplastic polyurethanes; polyaryl ether ketones (PAEK) such as polyetheretherketone (PEEK) and polyether ketone ketone (PEKK); polyetherimide; polysulfone; poly (phenylene sulfide); cellulose acetate; poly (vinyl acetate); and their mixtures.
Selon une forme d'exécution, le polymère est choisi parmi les homo- et copolymères d'oléfines, en particulier les homo- et copolymères d'éthylène ou de propylène, et les homo- et copolymères d'amides comme les polyamides 6, 6.6, 6.10, 6.12, 1 1 , 12, 10.10, 12.12, 4.6, ou copolymères avec des oléfines ou des esters, éthers ou composés phénoliques. According to one embodiment, the polymer is chosen from olefin homo- and copolymers, in particular ethylene or propylene homo- and copolymers, and amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
Dans une seconde forme d'exécution de l'invention, la composition polymérique renferme une base de résine élastomérique. Par « base de résine élastomérique », on entend, dans la présente description, un polymère organique ou siliconé, qui forme, après vulcanisation, un élastomère capable de supporter de grandes déformations de façon quasi-réversible, c'est-à-dire susceptible d'être soumis à une déformation uniaxiale, avantageusement d'au moins deux fois sa longueur d'origine à température ambiante (23°C), pendant cinq minutes, puis de recouvrer, une fois la contrainte relâchée, sa dimension initiale, avec une déformation rémanente inférieure à 10% de sa dimension initiale. Du point de vue structural, les élastomères sont généralement constitués de chaînes polymériques reliées entre elles, pour former un réseau tridimensionnel. Plus précisément, on distingue parfois les élastomères thermoplastiques, dans lesquels les chaînes polymériques sont reliées entre elles par des liaisons physiques, telles que des liaisons hydrogène ou dipôle- dipôle, des élastomères thermodurcissables, dans lesquels ces chaînes sont reliées par des liaisons covalentes, qui constituent des points de réticulation chimique. Ces points de réticulation sont formés par des procédés de vulcanisation mettant en œuvre un agent de vulcanisation qui peut par exemple être choisi, selon la nature de l'élastomère, parmi les agents de vulcanisation à base de soufre, en présence de sels métalliques de dithiocarbamates ; les oxydes de zinc combinés à de l'acide stéarique ; les résines phénol- formaldéhyde bifonctionnelles éventuellement halogénées, en présence de chlorure d'étain ou d'oxyde de zinc ; les peroxydes ; les aminés ; les hydrosilanes en présence de platine ; etc. In a second embodiment of the invention, the polymeric composition contains an elastomeric resin base. By "elastomeric resin base" is meant, in the present description, an organic or silicone polymer, which forms, after vulcanization, an elastomer capable of withstanding large deformations in a quasi-reversible manner, that is to say susceptible to be uniaxially deformed, preferably at least twice its original length at room temperature (23 ° C), for five minutes, and then recover, once the stress is relaxed, its initial dimension, with a remanent deformation less than 10% of its original size. From a structural point of view, elastomers are generally composed of polymer chains interconnected to form a three-dimensional network. More precisely, thermoplastic elastomers are sometimes distinguished in which the polymer chains are connected to each other by physical bonds, such as hydrogen or dipole-dipole bonds, thermosetting elastomers, in which these chains are connected by covalent bonds, which constitute points of chemical crosslinking. These crosslinking points are formed by methods of vulcanization using a vulcanizing agent which may for example be chosen, according to the nature of the elastomer, from sulfur-based vulcanization agents, in the presence of metal salts of dithiocarbamates; zinc oxides combined with stearic acid; bifunctional phenol-formaldehyde resins optionally halogenated in the presence of tin chloride or zinc oxide; peroxides; amines; hydrosilanes in the presence of platinum; etc.
La présente invention concerne plus particulièrement les bases de résine élastomérique renfermant, ou constituées par, des élastomères thermodurcissables éventuellement en mélange avec des élastomères non réactifs, c'est-à-dire non vulcanisables (tels que les caoutchoucs hydrogénés). The present invention relates more particularly to elastomeric resin bases containing or consisting of thermosetting elastomers optionally mixed with non-reactive elastomers, that is to say non-vulcanizable (such as hydrogenated rubbers).
Les bases de résine élastomérique utilisables selon l'invention peuvent notamment comprendre, voire être constituées par, un ou plusieurs polymères choisis parmi : les élastomères fluorocarbonés ou fluorosiliconés ; les homo- et copolymères du butadiène, éventuellement fonctionnalisées par des monomères insaturés tels que l'anhydride maléique, l'acide (méth)acrylique, l'acrylonitrile (NBR) et/ou le styrène (SBR ; SBS ; SEBS) ; le néoprène (ou polychloroprène) ; le polyisobutylène (PIB) ; le polyisopropylène (PIP) ; le polyisoprène ; les copolymère d'isoprène avec le styrène, le butadiène, l'acrylonitrile et/ou le méthacrylate de méthyle ; les copolymères à base de propylène et/ou d'éthylène et notamment les terpolymères à base d'éthylène, de propylène et de diènes (EPDM), ainsi que les copolymères de ces oléfines avec un (méth)acrylate d'alkyle ou l'acétate de vinyle ; les caoutchoucs naturels (NR) ; les caoutchoucs butyle halogénés ; les élastomères de silicone tels que les poly(diméthylsiloxanes) à extrémités vinyliques ; les polyuréthanes (PU) ; les plastomères comprenant des oléfines en C-4, C-5, C-6, C-8 C-9, ou C-12 ; les polyesters ; les polymères acryliques tels que le poly(acrylate de butyle) porteur de fonctions acide carboxylique ou époxy ; ainsi que leurs dérivés modifiés ou fonctionnalisés et leurs mélanges, sans que cette liste ne soit limitative. On préfère utiliser selon l'invention les résines élastomériques EPDM, SBR, SBS, SEBS, NBR, NR, PIB, PIP, PU, ou les plastomères en C-4, C-5, C- 6, C-8, C-9, C-12, ou leurs mélanges en toutes proportions. The elastomeric resin bases that can be used according to the invention can in particular comprise, or even consist of, one or more polymers chosen from: fluorocarbon or fluorosilicone elastomers; homo- and copolymers of butadiene, optionally functionalized with unsaturated monomers such as maleic anhydride, (meth) acrylic acid, acrylonitrile (NBR) and / or styrene (SBR, SBS, SEBS); neoprene (or polychloroprene); polyisobutylene (PIB); polyisopropylene (PIP); polyisoprene; copolymers of isoprene with styrene, butadiene, acrylonitrile and / or methyl methacrylate; copolymers based on propylene and / or ethylene and in particular terpolymers based on ethylene, propylene and dienes (EPDM), as well as copolymers of these olefins with an alkyl (meth) acrylate or vinyl acetate; natural rubbers (NR); halogenated butyl rubbers; silicone elastomers such as poly (dimethylsiloxanes) with vinyl ends; polyurethanes (PU); plastomers comprising olefins at C-4, C-5, C-6, C-8 C-9, or C-12; polyesters; acrylic polymers such as poly (butyl acrylate) bearing carboxylic acid or epoxy functions; as well as their modified or functionalized derivatives and their mixtures, without this list being limiting. The elastomeric resins EPDM, SBR, SBS, SEBS, NBR, NR, PIB, PIP, PU or the C-4, C-5, C-6, C-8 and C-plastomers are preferably used according to the invention. 9, C-12, or mixtures thereof in all proportions.
Selon une forme d'exécution préférée de l'invention, la composition polymérique comprend au moins un polymère thermoplastique. According to a preferred embodiment of the invention, the polymeric composition comprises at least one thermoplastic polymer.
Les charges conventionnelles Conventional loads
La composition polymérique comprend au moins une charge conventionnelle utilisée comme agent de renfort mécanique. Parmi les charges conventionnelles généralement utilisées, on peut citer : The polymeric composition comprises at least one conventional filler used as a mechanical reinforcing agent. Among the conventional loads generally used, mention may be made of:
- les charges de nature carbonique, telle que le noir de carbone, les fibres de carbone, le graphite ;  carbonic fillers, such as carbon black, carbon fibers, graphite;
- les charges minérales sans facteur de forme, telles que carbonate de Ca, andalousite, ferrites, sulfates et carbonates de baryum, silice, cryolite, néphéline, olivine, sillimanite, sillitin, et oxydes des métaux, Dolomite, sphères de verre creuses et pleines, silicates, carbure de silicium, quartz, nitrure de bore, hydroxydes de Al et Mg ;  - mineral fillers without form factor, such as Ca carbonate, andalusite, barium ferrites, sulphates and carbonates, silica, cryolite, nepheline, olivine, sillimanite, sillitin, and metal oxides, Dolomite, hollow and solid glass spheres silicates, silicon carbide, quartz, boron nitride, Al and Mg hydroxides;
- les charges minérales lamellaires telles que le talc, mica, argiles, kaolin, silice, M0S2, lamelles métalliques (Al, Cu en particulier) ; lamellar mineral fillers such as talc, mica, clays, kaolin, silica, MoS 2 , metal lamellae (Al, Cu in particular);
- les micro fibrilles et nano fibrilles minérales telle que les fibres de verre, basalte, fibres métalliques, goethite, oxydes des métaux, céramiques, aramide, fibres naturelles de roches comme Halloysite MacroFil HT (Macro-M), Dragonite, silicate aluminium ;  micro-fibrils and nano-mineral fibrils such as glass fibers, basalt, metal fibers, goethite, metal oxides, ceramics, aramid, natural rock fibers such as Halloysite MacroFil HT (Macro-M), Dragonite, aluminum silicate;
- les fibres minérales synthétiques : Magnésium Oxysulfate whiskers, par exemple Hyperform HP803 (de Milliken), MOS-HIGE (de UBE Materials), fibres titanate de potassium TISMO (de Otsuka Chemical Co.), les fibres de bore, les fibres d'oxydes métalliques ;  - synthetic mineral fibers: Magnesium Oxysulfate whiskers, for example Hyperform HP803 (from Milliken), MOS-HIGE (from UBE Materials), potassium titanate fibers TISMO (from Otsuka Chemical Co.), boron fibers, fibers from metal oxides;
les fibres organiques naturelles et synthétiques : soie, laine, végétaux : bambou, fibre de coco, coton, lin, chanvre, jute, kapok, le kénaf, fibres dérivées de la cellulose : acétate, hydrocellulose, Lyocell, rayonne, rayonne modal. Généralement, on préfère utiliser comme charge conventionnelle des fibres minérales synthétiques ou des charges de nature carbonique telles que des fibres de carbone. natural and synthetic organic fibers: silk, wool, plants: bamboo, coconut fiber, cotton, linen, hemp, jute, kapok, kenaf, fibers derived from cellulose: acetate, hydrocellulose, Lyocell, rayon, modal rayon. Generally, it is preferred to use as conventional filler synthetic mineral fibers or carbonic fillers such as carbon fibers.
La charge conventionnelle est généralement présente à une teneur allant de 0,1 % à 10%, de préférence de 0,5% à 6% en poids par rapport à la matrice polymère.  The conventional filler is generally present at a content ranging from 0.1% to 10%, preferably from 0.5% to 6% by weight relative to the polymer matrix.
Le rapport massique entre les nanocharges carbonées et la charge conventionnelle est généralement compris entre 1 % et 10%, de préférence entre 2% et 6%. Autres constituants  The mass ratio between the carbonaceous nanofillers and the conventional filler is generally between 1% and 10%, preferably between 2% and 6%. Other constituents
Outre les constituants précités, selon l'invention, le matériau composite comprenant une composition polymérique chargée à l'aide d'une charge conventionnelle, peut comprendre d'autres additifs, en particulier choisis parmi les additifs non polymériques ou les additifs polymériques.  In addition to the aforementioned constituents, according to the invention, the composite material comprising a polymer composition charged with a conventional filler may comprise other additives, in particular chosen from nonpolymeric additives or polymeric additives.
Les additifs non polymériques éventuellement inclus dans le matériau composite selon l'invention comprennent en particulier des plastifiants non polymériques, des tensioactifs tels que le dodécyl benzène sulfonate de sodium, des charges inorganiques telles que la silice, le dioxyde de titane, le talc ou le carbonate de calcium, des filtres UV, notamment à base de dioxyde de titane, des retardateurs de flamme, des solvants du polymère, des stabilisants thermiques ou à la lumière, notamment à base de phénol ou de phosphite, et leurs mélanges.  The non-polymeric additives optionally included in the composite material according to the invention comprise, in particular, non-polymeric plasticizers, surfactants such as sodium dodecylbenzene sulphonate, inorganic fillers such as silica, titanium dioxide, talc or calcium carbonate, UV filters, especially those based on titanium dioxide, flame retardants, polymer solvents, thermal or light stabilizers, especially based on phenol or phosphite, and mixtures thereof.
Comme additifs polymériques, on peut citer des polymères dispersants ou plastifiants, notamment des polymères dispersants améliorant la dispersion des nanocharges dans la matrice polymère.  As polymeric additives, mention may be made of dispersant or plasticizer polymers, in particular dispersant polymers that improve the dispersion of the nanofillers in the polymer matrix.
La nature chimique du dispersant est fonction de la nature chimique de la matrice polymère à renforcer par les nanocharges carbonées. On peut citer par exemple comme dispersants, des oligomères de téréphtalate de butyle cyclique (notamment la résine CBT® 100 de CYCLICS), les cires naturelles, les cires synthétiques, les cires de polyoléfines, les acides gras et leurs dérivés, les esters/amides, les acides gras saponifiés, le stéarate de zinc, les esters sorbitaniques d'acides, le glycerol ester, les dérivés d'acides organiques, la partie organique d'organosilanes tels que l'amino Silane, (STRUKTOL® SCA 1 100) le chloropropyle silane (STRUKTOL® SCA 930), l'epoxy silane (STRUKTOL® SCA 960), le méthacryloxy silane (STRUKTOL® SCA 974), les Vinyl silanes, STRUKTOL® SCA 971 and SCA 972), les polymères greffés (Polymer-G-MAH, Polymer-G-GMA), les titanates and zirconates (Tyzor). Les oligomères silsesquioxanes (POSS), les additifs ramifiés et polymères commercialisés sour les noms Boltorn H20, H30, H40, H20, H30, H40, S 1200, D 2800, P/S80 1200, DEO750 8500, H 1500, H/S80 1700, HV 2680, P 1000, PS 1925, PS 2550, H31 1 , H2004, P500, P1000, W3000, U3000, et autres, DSM Hybrane), BYK-C 8000 de BYK Company, etc. The chemical nature of the dispersant is a function of the chemical nature of the polymer matrix to be reinforced by carbon nanofillers. We can cite for example as dispersants, oligomers of cyclic butyl terephthalate (in particular CYCLICS CBT® 100 resin), natural waxes, synthetic waxes, polyolefin waxes, fatty acids and their derivatives, esters / amides, acids saponified fatty acids, zinc stearate, sorbitanic acid esters, glycerol ester, organic acid derivatives, organic organosilanes such as amino silane, (STRUKTOL® SCA 1100) chloropropyl silane ( STRUKTOL® SCA 930), epoxy silane (STRUKTOL® SCA 960), methacryloxy silane (STRUKTOL® SCA 974), vinyl silanes, STRUKTOL® SCA 971 and SCA 972), graft polymers (Polymer-G-MAH, Polymer-G-GMA), titanates and zirconates (Tyzor). Silsesquioxane oligomers (POSS), branched additives and polymers marketed under the names Boltorn H20, H30, H40, H20, H30, H40, S 1200, D 2800, P / S80 1200, DEO750 8500, H 1500, H / S80 1700 , HV 2680, P 1000, PS 1925, PS 2550, H31 1, H2004, P500, P1000, W3000, U3000, and others, DSM Hybrane), BYK-C 8000 by BYK Company, etc.
Un procédé de préparation d'un matériau composite comprenant une composition polymérique chargée et renforcé thermomécaniquement par des nanocharges carbonées selon la présente invention sera à présent décrit plus en détails. A process for preparing a composite material comprising a thermomechanically charged and thermomechanically reinforced polymeric composition by carbonaceous nanofillers according to the present invention will now be described in more detail.
Ce procédé comprend au moins les étapes suivantes :  This method comprises at least the following steps:
a) l'introduction, puis le malaxage, dans un dispositif de compoundage, d'un mélange-maître concentré en nanocharges carbonées, avec une matrice polymérique pour obtenir un pré-composite comprenant de 0,25% à 3% en poids de nanocharges carbonées ;  a) introducing, then mixing, in a compounding device, a masterbatch concentrated in carbon nanofillers, with a polymer matrix to obtain a pre-composite comprising from 0.25% to 3% by weight of nanofillers carbonaceous;
b) éventuellement la transformation du pré-composite sous forme solide agglomérée telle que des granulés ou de la poudre broyée ;  b) optionally converting the pre-composite in agglomerated solid form such as granules or ground powder;
c) l'introduction du pré-composite dans une matrice polymère renfermant au moins un polymère choisi parmi un polymère thermoplastique et une base de résine élastomère ou un mélange de ceux-ci en toutes proportions, et comprenant une charge conventionnelle, pour obtenir un matériau composite. Ce procédé comprend une première étape a) de dilution d'un mélange- maître concentré en nanocharges carbonées dans une matrice polymérique en vue d'obtenir un pré-composite comprenant de 0,25% à 3% en poids de nanocharges carbonées. c) introducing the pre-composite into a polymer matrix containing at least one polymer selected from a thermoplastic polymer and an elastomeric resin base or a mixture thereof in all proportions, and comprising a conventional filler, to obtain a material composite. This method comprises a first step a) of dilution of a masterbatch concentrated in carbon nanofillers in a polymer matrix in order to obtain a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
Par mélange-maître concentré en nanocharges carbonées, on entend un mélange-maître renfermant de 5% à 50% en poids de nanocharges carbonées, notamment de nanotubes de carbone, dispersées dans une matrice polymérique à base d'un polymère thermoplastique, d'une base de résine élastomère et/ou d'un polymère dispersant.  By masterbatch concentrated in carbon nanofillers is meant a masterbatch containing from 5% to 50% by weight of carbon nanofillers, in particular carbon nanotubes, dispersed in a polymer matrix based on a thermoplastic polymer, a base of elastomeric resin and / or a dispersant polymer.
Parmi les mélanges-maîtres utilisables, on peut citer par exemple les grades Graphistrength® CM de la société déposante, disponibles commercialement, notamment les grades CM 12-30 ; CM 13-30 ; CM 1 -20 ; CM2-20 ; CM 3-20 ; CM 6-20 ; CM 7-20. Among the usable masterbatches include such grades Graphistrength ® CM of the applicant company, available commercially, including CM 12-30 degrees; CM 13-30; CM 1 -20; CM2-20; CM 3-20; CM 6-20; CM 7-20.
L'étape de dilution peut être réalisée par malaxage dans un dispositif de compoundage et conduit directement à un pré-composite comprenant de 0,25% à 3% en poids de nanocharges carbonées.  The dilution step can be carried out by kneading in a compounding device and leads directly to a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
Dans une variante, l'étape de dilution est réalisée en deux étapes successives, afin d'affiner la dispersion, la première conduisant à un pré- composite comprenant de 2,5 à 10% en poids, de préférence de 2,5 à 5% en poids de nanocharges carbonées, la seconde conduisant à un pré-composite comprenant de 0,25% à 3% en poids de nanocharges carbonées.  In a variant, the dilution step is carried out in two successive stages, in order to refine the dispersion, the first leading to a pre-composite comprising from 2.5 to 10% by weight, preferably from 2.5 to 5% by weight. % by weight of carbon nanofillers, the second leading to a pre-composite comprising from 0.25% to 3% by weight of carbon nanofillers.
Selon cette variante, il est possible d'atteindre avec précision des taux très faibles de nanocharges dans la dispersion, tout en évitant le risque d'agglomération des nanocharges carbonées au sein de la dispersion.  According to this variant, it is possible to achieve precisely very low levels of nanofillers in the dispersion, while avoiding the risk of agglomeration of the carbon nanofillers within the dispersion.
Par « dispositif de compoundage », on entend, dans la présente description, un appareillage classiquement utilisé dans l'industrie des matières plastiques. Dans cet appareillage, la composition polymérique et le mélange- maître sont mélangés à l'aide d'un dispositif à fort cisaillement, par exemple une extrudeuse à double vis co-rotatives ou contre-rotatives ou un co-malaxeur. Des exemples de co-malaxeurs utilisables selon l'invention sont les co- malaxeurs BUSS® MDK 46 et ceux de la série BUSS® MKS ou MX, commercialisés par la société BUSS AG, qui sont tous constitués d'un arbre à vis pourvu d'ailettes, disposé dans un fourreau chauffant éventuellement constitué de plusieurs parties et dont la paroi interne est pourvue de dents de malaxage adaptées à coopérer avec les ailettes pour produire un cisaillement de la matière malaxée. L'arbre est entraîné en rotation, et pourvu d'un mouvement d'oscillation dans la direction axiale, par un moteur. Ces co- malaxeurs peuvent être équipés d'un système de fabrication de granulés, adapté par exemple à leur orifice de sortie, qui peut être constitué d'une vis d'extrusion ou d'une pompe. By "compounding device" is meant in the present description, an apparatus conventionally used in the plastics industry. In this apparatus, the polymeric composition and the masterbatch are mixed using a high-shear device, for example a co-rotating or counter-rotating twin-screw extruder or a co-kneader. Examples of co-kneaders that can be used according to the invention are the BUSS® MDK 46 co-kneaders and those of the BUSS® MKS or MX series marketed by the company BUSS AG, all of which consist of a screw shaft provided with fins, disposed in a heating sleeve optionally consisting of several parts and whose inner wall is provided with kneading teeth adapted to cooperate with the fins to produce a shear of the kneaded material. The shaft is rotated and provided with oscillation movement in the axial direction by a motor. These co-kneaders may be equipped with a pellet manufacturing system, adapted for example to their outlet orifice, which may consist of an extrusion screw or a pump.
Les co-malaxeurs utilisables selon l'invention ont de préférence un rapport de vis L/D allant de 7 à 22, par exemple de 10 à 20, tandis que les extrudeuses co-rotatives ont avantageusement un rapport L/D allant de 15 à 56, par exemple de 20 à 50.  The co-kneaders that can be used according to the invention preferably have an L / D screw ratio ranging from 7 to 22, for example from 10 to 20, while the co-rotating extruders advantageously have an L / D ratio ranging from 15 to 56, for example from 20 to 50.
Comme dispositif de compoundage, on peut utiliser, notamment dans le cas où la matrice polymérique est à base d'une base de résine élastomère solide, un mélangeur ou broyeur à cylindres (bi- ou tricylindriques). Selon l'étape a) du procédé selon l'invention, l'introduction, dans le dispositif de compoundage, du mélange-maître concentré et de la matrice polymérique peut se faire de différentes manières, soit simultanément dans deux organes d'introduction séparés, soit successivement dans une même zone d'alimentation du mélangeur.  As a compounding device, it is possible to use, especially in the case where the polymeric matrix is based on a solid elastomer resin base, a mixer or roll mill (two- or three-tricylindrical). According to step a) of the process according to the invention, the introduction into the compounding device of the masterbatch concentrate and the polymer matrix can be done in different ways, or simultaneously in two separate introduction members, either successively in the same feed zone of the mixer.
La matrice polymérique peut être de même nature que la matrice polymérique constituant le mélange-maître concentré. En variante, le mélange- maître concentré comprend un dispersant et la matrice polymérique peut être différente de la matrice polymérique constituant le mélange-maître concentré.  The polymeric matrix may be of the same nature as the polymeric matrix constituting the concentrated masterbatch. Alternatively, the concentrated masterbatch comprises a dispersant and the polymeric matrix may be different from the polymeric matrix constituting the concentrated masterbatch.
A l'issue de l'étape a) le pré-composite peut être transformé éventuellement sous une forme physique solide agglomérée, par exemple sous forme de granulés, ou de poudre broyée, ou sous forme de joncs, de bande ou de film (étape b). Selon l'étape c) du procédé selon l'invention, le pré-composite est introduit dans une matrice polymère renfermant au moins un polymère choisi parmi un polymère thermoplastique et une base de résine élastomère, ou leurs mélanges, tels que décrits précédemment. At the end of step a), the pre-composite may be optionally converted into an agglomerated solid physical form, for example in the form of granules, or of ground powder, or in the form of rushes, tape or film (step b). According to step c) of the process according to the invention, the pre-composite is introduced into a polymer matrix containing at least one polymer selected from a thermoplastic polymer and an elastomeric resin base, or mixtures thereof, as described above.
L'étape c) peut être réalisée au moyen de tout dispositif classique, en particulier à l'aide de mélangeurs internes, ou de mélangeurs ou broyeurs à cylindres (bi- ou tricylindriques) à l'exception des broyeurs à billes. La quantité de pré-composite introduite dans la matrice polymère dépend du taux de nanocharges carbonées que l'on souhaite ajouter à cette matrice en vue d'obtenir les propriétés mécaniques recherchées pour le matériau composite obtenu.  Step c) can be carried out using any conventional device, in particular using internal mixers, or roll mixers or mills (bi- or tri-cylindrical) with the exception of ball mills. The amount of pre-composite introduced into the polymer matrix depends on the rate of carbon nanofillers that it is desired to add to this matrix in order to obtain the desired mechanical properties for the composite material obtained.
Cette matrice polymère comprend au moins un polymère, qui peut être identique à, (ou différent de), celui ou à ceux utilisés dans la fabrication du mélange-maître, ou dans la préparation du pré-composite, ainsi qu'éventuellement divers additifs, par exemple des lubrifiants, des pigments, des stabilisants, des charges ou renforts, des agents anti-statiques, des fongicides, des agents ignifugeants, des solvants, des agents d'expansion, des modificateurs de rhéologie et leurs mélanges. This polymer matrix comprises at least one polymer, which may be identical to, or different from, that or those used in the manufacture of the masterbatch, or in the preparation of the pre-composite, as well as possibly various additives, for example, lubricants, pigments, stabilizers, fillers or reinforcements, anti-static agents, fungicides, flame retardants, solvents, blowing agents, rheology modifiers and mixtures thereof.
Le matériau composite obtenu peut être mis en forme selon toute technique appropriée, notamment par injection, extrusion, compression ou moulage, suivie d'un traitement de vulcanisation ou de réticulation dans le cas où la matrice polymérique comprend une base de résine élastomérique. The composite material obtained can be shaped by any suitable technique, in particular by injection, extrusion, compression or molding, followed by a vulcanization or crosslinking treatment in the case where the polymeric matrix comprises an elastomeric resin base.
En variante, l'introduction de pré-composite dans la matrice polymère selon l'étape c) peut être effectuée à sec, directement dans l'outil de mise en forme du matériau composite, tel qu'un dispositif d'injection. Le renfort thermomécanique du matériau composite, obtenu selon l'invention, peut être contrôlé par la détermination des caractéristiques telles que celles mentionnées dans le tableau 1 qui illustre un exemple de réalisation de l'invention. Alternatively, the introduction of pre-composite in the polymer matrix according to step c) can be carried out dry, directly in the forming tool of the composite material, such as an injection device. The thermomechanical reinforcement of the composite material obtained according to the invention can be controlled by determining the characteristics such as than those mentioned in Table 1 which illustrates an exemplary embodiment of the invention.
La présence de nanocharges carbonées à des taux aussi faibles que ceux de l'invention permet d'obtenir une synergie avec la charge conventionnelle présente pour en réduire ainsi significativement le taux généralement nécessaire pour conférer les propriétés thermomécaniques souhaitées dans l'application visée et/ou pour améliorer encore les propriétés thermomécaniques des matrices polymériques déjà renforcées. L'invention sera mieux comprise à la lumière des exemples non limitatifs et purement illustratifs suivants.  The presence of carbon nanofillers at levels as low as those of the invention makes it possible to obtain a synergy with the conventional filler present to thereby significantly reduce the rate generally necessary to confer the desired thermomechanical properties in the intended application and / or to further improve the thermomechanical properties of polymeric matrices already reinforced. The invention will be better understood in the light of the following nonlimiting and purely illustrative examples.
Exemple 1 : Effet des NTC sur les propriétés thermomécaniques d'un polypropylène. EXAMPLE 1 Effect of CNTs on the Thermomechanical Properties of a Polypropylene
On a utilisé le grade GRAPHISTRENGTH® CM 12-30 de la société Arkema, contenant 30% de NTC (MWNT) parfaitement dispersés dans une résine, pour introduire des NTC dans une matrice de polypropylène PPC 5660 seul ou dans une matrice de polypropylène PPC 5660 additivé de charge Hyperform 803 de Milliken. Ces échantillons ont été préparés à partir d'un pré-composite comprenant 1 % de NTC préalablement obtenu par dilution du mélange-maître concentré avec le PPC 5660 concentré. Arkema grade GRAPHISTRENGTH® CM 12-30, containing 30% of NTC (MWNT) perfectly dispersed in a resin, was used to introduce CNTs into a polypropylene matrix PPC 5660 alone or in a polypropylene matrix. additive of Hyperform 803 from Milliken. These samples were prepared from a pre-composite comprising 1% of NTC previously obtained by dilution of the concentrated masterbatch with concentrated PPC 5660.
Six échantillons ont ainsi été préparés. Les pourcentages massiques étant exprimés par rapport à l'ensemble des constituants.  Six samples were thus prepared. The percentages by weight being expressed with respect to all the constituents.
Leurs propriétés de résistance au choc et de traction ainsi que leurs propriétés thermiques ont été évaluées comparativement à du PPC 5660 ne comportant aucune charge. Les résultats sont rassemblés dans le tableau 1 . L'ajout de NTC à un faible taux dans du PPC 5660 permet d'en améliorer les propriétés de choc, les propriétés de traction et les propriétés thermiques et d'atteindre des propriétés au moins équivalentes à celles obtenues avec un taux de 5 à 10 % en poids d'Hyperform 803. Their impact and tensile properties as well as their thermal properties were evaluated in comparison to unloaded PPC 5660. The results are summarized in Table 1. The addition of NTC at a low level in PPC 5660 makes it possible to improve the shock properties, the tensile properties and the thermal properties and to reach properties at least equivalent to those obtained with a rate of 5 to 10% by weight of Hyperform 803.
L'ajout de NTC à faible taux dans du PPC 5660 modifié avec une charge conventionnelle telle que l'Hyperform 803 permet d'en améliorer les propriétés de choc, les propriétés de traction et les propriétés thermiques tout en réduisant le taux de charge conventionnelle.  The addition of low-level NTCs in conventionally-weighted PPC 5660 such as Hyperform 803 improves shock properties, tensile properties, and thermal properties while reducing the conventional charge rate.
Tableau 1 Table 1
Norme Référence Ech 1 Ech 2 Ech 3 Ech 4 Ech 5 Ech 6 Standard Reference Ech 1 Ech 2 Ech 3 Ech 4 Ech 5 Ech 6
PPC 5660 100 PPC 5660 100
Hyperform 803, 0 10 5 5 2,5 0 0 %  Hyperform 803, 0 10 5 5 2.5 0 0%
NTC, % 0 0 0 0,25 0, 125 0,5 0,25 NTC,% 0 0 0 0.25 0, 125 0.5 0.25
Choc IZOD ISO 180 5,3 4,4 5, 1 4,9 5,7 6, 1 5,8 entaillé Shock IZOD ISO 180 5,3 4,4 5, 1 4,9 5,7 6, 1 5,8 notched
(kJ/m2) (kJ / m 2 )
Choc Charpy ISO 179 6 3,6 4,6 4,6 5,6 6, 1 6,3 entaillé (kJ/m2) Charpy Shock ISO 179 6 3,6 4,6 4,6 5,6 6, 1 6,3 notched (kJ / m 2 )
Module de flexion ISO 178 970 2050 1500 1690 1350 1 170 1 190 (MPa)  Bending module ISO 178 970 2050 1500 1690 1350 1 170 1 190 (MPa)
Module en ISO 1230 2870 1720 2010 1660 1450 1280 traction, (MPa) 527-2  Module in ISO 1230 2870 1720 2010 1660 1450 1280 traction, (MPa) 527-2
Résistance au ISO 29 28 29 29 28 29 29 seuil 527-2  Resistance to ISO 29 28 29 29 28 29 29 threshold 527-2
d'écoulement flow
(MPa) (MPa)
Déformation RSE ISO 2,7 3, 1 4,7 4,8 6, 1 5,2 5,2 (%) 527-2  Deformation CSR ISO 2.7 3, 1 4.7 4.8 6, 1 5.2 5.2 (%) 527-2
Contrainte à la ISO 35 20 25 22 24 24 25 rupture (MPa) 527-2  Stress at ISO 35 20 25 22 24 24 25 rupture (MPa) 527-2
Déformation à la ISO 550 510 560 560 560 620 590 rupture, % 527-2  Deformation to ISO 550 510 560 560 560 620 590 rupture,% 527-2
VICAT A50 ISO 306 74 74,9 74 78, 1 78,2 78,8 78,5 (10N), °C  VICAT A50 ISO 306 74 74.9 74 78, 78.2 78.8 78.5 (10N), ° C
HDT 1 ,8 MPa, °C ISO 30 46,9 61 55, 1 59,8 56,7 54,3 53,4  HDT 1, 8 MPa, ° C ISO 30 46.9 61 55, 1 59.8 56.7 54.3 53.4

Claims

REVENDICATIONS
1 . Utilisation de nanocharges carbonées choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène ou un mélange de ceux-ci en toutes proportions, pour renforcer les propriétés thermomécaniques d'un matériau composite comprenant une composition polymérique chargée à l'aide d'au moins une charge conventionnelle comme renfort mécanique, caractérisée en ce que la teneur en nanocharges carbonées est comprise entre 1 ppm et moins de 1 %, de préférence entre 1 ppm et 0,5%, plus préférentiellement entre 10 ppm et 0,3% en poids par rapport au matériau composite, et en ce que la composition polymérique comprend une matrice polymère renfermant au moins un polymère choisi parmi un polymère thermoplastique, une base de résine élastomérique et leurs mélanges en toutes proportions. 1. Use of carbon nanofillers selected from carbon nanotubes, carbon nanofibers, graphene or a mixture thereof in all proportions, to enhance the thermomechanical properties of a composite material comprising a polymeric composition loaded with the aid of at least one conventional filler as mechanical reinforcement, characterized in that the content of carbon nanofillers is between 1 ppm and less than 1%, preferably between 1 ppm and 0.5%, more preferably between 10 ppm and 0.3% by weight relative to the composite material, and in that the polymeric composition comprises a polymer matrix containing at least one polymer selected from a thermoplastic polymer, an elastomeric resin base and mixtures thereof in all proportions.
2. Utilisation selon la revendication 1 caractérisée en ce que les nanocharges carbonées sont des nanotubes de carbone, seuls ou en mélange avec du graphène. 2. Use according to claim 1 characterized in that the carbon nanofillers are carbon nanotubes, alone or in mixture with graphene.
3. Utilisation selon la revendication 1 ou 2 caractérisée en ce que le polymère thermoplastique est choisi parmi les homo- et copolymères d'oléfines tels que le polyéthylène, le polypropylène, le polybutadiène, le polybutylène et les copolymères acrylonitrile-butadiène-styrène ; les homo- et copolymères acryliques et les poly(méth)acrylates d'alkyles tels que le poly(méthacrylate de méthyle) ; les homo- et copolyamides ; les polycarbonates ; les polyesters dont le poly(téréphtalate d'éthylène) et le poly(téréphtalate de butylène) ; les polyéthers tels que le poly(phénylène éther), le poly(oxyméthylène) et le poly(oxyéthylène) ou poly(éthylène glycol); le polystyrène ; les copolymères de styrène et d'anhydride maléique ; le poly(chlorure de vinyle) ; les polymères fluorés tels que le poly(fluorure de vinylidène), le polytétrafluoréthylène et le polychlorotrifluoroéthylène ; les caoutchoucs naturels ou synthétiques ; les polyuréthanes thermoplastiques ; les polyaryl éther cétones (PAEK) telles que la polyétheréthercétone (PEEK) et la polyéther cétone cétone (PEKK) ; le polyétherimide ; la polysulfone ; le poly(sulfure de phénylène) ; l'acétate de cellulose ; le poly(acétate de vinyle) ; et leurs mélanges. 3. Use according to claim 1 or 2 characterized in that the thermoplastic polymer is selected from homo- and copolymers of olefins such as polyethylene, polypropylene, polybutadiene, polybutylene and acrylonitrile-butadiene-styrene copolymers; acrylic homo- and copolymers and alkyl poly (meth) acrylates such as poly (methyl methacrylate); homo- and copolyamides; polycarbonates; polyesters including poly (ethylene terephthalate) and poly (butylene terephthalate); polyethers such as poly (phenylene ether), poly (oxymethylene) and poly (oxyethylene) or poly (ethylene glycol); polystyrene; copolymers of styrene and maleic anhydride; polyvinyl chloride; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene; natural or synthetic rubbers; the thermoplastic polyurethanes; polyaryl ether ketones (PAEK) such as polyetheretherketone (PEEK) and polyether ketone ketone (PEKK); polyetherimide; polysulfone; poly (phenylene sulfide); cellulose acetate; poly (vinyl acetate); and their mixtures.
4. Utilisation selon l'une quelconque des revendications précédentes caractérisée en ce que le polymère thermoplastique est choisi parmi les homo- et copolymères d'oléfines, en particulier les homo- et copolymères d'éthylène ou de propylène, et les homo- et copolymères d'amides comme les polyamides 6, 6.6, 6.10, 6.12, 1 1 , 12, 10.1 0, 1 2.1 2, 4.6, ou copolymères avec des oléfines ou des esters, éthers ou composés phénoliques. 4. Use according to any one of the preceding claims, characterized in that the thermoplastic polymer is chosen from homo- and copolymers of olefins, in particular the homo- and copolymers of ethylene or propylene, and the homo- and copolymers amides such as polyamides 6, 6.6, 6.10, 6.12, 1 1, 12, 10.1 0, 1 2.1 2, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
5. Utilisation selon l'une quelconque des revendications précédentes caractérisée en ce que le polymère thermoplastique est choisi parmi les homo- et copolymères d'oléfines, en particulier les homo- et copolymères d'éthylène ou de propylène, et les homo- et copolymères d'amides comme les polyamides 6, 6.6, 6.10, 6.12, 1 1 , 12, 1 0.10, 1 2.1 2, 4.6, ou copolymères avec des oléfines ou des esters, éthers ou composés phénoliques. 5. Use according to any one of the preceding claims characterized in that the thermoplastic polymer is chosen from olefin homo- and copolymers, in particular homo- and copolymers of ethylene or propylene, and homo- and copolymers amides such as polyamides 6, 6.6, 6.10, 6.12, 1 1, 12, 1 0.10, 1 2.1 2, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
6. Utilisation selon l'une quelconque des revendications précédentes caractérisée en ce que la base de résine élastomérique est choisie parmi les élastomères fluorocarbonés ou fluorosiliconés ; les homo- et copolymères du butadiène, éventuellement fonctionnalisées par des monomères insaturés tels que l'anhydride maléique, l'acide (méth)acrylique, l'acrylonitrile (NBR) et/ou le styrène (SBR ; SBS ; SEBS) ; le néoprène (ou polychloroprène) ; le polyisobutylène (PIB) ; le polyisopropylène (PIP) ; le polyisoprène ; les copolymère d'isoprène avec le styrène, le butadiène, l'acrylonitrile et/ou le méthacrylate de méthyle ; les copolymères à base de propylène et/ou d'éthylène et notamment les terpolymères à base d'éthylène, de propylène et de diènes (EPDM), ainsi que les copolymères de ces oléfines avec un (méth)acrylate d'alkyle ou l'acétate de vinyle ; les caoutchoucs naturels (NR) ; les caoutchoucs butyle halogénés ; les élastomères de silicone tels que les poly(diméthylsiloxanes) à extrémités vinyliques ; les polyuréthanes (PU) ; les plastomères comprenant des oléfines en C-4, C-5, C-6, C-8 C-9, ou C-12 ; les polyesters ; les polymères acryliques tels que le poly(acrylate de butyle) porteur de fonctions acide carboxylique ou époxy ; ainsi que leurs dérivés modifiés ou fonctionnalisés et leurs mélanges. 6. Use according to any one of the preceding claims characterized in that the elastomeric resin base is selected from fluorocarbon elastomers or fluorosilicones; homo- and copolymers of butadiene, optionally functionalized with unsaturated monomers such as maleic anhydride, (meth) acrylic acid, acrylonitrile (NBR) and / or styrene (SBR, SBS, SEBS); neoprene (or polychloroprene); polyisobutylene (PIB); polyisopropylene (PIP); polyisoprene; copolymers of isoprene with styrene, butadiene, acrylonitrile and / or methyl methacrylate; copolymers based on propylene and / or ethylene and in particular terpolymers based on ethylene, propylene and dienes (EPDM), as well as copolymers of these olefins with an alkyl (meth) acrylate or vinyl acetate; natural rubbers (NR); halogenated butyl rubbers; silicone elastomers such as poly (dimethylsiloxanes) with vinyl ends; polyurethanes (PU); plastomers comprising olefins at C-4, C-5, C-6, C-8 C-9, or C-12; polyesters; acrylic polymers such as poly (butyl acrylate) bearing carboxylic acid or epoxy functions; as well as their modified or functionalized derivatives and their mixtures.
7. Utilisation selon l'une quelconque des revendications précédentes caractérisée en ce que la charge conventionnelle est choisie parmi les charges de nature carbonique ; les charges minérales sans facteur de forme ; les charges minérales lamellaires ; les micro fibrilles et nano fibrilles minérales ; les fibres minérales synthétiques ; les fibres organiques naturelles et synthétiques 7. Use according to any one of the preceding claims, characterized in that the conventional filler is selected from carbonic fillers; mineral fillers without form factor; lamellar mineral fillers; micro fibrils and nano mineral fibrils; synthetic mineral fibers; natural and synthetic organic fibers
8. Utilisation d'un matériau composite comprenant une composition polymérique comprenant une matrice polymère renfermant au moins un polymère choisi parmi un polymère thermoplastique, une base de résine élastomérique et leurs mélanges en toutes proportions, chargée à l'aide d'au moins une charge conventionnelle comme renfort mécanique, ledit matériau étant renforcé thermomécaniquement à l'aide de 1 ppm à moins de 1 % en poids de nanocharges carbonées choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène ou un mélange de ceux-ci en toutes proportions, pour la fabrication de divers produits composites tels que des fils, des films, des tubes, des fibres, des non tissés comme des tissus ou des feutres, utilisables pour les conduits de fibres optiques, le gainage de câbles, les conduites de gaz ou d'eaux de rejets ou industrielles, les revêtements extrudés ou moulés, les articles fabriqués par injection, extrusion, compression ou moulage, dans le secteur automobile ou dans le domaine de l'agriculture, notamment pour la protection des terres d'agriculture (serres et sols). 8. Use of a composite material comprising a polymeric composition comprising a polymer matrix containing at least one polymer selected from a thermoplastic polymer, an elastomeric resin base and mixtures thereof in all proportions, loaded with at least one load conventional mechanical reinforcement, said material being thermomechanically reinforced using 1 ppm to less than 1% by weight of carbon nanofillers selected from carbon nanotubes, carbon nanofibers, graphene or a mixture thereof in all proportions, for the manufacture of various composite products such as yarns, films, tubes, fibers, nonwovens such as fabrics or felts, usable for fiber optic conduits, cable sheathing, gas pipes or waste waters or industrial waters, extruded or molded coatings, articles manufactured by injection, extrusion, compression or molding, in the automotive sector or in the field of agriculture, particularly for the protection of agricultural land (greenhouses and soils).
PCT/FR2013/051245 2012-06-04 2013-06-03 Use of a very low concentration of carbon nanofillers for the mechanical reinforcement of composite materials filled with a conventional filler WO2013182793A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261667721P 2012-06-04 2012-06-04
US61/667,721 2012-06-04
FR1255184A FR2991333B1 (en) 2012-06-04 2012-06-04 USE OF CARBON NANOCHARGES AT VERY LOW RATES FOR THE MECHANICAL REINFORCEMENT OF COMPOSITE MATERIALS POSSIBLY CHARGED
FR1255184 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013182793A1 true WO2013182793A1 (en) 2013-12-12

Family

ID=46889205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051245 WO2013182793A1 (en) 2012-06-04 2013-06-03 Use of a very low concentration of carbon nanofillers for the mechanical reinforcement of composite materials filled with a conventional filler

Country Status (2)

Country Link
FR (1) FR2991333B1 (en)
WO (1) WO2013182793A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110464A3 (en) * 2013-01-11 2014-12-18 Sabic Innovative Plastics Ip B.V. Methods and compositions for energy dissipation
CN107987475A (en) * 2017-11-22 2018-05-04 新宇电缆集团股份有限公司 A kind of highly effective flame-retardant high elongation rate cable jacket material
US10968340B1 (en) 2017-01-31 2021-04-06 Eaton Intelligent Power Limited Electrically conductive, high strength, high temperature polymer composite for additive manufacturing
CN115746447A (en) * 2022-12-02 2023-03-07 哈尔滨理工大学 Halogen-free flame-retardant high-temperature-resistant heat-conducting polyolefin composite material and preparation method and application thereof
CN116230400A (en) * 2023-03-31 2023-06-06 佛山市欣源电子股份有限公司 Power capacitor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992754A (en) * 2015-07-20 2015-10-21 江苏中超电缆股份有限公司 Aerial insulated cable cross linked polyethylene insulation material containing graphene and cable
CN105037830A (en) * 2015-09-08 2015-11-11 中北大学 High-strength low-heat-generation composite material and preparation method thereof
CN106810739A (en) * 2016-12-02 2017-06-09 长兴天晟能源科技有限公司 A kind of functional agglomerate for improving polyethylene packaging film toughness
FR3079521A1 (en) * 2018-03-29 2019-10-04 Arkema France POLYOLEFIN THERMOPLASTIC COMPOSITION FOR PRODUCING OBJECTS OF PERMANENT ANTISTATIC PROPERTIES.
CN114276634B (en) * 2022-01-07 2023-01-03 深圳市多合盈新材料有限公司 Environment-friendly easily-degradable gas film material and production method thereof
CN115418074A (en) * 2022-05-20 2022-12-02 湖南碳导新材料科技有限公司 Oriented multi-dimensional filler reinforced polyether ketone composite material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002456A2 (en) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Method for the selective production of ordered carbon nanotubes in a fluidised bed
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
WO2008047063A1 (en) * 2006-10-20 2008-04-24 Arkema France Method for manufacturing and shaping a polyamide part with improved mechanical properties, and composition for realising said method
EP1980530A1 (en) 2007-04-06 2008-10-15 Arkema France Method of manufacturing carbon nanotubes using renewable raw materials
EP1995274A1 (en) 2007-05-22 2008-11-26 Arkema France Method for preparing nanotube pre-composites, in particular made from carbon
WO2010046606A1 (en) 2008-10-22 2010-04-29 Arkema France Method for preparing a thermoplastic composite material containing nanotubes, particularly carbon nanotubes
WO2010109118A1 (en) 2009-03-23 2010-09-30 Arkema France Method for preparing an elastomeric composite material with a high nanotube content
WO2010109119A1 (en) 2009-03-23 2010-09-30 Arkema France Method for preparing a thermosetting composite material with a high nanotube content
JP2011173957A (en) * 2010-02-23 2011-09-08 Teijin Ltd Polyethylene naphthalate composition and molded article using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002456A2 (en) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Method for the selective production of ordered carbon nanotubes in a fluidised bed
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
WO2008047063A1 (en) * 2006-10-20 2008-04-24 Arkema France Method for manufacturing and shaping a polyamide part with improved mechanical properties, and composition for realising said method
EP1980530A1 (en) 2007-04-06 2008-10-15 Arkema France Method of manufacturing carbon nanotubes using renewable raw materials
EP1995274A1 (en) 2007-05-22 2008-11-26 Arkema France Method for preparing nanotube pre-composites, in particular made from carbon
WO2010046606A1 (en) 2008-10-22 2010-04-29 Arkema France Method for preparing a thermoplastic composite material containing nanotubes, particularly carbon nanotubes
WO2010109118A1 (en) 2009-03-23 2010-09-30 Arkema France Method for preparing an elastomeric composite material with a high nanotube content
WO2010109119A1 (en) 2009-03-23 2010-09-30 Arkema France Method for preparing a thermosetting composite material with a high nanotube content
EP2236556A1 (en) 2009-03-23 2010-10-06 Arkema France Method for preparing an elastomeric composite material having a high content in nanotubes
JP2011173957A (en) * 2010-02-23 2011-09-08 Teijin Ltd Polyethylene naphthalate composition and molded article using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTIN-GULLON ET AL., CARBON, vol. 44, 2006, pages 1572 - 1580

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110464A3 (en) * 2013-01-11 2014-12-18 Sabic Innovative Plastics Ip B.V. Methods and compositions for energy dissipation
US9252496B2 (en) 2013-01-11 2016-02-02 Sabic Global Technologies B.V. Methods and compositions for energy dissipation
US10968340B1 (en) 2017-01-31 2021-04-06 Eaton Intelligent Power Limited Electrically conductive, high strength, high temperature polymer composite for additive manufacturing
US11787926B2 (en) 2017-01-31 2023-10-17 Eaton Intelligent Power Limited Electrically conductive, high strength, high temperature polymer composite for additive manufacturing
CN107987475A (en) * 2017-11-22 2018-05-04 新宇电缆集团股份有限公司 A kind of highly effective flame-retardant high elongation rate cable jacket material
CN115746447A (en) * 2022-12-02 2023-03-07 哈尔滨理工大学 Halogen-free flame-retardant high-temperature-resistant heat-conducting polyolefin composite material and preparation method and application thereof
CN116230400A (en) * 2023-03-31 2023-06-06 佛山市欣源电子股份有限公司 Power capacitor
CN116230400B (en) * 2023-03-31 2023-09-05 佛山市欣源电子股份有限公司 Power capacitor

Also Published As

Publication number Publication date
FR2991333B1 (en) 2015-04-03
FR2991333A1 (en) 2013-12-06

Similar Documents

Publication Publication Date Title
EP2855564B1 (en) Composite material with a very low concentration of carbon nanofillers, production method thereof and uses of said material
EP2855569B1 (en) Use of a very low concentration of carbon nanofillers for the uv-stabilisation of composite materials
WO2013182793A1 (en) Use of a very low concentration of carbon nanofillers for the mechanical reinforcement of composite materials filled with a conventional filler
EP2561011B1 (en) Thermoplastic and/or elastomeric composite material based on carbon nanotubes and graphenes
FR2943349A1 (en) PROCESS FOR PREPARING ELASTOMERIC COMPOSITE MATERIAL HAVING HIGH NANOTUBE CONTENT
FR2916364A1 (en) PROCESS FOR THE PREPARATION OF PRE-COMPOSITES BASED ON NANOTUBES, IN PARTICULAR CARBON
FR2921391A1 (en) PROCESS FOR PREPARING COMPOSITE MATERIALS
FR2957926A1 (en) PROCESS FOR THE PREPARATION OF ELASTOMERIC COMPOSITE MATERIAL
CA2963214C (en) Production of a master batch based on sulphur and carbonaceous nanofillers, the master batch produced, and uses thereof
FR2937323A1 (en) PROCESS FOR THE PREPARATION OF A THERMOPLASTIC COMPOSITE MATERIAL BASED ON NANOTUBES, IN PARTICULAR CARBON
WO2012131265A1 (en) Composite material containing carbon nanotubes and particles having a core-shell structure
CA3039721A1 (en) Novel method for producing high-carbon materials and high-carbon material produced
JPWO2012128114A1 (en) Oxidized exfoliated graphite derivative, resin composite material thereof, and method for producing resin composite material thereof
FR3079521A1 (en) POLYOLEFIN THERMOPLASTIC COMPOSITION FOR PRODUCING OBJECTS OF PERMANENT ANTISTATIC PROPERTIES.
WO2008145911A2 (en) Method for preparing an aqueous suspension of carbon nanotubes and suspension thus obtained
TW201619249A (en) Rubber products based on improved NBR masterbatch
Afsharpour et al. Nanofillers in Additives for Rubbers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13730019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13730019

Country of ref document: EP

Kind code of ref document: A1